1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ftrace_event.h>
7#include <linux/ring_buffer.h>
8#include <linux/trace_clock.h>
9#include <linux/trace_seq.h>
10#include <linux/spinlock.h>
11#include <linux/irq_work.h>
12#include <linux/uaccess.h>
13#include <linux/hardirq.h>
14#include <linux/kthread.h>	/* for self test */
15#include <linux/kmemcheck.h>
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25
26#include <asm/local.h>
27
28static void update_pages_handler(struct work_struct *work);
29
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
35	trace_seq_puts(s, "# compressed entry header\n");
36	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38	trace_seq_puts(s, "\tarray       :   32 bits\n");
39	trace_seq_putc(s, '\n');
40	trace_seq_printf(s, "\tpadding     : type == %d\n",
41			 RINGBUF_TYPE_PADDING);
42	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43			 RINGBUF_TYPE_TIME_EXTEND);
44	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47	return !trace_seq_has_overflowed(s);
48}
49
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on.  A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 *   +------+
67 *   |reader|          RING BUFFER
68 *   |page  |
69 *   +------+        +---+   +---+   +---+
70 *                   |   |-->|   |-->|   |
71 *                   +---+   +---+   +---+
72 *                     ^               |
73 *                     |               |
74 *                     +---------------+
75 *
76 *
77 *   +------+
78 *   |reader|          RING BUFFER
79 *   |page  |------------------v
80 *   +------+        +---+   +---+   +---+
81 *                   |   |-->|   |-->|   |
82 *                   +---+   +---+   +---+
83 *                     ^               |
84 *                     |               |
85 *                     +---------------+
86 *
87 *
88 *   +------+
89 *   |reader|          RING BUFFER
90 *   |page  |------------------v
91 *   +------+        +---+   +---+   +---+
92 *      ^            |   |-->|   |-->|   |
93 *      |            +---+   +---+   +---+
94 *      |                              |
95 *      |                              |
96 *      +------------------------------+
97 *
98 *
99 *   +------+
100 *   |buffer|          RING BUFFER
101 *   |page  |------------------v
102 *   +------+        +---+   +---+   +---+
103 *      ^            |   |   |   |-->|   |
104 *      |   New      +---+   +---+   +---+
105 *      |  Reader------^               |
106 *      |   page                       |
107 *      +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 *  This has two bits: ON, DISABLED
139 *
140 *  ON   DISABLED
141 * ---- ----------
142 *   0      0        : ring buffers are off
143 *   1      0        : ring buffers are on
144 *   X      1        : ring buffers are permanently disabled
145 */
146
147enum {
148	RB_BUFFERS_ON_BIT	= 0,
149	RB_BUFFERS_DISABLED_BIT	= 1,
150};
151
152enum {
153	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
154	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF		(1 << 20)
161
162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
168 * permanently.
169 */
170void tracing_off_permanent(void)
171{
172	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173}
174
175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176#define RB_ALIGNMENT		4U
177#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
179
180#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181# define RB_FORCE_8BYTE_ALIGNMENT	0
182# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT	1
185# define RB_ARCH_ALIGNMENT		8U
186#endif
187
188#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
189
190/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193enum {
194	RB_LEN_TIME_EXTEND = 8,
195	RB_LEN_TIME_STAMP = 16,
196};
197
198#define skip_time_extend(event) \
199	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201static inline int rb_null_event(struct ring_buffer_event *event)
202{
203	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204}
205
206static void rb_event_set_padding(struct ring_buffer_event *event)
207{
208	/* padding has a NULL time_delta */
209	event->type_len = RINGBUF_TYPE_PADDING;
210	event->time_delta = 0;
211}
212
213static unsigned
214rb_event_data_length(struct ring_buffer_event *event)
215{
216	unsigned length;
217
218	if (event->type_len)
219		length = event->type_len * RB_ALIGNMENT;
220	else
221		length = event->array[0];
222	return length + RB_EVNT_HDR_SIZE;
223}
224
225/*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230static inline unsigned
231rb_event_length(struct ring_buffer_event *event)
232{
233	switch (event->type_len) {
234	case RINGBUF_TYPE_PADDING:
235		if (rb_null_event(event))
236			/* undefined */
237			return -1;
238		return  event->array[0] + RB_EVNT_HDR_SIZE;
239
240	case RINGBUF_TYPE_TIME_EXTEND:
241		return RB_LEN_TIME_EXTEND;
242
243	case RINGBUF_TYPE_TIME_STAMP:
244		return RB_LEN_TIME_STAMP;
245
246	case RINGBUF_TYPE_DATA:
247		return rb_event_data_length(event);
248	default:
249		BUG();
250	}
251	/* not hit */
252	return 0;
253}
254
255/*
256 * Return total length of time extend and data,
257 *   or just the event length for all other events.
