1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2.  See the file COPYING for more details.
7 */
8#include <linux/export.h>
9#include <linux/thread_info.h>
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
14#include <linux/bug.h>
15
16#include <asm/page.h>
17#include <asm/uaccess.h>
18
19/*
20 * bitmaps provide an array of bits, implemented using an an
21 * array of unsigned longs.  The number of valid bits in a
22 * given bitmap does _not_ need to be an exact multiple of
23 * BITS_PER_LONG.
24 *
25 * The possible unused bits in the last, partially used word
26 * of a bitmap are 'don't care'.  The implementation makes
27 * no particular effort to keep them zero.  It ensures that
28 * their value will not affect the results of any operation.
29 * The bitmap operations that return Boolean (bitmap_empty,
30 * for example) or scalar (bitmap_weight, for example) results
31 * carefully filter out these unused bits from impacting their
32 * results.
33 *
34 * These operations actually hold to a slightly stronger rule:
35 * if you don't input any bitmaps to these ops that have some
36 * unused bits set, then they won't output any set unused bits
37 * in output bitmaps.
38 *
39 * The byte ordering of bitmaps is more natural on little
40 * endian architectures.  See the big-endian headers
41 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
42 * for the best explanations of this ordering.
43 */
44
45int __bitmap_equal(const unsigned long *bitmap1,
46		const unsigned long *bitmap2, unsigned int bits)
47{
48	unsigned int k, lim = bits/BITS_PER_LONG;
49	for (k = 0; k < lim; ++k)
50		if (bitmap1[k] != bitmap2[k])
51			return 0;
52
53	if (bits % BITS_PER_LONG)
54		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
55			return 0;
56
57	return 1;
58}
59EXPORT_SYMBOL(__bitmap_equal);
60
61void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
62{
63	unsigned int k, lim = bits/BITS_PER_LONG;
64	for (k = 0; k < lim; ++k)
65		dst[k] = ~src[k];
66
67	if (bits % BITS_PER_LONG)
68		dst[k] = ~src[k];
69}
70EXPORT_SYMBOL(__bitmap_complement);
71
72/**
73 * __bitmap_shift_right - logical right shift of the bits in a bitmap
74 *   @dst : destination bitmap
75 *   @src : source bitmap
76 *   @shift : shift by this many bits
77 *   @nbits : bitmap size, in bits
78 *
79 * Shifting right (dividing) means moving bits in the MS -> LS bit
80 * direction.  Zeros are fed into the vacated MS positions and the
81 * LS bits shifted off the bottom are lost.
82 */
83void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
84			unsigned shift, unsigned nbits)
85{
86	unsigned k, lim = BITS_TO_LONGS(nbits);
87	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
88	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
89	for (k = 0; off + k < lim; ++k) {
90		unsigned long upper, lower;
91
92		/*
93		 * If shift is not word aligned, take lower rem bits of
94		 * word above and make them the top rem bits of result.
95		 */
96		if (!rem || off + k + 1 >= lim)
97			upper = 0;
98		else {
99			upper = src[off + k + 1];
100			if (off + k + 1 == lim - 1)
101				upper &= mask;
102			upper <<= (BITS_PER_LONG - rem);
103		}
104		lower = src[off + k];
105		if (off + k == lim - 1)
106			lower &= mask;
107		lower >>= rem;
108		dst[k] = lower | upper;
109	}
110	if (off)
111		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
112}
113EXPORT_SYMBOL(__bitmap_shift_right);
114
115
116/**
117 * __bitmap_shift_left - logical left shift of the bits in a bitmap
118 *   @dst : destination bitmap
119 *   @src : source bitmap
120 *   @shift : shift by this many bits
121 *   @nbits : bitmap size, in bits
122 *
123 * Shifting left (multiplying) means moving bits in the LS -> MS
124 * direction.  Zeros are fed into the vacated LS bit positions
125 * and those MS bits shifted off the top are lost.
126 */
127
128void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
129			unsigned int shift, unsigned int nbits)
130{
131	int k;
132	unsigned int lim = BITS_TO_LONGS(nbits);
133	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
134	for (k = lim - off - 1; k >= 0; --k) {
135		unsigned long upper, lower;
136
137		/*
138		 * If shift is not word aligned, take upper rem bits of
139		 * word below and make them the bottom rem bits of result.
