1/* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6#include <linux/ftrace_event.h> 7#include <linux/ring_buffer.h> 8#include <linux/trace_clock.h> 9#include <linux/trace_seq.h> 10#include <linux/spinlock.h> 11#include <linux/irq_work.h> 12#include <linux/uaccess.h> 13#include <linux/hardirq.h> 14#include <linux/kthread.h> /* for self test */ 15#include <linux/kmemcheck.h> 16#include <linux/module.h> 17#include <linux/percpu.h> 18#include <linux/mutex.h> 19#include <linux/delay.h> 20#include <linux/slab.h> 21#include <linux/init.h> 22#include <linux/hash.h> 23#include <linux/list.h> 24#include <linux/cpu.h> 25 26#include <asm/local.h> 27 28static void update_pages_handler(struct work_struct *work); 29 30/* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33int ring_buffer_print_entry_header(struct trace_seq *s) 34{ 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48} 49 50/* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118/* 119 * A fast way to enable or disable all ring buffers is to 120 * call tracing_on or tracing_off. Turning off the ring buffers 121 * prevents all ring buffers from being recorded to. 122 * Turning this switch on, makes it OK to write to the 123 * ring buffer, if the ring buffer is enabled itself. 124 * 125 * There's three layers that must be on in order to write 126 * to the ring buffer. 127 * 128 * 1) This global flag must be set. 129 * 2) The ring buffer must be enabled for recording. 130 * 3) The per cpu buffer must be enabled for recording. 131 * 132 * In case of an anomaly, this global flag has a bit set that 133 * will permantly disable all ring buffers. 134 */ 135 136/* 137 * Global flag to disable all recording to ring buffers 138 * This has two bits: ON, DISABLED 139 * 140 * ON DISABLED 141 * ---- ---------- 142 * 0 0 : ring buffers are off 143 * 1 0 : ring buffers are on 144 * X 1 : ring buffers are permanently disabled 145 */ 146 147enum { 148 RB_BUFFERS_ON_BIT = 0, 149 RB_BUFFERS_DISABLED_BIT = 1, 150}; 151 152enum { 153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 155}; 156 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 158 159/* Used for individual buffers (after the counter) */ 160#define RB_BUFFER_OFF (1 << 20) 161 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 163 164/** 165 * tracing_off_permanent - permanently disable ring buffers 166 * 167 * This function, once called, will disable all ring buffers 168 * permanently. 169 */ 170void tracing_off_permanent(void) 171{ 172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 173} 174 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 176#define RB_ALIGNMENT 4U 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 179 180#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 181# define RB_FORCE_8BYTE_ALIGNMENT 0 182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT 183#else 184# define RB_FORCE_8BYTE_ALIGNMENT 1 185# define RB_ARCH_ALIGNMENT 8U 186#endif 187 188#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 189 190/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 191#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 192 193enum { 194 RB_LEN_TIME_EXTEND = 8, 195 RB_LEN_TIME_STAMP = 16, 196}; 197 198#define skip_time_extend(event) \ 199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 200 201static inline int rb_null_event(struct ring_buffer_event *event) 202{ 203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 204} 205 206static void rb_event_set_padding(struct ring_buffer_event *event) 207{ 208 /* padding has a NULL time_delta */ 209 event->type_len = RINGBUF_TYPE_PADDING; 210 event->time_delta = 0; 211} 212 213static unsigned 214rb_event_data_length(struct ring_buffer_event *event) 215{ 216 unsigned length; 217 218 if (event->type_len) 219 length = event->type_len * RB_ALIGNMENT; 220 else 221 length = event->array[0]; 222 return length + RB_EVNT_HDR_SIZE; 223} 224 225/* 226 * Return the length of the given event. Will return 227 * the length of the time extend if the event is a 228 * time extend. 229 */ 230static inline unsigned 231rb_event_length(struct ring_buffer_event *event) 232{ 233 switch (event->type_len) { 234 case RINGBUF_TYPE_PADDING: 235 if (rb_null_event(event)) 236 /* undefined */ 237 return -1; 238 return event->array[0] + RB_EVNT_HDR_SIZE; 239 240 case RINGBUF_TYPE_TIME_EXTEND: 241 return RB_LEN_TIME_EXTEND; 242 243 case RINGBUF_TYPE_TIME_STAMP: 244 return RB_LEN_TIME_STAMP; 245 246 case RINGBUF_TYPE_DATA: 247 return rb_event_data_length(event); 248 default: 249 BUG(); 250 } 251 /* not hit */ 252 return 0; 253} 254 255/* 256 * Return total length of time extend and data, 257 * or just the event length for all other events. 258 */ 259static inline unsigned 260rb_event_ts_length(struct ring_buffer_event *event) 261{ 262 unsigned len = 0; 263 264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 265 /* time extends include the data event after it */ 266 len = RB_LEN_TIME_EXTEND; 267 event = skip_time_extend(event); 268 } 269 return len + rb_event_length(event); 270} 271 272/** 273 * ring_buffer_event_length - return the length of the event 274 * @event: the event to get the length of 275 * 276 * Returns the size of the data load of a data event. 277 * If the event is something other than a data event, it 278 * returns the size of the event itself. With the exception 279 * of a TIME EXTEND, where it still returns the size of the 280 * data load of the data event after it. 281 */ 282unsigned ring_buffer_event_length(struct ring_buffer_event *event) 283{ 284 unsigned length; 285 286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 287 event = skip_time_extend(event); 288 289 length = rb_event_length(event); 290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 291 return length; 292 length -= RB_EVNT_HDR_SIZE; 293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 294 length -= sizeof(event->array[0]); 295 return length; 296} 297EXPORT_SYMBOL_GPL(ring_buffer_event_length); 298 299/* inline for ring buffer fast paths */ 300static void * 301rb_event_data(struct ring_buffer_event *event) 302{ 303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 304 event = skip_time_extend(event); 305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 306 /* If length is in len field, then array[0] has the data */ 307 if (event->type_len) 308 return (void *)&event->array[0]; 309 /* Otherwise length is in array[0] and array[1] has the data */ 310 return (void *)&event->array[1]; 311} 312 313/** 314 * ring_buffer_event_data - return the data of the event 315 * @event: the event to get the data from 316 */ 317void *ring_buffer_event_data(struct ring_buffer_event *event) 318{ 319 return rb_event_data(event); 320} 321EXPORT_SYMBOL_GPL(ring_buffer_event_data); 322 323#define for_each_buffer_cpu(buffer, cpu) \ 324 for_each_cpu(cpu, buffer->cpumask) 325 326#define TS_SHIFT 27 327#define TS_MASK ((1ULL << TS_SHIFT) - 1) 328#define TS_DELTA_TEST (~TS_MASK) 329 330/* Flag when events were overwritten */ 331#define RB_MISSED_EVENTS (1 << 31) 332/* Missed count stored at end */ 333#define RB_MISSED_STORED (1 << 30) 334 335struct buffer_data_page { 336 u64 time_stamp; /* page time stamp */ 337 local_t commit; /* write committed index */ 338 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 339}; 340 341/* 342 * Note, the buffer_page list must be first. The buffer pages 343 * are allocated in cache lines, which means that each buffer 344 * page will be at the beginning of a cache line, and thus 345 * the least significant bits will be zero. We use this to 346 * add flags in the list struct pointers, to make the ring buffer 347 * lockless. 348 */ 349struct buffer_page { 350 struct list_head list; /* list of buffer pages */ 351 local_t write; /* index for next write */ 352 unsigned read; /* index for next read */ 353 local_t entries; /* entries on this page */ 354 unsigned long real_end; /* real end of data */ 355 struct buffer_data_page *page; /* Actual data page */ 356}; 357 358/* 359 * The buffer page counters, write and entries, must be reset 360 * atomically when crossing page boundaries. To synchronize this 361 * update, two counters are inserted into the number. One is 362 * the actual counter for the write position or count on the page. 363 * 364 * The other is a counter of updaters. Before an update happens 365 * the update partition of the counter is incremented. This will 366 * allow the updater to update the counter atomically. 367 * 368 * The counter is 20 bits, and the state data is 12. 369 */ 370#define RB_WRITE_MASK 0xfffff 371#define RB_WRITE_INTCNT (1 << 20) 372 373static void rb_init_page(struct buffer_data_page *bpage) 374{ 375 local_set(&bpage->commit, 0); 376} 377 378/** 379 * ring_buffer_page_len - the size of data on the page. 380 * @page: The page to read 381 * 382 * Returns the amount of data on the page, including buffer page header. 383 */ 384size_t ring_buffer_page_len(void *page) 385{ 386 return local_read(&((struct buffer_data_page *)page)->commit) 387 + BUF_PAGE_HDR_SIZE; 388} 389 390/* 391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 392 * this issue out. 393 */ 394static void free_buffer_page(struct buffer_page *bpage) 395{ 396 free_page((unsigned long)bpage->page); 397 kfree(bpage); 398} 399 400/* 401 * We need to fit the time_stamp delta into 27 bits. 402 */ 403static inline int test_time_stamp(u64 delta) 404{ 405 if (delta & TS_DELTA_TEST) 406 return 1; 407 return 0; 408} 409 410#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 411 412/* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 413#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 414 415int ring_buffer_print_page_header(struct trace_seq *s) 416{ 417 struct buffer_data_page field; 418 419 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 420 "offset:0;\tsize:%u;\tsigned:%u;\n", 421 (unsigned int)sizeof(field.time_stamp), 422 (unsigned int)is_signed_type(u64)); 423 424 trace_seq_printf(s, "\tfield: local_t commit;\t" 425 "offset:%u;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)offsetof(typeof(field), commit), 427 (unsigned int)sizeof(field.commit), 428 (unsigned int)is_signed_type(long)); 429 430 trace_seq_printf(s, "\tfield: int overwrite;\t" 431 "offset:%u;\tsize:%u;\tsigned:%u;\n", 432 (unsigned int)offsetof(typeof(field), commit), 433 1, 434 (unsigned int)is_signed_type(long)); 435 436 trace_seq_printf(s, "\tfield: char data;\t" 437 "offset:%u;\tsize:%u;\tsigned:%u;\n", 438 (unsigned int)offsetof(typeof(field), data), 439 (unsigned int)BUF_PAGE_SIZE, 440 (unsigned int)is_signed_type(char)); 441 442 return !trace_seq_has_overflowed(s); 443} 444 445struct rb_irq_work { 446 struct irq_work work; 447 wait_queue_head_t waiters; 448 wait_queue_head_t full_waiters; 449 bool waiters_pending; 450 bool full_waiters_pending; 451 bool wakeup_full; 452}; 453 454/* 455 * head_page == tail_page && head == tail then buffer is empty. 456 */ 457struct ring_buffer_per_cpu { 458 int cpu; 459 atomic_t record_disabled; 460 struct ring_buffer *buffer; 461 raw_spinlock_t reader_lock; /* serialize readers */ 462 arch_spinlock_t lock; 463 struct lock_class_key lock_key; 464 unsigned long nr_pages; 465 unsigned int current_context; 466 struct list_head *pages; 467 struct buffer_page *head_page; /* read from head */ 468 struct buffer_page *tail_page; /* write to tail */ 469 struct buffer_page *commit_page; /* committed pages */ 470 struct buffer_page *reader_page; 471 unsigned long lost_events; 472 unsigned long last_overrun; 473 local_t entries_bytes; 474 local_t entries; 475 local_t overrun; 476 local_t commit_overrun; 477 local_t dropped_events; 478 local_t committing; 479 local_t commits; 480 unsigned long read; 481 unsigned long read_bytes; 482 u64 write_stamp; 483 u64 read_stamp; 484 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 485 long nr_pages_to_update; 486 struct list_head new_pages; /* new pages to add */ 487 struct work_struct update_pages_work; 488 struct completion update_done; 489 490 struct rb_irq_work irq_work; 491}; 492 493struct ring_buffer { 494 unsigned flags; 495 int cpus; 496 atomic_t record_disabled; 497 atomic_t resize_disabled; 498 cpumask_var_t cpumask; 499 500 struct lock_class_key *reader_lock_key; 501 502 struct mutex mutex; 503 504 struct ring_buffer_per_cpu **buffers; 505 506#ifdef CONFIG_HOTPLUG_CPU 507 struct notifier_block cpu_notify; 508#endif 509 u64 (*clock)(void); 510 511 struct rb_irq_work irq_work; 512}; 513 514struct ring_buffer_iter { 515 struct ring_buffer_per_cpu *cpu_buffer; 516 unsigned long head; 517 struct buffer_page *head_page; 518 struct buffer_page *cache_reader_page; 519 unsigned long cache_read; 520 u64 read_stamp; 521}; 522 523/* 524 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 525 * 526 * Schedules a delayed work to wake up any task that is blocked on the 527 * ring buffer waiters queue. 528 */ 529static void rb_wake_up_waiters(struct irq_work *work) 530{ 531 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 532 533 wake_up_all(&rbwork->waiters); 534 if (rbwork->wakeup_full) { 535 rbwork->wakeup_full = false; 536 wake_up_all(&rbwork->full_waiters); 537 } 538} 539 540/** 541 * ring_buffer_wait - wait for input to the ring buffer 542 * @buffer: buffer to wait on 543 * @cpu: the cpu buffer to wait on 544 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 545 * 546 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 547 * as data is added to any of the @buffer's cpu buffers. Otherwise 548 * it will wait for data to be added to a specific cpu buffer. 549 */ 550int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 551{ 552 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 553 DEFINE_WAIT(wait); 554 struct rb_irq_work *work; 555 int ret = 0; 556 557 /* 558 * Depending on what the caller is waiting for, either any 559 * data in any cpu buffer, or a specific buffer, put the 560 * caller on the appropriate wait queue. 561 */ 562 if (cpu == RING_BUFFER_ALL_CPUS) { 563 work = &buffer->irq_work; 564 /* Full only makes sense on per cpu reads */ 565 full = false; 566 } else { 567 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 568 return -ENODEV; 569 cpu_buffer = buffer->buffers[cpu]; 570 work = &cpu_buffer->irq_work; 571 } 572 573 574 while (true) { 575 if (full) 576 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 577 else 578 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 579 580 /* 581 * The events can happen in critical sections where 582 * checking a work queue can cause deadlocks. 583 * After adding a task to the queue, this flag is set 584 * only to notify events to try to wake up the queue 585 * using irq_work. 586 * 587 * We don't clear it even if the buffer is no longer 588 * empty. The flag only causes the next event to run 589 * irq_work to do the work queue wake up. The worse 590 * that can happen if we race with !trace_empty() is that 591 * an event will cause an irq_work to try to wake up 592 * an empty queue. 593 * 594 * There's no reason to protect this flag either, as 595 * the work queue and irq_work logic will do the necessary 596 * synchronization for the wake ups. The only thing 597 * that is necessary is that the wake up happens after 598 * a task has been queued. It's OK for spurious wake ups. 599 */ 600 if (full) 601 work->full_waiters_pending = true; 602 else 603 work->waiters_pending = true; 604 605 if (signal_pending(current)) { 606 ret = -EINTR; 607 break; 608 } 609 610 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 611 break; 612 613 if (cpu != RING_BUFFER_ALL_CPUS && 614 !ring_buffer_empty_cpu(buffer, cpu)) { 615 unsigned long flags; 616 bool pagebusy; 617 618 if (!full) 619 break; 620 621 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 622 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 623 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 624 625 if (!pagebusy) 626 break; 627 } 628 629 schedule(); 630 } 631 632 if (full) 633 finish_wait(&work->full_waiters, &wait); 634 else 635 finish_wait(&work->waiters, &wait); 636 637 return ret; 638} 639 640/** 641 * ring_buffer_poll_wait - poll on buffer input 642 * @buffer: buffer to wait on 643 * @cpu: the cpu buffer to wait on 644 * @filp: the file descriptor 645 * @poll_table: The poll descriptor 646 * 647 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 648 * as data is added to any of the @buffer's cpu buffers. Otherwise 649 * it will wait for data to be added to a specific cpu buffer. 650 * 651 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 652 * zero otherwise. 653 */ 654int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 655 struct file *filp, poll_table *poll_table) 656{ 657 struct ring_buffer_per_cpu *cpu_buffer; 658 struct rb_irq_work *work; 659 660 if (cpu == RING_BUFFER_ALL_CPUS) 661 work = &buffer->irq_work; 662 else { 663 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 664 return -EINVAL; 665 666 cpu_buffer = buffer->buffers[cpu]; 667 work = &cpu_buffer->irq_work; 668 } 669 670 poll_wait(filp, &work->waiters, poll_table); 671 work->waiters_pending = true; 672 /* 673 * There's a tight race between setting the waiters_pending and 674 * checking if the ring buffer is empty. Once the waiters_pending bit 675 * is set, the next event will wake the task up, but we can get stuck 676 * if there's only a single event in. 677 * 678 * FIXME: Ideally, we need a memory barrier on the writer side as well, 679 * but adding a memory barrier to all events will cause too much of a 680 * performance hit in the fast path. We only need a memory barrier when 681 * the buffer goes from empty to having content. But as this race is 682 * extremely small, and it's not a problem if another event comes in, we 683 * will fix it later. 