258 */
259static inline unsigned
260rb_event_ts_length(struct ring_buffer_event *event)
261{
262	unsigned len = 0;
263
264	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265		/* time extends include the data event after it */
266		len = RB_LEN_TIME_EXTEND;
267		event = skip_time_extend(event);
268	}
269	return len + rb_event_length(event);
270}
271
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
281 */
282unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283{
284	unsigned length;
285
286	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287		event = skip_time_extend(event);
288
289	length = rb_event_length(event);
290	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291		return length;
292	length -= RB_EVNT_HDR_SIZE;
293	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                length -= sizeof(event->array[0]);
295	return length;
296}
297EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299/* inline for ring buffer fast paths */
300static void *
301rb_event_data(struct ring_buffer_event *event)
302{
303	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304		event = skip_time_extend(event);
305	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306	/* If length is in len field, then array[0] has the data */
307	if (event->type_len)
308		return (void *)&event->array[0];
309	/* Otherwise length is in array[0] and array[1] has the data */
310	return (void *)&event->array[1];
311}
312
313/**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
317void *ring_buffer_event_data(struct ring_buffer_event *event)
318{
319	return rb_event_data(event);
320}
321EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323#define for_each_buffer_cpu(buffer, cpu)		\
324	for_each_cpu(cpu, buffer->cpumask)
325
326#define TS_SHIFT	27
327#define TS_MASK		((1ULL << TS_SHIFT) - 1)
328#define TS_DELTA_TEST	(~TS_MASK)
329
330/* Flag when events were overwritten */
331#define RB_MISSED_EVENTS	(1 << 31)
332/* Missed count stored at end */
333#define RB_MISSED_STORED	(1 << 30)
334
335struct buffer_data_page {
336	u64		 time_stamp;	/* page time stamp */
337	local_t		 commit;	/* write committed index */
338	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
339};
340
341/*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
349struct buffer_page {
350	struct list_head list;		/* list of buffer pages */
351	local_t		 write;		/* index for next write */
352	unsigned	 read;		/* index for next read */
353	local_t		 entries;	/* entries on this page */
354	unsigned long	 real_end;	/* real end of data */
355	struct buffer_data_page *page;	/* Actual data page */
356};
357
358/*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370#define RB_WRITE_MASK		0xfffff
371#define RB_WRITE_INTCNT		(1 << 20)
372
373static void rb_init_page(struct buffer_data_page *bpage)
374{
375	local_set(&bpage->commit, 0);
376}
377
378/**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
384size_t ring_buffer_page_len(void *page)
385{
386	return local_read(&((struct buffer_data_page *)page)->commit)
387		+ BUF_PAGE_HDR_SIZE;
388}
389
390/*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
394static void free_buffer_page(struct buffer_page *bpage)
395{
396	free_page((unsigned long)bpage->page);
397	kfree(bpage);
398}
399
400/*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403static inline int test_time_stamp(u64 delta)
404{
405	if (delta & TS_DELTA_TEST)
406		return 1;
407	return 0;
408}
409
410#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415int ring_buffer_print_page_header(struct trace_seq *s)
416{
417	struct buffer_data_page field;
418
419	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420			 "offset:0;\tsize:%u;\tsigned:%u;\n",
421			 (unsigned int)sizeof(field.time_stamp),
422			 (unsigned int)is_signed_type(u64));
423
424	trace_seq_printf(s, "\tfield: local_t commit;\t"
425			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426			 (unsigned int)offsetof(typeof(field), commit),
427			 (unsigned int)sizeof(field.commit),
428			 (unsigned int)is_signed_type(long));
429
430	trace_seq_printf(s, "\tfield: int overwrite;\t"
431			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432			 (unsigned int)offsetof(typeof(field), commit),
433			 1,
434			 (unsigned int)is_signed_type(long));
435
436	trace_seq_printf(s, "\tfield: char data;\t"
437			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438			 (unsigned int)offsetof(typeof(field), data),
439			 (unsigned int)BUF_PAGE_SIZE,
440			 (unsigned int)is_signed_type(char));
441
442	return !trace_seq_has_overflowed(s);
443}
444
445struct rb_irq_work {
446	struct irq_work			work;
447	wait_queue_head_t		waiters;
448	wait_queue_head_t		full_waiters;
449	bool				waiters_pending;
450	bool				full_waiters_pending;
451	bool				wakeup_full;
452};
453
454/*
455 * head_page == tail_page && head == tail then buffer is empty.
