1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
ring_buffer_print_entry_header(struct trace_seq * s)33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136 /*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147 enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
168 * permanently.
169 */
tracing_off_permanent(void)170 void tracing_off_permanent(void)
171 {
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT 4U
177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
179
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT 0
182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT 1
185 # define RB_ARCH_ALIGNMENT 8U
186 #endif
187
188 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194 RB_LEN_TIME_EXTEND = 8,
195 RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
rb_null_event(struct ring_buffer_event * event)201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
rb_event_set_padding(struct ring_buffer_event * event)206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208 /* padding has a NULL time_delta */
209 event->type_len = RINGBUF_TYPE_PADDING;
210 event->time_delta = 0;
211 }
212
213 static unsigned
rb_event_data_length(struct ring_buffer_event * event)214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216 unsigned length;
217
218 if (event->type_len)
219 length = event->type_len * RB_ALIGNMENT;
220 else
221 length = event->array[0];
222 return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230 static inline unsigned
rb_event_length(struct ring_buffer_event * event)231 rb_event_length(struct ring_buffer_event *event)
232 {
233 switch (event->type_len) {
234 case RINGBUF_TYPE_PADDING:
235 if (rb_null_event(event))
236 /* undefined */
237 return -1;
238 return event->array[0] + RB_EVNT_HDR_SIZE;
239
240 case RINGBUF_TYPE_TIME_EXTEND:
241 return RB_LEN_TIME_EXTEND;
242
243 case RINGBUF_TYPE_TIME_STAMP:
244 return RB_LEN_TIME_STAMP;
245
246 case RINGBUF_TYPE_DATA:
247 return rb_event_data_length(event);
248 default:
249 BUG();
250 }
251 /* not hit */
252 return 0;
253 }
254
255 /*
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
258 */
259 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262 unsigned len = 0;
263
264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 /* time extends include the data event after it */
266 len = RB_LEN_TIME_EXTEND;
267 event = skip_time_extend(event);
268 }
269 return len + rb_event_length(event);
270 }
271
272 /**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
281 */
ring_buffer_event_length(struct ring_buffer_event * event)282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284 unsigned length;
285
286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 event = skip_time_extend(event);
288
289 length = rb_event_length(event);
290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291 return length;
292 length -= RB_EVNT_HDR_SIZE;
293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294 length -= sizeof(event->array[0]);
295 return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
rb_event_data(struct ring_buffer_event * event)301 rb_event_data(struct ring_buffer_event *event)
302 {
303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 event = skip_time_extend(event);
305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306 /* If length is in len field, then array[0] has the data */
307 if (event->type_len)
308 return (void *)&event->array[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event->array[1];
311 }
312
313 /**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
ring_buffer_event_data(struct ring_buffer_event * event)317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319 return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu) \
324 for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT 27
327 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED (1 << 30)
334
335 struct buffer_data_page {
336 u64 time_stamp; /* page time stamp */
337 local_t commit; /* write committed index */
338 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
339 };
340
341 /*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
349 struct buffer_page {
350 struct list_head list; /* list of buffer pages */
351 local_t write; /* index for next write */
352 unsigned read; /* index for next read */
353 local_t entries; /* entries on this page */
354 unsigned long real_end; /* real end of data */
355 struct buffer_data_page *page; /* Actual data page */
356 };
357
358 /*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370 #define RB_WRITE_MASK 0xfffff
371 #define RB_WRITE_INTCNT (1 << 20)
372
rb_init_page(struct buffer_data_page * bpage)373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375 local_set(&bpage->commit, 0);
376 }
377
378 /**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
ring_buffer_page_len(void * page)384 size_t ring_buffer_page_len(void *page)
385 {
386 return local_read(&((struct buffer_data_page *)page)->commit)
387 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
free_buffer_page(struct buffer_page * bpage)394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396 free_page((unsigned long)bpage->page);
397 kfree(bpage);
398 }
399
400 /*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
test_time_stamp(u64 delta)403 static inline int test_time_stamp(u64 delta)
404 {
405 if (delta & TS_DELTA_TEST)
406 return 1;
407 return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
ring_buffer_print_page_header(struct trace_seq * s)415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417 struct buffer_data_page field;
418
419 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420 "offset:0;\tsize:%u;\tsigned:%u;\n",
421 (unsigned int)sizeof(field.time_stamp),
422 (unsigned int)is_signed_type(u64));
423
424 trace_seq_printf(s, "\tfield: local_t commit;\t"
425 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)offsetof(typeof(field), commit),
427 (unsigned int)sizeof(field.commit),
428 (unsigned int)is_signed_type(long));
429
430 trace_seq_printf(s, "\tfield: int overwrite;\t"
431 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 (unsigned int)offsetof(typeof(field), commit),
433 1,
434 (unsigned int)is_signed_type(long));
435
436 trace_seq_printf(s, "\tfield: char data;\t"
437 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 (unsigned int)offsetof(typeof(field), data),
439 (unsigned int)BUF_PAGE_SIZE,
440 (unsigned int)is_signed_type(char));
441
442 return !trace_seq_has_overflowed(s);
443 }
444
445 struct rb_irq_work {
446 struct irq_work work;
447 wait_queue_head_t waiters;
448 wait_queue_head_t full_waiters;
449 bool waiters_pending;
450 bool full_waiters_pending;
451 bool wakeup_full;
452 };
453
454 /*
455 * head_page == tail_page && head == tail then buffer is empty.
456 */
457 struct ring_buffer_per_cpu {
458 int cpu;
459 atomic_t record_disabled;
460 struct ring_buffer *buffer;
461 raw_spinlock_t reader_lock; /* serialize readers */
462 arch_spinlock_t lock;
463 struct lock_class_key lock_key;
464 unsigned long nr_pages;
465 unsigned int current_context;
466 struct list_head *pages;
467 struct buffer_page *head_page; /* read from head */
468 struct buffer_page *tail_page; /* write to tail */
469 struct buffer_page *commit_page; /* committed pages */
470 struct buffer_page *reader_page;
471 unsigned long lost_events;
472 unsigned long last_overrun;
473 local_t entries_bytes;
474 local_t entries;
475 local_t overrun;
476 local_t commit_overrun;
477 local_t dropped_events;
478 local_t committing;
479 local_t commits;
480 unsigned long read;
481 unsigned long read_bytes;
482 u64 write_stamp;
483 u64 read_stamp;
484 /* ring buffer pages to update, > 0 to add, < 0 to remove */
485 long nr_pages_to_update;
486 struct list_head new_pages; /* new pages to add */
487 struct work_struct update_pages_work;
488 struct completion update_done;
489
490 struct rb_irq_work irq_work;
491 };
492
493 struct ring_buffer {
494 unsigned flags;
495 int cpus;
496 atomic_t record_disabled;
497 atomic_t resize_disabled;
498 cpumask_var_t cpumask;
499
500 struct lock_class_key *reader_lock_key;
501
502 struct mutex mutex;
503
504 struct ring_buffer_per_cpu **buffers;
505
506 #ifdef CONFIG_HOTPLUG_CPU
507 struct notifier_block cpu_notify;
508 #endif
509 u64 (*clock)(void);
510
511 struct rb_irq_work irq_work;
512 };
513
514 struct ring_buffer_iter {
515 struct ring_buffer_per_cpu *cpu_buffer;
516 unsigned long head;
517 struct buffer_page *head_page;
518 struct buffer_page *cache_reader_page;
519 unsigned long cache_read;
520 u64 read_stamp;
521 };
522
523 /*
524 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
525 *
526 * Schedules a delayed work to wake up any task that is blocked on the
527 * ring buffer waiters queue.
528 */
rb_wake_up_waiters(struct irq_work * work)529 static void rb_wake_up_waiters(struct irq_work *work)
530 {
531 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
532
533 wake_up_all(&rbwork->waiters);
534 if (rbwork->wakeup_full) {
535 rbwork->wakeup_full = false;
536 wake_up_all(&rbwork->full_waiters);
537 }
538 }
539
540 /**
541 * ring_buffer_wait - wait for input to the ring buffer
542 * @buffer: buffer to wait on
543 * @cpu: the cpu buffer to wait on
544 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
545 *
546 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
547 * as data is added to any of the @buffer's cpu buffers. Otherwise
548 * it will wait for data to be added to a specific cpu buffer.
549 */
ring_buffer_wait(struct ring_buffer * buffer,int cpu,bool full)550 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
551 {
552 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
553 DEFINE_WAIT(wait);
554 struct rb_irq_work *work;
555 int ret = 0;
556
557 /*
558 * Depending on what the caller is waiting for, either any
559 * data in any cpu buffer, or a specific buffer, put the
560 * caller on the appropriate wait queue.
561 */
562 if (cpu == RING_BUFFER_ALL_CPUS) {
563 work = &buffer->irq_work;
564 /* Full only makes sense on per cpu reads */
565 full = false;
566 } else {
567 if (!cpumask_test_cpu(cpu, buffer->cpumask))
568 return -ENODEV;
569 cpu_buffer = buffer->buffers[cpu];
570 work = &cpu_buffer->irq_work;
571 }
572
573
574 while (true) {
575 if (full)
576 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
577 else
578 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
579
580 /*
581 * The events can happen in critical sections where
582 * checking a work queue can cause deadlocks.
583 * After adding a task to the queue, this flag is set
584 * only to notify events to try to wake up the queue
585 * using irq_work.
586 *
587 * We don't clear it even if the buffer is no longer
588 * empty. The flag only causes the next event to run
589 * irq_work to do the work queue wake up. The worse
590 * that can happen if we race with !trace_empty() is that
591 * an event will cause an irq_work to try to wake up
592 * an empty queue.
593 *
594 * There's no reason to protect this flag either, as
595 * the work queue and irq_work logic will do the necessary
596 * synchronization for the wake ups. The only thing
597 * that is necessary is that the wake up happens after
598 * a task has been queued. It's OK for spurious wake ups.
599 */
600 if (full)
601 work->full_waiters_pending = true;
602 else
603 work->waiters_pending = true;
604
605 if (signal_pending(current)) {
606 ret = -EINTR;
607 break;
608 }
609
610 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
611 break;
612
613 if (cpu != RING_BUFFER_ALL_CPUS &&
614 !ring_buffer_empty_cpu(buffer, cpu)) {
615 unsigned long flags;
616 bool pagebusy;
617
618 if (!full)
619 break;
620
621 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
622 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
623 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
624
625 if (!pagebusy)
626 break;
627 }
628
629 schedule();
630 }
631
632 if (full)
633 finish_wait(&work->full_waiters, &wait);
634 else
635 finish_wait(&work->waiters, &wait);
636
637 return ret;
638 }
639
640 /**
641 * ring_buffer_poll_wait - poll on buffer input
642 * @buffer: buffer to wait on
643 * @cpu: the cpu buffer to wait on
644 * @filp: the file descriptor
645 * @poll_table: The poll descriptor
646 *
647 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
648 * as data is added to any of the @buffer's cpu buffers. Otherwise
649 * it will wait for data to be added to a specific cpu buffer.
650 *
651 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
652 * zero otherwise.
653 */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)654 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
655 struct file *filp, poll_table *poll_table)
656 {
657 struct ring_buffer_per_cpu *cpu_buffer;
658 struct rb_irq_work *work;
659
660 if (cpu == RING_BUFFER_ALL_CPUS)
661 work = &buffer->irq_work;
662 else {
663 if (!cpumask_test_cpu(cpu, buffer->cpumask))
664 return -EINVAL;
665
666 cpu_buffer = buffer->buffers[cpu];
667 work = &cpu_buffer->irq_work;
668 }
669
670 poll_wait(filp, &work->waiters, poll_table);
671 work->waiters_pending = true;
672 /*
673 * There's a tight race between setting the waiters_pending and
674 * checking if the ring buffer is empty. Once the waiters_pending bit
675 * is set, the next event will wake the task up, but we can get stuck
676 * if there's only a single event in.
677 *
678 * FIXME: Ideally, we need a memory barrier on the writer side as well,
679 * but adding a memory barrier to all events will cause too much of a
680 * performance hit in the fast path. We only need a memory barrier when
681 * the buffer goes from empty to having content. But as this race is
682 * extremely small, and it's not a problem if another event comes in, we
683 * will fix it later.
684 */
685 smp_mb();
686
687 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
688 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
689 return POLLIN | POLLRDNORM;
690 return 0;
691 }
692
693 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
694 #define RB_WARN_ON(b, cond) \
695 ({ \
696 int _____ret = unlikely(cond); \
697 if (_____ret) { \
698 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
699 struct ring_buffer_per_cpu *__b = \
700 (void *)b; \
701 atomic_inc(&__b->buffer->record_disabled); \
702 } else \
703 atomic_inc(&b->record_disabled); \
704 WARN_ON(1); \
705 } \
706 _____ret; \
707 })
708
709 /* Up this if you want to test the TIME_EXTENTS and normalization */
710 #define DEBUG_SHIFT 0
711
rb_time_stamp(struct ring_buffer * buffer)712 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
713 {
714 /* shift to debug/test normalization and TIME_EXTENTS */
715 return buffer->clock() << DEBUG_SHIFT;
716 }
717
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)718 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
719 {
720 u64 time;
721
722 preempt_disable_notrace();
723 time = rb_time_stamp(buffer);
724 preempt_enable_no_resched_notrace();
725
726 return time;
727 }
728 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
729
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)730 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
731 int cpu, u64 *ts)
732 {
733 /* Just stupid testing the normalize function and deltas */
734 *ts >>= DEBUG_SHIFT;
735 }
736 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
737
738 /*
739 * Making the ring buffer lockless makes things tricky.
740 * Although writes only happen on the CPU that they are on,
741 * and they only need to worry about interrupts. Reads can
742 * happen on any CPU.
743 *
744 * The reader page is always off the ring buffer, but when the
745 * reader finishes with a page, it needs to swap its page with
746 * a new one from the buffer. The reader needs to take from
747 * the head (writes go to the tail). But if a writer is in overwrite
748 * mode and wraps, it must push the head page forward.
749 *
750 * Here lies the problem.
751 *
752 * The reader must be careful to replace only the head page, and
753 * not another one. As described at the top of the file in the
754 * ASCII art, the reader sets its old page to point to the next
755 * page after head. It then sets the page after head to point to
756 * the old reader page. But if the writer moves the head page
757 * during this operation, the reader could end up with the tail.
758 *
759 * We use cmpxchg to help prevent this race. We also do something
760 * special with the page before head. We set the LSB to 1.
761 *
762 * When the writer must push the page forward, it will clear the
763 * bit that points to the head page, move the head, and then set
764 * the bit that points to the new head page.
765 *
766 * We also don't want an interrupt coming in and moving the head
767 * page on another writer. Thus we use the second LSB to catch
768 * that too. Thus:
769 *
770 * head->list->prev->next bit 1 bit 0
771 * ------- -------
772 * Normal page 0 0
773 * Points to head page 0 1
774 * New head page 1 0
775 *
776 * Note we can not trust the prev pointer of the head page, because:
777 *
778 * +----+ +-----+ +-----+
779 * | |------>| T |---X--->| N |
780 * | |<------| | | |
781 * +----+ +-----+ +-----+
782 * ^ ^ |
783 * | +-----+ | |
784 * +----------| R |----------+ |
785 * | |<-----------+
786 * +-----+
787 *
788 * Key: ---X--> HEAD flag set in pointer
789 * T Tail page
790 * R Reader page
791 * N Next page
792 *
793 * (see __rb_reserve_next() to see where this happens)
794 *
795 * What the above shows is that the reader just swapped out
796 * the reader page with a page in the buffer, but before it
797 * could make the new header point back to the new page added
798 * it was preempted by a writer. The writer moved forward onto
799 * the new page added by the reader and is about to move forward
800 * again.
801 *
802 * You can see, it is legitimate for the previous pointer of
803 * the head (or any page) not to point back to itself. But only
804 * temporarially.
805 */
806
807 #define RB_PAGE_NORMAL 0UL
808 #define RB_PAGE_HEAD 1UL
809 #define RB_PAGE_UPDATE 2UL
810
811
812 #define RB_FLAG_MASK 3UL
813
814 /* PAGE_MOVED is not part of the mask */
815 #define RB_PAGE_MOVED 4UL
816
817 /*
818 * rb_list_head - remove any bit
819 */
rb_list_head(struct list_head * list)820 static struct list_head *rb_list_head(struct list_head *list)
821 {
822 unsigned long val = (unsigned long)list;
823
824 return (struct list_head *)(val & ~RB_FLAG_MASK);
825 }
826
827 /*
828 * rb_is_head_page - test if the given page is the head page
829 *
830 * Because the reader may move the head_page pointer, we can
831 * not trust what the head page is (it may be pointing to
832 * the reader page). But if the next page is a header page,
833 * its flags will be non zero.
834 */
835 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)836 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
837 struct buffer_page *page, struct list_head *list)
838 {
839 unsigned long val;
840
841 val = (unsigned long)list->next;
842
843 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
844 return RB_PAGE_MOVED;
845
846 return val & RB_FLAG_MASK;
847 }
848
849 /*
850 * rb_is_reader_page
851 *
852 * The unique thing about the reader page, is that, if the
853 * writer is ever on it, the previous pointer never points
854 * back to the reader page.
855 */
rb_is_reader_page(struct buffer_page * page)856 static int rb_is_reader_page(struct buffer_page *page)
857 {
858 struct list_head *list = page->list.prev;
859
860 return rb_list_head(list->next) != &page->list;
861 }
862
863 /*
864 * rb_set_list_to_head - set a list_head to be pointing to head.
