1/* 2 * This is a maximally equidistributed combined Tausworthe generator 3 * based on code from GNU Scientific Library 1.5 (30 Jun 2004) 4 * 5 * lfsr113 version: 6 * 7 * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n) 8 * 9 * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13)) 10 * s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27)) 11 * s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21)) 12 * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12)) 13 * 14 * The period of this generator is about 2^113 (see erratum paper). 15 * 16 * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe 17 * Generators", Mathematics of Computation, 65, 213 (1996), 203--213: 18 * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 19 * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps 20 * 21 * There is an erratum in the paper "Tables of Maximally Equidistributed 22 * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), 23 * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 24 * 25 * ... the k_j most significant bits of z_j must be non-zero, 26 * for each j. (Note: this restriction also applies to the 27 * computer code given in [4], but was mistakenly not mentioned 28 * in that paper.) 29 * 30 * This affects the seeding procedure by imposing the requirement 31 * s1 > 1, s2 > 7, s3 > 15, s4 > 127. 32 */ 33 34#include <linux/types.h> 35#include <linux/percpu.h> 36#include <linux/export.h> 37#include <linux/jiffies.h> 38#include <linux/random.h> 39#include <linux/sched.h> 40#include <asm/unaligned.h> 41 42#ifdef CONFIG_RANDOM32_SELFTEST 43static void __init prandom_state_selftest(void); 44#else 45static inline void prandom_state_selftest(void) 46{ 47} 48#endif 49 50static DEFINE_PER_CPU(struct rnd_state, net_rand_state); 51 52/** 53 * prandom_u32_state - seeded pseudo-random number generator. 54 * @state: pointer to state structure holding seeded state. 55 * 56 * This is used for pseudo-randomness with no outside seeding. 57 * For more random results, use prandom_u32(). 58 */ 59u32 prandom_u32_state(struct rnd_state *state) 60{ 61#define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b) 62 state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U); 63 state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U); 64 state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U); 65 state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U); 66 67 return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4); 68} 69EXPORT_SYMBOL(prandom_u32_state); 70 71/** 72 * prandom_u32 - pseudo random number generator 73 * 74 * A 32 bit pseudo-random number is generated using a fast 75 * algorithm suitable for simulation. This algorithm is NOT 76 * considered safe for cryptographic use. 77 */ 78u32 prandom_u32(void) 79{ 80 struct rnd_state *state = &get_cpu_var(net_rand_state); 81 u32 res; 82 83 res = prandom_u32_state(state); 84 put_cpu_var(state); 85 86 return res; 87} 88EXPORT_SYMBOL(prandom_u32); 89 90/** 91 * prandom_bytes_state - get the requested number of pseudo-random bytes 92 * 93 * @state: pointer to state structure holding seeded state. 94 * @buf: where to copy the pseudo-random bytes to 95 * @bytes: the requested number of bytes 96 * 97 * This is used for pseudo-randomness with no outside seeding. 98 * For more random results, use prandom_bytes(). 