456 */
457struct ring_buffer_per_cpu {
458	int				cpu;
459	atomic_t			record_disabled;
460	struct ring_buffer		*buffer;
461	raw_spinlock_t			reader_lock;	/* serialize readers */
462	arch_spinlock_t			lock;
463	struct lock_class_key		lock_key;
464	unsigned long			nr_pages;
465	unsigned int			current_context;
466	struct list_head		*pages;
467	struct buffer_page		*head_page;	/* read from head */
468	struct buffer_page		*tail_page;	/* write to tail */
469	struct buffer_page		*commit_page;	/* committed pages */
470	struct buffer_page		*reader_page;
471	unsigned long			lost_events;
472	unsigned long			last_overrun;
473	local_t				entries_bytes;
474	local_t				entries;
475	local_t				overrun;
476	local_t				commit_overrun;
477	local_t				dropped_events;
478	local_t				committing;
479	local_t				commits;
480	unsigned long			read;
481	unsigned long			read_bytes;
482	u64				write_stamp;
483	u64				read_stamp;
484	/* ring buffer pages to update, > 0 to add, < 0 to remove */
485	long				nr_pages_to_update;
486	struct list_head		new_pages; /* new pages to add */
487	struct work_struct		update_pages_work;
488	struct completion		update_done;
489
490	struct rb_irq_work		irq_work;
491};
492
493struct ring_buffer {
494	unsigned			flags;
495	int				cpus;
496	atomic_t			record_disabled;
497	atomic_t			resize_disabled;
498	cpumask_var_t			cpumask;
499
500	struct lock_class_key		*reader_lock_key;
501
502	struct mutex			mutex;
503
504	struct ring_buffer_per_cpu	**buffers;
505
506#ifdef CONFIG_HOTPLUG_CPU
507	struct notifier_block		cpu_notify;
508#endif
509	u64				(*clock)(void);
510
511	struct rb_irq_work		irq_work;
512};
513
514struct ring_buffer_iter {
515	struct ring_buffer_per_cpu	*cpu_buffer;
516	unsigned long			head;
517	struct buffer_page		*head_page;
518	struct buffer_page		*cache_reader_page;
519	unsigned long			cache_read;
520	u64				read_stamp;
521};
522
523/*
524 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
525 *
526 * Schedules a delayed work to wake up any task that is blocked on the
527 * ring buffer waiters queue.
528 */
529static void rb_wake_up_waiters(struct irq_work *work)
530{
531	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
532
533	wake_up_all(&rbwork->waiters);
534	if (rbwork->wakeup_full) {
535		rbwork->wakeup_full = false;
536		wake_up_all(&rbwork->full_waiters);
537	}
538}
539
540/**
541 * ring_buffer_wait - wait for input to the ring buffer
542 * @buffer: buffer to wait on
543 * @cpu: the cpu buffer to wait on
544 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
545 *
546 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
547 * as data is added to any of the @buffer's cpu buffers. Otherwise
548 * it will wait for data to be added to a specific cpu buffer.
549 */
550int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
551{
552	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
553	DEFINE_WAIT(wait);
554	struct rb_irq_work *work;
555	int ret = 0;
556
557	/*
558	 * Depending on what the caller is waiting for, either any
559	 * data in any cpu buffer, or a specific buffer, put the
560	 * caller on the appropriate wait queue.
561	 */
562	if (cpu == RING_BUFFER_ALL_CPUS) {
563		work = &buffer->irq_work;
564		/* Full only makes sense on per cpu reads */
565		full = false;
566	} else {
567		if (!cpumask_test_cpu(cpu, buffer->cpumask))
568			return -ENODEV;
569		cpu_buffer = buffer->buffers[cpu];
570		work = &cpu_buffer->irq_work;
571	}
572
573
574	while (true) {
575		if (full)
576			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
577		else
578			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
579
580		/*
581		 * The events can happen in critical sections where
582		 * checking a work queue can cause deadlocks.
583		 * After adding a task to the queue, this flag is set
584		 * only to notify events to try to wake up the queue
585		 * using irq_work.
586		 *
587		 * We don't clear it even if the buffer is no longer
588		 * empty. The flag only causes the next event to run
589		 * irq_work to do the work queue wake up. The worse
590		 * that can happen if we race with !trace_empty() is that
591		 * an event will cause an irq_work to try to wake up
592		 * an empty queue.