865 */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)866 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
867 struct list_head *list)
868 {
869 unsigned long *ptr;
870
871 ptr = (unsigned long *)&list->next;
872 *ptr |= RB_PAGE_HEAD;
873 *ptr &= ~RB_PAGE_UPDATE;
874 }
875
876 /*
877 * rb_head_page_activate - sets up head page
878 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)879 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881 struct buffer_page *head;
882
883 head = cpu_buffer->head_page;
884 if (!head)
885 return;
886
887 /*
888 * Set the previous list pointer to have the HEAD flag.
889 */
890 rb_set_list_to_head(cpu_buffer, head->list.prev);
891 }
892
rb_list_head_clear(struct list_head * list)893 static void rb_list_head_clear(struct list_head *list)
894 {
895 unsigned long *ptr = (unsigned long *)&list->next;
896
897 *ptr &= ~RB_FLAG_MASK;
898 }
899
900 /*
901 * rb_head_page_dactivate - clears head page ptr (for free list)
902 */
903 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)904 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
905 {
906 struct list_head *hd;
907
908 /* Go through the whole list and clear any pointers found. */
909 rb_list_head_clear(cpu_buffer->pages);
910
911 list_for_each(hd, cpu_buffer->pages)
912 rb_list_head_clear(hd);
913 }
914
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)915 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
916 struct buffer_page *head,
917 struct buffer_page *prev,
918 int old_flag, int new_flag)
919 {
920 struct list_head *list;
921 unsigned long val = (unsigned long)&head->list;
922 unsigned long ret;
923
924 list = &prev->list;
925
926 val &= ~RB_FLAG_MASK;
927
928 ret = cmpxchg((unsigned long *)&list->next,
929 val | old_flag, val | new_flag);
930
931 /* check if the reader took the page */
932 if ((ret & ~RB_FLAG_MASK) != val)
933 return RB_PAGE_MOVED;
934
935 return ret & RB_FLAG_MASK;
936 }
937
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)938 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
939 struct buffer_page *head,
940 struct buffer_page *prev,
941 int old_flag)
942 {
943 return rb_head_page_set(cpu_buffer, head, prev,
944 old_flag, RB_PAGE_UPDATE);
945 }
946
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)947 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
948 struct buffer_page *head,
949 struct buffer_page *prev,
950 int old_flag)
951 {
952 return rb_head_page_set(cpu_buffer, head, prev,
953 old_flag, RB_PAGE_HEAD);
954 }
955
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)956 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
957 struct buffer_page *head,
958 struct buffer_page *prev,
959 int old_flag)
960 {
961 return rb_head_page_set(cpu_buffer, head, prev,
962 old_flag, RB_PAGE_NORMAL);
963 }
964
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)965 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
966 struct buffer_page **bpage)
967 {
968 struct list_head *p = rb_list_head((*bpage)->list.next);
969
970 *bpage = list_entry(p, struct buffer_page, list);
971 }
972
973 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)974 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
975 {
976 struct buffer_page *head;
977 struct buffer_page *page;
978 struct list_head *list;
979 int i;
980
981 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
982 return NULL;
983
984 /* sanity check */
985 list = cpu_buffer->pages;
986 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
987 return NULL;
988
989 page = head = cpu_buffer->head_page;
990 /*
991 * It is possible that the writer moves the header behind
992 * where we started, and we miss in one loop.
993 * A second loop should grab the header, but we'll do
994 * three loops just because I'm paranoid.
995 */
996 for (i = 0; i < 3; i++) {
997 do {
998 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
999 cpu_buffer->head_page = page;
1000 return page;
1001 }
1002 rb_inc_page(cpu_buffer, &page);
1003 } while (page != head);
1004 }
1005
1006 RB_WARN_ON(cpu_buffer, 1);
1007
1008 return NULL;
1009 }
1010
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1011 static int rb_head_page_replace(struct buffer_page *old,
1012 struct buffer_page *new)
1013 {
1014 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1015 unsigned long val;
1016 unsigned long ret;
1017
1018 val = *ptr & ~RB_FLAG_MASK;
1019 val |= RB_PAGE_HEAD;
1020
1021 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1022
1023 return ret == val;
1024 }
1025
1026 /*
1027 * rb_tail_page_update - move the tail page forward
1028 *
1029 * Returns 1 if moved tail page, 0 if someone else did.
1030 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1031 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1032 struct buffer_page *tail_page,
1033 struct buffer_page *next_page)
1034 {
1035 struct buffer_page *old_tail;
1036 unsigned long old_entries;
1037 unsigned long old_write;
1038 int ret = 0;
1039
1040 /*
1041 * The tail page now needs to be moved forward.
1042 *
1043 * We need to reset the tail page, but without messing
1044 * with possible erasing of data brought in by interrupts
1045 * that have moved the tail page and are currently on it.
1046 *
1047 * We add a counter to the write field to denote this.
1048 */
1049 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1050 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1051
1052 /*
1053 * Just make sure we have seen our old_write and synchronize
1054 * with any interrupts that come in.
1055 */
1056 barrier();
1057
1058 /*
1059 * If the tail page is still the same as what we think
1060 * it is, then it is up to us to update the tail
1061 * pointer.
1062 */
1063 if (tail_page == cpu_buffer->tail_page) {
1064 /* Zero the write counter */
1065 unsigned long val = old_write & ~RB_WRITE_MASK;
1066 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1067
1068 /*
1069 * This will only succeed if an interrupt did
1070 * not come in and change it. In which case, we
1071 * do not want to modify it.
1072 *
1073 * We add (void) to let the compiler know that we do not care
1074 * about the return value of these functions. We use the
1075 * cmpxchg to only update if an interrupt did not already
1076 * do it for us. If the cmpxchg fails, we don't care.
1077 */
1078 (void)local_cmpxchg(&next_page->write, old_write, val);
1079 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1080
1081 /*
1082 * No need to worry about races with clearing out the commit.
1083 * it only can increment when a commit takes place. But that
1084 * only happens in the outer most nested commit.
1085 */
1086 local_set(&next_page->page->commit, 0);
1087
1088 old_tail = cmpxchg(&cpu_buffer->tail_page,
1089 tail_page, next_page);
1090
1091 if (old_tail == tail_page)
1092 ret = 1;
1093 }
1094
1095 return ret;
1096 }
1097
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099 struct buffer_page *bpage)
1100 {
1101 unsigned long val = (unsigned long)bpage;
1102
1103 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104 return 1;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * rb_check_list - make sure a pointer to a list has the last bits zero
1111 */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113 struct list_head *list)
1114 {
1115 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116 return 1;
1117 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118 return 1;
1119 return 0;
1120 }
1121
1122 /**
1123 * rb_check_pages - integrity check of buffer pages
1124 * @cpu_buffer: CPU buffer with pages to test
1125 *
1126 * As a safety measure we check to make sure the data pages have not
1127 * been corrupted.
1128 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131 struct list_head *head = cpu_buffer->pages;
1132 struct buffer_page *bpage, *tmp;
1133
1134 /* Reset the head page if it exists */
1135 if (cpu_buffer->head_page)
1136 rb_set_head_page(cpu_buffer);
1137
1138 rb_head_page_deactivate(cpu_buffer);
1139
1140 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141 return -1;
1142 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143 return -1;
1144
1145 if (rb_check_list(cpu_buffer, head))
1146 return -1;
1147
1148 list_for_each_entry_safe(bpage, tmp, head, list) {
1149 if (RB_WARN_ON(cpu_buffer,
1150 bpage->list.next->prev != &bpage->list))
1151 return -1;
1152 if (RB_WARN_ON(cpu_buffer,
1153 bpage->list.prev->next != &bpage->list))
1154 return -1;
1155 if (rb_check_list(cpu_buffer, &bpage->list))
1156 return -1;
1157 }
1158
1159 rb_head_page_activate(cpu_buffer);
1160
1161 return 0;
1162 }
1163
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165 {
1166 struct buffer_page *bpage, *tmp;
1167 long i;
1168
1169 for (i = 0; i < nr_pages; i++) {
1170 struct page *page;
1171 /*
1172 * __GFP_NORETRY flag makes sure that the allocation fails
1173 * gracefully without invoking oom-killer and the system is
1174 * not destabilized.
1175 */
1176 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1177 GFP_KERNEL | __GFP_NORETRY,
1178 cpu_to_node(cpu));
1179 if (!bpage)
1180 goto free_pages;
1181
1182 list_add(&bpage->list, pages);
1183
1184 page = alloc_pages_node(cpu_to_node(cpu),
1185 GFP_KERNEL | __GFP_NORETRY, 0);
1186 if (!page)
1187 goto free_pages;
1188 bpage->page = page_address(page);
1189 rb_init_page(bpage->page);
1190 }
1191
1192 return 0;
1193
1194 free_pages:
1195 list_for_each_entry_safe(bpage, tmp, pages, list) {
1196 list_del_init(&bpage->list);
1197 free_buffer_page(bpage);
1198 }
1199
1200 return -ENOMEM;
1201 }
1202
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1203 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1204 unsigned long nr_pages)
1205 {
1206 LIST_HEAD(pages);
1207
1208 WARN_ON(!nr_pages);
1209
1210 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1211 return -ENOMEM;
1212
1213 /*
1214 * The ring buffer page list is a circular list that does not
1215 * start and end with a list head. All page list items point to
1216 * other pages.
1217 */
1218 cpu_buffer->pages = pages.next;
1219 list_del(&pages);
1220
1221 cpu_buffer->nr_pages = nr_pages;
1222
1223 rb_check_pages(cpu_buffer);
1224
1225 return 0;
1226 }
1227
1228 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,long nr_pages,int cpu)1229 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1230 {
1231 struct ring_buffer_per_cpu *cpu_buffer;
1232 struct buffer_page *bpage;
1233 struct page *page;
1234 int ret;
1235
1236 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1237 GFP_KERNEL, cpu_to_node(cpu));
1238 if (!cpu_buffer)
1239 return NULL;
1240
1241 cpu_buffer->cpu = cpu;
1242 cpu_buffer->buffer = buffer;
1243 raw_spin_lock_init(&cpu_buffer->reader_lock);
1244 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1245 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1246 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1247 init_completion(&cpu_buffer->update_done);
1248 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1249 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1250 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1251
1252 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1253 GFP_KERNEL, cpu_to_node(cpu));
1254 if (!bpage)
1255 goto fail_free_buffer;
1256
1257 rb_check_bpage(cpu_buffer, bpage);
1258
1259 cpu_buffer->reader_page = bpage;
1260 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1261 if (!page)
1262 goto fail_free_reader;
1263 bpage->page = page_address(page);
1264 rb_init_page(bpage->page);
1265
1266 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1267 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1268
1269 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1270 if (ret < 0)
1271 goto fail_free_reader;
1272
1273 cpu_buffer->head_page
1274 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1275 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1276
1277 rb_head_page_activate(cpu_buffer);
1278
1279 return cpu_buffer;
1280
1281 fail_free_reader:
1282 free_buffer_page(cpu_buffer->reader_page);
1283
1284 fail_free_buffer:
1285 kfree(cpu_buffer);
1286 return NULL;
1287 }
1288
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1289 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1290 {
1291 struct list_head *head = cpu_buffer->pages;
1292 struct buffer_page *bpage, *tmp;
1293
1294 free_buffer_page(cpu_buffer->reader_page);
1295
1296 rb_head_page_deactivate(cpu_buffer);
1297
1298 if (head) {
1299 list_for_each_entry_safe(bpage, tmp, head, list) {
1300 list_del_init(&bpage->list);
1301 free_buffer_page(bpage);
1302 }
1303 bpage = list_entry(head, struct buffer_page, list);
1304 free_buffer_page(bpage);
1305 }
1306
1307 kfree(cpu_buffer);
1308 }
1309
1310 #ifdef CONFIG_HOTPLUG_CPU
1311 static int rb_cpu_notify(struct notifier_block *self,
1312 unsigned long action, void *hcpu);
1313 #endif
1314
1315 /**
1316 * __ring_buffer_alloc - allocate a new ring_buffer
1317 * @size: the size in bytes per cpu that is needed.
1318 * @flags: attributes to set for the ring buffer.
1319 *
1320 * Currently the only flag that is available is the RB_FL_OVERWRITE
1321 * flag. This flag means that the buffer will overwrite old data
1322 * when the buffer wraps. If this flag is not set, the buffer will
1323 * drop data when the tail hits the head.
1324 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1325 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1326 struct lock_class_key *key)
1327 {
1328 struct ring_buffer *buffer;
1329 long nr_pages;
1330 int bsize;
1331 int cpu;
1332
1333 /* keep it in its own cache line */
1334 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1335 GFP_KERNEL);
1336 if (!buffer)
1337 return NULL;
1338
1339 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1340 goto fail_free_buffer;
1341
1342 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1343 buffer->flags = flags;
1344 buffer->clock = trace_clock_local;
1345 buffer->reader_lock_key = key;
1346
1347 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1348 init_waitqueue_head(&buffer->irq_work.waiters);
1349
1350 /* need at least two pages */
1351 if (nr_pages < 2)
1352 nr_pages = 2;
1353
1354 /*
1355 * In case of non-hotplug cpu, if the ring-buffer is allocated
1356 * in early initcall, it will not be notified of secondary cpus.
1357 * In that off case, we need to allocate for all possible cpus.
1358 */
1359 #ifdef CONFIG_HOTPLUG_CPU
1360 cpu_notifier_register_begin();
1361 cpumask_copy(buffer->cpumask, cpu_online_mask);
1362 #else
1363 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1364 #endif
1365 buffer->cpus = nr_cpu_ids;
1366
1367 bsize = sizeof(void *) * nr_cpu_ids;
1368 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1369 GFP_KERNEL);
1370 if (!buffer->buffers)
1371 goto fail_free_cpumask;
1372
1373 for_each_buffer_cpu(buffer, cpu) {
1374 buffer->buffers[cpu] =
1375 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1376 if (!buffer->buffers[cpu])
1377 goto fail_free_buffers;
1378 }
1379
1380 #ifdef CONFIG_HOTPLUG_CPU
1381 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1382 buffer->cpu_notify.priority = 0;
1383 __register_cpu_notifier(&buffer->cpu_notify);
1384 cpu_notifier_register_done();
1385 #endif
1386
1387 mutex_init(&buffer->mutex);
1388
1389 return buffer;
1390
1391 fail_free_buffers:
1392 for_each_buffer_cpu(buffer, cpu) {
1393 if (buffer->buffers[cpu])
1394 rb_free_cpu_buffer(buffer->buffers[cpu]);
1395 }
1396 kfree(buffer->buffers);
1397
1398 fail_free_cpumask:
1399 free_cpumask_var(buffer->cpumask);
1400 #ifdef CONFIG_HOTPLUG_CPU
1401 cpu_notifier_register_done();
1402 #endif
1403
1404 fail_free_buffer:
1405 kfree(buffer);
1406 return NULL;
1407 }
1408 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1409
1410 /**
1411 * ring_buffer_free - free a ring buffer.
1412 * @buffer: the buffer to free.
1413 */
1414 void
ring_buffer_free(struct ring_buffer * buffer)1415 ring_buffer_free(struct ring_buffer *buffer)
1416 {
1417 int cpu;
1418
1419 #ifdef CONFIG_HOTPLUG_CPU
1420 cpu_notifier_register_begin();
1421 __unregister_cpu_notifier(&buffer->cpu_notify);
1422 #endif
1423
1424 for_each_buffer_cpu(buffer, cpu)
1425 rb_free_cpu_buffer(buffer->buffers[cpu]);
1426
1427 #ifdef CONFIG_HOTPLUG_CPU
1428 cpu_notifier_register_done();
1429 #endif
1430
1431 kfree(buffer->buffers);
1432 free_cpumask_var(buffer->cpumask);
1433
1434 kfree(buffer);
1435 }
1436 EXPORT_SYMBOL_GPL(ring_buffer_free);
1437
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1438 void ring_buffer_set_clock(struct ring_buffer *buffer,
1439 u64 (*clock)(void))
1440 {
1441 buffer->clock = clock;
1442 }
1443
1444 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1445
rb_page_entries(struct buffer_page * bpage)1446 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1447 {
1448 return local_read(&bpage->entries) & RB_WRITE_MASK;
1449 }
1450
rb_page_write(struct buffer_page * bpage)1451 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1452 {
1453 return local_read(&bpage->write) & RB_WRITE_MASK;
1454 }
1455
1456 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1457 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1458 {
1459 struct list_head *tail_page, *to_remove, *next_page;
1460 struct buffer_page *to_remove_page, *tmp_iter_page;
1461 struct buffer_page *last_page, *first_page;
1462 unsigned long nr_removed;
1463 unsigned long head_bit;
1464 int page_entries;
1465
1466 head_bit = 0;
1467
1468 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1469 atomic_inc(&cpu_buffer->record_disabled);
1470 /*
1471 * We don't race with the readers since we have acquired the reader
1472 * lock. We also don't race with writers after disabling recording.
1473 * This makes it easy to figure out the first and the last page to be
1474 * removed from the list. We unlink all the pages in between including
1475 * the first and last pages. This is done in a busy loop so that we
1476 * lose the least number of traces.
1477 * The pages are freed after we restart recording and unlock readers.