99 */ 100void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes) 101{ 102 u8 *ptr = buf; 103 104 while (bytes >= sizeof(u32)) { 105 put_unaligned(prandom_u32_state(state), (u32 *) ptr); 106 ptr += sizeof(u32); 107 bytes -= sizeof(u32); 108 } 109 110 if (bytes > 0) { 111 u32 rem = prandom_u32_state(state); 112 do { 113 *ptr++ = (u8) rem; 114 bytes--; 115 rem >>= BITS_PER_BYTE; 116 } while (bytes > 0); 117 } 118} 119EXPORT_SYMBOL(prandom_bytes_state); 120 121/** 122 * prandom_bytes - get the requested number of pseudo-random bytes 123 * @buf: where to copy the pseudo-random bytes to 124 * @bytes: the requested number of bytes 125 */ 126void prandom_bytes(void *buf, size_t bytes) 127{ 128 struct rnd_state *state = &get_cpu_var(net_rand_state); 129 130 prandom_bytes_state(state, buf, bytes); 131 put_cpu_var(state); 132} 133EXPORT_SYMBOL(prandom_bytes); 134 135static void prandom_warmup(struct rnd_state *state) 136{ 137 /* Calling RNG ten times to satisfy recurrence condition */ 138 prandom_u32_state(state); 139 prandom_u32_state(state); 140 prandom_u32_state(state); 141 prandom_u32_state(state); 142 prandom_u32_state(state); 143 prandom_u32_state(state); 144 prandom_u32_state(state); 145 prandom_u32_state(state); 146 prandom_u32_state(state); 147 prandom_u32_state(state); 148} 149 150static u32 __extract_hwseed(void) 151{ 152 unsigned int val = 0; 153 154 (void)(arch_get_random_seed_int(&val) || 155 arch_get_random_int(&val)); 156 157 return val; 158} 159 160static void prandom_seed_early(struct rnd_state *state, u32 seed, 161 bool mix_with_hwseed) 162{ 163#define LCG(x) ((x) * 69069U) /* super-duper LCG */ 164#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0) 165 state->s1 = __seed(HWSEED() ^ LCG(seed), 2U); 166 state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U); 167 state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U); 168 state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U); 169} 170 171/** 172 * prandom_seed - add entropy to pseudo random number generator 173 * @seed: seed value 174 * 175 * Add some additional seeding to the prandom pool. 176 */ 177void prandom_seed(u32 entropy) 178{ 179 int i; 180 /* 181 * No locking on the CPUs, but then somewhat random results are, well, 182 * expected. 183 */ 184 for_each_possible_cpu (i) { 185 struct rnd_state *state = &per_cpu(net_rand_state, i); 186 187 state->s1 = __seed(state->s1 ^ entropy, 2U); 188 prandom_warmup(state); 189 } 190} 191EXPORT_SYMBOL(prandom_seed); 192 193/* 194 * Generate some initially weak seeding values to allow 195 * to start the prandom_u32() engine. 196 */ 197static int __init prandom_init(void) 198{ 199 int i; 200 201 prandom_state_selftest(); 202 203 for_each_possible_cpu(i) { 204 struct rnd_state *state = &per_cpu(net_rand_state,i); 205 u32 weak_seed = (i + jiffies) ^ random_get_entropy(); 206 207 prandom_seed_early(state, weak_seed, true); 208 prandom_warmup(state); 209 } 210 211 return 0; 212} 213core_initcall(prandom_init); 214 215static void __prandom_timer(unsigned long dontcare); 216 217static DEFINE_TIMER(seed_timer, __prandom_timer, 0, 0); 218 219static void __prandom_timer(unsigned long dontcare) 220{ 221 u32 entropy; 222 unsigned long expires; 223 224 get_random_bytes(&entropy, sizeof(entropy)); 225 prandom_seed(entropy); 226 227 /* reseed every ~60 seconds, in [40 .. 80) interval with slack */ 228 expires = 40 + prandom_u32_max(40); 229 seed_timer.expires = jiffies + msecs_to_jiffies(expires * MSEC_PER_SEC); 230 231 add_timer(&seed_timer); 232} 233 234static void __init __prandom_start_seed_timer(void) 235{ 236 set_timer_slack(&seed_timer, HZ); 237 seed_timer.expires = jiffies + msecs_to_jiffies(40 * MSEC_PER_SEC); 238 add_timer(&seed_timer); 239} 240 241/* 242 * Generate better values after random number generator 243 * is fully initialized. 