593		 *
594		 * There's no reason to protect this flag either, as
595		 * the work queue and irq_work logic will do the necessary
596		 * synchronization for the wake ups. The only thing
597		 * that is necessary is that the wake up happens after
598		 * a task has been queued. It's OK for spurious wake ups.
599		 */
600		if (full)
601			work->full_waiters_pending = true;
602		else
603			work->waiters_pending = true;
604
605		if (signal_pending(current)) {
606			ret = -EINTR;
607			break;
608		}
609
610		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
611			break;
612
613		if (cpu != RING_BUFFER_ALL_CPUS &&
614		    !ring_buffer_empty_cpu(buffer, cpu)) {
615			unsigned long flags;
616			bool pagebusy;
617
618			if (!full)
619				break;
620
621			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
622			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
623			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
624
625			if (!pagebusy)
626				break;
627		}
628
629		schedule();
630	}
631
632	if (full)
633		finish_wait(&work->full_waiters, &wait);
634	else
635		finish_wait(&work->waiters, &wait);
636
637	return ret;
638}
639
640/**
641 * ring_buffer_poll_wait - poll on buffer input
642 * @buffer: buffer to wait on
643 * @cpu: the cpu buffer to wait on
644 * @filp: the file descriptor
645 * @poll_table: The poll descriptor
646 *
647 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
648 * as data is added to any of the @buffer's cpu buffers. Otherwise
649 * it will wait for data to be added to a specific cpu buffer.
650 *
651 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
652 * zero otherwise.
653 */
654int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
655			  struct file *filp, poll_table *poll_table)
656{
657	struct ring_buffer_per_cpu *cpu_buffer;
658	struct rb_irq_work *work;
659
660	if (cpu == RING_BUFFER_ALL_CPUS)
661		work = &buffer->irq_work;
662	else {
663		if (!cpumask_test_cpu(cpu, buffer->cpumask))
664			return -EINVAL;
665
666		cpu_buffer = buffer->buffers[cpu];
667		work = &cpu_buffer->irq_work;
668	}
669
670	poll_wait(filp, &work->waiters, poll_table);
671	work->waiters_pending = true;
672	/*
673	 * There's a tight race between setting the waiters_pending and
674	 * checking if the ring buffer is empty.  Once the waiters_pending bit
675	 * is set, the next event will wake the task up, but we can get stuck
676	 * if there's only a single event in.
677	 *
678	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
679	 * but adding a memory barrier to all events will cause too much of a
680	 * performance hit in the fast path.  We only need a memory barrier when
681	 * the buffer goes from empty to having content.  But as this race is
682	 * extremely small, and it's not a problem if another event comes in, we
683	 * will fix it later.
684	 */
685	smp_mb();
686
687	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
688	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
689		return POLLIN | POLLRDNORM;
690	return 0;
691}
692
693/* buffer may be either ring_buffer or ring_buffer_per_cpu */
694#define RB_WARN_ON(b, cond)						\
695	({								\
696		int _____ret = unlikely(cond);				\
697		if (_____ret) {						\
698			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
699				struct ring_buffer_per_cpu *__b =	\
700					(void *)b;			\
701				atomic_inc(&__b->buffer->record_disabled); \
702			} else						\
703				atomic_inc(&b->record_disabled);	\
704			WARN_ON(1);					\
705		}							\
706		_____ret;						\
707	})
708
709/* Up this if you want to test the TIME_EXTENTS and normalization */
710#define DEBUG_SHIFT 0
711
712static inline u64 rb_time_stamp(struct ring_buffer *buffer)
713{
714	/* shift to debug/test normalization and TIME_EXTENTS */
715	return buffer->clock() << DEBUG_SHIFT;
716}
717
718u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
719{
720	u64 time;
721
722	preempt_disable_notrace();
723	time = rb_time_stamp(buffer);
724	preempt_enable_no_resched_notrace();
725
726	return time;
727}
728EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
729
730void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
731				      int cpu, u64 *ts)
732{
733	/* Just stupid testing the normalize function and deltas */
734	*ts >>= DEBUG_SHIFT;
735}
736EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
737
738/*
739 * Making the ring buffer lockless makes things tricky.
740 * Although writes only happen on the CPU that they are on,
741 * and they only need to worry about interrupts. Reads can
742 * happen on any CPU.
743 *
744 * The reader page is always off the ring buffer, but when the
745 * reader finishes with a page, it needs to swap its page with
746 * a new one from the buffer. The reader needs to take from
747 * the head (writes go to the tail). But if a writer is in overwrite
748 * mode and wraps, it must push the head page forward.
749 *
750 * Here lies the problem.