140		 */
141		if (rem && k > 0)
142			lower = src[k - 1] >> (BITS_PER_LONG - rem);
143		else
144			lower = 0;
145		upper = src[k] << rem;
146		dst[k + off] = lower | upper;
147	}
148	if (off)
149		memset(dst, 0, off*sizeof(unsigned long));
150}
151EXPORT_SYMBOL(__bitmap_shift_left);
152
153int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
154				const unsigned long *bitmap2, unsigned int bits)
155{
156	unsigned int k;
157	unsigned int lim = bits/BITS_PER_LONG;
158	unsigned long result = 0;
159
160	for (k = 0; k < lim; k++)
161		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
162	if (bits % BITS_PER_LONG)
163		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
164			   BITMAP_LAST_WORD_MASK(bits));
165	return result != 0;
166}
167EXPORT_SYMBOL(__bitmap_and);
168
169void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
170				const unsigned long *bitmap2, unsigned int bits)
171{
172	unsigned int k;
173	unsigned int nr = BITS_TO_LONGS(bits);
174
175	for (k = 0; k < nr; k++)
176		dst[k] = bitmap1[k] | bitmap2[k];
177}
178EXPORT_SYMBOL(__bitmap_or);
179
180void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
181				const unsigned long *bitmap2, unsigned int bits)
182{
183	unsigned int k;
184	unsigned int nr = BITS_TO_LONGS(bits);
185
186	for (k = 0; k < nr; k++)
187		dst[k] = bitmap1[k] ^ bitmap2[k];
188}
189EXPORT_SYMBOL(__bitmap_xor);
190
191int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
192				const unsigned long *bitmap2, unsigned int bits)
193{
194	unsigned int k;
195	unsigned int lim = bits/BITS_PER_LONG;
196	unsigned long result = 0;
197
198	for (k = 0; k < lim; k++)
199		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
200	if (bits % BITS_PER_LONG)
201		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
202			   BITMAP_LAST_WORD_MASK(bits));
203	return result != 0;
204}
205EXPORT_SYMBOL(__bitmap_andnot);
206
207int __bitmap_intersects(const unsigned long *bitmap1,
208			const unsigned long *bitmap2, unsigned int bits)
209{
210	unsigned int k, lim = bits/BITS_PER_LONG;
211	for (k = 0; k < lim; ++k)
212		if (bitmap1[k] & bitmap2[k])
213			return 1;
214
215	if (bits % BITS_PER_LONG)
216		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
217			return 1;
218	return 0;
219}
220EXPORT_SYMBOL(__bitmap_intersects);
221
222int __bitmap_subset(const unsigned long *bitmap1,
223		    const unsigned long *bitmap2, unsigned int bits)
224{
225	unsigned int k, lim = bits/BITS_PER_LONG;
226	for (k = 0; k < lim; ++k)
227		if (bitmap1[k] & ~bitmap2[k])
228			return 0;
229
230	if (bits % BITS_PER_LONG)
231		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
232			return 0;
233	return 1;
234}
235EXPORT_SYMBOL(__bitmap_subset);
236
237int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
238{
239	unsigned int k, lim = bits/BITS_PER_LONG;
240	int w = 0;
241
242	for (k = 0; k < lim; k++)
243		w += hweight_long(bitmap[k]);
244
245	if (bits % BITS_PER_LONG)
246		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
247
248	return w;
249}
250EXPORT_SYMBOL(__bitmap_weight);
251
252void bitmap_set(unsigned long *map, unsigned int start, int len)
253{
254	unsigned long *p = map + BIT_WORD(start);
255	const unsigned int size = start + len;
256	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
257	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
258
259	while (len - bits_to_set >= 0) {
260		*p |= mask_to_set;
261		len -= bits_to_set;
262		bits_to_set = BITS_PER_LONG;
263		mask_to_set = ~0UL;
264		p++;
265	}
266	if (len) {
267		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
268		*p |= mask_to_set;
269	}
270}
271EXPORT_SYMBOL(bitmap_set);
272
273void bitmap_clear(unsigned long *map, unsigned int start, int len)
274{
275	unsigned long *p = map + BIT_WORD(start);
276	const unsigned int size = start + len;
277	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
278	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
279
280	while (len - bits_to_clear >= 0) {
281		*p &= ~mask_to_clear;
282		len -= bits_to_clear;
283		bits_to_clear = BITS_PER_LONG;
284		mask_to_clear = ~0UL;
285		p++;
286	}
287	if (len) {
288		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
289		*p &= ~mask_to_clear;
290	}
291}
292EXPORT_SYMBOL(bitmap_clear);
293
294/**
295 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
296 * @map: The address to base the search on
297 * @size: The bitmap size in bits
298 * @start: The bitnumber to start searching at
299 * @nr: The number of zeroed bits we're looking for
300 * @align_mask: Alignment mask for zero area
301 * @align_offset: Alignment offset for zero area.