684 */ 685 smp_mb(); 686 687 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 688 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 689 return POLLIN | POLLRDNORM; 690 return 0; 691} 692 693/* buffer may be either ring_buffer or ring_buffer_per_cpu */ 694#define RB_WARN_ON(b, cond) \ 695 ({ \ 696 int _____ret = unlikely(cond); \ 697 if (_____ret) { \ 698 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 699 struct ring_buffer_per_cpu *__b = \ 700 (void *)b; \ 701 atomic_inc(&__b->buffer->record_disabled); \ 702 } else \ 703 atomic_inc(&b->record_disabled); \ 704 WARN_ON(1); \ 705 } \ 706 _____ret; \ 707 }) 708 709/* Up this if you want to test the TIME_EXTENTS and normalization */ 710#define DEBUG_SHIFT 0 711 712static inline u64 rb_time_stamp(struct ring_buffer *buffer) 713{ 714 /* shift to debug/test normalization and TIME_EXTENTS */ 715 return buffer->clock() << DEBUG_SHIFT; 716} 717 718u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 719{ 720 u64 time; 721 722 preempt_disable_notrace(); 723 time = rb_time_stamp(buffer); 724 preempt_enable_no_resched_notrace(); 725 726 return time; 727} 728EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 729 730void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 731 int cpu, u64 *ts) 732{ 733 /* Just stupid testing the normalize function and deltas */ 734 *ts >>= DEBUG_SHIFT; 735} 736EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 737 738/* 739 * Making the ring buffer lockless makes things tricky. 740 * Although writes only happen on the CPU that they are on, 741 * and they only need to worry about interrupts. Reads can 742 * happen on any CPU. 743 * 744 * The reader page is always off the ring buffer, but when the 745 * reader finishes with a page, it needs to swap its page with 746 * a new one from the buffer. The reader needs to take from 747 * the head (writes go to the tail). But if a writer is in overwrite 748 * mode and wraps, it must push the head page forward. 749 * 750 * Here lies the problem. 751 * 752 * The reader must be careful to replace only the head page, and 753 * not another one. As described at the top of the file in the 754 * ASCII art, the reader sets its old page to point to the next 755 * page after head. It then sets the page after head to point to 756 * the old reader page. But if the writer moves the head page 757 * during this operation, the reader could end up with the tail. 758 * 759 * We use cmpxchg to help prevent this race. We also do something 760 * special with the page before head. We set the LSB to 1. 761 * 762 * When the writer must push the page forward, it will clear the 763 * bit that points to the head page, move the head, and then set 764 * the bit that points to the new head page. 765 * 766 * We also don't want an interrupt coming in and moving the head 767 * page on another writer. Thus we use the second LSB to catch 768 * that too. Thus: 769 * 770 * head->list->prev->next bit 1 bit 0 771 * ------- ------- 772 * Normal page 0 0 773 * Points to head page 0 1 774 * New head page 1 0 775 * 776 * Note we can not trust the prev pointer of the head page, because: 777 * 778 * +----+ +-----+ +-----+ 779 * | |------>| T |---X--->| N | 780 * | |<------| | | | 781 * +----+ +-----+ +-----+ 782 * ^ ^ | 783 * | +-----+ | | 784 * +----------| R |----------+ | 785 * | |<-----------+ 786 * +-----+ 787 * 788 * Key: ---X--> HEAD flag set in pointer 789 * T Tail page 790 * R Reader page 791 * N Next page 792 * 793 * (see __rb_reserve_next() to see where this happens) 794 * 795 * What the above shows is that the reader just swapped out 796 * the reader page with a page in the buffer, but before it 797 * could make the new header point back to the new page added 798 * it was preempted by a writer. The writer moved forward onto 799 * the new page added by the reader and is about to move forward 800 * again. 801 * 802 * You can see, it is legitimate for the previous pointer of 803 * the head (or any page) not to point back to itself. But only 804 * temporarially. 805 */ 806 807#define RB_PAGE_NORMAL 0UL 808#define RB_PAGE_HEAD 1UL 809#define RB_PAGE_UPDATE 2UL 810 811 812#define RB_FLAG_MASK 3UL 813 814/* PAGE_MOVED is not part of the mask */ 815#define RB_PAGE_MOVED 4UL 816 817/* 818 * rb_list_head - remove any bit 819 */ 820static struct list_head *rb_list_head(struct list_head *list) 821{ 822 unsigned long val = (unsigned long)list; 823 824 return (struct list_head *)(val & ~RB_FLAG_MASK); 825} 826 827/* 828 * rb_is_head_page - test if the given page is the head page 829 * 830 * Because the reader may move the head_page pointer, we can 831 * not trust what the head page is (it may be pointing to 832 * the reader page). But if the next page is a header page, 833 * its flags will be non zero. 834 */ 835static inline int 836rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 837 struct buffer_page *page, struct list_head *list) 838{ 839 unsigned long val; 840 841 val = (unsigned long)list->next; 842 843 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 844 return RB_PAGE_MOVED; 845 846 return val & RB_FLAG_MASK; 847} 848 849/* 850 * rb_is_reader_page 851 * 852 * The unique thing about the reader page, is that, if the 853 * writer is ever on it, the previous pointer never points 854 * back to the reader page. 855 */ 856static int rb_is_reader_page(struct buffer_page *page) 857{ 858 struct list_head *list = page->list.prev; 859 860 return rb_list_head(list->next) != &page->list; 861} 862 863/* 864 * rb_set_list_to_head - set a list_head to be pointing to head. 865 */ 866static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 867 struct list_head *list) 868{ 869 unsigned long *ptr; 870 871 ptr = (unsigned long *)&list->next; 872 *ptr |= RB_PAGE_HEAD; 873 *ptr &= ~RB_PAGE_UPDATE; 874} 875 876/* 877 * rb_head_page_activate - sets up head page 878 */ 879static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 880{ 881 struct buffer_page *head; 882 883 head = cpu_buffer->head_page; 884 if (!head) 885 return; 886 887 /* 888 * Set the previous list pointer to have the HEAD flag. 889 */ 890 rb_set_list_to_head(cpu_buffer, head->list.prev); 891} 892 893static void rb_list_head_clear(struct list_head *list) 894{ 895 unsigned long *ptr = (unsigned long *)&list->next; 896 897 *ptr &= ~RB_FLAG_MASK; 898} 899 900/* 901 * rb_head_page_dactivate - clears head page ptr (for free list) 902 */ 903static void 904rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 905{ 906 struct list_head *hd; 907 908 /* Go through the whole list and clear any pointers found. */ 909 rb_list_head_clear(cpu_buffer->pages); 910 911 list_for_each(hd, cpu_buffer->pages) 912 rb_list_head_clear(hd); 913} 914 915static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 916 struct buffer_page *head, 917 struct buffer_page *prev, 918 int old_flag, int new_flag) 919{ 920 struct list_head *list; 921 unsigned long val = (unsigned long)&head->list; 922 unsigned long ret; 923 924 list = &prev->list; 925 926 val &= ~RB_FLAG_MASK; 927 928 ret = cmpxchg((unsigned long *)&list->next, 929 val | old_flag, val | new_flag); 930 931 /* check if the reader took the page */ 932 if ((ret & ~RB_FLAG_MASK) != val) 933 return RB_PAGE_MOVED; 934 935 return ret & RB_FLAG_MASK; 936} 937 938static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 939 struct buffer_page *head, 940 struct buffer_page *prev, 941 int old_flag) 942{ 943 return rb_head_page_set(cpu_buffer, head, prev, 944 old_flag, RB_PAGE_UPDATE); 945} 946 947static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 948 struct buffer_page *head, 949 struct buffer_page *prev, 950 int old_flag) 951{ 952 return rb_head_page_set(cpu_buffer, head, prev, 953 old_flag, RB_PAGE_HEAD); 954} 955 956static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 957 struct buffer_page *head, 958 struct buffer_page *prev, 959 int old_flag) 960{ 961 return rb_head_page_set(cpu_buffer, head, prev, 962 old_flag, RB_PAGE_NORMAL); 963} 964 965static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 966 struct buffer_page **bpage) 967{ 968 struct list_head *p = rb_list_head((*bpage)->list.next); 969 970 *bpage = list_entry(p, struct buffer_page, list); 971} 972 973static struct buffer_page * 974rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 975{ 976 struct buffer_page *head; 977 struct buffer_page *page; 978 struct list_head *list; 979 int i; 980 981 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 982 return NULL; 983 984 /* sanity check */ 985 list = cpu_buffer->pages; 986 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 987 return NULL; 988 989 page = head = cpu_buffer->head_page; 990 /* 991 * It is possible that the writer moves the header behind 992 * where we started, and we miss in one loop. 993 * A second loop should grab the header, but we'll do 994 * three loops just because I'm paranoid. 995 */ 996 for (i = 0; i < 3; i++) { 997 do { 998 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 999 cpu_buffer->head_page = page; 1000 return page; 1001 } 1002 rb_inc_page(cpu_buffer, &page); 1003 } while (page != head); 1004 } 1005 1006 RB_WARN_ON(cpu_buffer, 1); 1007 1008 return NULL; 1009} 1010 1011static int rb_head_page_replace(struct buffer_page *old, 1012 struct buffer_page *new) 1013{ 1014 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1015 unsigned long val; 1016 unsigned long ret; 1017 1018 val = *ptr & ~RB_FLAG_MASK; 1019 val |= RB_PAGE_HEAD; 1020 1021 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1022 1023 return ret == val; 1024} 1025 1026/* 1027 * rb_tail_page_update - move the tail page forward 1028 * 1029 * Returns 1 if moved tail page, 0 if someone else did. 1030 */ 1031static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1032 struct buffer_page *tail_page, 1033 struct buffer_page *next_page) 1034{ 1035 struct buffer_page *old_tail; 1036 unsigned long old_entries; 1037 unsigned long old_write; 1038 int ret = 0; 1039 1040 /* 1041 * The tail page now needs to be moved forward. 1042 * 1043 * We need to reset the tail page, but without messing 1044 * with possible erasing of data brought in by interrupts 1045 * that have moved the tail page and are currently on it. 1046 * 1047 * We add a counter to the write field to denote this. 1048 */ 1049 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1050 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1051 1052 /* 1053 * Just make sure we have seen our old_write and synchronize 1054 * with any interrupts that come in. 1055 */ 1056 barrier(); 1057 1058 /* 1059 * If the tail page is still the same as what we think 1060 * it is, then it is up to us to update the tail 1061 * pointer. 1062 */ 1063 if (tail_page == cpu_buffer->tail_page) { 1064 /* Zero the write counter */ 1065 unsigned long val = old_write & ~RB_WRITE_MASK; 1066 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1067 1068 /* 1069 * This will only succeed if an interrupt did 1070 * not come in and change it. In which case, we 1071 * do not want to modify it. 1072 * 1073 * We add (void) to let the compiler know that we do not care 1074 * about the return value of these functions. We use the 1075 * cmpxchg to only update if an interrupt did not already 1076 * do it for us. If the cmpxchg fails, we don't care. 1077 */ 1078 (void)local_cmpxchg(&next_page->write, old_write, val); 1079 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1080 1081 /* 1082 * No need to worry about races with clearing out the commit. 1083 * it only can increment when a commit takes place. But that 1084 * only happens in the outer most nested commit. 1085 */ 1086 local_set(&next_page->page->commit, 0); 1087 1088 old_tail = cmpxchg(&cpu_buffer->tail_page, 1089 tail_page, next_page); 1090 1091 if (old_tail == tail_page) 1092 ret = 1; 1093 } 1094 1095 return ret; 1096} 1097 1098static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1099 struct buffer_page *bpage) 1100{ 1101 unsigned long val = (unsigned long)bpage; 1102 1103 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1104 return 1; 1105 1106 return 0; 1107} 1108 1109/** 1110 * rb_check_list - make sure a pointer to a list has the last bits zero 1111 */ 1112static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1113 struct list_head *list) 1114{ 1115 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1116 return 1; 1117 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1118 return 1; 1119 return 0; 1120} 1121 1122/** 1123 * rb_check_pages - integrity check of buffer pages 1124 * @cpu_buffer: CPU buffer with pages to test 1125 * 1126 * As a safety measure we check to make sure the data pages have not 1127 * been corrupted. 1128 */ 1129static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1130{ 1131 struct list_head *head = cpu_buffer->pages; 1132 struct buffer_page *bpage, *tmp; 1133 1134 /* Reset the head page if it exists */ 1135 if (cpu_buffer->head_page) 1136 rb_set_head_page(cpu_buffer); 1137 1138 rb_head_page_deactivate(cpu_buffer); 1139 1140 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1141 return -1; 1142 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1143 return -1; 1144 1145 if (rb_check_list(cpu_buffer, head)) 1146 return -1; 1147 1148 list_for_each_entry_safe(bpage, tmp, head, list) { 1149 if (RB_WARN_ON(cpu_buffer, 1150 bpage->list.next->prev != &bpage->list)) 1151 return -1; 1152 if (RB_WARN_ON(cpu_buffer, 1153 bpage->list.prev->next != &bpage->list)) 1154 return -1; 1155 if (rb_check_list(cpu_buffer, &bpage->list)) 1156 return -1; 1157 } 1158 1159 rb_head_page_activate(cpu_buffer); 1160 1161 return 0; 1162} 1163 1164static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1165{ 1166 struct buffer_page *bpage, *tmp; 1167 long i; 1168 1169 for (i = 0; i < nr_pages; i++) { 1170 struct page *page; 1171 /* 1172 * __GFP_NORETRY flag makes sure that the allocation fails 1173 * gracefully without invoking oom-killer and the system is 1174 * not destabilized. 1175 */ 1176 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1177 GFP_KERNEL | __GFP_NORETRY, 1178 cpu_to_node(cpu)); 1179 if (!bpage) 1180 goto free_pages; 1181 1182 list_add(&bpage->list, pages); 1183 1184 page = alloc_pages_node(cpu_to_node(cpu), 1185 GFP_KERNEL | __GFP_NORETRY, 0); 1186 if (!page) 1187 goto free_pages; 1188 bpage->page = page_address(page); 1189 rb_init_page(bpage->page); 1190 } 1191 1192 return 0; 1193 1194free_pages: 1195 list_for_each_entry_safe(bpage, tmp, pages, list) { 1196 list_del_init(&bpage->list); 1197 free_buffer_page(bpage); 1198 } 1199 1200 return -ENOMEM; 1201} 1202 1203static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1204 unsigned long nr_pages) 1205{ 1206 LIST_HEAD(pages); 1207 1208 WARN_ON(!nr_pages); 1209 1210 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1211 return -ENOMEM; 1212 1213 /* 1214 * The ring buffer page list is a circular list that does not 1215 * start and end with a list head. All page list items point to 1216 * other pages. 1217 */ 1218 cpu_buffer->pages = pages.next; 1219 list_del(&pages); 1220 1221 cpu_buffer->nr_pages = nr_pages; 1222 1223 rb_check_pages(cpu_buffer); 1224 1225 return 0; 1226} 1227 1228static struct ring_buffer_per_cpu * 1229rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1230{ 1231 struct ring_buffer_per_cpu *cpu_buffer; 1232 struct buffer_page *bpage; 1233 struct page *page; 1234 int ret; 1235 1236 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1237 GFP_KERNEL, cpu_to_node(cpu)); 1238 if (!cpu_buffer) 1239 return NULL; 1240 1241 cpu_buffer->cpu = cpu; 1242 cpu_buffer->buffer = buffer; 1243 raw_spin_lock_init(&cpu_buffer->reader_lock); 1244 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1245 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1246 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1247 init_completion(&cpu_buffer->update_done); 1248 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1249 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1250 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1251 1252 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1253 GFP_KERNEL, cpu_to_node(cpu)); 1254 if (!bpage) 1255 goto fail_free_buffer; 1256 1257 rb_check_bpage(cpu_buffer, bpage); 1258 1259 cpu_buffer->reader_page = bpage; 1260 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1261 if (!page) 1262 goto fail_free_reader; 1263 bpage->page = page_address(page); 1264 rb_init_page(bpage->page); 1265 1266 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1267 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1268 1269 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1270 if (ret < 0) 1271 goto fail_free_reader; 1272 1273 cpu_buffer->head_page 1274 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1275 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1276 1277 rb_head_page_activate(cpu_buffer); 1278 1279 return cpu_buffer; 1280 1281 fail_free_reader: 1282 free_buffer_page(cpu_buffer->reader_page); 1283 1284 fail_free_buffer: 1285 kfree(cpu_buffer); 1286 return NULL; 1287} 1288 1289static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1290{ 1291 struct list_head *head = cpu_buffer->pages; 1292 struct buffer_page *bpage, *tmp; 1293 1294 free_buffer_page(cpu_buffer->reader_page); 1295 1296 rb_head_page_deactivate(cpu_buffer); 1297 1298 if (head) { 1299 list_for_each_entry_safe(bpage, tmp, head, list) { 1300 list_del_init(&bpage->list); 1301 free_buffer_page(bpage); 1302 } 1303 bpage = list_entry(head, struct buffer_page, list); 1304 free_buffer_page(bpage); 1305 } 1306 1307 kfree(cpu_buffer); 1308} 1309 1310#ifdef CONFIG_HOTPLUG_CPU 1311static int rb_cpu_notify(struct notifier_block *self, 1312 unsigned long action, void *hcpu); 1313#endif 1314 1315/** 1316 * __ring_buffer_alloc - allocate a new ring_buffer 1317 * @size: the size in bytes per cpu that is needed. 1318 * @flags: attributes to set for the ring buffer. 