751 *
752 * The reader must be careful to replace only the head page, and
753 * not another one. As described at the top of the file in the
754 * ASCII art, the reader sets its old page to point to the next
755 * page after head. It then sets the page after head to point to
756 * the old reader page. But if the writer moves the head page
757 * during this operation, the reader could end up with the tail.
758 *
759 * We use cmpxchg to help prevent this race. We also do something
760 * special with the page before head. We set the LSB to 1.
761 *
762 * When the writer must push the page forward, it will clear the
763 * bit that points to the head page, move the head, and then set
764 * the bit that points to the new head page.
765 *
766 * We also don't want an interrupt coming in and moving the head
767 * page on another writer. Thus we use the second LSB to catch
768 * that too. Thus:
769 *
770 * head->list->prev->next        bit 1          bit 0
771 *                              -------        -------
772 * Normal page                     0              0
773 * Points to head page             0              1
774 * New head page                   1              0
775 *
776 * Note we can not trust the prev pointer of the head page, because:
777 *
778 * +----+       +-----+        +-----+
779 * |    |------>|  T  |---X--->|  N  |
780 * |    |<------|     |        |     |
781 * +----+       +-----+        +-----+
782 *   ^                           ^ |
783 *   |          +-----+          | |
784 *   +----------|  R  |----------+ |
785 *              |     |<-----------+
786 *              +-----+
787 *
788 * Key:  ---X-->  HEAD flag set in pointer
789 *         T      Tail page
790 *         R      Reader page
791 *         N      Next page
792 *
793 * (see __rb_reserve_next() to see where this happens)
794 *
795 *  What the above shows is that the reader just swapped out
796 *  the reader page with a page in the buffer, but before it
797 *  could make the new header point back to the new page added
798 *  it was preempted by a writer. The writer moved forward onto
799 *  the new page added by the reader and is about to move forward
800 *  again.
801 *
802 *  You can see, it is legitimate for the previous pointer of
803 *  the head (or any page) not to point back to itself. But only
804 *  temporarially.
805 */
806
807#define RB_PAGE_NORMAL		0UL
808#define RB_PAGE_HEAD		1UL
809#define RB_PAGE_UPDATE		2UL
810
811
812#define RB_FLAG_MASK		3UL
813
814/* PAGE_MOVED is not part of the mask */
815#define RB_PAGE_MOVED		4UL
816
817/*
818 * rb_list_head - remove any bit
819 */
820static struct list_head *rb_list_head(struct list_head *list)
821{
822	unsigned long val = (unsigned long)list;
823
824	return (struct list_head *)(val & ~RB_FLAG_MASK);
825}
826
827/*
828 * rb_is_head_page - test if the given page is the head page
829 *
830 * Because the reader may move the head_page pointer, we can
831 * not trust what the head page is (it may be pointing to
832 * the reader page). But if the next page is a header page,
833 * its flags will be non zero.
834 */
835static inline int
836rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
837		struct buffer_page *page, struct list_head *list)
838{
839	unsigned long val;
840
841	val = (unsigned long)list->next;
842
843	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
844		return RB_PAGE_MOVED;
845
846	return val & RB_FLAG_MASK;
847}
848
849/*
850 * rb_is_reader_page
851 *
852 * The unique thing about the reader page, is that, if the
853 * writer is ever on it, the previous pointer never points
854 * back to the reader page.
855 */
856static int rb_is_reader_page(struct buffer_page *page)
857{
858	struct list_head *list = page->list.prev;
859
860	return rb_list_head(list->next) != &page->list;
861}
862
863/*
864 * rb_set_list_to_head - set a list_head to be pointing to head.
865 */
866static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
867				struct list_head *list)
868{
869	unsigned long *ptr;
870
871	ptr = (unsigned long *)&list->next;
872	*ptr |= RB_PAGE_HEAD;
873	*ptr &= ~RB_PAGE_UPDATE;
874}
875
876/*
877 * rb_head_page_activate - sets up head page
878 */
879static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
880{
881	struct buffer_page *head;
882
883	head = cpu_buffer->head_page;
884	if (!head)
885		return;
886
887	/*
888	 * Set the previous list pointer to have the HEAD flag.