302 *
303 * The @align_mask should be one less than a power of 2; the effect is that
304 * the bit offset of all zero areas this function finds plus @align_offset
305 * is multiple of that power of 2.
306 */
307unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
308					     unsigned long size,
309					     unsigned long start,
310					     unsigned int nr,
311					     unsigned long align_mask,
312					     unsigned long align_offset)
313{
314	unsigned long index, end, i;
315again:
316	index = find_next_zero_bit(map, size, start);
317
318	/* Align allocation */
319	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
320
321	end = index + nr;
322	if (end > size)
323		return end;
324	i = find_next_bit(map, end, index);
325	if (i < end) {
326		start = i + 1;
327		goto again;
328	}
329	return index;
330}
331EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
332
333/*
334 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
335 * second version by Paul Jackson, third by Joe Korty.
336 */
337
338#define CHUNKSZ				32
339#define nbits_to_hold_value(val)	fls(val)
340#define BASEDEC 10		/* fancier cpuset lists input in decimal */
341
342/**
343 * __bitmap_parse - convert an ASCII hex string into a bitmap.
344 * @buf: pointer to buffer containing string.
345 * @buflen: buffer size in bytes.  If string is smaller than this
346 *    then it must be terminated with a \0.
347 * @is_user: location of buffer, 0 indicates kernel space
348 * @maskp: pointer to bitmap array that will contain result.
349 * @nmaskbits: size of bitmap, in bits.
350 *
351 * Commas group hex digits into chunks.  Each chunk defines exactly 32
352 * bits of the resultant bitmask.  No chunk may specify a value larger
353 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
354 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
355 * characters and for grouping errors such as "1,,5", ",44", "," and "".
356 * Leading and trailing whitespace accepted, but not embedded whitespace.
357 */
358int __bitmap_parse(const char *buf, unsigned int buflen,
359		int is_user, unsigned long *maskp,
360		int nmaskbits)
361{
362	int c, old_c, totaldigits, ndigits, nchunks, nbits;
363	u32 chunk;
364	const char __user __force *ubuf = (const char __user __force *)buf;
365
366	bitmap_zero(maskp, nmaskbits);
367
368	nchunks = nbits = totaldigits = c = 0;
369	do {
370		chunk = ndigits = 0;
371
372		/* Get the next chunk of the bitmap */
373		while (buflen) {
374			old_c = c;
375			if (is_user) {
376				if (__get_user(c, ubuf++))
377					return -EFAULT;
378			}
379			else
380				c = *buf++;
381			buflen--;
382			if (isspace(c))
383				continue;
384
385			/*
386			 * If the last character was a space and the current
387			 * character isn't '\0', we've got embedded whitespace.
388			 * This is a no-no, so throw an error.
389			 */
390			if (totaldigits && c && isspace(old_c))
391				return -EINVAL;
392
393			/* A '\0' or a ',' signal the end of the chunk */
394			if (c == '\0' || c == ',')
395				break;
396
397			if (!isxdigit(c))
398				return -EINVAL;
399
400			/*
401			 * Make sure there are at least 4 free bits in 'chunk'.
402			 * If not, this hexdigit will overflow 'chunk', so
403			 * throw an error.
404			 */
405			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
406				return -EOVERFLOW;
407
408			chunk = (chunk << 4) | hex_to_bin(c);
409			ndigits++; totaldigits++;
410		}
411		if (ndigits == 0)
412			return -EINVAL;
413		if (nchunks == 0 && chunk == 0)
414			continue;
415
416		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
417		*maskp |= chunk;
418		nchunks++;
419		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
420		if (nbits > nmaskbits)
421			return -EOVERFLOW;
422	} while (buflen && c == ',');
423
424	return 0;
425}
426EXPORT_SYMBOL(__bitmap_parse);
427
428/**
429 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
430 *
431 * @ubuf: pointer to user buffer containing string.
432 * @ulen: buffer size in bytes.  If string is smaller than this
433 *    then it must be terminated with a \0.
434 * @maskp: pointer to bitmap array that will contain result.
435 * @nmaskbits: size of bitmap, in bits.
436 *
437 * Wrapper for __bitmap_parse(), providing it with user buffer.