1319 * 1320 * Currently the only flag that is available is the RB_FL_OVERWRITE 1321 * flag. This flag means that the buffer will overwrite old data 1322 * when the buffer wraps. If this flag is not set, the buffer will 1323 * drop data when the tail hits the head. 1324 */ 1325struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1326 struct lock_class_key *key) 1327{ 1328 struct ring_buffer *buffer; 1329 long nr_pages; 1330 int bsize; 1331 int cpu; 1332 1333 /* keep it in its own cache line */ 1334 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1335 GFP_KERNEL); 1336 if (!buffer) 1337 return NULL; 1338 1339 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1340 goto fail_free_buffer; 1341 1342 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1343 buffer->flags = flags; 1344 buffer->clock = trace_clock_local; 1345 buffer->reader_lock_key = key; 1346 1347 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1348 init_waitqueue_head(&buffer->irq_work.waiters); 1349 1350 /* need at least two pages */ 1351 if (nr_pages < 2) 1352 nr_pages = 2; 1353 1354 /* 1355 * In case of non-hotplug cpu, if the ring-buffer is allocated 1356 * in early initcall, it will not be notified of secondary cpus. 1357 * In that off case, we need to allocate for all possible cpus. 1358 */ 1359#ifdef CONFIG_HOTPLUG_CPU 1360 cpu_notifier_register_begin(); 1361 cpumask_copy(buffer->cpumask, cpu_online_mask); 1362#else 1363 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1364#endif 1365 buffer->cpus = nr_cpu_ids; 1366 1367 bsize = sizeof(void *) * nr_cpu_ids; 1368 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1369 GFP_KERNEL); 1370 if (!buffer->buffers) 1371 goto fail_free_cpumask; 1372 1373 for_each_buffer_cpu(buffer, cpu) { 1374 buffer->buffers[cpu] = 1375 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1376 if (!buffer->buffers[cpu]) 1377 goto fail_free_buffers; 1378 } 1379 1380#ifdef CONFIG_HOTPLUG_CPU 1381 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1382 buffer->cpu_notify.priority = 0; 1383 __register_cpu_notifier(&buffer->cpu_notify); 1384 cpu_notifier_register_done(); 1385#endif 1386 1387 mutex_init(&buffer->mutex); 1388 1389 return buffer; 1390 1391 fail_free_buffers: 1392 for_each_buffer_cpu(buffer, cpu) { 1393 if (buffer->buffers[cpu]) 1394 rb_free_cpu_buffer(buffer->buffers[cpu]); 1395 } 1396 kfree(buffer->buffers); 1397 1398 fail_free_cpumask: 1399 free_cpumask_var(buffer->cpumask); 1400#ifdef CONFIG_HOTPLUG_CPU 1401 cpu_notifier_register_done(); 1402#endif 1403 1404 fail_free_buffer: 1405 kfree(buffer); 1406 return NULL; 1407} 1408EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1409 1410/** 1411 * ring_buffer_free - free a ring buffer. 1412 * @buffer: the buffer to free. 1413 */ 1414void 1415ring_buffer_free(struct ring_buffer *buffer) 1416{ 1417 int cpu; 1418 1419#ifdef CONFIG_HOTPLUG_CPU 1420 cpu_notifier_register_begin(); 1421 __unregister_cpu_notifier(&buffer->cpu_notify); 1422#endif 1423 1424 for_each_buffer_cpu(buffer, cpu) 1425 rb_free_cpu_buffer(buffer->buffers[cpu]); 1426 1427#ifdef CONFIG_HOTPLUG_CPU 1428 cpu_notifier_register_done(); 1429#endif 1430 1431 kfree(buffer->buffers); 1432 free_cpumask_var(buffer->cpumask); 1433 1434 kfree(buffer); 1435} 1436EXPORT_SYMBOL_GPL(ring_buffer_free); 1437 1438void ring_buffer_set_clock(struct ring_buffer *buffer, 1439 u64 (*clock)(void)) 1440{ 1441 buffer->clock = clock; 1442} 1443 1444static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1445 1446static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1447{ 1448 return local_read(&bpage->entries) & RB_WRITE_MASK; 1449} 1450 1451static inline unsigned long rb_page_write(struct buffer_page *bpage) 1452{ 1453 return local_read(&bpage->write) & RB_WRITE_MASK; 1454} 1455 1456static int 1457rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1458{ 1459 struct list_head *tail_page, *to_remove, *next_page; 1460 struct buffer_page *to_remove_page, *tmp_iter_page; 1461 struct buffer_page *last_page, *first_page; 1462 unsigned long nr_removed; 1463 unsigned long head_bit; 1464 int page_entries; 1465 1466 head_bit = 0; 1467 1468 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1469 atomic_inc(&cpu_buffer->record_disabled); 1470 /* 1471 * We don't race with the readers since we have acquired the reader 1472 * lock. We also don't race with writers after disabling recording. 1473 * This makes it easy to figure out the first and the last page to be 1474 * removed from the list. We unlink all the pages in between including 1475 * the first and last pages. This is done in a busy loop so that we 1476 * lose the least number of traces. 1477 * The pages are freed after we restart recording and unlock readers. 1478 */ 1479 tail_page = &cpu_buffer->tail_page->list; 1480 1481 /* 1482 * tail page might be on reader page, we remove the next page 1483 * from the ring buffer 1484 */ 1485 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1486 tail_page = rb_list_head(tail_page->next); 1487 to_remove = tail_page; 1488 1489 /* start of pages to remove */ 1490 first_page = list_entry(rb_list_head(to_remove->next), 1491 struct buffer_page, list); 1492 1493 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1494 to_remove = rb_list_head(to_remove)->next; 1495 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1496 } 1497 1498 next_page = rb_list_head(to_remove)->next; 1499 1500 /* 1501 * Now we remove all pages between tail_page and next_page. 1502 * Make sure that we have head_bit value preserved for the 1503 * next page 1504 */ 1505 tail_page->next = (struct list_head *)((unsigned long)next_page | 1506 head_bit); 1507 next_page = rb_list_head(next_page); 1508 next_page->prev = tail_page; 1509 1510 /* make sure pages points to a valid page in the ring buffer */ 1511 cpu_buffer->pages = next_page; 1512 1513 /* update head page */ 1514 if (head_bit) 1515 cpu_buffer->head_page = list_entry(next_page, 1516 struct buffer_page, list); 1517 1518 /* 1519 * change read pointer to make sure any read iterators reset 1520 * themselves 1521 */ 1522 cpu_buffer->read = 0; 1523 1524 /* pages are removed, resume tracing and then free the pages */ 1525 atomic_dec(&cpu_buffer->record_disabled); 1526 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1527 1528 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1529 1530 /* last buffer page to remove */ 1531 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1532 list); 1533 tmp_iter_page = first_page; 1534 1535 do { 1536 to_remove_page = tmp_iter_page; 1537 rb_inc_page(cpu_buffer, &tmp_iter_page); 1538 1539 /* update the counters */ 1540 page_entries = rb_page_entries(to_remove_page); 1541 if (page_entries) { 1542 /* 1543 * If something was added to this page, it was full 1544 * since it is not the tail page. So we deduct the 1545 * bytes consumed in ring buffer from here. 1546 * Increment overrun to account for the lost events. 1547 */ 1548 local_add(page_entries, &cpu_buffer->overrun); 1549 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1550 } 1551 1552 /* 1553 * We have already removed references to this list item, just 1554 * free up the buffer_page and its page 1555 */ 1556 free_buffer_page(to_remove_page); 1557 nr_removed--; 1558 1559 } while (to_remove_page != last_page); 1560 1561 RB_WARN_ON(cpu_buffer, nr_removed); 1562 1563 return nr_removed == 0; 1564} 1565 1566static int 1567rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1568{ 1569 struct list_head *pages = &cpu_buffer->new_pages; 1570 int retries, success; 1571 1572 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1573 /* 1574 * We are holding the reader lock, so the reader page won't be swapped 1575 * in the ring buffer. Now we are racing with the writer trying to 1576 * move head page and the tail page. 1577 * We are going to adapt the reader page update process where: 1578 * 1. We first splice the start and end of list of new pages between 1579 * the head page and its previous page. 1580 * 2. We cmpxchg the prev_page->next to point from head page to the 1581 * start of new pages list. 1582 * 3. Finally, we update the head->prev to the end of new list. 1583 * 1584 * We will try this process 10 times, to make sure that we don't keep 1585 * spinning. 1586 */ 1587 retries = 10; 1588 success = 0; 1589 while (retries--) { 1590 struct list_head *head_page, *prev_page, *r; 1591 struct list_head *last_page, *first_page; 1592 struct list_head *head_page_with_bit; 1593 1594 head_page = &rb_set_head_page(cpu_buffer)->list; 1595 if (!head_page) 1596 break; 1597 prev_page = head_page->prev; 1598 1599 first_page = pages->next; 1600 last_page = pages->prev; 1601 1602 head_page_with_bit = (struct list_head *) 1603 ((unsigned long)head_page | RB_PAGE_HEAD); 1604 1605 last_page->next = head_page_with_bit; 1606 first_page->prev = prev_page; 1607 1608 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1609 1610 if (r == head_page_with_bit) { 1611 /* 1612 * yay, we replaced the page pointer to our new list, 1613 * now, we just have to update to head page's prev 1614 * pointer to point to end of list 1615 */ 1616 head_page->prev = last_page; 1617 success = 1; 1618 break; 1619 } 1620 } 1621 1622 if (success) 1623 INIT_LIST_HEAD(pages); 1624 /* 1625 * If we weren't successful in adding in new pages, warn and stop 1626 * tracing 1627 */ 1628 RB_WARN_ON(cpu_buffer, !success); 1629 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1630 1631 /* free pages if they weren't inserted */ 1632 if (!success) { 1633 struct buffer_page *bpage, *tmp; 1634 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1635 list) { 1636 list_del_init(&bpage->list); 1637 free_buffer_page(bpage); 1638 } 1639 } 1640 return success; 1641} 1642 1643static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1644{ 1645 int success; 1646 1647 if (cpu_buffer->nr_pages_to_update > 0) 1648 success = rb_insert_pages(cpu_buffer); 1649 else 1650 success = rb_remove_pages(cpu_buffer, 1651 -cpu_buffer->nr_pages_to_update); 1652 1653 if (success) 1654 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1655} 1656 1657static void update_pages_handler(struct work_struct *work) 1658{ 1659 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1660 struct ring_buffer_per_cpu, update_pages_work); 1661 rb_update_pages(cpu_buffer); 1662 complete(&cpu_buffer->update_done); 1663} 1664 1665/** 1666 * ring_buffer_resize - resize the ring buffer 1667 * @buffer: the buffer to resize. 1668 * @size: the new size. 1669 * @cpu_id: the cpu buffer to resize 1670 * 1671 * Minimum size is 2 * BUF_PAGE_SIZE. 1672 * 1673 * Returns 0 on success and < 0 on failure. 1674 */ 1675int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1676 int cpu_id) 1677{ 1678 struct ring_buffer_per_cpu *cpu_buffer; 1679 unsigned long nr_pages; 1680 int cpu, err = 0; 1681 1682 /* 1683 * Always succeed at resizing a non-existent buffer: 1684 */ 1685 if (!buffer) 1686 return size; 1687 1688 /* Make sure the requested buffer exists */ 1689 if (cpu_id != RING_BUFFER_ALL_CPUS && 1690 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1691 return size; 1692 1693 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1694 1695 /* we need a minimum of two pages */ 1696 if (nr_pages < 2) 1697 nr_pages = 2; 1698 1699 size = nr_pages * BUF_PAGE_SIZE; 1700 1701 /* 1702 * Don't succeed if resizing is disabled, as a reader might be 1703 * manipulating the ring buffer and is expecting a sane state while 1704 * this is true. 1705 */ 1706 if (atomic_read(&buffer->resize_disabled)) 1707 return -EBUSY; 1708 1709 /* prevent another thread from changing buffer sizes */ 1710 mutex_lock(&buffer->mutex); 1711 1712 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1713 /* calculate the pages to update */ 1714 for_each_buffer_cpu(buffer, cpu) { 1715 cpu_buffer = buffer->buffers[cpu]; 1716 1717 cpu_buffer->nr_pages_to_update = nr_pages - 1718 cpu_buffer->nr_pages; 1719 /* 1720 * nothing more to do for removing pages or no update 1721 */ 1722 if (cpu_buffer->nr_pages_to_update <= 0) 1723 continue; 1724 /* 1725 * to add pages, make sure all new pages can be 1726 * allocated without receiving ENOMEM 1727 */ 1728 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1729 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1730 &cpu_buffer->new_pages, cpu)) { 1731 /* not enough memory for new pages */ 1732 err = -ENOMEM; 1733 goto out_err; 1734 } 1735 } 1736 1737 get_online_cpus(); 1738 /* 1739 * Fire off all the required work handlers 1740 * We can't schedule on offline CPUs, but it's not necessary 1741 * since we can change their buffer sizes without any race. 1742 */ 1743 for_each_buffer_cpu(buffer, cpu) { 1744 cpu_buffer = buffer->buffers[cpu]; 1745 if (!cpu_buffer->nr_pages_to_update) 1746 continue; 1747 1748 /* Can't run something on an offline CPU. */ 1749 if (!cpu_online(cpu)) { 1750 rb_update_pages(cpu_buffer); 1751 cpu_buffer->nr_pages_to_update = 0; 1752 } else { 1753 schedule_work_on(cpu, 1754 &cpu_buffer->update_pages_work); 1755 } 1756 } 1757 1758 /* wait for all the updates to complete */ 1759 for_each_buffer_cpu(buffer, cpu) { 1760 cpu_buffer = buffer->buffers[cpu]; 1761 if (!cpu_buffer->nr_pages_to_update) 1762 continue; 1763 1764 if (cpu_online(cpu)) 1765 wait_for_completion(&cpu_buffer->update_done); 1766 cpu_buffer->nr_pages_to_update = 0; 1767 } 1768 1769 put_online_cpus(); 1770 } else { 1771 /* Make sure this CPU has been intitialized */ 1772 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1773 goto out; 1774 1775 cpu_buffer = buffer->buffers[cpu_id]; 1776 1777 if (nr_pages == cpu_buffer->nr_pages) 1778 goto out; 1779 1780 cpu_buffer->nr_pages_to_update = nr_pages - 1781 cpu_buffer->nr_pages; 1782 1783 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1784 if (cpu_buffer->nr_pages_to_update > 0 && 1785 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1786 &cpu_buffer->new_pages, cpu_id)) { 1787 err = -ENOMEM; 1788 goto out_err; 1789 } 1790 1791 get_online_cpus(); 1792 1793 /* Can't run something on an offline CPU. */ 1794 if (!cpu_online(cpu_id)) 1795 rb_update_pages(cpu_buffer); 1796 else { 1797 schedule_work_on(cpu_id, 1798 &cpu_buffer->update_pages_work); 1799 wait_for_completion(&cpu_buffer->update_done); 1800 } 1801 1802 cpu_buffer->nr_pages_to_update = 0; 1803 put_online_cpus(); 1804 } 1805 1806 out: 1807 /* 1808 * The ring buffer resize can happen with the ring buffer 1809 * enabled, so that the update disturbs the tracing as little 1810 * as possible. But if the buffer is disabled, we do not need 1811 * to worry about that, and we can take the time to verify 1812 * that the buffer is not corrupt. 1813 */ 1814 if (atomic_read(&buffer->record_disabled)) { 1815 atomic_inc(&buffer->record_disabled); 1816 /* 1817 * Even though the buffer was disabled, we must make sure 1818 * that it is truly disabled before calling rb_check_pages. 1819 * There could have been a race between checking 1820 * record_disable and incrementing it. 1821 */ 1822 synchronize_sched(); 1823 for_each_buffer_cpu(buffer, cpu) { 1824 cpu_buffer = buffer->buffers[cpu]; 1825 rb_check_pages(cpu_buffer); 1826 } 1827 atomic_dec(&buffer->record_disabled); 1828 } 1829 1830 mutex_unlock(&buffer->mutex); 1831 return size; 1832 1833 out_err: 1834 for_each_buffer_cpu(buffer, cpu) { 1835 struct buffer_page *bpage, *tmp; 1836 1837 cpu_buffer = buffer->buffers[cpu]; 1838 cpu_buffer->nr_pages_to_update = 0; 1839 1840 if (list_empty(&cpu_buffer->new_pages)) 1841 continue; 1842 1843 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1844 list) { 1845 list_del_init(&bpage->list); 1846 free_buffer_page(bpage); 1847 } 1848 } 1849 mutex_unlock(&buffer->mutex); 1850 return err; 1851} 1852EXPORT_SYMBOL_GPL(ring_buffer_resize); 1853 1854void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1855{ 1856 mutex_lock(&buffer->mutex); 1857 if (val) 1858 buffer->flags |= RB_FL_OVERWRITE; 1859 else 1860 buffer->flags &= ~RB_FL_OVERWRITE; 1861 mutex_unlock(&buffer->mutex); 1862} 1863EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1864 1865static inline void * 1866__rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1867{ 1868 return bpage->data + index; 1869} 1870 1871static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1872{ 1873 return bpage->page->data + index; 1874} 1875 1876static inline struct ring_buffer_event * 1877rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1878{ 1879 return __rb_page_index(cpu_buffer->reader_page, 1880 cpu_buffer->reader_page->read); 1881} 1882 1883static inline struct ring_buffer_event * 1884rb_iter_head_event(struct ring_buffer_iter *iter) 1885{ 1886 return __rb_page_index(iter->head_page, iter->head); 1887} 1888 1889static inline unsigned rb_page_commit(struct buffer_page *bpage) 1890{ 1891 return local_read(&bpage->page->commit); 1892} 1893 1894/* Size is determined by what has been committed */ 1895static inline unsigned rb_page_size(struct buffer_page *bpage) 1896{ 1897 return rb_page_commit(bpage); 1898} 1899 1900static inline unsigned 1901rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1902{ 1903 return rb_page_commit(cpu_buffer->commit_page); 1904} 1905 1906static inline unsigned 1907rb_event_index(struct ring_buffer_event *event) 1908{ 1909 unsigned long addr = (unsigned long)event; 1910 1911 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1912} 1913 1914static inline int 1915rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1916 struct ring_buffer_event *event) 1917{ 1918 unsigned long addr = (unsigned long)event; 1919 unsigned long index; 1920 1921 index = rb_event_index(event); 1922 addr &= PAGE_MASK; 1923 1924 return cpu_buffer->commit_page->page == (void *)addr && 1925 rb_commit_index(cpu_buffer) == index; 1926} 1927 1928static void 1929rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1930{ 1931 unsigned long max_count; 1932 1933 /* 1934 * We only race with interrupts and NMIs on this CPU. 1935 * If we own the commit event, then we can commit 1936 * all others that interrupted us, since the interruptions 1937 * are in stack format (they finish before they come 1938 * back to us). This allows us to do a simple loop to 1939 * assign the commit to the tail. 1940 */ 1941 again: 1942 max_count = cpu_buffer->nr_pages * 100; 1943 1944 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1945 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1946 return; 1947 if (RB_WARN_ON(cpu_buffer, 1948 rb_is_reader_page(cpu_buffer->tail_page))) 1949 return; 1950 local_set(&cpu_buffer->commit_page->page->commit, 1951 rb_page_write(cpu_buffer->commit_page)); 1952 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1953 cpu_buffer->write_stamp = 1954 cpu_buffer->commit_page->page->time_stamp; 1955 /* add barrier to keep gcc from optimizing too much */ 1956 barrier(); 1957 } 1958 while (rb_commit_index(cpu_buffer) != 1959 rb_page_write(cpu_buffer->commit_page)) { 1960 1961 local_set(&cpu_buffer->commit_page->page->commit, 1962 rb_page_write(cpu_buffer->commit_page)); 1963 RB_WARN_ON(cpu_buffer, 1964 local_read(&cpu_buffer->commit_page->page->commit) & 1965 ~RB_WRITE_MASK); 1966 barrier(); 1967 } 1968 1969 /* again, keep gcc from optimizing */ 1970 barrier(); 1971 1972 /* 1973 * If an interrupt came in just after the first while loop 1974 * and pushed the tail page forward, we will be left with 1975 * a dangling commit that will never go forward. 