889	 */
890	rb_set_list_to_head(cpu_buffer, head->list.prev);
891}
892
893static void rb_list_head_clear(struct list_head *list)
894{
895	unsigned long *ptr = (unsigned long *)&list->next;
896
897	*ptr &= ~RB_FLAG_MASK;
898}
899
900/*
901 * rb_head_page_dactivate - clears head page ptr (for free list)
902 */
903static void
904rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
905{
906	struct list_head *hd;
907
908	/* Go through the whole list and clear any pointers found. */
909	rb_list_head_clear(cpu_buffer->pages);
910
911	list_for_each(hd, cpu_buffer->pages)
912		rb_list_head_clear(hd);
913}
914
915static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
916			    struct buffer_page *head,
917			    struct buffer_page *prev,
918			    int old_flag, int new_flag)
919{
920	struct list_head *list;
921	unsigned long val = (unsigned long)&head->list;
922	unsigned long ret;
923
924	list = &prev->list;
925
926	val &= ~RB_FLAG_MASK;
927
928	ret = cmpxchg((unsigned long *)&list->next,
929		      val | old_flag, val | new_flag);
930
931	/* check if the reader took the page */
932	if ((ret & ~RB_FLAG_MASK) != val)
933		return RB_PAGE_MOVED;
934
935	return ret & RB_FLAG_MASK;
936}
937
938static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
939				   struct buffer_page *head,
940				   struct buffer_page *prev,
941				   int old_flag)
942{
943	return rb_head_page_set(cpu_buffer, head, prev,
944				old_flag, RB_PAGE_UPDATE);
945}
946
947static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
948				 struct buffer_page *head,
949				 struct buffer_page *prev,
950				 int old_flag)
951{
952	return rb_head_page_set(cpu_buffer, head, prev,
953				old_flag, RB_PAGE_HEAD);
954}
955
956static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
957				   struct buffer_page *head,
958				   struct buffer_page *prev,
959				   int old_flag)
960{
961	return rb_head_page_set(cpu_buffer, head, prev,
962				old_flag, RB_PAGE_NORMAL);
963}
964
965static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
966			       struct buffer_page **bpage)
967{
968	struct list_head *p = rb_list_head((*bpage)->list.next);
969
970	*bpage = list_entry(p, struct buffer_page, list);
971}
972
973static struct buffer_page *
974rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
975{
976	struct buffer_page *head;
977	struct buffer_page *page;
978	struct list_head *list;
979	int i;
980
981	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
982		return NULL;
983
984	/* sanity check */
985	list = cpu_buffer->pages;
986	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
987		return NULL;
988
989	page = head = cpu_buffer->head_page;
990	/*
991	 * It is possible that the writer moves the header behind
992	 * where we started, and we miss in one loop.
993	 * A second loop should grab the header, but we'll do
994	 * three loops just because I'm paranoid.
995	 */
996	for (i = 0; i < 3; i++) {
997		do {
998			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
999				cpu_buffer->head_page = page;
1000				return page;
1001			}
1002			rb_inc_page(cpu_buffer, &page);
1003		} while (page != head);
1004	}
1005
1006	RB_WARN_ON(cpu_buffer, 1);
1007
1008	return NULL;
1009}
1010
1011static int rb_head_page_replace(struct buffer_page *old,
1012				struct buffer_page *new)
1013{
1014	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1015	unsigned long val;
1016	unsigned long ret;
1017
1018	val = *ptr & ~RB_FLAG_MASK;
1019	val |= RB_PAGE_HEAD;
1020
1021	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1022
1023	return ret == val;
1024}
1025
1026/*
1027 * rb_tail_page_update - move the tail page forward
1028 *
1029 * Returns 1 if moved tail page, 0 if someone else did.
1030 */
1031static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1032			       struct buffer_page *tail_page,
1033			       struct buffer_page *next_page)
1034{
1035	struct buffer_page *old_tail;
1036	unsigned long old_entries;
1037	unsigned long old_write;
1038	int ret = 0;
1039
1040	/*
1041	 * The tail page now needs to be moved forward.
1042	 *
1043	 * We need to reset the tail page, but without messing
1044	 * with possible erasing of data brought in by interrupts
1045	 * that have moved the tail page and are currently on it.
1046	 *
1047	 * We add a counter to the write field to denote this.
1048	 */
1049	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1050	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1051
1052	/*
1053	 * Just make sure we have seen our old_write and synchronize
1054	 * with any interrupts that come in.
1055	 */
1056	barrier();
1057
1058	/*
1059	 * If the tail page is still the same as what we think
1060	 * it is, then it is up to us to update the tail
1061	 * pointer.
1062	 */
1063	if (tail_page == cpu_buffer->tail_page) {
1064		/* Zero the write counter */
1065		unsigned long val = old_write & ~RB_WRITE_MASK;
1066		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1067
1068		/*
1069		 * This will only succeed if an interrupt did
1070		 * not come in and change it. In which case, we
1071		 * do not want to modify it.