1478 */
1479 tail_page = &cpu_buffer->tail_page->list;
1480
1481 /*
1482 * tail page might be on reader page, we remove the next page
1483 * from the ring buffer
1484 */
1485 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1486 tail_page = rb_list_head(tail_page->next);
1487 to_remove = tail_page;
1488
1489 /* start of pages to remove */
1490 first_page = list_entry(rb_list_head(to_remove->next),
1491 struct buffer_page, list);
1492
1493 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1494 to_remove = rb_list_head(to_remove)->next;
1495 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1496 }
1497
1498 next_page = rb_list_head(to_remove)->next;
1499
1500 /*
1501 * Now we remove all pages between tail_page and next_page.
1502 * Make sure that we have head_bit value preserved for the
1503 * next page
1504 */
1505 tail_page->next = (struct list_head *)((unsigned long)next_page |
1506 head_bit);
1507 next_page = rb_list_head(next_page);
1508 next_page->prev = tail_page;
1509
1510 /* make sure pages points to a valid page in the ring buffer */
1511 cpu_buffer->pages = next_page;
1512
1513 /* update head page */
1514 if (head_bit)
1515 cpu_buffer->head_page = list_entry(next_page,
1516 struct buffer_page, list);
1517
1518 /*
1519 * change read pointer to make sure any read iterators reset
1520 * themselves
1521 */
1522 cpu_buffer->read = 0;
1523
1524 /* pages are removed, resume tracing and then free the pages */
1525 atomic_dec(&cpu_buffer->record_disabled);
1526 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1527
1528 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1529
1530 /* last buffer page to remove */
1531 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1532 list);
1533 tmp_iter_page = first_page;
1534
1535 do {
1536 to_remove_page = tmp_iter_page;
1537 rb_inc_page(cpu_buffer, &tmp_iter_page);
1538
1539 /* update the counters */
1540 page_entries = rb_page_entries(to_remove_page);
1541 if (page_entries) {
1542 /*
1543 * If something was added to this page, it was full
1544 * since it is not the tail page. So we deduct the
1545 * bytes consumed in ring buffer from here.
1546 * Increment overrun to account for the lost events.
1547 */
1548 local_add(page_entries, &cpu_buffer->overrun);
1549 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1550 }
1551
1552 /*
1553 * We have already removed references to this list item, just
1554 * free up the buffer_page and its page
1555 */
1556 free_buffer_page(to_remove_page);
1557 nr_removed--;
1558
1559 } while (to_remove_page != last_page);
1560
1561 RB_WARN_ON(cpu_buffer, nr_removed);
1562
1563 return nr_removed == 0;
1564 }
1565
1566 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1567 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1568 {
1569 struct list_head *pages = &cpu_buffer->new_pages;
1570 int retries, success;
1571
1572 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1573 /*
1574 * We are holding the reader lock, so the reader page won't be swapped
1575 * in the ring buffer. Now we are racing with the writer trying to
1576 * move head page and the tail page.
1577 * We are going to adapt the reader page update process where:
1578 * 1. We first splice the start and end of list of new pages between
1579 * the head page and its previous page.
1580 * 2. We cmpxchg the prev_page->next to point from head page to the
1581 * start of new pages list.
1582 * 3. Finally, we update the head->prev to the end of new list.
1583 *
1584 * We will try this process 10 times, to make sure that we don't keep
1585 * spinning.
1586 */
1587 retries = 10;
1588 success = 0;
1589 while (retries--) {
1590 struct list_head *head_page, *prev_page, *r;
1591 struct list_head *last_page, *first_page;
1592 struct list_head *head_page_with_bit;
1593
1594 head_page = &rb_set_head_page(cpu_buffer)->list;
1595 if (!head_page)
1596 break;
1597 prev_page = head_page->prev;
1598
1599 first_page = pages->next;
1600 last_page = pages->prev;
1601
1602 head_page_with_bit = (struct list_head *)
1603 ((unsigned long)head_page | RB_PAGE_HEAD);
1604
1605 last_page->next = head_page_with_bit;
1606 first_page->prev = prev_page;
1607
1608 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1609
1610 if (r == head_page_with_bit) {
1611 /*
1612 * yay, we replaced the page pointer to our new list,
1613 * now, we just have to update to head page's prev
1614 * pointer to point to end of list
1615 */
1616 head_page->prev = last_page;
1617 success = 1;
1618 break;
1619 }
1620 }
1621
1622 if (success)
1623 INIT_LIST_HEAD(pages);
1624 /*
1625 * If we weren't successful in adding in new pages, warn and stop
1626 * tracing
1627 */
1628 RB_WARN_ON(cpu_buffer, !success);
1629 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1630
1631 /* free pages if they weren't inserted */
1632 if (!success) {
1633 struct buffer_page *bpage, *tmp;
1634 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1635 list) {
1636 list_del_init(&bpage->list);
1637 free_buffer_page(bpage);
1638 }
1639 }
1640 return success;
1641 }
1642
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1643 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1644 {
1645 int success;
1646
1647 if (cpu_buffer->nr_pages_to_update > 0)
1648 success = rb_insert_pages(cpu_buffer);
1649 else
1650 success = rb_remove_pages(cpu_buffer,
1651 -cpu_buffer->nr_pages_to_update);
1652
1653 if (success)
1654 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1655 }
1656
update_pages_handler(struct work_struct * work)1657 static void update_pages_handler(struct work_struct *work)
1658 {
1659 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1660 struct ring_buffer_per_cpu, update_pages_work);
1661 rb_update_pages(cpu_buffer);
1662 complete(&cpu_buffer->update_done);
1663 }
1664
1665 /**
1666 * ring_buffer_resize - resize the ring buffer
1667 * @buffer: the buffer to resize.
1668 * @size: the new size.
1669 * @cpu_id: the cpu buffer to resize
1670 *
1671 * Minimum size is 2 * BUF_PAGE_SIZE.
1672 *
1673 * Returns 0 on success and < 0 on failure.
1674 */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1675 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1676 int cpu_id)
1677 {
1678 struct ring_buffer_per_cpu *cpu_buffer;
1679 unsigned long nr_pages;
1680 int cpu, err = 0;
1681
1682 /*
1683 * Always succeed at resizing a non-existent buffer:
1684 */
1685 if (!buffer)
1686 return size;
1687
1688 /* Make sure the requested buffer exists */
1689 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1690 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1691 return size;
1692
1693 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1694
1695 /* we need a minimum of two pages */
1696 if (nr_pages < 2)
1697 nr_pages = 2;
1698
1699 size = nr_pages * BUF_PAGE_SIZE;
1700
1701 /*
1702 * Don't succeed if resizing is disabled, as a reader might be
1703 * manipulating the ring buffer and is expecting a sane state while
1704 * this is true.
1705 */
1706 if (atomic_read(&buffer->resize_disabled))
1707 return -EBUSY;
1708
1709 /* prevent another thread from changing buffer sizes */
1710 mutex_lock(&buffer->mutex);
1711
1712 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1713 /* calculate the pages to update */
1714 for_each_buffer_cpu(buffer, cpu) {
1715 cpu_buffer = buffer->buffers[cpu];
1716
1717 cpu_buffer->nr_pages_to_update = nr_pages -
1718 cpu_buffer->nr_pages;
1719 /*
1720 * nothing more to do for removing pages or no update
1721 */
1722 if (cpu_buffer->nr_pages_to_update <= 0)
1723 continue;
1724 /*
1725 * to add pages, make sure all new pages can be
1726 * allocated without receiving ENOMEM
1727 */
1728 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1729 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730 &cpu_buffer->new_pages, cpu)) {
1731 /* not enough memory for new pages */
1732 err = -ENOMEM;
1733 goto out_err;
1734 }
1735 }
1736
1737 get_online_cpus();
1738 /*
1739 * Fire off all the required work handlers
1740 * We can't schedule on offline CPUs, but it's not necessary
1741 * since we can change their buffer sizes without any race.
1742 */
1743 for_each_buffer_cpu(buffer, cpu) {
1744 cpu_buffer = buffer->buffers[cpu];
1745 if (!cpu_buffer->nr_pages_to_update)
1746 continue;
1747
1748 /* Can't run something on an offline CPU. */
1749 if (!cpu_online(cpu)) {
1750 rb_update_pages(cpu_buffer);
1751 cpu_buffer->nr_pages_to_update = 0;
1752 } else {
1753 schedule_work_on(cpu,
1754 &cpu_buffer->update_pages_work);
1755 }
1756 }
1757
1758 /* wait for all the updates to complete */
1759 for_each_buffer_cpu(buffer, cpu) {
1760 cpu_buffer = buffer->buffers[cpu];
1761 if (!cpu_buffer->nr_pages_to_update)
1762 continue;
1763
1764 if (cpu_online(cpu))
1765 wait_for_completion(&cpu_buffer->update_done);
1766 cpu_buffer->nr_pages_to_update = 0;
1767 }
1768
1769 put_online_cpus();
1770 } else {
1771 /* Make sure this CPU has been intitialized */
1772 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1773 goto out;
1774
1775 cpu_buffer = buffer->buffers[cpu_id];
1776
1777 if (nr_pages == cpu_buffer->nr_pages)
1778 goto out;
1779
1780 cpu_buffer->nr_pages_to_update = nr_pages -
1781 cpu_buffer->nr_pages;
1782
1783 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1784 if (cpu_buffer->nr_pages_to_update > 0 &&
1785 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1786 &cpu_buffer->new_pages, cpu_id)) {
1787 err = -ENOMEM;
1788 goto out_err;
1789 }
1790
1791 get_online_cpus();
1792
1793 /* Can't run something on an offline CPU. */
1794 if (!cpu_online(cpu_id))
1795 rb_update_pages(cpu_buffer);
1796 else {
1797 schedule_work_on(cpu_id,
1798 &cpu_buffer->update_pages_work);
1799 wait_for_completion(&cpu_buffer->update_done);
1800 }
1801
1802 cpu_buffer->nr_pages_to_update = 0;
1803 put_online_cpus();
1804 }
1805
1806 out:
1807 /*
1808 * The ring buffer resize can happen with the ring buffer
1809 * enabled, so that the update disturbs the tracing as little
1810 * as possible. But if the buffer is disabled, we do not need
1811 * to worry about that, and we can take the time to verify
1812 * that the buffer is not corrupt.
1813 */
1814 if (atomic_read(&buffer->record_disabled)) {
1815 atomic_inc(&buffer->record_disabled);
1816 /*
1817 * Even though the buffer was disabled, we must make sure
1818 * that it is truly disabled before calling rb_check_pages.
1819 * There could have been a race between checking
1820 * record_disable and incrementing it.
1821 */
1822 synchronize_sched();
1823 for_each_buffer_cpu(buffer, cpu) {
1824 cpu_buffer = buffer->buffers[cpu];
1825 rb_check_pages(cpu_buffer);
1826 }
1827 atomic_dec(&buffer->record_disabled);
1828 }
1829
1830 mutex_unlock(&buffer->mutex);
1831 return size;
1832
1833 out_err:
1834 for_each_buffer_cpu(buffer, cpu) {
1835 struct buffer_page *bpage, *tmp;
1836
1837 cpu_buffer = buffer->buffers[cpu];
1838 cpu_buffer->nr_pages_to_update = 0;
1839
1840 if (list_empty(&cpu_buffer->new_pages))
1841 continue;
1842
1843 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1844 list) {
1845 list_del_init(&bpage->list);
1846 free_buffer_page(bpage);
1847 }
1848 }
1849 mutex_unlock(&buffer->mutex);
1850 return err;
1851 }
1852 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1853
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1854 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1855 {
1856 mutex_lock(&buffer->mutex);
1857 if (val)
1858 buffer->flags |= RB_FL_OVERWRITE;
1859 else
1860 buffer->flags &= ~RB_FL_OVERWRITE;
1861 mutex_unlock(&buffer->mutex);
1862 }
1863 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1864
1865 static inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1866 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1867 {
1868 return bpage->data + index;
1869 }
1870
__rb_page_index(struct buffer_page * bpage,unsigned index)1871 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1872 {
1873 return bpage->page->data + index;
1874 }
1875
1876 static inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1877 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879 return __rb_page_index(cpu_buffer->reader_page,
1880 cpu_buffer->reader_page->read);
1881 }
1882
1883 static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1884 rb_iter_head_event(struct ring_buffer_iter *iter)
1885 {
1886 return __rb_page_index(iter->head_page, iter->head);
1887 }
1888
rb_page_commit(struct buffer_page * bpage)1889 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1890 {
1891 return local_read(&bpage->page->commit);
1892 }
1893
1894 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1895 static inline unsigned rb_page_size(struct buffer_page *bpage)
1896 {
1897 return rb_page_commit(bpage);
1898 }
1899
1900 static inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1901 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1902 {
1903 return rb_page_commit(cpu_buffer->commit_page);
1904 }
1905
1906 static inline unsigned
rb_event_index(struct ring_buffer_event * event)1907 rb_event_index(struct ring_buffer_event *event)
1908 {
1909 unsigned long addr = (unsigned long)event;
1910
1911 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1912 }
1913
1914 static inline int
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)1915 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1916 struct ring_buffer_event *event)
1917 {
1918 unsigned long addr = (unsigned long)event;
1919 unsigned long index;
1920
1921 index = rb_event_index(event);
1922 addr &= PAGE_MASK;
1923
1924 return cpu_buffer->commit_page->page == (void *)addr &&
1925 rb_commit_index(cpu_buffer) == index;
1926 }
1927
1928 static void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)1929 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1930 {
1931 unsigned long max_count;
1932
1933 /*
1934 * We only race with interrupts and NMIs on this CPU.
1935 * If we own the commit event, then we can commit
1936 * all others that interrupted us, since the interruptions
1937 * are in stack format (they finish before they come
1938 * back to us). This allows us to do a simple loop to
1939 * assign the commit to the tail.
1940 */
1941 again:
1942 max_count = cpu_buffer->nr_pages * 100;
1943
1944 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1945 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1946 return;
1947 if (RB_WARN_ON(cpu_buffer,
1948 rb_is_reader_page(cpu_buffer->tail_page)))
1949 return;
1950 local_set(&cpu_buffer->commit_page->page->commit,
1951 rb_page_write(cpu_buffer->commit_page));
1952 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1953 cpu_buffer->write_stamp =
1954 cpu_buffer->commit_page->page->time_stamp;
1955 /* add barrier to keep gcc from optimizing too much */
1956 barrier();
1957 }
1958 while (rb_commit_index(cpu_buffer) !=
1959 rb_page_write(cpu_buffer->commit_page)) {
1960
1961 local_set(&cpu_buffer->commit_page->page->commit,
1962 rb_page_write(cpu_buffer->commit_page));
1963 RB_WARN_ON(cpu_buffer,
1964 local_read(&cpu_buffer->commit_page->page->commit) &
1965 ~RB_WRITE_MASK);
1966 barrier();
1967 }
1968
1969 /* again, keep gcc from optimizing */
1970 barrier();
1971
1972 /*
1973 * If an interrupt came in just after the first while loop
1974 * and pushed the tail page forward, we will be left with
1975 * a dangling commit that will never go forward.
1976 */
1977 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1978 goto again;
1979 }
1980
rb_reset_reader_page(struct ring_buffer_per_cpu * cpu_buffer)1981 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1982 {
1983 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1984 cpu_buffer->reader_page->read = 0;
1985 }
1986
rb_inc_iter(struct ring_buffer_iter * iter)1987 static void rb_inc_iter(struct ring_buffer_iter *iter)
1988 {
1989 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1990
1991 /*
1992 * The iterator could be on the reader page (it starts there).
1993 * But the head could have moved, since the reader was
1994 * found. Check for this case and assign the iterator
1995 * to the head page instead of next.
1996 */
1997 if (iter->head_page == cpu_buffer->reader_page)
1998 iter->head_page = rb_set_head_page(cpu_buffer);
1999 else
2000 rb_inc_page(cpu_buffer, &iter->head_page);
2001
2002 iter->read_stamp = iter->head_page->page->time_stamp;
2003 iter->head = 0;
2004 }
2005
2006 /* Slow path, do not inline */
2007 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)2008 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2009 {
2010 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2011
2012 /* Not the first event on the page? */
2013 if (rb_event_index(event)) {
2014 event->time_delta = delta & TS_MASK;
2015 event->array[0] = delta >> TS_SHIFT;
2016 } else {
2017 /* nope, just zero it */
2018 event->time_delta = 0;
2019 event->array[0] = 0;
2020 }
2021
2022 return skip_time_extend(event);
2023 }
2024
2025 /**
2026 * rb_update_event - update event type and data
2027 * @event: the event to update
2028 * @type: the type of event
2029 * @length: the size of the event field in the ring buffer
2030 *
2031 * Update the type and data fields of the event. The length
2032 * is the actual size that is written to the ring buffer,
2033 * and with this, we can determine what to place into the
2034 * data field.
2035 */
2036 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,unsigned length,int add_timestamp,u64 delta)2037 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2038 struct ring_buffer_event *event, unsigned length,
2039 int add_timestamp, u64 delta)
2040 {
2041 /* Only a commit updates the timestamp */
2042 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2043 delta = 0;
2044
2045 /*
2046 * If we need to add a timestamp, then we
2047 * add it to the start of the resevered space.