1976 */ 1977 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1978 goto again; 1979} 1980 1981static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1982{ 1983 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1984 cpu_buffer->reader_page->read = 0; 1985} 1986 1987static void rb_inc_iter(struct ring_buffer_iter *iter) 1988{ 1989 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1990 1991 /* 1992 * The iterator could be on the reader page (it starts there). 1993 * But the head could have moved, since the reader was 1994 * found. Check for this case and assign the iterator 1995 * to the head page instead of next. 1996 */ 1997 if (iter->head_page == cpu_buffer->reader_page) 1998 iter->head_page = rb_set_head_page(cpu_buffer); 1999 else 2000 rb_inc_page(cpu_buffer, &iter->head_page); 2001 2002 iter->read_stamp = iter->head_page->page->time_stamp; 2003 iter->head = 0; 2004} 2005 2006/* Slow path, do not inline */ 2007static noinline struct ring_buffer_event * 2008rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2009{ 2010 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2011 2012 /* Not the first event on the page? */ 2013 if (rb_event_index(event)) { 2014 event->time_delta = delta & TS_MASK; 2015 event->array[0] = delta >> TS_SHIFT; 2016 } else { 2017 /* nope, just zero it */ 2018 event->time_delta = 0; 2019 event->array[0] = 0; 2020 } 2021 2022 return skip_time_extend(event); 2023} 2024 2025/** 2026 * rb_update_event - update event type and data 2027 * @event: the event to update 2028 * @type: the type of event 2029 * @length: the size of the event field in the ring buffer 2030 * 2031 * Update the type and data fields of the event. The length 2032 * is the actual size that is written to the ring buffer, 2033 * and with this, we can determine what to place into the 2034 * data field. 2035 */ 2036static void 2037rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2038 struct ring_buffer_event *event, unsigned length, 2039 int add_timestamp, u64 delta) 2040{ 2041 /* Only a commit updates the timestamp */ 2042 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2043 delta = 0; 2044 2045 /* 2046 * If we need to add a timestamp, then we 2047 * add it to the start of the resevered space. 2048 */ 2049 if (unlikely(add_timestamp)) { 2050 event = rb_add_time_stamp(event, delta); 2051 length -= RB_LEN_TIME_EXTEND; 2052 delta = 0; 2053 } 2054 2055 event->time_delta = delta; 2056 length -= RB_EVNT_HDR_SIZE; 2057 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2058 event->type_len = 0; 2059 event->array[0] = length; 2060 } else 2061 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2062} 2063 2064/* 2065 * rb_handle_head_page - writer hit the head page 2066 * 2067 * Returns: +1 to retry page 2068 * 0 to continue 2069 * -1 on error 2070 */ 2071static int 2072rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2073 struct buffer_page *tail_page, 2074 struct buffer_page *next_page) 2075{ 2076 struct buffer_page *new_head; 2077 int entries; 2078 int type; 2079 int ret; 2080 2081 entries = rb_page_entries(next_page); 2082 2083 /* 2084 * The hard part is here. We need to move the head 2085 * forward, and protect against both readers on 2086 * other CPUs and writers coming in via interrupts. 2087 */ 2088 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2089 RB_PAGE_HEAD); 2090 2091 /* 2092 * type can be one of four: 2093 * NORMAL - an interrupt already moved it for us 2094 * HEAD - we are the first to get here. 2095 * UPDATE - we are the interrupt interrupting 2096 * a current move. 2097 * MOVED - a reader on another CPU moved the next 2098 * pointer to its reader page. Give up 2099 * and try again. 2100 */ 2101 2102 switch (type) { 2103 case RB_PAGE_HEAD: 2104 /* 2105 * We changed the head to UPDATE, thus 2106 * it is our responsibility to update 2107 * the counters. 2108 */ 2109 local_add(entries, &cpu_buffer->overrun); 2110 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2111 2112 /* 2113 * The entries will be zeroed out when we move the 2114 * tail page. 2115 */ 2116 2117 /* still more to do */ 2118 break; 2119 2120 case RB_PAGE_UPDATE: 2121 /* 2122 * This is an interrupt that interrupt the 2123 * previous update. Still more to do. 2124 */ 2125 break; 2126 case RB_PAGE_NORMAL: 2127 /* 2128 * An interrupt came in before the update 2129 * and processed this for us. 2130 * Nothing left to do. 2131 */ 2132 return 1; 2133 case RB_PAGE_MOVED: 2134 /* 2135 * The reader is on another CPU and just did 2136 * a swap with our next_page. 2137 * Try again. 2138 */ 2139 return 1; 2140 default: 2141 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2142 return -1; 2143 } 2144 2145 /* 2146 * Now that we are here, the old head pointer is 2147 * set to UPDATE. This will keep the reader from 2148 * swapping the head page with the reader page. 2149 * The reader (on another CPU) will spin till 2150 * we are finished. 2151 * 2152 * We just need to protect against interrupts 2153 * doing the job. We will set the next pointer 2154 * to HEAD. After that, we set the old pointer 2155 * to NORMAL, but only if it was HEAD before. 2156 * otherwise we are an interrupt, and only 2157 * want the outer most commit to reset it. 2158 */ 2159 new_head = next_page; 2160 rb_inc_page(cpu_buffer, &new_head); 2161 2162 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2163 RB_PAGE_NORMAL); 2164 2165 /* 2166 * Valid returns are: 2167 * HEAD - an interrupt came in and already set it. 2168 * NORMAL - One of two things: 2169 * 1) We really set it. 2170 * 2) A bunch of interrupts came in and moved 2171 * the page forward again. 2172 */ 2173 switch (ret) { 2174 case RB_PAGE_HEAD: 2175 case RB_PAGE_NORMAL: 2176 /* OK */ 2177 break; 2178 default: 2179 RB_WARN_ON(cpu_buffer, 1); 2180 return -1; 2181 } 2182 2183 /* 2184 * It is possible that an interrupt came in, 2185 * set the head up, then more interrupts came in 2186 * and moved it again. When we get back here, 2187 * the page would have been set to NORMAL but we 2188 * just set it back to HEAD. 2189 * 2190 * How do you detect this? Well, if that happened 2191 * the tail page would have moved. 2192 */ 2193 if (ret == RB_PAGE_NORMAL) { 2194 /* 2195 * If the tail had moved passed next, then we need 2196 * to reset the pointer. 2197 */ 2198 if (cpu_buffer->tail_page != tail_page && 2199 cpu_buffer->tail_page != next_page) 2200 rb_head_page_set_normal(cpu_buffer, new_head, 2201 next_page, 2202 RB_PAGE_HEAD); 2203 } 2204 2205 /* 2206 * If this was the outer most commit (the one that 2207 * changed the original pointer from HEAD to UPDATE), 2208 * then it is up to us to reset it to NORMAL. 2209 */ 2210 if (type == RB_PAGE_HEAD) { 2211 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2212 tail_page, 2213 RB_PAGE_UPDATE); 2214 if (RB_WARN_ON(cpu_buffer, 2215 ret != RB_PAGE_UPDATE)) 2216 return -1; 2217 } 2218 2219 return 0; 2220} 2221 2222static unsigned rb_calculate_event_length(unsigned length) 2223{ 2224 struct ring_buffer_event event; /* Used only for sizeof array */ 2225 2226 /* zero length can cause confusions */ 2227 if (!length) 2228 length = 1; 2229 2230 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2231 length += sizeof(event.array[0]); 2232 2233 length += RB_EVNT_HDR_SIZE; 2234 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2235 2236 return length; 2237} 2238 2239static inline void 2240rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2241 struct buffer_page *tail_page, 2242 unsigned long tail, unsigned long length) 2243{ 2244 struct ring_buffer_event *event; 2245 2246 /* 2247 * Only the event that crossed the page boundary 2248 * must fill the old tail_page with padding. 2249 */ 2250 if (tail >= BUF_PAGE_SIZE) { 2251 /* 2252 * If the page was filled, then we still need 2253 * to update the real_end. Reset it to zero 2254 * and the reader will ignore it. 2255 */ 2256 if (tail == BUF_PAGE_SIZE) 2257 tail_page->real_end = 0; 2258 2259 local_sub(length, &tail_page->write); 2260 return; 2261 } 2262 2263 event = __rb_page_index(tail_page, tail); 2264 kmemcheck_annotate_bitfield(event, bitfield); 2265 2266 /* account for padding bytes */ 2267 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2268 2269 /* 2270 * Save the original length to the meta data. 2271 * This will be used by the reader to add lost event 2272 * counter. 2273 */ 2274 tail_page->real_end = tail; 2275 2276 /* 2277 * If this event is bigger than the minimum size, then 2278 * we need to be careful that we don't subtract the 2279 * write counter enough to allow another writer to slip 2280 * in on this page. 2281 * We put in a discarded commit instead, to make sure 2282 * that this space is not used again. 2283 * 2284 * If we are less than the minimum size, we don't need to 2285 * worry about it. 2286 */ 2287 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2288 /* No room for any events */ 2289 2290 /* Mark the rest of the page with padding */ 2291 rb_event_set_padding(event); 2292 2293 /* Set the write back to the previous setting */ 2294 local_sub(length, &tail_page->write); 2295 return; 2296 } 2297 2298 /* Put in a discarded event */ 2299 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2300 event->type_len = RINGBUF_TYPE_PADDING; 2301 /* time delta must be non zero */ 2302 event->time_delta = 1; 2303 2304 /* Set write to end of buffer */ 2305 length = (tail + length) - BUF_PAGE_SIZE; 2306 local_sub(length, &tail_page->write); 2307} 2308 2309/* 2310 * This is the slow path, force gcc not to inline it. 2311 */ 2312static noinline struct ring_buffer_event * 2313rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2314 unsigned long length, unsigned long tail, 2315 struct buffer_page *tail_page, u64 ts) 2316{ 2317 struct buffer_page *commit_page = cpu_buffer->commit_page; 2318 struct ring_buffer *buffer = cpu_buffer->buffer; 2319 struct buffer_page *next_page; 2320 int ret; 2321 2322 next_page = tail_page; 2323 2324 rb_inc_page(cpu_buffer, &next_page); 2325 2326 /* 2327 * If for some reason, we had an interrupt storm that made 2328 * it all the way around the buffer, bail, and warn 2329 * about it. 2330 */ 2331 if (unlikely(next_page == commit_page)) { 2332 local_inc(&cpu_buffer->commit_overrun); 2333 goto out_reset; 2334 } 2335 2336 /* 2337 * This is where the fun begins! 2338 * 2339 * We are fighting against races between a reader that 2340 * could be on another CPU trying to swap its reader 2341 * page with the buffer head. 2342 * 2343 * We are also fighting against interrupts coming in and 2344 * moving the head or tail on us as well. 2345 * 2346 * If the next page is the head page then we have filled 2347 * the buffer, unless the commit page is still on the 2348 * reader page. 2349 */ 2350 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2351 2352 /* 2353 * If the commit is not on the reader page, then 2354 * move the header page. 2355 */ 2356 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2357 /* 2358 * If we are not in overwrite mode, 2359 * this is easy, just stop here. 2360 */ 2361 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2362 local_inc(&cpu_buffer->dropped_events); 2363 goto out_reset; 2364 } 2365 2366 ret = rb_handle_head_page(cpu_buffer, 2367 tail_page, 2368 next_page); 2369 if (ret < 0) 2370 goto out_reset; 2371 if (ret) 2372 goto out_again; 2373 } else { 2374 /* 2375 * We need to be careful here too. The 2376 * commit page could still be on the reader 2377 * page. We could have a small buffer, and 2378 * have filled up the buffer with events 2379 * from interrupts and such, and wrapped. 2380 * 2381 * Note, if the tail page is also the on the 2382 * reader_page, we let it move out. 2383 */ 2384 if (unlikely((cpu_buffer->commit_page != 2385 cpu_buffer->tail_page) && 2386 (cpu_buffer->commit_page == 2387 cpu_buffer->reader_page))) { 2388 local_inc(&cpu_buffer->commit_overrun); 2389 goto out_reset; 2390 } 2391 } 2392 } 2393 2394 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2395 if (ret) { 2396 /* 2397 * Nested commits always have zero deltas, so 2398 * just reread the time stamp 2399 */ 2400 ts = rb_time_stamp(buffer); 2401 next_page->page->time_stamp = ts; 2402 } 2403 2404 out_again: 2405 2406 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2407 2408 /* fail and let the caller try again */ 2409 return ERR_PTR(-EAGAIN); 2410 2411 out_reset: 2412 /* reset write */ 2413 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2414 2415 return NULL; 2416} 2417 2418static struct ring_buffer_event * 2419__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2420 unsigned long length, u64 ts, 2421 u64 delta, int add_timestamp) 2422{ 2423 struct buffer_page *tail_page; 2424 struct ring_buffer_event *event; 2425 unsigned long tail, write; 2426 2427 /* 2428 * If the time delta since the last event is too big to 2429 * hold in the time field of the event, then we append a 2430 * TIME EXTEND event ahead of the data event. 2431 */ 2432 if (unlikely(add_timestamp)) 2433 length += RB_LEN_TIME_EXTEND; 2434 2435 tail_page = cpu_buffer->tail_page; 2436 write = local_add_return(length, &tail_page->write); 2437 2438 /* set write to only the index of the write */ 2439 write &= RB_WRITE_MASK; 2440 tail = write - length; 2441 2442 /* 2443 * If this is the first commit on the page, then it has the same 2444 * timestamp as the page itself. 2445 */ 2446 if (!tail) 2447 delta = 0; 2448 2449 /* See if we shot pass the end of this buffer page */ 2450 if (unlikely(write > BUF_PAGE_SIZE)) 2451 return rb_move_tail(cpu_buffer, length, tail, 2452 tail_page, ts); 2453 2454 /* We reserved something on the buffer */ 2455 2456 event = __rb_page_index(tail_page, tail); 2457 kmemcheck_annotate_bitfield(event, bitfield); 2458 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2459 2460 local_inc(&tail_page->entries); 2461 2462 /* 2463 * If this is the first commit on the page, then update 2464 * its timestamp. 2465 */ 2466 if (!tail) 2467 tail_page->page->time_stamp = ts; 2468 2469 /* account for these added bytes */ 2470 local_add(length, &cpu_buffer->entries_bytes); 2471 2472 return event; 2473} 2474 2475static inline int 2476rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2477 struct ring_buffer_event *event) 2478{ 2479 unsigned long new_index, old_index; 2480 struct buffer_page *bpage; 2481 unsigned long index; 2482 unsigned long addr; 2483 2484 new_index = rb_event_index(event); 2485 old_index = new_index + rb_event_ts_length(event); 2486 addr = (unsigned long)event; 2487 addr &= PAGE_MASK; 2488 2489 bpage = cpu_buffer->tail_page; 2490 2491 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2492 unsigned long write_mask = 2493 local_read(&bpage->write) & ~RB_WRITE_MASK; 2494 unsigned long event_length = rb_event_length(event); 2495 /* 2496 * This is on the tail page. It is possible that 2497 * a write could come in and move the tail page 2498 * and write to the next page. That is fine 2499 * because we just shorten what is on this page. 2500 */ 2501 old_index += write_mask; 2502 new_index += write_mask; 2503 index = local_cmpxchg(&bpage->write, old_index, new_index); 2504 if (index == old_index) { 2505 /* update counters */ 2506 local_sub(event_length, &cpu_buffer->entries_bytes); 2507 return 1; 2508 } 2509 } 2510 2511 /* could not discard */ 2512 return 0; 2513} 2514 2515static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2516{ 2517 local_inc(&cpu_buffer->committing); 2518 local_inc(&cpu_buffer->commits); 2519} 2520 2521static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2522{ 2523 unsigned long commits; 2524 2525 if (RB_WARN_ON(cpu_buffer, 2526 !local_read(&cpu_buffer->committing))) 2527 return; 2528 2529 again: 2530 commits = local_read(&cpu_buffer->commits); 2531 /* synchronize with interrupts */ 2532 barrier(); 2533 if (local_read(&cpu_buffer->committing) == 1) 2534 rb_set_commit_to_write(cpu_buffer); 2535 2536 local_dec(&cpu_buffer->committing); 2537 2538 /* synchronize with interrupts */ 2539 barrier(); 2540 2541 /* 2542 * Need to account for interrupts coming in between the 2543 * updating of the commit page and the clearing of the 2544 * committing counter. 2545 */ 2546 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2547 !local_read(&cpu_buffer->committing)) { 2548 local_inc(&cpu_buffer->committing); 2549 goto again; 2550 } 2551} 2552 2553static struct ring_buffer_event * 2554rb_reserve_next_event(struct ring_buffer *buffer, 2555 struct ring_buffer_per_cpu *cpu_buffer, 2556 unsigned long length) 2557{ 2558 struct ring_buffer_event *event; 2559 u64 ts, delta; 2560 int nr_loops = 0; 2561 int add_timestamp; 2562 u64 diff; 2563 2564 rb_start_commit(cpu_buffer); 2565 2566#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2567 /* 2568 * Due to the ability to swap a cpu buffer from a buffer 2569 * it is possible it was swapped before we committed. 2570 * (committing stops a swap). We check for it here and 2571 * if it happened, we have to fail the write. 