1072		 *
1073		 * We add (void) to let the compiler know that we do not care
1074		 * about the return value of these functions. We use the
1075		 * cmpxchg to only update if an interrupt did not already
1076		 * do it for us. If the cmpxchg fails, we don't care.
1077		 */
1078		(void)local_cmpxchg(&next_page->write, old_write, val);
1079		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1080
1081		/*
1082		 * No need to worry about races with clearing out the commit.
1083		 * it only can increment when a commit takes place. But that
1084		 * only happens in the outer most nested commit.
1085		 */
1086		local_set(&next_page->page->commit, 0);
1087
1088		old_tail = cmpxchg(&cpu_buffer->tail_page,
1089				   tail_page, next_page);
1090
1091		if (old_tail == tail_page)
1092			ret = 1;
1093	}
1094
1095	return ret;
1096}
1097
1098static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099			  struct buffer_page *bpage)
1100{
1101	unsigned long val = (unsigned long)bpage;
1102
1103	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104		return 1;
1105
1106	return 0;
1107}
1108
1109/**
1110 * rb_check_list - make sure a pointer to a list has the last bits zero
1111 */
1112static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113			 struct list_head *list)
1114{
1115	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116		return 1;
1117	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118		return 1;
1119	return 0;
1120}
1121
1122/**
1123 * rb_check_pages - integrity check of buffer pages
1124 * @cpu_buffer: CPU buffer with pages to test
1125 *
1126 * As a safety measure we check to make sure the data pages have not
1127 * been corrupted.
1128 */
1129static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130{
1131	struct list_head *head = cpu_buffer->pages;
1132	struct buffer_page *bpage, *tmp;
1133
1134	/* Reset the head page if it exists */
1135	if (cpu_buffer->head_page)
1136		rb_set_head_page(cpu_buffer);
1137
1138	rb_head_page_deactivate(cpu_buffer);
1139
1140	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141		return -1;
1142	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143		return -1;
1144
1145	if (rb_check_list(cpu_buffer, head))
1146		return -1;
1147
1148	list_for_each_entry_safe(bpage, tmp, head, list) {
1149		if (RB_WARN_ON(cpu_buffer,
1150			       bpage->list.next->prev != &bpage->list))
1151			return -1;
1152		if (RB_WARN_ON(cpu_buffer,
1153			       bpage->list.prev->next != &bpage->list))
1154			return -1;
1155		if (rb_check_list(cpu_buffer, &bpage->list))
1156			return -1;
1157	}
1158
1159	rb_head_page_activate(cpu_buffer);
1160
1161	return 0;
1162}
1163
1164static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165{
1166	struct buffer_page *bpage, *tmp;
1167	long i;
1168
1169	for (i = 0; i < nr_pages; i++) {
1170		struct page *page;
1171		/*
1172		 * __GFP_NORETRY flag makes sure that the allocation fails
1173		 * gracefully without invoking oom-killer and the system is
1174		 * not destabilized.
1175		 */
1176		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1177				    GFP_KERNEL | __GFP_NORETRY,
1178				    cpu_to_node(cpu));
1179		if (!bpage)
1180			goto free_pages;
1181
1182		list_add(&bpage->list, pages);
1183
1184		page = alloc_pages_node(cpu_to_node(cpu),
1185					GFP_KERNEL | __GFP_NORETRY, 0);
1186		if (!page)
1187			goto free_pages;
1188		bpage->page = page_address(page);
1189		rb_init_page(bpage->page);
1190	}
1191
1192	return 0;
1193
1194free_pages:
1195	list_for_each_entry_safe(bpage, tmp, pages, list) {
1196		list_del_init(&bpage->list);
1197		free_buffer_page(bpage);
1198	}
1199
1200	return -ENOMEM;
1201}
1202
1203static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1204			     unsigned long nr_pages)
1205{
1206	LIST_HEAD(pages);
1207
1208	WARN_ON(!nr_pages);
1209
1210	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1211		return -ENOMEM;
1212
1213	/*
1214	 * The ring buffer page list is a circular list that does not
1215	 * start and end with a list head. All page list items point to
1216	 * other pages.