438 *
439 * We cannot have this as an inline function in bitmap.h because it needs
440 * linux/uaccess.h to get the access_ok() declaration and this causes
441 * cyclic dependencies.
442 */
443int bitmap_parse_user(const char __user *ubuf,
444			unsigned int ulen, unsigned long *maskp,
445			int nmaskbits)
446{
447	if (!access_ok(VERIFY_READ, ubuf, ulen))
448		return -EFAULT;
449	return __bitmap_parse((const char __force *)ubuf,
450				ulen, 1, maskp, nmaskbits);
451
452}
453EXPORT_SYMBOL(bitmap_parse_user);
454
455/**
456 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
457 * @list: indicates whether the bitmap must be list
458 * @buf: page aligned buffer into which string is placed
459 * @maskp: pointer to bitmap to convert
460 * @nmaskbits: size of bitmap, in bits
461 *
462 * Output format is a comma-separated list of decimal numbers and
463 * ranges if list is specified or hex digits grouped into comma-separated
464 * sets of 8 digits/set. Returns the number of characters written to buf.
465 */
466int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
467			    int nmaskbits)
468{
469	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf - 2;
470	int n = 0;
471
472	if (len > 1) {
473		n = list ? scnprintf(buf, len, "%*pbl", nmaskbits, maskp) :
474			   scnprintf(buf, len, "%*pb", nmaskbits, maskp);
475		buf[n++] = '\n';
476		buf[n] = '\0';
477	}
478	return n;
479}
480EXPORT_SYMBOL(bitmap_print_to_pagebuf);
481
482/**
483 * __bitmap_parselist - convert list format ASCII string to bitmap
484 * @buf: read nul-terminated user string from this buffer
485 * @buflen: buffer size in bytes.  If string is smaller than this
486 *    then it must be terminated with a \0.
487 * @is_user: location of buffer, 0 indicates kernel space
488 * @maskp: write resulting mask here
489 * @nmaskbits: number of bits in mask to be written
490 *
491 * Input format is a comma-separated list of decimal numbers and
492 * ranges.  Consecutively set bits are shown as two hyphen-separated
493 * decimal numbers, the smallest and largest bit numbers set in
494 * the range.
495 *
496 * Returns 0 on success, -errno on invalid input strings.
497 * Error values:
498 *    %-EINVAL: second number in range smaller than first
499 *    %-EINVAL: invalid character in string
500 *    %-ERANGE: bit number specified too large for mask
501 */
502static int __bitmap_parselist(const char *buf, unsigned int buflen,
503		int is_user, unsigned long *maskp,
504		int nmaskbits)
505{
506	unsigned a, b;
507	int c, old_c, totaldigits;
508	const char __user __force *ubuf = (const char __user __force *)buf;
509	int at_start, in_range;
510
511	totaldigits = c = 0;
512	bitmap_zero(maskp, nmaskbits);
513	do {
514		at_start = 1;
515		in_range = 0;
516		a = b = 0;
517
518		/* Get the next cpu# or a range of cpu#'s */
519		while (buflen) {
520			old_c = c;
521			if (is_user) {
522				if (__get_user(c, ubuf++))
523					return -EFAULT;
524			} else
525				c = *buf++;
526			buflen--;
527			if (isspace(c))
528				continue;
529
530			/*
531			 * If the last character was a space and the current
532			 * character isn't '\0', we've got embedded whitespace.
533			 * This is a no-no, so throw an error.
534			 */
535			if (totaldigits && c && isspace(old_c))
536				return -EINVAL;
537
538			/* A '\0' or a ',' signal the end of a cpu# or range */
539			if (c == '\0' || c == ',')
540				break;
541
542			if (c == '-') {
543				if (at_start || in_range)
544					return -EINVAL;
545				b = 0;
546				in_range = 1;
547				continue;
548			}
549
550			if (!isdigit(c))
551				return -EINVAL;
552
553			b = b * 10 + (c - '0');
554			if (!in_range)
555				a = b;
556			at_start = 0;
557			totaldigits++;
558		}
559		if (!(a <= b))
560			return -EINVAL;
561		if (b >= nmaskbits)
562			return -ERANGE;
563		if (!at_start) {
564			while (a <= b) {
565				set_bit(a, maskp);
566				a++;
567			}
568		}
569	} while (buflen && c == ',');
570	return 0;
571}
572
573int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
574{
575	char *nl  = strchrnul(bp, '\n');
576	int len = nl - bp;
577
578	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
579}
580EXPORT_SYMBOL(bitmap_parselist);
581
582
583/**
584 * bitmap_parselist_user()
585 *
586 * @ubuf: pointer to user buffer containing string.