2572 */ 2573 barrier(); 2574 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2575 local_dec(&cpu_buffer->committing); 2576 local_dec(&cpu_buffer->commits); 2577 return NULL; 2578 } 2579#endif 2580 2581 length = rb_calculate_event_length(length); 2582 again: 2583 add_timestamp = 0; 2584 delta = 0; 2585 2586 /* 2587 * We allow for interrupts to reenter here and do a trace. 2588 * If one does, it will cause this original code to loop 2589 * back here. Even with heavy interrupts happening, this 2590 * should only happen a few times in a row. If this happens 2591 * 1000 times in a row, there must be either an interrupt 2592 * storm or we have something buggy. 2593 * Bail! 2594 */ 2595 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2596 goto out_fail; 2597 2598 ts = rb_time_stamp(cpu_buffer->buffer); 2599 diff = ts - cpu_buffer->write_stamp; 2600 2601 /* make sure this diff is calculated here */ 2602 barrier(); 2603 2604 /* Did the write stamp get updated already? */ 2605 if (likely(ts >= cpu_buffer->write_stamp)) { 2606 delta = diff; 2607 if (unlikely(test_time_stamp(delta))) { 2608 int local_clock_stable = 1; 2609#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2610 local_clock_stable = sched_clock_stable(); 2611#endif 2612 WARN_ONCE(delta > (1ULL << 59), 2613 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2614 (unsigned long long)delta, 2615 (unsigned long long)ts, 2616 (unsigned long long)cpu_buffer->write_stamp, 2617 local_clock_stable ? "" : 2618 "If you just came from a suspend/resume,\n" 2619 "please switch to the trace global clock:\n" 2620 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2621 add_timestamp = 1; 2622 } 2623 } 2624 2625 event = __rb_reserve_next(cpu_buffer, length, ts, 2626 delta, add_timestamp); 2627 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2628 goto again; 2629 2630 if (!event) 2631 goto out_fail; 2632 2633 return event; 2634 2635 out_fail: 2636 rb_end_commit(cpu_buffer); 2637 return NULL; 2638} 2639 2640#ifdef CONFIG_TRACING 2641 2642/* 2643 * The lock and unlock are done within a preempt disable section. 2644 * The current_context per_cpu variable can only be modified 2645 * by the current task between lock and unlock. But it can 2646 * be modified more than once via an interrupt. To pass this 2647 * information from the lock to the unlock without having to 2648 * access the 'in_interrupt()' functions again (which do show 2649 * a bit of overhead in something as critical as function tracing, 2650 * we use a bitmask trick. 2651 * 2652 * bit 0 = NMI context 2653 * bit 1 = IRQ context 2654 * bit 2 = SoftIRQ context 2655 * bit 3 = normal context. 2656 * 2657 * This works because this is the order of contexts that can 2658 * preempt other contexts. A SoftIRQ never preempts an IRQ 2659 * context. 2660 * 2661 * When the context is determined, the corresponding bit is 2662 * checked and set (if it was set, then a recursion of that context 2663 * happened). 2664 * 2665 * On unlock, we need to clear this bit. To do so, just subtract 2666 * 1 from the current_context and AND it to itself. 2667 * 2668 * (binary) 2669 * 101 - 1 = 100 2670 * 101 & 100 = 100 (clearing bit zero) 2671 * 2672 * 1010 - 1 = 1001 2673 * 1010 & 1001 = 1000 (clearing bit 1) 2674 * 2675 * The least significant bit can be cleared this way, and it 2676 * just so happens that it is the same bit corresponding to 2677 * the current context. 2678 */ 2679 2680static __always_inline int 2681trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2682{ 2683 unsigned int val = cpu_buffer->current_context; 2684 int bit; 2685 2686 if (in_interrupt()) { 2687 if (in_nmi()) 2688 bit = 0; 2689 else if (in_irq()) 2690 bit = 1; 2691 else 2692 bit = 2; 2693 } else 2694 bit = 3; 2695 2696 if (unlikely(val & (1 << bit))) 2697 return 1; 2698 2699 val |= (1 << bit); 2700 cpu_buffer->current_context = val; 2701 2702 return 0; 2703} 2704 2705static __always_inline void 2706trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2707{ 2708 cpu_buffer->current_context &= cpu_buffer->current_context - 1; 2709} 2710 2711#else 2712 2713#define trace_recursive_lock(cpu_buffer) (0) 2714#define trace_recursive_unlock(cpu_buffer) do { } while (0) 2715 2716#endif 2717 2718/** 2719 * ring_buffer_lock_reserve - reserve a part of the buffer 2720 * @buffer: the ring buffer to reserve from 2721 * @length: the length of the data to reserve (excluding event header) 2722 * 2723 * Returns a reseverd event on the ring buffer to copy directly to. 2724 * The user of this interface will need to get the body to write into 2725 * and can use the ring_buffer_event_data() interface. 2726 * 2727 * The length is the length of the data needed, not the event length 2728 * which also includes the event header. 2729 * 2730 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2731 * If NULL is returned, then nothing has been allocated or locked. 2732 */ 2733struct ring_buffer_event * 2734ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2735{ 2736 struct ring_buffer_per_cpu *cpu_buffer; 2737 struct ring_buffer_event *event; 2738 int cpu; 2739 2740 if (ring_buffer_flags != RB_BUFFERS_ON) 2741 return NULL; 2742 2743 /* If we are tracing schedule, we don't want to recurse */ 2744 preempt_disable_notrace(); 2745 2746 if (unlikely(atomic_read(&buffer->record_disabled))) 2747 goto out; 2748 2749 cpu = raw_smp_processor_id(); 2750 2751 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2752 goto out; 2753 2754 cpu_buffer = buffer->buffers[cpu]; 2755 2756 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2757 goto out; 2758 2759 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2760 goto out; 2761 2762 if (unlikely(trace_recursive_lock(cpu_buffer))) 2763 goto out; 2764 2765 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2766 if (!event) 2767 goto out_unlock; 2768 2769 return event; 2770 2771 out_unlock: 2772 trace_recursive_unlock(cpu_buffer); 2773 out: 2774 preempt_enable_notrace(); 2775 return NULL; 2776} 2777EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2778 2779static void 2780rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2781 struct ring_buffer_event *event) 2782{ 2783 u64 delta; 2784 2785 /* 2786 * The event first in the commit queue updates the 2787 * time stamp. 2788 */ 2789 if (rb_event_is_commit(cpu_buffer, event)) { 2790 /* 2791 * A commit event that is first on a page 2792 * updates the write timestamp with the page stamp 2793 */ 2794 if (!rb_event_index(event)) 2795 cpu_buffer->write_stamp = 2796 cpu_buffer->commit_page->page->time_stamp; 2797 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2798 delta = event->array[0]; 2799 delta <<= TS_SHIFT; 2800 delta += event->time_delta; 2801 cpu_buffer->write_stamp += delta; 2802 } else 2803 cpu_buffer->write_stamp += event->time_delta; 2804 } 2805} 2806 2807static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2808 struct ring_buffer_event *event) 2809{ 2810 local_inc(&cpu_buffer->entries); 2811 rb_update_write_stamp(cpu_buffer, event); 2812 rb_end_commit(cpu_buffer); 2813} 2814 2815static __always_inline void 2816rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2817{ 2818 bool pagebusy; 2819 2820 if (buffer->irq_work.waiters_pending) { 2821 buffer->irq_work.waiters_pending = false; 2822 /* irq_work_queue() supplies it's own memory barriers */ 2823 irq_work_queue(&buffer->irq_work.work); 2824 } 2825 2826 if (cpu_buffer->irq_work.waiters_pending) { 2827 cpu_buffer->irq_work.waiters_pending = false; 2828 /* irq_work_queue() supplies it's own memory barriers */ 2829 irq_work_queue(&cpu_buffer->irq_work.work); 2830 } 2831 2832 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2833 2834 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2835 cpu_buffer->irq_work.wakeup_full = true; 2836 cpu_buffer->irq_work.full_waiters_pending = false; 2837 /* irq_work_queue() supplies it's own memory barriers */ 2838 irq_work_queue(&cpu_buffer->irq_work.work); 2839 } 2840} 2841 2842/** 2843 * ring_buffer_unlock_commit - commit a reserved 2844 * @buffer: The buffer to commit to 2845 * @event: The event pointer to commit. 2846 * 2847 * This commits the data to the ring buffer, and releases any locks held. 2848 * 2849 * Must be paired with ring_buffer_lock_reserve. 2850 */ 2851int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2852 struct ring_buffer_event *event) 2853{ 2854 struct ring_buffer_per_cpu *cpu_buffer; 2855 int cpu = raw_smp_processor_id(); 2856 2857 cpu_buffer = buffer->buffers[cpu]; 2858 2859 rb_commit(cpu_buffer, event); 2860 2861 rb_wakeups(buffer, cpu_buffer); 2862 2863 trace_recursive_unlock(cpu_buffer); 2864 2865 preempt_enable_notrace(); 2866 2867 return 0; 2868} 2869EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2870 2871static inline void rb_event_discard(struct ring_buffer_event *event) 2872{ 2873 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2874 event = skip_time_extend(event); 2875 2876 /* array[0] holds the actual length for the discarded event */ 2877 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2878 event->type_len = RINGBUF_TYPE_PADDING; 2879 /* time delta must be non zero */ 2880 if (!event->time_delta) 2881 event->time_delta = 1; 2882} 2883 2884/* 2885 * Decrement the entries to the page that an event is on. 2886 * The event does not even need to exist, only the pointer 2887 * to the page it is on. This may only be called before the commit 2888 * takes place. 2889 */ 2890static inline void 2891rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2892 struct ring_buffer_event *event) 2893{ 2894 unsigned long addr = (unsigned long)event; 2895 struct buffer_page *bpage = cpu_buffer->commit_page; 2896 struct buffer_page *start; 2897 2898 addr &= PAGE_MASK; 2899 2900 /* Do the likely case first */ 2901 if (likely(bpage->page == (void *)addr)) { 2902 local_dec(&bpage->entries); 2903 return; 2904 } 2905 2906 /* 2907 * Because the commit page may be on the reader page we 2908 * start with the next page and check the end loop there. 2909 */ 2910 rb_inc_page(cpu_buffer, &bpage); 2911 start = bpage; 2912 do { 2913 if (bpage->page == (void *)addr) { 2914 local_dec(&bpage->entries); 2915 return; 2916 } 2917 rb_inc_page(cpu_buffer, &bpage); 2918 } while (bpage != start); 2919 2920 /* commit not part of this buffer?? */ 2921 RB_WARN_ON(cpu_buffer, 1); 2922} 2923 2924/** 2925 * ring_buffer_commit_discard - discard an event that has not been committed 2926 * @buffer: the ring buffer 2927 * @event: non committed event to discard 2928 * 2929 * Sometimes an event that is in the ring buffer needs to be ignored. 2930 * This function lets the user discard an event in the ring buffer 2931 * and then that event will not be read later. 2932 * 2933 * This function only works if it is called before the the item has been 2934 * committed. It will try to free the event from the ring buffer 2935 * if another event has not been added behind it. 2936 * 2937 * If another event has been added behind it, it will set the event 2938 * up as discarded, and perform the commit. 2939 * 2940 * If this function is called, do not call ring_buffer_unlock_commit on 2941 * the event. 2942 */ 2943void ring_buffer_discard_commit(struct ring_buffer *buffer, 2944 struct ring_buffer_event *event) 2945{ 2946 struct ring_buffer_per_cpu *cpu_buffer; 2947 int cpu; 2948 2949 /* The event is discarded regardless */ 2950 rb_event_discard(event); 2951 2952 cpu = smp_processor_id(); 2953 cpu_buffer = buffer->buffers[cpu]; 2954 2955 /* 2956 * This must only be called if the event has not been 2957 * committed yet. Thus we can assume that preemption 2958 * is still disabled. 2959 */ 2960 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2961 2962 rb_decrement_entry(cpu_buffer, event); 2963 if (rb_try_to_discard(cpu_buffer, event)) 2964 goto out; 2965 2966 /* 2967 * The commit is still visible by the reader, so we 2968 * must still update the timestamp. 2969 */ 2970 rb_update_write_stamp(cpu_buffer, event); 2971 out: 2972 rb_end_commit(cpu_buffer); 2973 2974 trace_recursive_unlock(cpu_buffer); 2975 2976 preempt_enable_notrace(); 2977 2978} 2979EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2980 2981/** 2982 * ring_buffer_write - write data to the buffer without reserving 2983 * @buffer: The ring buffer to write to. 2984 * @length: The length of the data being written (excluding the event header) 2985 * @data: The data to write to the buffer. 2986 * 2987 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2988 * one function. If you already have the data to write to the buffer, it 2989 * may be easier to simply call this function. 2990 * 2991 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2992 * and not the length of the event which would hold the header. 2993 */ 2994int ring_buffer_write(struct ring_buffer *buffer, 2995 unsigned long length, 2996 void *data) 2997{ 2998 struct ring_buffer_per_cpu *cpu_buffer; 2999 struct ring_buffer_event *event; 3000 void *body; 3001 int ret = -EBUSY; 3002 int cpu; 3003 3004 if (ring_buffer_flags != RB_BUFFERS_ON) 3005 return -EBUSY; 3006 3007 preempt_disable_notrace(); 3008 3009 if (atomic_read(&buffer->record_disabled)) 3010 goto out; 3011 3012 cpu = raw_smp_processor_id(); 3013 3014 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3015 goto out; 3016 3017 cpu_buffer = buffer->buffers[cpu]; 3018 3019 if (atomic_read(&cpu_buffer->record_disabled)) 3020 goto out; 3021 3022 if (length > BUF_MAX_DATA_SIZE) 3023 goto out; 3024 3025 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3026 if (!event) 3027 goto out; 3028 3029 body = rb_event_data(event); 3030 3031 memcpy(body, data, length); 3032 3033 rb_commit(cpu_buffer, event); 3034 3035 rb_wakeups(buffer, cpu_buffer); 3036 3037 ret = 0; 3038 out: 3039 preempt_enable_notrace(); 3040 3041 return ret; 3042} 3043EXPORT_SYMBOL_GPL(ring_buffer_write); 3044 3045static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3046{ 3047 struct buffer_page *reader = cpu_buffer->reader_page; 3048 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3049 struct buffer_page *commit = cpu_buffer->commit_page; 3050 3051 /* In case of error, head will be NULL */ 3052 if (unlikely(!head)) 3053 return 1; 3054 3055 return reader->read == rb_page_commit(reader) && 3056 (commit == reader || 3057 (commit == head && 3058 head->read == rb_page_commit(commit))); 3059} 3060 3061/** 3062 * ring_buffer_record_disable - stop all writes into the buffer 3063 * @buffer: The ring buffer to stop writes to. 3064 * 3065 * This prevents all writes to the buffer. Any attempt to write 3066 * to the buffer after this will fail and return NULL. 3067 * 3068 * The caller should call synchronize_sched() after this. 3069 */ 3070void ring_buffer_record_disable(struct ring_buffer *buffer) 3071{ 3072 atomic_inc(&buffer->record_disabled); 3073} 3074EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3075 3076/** 3077 * ring_buffer_record_enable - enable writes to the buffer 3078 * @buffer: The ring buffer to enable writes 3079 * 3080 * Note, multiple disables will need the same number of enables 3081 * to truly enable the writing (much like preempt_disable). 3082 */ 3083void ring_buffer_record_enable(struct ring_buffer *buffer) 3084{ 3085 atomic_dec(&buffer->record_disabled); 3086} 3087EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3088 3089/** 3090 * ring_buffer_record_off - stop all writes into the buffer 3091 * @buffer: The ring buffer to stop writes to. 3092 * 3093 * This prevents all writes to the buffer. Any attempt to write 3094 * to the buffer after this will fail and return NULL. 3095 * 3096 * This is different than ring_buffer_record_disable() as 3097 * it works like an on/off switch, where as the disable() version 3098 * must be paired with a enable(). 3099 */ 3100void ring_buffer_record_off(struct ring_buffer *buffer) 3101{ 3102 unsigned int rd; 3103 unsigned int new_rd; 3104 3105 do { 3106 rd = atomic_read(&buffer->record_disabled); 3107 new_rd = rd | RB_BUFFER_OFF; 3108 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3109} 3110EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3111 3112/** 3113 * ring_buffer_record_on - restart writes into the buffer 3114 * @buffer: The ring buffer to start writes to. 3115 * 3116 * This enables all writes to the buffer that was disabled by 3117 * ring_buffer_record_off(). 3118 * 3119 * This is different than ring_buffer_record_enable() as 3120 * it works like an on/off switch, where as the enable() version 3121 * must be paired with a disable(). 3122 */ 3123void ring_buffer_record_on(struct ring_buffer *buffer) 3124{ 3125 unsigned int rd; 3126 unsigned int new_rd; 3127 3128 do { 3129 rd = atomic_read(&buffer->record_disabled); 3130 new_rd = rd & ~RB_BUFFER_OFF; 3131 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3132} 3133EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3134 3135/** 3136 * ring_buffer_record_is_on - return true if the ring buffer can write 3137 * @buffer: The ring buffer to see if write is enabled 3138 * 3139 * Returns true if the ring buffer is in a state that it accepts writes. 3140 */ 3141int ring_buffer_record_is_on(struct ring_buffer *buffer) 3142{ 3143 return !atomic_read(&buffer->record_disabled); 3144} 3145 3146/** 3147 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3148 * @buffer: The ring buffer to stop writes to. 3149 * @cpu: The CPU buffer to stop 3150 * 3151 * This prevents all writes to the buffer. Any attempt to write 3152 * to the buffer after this will fail and return NULL. 3153 * 3154 * The caller should call synchronize_sched() after this. 3155 */ 3156void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3157{ 3158 struct ring_buffer_per_cpu *cpu_buffer; 3159 3160 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3161 return; 3162 3163 cpu_buffer = buffer->buffers[cpu]; 3164 atomic_inc(&cpu_buffer->record_disabled); 3165} 3166EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3167 3168/** 3169 * ring_buffer_record_enable_cpu - enable writes to the buffer 3170 * @buffer: The ring buffer to enable writes 3171 * @cpu: The CPU to enable. 