244 */ 245static void __prandom_reseed(bool late) 246{ 247 int i; 248 unsigned long flags; 249 static bool latch = false; 250 static DEFINE_SPINLOCK(lock); 251 252 /* Asking for random bytes might result in bytes getting 253 * moved into the nonblocking pool and thus marking it 254 * as initialized. In this case we would double back into 255 * this function and attempt to do a late reseed. 256 * Ignore the pointless attempt to reseed again if we're 257 * already waiting for bytes when the nonblocking pool 258 * got initialized. 259 */ 260 261 /* only allow initial seeding (late == false) once */ 262 if (!spin_trylock_irqsave(&lock, flags)) 263 return; 264 265 if (latch && !late) 266 goto out; 267 268 latch = true; 269 270 for_each_possible_cpu(i) { 271 struct rnd_state *state = &per_cpu(net_rand_state,i); 272 u32 seeds[4]; 273 274 get_random_bytes(&seeds, sizeof(seeds)); 275 state->s1 = __seed(seeds[0], 2U); 276 state->s2 = __seed(seeds[1], 8U); 277 state->s3 = __seed(seeds[2], 16U); 278 state->s4 = __seed(seeds[3], 128U); 279 280 prandom_warmup(state); 281 } 282out: 283 spin_unlock_irqrestore(&lock, flags); 284} 285 286void prandom_reseed_late(void) 287{ 288 __prandom_reseed(true); 289} 290 291static int __init prandom_reseed(void) 292{ 293 __prandom_reseed(false); 294 __prandom_start_seed_timer(); 295 return 0; 296} 297late_initcall(prandom_reseed); 298 299#ifdef CONFIG_RANDOM32_SELFTEST 300static struct prandom_test1 { 301 u32 seed; 302 u32 result; 303} test1[] = { 304 { 1U, 3484351685U }, 305 { 2U, 2623130059U }, 306 { 3U, 3125133893U }, 307 { 4U, 984847254U }, 308}; 309 310static struct prandom_test2 { 311 u32 seed; 312 u32 iteration; 313 u32 result; 314} test2[] = { 315 /* Test cases against taus113 from GSL library. */ 316 { 931557656U, 959U, 2975593782U }, 317 { 1339693295U, 876U, 3887776532U }, 318 { 1545556285U, 961U, 1615538833U }, 319 { 601730776U, 723U, 1776162651U }, 320 { 1027516047U, 687U, 511983079U }, 321 { 416526298U, 700U, 916156552U }, 322 { 1395522032U, 652U, 2222063676U }, 323 { 366221443U, 617U, 2992857763U }, 324 { 1539836965U, 714U, 3783265725U }, 325 { 556206671U, 994U, 799626459U }, 326 { 684907218U, 799U, 367789491U }, 327 { 2121230701U, 931U, 2115467001U }, 328 { 1668516451U, 644U, 3620590685U }, 329 { 768046066U, 883U, 2034077390U }, 330 { 1989159136U, 833U, 1195767305U }, 331 { 536585145U, 996U, 3577259204U }, 332 { 1008129373U, 642U, 1478080776U }, 333 { 1740775604U, 939U, 1264980372U }, 334 { 1967883163U, 508U, 10734624U }, 335 { 1923019697U, 730U, 3821419629U }, 336 { 442079932U, 560U, 3440032343U }, 337 { 1961302714U, 845U, 841962572U }, 338 { 2030205964U, 962U, 1325144227U }, 339 { 1160407529U, 507U, 240940858U }, 340 { 635482502U, 779U, 4200489746U }, 341 { 1252788931U, 699U, 867195434U }, 342 { 1961817131U, 719U, 668237657U }, 343 { 1071468216U, 983U, 917876630U }, 344 { 1281848367U, 932U, 1003100039U }, 345 { 582537119U, 780U, 1127273778U }, 346 { 1973672777U, 853U, 1071368872U }, 347 { 1896756996U, 762U, 1127851055U }, 348 { 847917054U, 500U, 1717499075U }, 349 { 1240520510U, 951U, 2849576657U }, 350 { 1685071682U, 567U, 1961810396U }, 351 { 1516232129U, 557U, 3173877U }, 352 { 1208118903U, 612U, 1613145022U }, 353 { 1817269927U, 693U, 4279122573U }, 