587 * @ulen: buffer size in bytes.  If string is smaller than this
588 *    then it must be terminated with a \0.
589 * @maskp: pointer to bitmap array that will contain result.
590 * @nmaskbits: size of bitmap, in bits.
591 *
592 * Wrapper for bitmap_parselist(), providing it with user buffer.
593 *
594 * We cannot have this as an inline function in bitmap.h because it needs
595 * linux/uaccess.h to get the access_ok() declaration and this causes
596 * cyclic dependencies.
597 */
598int bitmap_parselist_user(const char __user *ubuf,
599			unsigned int ulen, unsigned long *maskp,
600			int nmaskbits)
601{
602	if (!access_ok(VERIFY_READ, ubuf, ulen))
603		return -EFAULT;
604	return __bitmap_parselist((const char __force *)ubuf,
605					ulen, 1, maskp, nmaskbits);
606}
607EXPORT_SYMBOL(bitmap_parselist_user);
608
609
610/**
611 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
612 *	@buf: pointer to a bitmap
613 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
614 *	@nbits: number of valid bit positions in @buf
615 *
616 * Map the bit at position @pos in @buf (of length @nbits) to the
617 * ordinal of which set bit it is.  If it is not set or if @pos
618 * is not a valid bit position, map to -1.
619 *
620 * If for example, just bits 4 through 7 are set in @buf, then @pos
621 * values 4 through 7 will get mapped to 0 through 3, respectively,
622 * and other @pos values will get mapped to -1.  When @pos value 7
623 * gets mapped to (returns) @ord value 3 in this example, that means
624 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
625 *
626 * The bit positions 0 through @bits are valid positions in @buf.
627 */
628static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
629{
630	if (pos >= nbits || !test_bit(pos, buf))
631		return -1;
632
633	return __bitmap_weight(buf, pos);
634}
635
636/**
637 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
638 *	@buf: pointer to bitmap
639 *	@ord: ordinal bit position (n-th set bit, n >= 0)
640 *	@nbits: number of valid bit positions in @buf
641 *
642 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
643 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
644 * >= weight(buf), returns @nbits.
645 *
646 * If for example, just bits 4 through 7 are set in @buf, then @ord
647 * values 0 through 3 will get mapped to 4 through 7, respectively,
648 * and all other @ord values returns @nbits.  When @ord value 3
649 * gets mapped to (returns) @pos value 7 in this example, that means
650 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
651 *
652 * The bit positions 0 through @nbits-1 are valid positions in @buf.
653 */
654unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
655{
656	unsigned int pos;
657
658	for (pos = find_first_bit(buf, nbits);
659	     pos < nbits && ord;
660	     pos = find_next_bit(buf, nbits, pos + 1))
661		ord--;
662
663	return pos;
664}
665
666/**
667 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
668 *	@dst: remapped result
669 *	@src: subset to be remapped
670 *	@old: defines domain of map
671 *	@new: defines range of map
672 *	@nbits: number of bits in each of these bitmaps
673 *
674 * Let @old and @new define a mapping of bit positions, such that
675 * whatever position is held by the n-th set bit in @old is mapped
676 * to the n-th set bit in @new.  In the more general case, allowing
677 * for the possibility that the weight 'w' of @new is less than the
678 * weight of @old, map the position of the n-th set bit in @old to
679 * the position of the m-th set bit in @new, where m == n % w.
680 *
681 * If either of the @old and @new bitmaps are empty, or if @src and
682 * @dst point to the same location, then this routine copies @src
683 * to @dst.
684 *
685 * The positions of unset bits in @old are mapped to themselves
686 * (the identify map).
687 *
688 * Apply the above specified mapping to @src, placing the result in
689 * @dst, clearing any bits previously set in @dst.
690 *
691 * For example, lets say that @old has bits 4 through 7 set, and
692 * @new has bits 12 through 15 set.  This defines the mapping of bit
693 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
694 * bit positions unchanged.  So if say @src comes into this routine
695 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
696 * 13 and 15 set.