2048 */
2049 if (unlikely(add_timestamp)) {
2050 event = rb_add_time_stamp(event, delta);
2051 length -= RB_LEN_TIME_EXTEND;
2052 delta = 0;
2053 }
2054
2055 event->time_delta = delta;
2056 length -= RB_EVNT_HDR_SIZE;
2057 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2058 event->type_len = 0;
2059 event->array[0] = length;
2060 } else
2061 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2062 }
2063
2064 /*
2065 * rb_handle_head_page - writer hit the head page
2066 *
2067 * Returns: +1 to retry page
2068 * 0 to continue
2069 * -1 on error
2070 */
2071 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2072 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2073 struct buffer_page *tail_page,
2074 struct buffer_page *next_page)
2075 {
2076 struct buffer_page *new_head;
2077 int entries;
2078 int type;
2079 int ret;
2080
2081 entries = rb_page_entries(next_page);
2082
2083 /*
2084 * The hard part is here. We need to move the head
2085 * forward, and protect against both readers on
2086 * other CPUs and writers coming in via interrupts.
2087 */
2088 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2089 RB_PAGE_HEAD);
2090
2091 /*
2092 * type can be one of four:
2093 * NORMAL - an interrupt already moved it for us
2094 * HEAD - we are the first to get here.
2095 * UPDATE - we are the interrupt interrupting
2096 * a current move.
2097 * MOVED - a reader on another CPU moved the next
2098 * pointer to its reader page. Give up
2099 * and try again.
2100 */
2101
2102 switch (type) {
2103 case RB_PAGE_HEAD:
2104 /*
2105 * We changed the head to UPDATE, thus
2106 * it is our responsibility to update
2107 * the counters.
2108 */
2109 local_add(entries, &cpu_buffer->overrun);
2110 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2111
2112 /*
2113 * The entries will be zeroed out when we move the
2114 * tail page.
2115 */
2116
2117 /* still more to do */
2118 break;
2119
2120 case RB_PAGE_UPDATE:
2121 /*
2122 * This is an interrupt that interrupt the
2123 * previous update. Still more to do.
2124 */
2125 break;
2126 case RB_PAGE_NORMAL:
2127 /*
2128 * An interrupt came in before the update
2129 * and processed this for us.
2130 * Nothing left to do.
2131 */
2132 return 1;
2133 case RB_PAGE_MOVED:
2134 /*
2135 * The reader is on another CPU and just did
2136 * a swap with our next_page.
2137 * Try again.
2138 */
2139 return 1;
2140 default:
2141 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2142 return -1;
2143 }
2144
2145 /*
2146 * Now that we are here, the old head pointer is
2147 * set to UPDATE. This will keep the reader from
2148 * swapping the head page with the reader page.
2149 * The reader (on another CPU) will spin till
2150 * we are finished.
2151 *
2152 * We just need to protect against interrupts
2153 * doing the job. We will set the next pointer
2154 * to HEAD. After that, we set the old pointer
2155 * to NORMAL, but only if it was HEAD before.
2156 * otherwise we are an interrupt, and only
2157 * want the outer most commit to reset it.
2158 */
2159 new_head = next_page;
2160 rb_inc_page(cpu_buffer, &new_head);
2161
2162 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2163 RB_PAGE_NORMAL);
2164
2165 /*
2166 * Valid returns are:
2167 * HEAD - an interrupt came in and already set it.
2168 * NORMAL - One of two things:
2169 * 1) We really set it.
2170 * 2) A bunch of interrupts came in and moved
2171 * the page forward again.
2172 */
2173 switch (ret) {
2174 case RB_PAGE_HEAD:
2175 case RB_PAGE_NORMAL:
2176 /* OK */
2177 break;
2178 default:
2179 RB_WARN_ON(cpu_buffer, 1);
2180 return -1;
2181 }
2182
2183 /*
2184 * It is possible that an interrupt came in,
2185 * set the head up, then more interrupts came in
2186 * and moved it again. When we get back here,
2187 * the page would have been set to NORMAL but we
2188 * just set it back to HEAD.
2189 *
2190 * How do you detect this? Well, if that happened
2191 * the tail page would have moved.
2192 */
2193 if (ret == RB_PAGE_NORMAL) {
2194 /*
2195 * If the tail had moved passed next, then we need
2196 * to reset the pointer.
2197 */
2198 if (cpu_buffer->tail_page != tail_page &&
2199 cpu_buffer->tail_page != next_page)
2200 rb_head_page_set_normal(cpu_buffer, new_head,
2201 next_page,
2202 RB_PAGE_HEAD);
2203 }
2204
2205 /*
2206 * If this was the outer most commit (the one that
2207 * changed the original pointer from HEAD to UPDATE),
2208 * then it is up to us to reset it to NORMAL.
2209 */
2210 if (type == RB_PAGE_HEAD) {
2211 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2212 tail_page,
2213 RB_PAGE_UPDATE);
2214 if (RB_WARN_ON(cpu_buffer,
2215 ret != RB_PAGE_UPDATE))
2216 return -1;
2217 }
2218
2219 return 0;
2220 }
2221
rb_calculate_event_length(unsigned length)2222 static unsigned rb_calculate_event_length(unsigned length)
2223 {
2224 struct ring_buffer_event event; /* Used only for sizeof array */
2225
2226 /* zero length can cause confusions */
2227 if (!length)
2228 length = 1;
2229
2230 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2231 length += sizeof(event.array[0]);
2232
2233 length += RB_EVNT_HDR_SIZE;
2234 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2235
2236 return length;
2237 }
2238
2239 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,unsigned long tail,unsigned long length)2240 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2241 struct buffer_page *tail_page,
2242 unsigned long tail, unsigned long length)
2243 {
2244 struct ring_buffer_event *event;
2245
2246 /*
2247 * Only the event that crossed the page boundary
2248 * must fill the old tail_page with padding.
2249 */
2250 if (tail >= BUF_PAGE_SIZE) {
2251 /*
2252 * If the page was filled, then we still need
2253 * to update the real_end. Reset it to zero
2254 * and the reader will ignore it.
2255 */
2256 if (tail == BUF_PAGE_SIZE)
2257 tail_page->real_end = 0;
2258
2259 local_sub(length, &tail_page->write);
2260 return;
2261 }
2262
2263 event = __rb_page_index(tail_page, tail);
2264 kmemcheck_annotate_bitfield(event, bitfield);
2265
2266 /* account for padding bytes */
2267 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2268
2269 /*
2270 * Save the original length to the meta data.
2271 * This will be used by the reader to add lost event
2272 * counter.
2273 */
2274 tail_page->real_end = tail;
2275
2276 /*
2277 * If this event is bigger than the minimum size, then
2278 * we need to be careful that we don't subtract the
2279 * write counter enough to allow another writer to slip
2280 * in on this page.
2281 * We put in a discarded commit instead, to make sure
2282 * that this space is not used again.
2283 *
2284 * If we are less than the minimum size, we don't need to
2285 * worry about it.
2286 */
2287 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2288 /* No room for any events */
2289
2290 /* Mark the rest of the page with padding */
2291 rb_event_set_padding(event);
2292
2293 /* Set the write back to the previous setting */
2294 local_sub(length, &tail_page->write);
2295 return;
2296 }
2297
2298 /* Put in a discarded event */
2299 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2300 event->type_len = RINGBUF_TYPE_PADDING;
2301 /* time delta must be non zero */
2302 event->time_delta = 1;
2303
2304 /* Set write to end of buffer */
2305 length = (tail + length) - BUF_PAGE_SIZE;
2306 local_sub(length, &tail_page->write);
2307 }
2308
2309 /*
2310 * This is the slow path, force gcc not to inline it.
2311 */
2312 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,unsigned long tail,struct buffer_page * tail_page,u64 ts)2313 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2314 unsigned long length, unsigned long tail,
2315 struct buffer_page *tail_page, u64 ts)
2316 {
2317 struct buffer_page *commit_page = cpu_buffer->commit_page;
2318 struct ring_buffer *buffer = cpu_buffer->buffer;
2319 struct buffer_page *next_page;
2320 int ret;
2321
2322 next_page = tail_page;
2323
2324 rb_inc_page(cpu_buffer, &next_page);
2325
2326 /*
2327 * If for some reason, we had an interrupt storm that made
2328 * it all the way around the buffer, bail, and warn
2329 * about it.
2330 */
2331 if (unlikely(next_page == commit_page)) {
2332 local_inc(&cpu_buffer->commit_overrun);
2333 goto out_reset;
2334 }
2335
2336 /*
2337 * This is where the fun begins!
2338 *
2339 * We are fighting against races between a reader that
2340 * could be on another CPU trying to swap its reader
2341 * page with the buffer head.
2342 *
2343 * We are also fighting against interrupts coming in and
2344 * moving the head or tail on us as well.
2345 *
2346 * If the next page is the head page then we have filled
2347 * the buffer, unless the commit page is still on the
2348 * reader page.
2349 */
2350 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2351
2352 /*
2353 * If the commit is not on the reader page, then
2354 * move the header page.
2355 */
2356 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2357 /*
2358 * If we are not in overwrite mode,
2359 * this is easy, just stop here.
2360 */
2361 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2362 local_inc(&cpu_buffer->dropped_events);
2363 goto out_reset;
2364 }
2365
2366 ret = rb_handle_head_page(cpu_buffer,
2367 tail_page,
2368 next_page);
2369 if (ret < 0)
2370 goto out_reset;
2371 if (ret)
2372 goto out_again;
2373 } else {
2374 /*
2375 * We need to be careful here too. The
2376 * commit page could still be on the reader
2377 * page. We could have a small buffer, and
2378 * have filled up the buffer with events
2379 * from interrupts and such, and wrapped.
2380 *
2381 * Note, if the tail page is also the on the
2382 * reader_page, we let it move out.
2383 */
2384 if (unlikely((cpu_buffer->commit_page !=
2385 cpu_buffer->tail_page) &&
2386 (cpu_buffer->commit_page ==
2387 cpu_buffer->reader_page))) {
2388 local_inc(&cpu_buffer->commit_overrun);
2389 goto out_reset;
2390 }
2391 }
2392 }
2393
2394 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2395 if (ret) {
2396 /*
2397 * Nested commits always have zero deltas, so
2398 * just reread the time stamp
2399 */
2400 ts = rb_time_stamp(buffer);
2401 next_page->page->time_stamp = ts;
2402 }
2403
2404 out_again:
2405
2406 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2407
2408 /* fail and let the caller try again */
2409 return ERR_PTR(-EAGAIN);
2410
2411 out_reset:
2412 /* reset write */
2413 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2414
2415 return NULL;
2416 }
2417
2418 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,u64 ts,u64 delta,int add_timestamp)2419 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2420 unsigned long length, u64 ts,
2421 u64 delta, int add_timestamp)
2422 {
2423 struct buffer_page *tail_page;
2424 struct ring_buffer_event *event;
2425 unsigned long tail, write;
2426
2427 /*
2428 * If the time delta since the last event is too big to
2429 * hold in the time field of the event, then we append a
2430 * TIME EXTEND event ahead of the data event.
2431 */
2432 if (unlikely(add_timestamp))
2433 length += RB_LEN_TIME_EXTEND;
2434
2435 tail_page = cpu_buffer->tail_page;
2436 write = local_add_return(length, &tail_page->write);
2437
2438 /* set write to only the index of the write */
2439 write &= RB_WRITE_MASK;
2440 tail = write - length;
2441
2442 /*
2443 * If this is the first commit on the page, then it has the same
2444 * timestamp as the page itself.
2445 */
2446 if (!tail)
2447 delta = 0;
2448
2449 /* See if we shot pass the end of this buffer page */
2450 if (unlikely(write > BUF_PAGE_SIZE))
2451 return rb_move_tail(cpu_buffer, length, tail,
2452 tail_page, ts);
2453
2454 /* We reserved something on the buffer */
2455
2456 event = __rb_page_index(tail_page, tail);
2457 kmemcheck_annotate_bitfield(event, bitfield);
2458 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2459
2460 local_inc(&tail_page->entries);
2461
2462 /*
2463 * If this is the first commit on the page, then update
2464 * its timestamp.
2465 */
2466 if (!tail)
2467 tail_page->page->time_stamp = ts;
2468
2469 /* account for these added bytes */
2470 local_add(length, &cpu_buffer->entries_bytes);
2471
2472 return event;
2473 }
2474
2475 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2476 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2477 struct ring_buffer_event *event)
2478 {
2479 unsigned long new_index, old_index;
2480 struct buffer_page *bpage;
2481 unsigned long index;
2482 unsigned long addr;
2483
2484 new_index = rb_event_index(event);
2485 old_index = new_index + rb_event_ts_length(event);
2486 addr = (unsigned long)event;
2487 addr &= PAGE_MASK;
2488
2489 bpage = cpu_buffer->tail_page;
2490
2491 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2492 unsigned long write_mask =
2493 local_read(&bpage->write) & ~RB_WRITE_MASK;
2494 unsigned long event_length = rb_event_length(event);
2495 /*
2496 * This is on the tail page. It is possible that
2497 * a write could come in and move the tail page
2498 * and write to the next page. That is fine
2499 * because we just shorten what is on this page.
2500 */
2501 old_index += write_mask;
2502 new_index += write_mask;
2503 index = local_cmpxchg(&bpage->write, old_index, new_index);
2504 if (index == old_index) {
2505 /* update counters */
2506 local_sub(event_length, &cpu_buffer->entries_bytes);
2507 return 1;
2508 }
2509 }
2510
2511 /* could not discard */
2512 return 0;
2513 }
2514
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2515 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2516 {
2517 local_inc(&cpu_buffer->committing);
2518 local_inc(&cpu_buffer->commits);
2519 }
2520
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2521 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2522 {
2523 unsigned long commits;
2524
2525 if (RB_WARN_ON(cpu_buffer,
2526 !local_read(&cpu_buffer->committing)))
2527 return;
2528
2529 again:
2530 commits = local_read(&cpu_buffer->commits);
2531 /* synchronize with interrupts */
2532 barrier();
2533 if (local_read(&cpu_buffer->committing) == 1)
2534 rb_set_commit_to_write(cpu_buffer);
2535
2536 local_dec(&cpu_buffer->committing);
2537
2538 /* synchronize with interrupts */
2539 barrier();
2540
2541 /*
2542 * Need to account for interrupts coming in between the
2543 * updating of the commit page and the clearing of the
2544 * committing counter.
2545 */
2546 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2547 !local_read(&cpu_buffer->committing)) {
2548 local_inc(&cpu_buffer->committing);
2549 goto again;
2550 }
2551 }
2552
2553 static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2554 rb_reserve_next_event(struct ring_buffer *buffer,
2555 struct ring_buffer_per_cpu *cpu_buffer,
2556 unsigned long length)
2557 {
2558 struct ring_buffer_event *event;
2559 u64 ts, delta;
2560 int nr_loops = 0;
2561 int add_timestamp;
2562 u64 diff;
2563
2564 rb_start_commit(cpu_buffer);
2565
2566 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2567 /*
2568 * Due to the ability to swap a cpu buffer from a buffer
2569 * it is possible it was swapped before we committed.
2570 * (committing stops a swap). We check for it here and
2571 * if it happened, we have to fail the write.
2572 */
2573 barrier();
2574 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2575 local_dec(&cpu_buffer->committing);
2576 local_dec(&cpu_buffer->commits);
2577 return NULL;
2578 }
2579 #endif
2580
2581 length = rb_calculate_event_length(length);
2582 again:
2583 add_timestamp = 0;
2584 delta = 0;
2585
2586 /*
2587 * We allow for interrupts to reenter here and do a trace.
2588 * If one does, it will cause this original code to loop
2589 * back here. Even with heavy interrupts happening, this
2590 * should only happen a few times in a row. If this happens
2591 * 1000 times in a row, there must be either an interrupt
2592 * storm or we have something buggy.
2593 * Bail!
2594 */
2595 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2596 goto out_fail;
2597
2598 ts = rb_time_stamp(cpu_buffer->buffer);
2599 diff = ts - cpu_buffer->write_stamp;
2600
2601 /* make sure this diff is calculated here */
2602 barrier();
2603
2604 /* Did the write stamp get updated already? */
2605 if (likely(ts >= cpu_buffer->write_stamp)) {
2606 delta = diff;
2607 if (unlikely(test_time_stamp(delta))) {
2608 int local_clock_stable = 1;
2609 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2610 local_clock_stable = sched_clock_stable();
2611 #endif
2612 WARN_ONCE(delta > (1ULL << 59),
2613 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2614 (unsigned long long)delta,
2615 (unsigned long long)ts,
2616 (unsigned long long)cpu_buffer->write_stamp,
2617 local_clock_stable ? "" :
2618 "If you just came from a suspend/resume,\n"
2619 "please switch to the trace global clock:\n"
2620 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2621 add_timestamp = 1;
2622 }
2623 }
2624
2625 event = __rb_reserve_next(cpu_buffer, length, ts,
2626 delta, add_timestamp);
2627 if (unlikely(PTR_ERR(event) == -EAGAIN))
2628 goto again;
2629
2630 if (!event)
2631 goto out_fail;
2632
2633 return event;
2634
2635 out_fail:
2636 rb_end_commit(cpu_buffer);
2637 return NULL;
2638 }
2639
2640 #ifdef CONFIG_TRACING
2641
2642 /*
2643 * The lock and unlock are done within a preempt disable section.
2644 * The current_context per_cpu variable can only be modified
2645 * by the current task between lock and unlock. But it can
2646 * be modified more than once via an interrupt. To pass this
2647 * information from the lock to the unlock without having to
2648 * access the 'in_interrupt()' functions again (which do show
2649 * a bit of overhead in something as critical as function tracing,
2650 * we use a bitmask trick.
2651 *
2652 * bit 0 = NMI context
2653 * bit 1 = IRQ context
2654 * bit 2 = SoftIRQ context
2655 * bit 3 = normal context.