3172 * 3173 * Note, multiple disables will need the same number of enables 3174 * to truly enable the writing (much like preempt_disable). 3175 */ 3176void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3177{ 3178 struct ring_buffer_per_cpu *cpu_buffer; 3179 3180 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3181 return; 3182 3183 cpu_buffer = buffer->buffers[cpu]; 3184 atomic_dec(&cpu_buffer->record_disabled); 3185} 3186EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3187 3188/* 3189 * The total entries in the ring buffer is the running counter 3190 * of entries entered into the ring buffer, minus the sum of 3191 * the entries read from the ring buffer and the number of 3192 * entries that were overwritten. 3193 */ 3194static inline unsigned long 3195rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3196{ 3197 return local_read(&cpu_buffer->entries) - 3198 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3199} 3200 3201/** 3202 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3203 * @buffer: The ring buffer 3204 * @cpu: The per CPU buffer to read from. 3205 */ 3206u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3207{ 3208 unsigned long flags; 3209 struct ring_buffer_per_cpu *cpu_buffer; 3210 struct buffer_page *bpage; 3211 u64 ret = 0; 3212 3213 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3214 return 0; 3215 3216 cpu_buffer = buffer->buffers[cpu]; 3217 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3218 /* 3219 * if the tail is on reader_page, oldest time stamp is on the reader 3220 * page 3221 */ 3222 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3223 bpage = cpu_buffer->reader_page; 3224 else 3225 bpage = rb_set_head_page(cpu_buffer); 3226 if (bpage) 3227 ret = bpage->page->time_stamp; 3228 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3229 3230 return ret; 3231} 3232EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3233 3234/** 3235 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3236 * @buffer: The ring buffer 3237 * @cpu: The per CPU buffer to read from. 3238 */ 3239unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3240{ 3241 struct ring_buffer_per_cpu *cpu_buffer; 3242 unsigned long ret; 3243 3244 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3245 return 0; 3246 3247 cpu_buffer = buffer->buffers[cpu]; 3248 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3249 3250 return ret; 3251} 3252EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3253 3254/** 3255 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3256 * @buffer: The ring buffer 3257 * @cpu: The per CPU buffer to get the entries from. 3258 */ 3259unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3260{ 3261 struct ring_buffer_per_cpu *cpu_buffer; 3262 3263 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3264 return 0; 3265 3266 cpu_buffer = buffer->buffers[cpu]; 3267 3268 return rb_num_of_entries(cpu_buffer); 3269} 3270EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3271 3272/** 3273 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3274 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3275 * @buffer: The ring buffer 3276 * @cpu: The per CPU buffer to get the number of overruns from 3277 */ 3278unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3279{ 3280 struct ring_buffer_per_cpu *cpu_buffer; 3281 unsigned long ret; 3282 3283 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3284 return 0; 3285 3286 cpu_buffer = buffer->buffers[cpu]; 3287 ret = local_read(&cpu_buffer->overrun); 3288 3289 return ret; 3290} 3291EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3292 3293/** 3294 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3295 * commits failing due to the buffer wrapping around while there are uncommitted 3296 * events, such as during an interrupt storm. 3297 * @buffer: The ring buffer 3298 * @cpu: The per CPU buffer to get the number of overruns from 3299 */ 3300unsigned long 3301ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3302{ 3303 struct ring_buffer_per_cpu *cpu_buffer; 3304 unsigned long ret; 3305 3306 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3307 return 0; 3308 3309 cpu_buffer = buffer->buffers[cpu]; 3310 ret = local_read(&cpu_buffer->commit_overrun); 3311 3312 return ret; 3313} 3314EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3315 3316/** 3317 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3318 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3319 * @buffer: The ring buffer 3320 * @cpu: The per CPU buffer to get the number of overruns from 3321 */ 3322unsigned long 3323ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3324{ 3325 struct ring_buffer_per_cpu *cpu_buffer; 3326 unsigned long ret; 3327 3328 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3329 return 0; 3330 3331 cpu_buffer = buffer->buffers[cpu]; 3332 ret = local_read(&cpu_buffer->dropped_events); 3333 3334 return ret; 3335} 3336EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3337 3338/** 3339 * ring_buffer_read_events_cpu - get the number of events successfully read 3340 * @buffer: The ring buffer 3341 * @cpu: The per CPU buffer to get the number of events read 3342 */ 3343unsigned long 3344ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3345{ 3346 struct ring_buffer_per_cpu *cpu_buffer; 3347 3348 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3349 return 0; 3350 3351 cpu_buffer = buffer->buffers[cpu]; 3352 return cpu_buffer->read; 3353} 3354EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3355 3356/** 3357 * ring_buffer_entries - get the number of entries in a buffer 3358 * @buffer: The ring buffer 3359 * 3360 * Returns the total number of entries in the ring buffer 3361 * (all CPU entries) 3362 */ 3363unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3364{ 3365 struct ring_buffer_per_cpu *cpu_buffer; 3366 unsigned long entries = 0; 3367 int cpu; 3368 3369 /* if you care about this being correct, lock the buffer */ 3370 for_each_buffer_cpu(buffer, cpu) { 3371 cpu_buffer = buffer->buffers[cpu]; 3372 entries += rb_num_of_entries(cpu_buffer); 3373 } 3374 3375 return entries; 3376} 3377EXPORT_SYMBOL_GPL(ring_buffer_entries); 3378 3379/** 3380 * ring_buffer_overruns - get the number of overruns in buffer 3381 * @buffer: The ring buffer 3382 * 3383 * Returns the total number of overruns in the ring buffer 3384 * (all CPU entries) 3385 */ 3386unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3387{ 3388 struct ring_buffer_per_cpu *cpu_buffer; 3389 unsigned long overruns = 0; 3390 int cpu; 3391 3392 /* if you care about this being correct, lock the buffer */ 3393 for_each_buffer_cpu(buffer, cpu) { 3394 cpu_buffer = buffer->buffers[cpu]; 3395 overruns += local_read(&cpu_buffer->overrun); 3396 } 3397 3398 return overruns; 3399} 3400EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3401 3402static void rb_iter_reset(struct ring_buffer_iter *iter) 3403{ 3404 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3405 3406 /* Iterator usage is expected to have record disabled */ 3407 iter->head_page = cpu_buffer->reader_page; 3408 iter->head = cpu_buffer->reader_page->read; 3409 3410 iter->cache_reader_page = iter->head_page; 3411 iter->cache_read = cpu_buffer->read; 3412 3413 if (iter->head) 3414 iter->read_stamp = cpu_buffer->read_stamp; 3415 else 3416 iter->read_stamp = iter->head_page->page->time_stamp; 3417} 3418 3419/** 3420 * ring_buffer_iter_reset - reset an iterator 3421 * @iter: The iterator to reset 3422 * 3423 * Resets the iterator, so that it will start from the beginning 3424 * again. 3425 */ 3426void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3427{ 3428 struct ring_buffer_per_cpu *cpu_buffer; 3429 unsigned long flags; 3430 3431 if (!iter) 3432 return; 3433 3434 cpu_buffer = iter->cpu_buffer; 3435 3436 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3437 rb_iter_reset(iter); 3438 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3439} 3440EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3441 3442/** 3443 * ring_buffer_iter_empty - check if an iterator has no more to read 3444 * @iter: The iterator to check 3445 */ 3446int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3447{ 3448 struct ring_buffer_per_cpu *cpu_buffer; 3449 3450 cpu_buffer = iter->cpu_buffer; 3451 3452 return iter->head_page == cpu_buffer->commit_page && 3453 iter->head == rb_commit_index(cpu_buffer); 3454} 3455EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3456 3457static void 3458rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3459 struct ring_buffer_event *event) 3460{ 3461 u64 delta; 3462 3463 switch (event->type_len) { 3464 case RINGBUF_TYPE_PADDING: 3465 return; 3466 3467 case RINGBUF_TYPE_TIME_EXTEND: 3468 delta = event->array[0]; 3469 delta <<= TS_SHIFT; 3470 delta += event->time_delta; 3471 cpu_buffer->read_stamp += delta; 3472 return; 3473 3474 case RINGBUF_TYPE_TIME_STAMP: 3475 /* FIXME: not implemented */ 3476 return; 3477 3478 case RINGBUF_TYPE_DATA: 3479 cpu_buffer->read_stamp += event->time_delta; 3480 return; 3481 3482 default: 3483 BUG(); 3484 } 3485 return; 3486} 3487 3488static void 3489rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3490 struct ring_buffer_event *event) 3491{ 3492 u64 delta; 3493 3494 switch (event->type_len) { 3495 case RINGBUF_TYPE_PADDING: 3496 return; 3497 3498 case RINGBUF_TYPE_TIME_EXTEND: 3499 delta = event->array[0]; 3500 delta <<= TS_SHIFT; 3501 delta += event->time_delta; 3502 iter->read_stamp += delta; 3503 return; 3504 3505 case RINGBUF_TYPE_TIME_STAMP: 3506 /* FIXME: not implemented */ 3507 return; 3508 3509 case RINGBUF_TYPE_DATA: 3510 iter->read_stamp += event->time_delta; 3511 return; 3512 3513 default: 3514 BUG(); 3515 } 3516 return; 3517} 3518 3519static struct buffer_page * 3520rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3521{ 3522 struct buffer_page *reader = NULL; 3523 unsigned long overwrite; 3524 unsigned long flags; 3525 int nr_loops = 0; 3526 int ret; 3527 3528 local_irq_save(flags); 3529 arch_spin_lock(&cpu_buffer->lock); 3530 3531 again: 3532 /* 3533 * This should normally only loop twice. But because the 3534 * start of the reader inserts an empty page, it causes 3535 * a case where we will loop three times. There should be no 3536 * reason to loop four times (that I know of). 3537 */ 3538 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3539 reader = NULL; 3540 goto out; 3541 } 3542 3543 reader = cpu_buffer->reader_page; 3544 3545 /* If there's more to read, return this page */ 3546 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3547 goto out; 3548 3549 /* Never should we have an index greater than the size */ 3550 if (RB_WARN_ON(cpu_buffer, 3551 cpu_buffer->reader_page->read > rb_page_size(reader))) 3552 goto out; 3553 3554 /* check if we caught up to the tail */ 3555 reader = NULL; 3556 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3557 goto out; 3558 3559 /* Don't bother swapping if the ring buffer is empty */ 3560 if (rb_num_of_entries(cpu_buffer) == 0) 3561 goto out; 3562 3563 /* 3564 * Reset the reader page to size zero. 3565 */ 3566 local_set(&cpu_buffer->reader_page->write, 0); 3567 local_set(&cpu_buffer->reader_page->entries, 0); 3568 local_set(&cpu_buffer->reader_page->page->commit, 0); 3569 cpu_buffer->reader_page->real_end = 0; 3570 3571 spin: 3572 /* 3573 * Splice the empty reader page into the list around the head. 3574 */ 3575 reader = rb_set_head_page(cpu_buffer); 3576 if (!reader) 3577 goto out; 3578 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3579 cpu_buffer->reader_page->list.prev = reader->list.prev; 3580 3581 /* 3582 * cpu_buffer->pages just needs to point to the buffer, it 3583 * has no specific buffer page to point to. Lets move it out 3584 * of our way so we don't accidentally swap it. 3585 */ 3586 cpu_buffer->pages = reader->list.prev; 3587 3588 /* The reader page will be pointing to the new head */ 3589 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3590 3591 /* 3592 * We want to make sure we read the overruns after we set up our 3593 * pointers to the next object. The writer side does a 3594 * cmpxchg to cross pages which acts as the mb on the writer 3595 * side. Note, the reader will constantly fail the swap 3596 * while the writer is updating the pointers, so this 3597 * guarantees that the overwrite recorded here is the one we 3598 * want to compare with the last_overrun. 3599 */ 3600 smp_mb(); 3601 overwrite = local_read(&(cpu_buffer->overrun)); 3602 3603 /* 3604 * Here's the tricky part. 3605 * 3606 * We need to move the pointer past the header page. 3607 * But we can only do that if a writer is not currently 3608 * moving it. The page before the header page has the 3609 * flag bit '1' set if it is pointing to the page we want. 3610 * but if the writer is in the process of moving it 3611 * than it will be '2' or already moved '0'. 3612 */ 3613 3614 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3615 3616 /* 3617 * If we did not convert it, then we must try again. 3618 */ 3619 if (!ret) 3620 goto spin; 3621 3622 /* 3623 * Yeah! We succeeded in replacing the page. 3624 * 3625 * Now make the new head point back to the reader page. 3626 */ 3627 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3628 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3629 3630 /* Finally update the reader page to the new head */ 3631 cpu_buffer->reader_page = reader; 3632 rb_reset_reader_page(cpu_buffer); 3633 3634 if (overwrite != cpu_buffer->last_overrun) { 3635 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3636 cpu_buffer->last_overrun = overwrite; 3637 } 3638 3639 goto again; 3640 3641 out: 3642 arch_spin_unlock(&cpu_buffer->lock); 3643 local_irq_restore(flags); 3644 3645 return reader; 3646} 3647 3648static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3649{ 3650 struct ring_buffer_event *event; 3651 struct buffer_page *reader; 3652 unsigned length; 3653 3654 reader = rb_get_reader_page(cpu_buffer); 3655 3656 /* This function should not be called when buffer is empty */ 3657 if (RB_WARN_ON(cpu_buffer, !reader)) 3658 return; 3659 3660 event = rb_reader_event(cpu_buffer); 3661 3662 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3663 cpu_buffer->read++; 3664 3665 rb_update_read_stamp(cpu_buffer, event); 3666 3667 length = rb_event_length(event); 3668 cpu_buffer->reader_page->read += length; 3669} 3670 3671static void rb_advance_iter(struct ring_buffer_iter *iter) 3672{ 3673 struct ring_buffer_per_cpu *cpu_buffer; 3674 struct ring_buffer_event *event; 3675 unsigned length; 3676 3677 cpu_buffer = iter->cpu_buffer; 3678 3679 /* 3680 * Check if we are at the end of the buffer. 3681 */ 3682 if (iter->head >= rb_page_size(iter->head_page)) { 3683 /* discarded commits can make the page empty */ 3684 if (iter->head_page == cpu_buffer->commit_page) 3685 return; 3686 rb_inc_iter(iter); 3687 return; 3688 } 3689 3690 event = rb_iter_head_event(iter); 3691 3692 length = rb_event_length(event); 3693 3694 /* 3695 * This should not be called to advance the header if we are 3696 * at the tail of the buffer. 3697 */ 3698 if (RB_WARN_ON(cpu_buffer, 3699 (iter->head_page == cpu_buffer->commit_page) && 3700 (iter->head + length > rb_commit_index(cpu_buffer)))) 3701 return; 3702 3703 rb_update_iter_read_stamp(iter, event); 3704 3705 iter->head += length; 3706 3707 /* check for end of page padding */ 3708 if ((iter->head >= rb_page_size(iter->head_page)) && 3709 (iter->head_page != cpu_buffer->commit_page)) 3710 rb_inc_iter(iter); 3711} 3712 3713static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3714{ 3715 return cpu_buffer->lost_events; 3716} 3717 3718static struct ring_buffer_event * 3719rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3720 unsigned long *lost_events) 3721{ 3722 struct ring_buffer_event *event; 3723 struct buffer_page *reader; 3724 int nr_loops = 0; 3725 3726 again: 3727 /* 3728 * We repeat when a time extend is encountered. 3729 * Since the time extend is always attached to a data event, 3730 * we should never loop more than once. 3731 * (We never hit the following condition more than twice). 3732 */ 3733 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3734 return NULL; 3735 3736 reader = rb_get_reader_page(cpu_buffer); 3737 if (!reader) 3738 return NULL; 3739 3740 event = rb_reader_event(cpu_buffer); 3741 3742 switch (event->type_len) { 3743 case RINGBUF_TYPE_PADDING: 3744 if (rb_null_event(event)) 3745 RB_WARN_ON(cpu_buffer, 1); 3746 /* 3747 * Because the writer could be discarding every 3748 * event it creates (which would probably be bad) 3749 * if we were to go back to "again" then we may never 3750 * catch up, and will trigger the warn on, or lock 3751 * the box. Return the padding, and we will release 3752 * the current locks, and try again. 3753 */ 3754 return event; 3755 3756 case RINGBUF_TYPE_TIME_EXTEND: 3757 /* Internal data, OK to advance */ 3758 rb_advance_reader(cpu_buffer); 3759 goto again; 3760 3761 case RINGBUF_TYPE_TIME_STAMP: 3762 /* FIXME: not implemented */ 3763 rb_advance_reader(cpu_buffer); 3764 goto again; 3765 3766 case RINGBUF_TYPE_DATA: 3767 if (ts) { 3768 *ts = cpu_buffer->read_stamp + event->time_delta; 3769 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3770 cpu_buffer->cpu, ts); 3771 } 3772 if (lost_events) 3773 *lost_events = rb_lost_events(cpu_buffer); 3774 return event; 3775 3776 default: 3777 BUG(); 3778 } 3779 3780 return NULL; 3781} 3782EXPORT_SYMBOL_GPL(ring_buffer_peek); 3783 3784static struct ring_buffer_event * 3785rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3786{ 3787 struct ring_buffer *buffer; 3788 struct ring_buffer_per_cpu *cpu_buffer; 3789 struct ring_buffer_event *event; 3790 int nr_loops = 0; 3791 3792 cpu_buffer = iter->cpu_buffer; 3793 buffer = cpu_buffer->buffer; 3794 3795 /* 3796 * Check if someone performed a consuming read to 3797 * the buffer. A consuming read invalidates the iterator 3798 * and we need to reset the iterator in this case. 3799 */ 3800 if (unlikely(iter->cache_read != cpu_buffer->read || 3801 iter->cache_reader_page != cpu_buffer->reader_page)) 3802 rb_iter_reset(iter); 3803 3804 again: 3805 if (ring_buffer_iter_empty(iter)) 3806 return NULL; 3807 3808 /* 3809 * We repeat when a time extend is encountered or we hit 3810 * the end of the page. Since the time extend is always attached 3811 * to a data event, we should never loop more than three times. 