697 */
698void bitmap_remap(unsigned long *dst, const unsigned long *src,
699		const unsigned long *old, const unsigned long *new,
700		unsigned int nbits)
701{
702	unsigned int oldbit, w;
703
704	if (dst == src)		/* following doesn't handle inplace remaps */
705		return;
706	bitmap_zero(dst, nbits);
707
708	w = bitmap_weight(new, nbits);
709	for_each_set_bit(oldbit, src, nbits) {
710		int n = bitmap_pos_to_ord(old, oldbit, nbits);
711
712		if (n < 0 || w == 0)
713			set_bit(oldbit, dst);	/* identity map */
714		else
715			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
716	}
717}
718EXPORT_SYMBOL(bitmap_remap);
719
720/**
721 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
722 *	@oldbit: bit position to be mapped
723 *	@old: defines domain of map
724 *	@new: defines range of map
725 *	@bits: number of bits in each of these bitmaps
726 *
727 * Let @old and @new define a mapping of bit positions, such that
728 * whatever position is held by the n-th set bit in @old is mapped
729 * to the n-th set bit in @new.  In the more general case, allowing
730 * for the possibility that the weight 'w' of @new is less than the
731 * weight of @old, map the position of the n-th set bit in @old to
732 * the position of the m-th set bit in @new, where m == n % w.
733 *
734 * The positions of unset bits in @old are mapped to themselves
735 * (the identify map).
736 *
737 * Apply the above specified mapping to bit position @oldbit, returning
738 * the new bit position.
739 *
740 * For example, lets say that @old has bits 4 through 7 set, and
741 * @new has bits 12 through 15 set.  This defines the mapping of bit
742 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
743 * bit positions unchanged.  So if say @oldbit is 5, then this routine
744 * returns 13.
745 */
746int bitmap_bitremap(int oldbit, const unsigned long *old,
747				const unsigned long *new, int bits)
748{
749	int w = bitmap_weight(new, bits);
750	int n = bitmap_pos_to_ord(old, oldbit, bits);
751	if (n < 0 || w == 0)
752		return oldbit;
753	else
754		return bitmap_ord_to_pos(new, n % w, bits);
755}
756EXPORT_SYMBOL(bitmap_bitremap);
757
758/**
759 * bitmap_onto - translate one bitmap relative to another
760 *	@dst: resulting translated bitmap
761 * 	@orig: original untranslated bitmap
762 * 	@relmap: bitmap relative to which translated
763 *	@bits: number of bits in each of these bitmaps
764 *
765 * Set the n-th bit of @dst iff there exists some m such that the
766 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
767 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
768 * (If you understood the previous sentence the first time your
769 * read it, you're overqualified for your current job.)
770 *
771 * In other words, @orig is mapped onto (surjectively) @dst,
772 * using the map { <n, m> | the n-th bit of @relmap is the
773 * m-th set bit of @relmap }.
774 *
775 * Any set bits in @orig above bit number W, where W is the
776 * weight of (number of set bits in) @relmap are mapped nowhere.
777 * In particular, if for all bits m set in @orig, m >= W, then
778 * @dst will end up empty.  In situations where the possibility
779 * of such an empty result is not desired, one way to avoid it is
780 * to use the bitmap_fold() operator, below, to first fold the
781 * @orig bitmap over itself so that all its set bits x are in the
782 * range 0 <= x < W.  The bitmap_fold() operator does this by
783 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
784 *
785 * Example [1] for bitmap_onto():
786 *  Let's say @relmap has bits 30-39 set, and @orig has bits
787 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
788 *  @dst will have bits 31, 33, 35, 37 and 39 set.
789 *
790 *  When bit 0 is set in @orig, it means turn on the bit in
791 *  @dst corresponding to whatever is the first bit (if any)
792 *  that is turned on in @relmap.  Since bit 0 was off in the
793 *  above example, we leave off that bit (bit 30) in @dst.
794 *
795 *  When bit 1 is set in @orig (as in the above example), it
796 *  means turn on the bit in @dst corresponding to whatever
797 *  is the second bit that is turned on in @relmap.  The second
798 *  bit in @relmap that was turned on in the above example was
799 *  bit 31, so we turned on bit 31 in @dst.
800 *
801 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
802 *  because they were the 4th, 6th, 8th and 10th set bits
803 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
804 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
805 *
806 *  When bit 11 is set in @orig, it means turn on the bit in
807 *  @dst corresponding to whatever is the twelfth bit that is
808 *  turned on in @relmap.  In the above example, there were
809 *  only ten bits turned on in @relmap (30..39), so that bit
810 *  11 was set in @orig had no affect on @dst.
811 *
812 * Example [2] for bitmap_fold() + bitmap_onto():
813 *  Let's say @relmap has these ten bits set:
814 *		40 41 42 43 45 48 53 61 74 95
815 *  (for the curious, that's 40 plus the first ten terms of the
816 *  Fibonacci sequence.)