2656 *
2657 * This works because this is the order of contexts that can
2658 * preempt other contexts. A SoftIRQ never preempts an IRQ
2659 * context.
2660 *
2661 * When the context is determined, the corresponding bit is
2662 * checked and set (if it was set, then a recursion of that context
2663 * happened).
2664 *
2665 * On unlock, we need to clear this bit. To do so, just subtract
2666 * 1 from the current_context and AND it to itself.
2667 *
2668 * (binary)
2669 * 101 - 1 = 100
2670 * 101 & 100 = 100 (clearing bit zero)
2671 *
2672 * 1010 - 1 = 1001
2673 * 1010 & 1001 = 1000 (clearing bit 1)
2674 *
2675 * The least significant bit can be cleared this way, and it
2676 * just so happens that it is the same bit corresponding to
2677 * the current context.
2678 */
2679
2680 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)2681 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2682 {
2683 unsigned int val = cpu_buffer->current_context;
2684 int bit;
2685
2686 if (in_interrupt()) {
2687 if (in_nmi())
2688 bit = 0;
2689 else if (in_irq())
2690 bit = 1;
2691 else
2692 bit = 2;
2693 } else
2694 bit = 3;
2695
2696 if (unlikely(val & (1 << bit)))
2697 return 1;
2698
2699 val |= (1 << bit);
2700 cpu_buffer->current_context = val;
2701
2702 return 0;
2703 }
2704
2705 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)2706 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2707 {
2708 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2709 }
2710
2711 #else
2712
2713 #define trace_recursive_lock(cpu_buffer) (0)
2714 #define trace_recursive_unlock(cpu_buffer) do { } while (0)
2715
2716 #endif
2717
2718 /**
2719 * ring_buffer_lock_reserve - reserve a part of the buffer
2720 * @buffer: the ring buffer to reserve from
2721 * @length: the length of the data to reserve (excluding event header)
2722 *
2723 * Returns a reseverd event on the ring buffer to copy directly to.
2724 * The user of this interface will need to get the body to write into
2725 * and can use the ring_buffer_event_data() interface.
2726 *
2727 * The length is the length of the data needed, not the event length
2728 * which also includes the event header.
2729 *
2730 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2731 * If NULL is returned, then nothing has been allocated or locked.
2732 */
2733 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2734 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2735 {
2736 struct ring_buffer_per_cpu *cpu_buffer;
2737 struct ring_buffer_event *event;
2738 int cpu;
2739
2740 if (ring_buffer_flags != RB_BUFFERS_ON)
2741 return NULL;
2742
2743 /* If we are tracing schedule, we don't want to recurse */
2744 preempt_disable_notrace();
2745
2746 if (unlikely(atomic_read(&buffer->record_disabled)))
2747 goto out;
2748
2749 cpu = raw_smp_processor_id();
2750
2751 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2752 goto out;
2753
2754 cpu_buffer = buffer->buffers[cpu];
2755
2756 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2757 goto out;
2758
2759 if (unlikely(length > BUF_MAX_DATA_SIZE))
2760 goto out;
2761
2762 if (unlikely(trace_recursive_lock(cpu_buffer)))
2763 goto out;
2764
2765 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2766 if (!event)
2767 goto out_unlock;
2768
2769 return event;
2770
2771 out_unlock:
2772 trace_recursive_unlock(cpu_buffer);
2773 out:
2774 preempt_enable_notrace();
2775 return NULL;
2776 }
2777 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2778
2779 static void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2780 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2781 struct ring_buffer_event *event)
2782 {
2783 u64 delta;
2784
2785 /*
2786 * The event first in the commit queue updates the
2787 * time stamp.
2788 */
2789 if (rb_event_is_commit(cpu_buffer, event)) {
2790 /*
2791 * A commit event that is first on a page
2792 * updates the write timestamp with the page stamp
2793 */
2794 if (!rb_event_index(event))
2795 cpu_buffer->write_stamp =
2796 cpu_buffer->commit_page->page->time_stamp;
2797 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2798 delta = event->array[0];
2799 delta <<= TS_SHIFT;
2800 delta += event->time_delta;
2801 cpu_buffer->write_stamp += delta;
2802 } else
2803 cpu_buffer->write_stamp += event->time_delta;
2804 }
2805 }
2806
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2807 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2808 struct ring_buffer_event *event)
2809 {
2810 local_inc(&cpu_buffer->entries);
2811 rb_update_write_stamp(cpu_buffer, event);
2812 rb_end_commit(cpu_buffer);
2813 }
2814
2815 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2816 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2817 {
2818 bool pagebusy;
2819
2820 if (buffer->irq_work.waiters_pending) {
2821 buffer->irq_work.waiters_pending = false;
2822 /* irq_work_queue() supplies it's own memory barriers */
2823 irq_work_queue(&buffer->irq_work.work);
2824 }
2825
2826 if (cpu_buffer->irq_work.waiters_pending) {
2827 cpu_buffer->irq_work.waiters_pending = false;
2828 /* irq_work_queue() supplies it's own memory barriers */
2829 irq_work_queue(&cpu_buffer->irq_work.work);
2830 }
2831
2832 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2833
2834 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2835 cpu_buffer->irq_work.wakeup_full = true;
2836 cpu_buffer->irq_work.full_waiters_pending = false;
2837 /* irq_work_queue() supplies it's own memory barriers */
2838 irq_work_queue(&cpu_buffer->irq_work.work);
2839 }
2840 }
2841
2842 /**
2843 * ring_buffer_unlock_commit - commit a reserved
2844 * @buffer: The buffer to commit to
2845 * @event: The event pointer to commit.
2846 *
2847 * This commits the data to the ring buffer, and releases any locks held.
2848 *
2849 * Must be paired with ring_buffer_lock_reserve.
2850 */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2851 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2852 struct ring_buffer_event *event)
2853 {
2854 struct ring_buffer_per_cpu *cpu_buffer;
2855 int cpu = raw_smp_processor_id();
2856
2857 cpu_buffer = buffer->buffers[cpu];
2858
2859 rb_commit(cpu_buffer, event);
2860
2861 rb_wakeups(buffer, cpu_buffer);
2862
2863 trace_recursive_unlock(cpu_buffer);
2864
2865 preempt_enable_notrace();
2866
2867 return 0;
2868 }
2869 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2870
rb_event_discard(struct ring_buffer_event * event)2871 static inline void rb_event_discard(struct ring_buffer_event *event)
2872 {
2873 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2874 event = skip_time_extend(event);
2875
2876 /* array[0] holds the actual length for the discarded event */
2877 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2878 event->type_len = RINGBUF_TYPE_PADDING;
2879 /* time delta must be non zero */
2880 if (!event->time_delta)
2881 event->time_delta = 1;
2882 }
2883
2884 /*
2885 * Decrement the entries to the page that an event is on.
2886 * The event does not even need to exist, only the pointer
2887 * to the page it is on. This may only be called before the commit
2888 * takes place.
2889 */
2890 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2891 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2892 struct ring_buffer_event *event)
2893 {
2894 unsigned long addr = (unsigned long)event;
2895 struct buffer_page *bpage = cpu_buffer->commit_page;
2896 struct buffer_page *start;
2897
2898 addr &= PAGE_MASK;
2899
2900 /* Do the likely case first */
2901 if (likely(bpage->page == (void *)addr)) {
2902 local_dec(&bpage->entries);
2903 return;
2904 }
2905
2906 /*
2907 * Because the commit page may be on the reader page we
2908 * start with the next page and check the end loop there.
2909 */
2910 rb_inc_page(cpu_buffer, &bpage);
2911 start = bpage;
2912 do {
2913 if (bpage->page == (void *)addr) {
2914 local_dec(&bpage->entries);
2915 return;
2916 }
2917 rb_inc_page(cpu_buffer, &bpage);
2918 } while (bpage != start);
2919
2920 /* commit not part of this buffer?? */
2921 RB_WARN_ON(cpu_buffer, 1);
2922 }
2923
2924 /**
2925 * ring_buffer_commit_discard - discard an event that has not been committed
2926 * @buffer: the ring buffer
2927 * @event: non committed event to discard
2928 *
2929 * Sometimes an event that is in the ring buffer needs to be ignored.
2930 * This function lets the user discard an event in the ring buffer
2931 * and then that event will not be read later.
2932 *
2933 * This function only works if it is called before the the item has been
2934 * committed. It will try to free the event from the ring buffer
2935 * if another event has not been added behind it.
2936 *
2937 * If another event has been added behind it, it will set the event
2938 * up as discarded, and perform the commit.
2939 *
2940 * If this function is called, do not call ring_buffer_unlock_commit on
2941 * the event.
2942 */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2943 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2944 struct ring_buffer_event *event)
2945 {
2946 struct ring_buffer_per_cpu *cpu_buffer;
2947 int cpu;
2948
2949 /* The event is discarded regardless */
2950 rb_event_discard(event);
2951
2952 cpu = smp_processor_id();
2953 cpu_buffer = buffer->buffers[cpu];
2954
2955 /*
2956 * This must only be called if the event has not been
2957 * committed yet. Thus we can assume that preemption
2958 * is still disabled.
2959 */
2960 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2961
2962 rb_decrement_entry(cpu_buffer, event);
2963 if (rb_try_to_discard(cpu_buffer, event))
2964 goto out;
2965
2966 /*
2967 * The commit is still visible by the reader, so we
2968 * must still update the timestamp.
2969 */
2970 rb_update_write_stamp(cpu_buffer, event);
2971 out:
2972 rb_end_commit(cpu_buffer);
2973
2974 trace_recursive_unlock(cpu_buffer);
2975
2976 preempt_enable_notrace();
2977
2978 }
2979 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2980
2981 /**
2982 * ring_buffer_write - write data to the buffer without reserving
2983 * @buffer: The ring buffer to write to.
2984 * @length: The length of the data being written (excluding the event header)
2985 * @data: The data to write to the buffer.
2986 *
2987 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2988 * one function. If you already have the data to write to the buffer, it
2989 * may be easier to simply call this function.
2990 *
2991 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2992 * and not the length of the event which would hold the header.
2993 */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2994 int ring_buffer_write(struct ring_buffer *buffer,
2995 unsigned long length,
2996 void *data)
2997 {
2998 struct ring_buffer_per_cpu *cpu_buffer;
2999 struct ring_buffer_event *event;
3000 void *body;
3001 int ret = -EBUSY;
3002 int cpu;
3003
3004 if (ring_buffer_flags != RB_BUFFERS_ON)
3005 return -EBUSY;
3006
3007 preempt_disable_notrace();
3008
3009 if (atomic_read(&buffer->record_disabled))
3010 goto out;
3011
3012 cpu = raw_smp_processor_id();
3013
3014 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3015 goto out;
3016
3017 cpu_buffer = buffer->buffers[cpu];
3018
3019 if (atomic_read(&cpu_buffer->record_disabled))
3020 goto out;
3021
3022 if (length > BUF_MAX_DATA_SIZE)
3023 goto out;
3024
3025 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3026 if (!event)
3027 goto out;
3028
3029 body = rb_event_data(event);
3030
3031 memcpy(body, data, length);
3032
3033 rb_commit(cpu_buffer, event);
3034
3035 rb_wakeups(buffer, cpu_buffer);
3036
3037 ret = 0;
3038 out:
3039 preempt_enable_notrace();
3040
3041 return ret;
3042 }
3043 EXPORT_SYMBOL_GPL(ring_buffer_write);
3044
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3045 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3046 {
3047 struct buffer_page *reader = cpu_buffer->reader_page;
3048 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3049 struct buffer_page *commit = cpu_buffer->commit_page;
3050
3051 /* In case of error, head will be NULL */
3052 if (unlikely(!head))
3053 return 1;
3054
3055 return reader->read == rb_page_commit(reader) &&
3056 (commit == reader ||
3057 (commit == head &&
3058 head->read == rb_page_commit(commit)));
3059 }
3060
3061 /**
3062 * ring_buffer_record_disable - stop all writes into the buffer
3063 * @buffer: The ring buffer to stop writes to.
3064 *
3065 * This prevents all writes to the buffer. Any attempt to write
3066 * to the buffer after this will fail and return NULL.
3067 *
3068 * The caller should call synchronize_sched() after this.
3069 */
ring_buffer_record_disable(struct ring_buffer * buffer)3070 void ring_buffer_record_disable(struct ring_buffer *buffer)
3071 {
3072 atomic_inc(&buffer->record_disabled);
3073 }
3074 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3075
3076 /**
3077 * ring_buffer_record_enable - enable writes to the buffer
3078 * @buffer: The ring buffer to enable writes
3079 *
3080 * Note, multiple disables will need the same number of enables
3081 * to truly enable the writing (much like preempt_disable).
3082 */
ring_buffer_record_enable(struct ring_buffer * buffer)3083 void ring_buffer_record_enable(struct ring_buffer *buffer)
3084 {
3085 atomic_dec(&buffer->record_disabled);
3086 }
3087 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3088
3089 /**
3090 * ring_buffer_record_off - stop all writes into the buffer
3091 * @buffer: The ring buffer to stop writes to.
3092 *
3093 * This prevents all writes to the buffer. Any attempt to write
3094 * to the buffer after this will fail and return NULL.
3095 *
3096 * This is different than ring_buffer_record_disable() as
3097 * it works like an on/off switch, where as the disable() version
3098 * must be paired with a enable().
3099 */
ring_buffer_record_off(struct ring_buffer * buffer)3100 void ring_buffer_record_off(struct ring_buffer *buffer)
3101 {
3102 unsigned int rd;
3103 unsigned int new_rd;
3104
3105 do {
3106 rd = atomic_read(&buffer->record_disabled);
3107 new_rd = rd | RB_BUFFER_OFF;
3108 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3109 }
3110 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3111
3112 /**
3113 * ring_buffer_record_on - restart writes into the buffer
3114 * @buffer: The ring buffer to start writes to.
3115 *
3116 * This enables all writes to the buffer that was disabled by
3117 * ring_buffer_record_off().
3118 *
3119 * This is different than ring_buffer_record_enable() as
3120 * it works like an on/off switch, where as the enable() version
3121 * must be paired with a disable().
3122 */
ring_buffer_record_on(struct ring_buffer * buffer)3123 void ring_buffer_record_on(struct ring_buffer *buffer)
3124 {
3125 unsigned int rd;
3126 unsigned int new_rd;
3127
3128 do {
3129 rd = atomic_read(&buffer->record_disabled);
3130 new_rd = rd & ~RB_BUFFER_OFF;
3131 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3132 }
3133 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3134
3135 /**
3136 * ring_buffer_record_is_on - return true if the ring buffer can write
3137 * @buffer: The ring buffer to see if write is enabled
3138 *
3139 * Returns true if the ring buffer is in a state that it accepts writes.
3140 */
ring_buffer_record_is_on(struct ring_buffer * buffer)3141 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3142 {
3143 return !atomic_read(&buffer->record_disabled);
3144 }
3145
3146 /**
3147 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3148 * @buffer: The ring buffer to stop writes to.
3149 * @cpu: The CPU buffer to stop
3150 *
3151 * This prevents all writes to the buffer. Any attempt to write
3152 * to the buffer after this will fail and return NULL.
3153 *
3154 * The caller should call synchronize_sched() after this.
3155 */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3156 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3157 {
3158 struct ring_buffer_per_cpu *cpu_buffer;
3159
3160 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3161 return;
3162
3163 cpu_buffer = buffer->buffers[cpu];
3164 atomic_inc(&cpu_buffer->record_disabled);
3165 }
3166 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3167
3168 /**
3169 * ring_buffer_record_enable_cpu - enable writes to the buffer
3170 * @buffer: The ring buffer to enable writes
3171 * @cpu: The CPU to enable.
3172 *
3173 * Note, multiple disables will need the same number of enables
3174 * to truly enable the writing (much like preempt_disable).
3175 */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3176 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3177 {
3178 struct ring_buffer_per_cpu *cpu_buffer;
3179
3180 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3181 return;
3182
3183 cpu_buffer = buffer->buffers[cpu];
3184 atomic_dec(&cpu_buffer->record_disabled);
3185 }
3186 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3187
3188 /*
3189 * The total entries in the ring buffer is the running counter
3190 * of entries entered into the ring buffer, minus the sum of
3191 * the entries read from the ring buffer and the number of
3192 * entries that were overwritten.
3193 */
3194 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3195 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3196 {
3197 return local_read(&cpu_buffer->entries) -
3198 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3199 }
3200
3201 /**
3202 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3203 * @buffer: The ring buffer
3204 * @cpu: The per CPU buffer to read from.
3205 */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3206 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3207 {
3208 unsigned long flags;
3209 struct ring_buffer_per_cpu *cpu_buffer;
3210 struct buffer_page *bpage;
3211 u64 ret = 0;
3212
3213 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3214 return 0;
3215
3216 cpu_buffer = buffer->buffers[cpu];
3217 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3218 /*
3219 * if the tail is on reader_page, oldest time stamp is on the reader
3220 * page
3221 */
3222 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3223 bpage = cpu_buffer->reader_page;
3224 else
3225 bpage = rb_set_head_page(cpu_buffer);
3226 if (bpage)
3227 ret = bpage->page->time_stamp;
3228 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3229
3230 return ret;
3231 }
3232 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3233
3234 /**
3235 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3236 * @buffer: The ring buffer
3237 * @cpu: The per CPU buffer to read from.
3238 */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3239 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3240 {
3241 struct ring_buffer_per_cpu *cpu_buffer;
3242 unsigned long ret;
3243
3244 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3245 return 0;
3246
3247 cpu_buffer = buffer->buffers[cpu];
3248 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3249
3250 return ret;
3251 }
3252 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3253
3254 /**
3255 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3256 * @buffer: The ring buffer
3257 * @cpu: The per CPU buffer to get the entries from.