3812 * Once for going to next page, once on time extend, and 3813 * finally once to get the event. 3814 * (We never hit the following condition more than thrice). 3815 */ 3816 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3817 return NULL; 3818 3819 if (rb_per_cpu_empty(cpu_buffer)) 3820 return NULL; 3821 3822 if (iter->head >= rb_page_size(iter->head_page)) { 3823 rb_inc_iter(iter); 3824 goto again; 3825 } 3826 3827 event = rb_iter_head_event(iter); 3828 3829 switch (event->type_len) { 3830 case RINGBUF_TYPE_PADDING: 3831 if (rb_null_event(event)) { 3832 rb_inc_iter(iter); 3833 goto again; 3834 } 3835 rb_advance_iter(iter); 3836 return event; 3837 3838 case RINGBUF_TYPE_TIME_EXTEND: 3839 /* Internal data, OK to advance */ 3840 rb_advance_iter(iter); 3841 goto again; 3842 3843 case RINGBUF_TYPE_TIME_STAMP: 3844 /* FIXME: not implemented */ 3845 rb_advance_iter(iter); 3846 goto again; 3847 3848 case RINGBUF_TYPE_DATA: 3849 if (ts) { 3850 *ts = iter->read_stamp + event->time_delta; 3851 ring_buffer_normalize_time_stamp(buffer, 3852 cpu_buffer->cpu, ts); 3853 } 3854 return event; 3855 3856 default: 3857 BUG(); 3858 } 3859 3860 return NULL; 3861} 3862EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3863 3864static inline int rb_ok_to_lock(void) 3865{ 3866 /* 3867 * If an NMI die dumps out the content of the ring buffer 3868 * do not grab locks. We also permanently disable the ring 3869 * buffer too. A one time deal is all you get from reading 3870 * the ring buffer from an NMI. 3871 */ 3872 if (likely(!in_nmi())) 3873 return 1; 3874 3875 tracing_off_permanent(); 3876 return 0; 3877} 3878 3879/** 3880 * ring_buffer_peek - peek at the next event to be read 3881 * @buffer: The ring buffer to read 3882 * @cpu: The cpu to peak at 3883 * @ts: The timestamp counter of this event. 3884 * @lost_events: a variable to store if events were lost (may be NULL) 3885 * 3886 * This will return the event that will be read next, but does 3887 * not consume the data. 3888 */ 3889struct ring_buffer_event * 3890ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3891 unsigned long *lost_events) 3892{ 3893 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3894 struct ring_buffer_event *event; 3895 unsigned long flags; 3896 int dolock; 3897 3898 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3899 return NULL; 3900 3901 dolock = rb_ok_to_lock(); 3902 again: 3903 local_irq_save(flags); 3904 if (dolock) 3905 raw_spin_lock(&cpu_buffer->reader_lock); 3906 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3907 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3908 rb_advance_reader(cpu_buffer); 3909 if (dolock) 3910 raw_spin_unlock(&cpu_buffer->reader_lock); 3911 local_irq_restore(flags); 3912 3913 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3914 goto again; 3915 3916 return event; 3917} 3918 3919/** 3920 * ring_buffer_iter_peek - peek at the next event to be read 3921 * @iter: The ring buffer iterator 3922 * @ts: The timestamp counter of this event. 3923 * 3924 * This will return the event that will be read next, but does 3925 * not increment the iterator. 3926 */ 3927struct ring_buffer_event * 3928ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3929{ 3930 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3931 struct ring_buffer_event *event; 3932 unsigned long flags; 3933 3934 again: 3935 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3936 event = rb_iter_peek(iter, ts); 3937 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3938 3939 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3940 goto again; 3941 3942 return event; 3943} 3944 3945/** 3946 * ring_buffer_consume - return an event and consume it 3947 * @buffer: The ring buffer to get the next event from 3948 * @cpu: the cpu to read the buffer from 3949 * @ts: a variable to store the timestamp (may be NULL) 3950 * @lost_events: a variable to store if events were lost (may be NULL) 3951 * 3952 * Returns the next event in the ring buffer, and that event is consumed. 3953 * Meaning, that sequential reads will keep returning a different event, 3954 * and eventually empty the ring buffer if the producer is slower. 3955 */ 3956struct ring_buffer_event * 3957ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3958 unsigned long *lost_events) 3959{ 3960 struct ring_buffer_per_cpu *cpu_buffer; 3961 struct ring_buffer_event *event = NULL; 3962 unsigned long flags; 3963 int dolock; 3964 3965 dolock = rb_ok_to_lock(); 3966 3967 again: 3968 /* might be called in atomic */ 3969 preempt_disable(); 3970 3971 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3972 goto out; 3973 3974 cpu_buffer = buffer->buffers[cpu]; 3975 local_irq_save(flags); 3976 if (dolock) 3977 raw_spin_lock(&cpu_buffer->reader_lock); 3978 3979 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3980 if (event) { 3981 cpu_buffer->lost_events = 0; 3982 rb_advance_reader(cpu_buffer); 3983 } 3984 3985 if (dolock) 3986 raw_spin_unlock(&cpu_buffer->reader_lock); 3987 local_irq_restore(flags); 3988 3989 out: 3990 preempt_enable(); 3991 3992 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3993 goto again; 3994 3995 return event; 3996} 3997EXPORT_SYMBOL_GPL(ring_buffer_consume); 3998 3999/** 4000 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4001 * @buffer: The ring buffer to read from 4002 * @cpu: The cpu buffer to iterate over 4003 * 4004 * This performs the initial preparations necessary to iterate 4005 * through the buffer. Memory is allocated, buffer recording 4006 * is disabled, and the iterator pointer is returned to the caller. 4007 * 4008 * Disabling buffer recordng prevents the reading from being 4009 * corrupted. This is not a consuming read, so a producer is not 4010 * expected. 4011 * 4012 * After a sequence of ring_buffer_read_prepare calls, the user is 4013 * expected to make at least one call to ring_buffer_read_prepare_sync. 4014 * Afterwards, ring_buffer_read_start is invoked to get things going 4015 * for real. 4016 * 4017 * This overall must be paired with ring_buffer_read_finish. 4018 */ 4019struct ring_buffer_iter * 4020ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4021{ 4022 struct ring_buffer_per_cpu *cpu_buffer; 4023 struct ring_buffer_iter *iter; 4024 4025 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4026 return NULL; 4027 4028 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4029 if (!iter) 4030 return NULL; 4031 4032 cpu_buffer = buffer->buffers[cpu]; 4033 4034 iter->cpu_buffer = cpu_buffer; 4035 4036 atomic_inc(&buffer->resize_disabled); 4037 atomic_inc(&cpu_buffer->record_disabled); 4038 4039 return iter; 4040} 4041EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4042 4043/** 4044 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4045 * 4046 * All previously invoked ring_buffer_read_prepare calls to prepare 4047 * iterators will be synchronized. Afterwards, read_buffer_read_start 4048 * calls on those iterators are allowed. 4049 */ 4050void 4051ring_buffer_read_prepare_sync(void) 4052{ 4053 synchronize_sched(); 4054} 4055EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4056 4057/** 4058 * ring_buffer_read_start - start a non consuming read of the buffer 4059 * @iter: The iterator returned by ring_buffer_read_prepare 4060 * 4061 * This finalizes the startup of an iteration through the buffer. 4062 * The iterator comes from a call to ring_buffer_read_prepare and 4063 * an intervening ring_buffer_read_prepare_sync must have been 4064 * performed. 4065 * 4066 * Must be paired with ring_buffer_read_finish. 4067 */ 4068void 4069ring_buffer_read_start(struct ring_buffer_iter *iter) 4070{ 4071 struct ring_buffer_per_cpu *cpu_buffer; 4072 unsigned long flags; 4073 4074 if (!iter) 4075 return; 4076 4077 cpu_buffer = iter->cpu_buffer; 4078 4079 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4080 arch_spin_lock(&cpu_buffer->lock); 4081 rb_iter_reset(iter); 4082 arch_spin_unlock(&cpu_buffer->lock); 4083 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4084} 4085EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4086 4087/** 4088 * ring_buffer_read_finish - finish reading the iterator of the buffer 4089 * @iter: The iterator retrieved by ring_buffer_start 4090 * 4091 * This re-enables the recording to the buffer, and frees the 4092 * iterator. 4093 */ 4094void 4095ring_buffer_read_finish(struct ring_buffer_iter *iter) 4096{ 4097 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4098 unsigned long flags; 4099 4100 /* 4101 * Ring buffer is disabled from recording, here's a good place 4102 * to check the integrity of the ring buffer. 4103 * Must prevent readers from trying to read, as the check 4104 * clears the HEAD page and readers require it. 4105 */ 4106 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4107 rb_check_pages(cpu_buffer); 4108 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4109 4110 atomic_dec(&cpu_buffer->record_disabled); 4111 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4112 kfree(iter); 4113} 4114EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4115 4116/** 4117 * ring_buffer_read - read the next item in the ring buffer by the iterator 4118 * @iter: The ring buffer iterator 4119 * @ts: The time stamp of the event read. 4120 * 4121 * This reads the next event in the ring buffer and increments the iterator. 4122 */ 4123struct ring_buffer_event * 4124ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4125{ 4126 struct ring_buffer_event *event; 4127 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4128 unsigned long flags; 4129 4130 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4131 again: 4132 event = rb_iter_peek(iter, ts); 4133 if (!event) 4134 goto out; 4135 4136 if (event->type_len == RINGBUF_TYPE_PADDING) 4137 goto again; 4138 4139 rb_advance_iter(iter); 4140 out: 4141 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4142 4143 return event; 4144} 4145EXPORT_SYMBOL_GPL(ring_buffer_read); 4146 4147/** 4148 * ring_buffer_size - return the size of the ring buffer (in bytes) 4149 * @buffer: The ring buffer. 4150 */ 4151unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4152{ 4153 /* 4154 * Earlier, this method returned 4155 * BUF_PAGE_SIZE * buffer->nr_pages 4156 * Since the nr_pages field is now removed, we have converted this to 4157 * return the per cpu buffer value. 4158 */ 4159 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4160 return 0; 4161 4162 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4163} 4164EXPORT_SYMBOL_GPL(ring_buffer_size); 4165 4166static void 4167rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4168{ 4169 rb_head_page_deactivate(cpu_buffer); 4170 4171 cpu_buffer->head_page 4172 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4173 local_set(&cpu_buffer->head_page->write, 0); 4174 local_set(&cpu_buffer->head_page->entries, 0); 4175 local_set(&cpu_buffer->head_page->page->commit, 0); 4176 4177 cpu_buffer->head_page->read = 0; 4178 4179 cpu_buffer->tail_page = cpu_buffer->head_page; 4180 cpu_buffer->commit_page = cpu_buffer->head_page; 4181 4182 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4183 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4184 local_set(&cpu_buffer->reader_page->write, 0); 4185 local_set(&cpu_buffer->reader_page->entries, 0); 4186 local_set(&cpu_buffer->reader_page->page->commit, 0); 4187 cpu_buffer->reader_page->read = 0; 4188 4189 local_set(&cpu_buffer->entries_bytes, 0); 4190 local_set(&cpu_buffer->overrun, 0); 4191 local_set(&cpu_buffer->commit_overrun, 0); 4192 local_set(&cpu_buffer->dropped_events, 0); 4193 local_set(&cpu_buffer->entries, 0); 4194 local_set(&cpu_buffer->committing, 0); 4195 local_set(&cpu_buffer->commits, 0); 4196 cpu_buffer->read = 0; 4197 cpu_buffer->read_bytes = 0; 4198 4199 cpu_buffer->write_stamp = 0; 4200 cpu_buffer->read_stamp = 0; 4201 4202 cpu_buffer->lost_events = 0; 4203 cpu_buffer->last_overrun = 0; 4204 4205 rb_head_page_activate(cpu_buffer); 4206} 4207 4208/** 4209 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4210 * @buffer: The ring buffer to reset a per cpu buffer of 4211 * @cpu: The CPU buffer to be reset 4212 */ 4213void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4214{ 4215 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4216 unsigned long flags; 4217 4218 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4219 return; 4220 4221 atomic_inc(&buffer->resize_disabled); 4222 atomic_inc(&cpu_buffer->record_disabled); 4223 4224 /* Make sure all commits have finished */ 4225 synchronize_sched(); 4226 4227 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4228 4229 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4230 goto out; 4231 4232 arch_spin_lock(&cpu_buffer->lock); 4233 4234 rb_reset_cpu(cpu_buffer); 4235 4236 arch_spin_unlock(&cpu_buffer->lock); 4237 4238 out: 4239 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4240 4241 atomic_dec(&cpu_buffer->record_disabled); 4242 atomic_dec(&buffer->resize_disabled); 4243} 4244EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4245 4246/** 4247 * ring_buffer_reset - reset a ring buffer 4248 * @buffer: The ring buffer to reset all cpu buffers 4249 */ 4250void ring_buffer_reset(struct ring_buffer *buffer) 4251{ 4252 int cpu; 4253 4254 for_each_buffer_cpu(buffer, cpu) 4255 ring_buffer_reset_cpu(buffer, cpu); 4256} 4257EXPORT_SYMBOL_GPL(ring_buffer_reset); 4258 4259/** 4260 * rind_buffer_empty - is the ring buffer empty? 4261 * @buffer: The ring buffer to test 4262 */ 4263int ring_buffer_empty(struct ring_buffer *buffer) 4264{ 4265 struct ring_buffer_per_cpu *cpu_buffer; 4266 unsigned long flags; 4267 int dolock; 4268 int cpu; 4269 int ret; 4270 4271 dolock = rb_ok_to_lock(); 4272 4273 /* yes this is racy, but if you don't like the race, lock the buffer */ 4274 for_each_buffer_cpu(buffer, cpu) { 4275 cpu_buffer = buffer->buffers[cpu]; 4276 local_irq_save(flags); 4277 if (dolock) 4278 raw_spin_lock(&cpu_buffer->reader_lock); 4279 ret = rb_per_cpu_empty(cpu_buffer); 4280 if (dolock) 4281 raw_spin_unlock(&cpu_buffer->reader_lock); 4282 local_irq_restore(flags); 4283 4284 if (!ret) 4285 return 0; 4286 } 4287 4288 return 1; 4289} 4290EXPORT_SYMBOL_GPL(ring_buffer_empty); 4291 4292/** 4293 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4294 * @buffer: The ring buffer 4295 * @cpu: The CPU buffer to test 4296 */ 4297int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4298{ 4299 struct ring_buffer_per_cpu *cpu_buffer; 4300 unsigned long flags; 4301 int dolock; 4302 int ret; 4303 4304 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4305 return 1; 4306 4307 dolock = rb_ok_to_lock(); 4308 4309 cpu_buffer = buffer->buffers[cpu]; 4310 local_irq_save(flags); 4311 if (dolock) 4312 raw_spin_lock(&cpu_buffer->reader_lock); 4313 ret = rb_per_cpu_empty(cpu_buffer); 4314 if (dolock) 4315 raw_spin_unlock(&cpu_buffer->reader_lock); 4316 local_irq_restore(flags); 4317 4318 return ret; 4319} 4320EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4321 4322#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4323/** 4324 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4325 * @buffer_a: One buffer to swap with 4326 * @buffer_b: The other buffer to swap with 4327 * 4328 * This function is useful for tracers that want to take a "snapshot" 4329 * of a CPU buffer and has another back up buffer lying around. 4330 * it is expected that the tracer handles the cpu buffer not being 4331 * used at the moment. 4332 */ 4333int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4334 struct ring_buffer *buffer_b, int cpu) 4335{ 4336 struct ring_buffer_per_cpu *cpu_buffer_a; 4337 struct ring_buffer_per_cpu *cpu_buffer_b; 4338 int ret = -EINVAL; 4339 4340 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4341 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4342 goto out; 4343 4344 cpu_buffer_a = buffer_a->buffers[cpu]; 4345 cpu_buffer_b = buffer_b->buffers[cpu]; 4346 4347 /* At least make sure the two buffers are somewhat the same */ 4348 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4349 goto out; 4350 4351 ret = -EAGAIN; 4352 4353 if (ring_buffer_flags != RB_BUFFERS_ON) 4354 goto out; 4355 4356 if (atomic_read(&buffer_a->record_disabled)) 4357 goto out; 4358 4359 if (atomic_read(&buffer_b->record_disabled)) 4360 goto out; 4361 4362 if (atomic_read(&cpu_buffer_a->record_disabled)) 4363 goto out; 4364 4365 if (atomic_read(&cpu_buffer_b->record_disabled)) 4366 goto out; 4367 4368 /* 4369 * We can't do a synchronize_sched here because this 4370 * function can be called in atomic context. 4371 * Normally this will be called from the same CPU as cpu. 4372 * If not it's up to the caller to protect this. 4373 */ 4374 atomic_inc(&cpu_buffer_a->record_disabled); 4375 atomic_inc(&cpu_buffer_b->record_disabled); 4376 4377 ret = -EBUSY; 4378 if (local_read(&cpu_buffer_a->committing)) 4379 goto out_dec; 4380 if (local_read(&cpu_buffer_b->committing)) 4381 goto out_dec; 4382 4383 buffer_a->buffers[cpu] = cpu_buffer_b; 4384 buffer_b->buffers[cpu] = cpu_buffer_a; 4385 4386 cpu_buffer_b->buffer = buffer_a; 4387 cpu_buffer_a->buffer = buffer_b; 4388 4389 ret = 0; 4390 4391out_dec: 4392 atomic_dec(&cpu_buffer_a->record_disabled); 4393 atomic_dec(&cpu_buffer_b->record_disabled); 4394out: 4395 return ret; 4396} 4397EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4398#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4399 4400/** 4401 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4402 * @buffer: the buffer to allocate for. 4403 * @cpu: the cpu buffer to allocate. 