817 *
818 *  Further lets say we use the following code, invoking
819 *  bitmap_fold() then bitmap_onto, as suggested above to
820 *  avoid the possibility of an empty @dst result:
821 *
822 *	unsigned long *tmp;	// a temporary bitmap's bits
823 *
824 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
825 *	bitmap_onto(dst, tmp, relmap, bits);
826 *
827 *  Then this table shows what various values of @dst would be, for
828 *  various @orig's.  I list the zero-based positions of each set bit.
829 *  The tmp column shows the intermediate result, as computed by
830 *  using bitmap_fold() to fold the @orig bitmap modulo ten
831 *  (the weight of @relmap).
832 *
833 *      @orig           tmp            @dst
834 *      0                0             40
835 *      1                1             41
836 *      9                9             95
837 *      10               0             40 (*)
838 *      1 3 5 7          1 3 5 7       41 43 48 61
839 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
840 *      0 9 18 27        0 9 8 7       40 61 74 95
841 *      0 10 20 30       0             40
842 *      0 11 22 33       0 1 2 3       40 41 42 43
843 *      0 12 24 36       0 2 4 6       40 42 45 53
844 *      78 102 211       1 2 8         41 42 74 (*)
845 *
846 * (*) For these marked lines, if we hadn't first done bitmap_fold()
847 *     into tmp, then the @dst result would have been empty.
848 *
849 * If either of @orig or @relmap is empty (no set bits), then @dst
850 * will be returned empty.
851 *
852 * If (as explained above) the only set bits in @orig are in positions
853 * m where m >= W, (where W is the weight of @relmap) then @dst will
854 * once again be returned empty.
855 *
856 * All bits in @dst not set by the above rule are cleared.
857 */
858void bitmap_onto(unsigned long *dst, const unsigned long *orig,
859			const unsigned long *relmap, unsigned int bits)
860{
861	unsigned int n, m;	/* same meaning as in above comment */
862
863	if (dst == orig)	/* following doesn't handle inplace mappings */
864		return;
865	bitmap_zero(dst, bits);
866
867	/*
868	 * The following code is a more efficient, but less
869	 * obvious, equivalent to the loop:
870	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
871	 *		n = bitmap_ord_to_pos(orig, m, bits);
872	 *		if (test_bit(m, orig))
873	 *			set_bit(n, dst);
874	 *	}
875	 */
876
877	m = 0;
878	for_each_set_bit(n, relmap, bits) {
879		/* m == bitmap_pos_to_ord(relmap, n, bits) */
880		if (test_bit(m, orig))
881			set_bit(n, dst);
882		m++;
883	}
884}
885EXPORT_SYMBOL(bitmap_onto);
886
887/**
888 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
889 *	@dst: resulting smaller bitmap
890 *	@orig: original larger bitmap
891 *	@sz: specified size
892 *	@nbits: number of bits in each of these bitmaps
893 *
894 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
895 * Clear all other bits in @dst.  See further the comment and
896 * Example [2] for bitmap_onto() for why and how to use this.
897 */
898void bitmap_fold(unsigned long *dst, const unsigned long *orig,
899			unsigned int sz, unsigned int nbits)
900{
901	unsigned int oldbit;
902
903	if (dst == orig)	/* following doesn't handle inplace mappings */
904		return;
905	bitmap_zero(dst, nbits);
906
907	for_each_set_bit(oldbit, orig, nbits)
908		set_bit(oldbit % sz, dst);
909}
910EXPORT_SYMBOL(bitmap_fold);
911
912/*
913 * Common code for bitmap_*_region() routines.
914 *	bitmap: array of unsigned longs corresponding to the bitmap
915 *	pos: the beginning of the region
916 *	order: region size (log base 2 of number of bits)
917 *	reg_op: operation(s) to perform on that region of bitmap
918 *
919 * Can set, verify and/or release a region of bits in a bitmap,
920 * depending on which combination of REG_OP_* flag bits is set.
921 *
922 * A region of a bitmap is a sequence of bits in the bitmap, of
923 * some size '1 << order' (a power of two), aligned to that same
924 * '1 << order' power of two.
925 *
926 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
927 * Returns 0 in all other cases and reg_ops.