3258 */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3259 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3260 {
3261 struct ring_buffer_per_cpu *cpu_buffer;
3262
3263 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264 return 0;
3265
3266 cpu_buffer = buffer->buffers[cpu];
3267
3268 return rb_num_of_entries(cpu_buffer);
3269 }
3270 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3271
3272 /**
3273 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3274 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3275 * @buffer: The ring buffer
3276 * @cpu: The per CPU buffer to get the number of overruns from
3277 */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3278 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3279 {
3280 struct ring_buffer_per_cpu *cpu_buffer;
3281 unsigned long ret;
3282
3283 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3284 return 0;
3285
3286 cpu_buffer = buffer->buffers[cpu];
3287 ret = local_read(&cpu_buffer->overrun);
3288
3289 return ret;
3290 }
3291 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3292
3293 /**
3294 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3295 * commits failing due to the buffer wrapping around while there are uncommitted
3296 * events, such as during an interrupt storm.
3297 * @buffer: The ring buffer
3298 * @cpu: The per CPU buffer to get the number of overruns from
3299 */
3300 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3301 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3302 {
3303 struct ring_buffer_per_cpu *cpu_buffer;
3304 unsigned long ret;
3305
3306 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307 return 0;
3308
3309 cpu_buffer = buffer->buffers[cpu];
3310 ret = local_read(&cpu_buffer->commit_overrun);
3311
3312 return ret;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3315
3316 /**
3317 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3318 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3319 * @buffer: The ring buffer
3320 * @cpu: The per CPU buffer to get the number of overruns from
3321 */
3322 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3323 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3324 {
3325 struct ring_buffer_per_cpu *cpu_buffer;
3326 unsigned long ret;
3327
3328 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3329 return 0;
3330
3331 cpu_buffer = buffer->buffers[cpu];
3332 ret = local_read(&cpu_buffer->dropped_events);
3333
3334 return ret;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3337
3338 /**
3339 * ring_buffer_read_events_cpu - get the number of events successfully read
3340 * @buffer: The ring buffer
3341 * @cpu: The per CPU buffer to get the number of events read
3342 */
3343 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3344 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3345 {
3346 struct ring_buffer_per_cpu *cpu_buffer;
3347
3348 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3349 return 0;
3350
3351 cpu_buffer = buffer->buffers[cpu];
3352 return cpu_buffer->read;
3353 }
3354 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3355
3356 /**
3357 * ring_buffer_entries - get the number of entries in a buffer
3358 * @buffer: The ring buffer
3359 *
3360 * Returns the total number of entries in the ring buffer
3361 * (all CPU entries)
3362 */
ring_buffer_entries(struct ring_buffer * buffer)3363 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3364 {
3365 struct ring_buffer_per_cpu *cpu_buffer;
3366 unsigned long entries = 0;
3367 int cpu;
3368
3369 /* if you care about this being correct, lock the buffer */
3370 for_each_buffer_cpu(buffer, cpu) {
3371 cpu_buffer = buffer->buffers[cpu];
3372 entries += rb_num_of_entries(cpu_buffer);
3373 }
3374
3375 return entries;
3376 }
3377 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3378
3379 /**
3380 * ring_buffer_overruns - get the number of overruns in buffer
3381 * @buffer: The ring buffer
3382 *
3383 * Returns the total number of overruns in the ring buffer
3384 * (all CPU entries)
3385 */
ring_buffer_overruns(struct ring_buffer * buffer)3386 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3387 {
3388 struct ring_buffer_per_cpu *cpu_buffer;
3389 unsigned long overruns = 0;
3390 int cpu;
3391
3392 /* if you care about this being correct, lock the buffer */
3393 for_each_buffer_cpu(buffer, cpu) {
3394 cpu_buffer = buffer->buffers[cpu];
3395 overruns += local_read(&cpu_buffer->overrun);
3396 }
3397
3398 return overruns;
3399 }
3400 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3401
rb_iter_reset(struct ring_buffer_iter * iter)3402 static void rb_iter_reset(struct ring_buffer_iter *iter)
3403 {
3404 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3405
3406 /* Iterator usage is expected to have record disabled */
3407 iter->head_page = cpu_buffer->reader_page;
3408 iter->head = cpu_buffer->reader_page->read;
3409
3410 iter->cache_reader_page = iter->head_page;
3411 iter->cache_read = cpu_buffer->read;
3412
3413 if (iter->head)
3414 iter->read_stamp = cpu_buffer->read_stamp;
3415 else
3416 iter->read_stamp = iter->head_page->page->time_stamp;
3417 }
3418
3419 /**
3420 * ring_buffer_iter_reset - reset an iterator
3421 * @iter: The iterator to reset
3422 *
3423 * Resets the iterator, so that it will start from the beginning
3424 * again.
3425 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3426 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3427 {
3428 struct ring_buffer_per_cpu *cpu_buffer;
3429 unsigned long flags;
3430
3431 if (!iter)
3432 return;
3433
3434 cpu_buffer = iter->cpu_buffer;
3435
3436 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3437 rb_iter_reset(iter);
3438 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3439 }
3440 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3441
3442 /**
3443 * ring_buffer_iter_empty - check if an iterator has no more to read
3444 * @iter: The iterator to check
3445 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3446 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3447 {
3448 struct ring_buffer_per_cpu *cpu_buffer;
3449
3450 cpu_buffer = iter->cpu_buffer;
3451
3452 return iter->head_page == cpu_buffer->commit_page &&
3453 iter->head == rb_commit_index(cpu_buffer);
3454 }
3455 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3456
3457 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3458 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3459 struct ring_buffer_event *event)
3460 {
3461 u64 delta;
3462
3463 switch (event->type_len) {
3464 case RINGBUF_TYPE_PADDING:
3465 return;
3466
3467 case RINGBUF_TYPE_TIME_EXTEND:
3468 delta = event->array[0];
3469 delta <<= TS_SHIFT;
3470 delta += event->time_delta;
3471 cpu_buffer->read_stamp += delta;
3472 return;
3473
3474 case RINGBUF_TYPE_TIME_STAMP:
3475 /* FIXME: not implemented */
3476 return;
3477
3478 case RINGBUF_TYPE_DATA:
3479 cpu_buffer->read_stamp += event->time_delta;
3480 return;
3481
3482 default:
3483 BUG();
3484 }
3485 return;
3486 }
3487
3488 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3489 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3490 struct ring_buffer_event *event)
3491 {
3492 u64 delta;
3493
3494 switch (event->type_len) {
3495 case RINGBUF_TYPE_PADDING:
3496 return;
3497
3498 case RINGBUF_TYPE_TIME_EXTEND:
3499 delta = event->array[0];
3500 delta <<= TS_SHIFT;
3501 delta += event->time_delta;
3502 iter->read_stamp += delta;
3503 return;
3504
3505 case RINGBUF_TYPE_TIME_STAMP:
3506 /* FIXME: not implemented */
3507 return;
3508
3509 case RINGBUF_TYPE_DATA:
3510 iter->read_stamp += event->time_delta;
3511 return;
3512
3513 default:
3514 BUG();
3515 }
3516 return;
3517 }
3518
3519 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3520 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3521 {
3522 struct buffer_page *reader = NULL;
3523 unsigned long overwrite;
3524 unsigned long flags;
3525 int nr_loops = 0;
3526 int ret;
3527
3528 local_irq_save(flags);
3529 arch_spin_lock(&cpu_buffer->lock);
3530
3531 again:
3532 /*
3533 * This should normally only loop twice. But because the
3534 * start of the reader inserts an empty page, it causes
3535 * a case where we will loop three times. There should be no
3536 * reason to loop four times (that I know of).
3537 */
3538 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3539 reader = NULL;
3540 goto out;
3541 }
3542
3543 reader = cpu_buffer->reader_page;
3544
3545 /* If there's more to read, return this page */
3546 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3547 goto out;
3548
3549 /* Never should we have an index greater than the size */
3550 if (RB_WARN_ON(cpu_buffer,
3551 cpu_buffer->reader_page->read > rb_page_size(reader)))
3552 goto out;
3553
3554 /* check if we caught up to the tail */
3555 reader = NULL;
3556 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3557 goto out;
3558
3559 /* Don't bother swapping if the ring buffer is empty */
3560 if (rb_num_of_entries(cpu_buffer) == 0)
3561 goto out;
3562
3563 /*
3564 * Reset the reader page to size zero.
3565 */
3566 local_set(&cpu_buffer->reader_page->write, 0);
3567 local_set(&cpu_buffer->reader_page->entries, 0);
3568 local_set(&cpu_buffer->reader_page->page->commit, 0);
3569 cpu_buffer->reader_page->real_end = 0;
3570
3571 spin:
3572 /*
3573 * Splice the empty reader page into the list around the head.
3574 */
3575 reader = rb_set_head_page(cpu_buffer);
3576 if (!reader)
3577 goto out;
3578 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3579 cpu_buffer->reader_page->list.prev = reader->list.prev;
3580
3581 /*
3582 * cpu_buffer->pages just needs to point to the buffer, it
3583 * has no specific buffer page to point to. Lets move it out
3584 * of our way so we don't accidentally swap it.
3585 */
3586 cpu_buffer->pages = reader->list.prev;
3587
3588 /* The reader page will be pointing to the new head */
3589 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3590
3591 /*
3592 * We want to make sure we read the overruns after we set up our
3593 * pointers to the next object. The writer side does a
3594 * cmpxchg to cross pages which acts as the mb on the writer
3595 * side. Note, the reader will constantly fail the swap
3596 * while the writer is updating the pointers, so this
3597 * guarantees that the overwrite recorded here is the one we
3598 * want to compare with the last_overrun.
3599 */
3600 smp_mb();
3601 overwrite = local_read(&(cpu_buffer->overrun));
3602
3603 /*
3604 * Here's the tricky part.
3605 *
3606 * We need to move the pointer past the header page.
3607 * But we can only do that if a writer is not currently
3608 * moving it. The page before the header page has the
3609 * flag bit '1' set if it is pointing to the page we want.
3610 * but if the writer is in the process of moving it
3611 * than it will be '2' or already moved '0'.
3612 */
3613
3614 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3615
3616 /*
3617 * If we did not convert it, then we must try again.
3618 */
3619 if (!ret)
3620 goto spin;
3621
3622 /*
3623 * Yeah! We succeeded in replacing the page.
3624 *
3625 * Now make the new head point back to the reader page.
3626 */
3627 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3628 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3629
3630 /* Finally update the reader page to the new head */
3631 cpu_buffer->reader_page = reader;
3632 rb_reset_reader_page(cpu_buffer);
3633
3634 if (overwrite != cpu_buffer->last_overrun) {
3635 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3636 cpu_buffer->last_overrun = overwrite;
3637 }
3638
3639 goto again;
3640
3641 out:
3642 arch_spin_unlock(&cpu_buffer->lock);
3643 local_irq_restore(flags);
3644
3645 return reader;
3646 }
3647
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3648 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3649 {
3650 struct ring_buffer_event *event;
3651 struct buffer_page *reader;
3652 unsigned length;
3653
3654 reader = rb_get_reader_page(cpu_buffer);
3655
3656 /* This function should not be called when buffer is empty */
3657 if (RB_WARN_ON(cpu_buffer, !reader))
3658 return;
3659
3660 event = rb_reader_event(cpu_buffer);
3661
3662 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3663 cpu_buffer->read++;
3664
3665 rb_update_read_stamp(cpu_buffer, event);
3666
3667 length = rb_event_length(event);
3668 cpu_buffer->reader_page->read += length;
3669 }
3670
rb_advance_iter(struct ring_buffer_iter * iter)3671 static void rb_advance_iter(struct ring_buffer_iter *iter)
3672 {
3673 struct ring_buffer_per_cpu *cpu_buffer;
3674 struct ring_buffer_event *event;
3675 unsigned length;
3676
3677 cpu_buffer = iter->cpu_buffer;
3678
3679 /*
3680 * Check if we are at the end of the buffer.
3681 */
3682 if (iter->head >= rb_page_size(iter->head_page)) {
3683 /* discarded commits can make the page empty */
3684 if (iter->head_page == cpu_buffer->commit_page)
3685 return;
3686 rb_inc_iter(iter);
3687 return;
3688 }
3689
3690 event = rb_iter_head_event(iter);
3691
3692 length = rb_event_length(event);
3693
3694 /*
3695 * This should not be called to advance the header if we are
3696 * at the tail of the buffer.
3697 */
3698 if (RB_WARN_ON(cpu_buffer,
3699 (iter->head_page == cpu_buffer->commit_page) &&
3700 (iter->head + length > rb_commit_index(cpu_buffer))))
3701 return;
3702
3703 rb_update_iter_read_stamp(iter, event);
3704
3705 iter->head += length;
3706
3707 /* check for end of page padding */
3708 if ((iter->head >= rb_page_size(iter->head_page)) &&
3709 (iter->head_page != cpu_buffer->commit_page))
3710 rb_inc_iter(iter);
3711 }
3712
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3713 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3714 {
3715 return cpu_buffer->lost_events;
3716 }
3717
3718 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3719 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3720 unsigned long *lost_events)
3721 {
3722 struct ring_buffer_event *event;
3723 struct buffer_page *reader;
3724 int nr_loops = 0;
3725
3726 again:
3727 /*
3728 * We repeat when a time extend is encountered.
3729 * Since the time extend is always attached to a data event,
3730 * we should never loop more than once.
3731 * (We never hit the following condition more than twice).
3732 */
3733 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3734 return NULL;
3735
3736 reader = rb_get_reader_page(cpu_buffer);
3737 if (!reader)
3738 return NULL;
3739
3740 event = rb_reader_event(cpu_buffer);
3741
3742 switch (event->type_len) {
3743 case RINGBUF_TYPE_PADDING:
3744 if (rb_null_event(event))
3745 RB_WARN_ON(cpu_buffer, 1);
3746 /*
3747 * Because the writer could be discarding every
3748 * event it creates (which would probably be bad)
3749 * if we were to go back to "again" then we may never
3750 * catch up, and will trigger the warn on, or lock
3751 * the box. Return the padding, and we will release
3752 * the current locks, and try again.
3753 */
3754 return event;
3755
3756 case RINGBUF_TYPE_TIME_EXTEND:
3757 /* Internal data, OK to advance */
3758 rb_advance_reader(cpu_buffer);
3759 goto again;
3760
3761 case RINGBUF_TYPE_TIME_STAMP:
3762 /* FIXME: not implemented */
3763 rb_advance_reader(cpu_buffer);
3764 goto again;
3765
3766 case RINGBUF_TYPE_DATA:
3767 if (ts) {
3768 *ts = cpu_buffer->read_stamp + event->time_delta;
3769 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3770 cpu_buffer->cpu, ts);
3771 }
3772 if (lost_events)
3773 *lost_events = rb_lost_events(cpu_buffer);
3774 return event;
3775
3776 default:
3777 BUG();
3778 }
3779
3780 return NULL;
3781 }
3782 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3783
3784 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3785 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3786 {
3787 struct ring_buffer *buffer;
3788 struct ring_buffer_per_cpu *cpu_buffer;
3789 struct ring_buffer_event *event;
3790 int nr_loops = 0;
3791
3792 cpu_buffer = iter->cpu_buffer;
3793 buffer = cpu_buffer->buffer;
3794
3795 /*
3796 * Check if someone performed a consuming read to
3797 * the buffer. A consuming read invalidates the iterator
3798 * and we need to reset the iterator in this case.
3799 */
3800 if (unlikely(iter->cache_read != cpu_buffer->read ||
3801 iter->cache_reader_page != cpu_buffer->reader_page))
3802 rb_iter_reset(iter);
3803
3804 again:
3805 if (ring_buffer_iter_empty(iter))
3806 return NULL;
3807
3808 /*
3809 * We repeat when a time extend is encountered or we hit
3810 * the end of the page. Since the time extend is always attached
3811 * to a data event, we should never loop more than three times.
3812 * Once for going to next page, once on time extend, and
3813 * finally once to get the event.
3814 * (We never hit the following condition more than thrice).
3815 */
3816 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3817 return NULL;
3818
3819 if (rb_per_cpu_empty(cpu_buffer))
3820 return NULL;
3821
3822 if (iter->head >= rb_page_size(iter->head_page)) {
3823 rb_inc_iter(iter);
3824 goto again;
3825 }
3826
3827 event = rb_iter_head_event(iter);
3828
3829 switch (event->type_len) {
3830 case RINGBUF_TYPE_PADDING:
3831 if (rb_null_event(event)) {
3832 rb_inc_iter(iter);
3833 goto again;
3834 }
3835 rb_advance_iter(iter);
3836 return event;
3837
3838 case RINGBUF_TYPE_TIME_EXTEND:
3839 /* Internal data, OK to advance */
3840 rb_advance_iter(iter);
3841 goto again;
3842
3843 case RINGBUF_TYPE_TIME_STAMP:
3844 /* FIXME: not implemented */
3845 rb_advance_iter(iter);
3846 goto again;
3847
3848 case RINGBUF_TYPE_DATA:
3849 if (ts) {
3850 *ts = iter->read_stamp + event->time_delta;
3851 ring_buffer_normalize_time_stamp(buffer,
3852 cpu_buffer->cpu, ts);
3853 }
3854 return event;
3855
3856 default:
3857 BUG();
3858 }
3859
3860 return NULL;
3861 }
3862 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3863
rb_ok_to_lock(void)3864 static inline int rb_ok_to_lock(void)
3865 {
3866 /*
3867 * If an NMI die dumps out the content of the ring buffer
3868 * do not grab locks. We also permanently disable the ring
3869 * buffer too. A one time deal is all you get from reading
3870 * the ring buffer from an NMI.