4404 * 4405 * This function is used in conjunction with ring_buffer_read_page. 4406 * When reading a full page from the ring buffer, these functions 4407 * can be used to speed up the process. The calling function should 4408 * allocate a few pages first with this function. Then when it 4409 * needs to get pages from the ring buffer, it passes the result 4410 * of this function into ring_buffer_read_page, which will swap 4411 * the page that was allocated, with the read page of the buffer. 4412 * 4413 * Returns: 4414 * The page allocated, or NULL on error. 4415 */ 4416void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4417{ 4418 struct buffer_data_page *bpage; 4419 struct page *page; 4420 4421 page = alloc_pages_node(cpu_to_node(cpu), 4422 GFP_KERNEL | __GFP_NORETRY, 0); 4423 if (!page) 4424 return NULL; 4425 4426 bpage = page_address(page); 4427 4428 rb_init_page(bpage); 4429 4430 return bpage; 4431} 4432EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4433 4434/** 4435 * ring_buffer_free_read_page - free an allocated read page 4436 * @buffer: the buffer the page was allocate for 4437 * @data: the page to free 4438 * 4439 * Free a page allocated from ring_buffer_alloc_read_page. 4440 */ 4441void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4442{ 4443 free_page((unsigned long)data); 4444} 4445EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4446 4447/** 4448 * ring_buffer_read_page - extract a page from the ring buffer 4449 * @buffer: buffer to extract from 4450 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4451 * @len: amount to extract 4452 * @cpu: the cpu of the buffer to extract 4453 * @full: should the extraction only happen when the page is full. 4454 * 4455 * This function will pull out a page from the ring buffer and consume it. 4456 * @data_page must be the address of the variable that was returned 4457 * from ring_buffer_alloc_read_page. This is because the page might be used 4458 * to swap with a page in the ring buffer. 4459 * 4460 * for example: 4461 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4462 * if (!rpage) 4463 * return error; 4464 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4465 * if (ret >= 0) 4466 * process_page(rpage, ret); 4467 * 4468 * When @full is set, the function will not return true unless 4469 * the writer is off the reader page. 4470 * 4471 * Note: it is up to the calling functions to handle sleeps and wakeups. 4472 * The ring buffer can be used anywhere in the kernel and can not 4473 * blindly call wake_up. The layer that uses the ring buffer must be 4474 * responsible for that. 4475 * 4476 * Returns: 4477 * >=0 if data has been transferred, returns the offset of consumed data. 4478 * <0 if no data has been transferred. 4479 */ 4480int ring_buffer_read_page(struct ring_buffer *buffer, 4481 void **data_page, size_t len, int cpu, int full) 4482{ 4483 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4484 struct ring_buffer_event *event; 4485 struct buffer_data_page *bpage; 4486 struct buffer_page *reader; 4487 unsigned long missed_events; 4488 unsigned long flags; 4489 unsigned int commit; 4490 unsigned int read; 4491 u64 save_timestamp; 4492 int ret = -1; 4493 4494 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4495 goto out; 4496 4497 /* 4498 * If len is not big enough to hold the page header, then 4499 * we can not copy anything. 4500 */ 4501 if (len <= BUF_PAGE_HDR_SIZE) 4502 goto out; 4503 4504 len -= BUF_PAGE_HDR_SIZE; 4505 4506 if (!data_page) 4507 goto out; 4508 4509 bpage = *data_page; 4510 if (!bpage) 4511 goto out; 4512 4513 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4514 4515 reader = rb_get_reader_page(cpu_buffer); 4516 if (!reader) 4517 goto out_unlock; 4518 4519 event = rb_reader_event(cpu_buffer); 4520 4521 read = reader->read; 4522 commit = rb_page_commit(reader); 4523 4524 /* Check if any events were dropped */ 4525 missed_events = cpu_buffer->lost_events; 4526 4527 /* 4528 * If this page has been partially read or 4529 * if len is not big enough to read the rest of the page or 4530 * a writer is still on the page, then 4531 * we must copy the data from the page to the buffer. 4532 * Otherwise, we can simply swap the page with the one passed in. 4533 */ 4534 if (read || (len < (commit - read)) || 4535 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4536 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4537 unsigned int rpos = read; 4538 unsigned int pos = 0; 4539 unsigned int size; 4540 4541 if (full) 4542 goto out_unlock; 4543 4544 if (len > (commit - read)) 4545 len = (commit - read); 4546 4547 /* Always keep the time extend and data together */ 4548 size = rb_event_ts_length(event); 4549 4550 if (len < size) 4551 goto out_unlock; 4552 4553 /* save the current timestamp, since the user will need it */ 4554 save_timestamp = cpu_buffer->read_stamp; 4555 4556 /* Need to copy one event at a time */ 4557 do { 4558 /* We need the size of one event, because 4559 * rb_advance_reader only advances by one event, 4560 * whereas rb_event_ts_length may include the size of 4561 * one or two events. 4562 * We have already ensured there's enough space if this 4563 * is a time extend. */ 4564 size = rb_event_length(event); 4565 memcpy(bpage->data + pos, rpage->data + rpos, size); 4566 4567 len -= size; 4568 4569 rb_advance_reader(cpu_buffer); 4570 rpos = reader->read; 4571 pos += size; 4572 4573 if (rpos >= commit) 4574 break; 4575 4576 event = rb_reader_event(cpu_buffer); 4577 /* Always keep the time extend and data together */ 4578 size = rb_event_ts_length(event); 4579 } while (len >= size); 4580 4581 /* update bpage */ 4582 local_set(&bpage->commit, pos); 4583 bpage->time_stamp = save_timestamp; 4584 4585 /* we copied everything to the beginning */ 4586 read = 0; 4587 } else { 4588 /* update the entry counter */ 4589 cpu_buffer->read += rb_page_entries(reader); 4590 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4591 4592 /* swap the pages */ 4593 rb_init_page(bpage); 4594 bpage = reader->page; 4595 reader->page = *data_page; 4596 local_set(&reader->write, 0); 4597 local_set(&reader->entries, 0); 4598 reader->read = 0; 4599 *data_page = bpage; 4600 4601 /* 4602 * Use the real_end for the data size, 4603 * This gives us a chance to store the lost events 4604 * on the page. 4605 */ 4606 if (reader->real_end) 4607 local_set(&bpage->commit, reader->real_end); 4608 } 4609 ret = read; 4610 4611 cpu_buffer->lost_events = 0; 4612 4613 commit = local_read(&bpage->commit); 4614 /* 4615 * Set a flag in the commit field if we lost events 4616 */ 4617 if (missed_events) { 4618 /* If there is room at the end of the page to save the 4619 * missed events, then record it there. 4620 */ 4621 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4622 memcpy(&bpage->data[commit], &missed_events, 4623 sizeof(missed_events)); 4624 local_add(RB_MISSED_STORED, &bpage->commit); 4625 commit += sizeof(missed_events); 4626 } 4627 local_add(RB_MISSED_EVENTS, &bpage->commit); 4628 } 4629 4630 /* 4631 * This page may be off to user land. Zero it out here. 4632 */ 4633 if (commit < BUF_PAGE_SIZE) 4634 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4635 4636 out_unlock: 4637 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4638 4639 out: 4640 return ret; 4641} 4642EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4643 4644#ifdef CONFIG_HOTPLUG_CPU 4645static int rb_cpu_notify(struct notifier_block *self, 4646 unsigned long action, void *hcpu) 4647{ 4648 struct ring_buffer *buffer = 4649 container_of(self, struct ring_buffer, cpu_notify); 4650 long cpu = (long)hcpu; 4651 long nr_pages_same; 4652 int cpu_i; 4653 unsigned long nr_pages; 4654 4655 switch (action) { 4656 case CPU_UP_PREPARE: 4657 case CPU_UP_PREPARE_FROZEN: 4658 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4659 return NOTIFY_OK; 4660 4661 nr_pages = 0; 4662 nr_pages_same = 1; 4663 /* check if all cpu sizes are same */ 4664 for_each_buffer_cpu(buffer, cpu_i) { 4665 /* fill in the size from first enabled cpu */ 4666 if (nr_pages == 0) 4667 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4668 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4669 nr_pages_same = 0; 4670 break; 4671 } 4672 } 4673 /* allocate minimum pages, user can later expand it */ 4674 if (!nr_pages_same) 4675 nr_pages = 2; 4676 buffer->buffers[cpu] = 4677 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4678 if (!buffer->buffers[cpu]) { 4679 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4680 cpu); 4681 return NOTIFY_OK; 4682 } 4683 smp_wmb(); 4684 cpumask_set_cpu(cpu, buffer->cpumask); 4685 break; 4686 case CPU_DOWN_PREPARE: 4687 case CPU_DOWN_PREPARE_FROZEN: 4688 /* 4689 * Do nothing. 4690 * If we were to free the buffer, then the user would 4691 * lose any trace that was in the buffer. 4692 */ 4693 break; 4694 default: 4695 break; 4696 } 4697 return NOTIFY_OK; 4698} 4699#endif 4700 4701#ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4702/* 4703 * This is a basic integrity check of the ring buffer. 4704 * Late in the boot cycle this test will run when configured in. 4705 * It will kick off a thread per CPU that will go into a loop 4706 * writing to the per cpu ring buffer various sizes of data. 4707 * Some of the data will be large items, some small. 4708 * 4709 * Another thread is created that goes into a spin, sending out 4710 * IPIs to the other CPUs to also write into the ring buffer. 4711 * this is to test the nesting ability of the buffer. 4712 * 4713 * Basic stats are recorded and reported. If something in the 4714 * ring buffer should happen that's not expected, a big warning 4715 * is displayed and all ring buffers are disabled. 4716 */ 4717static struct task_struct *rb_threads[NR_CPUS] __initdata; 4718 4719struct rb_test_data { 4720 struct ring_buffer *buffer; 4721 unsigned long events; 4722 unsigned long bytes_written; 4723 unsigned long bytes_alloc; 4724 unsigned long bytes_dropped; 4725 unsigned long events_nested; 4726 unsigned long bytes_written_nested; 4727 unsigned long bytes_alloc_nested; 4728 unsigned long bytes_dropped_nested; 4729 int min_size_nested; 4730 int max_size_nested; 4731 int max_size; 4732 int min_size; 4733 int cpu; 4734 int cnt; 4735}; 4736 4737static struct rb_test_data rb_data[NR_CPUS] __initdata; 4738 4739/* 1 meg per cpu */ 4740#define RB_TEST_BUFFER_SIZE 1048576 4741 4742static char rb_string[] __initdata = 4743 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4744 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4745 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4746 4747static bool rb_test_started __initdata; 4748 4749struct rb_item { 4750 int size; 4751 char str[]; 4752}; 4753 4754static __init int rb_write_something(struct rb_test_data *data, bool nested) 4755{ 4756 struct ring_buffer_event *event; 4757 struct rb_item *item; 4758 bool started; 4759 int event_len; 4760 int size; 4761 int len; 4762 int cnt; 4763 4764 /* Have nested writes different that what is written */ 4765 cnt = data->cnt + (nested ? 27 : 0); 4766 4767 /* Multiply cnt by ~e, to make some unique increment */ 4768 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4769 4770 len = size + sizeof(struct rb_item); 4771 4772 started = rb_test_started; 4773 /* read rb_test_started before checking buffer enabled */ 4774 smp_rmb(); 4775 4776 event = ring_buffer_lock_reserve(data->buffer, len); 4777 if (!event) { 4778 /* Ignore dropped events before test starts. */ 4779 if (started) { 4780 if (nested) 4781 data->bytes_dropped += len; 4782 else 4783 data->bytes_dropped_nested += len; 4784 } 4785 return len; 4786 } 4787 4788 event_len = ring_buffer_event_length(event); 4789 4790 if (RB_WARN_ON(data->buffer, event_len < len)) 4791 goto out; 4792 4793 item = ring_buffer_event_data(event); 4794 item->size = size; 4795 memcpy(item->str, rb_string, size); 4796 4797 if (nested) { 4798 data->bytes_alloc_nested += event_len; 4799 data->bytes_written_nested += len; 4800 data->events_nested++; 4801 if (!data->min_size_nested || len < data->min_size_nested) 4802 data->min_size_nested = len; 4803 if (len > data->max_size_nested) 4804 data->max_size_nested = len; 4805 } else { 4806 data->bytes_alloc += event_len; 4807 data->bytes_written += len; 4808 data->events++; 4809 if (!data->min_size || len < data->min_size) 4810 data->max_size = len; 4811 if (len > data->max_size) 4812 data->max_size = len; 4813 } 4814 4815 out: 4816 ring_buffer_unlock_commit(data->buffer, event); 4817 4818 return 0; 4819} 4820 4821static __init int rb_test(void *arg) 4822{ 4823 struct rb_test_data *data = arg; 4824 4825 while (!kthread_should_stop()) { 4826 rb_write_something(data, false); 4827 data->cnt++; 4828 4829 set_current_state(TASK_INTERRUPTIBLE); 4830 /* Now sleep between a min of 100-300us and a max of 1ms */ 4831 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4832 } 4833 4834 return 0; 4835} 4836 4837static __init void rb_ipi(void *ignore) 4838{ 4839 struct rb_test_data *data; 4840 int cpu = smp_processor_id(); 4841 4842 data = &rb_data[cpu]; 4843 rb_write_something(data, true); 4844} 4845 4846static __init int rb_hammer_test(void *arg) 4847{ 4848 while (!kthread_should_stop()) { 4849 4850 /* Send an IPI to all cpus to write data! */ 4851 smp_call_function(rb_ipi, NULL, 1); 4852 /* No sleep, but for non preempt, let others run */ 4853 schedule(); 4854 } 4855 4856 return 0; 4857} 4858 4859static __init int test_ringbuffer(void) 4860{ 4861 struct task_struct *rb_hammer; 4862 struct ring_buffer *buffer; 4863 int cpu; 4864 int ret = 0; 4865 4866 pr_info("Running ring buffer tests...\n"); 4867 4868 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4869 if (WARN_ON(!buffer)) 4870 return 0; 4871 4872 /* Disable buffer so that threads can't write to it yet */ 4873 ring_buffer_record_off(buffer); 4874 4875 for_each_online_cpu(cpu) { 4876 rb_data[cpu].buffer = buffer; 4877 rb_data[cpu].cpu = cpu; 4878 rb_data[cpu].cnt = cpu; 4879 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4880 "rbtester/%d", cpu); 4881 if (WARN_ON(!rb_threads[cpu])) { 4882 pr_cont("FAILED\n"); 4883 ret = -1; 4884 goto out_free; 4885 } 4886 4887 kthread_bind(rb_threads[cpu], cpu); 4888 wake_up_process(rb_threads[cpu]); 4889 } 4890 4891 /* Now create the rb hammer! */ 4892 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4893 if (WARN_ON(!rb_hammer)) { 4894 pr_cont("FAILED\n"); 4895 ret = -1; 4896 goto out_free; 4897 } 4898 4899 ring_buffer_record_on(buffer); 4900 /* 4901 * Show buffer is enabled before setting rb_test_started. 4902 * Yes there's a small race window where events could be 4903 * dropped and the thread wont catch it. But when a ring 4904 * buffer gets enabled, there will always be some kind of 4905 * delay before other CPUs see it. Thus, we don't care about 4906 * those dropped events. We care about events dropped after 4907 * the threads see that the buffer is active. 4908 */ 4909 smp_wmb(); 4910 rb_test_started = true; 4911 4912 set_current_state(TASK_INTERRUPTIBLE); 4913 /* Just run for 10 seconds */; 4914 schedule_timeout(10 * HZ); 4915 4916 kthread_stop(rb_hammer); 4917 4918 out_free: 4919 for_each_online_cpu(cpu) { 4920 if (!rb_threads[cpu]) 4921 break; 4922 kthread_stop(rb_threads[cpu]); 4923 } 4924 if (ret) { 4925 ring_buffer_free(buffer); 4926 return ret; 4927 } 4928 4929 /* Report! */ 4930 pr_info("finished\n"); 4931 for_each_online_cpu(cpu) { 4932 struct ring_buffer_event *event; 4933 struct rb_test_data *data = &rb_data[cpu]; 4934 struct rb_item *item; 4935 unsigned long total_events; 4936 unsigned long total_dropped; 4937 unsigned long total_written; 4938 unsigned long total_alloc; 4939 unsigned long total_read = 0; 4940 unsigned long total_size = 0; 4941 unsigned long total_len = 0; 4942 unsigned long total_lost = 0; 4943 unsigned long lost; 4944 int big_event_size; 4945 int small_event_size; 4946 4947 ret = -1; 4948 4949 total_events = data->events + data->events_nested; 4950 total_written = data->bytes_written + data->bytes_written_nested; 4951 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4952 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4953 4954 big_event_size = data->max_size + data->max_size_nested; 4955 small_event_size = data->min_size + data->min_size_nested; 4956 4957 pr_info("CPU %d:\n", cpu); 4958 pr_info(" events: %ld\n", total_events); 4959 pr_info(" dropped bytes: %ld\n", total_dropped); 4960 pr_info(" alloced bytes: %ld\n", total_alloc); 4961 pr_info(" written bytes: %ld\n", total_written); 4962 pr_info(" biggest event: %d\n", big_event_size); 4963 pr_info(" smallest event: %d\n", small_event_size); 4964 4965 if (RB_WARN_ON(buffer, total_dropped)) 4966 break; 4967 4968 ret = 0; 4969 4970 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4971 total_lost += lost; 4972 item = ring_buffer_event_data(event); 4973 total_len += ring_buffer_event_length(event); 4974 total_size += item->size + sizeof(struct rb_item); 4975 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4976 pr_info("FAILED!\n"); 4977 pr_info("buffer had: %.*s\n", item->size, item->str); 4978 pr_info("expected: %.*s\n", item->size, rb_string); 4979 RB_WARN_ON(buffer, 1); 4980 ret = -1; 4981 break; 4982 } 4983 total_read++; 4984 } 4985 if (ret) 4986 break; 4987 4988 ret = -1; 4989 4990 pr_info(" read events: %ld\n", total_read); 4991 pr_info(" lost events: %ld\n", total_lost); 4992 pr_info(" total events: %ld\n", total_lost + total_read); 4993 pr_info(" recorded len bytes: %ld\n", total_len); 4994 pr_info(" recorded size bytes: %ld\n", total_size); 4995 if (total_lost) 4996 pr_info(" With dropped events, record len and size may not match\n" 4997 " alloced and written from above\n"); 4998 if (!total_lost) { 4999 if (RB_WARN_ON(buffer, total_len != total_alloc || 5000 total_size != total_written)) 5001 break; 5002 } 5003 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5004 break; 5005 5006 ret = 0; 5007 } 5008 if (!ret) 5009 pr_info("Ring buffer PASSED!\n"); 5010 5011 ring_buffer_free(buffer); 5012 return 0; 5013} 5014 5015late_initcall(test_ringbuffer); 5016#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5017