928 */
929
930enum {
931	REG_OP_ISFREE,		/* true if region is all zero bits */
932	REG_OP_ALLOC,		/* set all bits in region */
933	REG_OP_RELEASE,		/* clear all bits in region */
934};
935
936static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
937{
938	int nbits_reg;		/* number of bits in region */
939	int index;		/* index first long of region in bitmap */
940	int offset;		/* bit offset region in bitmap[index] */
941	int nlongs_reg;		/* num longs spanned by region in bitmap */
942	int nbitsinlong;	/* num bits of region in each spanned long */
943	unsigned long mask;	/* bitmask for one long of region */
944	int i;			/* scans bitmap by longs */
945	int ret = 0;		/* return value */
946
947	/*
948	 * Either nlongs_reg == 1 (for small orders that fit in one long)
949	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
950	 */
951	nbits_reg = 1 << order;
952	index = pos / BITS_PER_LONG;
953	offset = pos - (index * BITS_PER_LONG);
954	nlongs_reg = BITS_TO_LONGS(nbits_reg);
955	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
956
957	/*
958	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
959	 * overflows if nbitsinlong == BITS_PER_LONG.
960	 */
961	mask = (1UL << (nbitsinlong - 1));
962	mask += mask - 1;
963	mask <<= offset;
964
965	switch (reg_op) {
966	case REG_OP_ISFREE:
967		for (i = 0; i < nlongs_reg; i++) {
968			if (bitmap[index + i] & mask)
969				goto done;
970		}
971		ret = 1;	/* all bits in region free (zero) */
972		break;
973
974	case REG_OP_ALLOC:
975		for (i = 0; i < nlongs_reg; i++)
976			bitmap[index + i] |= mask;
977		break;
978
979	case REG_OP_RELEASE:
980		for (i = 0; i < nlongs_reg; i++)
981			bitmap[index + i] &= ~mask;
982		break;
983	}
984done:
985	return ret;
986}
987
988/**
989 * bitmap_find_free_region - find a contiguous aligned mem region
990 *	@bitmap: array of unsigned longs corresponding to the bitmap
991 *	@bits: number of bits in the bitmap
992 *	@order: region size (log base 2 of number of bits) to find
993 *
994 * Find a region of free (zero) bits in a @bitmap of @bits bits and
995 * allocate them (set them to one).  Only consider regions of length
996 * a power (@order) of two, aligned to that power of two, which
997 * makes the search algorithm much faster.
998 *
999 * Return the bit offset in bitmap of the allocated region,
1000 * or -errno on failure.
1001 */
1002int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1003{
1004	unsigned int pos, end;		/* scans bitmap by regions of size order */
1005
1006	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1007		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1008			continue;
1009		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1010		return pos;
1011	}
1012	return -ENOMEM;
1013}
1014EXPORT_SYMBOL(bitmap_find_free_region);
1015
1016/**
1017 * bitmap_release_region - release allocated bitmap region
1018 *	@bitmap: array of unsigned longs corresponding to the bitmap
1019 *	@pos: beginning of bit region to release
1020 *	@order: region size (log base 2 of number of bits) to release
1021 *
1022 * This is the complement to __bitmap_find_free_region() and releases
1023 * the found region (by clearing it in the bitmap).
1024 *
1025 * No return value.
1026 */
1027void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1028{
1029	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1030}
1031EXPORT_SYMBOL(bitmap_release_region);
1032
1033/**
1034 * bitmap_allocate_region - allocate bitmap region
1035 *	@bitmap: array of unsigned longs corresponding to the bitmap
1036 *	@pos: beginning of bit region to allocate
1037 *	@order: region size (log base 2 of number of bits) to allocate
1038 *
1039 * Allocate (set bits in) a specified region of a bitmap.
1040 *
1041 * Return 0 on success, or %-EBUSY if specified region wasn't
1042 * free (not all bits were zero).
1043 */
1044int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1045{
1046	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1047		return -EBUSY;
1048	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1049}
1050EXPORT_SYMBOL(bitmap_allocate_region);
1051
1052/**
1053 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1054 * @dst:   destination buffer
1055 * @src:   bitmap to copy
1056 * @nbits: number of bits in the bitmap
1057 *
1058 * Require nbits % BITS_PER_LONG == 0.
1059 */
1060#ifdef __BIG_ENDIAN
1061void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1062{
1063	unsigned int i;
1064
1065	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1066		if (BITS_PER_LONG == 64)
1067			dst[i] = cpu_to_le64(src[i]);
1068		else
1069			dst[i] = cpu_to_le32(src[i]);
1070	}
1071}
1072EXPORT_SYMBOL(bitmap_copy_le);
1073#endif
1074