3871 */
3872 if (likely(!in_nmi()))
3873 return 1;
3874
3875 tracing_off_permanent();
3876 return 0;
3877 }
3878
3879 /**
3880 * ring_buffer_peek - peek at the next event to be read
3881 * @buffer: The ring buffer to read
3882 * @cpu: The cpu to peak at
3883 * @ts: The timestamp counter of this event.
3884 * @lost_events: a variable to store if events were lost (may be NULL)
3885 *
3886 * This will return the event that will be read next, but does
3887 * not consume the data.
3888 */
3889 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3890 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3891 unsigned long *lost_events)
3892 {
3893 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3894 struct ring_buffer_event *event;
3895 unsigned long flags;
3896 int dolock;
3897
3898 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3899 return NULL;
3900
3901 dolock = rb_ok_to_lock();
3902 again:
3903 local_irq_save(flags);
3904 if (dolock)
3905 raw_spin_lock(&cpu_buffer->reader_lock);
3906 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3907 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3908 rb_advance_reader(cpu_buffer);
3909 if (dolock)
3910 raw_spin_unlock(&cpu_buffer->reader_lock);
3911 local_irq_restore(flags);
3912
3913 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3914 goto again;
3915
3916 return event;
3917 }
3918
3919 /**
3920 * ring_buffer_iter_peek - peek at the next event to be read
3921 * @iter: The ring buffer iterator
3922 * @ts: The timestamp counter of this event.
3923 *
3924 * This will return the event that will be read next, but does
3925 * not increment the iterator.
3926 */
3927 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3928 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3929 {
3930 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3931 struct ring_buffer_event *event;
3932 unsigned long flags;
3933
3934 again:
3935 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3936 event = rb_iter_peek(iter, ts);
3937 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3938
3939 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3940 goto again;
3941
3942 return event;
3943 }
3944
3945 /**
3946 * ring_buffer_consume - return an event and consume it
3947 * @buffer: The ring buffer to get the next event from
3948 * @cpu: the cpu to read the buffer from
3949 * @ts: a variable to store the timestamp (may be NULL)
3950 * @lost_events: a variable to store if events were lost (may be NULL)
3951 *
3952 * Returns the next event in the ring buffer, and that event is consumed.
3953 * Meaning, that sequential reads will keep returning a different event,
3954 * and eventually empty the ring buffer if the producer is slower.
3955 */
3956 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3957 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3958 unsigned long *lost_events)
3959 {
3960 struct ring_buffer_per_cpu *cpu_buffer;
3961 struct ring_buffer_event *event = NULL;
3962 unsigned long flags;
3963 int dolock;
3964
3965 dolock = rb_ok_to_lock();
3966
3967 again:
3968 /* might be called in atomic */
3969 preempt_disable();
3970
3971 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3972 goto out;
3973
3974 cpu_buffer = buffer->buffers[cpu];
3975 local_irq_save(flags);
3976 if (dolock)
3977 raw_spin_lock(&cpu_buffer->reader_lock);
3978
3979 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3980 if (event) {
3981 cpu_buffer->lost_events = 0;
3982 rb_advance_reader(cpu_buffer);
3983 }
3984
3985 if (dolock)
3986 raw_spin_unlock(&cpu_buffer->reader_lock);
3987 local_irq_restore(flags);
3988
3989 out:
3990 preempt_enable();
3991
3992 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3993 goto again;
3994
3995 return event;
3996 }
3997 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3998
3999 /**
4000 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4001 * @buffer: The ring buffer to read from
4002 * @cpu: The cpu buffer to iterate over
4003 *
4004 * This performs the initial preparations necessary to iterate
4005 * through the buffer. Memory is allocated, buffer recording
4006 * is disabled, and the iterator pointer is returned to the caller.
4007 *
4008 * Disabling buffer recordng prevents the reading from being
4009 * corrupted. This is not a consuming read, so a producer is not
4010 * expected.
4011 *
4012 * After a sequence of ring_buffer_read_prepare calls, the user is
4013 * expected to make at least one call to ring_buffer_read_prepare_sync.
4014 * Afterwards, ring_buffer_read_start is invoked to get things going
4015 * for real.
4016 *
4017 * This overall must be paired with ring_buffer_read_finish.
4018 */
4019 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu)4020 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4021 {
4022 struct ring_buffer_per_cpu *cpu_buffer;
4023 struct ring_buffer_iter *iter;
4024
4025 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4026 return NULL;
4027
4028 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4029 if (!iter)
4030 return NULL;
4031
4032 cpu_buffer = buffer->buffers[cpu];
4033
4034 iter->cpu_buffer = cpu_buffer;
4035
4036 atomic_inc(&buffer->resize_disabled);
4037 atomic_inc(&cpu_buffer->record_disabled);
4038
4039 return iter;
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4042
4043 /**
4044 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4045 *
4046 * All previously invoked ring_buffer_read_prepare calls to prepare
4047 * iterators will be synchronized. Afterwards, read_buffer_read_start
4048 * calls on those iterators are allowed.
4049 */
4050 void
ring_buffer_read_prepare_sync(void)4051 ring_buffer_read_prepare_sync(void)
4052 {
4053 synchronize_sched();
4054 }
4055 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4056
4057 /**
4058 * ring_buffer_read_start - start a non consuming read of the buffer
4059 * @iter: The iterator returned by ring_buffer_read_prepare
4060 *
4061 * This finalizes the startup of an iteration through the buffer.
4062 * The iterator comes from a call to ring_buffer_read_prepare and
4063 * an intervening ring_buffer_read_prepare_sync must have been
4064 * performed.
4065 *
4066 * Must be paired with ring_buffer_read_finish.
4067 */
4068 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4069 ring_buffer_read_start(struct ring_buffer_iter *iter)
4070 {
4071 struct ring_buffer_per_cpu *cpu_buffer;
4072 unsigned long flags;
4073
4074 if (!iter)
4075 return;
4076
4077 cpu_buffer = iter->cpu_buffer;
4078
4079 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4080 arch_spin_lock(&cpu_buffer->lock);
4081 rb_iter_reset(iter);
4082 arch_spin_unlock(&cpu_buffer->lock);
4083 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4084 }
4085 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4086
4087 /**
4088 * ring_buffer_read_finish - finish reading the iterator of the buffer
4089 * @iter: The iterator retrieved by ring_buffer_start
4090 *
4091 * This re-enables the recording to the buffer, and frees the
4092 * iterator.
4093 */
4094 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4095 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4096 {
4097 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4098 unsigned long flags;
4099
4100 /*
4101 * Ring buffer is disabled from recording, here's a good place
4102 * to check the integrity of the ring buffer.
4103 * Must prevent readers from trying to read, as the check
4104 * clears the HEAD page and readers require it.
4105 */
4106 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4107 rb_check_pages(cpu_buffer);
4108 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4109
4110 atomic_dec(&cpu_buffer->record_disabled);
4111 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4112 kfree(iter);
4113 }
4114 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4115
4116 /**
4117 * ring_buffer_read - read the next item in the ring buffer by the iterator
4118 * @iter: The ring buffer iterator
4119 * @ts: The time stamp of the event read.
4120 *
4121 * This reads the next event in the ring buffer and increments the iterator.
4122 */
4123 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4124 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4125 {
4126 struct ring_buffer_event *event;
4127 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4128 unsigned long flags;
4129
4130 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4131 again:
4132 event = rb_iter_peek(iter, ts);
4133 if (!event)
4134 goto out;
4135
4136 if (event->type_len == RINGBUF_TYPE_PADDING)
4137 goto again;
4138
4139 rb_advance_iter(iter);
4140 out:
4141 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4142
4143 return event;
4144 }
4145 EXPORT_SYMBOL_GPL(ring_buffer_read);
4146
4147 /**
4148 * ring_buffer_size - return the size of the ring buffer (in bytes)
4149 * @buffer: The ring buffer.
4150 */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4151 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4152 {
4153 /*
4154 * Earlier, this method returned
4155 * BUF_PAGE_SIZE * buffer->nr_pages
4156 * Since the nr_pages field is now removed, we have converted this to
4157 * return the per cpu buffer value.
4158 */
4159 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4160 return 0;
4161
4162 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4163 }
4164 EXPORT_SYMBOL_GPL(ring_buffer_size);
4165
4166 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4167 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4168 {
4169 rb_head_page_deactivate(cpu_buffer);
4170
4171 cpu_buffer->head_page
4172 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4173 local_set(&cpu_buffer->head_page->write, 0);
4174 local_set(&cpu_buffer->head_page->entries, 0);
4175 local_set(&cpu_buffer->head_page->page->commit, 0);
4176
4177 cpu_buffer->head_page->read = 0;
4178
4179 cpu_buffer->tail_page = cpu_buffer->head_page;
4180 cpu_buffer->commit_page = cpu_buffer->head_page;
4181
4182 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4183 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4184 local_set(&cpu_buffer->reader_page->write, 0);
4185 local_set(&cpu_buffer->reader_page->entries, 0);
4186 local_set(&cpu_buffer->reader_page->page->commit, 0);
4187 cpu_buffer->reader_page->read = 0;
4188
4189 local_set(&cpu_buffer->entries_bytes, 0);
4190 local_set(&cpu_buffer->overrun, 0);
4191 local_set(&cpu_buffer->commit_overrun, 0);
4192 local_set(&cpu_buffer->dropped_events, 0);
4193 local_set(&cpu_buffer->entries, 0);
4194 local_set(&cpu_buffer->committing, 0);
4195 local_set(&cpu_buffer->commits, 0);
4196 cpu_buffer->read = 0;
4197 cpu_buffer->read_bytes = 0;
4198
4199 cpu_buffer->write_stamp = 0;
4200 cpu_buffer->read_stamp = 0;
4201
4202 cpu_buffer->lost_events = 0;
4203 cpu_buffer->last_overrun = 0;
4204
4205 rb_head_page_activate(cpu_buffer);
4206 }
4207
4208 /**
4209 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4210 * @buffer: The ring buffer to reset a per cpu buffer of
4211 * @cpu: The CPU buffer to be reset
4212 */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4213 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4214 {
4215 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4216 unsigned long flags;
4217
4218 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4219 return;
4220
4221 atomic_inc(&buffer->resize_disabled);
4222 atomic_inc(&cpu_buffer->record_disabled);
4223
4224 /* Make sure all commits have finished */
4225 synchronize_sched();
4226
4227 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4228
4229 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4230 goto out;
4231
4232 arch_spin_lock(&cpu_buffer->lock);
4233
4234 rb_reset_cpu(cpu_buffer);
4235
4236 arch_spin_unlock(&cpu_buffer->lock);
4237
4238 out:
4239 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4240
4241 atomic_dec(&cpu_buffer->record_disabled);
4242 atomic_dec(&buffer->resize_disabled);
4243 }
4244 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4245
4246 /**
4247 * ring_buffer_reset - reset a ring buffer
4248 * @buffer: The ring buffer to reset all cpu buffers
4249 */
ring_buffer_reset(struct ring_buffer * buffer)4250 void ring_buffer_reset(struct ring_buffer *buffer)
4251 {
4252 int cpu;
4253
4254 for_each_buffer_cpu(buffer, cpu)
4255 ring_buffer_reset_cpu(buffer, cpu);
4256 }
4257 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4258
4259 /**
4260 * rind_buffer_empty - is the ring buffer empty?
4261 * @buffer: The ring buffer to test
4262 */
ring_buffer_empty(struct ring_buffer * buffer)4263 int ring_buffer_empty(struct ring_buffer *buffer)
4264 {
4265 struct ring_buffer_per_cpu *cpu_buffer;
4266 unsigned long flags;
4267 int dolock;
4268 int cpu;
4269 int ret;
4270
4271 dolock = rb_ok_to_lock();
4272
4273 /* yes this is racy, but if you don't like the race, lock the buffer */
4274 for_each_buffer_cpu(buffer, cpu) {
4275 cpu_buffer = buffer->buffers[cpu];
4276 local_irq_save(flags);
4277 if (dolock)
4278 raw_spin_lock(&cpu_buffer->reader_lock);
4279 ret = rb_per_cpu_empty(cpu_buffer);
4280 if (dolock)
4281 raw_spin_unlock(&cpu_buffer->reader_lock);
4282 local_irq_restore(flags);
4283
4284 if (!ret)
4285 return 0;
4286 }
4287
4288 return 1;
4289 }
4290 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4291
4292 /**
4293 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4294 * @buffer: The ring buffer
4295 * @cpu: The CPU buffer to test
4296 */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4297 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4298 {
4299 struct ring_buffer_per_cpu *cpu_buffer;
4300 unsigned long flags;
4301 int dolock;
4302 int ret;
4303
4304 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4305 return 1;
4306
4307 dolock = rb_ok_to_lock();
4308
4309 cpu_buffer = buffer->buffers[cpu];
4310 local_irq_save(flags);
4311 if (dolock)
4312 raw_spin_lock(&cpu_buffer->reader_lock);
4313 ret = rb_per_cpu_empty(cpu_buffer);
4314 if (dolock)
4315 raw_spin_unlock(&cpu_buffer->reader_lock);
4316 local_irq_restore(flags);
4317
4318 return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4321
4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4323 /**
4324 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325 * @buffer_a: One buffer to swap with
4326 * @buffer_b: The other buffer to swap with
4327 *
4328 * This function is useful for tracers that want to take a "snapshot"
4329 * of a CPU buffer and has another back up buffer lying around.
4330 * it is expected that the tracer handles the cpu buffer not being
4331 * used at the moment.
4332 */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4333 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334 struct ring_buffer *buffer_b, int cpu)
4335 {
4336 struct ring_buffer_per_cpu *cpu_buffer_a;
4337 struct ring_buffer_per_cpu *cpu_buffer_b;
4338 int ret = -EINVAL;
4339
4340 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4342 goto out;
4343
4344 cpu_buffer_a = buffer_a->buffers[cpu];
4345 cpu_buffer_b = buffer_b->buffers[cpu];
4346
4347 /* At least make sure the two buffers are somewhat the same */
4348 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4349 goto out;
4350
4351 ret = -EAGAIN;
4352
4353 if (ring_buffer_flags != RB_BUFFERS_ON)
4354 goto out;
4355
4356 if (atomic_read(&buffer_a->record_disabled))
4357 goto out;
4358
4359 if (atomic_read(&buffer_b->record_disabled))
4360 goto out;
4361
4362 if (atomic_read(&cpu_buffer_a->record_disabled))
4363 goto out;
4364
4365 if (atomic_read(&cpu_buffer_b->record_disabled))
4366 goto out;
4367
4368 /*
4369 * We can't do a synchronize_sched here because this
4370 * function can be called in atomic context.
4371 * Normally this will be called from the same CPU as cpu.
4372 * If not it's up to the caller to protect this.
4373 */
4374 atomic_inc(&cpu_buffer_a->record_disabled);
4375 atomic_inc(&cpu_buffer_b->record_disabled);
4376
4377 ret = -EBUSY;
4378 if (local_read(&cpu_buffer_a->committing))
4379 goto out_dec;
4380 if (local_read(&cpu_buffer_b->committing))
4381 goto out_dec;
4382
4383 buffer_a->buffers[cpu] = cpu_buffer_b;
4384 buffer_b->buffers[cpu] = cpu_buffer_a;
4385
4386 cpu_buffer_b->buffer = buffer_a;
4387 cpu_buffer_a->buffer = buffer_b;
4388
4389 ret = 0;
4390
4391 out_dec:
4392 atomic_dec(&cpu_buffer_a->record_disabled);
4393 atomic_dec(&cpu_buffer_b->record_disabled);
4394 out:
4395 return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4398 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4399
4400 /**
4401 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4402 * @buffer: the buffer to allocate for.
4403 * @cpu: the cpu buffer to allocate.
4404 *
4405 * This function is used in conjunction with ring_buffer_read_page.
4406 * When reading a full page from the ring buffer, these functions
4407 * can be used to speed up the process. The calling function should
4408 * allocate a few pages first with this function. Then when it
4409 * needs to get pages from the ring buffer, it passes the result
4410 * of this function into ring_buffer_read_page, which will swap
4411 * the page that was allocated, with the read page of the buffer.
4412 *
4413 * Returns:
4414 * The page allocated, or NULL on error.
4415 */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4416 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4417 {
4418 struct buffer_data_page *bpage;
4419 struct page *page;
4420
4421 page = alloc_pages_node(cpu_to_node(cpu),
4422 GFP_KERNEL | __GFP_NORETRY, 0);
4423 if (!page)
4424 return NULL;
4425
4426 bpage = page_address(page);
4427
4428 rb_init_page(bpage);
4429
4430 return bpage;
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4433
4434 /**
4435 * ring_buffer_free_read_page - free an allocated read page
4436 * @buffer: the buffer the page was allocate for
4437 * @data: the page to free
4438 *
4439 * Free a page allocated from ring_buffer_alloc_read_page.
4440 */
ring_buffer_free_read_page(struct ring_buffer * buffer,void * data)4441 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4442 {
4443 free_page((unsigned long)data);
4444 }
4445 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4446
4447 /**
4448 * ring_buffer_read_page - extract a page from the ring buffer
4449 * @buffer: buffer to extract from
4450 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4451 * @len: amount to extract
4452 * @cpu: the cpu of the buffer to extract
4453 * @full: should the extraction only happen when the page is full.