354 { 1510091701U, 717U, 638191229U }, 355 { 365916850U, 807U, 600424314U }, 356 { 399324359U, 702U, 1803598116U }, 357 { 1318480274U, 779U, 2074237022U }, 358 { 697758115U, 840U, 1483639402U }, 359 { 1696507773U, 840U, 577415447U }, 360 { 2081979121U, 981U, 3041486449U }, 361 { 955646687U, 742U, 3846494357U }, 362 { 1250683506U, 749U, 836419859U }, 363 { 595003102U, 534U, 366794109U }, 364 { 47485338U, 558U, 3521120834U }, 365 { 619433479U, 610U, 3991783875U }, 366 { 704096520U, 518U, 4139493852U }, 367 { 1712224984U, 606U, 2393312003U }, 368 { 1318233152U, 922U, 3880361134U }, 369 { 855572992U, 761U, 1472974787U }, 370 { 64721421U, 703U, 683860550U }, 371 { 678931758U, 840U, 380616043U }, 372 { 692711973U, 778U, 1382361947U }, 373 { 677703619U, 530U, 2826914161U }, 374 { 92393223U, 586U, 1522128471U }, 375 { 1222592920U, 743U, 3466726667U }, 376 { 358288986U, 695U, 1091956998U }, 377 { 1935056945U, 958U, 514864477U }, 378 { 735675993U, 990U, 1294239989U }, 379 { 1560089402U, 897U, 2238551287U }, 380 { 70616361U, 829U, 22483098U }, 381 { 368234700U, 731U, 2913875084U }, 382 { 20221190U, 879U, 1564152970U }, 383 { 539444654U, 682U, 1835141259U }, 384 { 1314987297U, 840U, 1801114136U }, 385 { 2019295544U, 645U, 3286438930U }, 386 { 469023838U, 716U, 1637918202U }, 387 { 1843754496U, 653U, 2562092152U }, 388 { 400672036U, 809U, 4264212785U }, 389 { 404722249U, 965U, 2704116999U }, 390 { 600702209U, 758U, 584979986U }, 391 { 519953954U, 667U, 2574436237U }, 392 { 1658071126U, 694U, 2214569490U }, 393 { 420480037U, 749U, 3430010866U }, 394 { 690103647U, 969U, 3700758083U }, 395 { 1029424799U, 937U, 3787746841U }, 396 { 2012608669U, 506U, 3362628973U }, 397 { 1535432887U, 998U, 42610943U }, 398 { 1330635533U, 857U, 3040806504U }, 399 { 1223800550U, 539U, 3954229517U }, 400 { 1322411537U, 680U, 3223250324U }, 401 { 1877847898U, 945U, 2915147143U }, 402 { 1646356099U, 874U, 965988280U }, 403 { 805687536U, 744U, 4032277920U }, 404 { 1948093210U, 633U, 1346597684U }, 405 { 392609744U, 783U, 1636083295U }, 406 { 690241304U, 770U, 1201031298U }, 407 { 1360302965U, 696U, 1665394461U }, 408 { 1220090946U, 780U, 1316922812U }, 409 { 447092251U, 500U, 3438743375U }, 410 { 1613868791U, 592U, 828546883U }, 411 { 523430951U, 548U, 2552392304U }, 412 { 726692899U, 810U, 1656872867U }, 413 { 1364340021U, 836U, 3710513486U }, 414 { 1986257729U, 931U, 935013962U }, 415 { 407983964U, 921U, 728767059U }, 416}; 417 418static void __init prandom_state_selftest(void) 419{ 420 int i, j, errors = 0, runs = 0; 421 bool error = false; 422 423 for (i = 0; i < ARRAY_SIZE(test1); i++) { 424 struct rnd_state state; 425 426 prandom_seed_early(&state, test1[i].seed, false); 427 prandom_warmup(&state); 428 429 if (test1[i].result != prandom_u32_state(&state)) 430 error = true; 431 } 432 433 if (error) 434 pr_warn("prandom: seed boundary self test failed\n"); 435 else 436 pr_info("prandom: seed boundary self test passed\n"); 437 438 for (i = 0; i < ARRAY_SIZE(test2); i++) { 439 struct rnd_state state; 440 441 prandom_seed_early(&state, test2[i].seed, false); 442 prandom_warmup(&state); 443 444 for (j = 0; j < test2[i].iteration - 1; j++) 445 prandom_u32_state(&state); 446 447 if (test2[i].result != prandom_u32_state(&state)) 448 errors++; 449 450 runs++; 451 cond_resched(); 452 } 453 454 if (errors) 455 pr_warn("prandom: %d/%d self tests failed\n", errors, runs); 456 else 457 pr_info("prandom: %d self tests passed\n", runs); 458} 459#endif 460