4454 *
4455 * This function will pull out a page from the ring buffer and consume it.
4456 * @data_page must be the address of the variable that was returned
4457 * from ring_buffer_alloc_read_page. This is because the page might be used
4458 * to swap with a page in the ring buffer.
4459 *
4460 * for example:
4461 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4462 * if (!rpage)
4463 * return error;
4464 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4465 * if (ret >= 0)
4466 * process_page(rpage, ret);
4467 *
4468 * When @full is set, the function will not return true unless
4469 * the writer is off the reader page.
4470 *
4471 * Note: it is up to the calling functions to handle sleeps and wakeups.
4472 * The ring buffer can be used anywhere in the kernel and can not
4473 * blindly call wake_up. The layer that uses the ring buffer must be
4474 * responsible for that.
4475 *
4476 * Returns:
4477 * >=0 if data has been transferred, returns the offset of consumed data.
4478 * <0 if no data has been transferred.
4479 */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4480 int ring_buffer_read_page(struct ring_buffer *buffer,
4481 void **data_page, size_t len, int cpu, int full)
4482 {
4483 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4484 struct ring_buffer_event *event;
4485 struct buffer_data_page *bpage;
4486 struct buffer_page *reader;
4487 unsigned long missed_events;
4488 unsigned long flags;
4489 unsigned int commit;
4490 unsigned int read;
4491 u64 save_timestamp;
4492 int ret = -1;
4493
4494 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4495 goto out;
4496
4497 /*
4498 * If len is not big enough to hold the page header, then
4499 * we can not copy anything.
4500 */
4501 if (len <= BUF_PAGE_HDR_SIZE)
4502 goto out;
4503
4504 len -= BUF_PAGE_HDR_SIZE;
4505
4506 if (!data_page)
4507 goto out;
4508
4509 bpage = *data_page;
4510 if (!bpage)
4511 goto out;
4512
4513 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4514
4515 reader = rb_get_reader_page(cpu_buffer);
4516 if (!reader)
4517 goto out_unlock;
4518
4519 event = rb_reader_event(cpu_buffer);
4520
4521 read = reader->read;
4522 commit = rb_page_commit(reader);
4523
4524 /* Check if any events were dropped */
4525 missed_events = cpu_buffer->lost_events;
4526
4527 /*
4528 * If this page has been partially read or
4529 * if len is not big enough to read the rest of the page or
4530 * a writer is still on the page, then
4531 * we must copy the data from the page to the buffer.
4532 * Otherwise, we can simply swap the page with the one passed in.
4533 */
4534 if (read || (len < (commit - read)) ||
4535 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4536 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4537 unsigned int rpos = read;
4538 unsigned int pos = 0;
4539 unsigned int size;
4540
4541 if (full)
4542 goto out_unlock;
4543
4544 if (len > (commit - read))
4545 len = (commit - read);
4546
4547 /* Always keep the time extend and data together */
4548 size = rb_event_ts_length(event);
4549
4550 if (len < size)
4551 goto out_unlock;
4552
4553 /* save the current timestamp, since the user will need it */
4554 save_timestamp = cpu_buffer->read_stamp;
4555
4556 /* Need to copy one event at a time */
4557 do {
4558 /* We need the size of one event, because
4559 * rb_advance_reader only advances by one event,
4560 * whereas rb_event_ts_length may include the size of
4561 * one or two events.
4562 * We have already ensured there's enough space if this
4563 * is a time extend. */
4564 size = rb_event_length(event);
4565 memcpy(bpage->data + pos, rpage->data + rpos, size);
4566
4567 len -= size;
4568
4569 rb_advance_reader(cpu_buffer);
4570 rpos = reader->read;
4571 pos += size;
4572
4573 if (rpos >= commit)
4574 break;
4575
4576 event = rb_reader_event(cpu_buffer);
4577 /* Always keep the time extend and data together */
4578 size = rb_event_ts_length(event);
4579 } while (len >= size);
4580
4581 /* update bpage */
4582 local_set(&bpage->commit, pos);
4583 bpage->time_stamp = save_timestamp;
4584
4585 /* we copied everything to the beginning */
4586 read = 0;
4587 } else {
4588 /* update the entry counter */
4589 cpu_buffer->read += rb_page_entries(reader);
4590 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4591
4592 /* swap the pages */
4593 rb_init_page(bpage);
4594 bpage = reader->page;
4595 reader->page = *data_page;
4596 local_set(&reader->write, 0);
4597 local_set(&reader->entries, 0);
4598 reader->read = 0;
4599 *data_page = bpage;
4600
4601 /*
4602 * Use the real_end for the data size,
4603 * This gives us a chance to store the lost events
4604 * on the page.
4605 */
4606 if (reader->real_end)
4607 local_set(&bpage->commit, reader->real_end);
4608 }
4609 ret = read;
4610
4611 cpu_buffer->lost_events = 0;
4612
4613 commit = local_read(&bpage->commit);
4614 /*
4615 * Set a flag in the commit field if we lost events
4616 */
4617 if (missed_events) {
4618 /* If there is room at the end of the page to save the
4619 * missed events, then record it there.
4620 */
4621 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4622 memcpy(&bpage->data[commit], &missed_events,
4623 sizeof(missed_events));
4624 local_add(RB_MISSED_STORED, &bpage->commit);
4625 commit += sizeof(missed_events);
4626 }
4627 local_add(RB_MISSED_EVENTS, &bpage->commit);
4628 }
4629
4630 /*
4631 * This page may be off to user land. Zero it out here.
4632 */
4633 if (commit < BUF_PAGE_SIZE)
4634 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4635
4636 out_unlock:
4637 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4638
4639 out:
4640 return ret;
4641 }
4642 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4643
4644 #ifdef CONFIG_HOTPLUG_CPU
rb_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4645 static int rb_cpu_notify(struct notifier_block *self,
4646 unsigned long action, void *hcpu)
4647 {
4648 struct ring_buffer *buffer =
4649 container_of(self, struct ring_buffer, cpu_notify);
4650 long cpu = (long)hcpu;
4651 long nr_pages_same;
4652 int cpu_i;
4653 unsigned long nr_pages;
4654
4655 switch (action) {
4656 case CPU_UP_PREPARE:
4657 case CPU_UP_PREPARE_FROZEN:
4658 if (cpumask_test_cpu(cpu, buffer->cpumask))
4659 return NOTIFY_OK;
4660
4661 nr_pages = 0;
4662 nr_pages_same = 1;
4663 /* check if all cpu sizes are same */
4664 for_each_buffer_cpu(buffer, cpu_i) {
4665 /* fill in the size from first enabled cpu */
4666 if (nr_pages == 0)
4667 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4668 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4669 nr_pages_same = 0;
4670 break;
4671 }
4672 }
4673 /* allocate minimum pages, user can later expand it */
4674 if (!nr_pages_same)
4675 nr_pages = 2;
4676 buffer->buffers[cpu] =
4677 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4678 if (!buffer->buffers[cpu]) {
4679 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4680 cpu);
4681 return NOTIFY_OK;
4682 }
4683 smp_wmb();
4684 cpumask_set_cpu(cpu, buffer->cpumask);
4685 break;
4686 case CPU_DOWN_PREPARE:
4687 case CPU_DOWN_PREPARE_FROZEN:
4688 /*
4689 * Do nothing.
4690 * If we were to free the buffer, then the user would
4691 * lose any trace that was in the buffer.
4692 */
4693 break;
4694 default:
4695 break;
4696 }
4697 return NOTIFY_OK;
4698 }
4699 #endif
4700
4701 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4702 /*
4703 * This is a basic integrity check of the ring buffer.
4704 * Late in the boot cycle this test will run when configured in.
4705 * It will kick off a thread per CPU that will go into a loop
4706 * writing to the per cpu ring buffer various sizes of data.
4707 * Some of the data will be large items, some small.
4708 *
4709 * Another thread is created that goes into a spin, sending out
4710 * IPIs to the other CPUs to also write into the ring buffer.
4711 * this is to test the nesting ability of the buffer.
4712 *
4713 * Basic stats are recorded and reported. If something in the
4714 * ring buffer should happen that's not expected, a big warning
4715 * is displayed and all ring buffers are disabled.
4716 */
4717 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4718
4719 struct rb_test_data {
4720 struct ring_buffer *buffer;
4721 unsigned long events;
4722 unsigned long bytes_written;
4723 unsigned long bytes_alloc;
4724 unsigned long bytes_dropped;
4725 unsigned long events_nested;
4726 unsigned long bytes_written_nested;
4727 unsigned long bytes_alloc_nested;
4728 unsigned long bytes_dropped_nested;
4729 int min_size_nested;
4730 int max_size_nested;
4731 int max_size;
4732 int min_size;
4733 int cpu;
4734 int cnt;
4735 };
4736
4737 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4738
4739 /* 1 meg per cpu */
4740 #define RB_TEST_BUFFER_SIZE 1048576
4741
4742 static char rb_string[] __initdata =
4743 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4744 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4745 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4746
4747 static bool rb_test_started __initdata;
4748
4749 struct rb_item {
4750 int size;
4751 char str[];
4752 };
4753
rb_write_something(struct rb_test_data * data,bool nested)4754 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4755 {
4756 struct ring_buffer_event *event;
4757 struct rb_item *item;
4758 bool started;
4759 int event_len;
4760 int size;
4761 int len;
4762 int cnt;
4763
4764 /* Have nested writes different that what is written */
4765 cnt = data->cnt + (nested ? 27 : 0);
4766
4767 /* Multiply cnt by ~e, to make some unique increment */
4768 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4769
4770 len = size + sizeof(struct rb_item);
4771
4772 started = rb_test_started;
4773 /* read rb_test_started before checking buffer enabled */
4774 smp_rmb();
4775
4776 event = ring_buffer_lock_reserve(data->buffer, len);
4777 if (!event) {
4778 /* Ignore dropped events before test starts. */
4779 if (started) {
4780 if (nested)
4781 data->bytes_dropped += len;
4782 else
4783 data->bytes_dropped_nested += len;
4784 }
4785 return len;
4786 }
4787
4788 event_len = ring_buffer_event_length(event);
4789
4790 if (RB_WARN_ON(data->buffer, event_len < len))
4791 goto out;
4792
4793 item = ring_buffer_event_data(event);
4794 item->size = size;
4795 memcpy(item->str, rb_string, size);
4796
4797 if (nested) {
4798 data->bytes_alloc_nested += event_len;
4799 data->bytes_written_nested += len;
4800 data->events_nested++;
4801 if (!data->min_size_nested || len < data->min_size_nested)
4802 data->min_size_nested = len;
4803 if (len > data->max_size_nested)
4804 data->max_size_nested = len;
4805 } else {
4806 data->bytes_alloc += event_len;
4807 data->bytes_written += len;
4808 data->events++;
4809 if (!data->min_size || len < data->min_size)
4810 data->max_size = len;
4811 if (len > data->max_size)
4812 data->max_size = len;
4813 }
4814
4815 out:
4816 ring_buffer_unlock_commit(data->buffer, event);
4817
4818 return 0;
4819 }
4820
rb_test(void * arg)4821 static __init int rb_test(void *arg)
4822 {
4823 struct rb_test_data *data = arg;
4824
4825 while (!kthread_should_stop()) {
4826 rb_write_something(data, false);
4827 data->cnt++;
4828
4829 set_current_state(TASK_INTERRUPTIBLE);
4830 /* Now sleep between a min of 100-300us and a max of 1ms */
4831 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4832 }
4833
4834 return 0;
4835 }
4836
rb_ipi(void * ignore)4837 static __init void rb_ipi(void *ignore)
4838 {
4839 struct rb_test_data *data;
4840 int cpu = smp_processor_id();
4841
4842 data = &rb_data[cpu];
4843 rb_write_something(data, true);
4844 }
4845
rb_hammer_test(void * arg)4846 static __init int rb_hammer_test(void *arg)
4847 {
4848 while (!kthread_should_stop()) {
4849
4850 /* Send an IPI to all cpus to write data! */
4851 smp_call_function(rb_ipi, NULL, 1);
4852 /* No sleep, but for non preempt, let others run */
4853 schedule();
4854 }
4855
4856 return 0;
4857 }
4858
test_ringbuffer(void)4859 static __init int test_ringbuffer(void)
4860 {
4861 struct task_struct *rb_hammer;
4862 struct ring_buffer *buffer;
4863 int cpu;
4864 int ret = 0;
4865
4866 pr_info("Running ring buffer tests...\n");
4867
4868 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4869 if (WARN_ON(!buffer))
4870 return 0;
4871
4872 /* Disable buffer so that threads can't write to it yet */
4873 ring_buffer_record_off(buffer);
4874
4875 for_each_online_cpu(cpu) {
4876 rb_data[cpu].buffer = buffer;
4877 rb_data[cpu].cpu = cpu;
4878 rb_data[cpu].cnt = cpu;
4879 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4880 "rbtester/%d", cpu);
4881 if (WARN_ON(!rb_threads[cpu])) {
4882 pr_cont("FAILED\n");
4883 ret = -1;
4884 goto out_free;
4885 }
4886
4887 kthread_bind(rb_threads[cpu], cpu);
4888 wake_up_process(rb_threads[cpu]);
4889 }
4890
4891 /* Now create the rb hammer! */
4892 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4893 if (WARN_ON(!rb_hammer)) {
4894 pr_cont("FAILED\n");
4895 ret = -1;
4896 goto out_free;
4897 }
4898
4899 ring_buffer_record_on(buffer);
4900 /*
4901 * Show buffer is enabled before setting rb_test_started.
4902 * Yes there's a small race window where events could be
4903 * dropped and the thread wont catch it. But when a ring
4904 * buffer gets enabled, there will always be some kind of
4905 * delay before other CPUs see it. Thus, we don't care about
4906 * those dropped events. We care about events dropped after
4907 * the threads see that the buffer is active.
4908 */
4909 smp_wmb();
4910 rb_test_started = true;
4911
4912 set_current_state(TASK_INTERRUPTIBLE);
4913 /* Just run for 10 seconds */;
4914 schedule_timeout(10 * HZ);
4915
4916 kthread_stop(rb_hammer);
4917
4918 out_free:
4919 for_each_online_cpu(cpu) {
4920 if (!rb_threads[cpu])
4921 break;
4922 kthread_stop(rb_threads[cpu]);
4923 }
4924 if (ret) {
4925 ring_buffer_free(buffer);
4926 return ret;
4927 }
4928
4929 /* Report! */
4930 pr_info("finished\n");
4931 for_each_online_cpu(cpu) {
4932 struct ring_buffer_event *event;
4933 struct rb_test_data *data = &rb_data[cpu];
4934 struct rb_item *item;
4935 unsigned long total_events;
4936 unsigned long total_dropped;
4937 unsigned long total_written;
4938 unsigned long total_alloc;
4939 unsigned long total_read = 0;
4940 unsigned long total_size = 0;
4941 unsigned long total_len = 0;
4942 unsigned long total_lost = 0;
4943 unsigned long lost;
4944 int big_event_size;
4945 int small_event_size;
4946
4947 ret = -1;
4948
4949 total_events = data->events + data->events_nested;
4950 total_written = data->bytes_written + data->bytes_written_nested;
4951 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4952 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4953
4954 big_event_size = data->max_size + data->max_size_nested;
4955 small_event_size = data->min_size + data->min_size_nested;
4956
4957 pr_info("CPU %d:\n", cpu);
4958 pr_info(" events: %ld\n", total_events);
4959 pr_info(" dropped bytes: %ld\n", total_dropped);
4960 pr_info(" alloced bytes: %ld\n", total_alloc);
4961 pr_info(" written bytes: %ld\n", total_written);
4962 pr_info(" biggest event: %d\n", big_event_size);
4963 pr_info(" smallest event: %d\n", small_event_size);
4964
4965 if (RB_WARN_ON(buffer, total_dropped))
4966 break;
4967
4968 ret = 0;
4969
4970 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4971 total_lost += lost;
4972 item = ring_buffer_event_data(event);
4973 total_len += ring_buffer_event_length(event);
4974 total_size += item->size + sizeof(struct rb_item);
4975 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4976 pr_info("FAILED!\n");
4977 pr_info("buffer had: %.*s\n", item->size, item->str);
4978 pr_info("expected: %.*s\n", item->size, rb_string);
4979 RB_WARN_ON(buffer, 1);
4980 ret = -1;
4981 break;
4982 }
4983 total_read++;
4984 }
4985 if (ret)
4986 break;
4987
4988 ret = -1;
4989
4990 pr_info(" read events: %ld\n", total_read);
4991 pr_info(" lost events: %ld\n", total_lost);
4992 pr_info(" total events: %ld\n", total_lost + total_read);
4993 pr_info(" recorded len bytes: %ld\n", total_len);
4994 pr_info(" recorded size bytes: %ld\n", total_size);
4995 if (total_lost)
4996 pr_info(" With dropped events, record len and size may not match\n"
4997 " alloced and written from above\n");
4998 if (!total_lost) {
4999 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5000 total_size != total_written))
5001 break;
5002 }
5003 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5004 break;
5005
5006 ret = 0;
5007 }
5008 if (!ret)
5009 pr_info("Ring buffer PASSED!\n");
5010
5011 ring_buffer_free(buffer);
5012 return 0;
5013 }
5014
5015 late_initcall(test_ringbuffer);
5016 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5017