1217	 */
1218	cpu_buffer->pages = pages.next;
1219	list_del(&pages);
1220
1221	cpu_buffer->nr_pages = nr_pages;
1222
1223	rb_check_pages(cpu_buffer);
1224
1225	return 0;
1226}
1227
1228static struct ring_buffer_per_cpu *
1229rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1230{
1231	struct ring_buffer_per_cpu *cpu_buffer;
1232	struct buffer_page *bpage;
1233	struct page *page;
1234	int ret;
1235
1236	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1237				  GFP_KERNEL, cpu_to_node(cpu));
1238	if (!cpu_buffer)
1239		return NULL;
1240
1241	cpu_buffer->cpu = cpu;
1242	cpu_buffer->buffer = buffer;
1243	raw_spin_lock_init(&cpu_buffer->reader_lock);
1244	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1245	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1246	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1247	init_completion(&cpu_buffer->update_done);
1248	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1249	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1250	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1251
1252	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1253			    GFP_KERNEL, cpu_to_node(cpu));
1254	if (!bpage)
1255		goto fail_free_buffer;
1256
1257	rb_check_bpage(cpu_buffer, bpage);
1258
1259	cpu_buffer->reader_page = bpage;
1260	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1261	if (!page)
1262		goto fail_free_reader;
1263	bpage->page = page_address(page);
1264	rb_init_page(bpage->page);
1265
1266	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1267	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1268
1269	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1270	if (ret < 0)
1271		goto fail_free_reader;
1272
1273	cpu_buffer->head_page
1274		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1275	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1276
1277	rb_head_page_activate(cpu_buffer);
1278
1279	return cpu_buffer;
1280
1281 fail_free_reader:
1282	free_buffer_page(cpu_buffer->reader_page);
1283
1284 fail_free_buffer:
1285	kfree(cpu_buffer);
1286	return NULL;
1287}
1288
1289static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1290{
1291	struct list_head *head = cpu_buffer->pages;
1292	struct buffer_page *bpage, *tmp;
1293
1294	free_buffer_page(cpu_buffer->reader_page);
1295
1296	rb_head_page_deactivate(cpu_buffer);
1297
1298	if (head) {
1299		list_for_each_entry_safe(bpage, tmp, head, list) {
1300			list_del_init(&bpage->list);
1301			free_buffer_page(bpage);
1302		}
1303		bpage = list_entry(head, struct buffer_page, list);
1304		free_buffer_page(bpage);
1305	}
1306
1307	kfree(cpu_buffer);
1308}
1309
1310#ifdef CONFIG_HOTPLUG_CPU
1311static int rb_cpu_notify(struct notifier_block *self,
1312			 unsigned long action, void *hcpu);
1313#endif
1314
1315/**
1316 * __ring_buffer_alloc - allocate a new ring_buffer
1317 * @size: the size in bytes per cpu that is needed.
1318 * @flags: attributes to set for the ring buffer.
1319 *
1320 * Currently the only flag that is available is the RB_FL_OVERWRITE
1321 * flag. This flag means that the buffer will overwrite old data
1322 * when the buffer wraps. If this flag is not set, the buffer will
1323 * drop data when the tail hits the head.
1324 */
1325struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1326					struct lock_class_key *key)
1327{
1328	struct ring_buffer *buffer;
1329	long nr_pages;
1330	int bsize;
1331	int cpu;
1332
1333	/* keep it in its own cache line */
1334	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1335			 GFP_KERNEL);
1336	if (!buffer)
1337		return NULL;
1338
1339	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1340		goto fail_free_buffer;
1341
1342	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1343	buffer->flags = flags;
1344	buffer->clock = trace_clock_local;
1345	buffer->reader_lock_key = key;
1346
1347	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1348	init_waitqueue_head(&buffer->irq_work.waiters);
1349
1350	/* need at least two pages */
1351	if (nr_pages < 2)
1352		nr_pages = 2;
1353
1354	/*
1355	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1356	 * in early initcall, it will not be notified of secondary cpus.
1357	 * In that off case, we need to allocate for all possible cpus.
1358	 */
1359#ifdef CONFIG_HOTPLUG_CPU
1360	cpu_notifier_register_begin();
1361	cpumask_copy(buffer->cpumask, cpu_online_mask);
1362#else
1363	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1364#endif
1365	buffer->cpus = nr_cpu_ids;
1366
1367	bsize = sizeof(void *) * nr_cpu_ids;
1368	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1369				  GFP_KERNEL);
1370	if (!buffer->buffers)
1371		goto fail_free_cpumask;
1372
1373	for_each_buffer_cpu(buffer, cpu) {
1374		buffer->buffers[cpu] =
1375			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1376		if (!buffer->buffers[cpu])
1377			goto fail_free_buffers;
1378	}
1379
1380#ifdef CONFIG_HOTPLUG_CPU
1381	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1382	buffer->cpu_notify.priority = 0;
1383	__register_cpu_notifier(&buffer->cpu_notify);
1384	cpu_notifier_register_done();
1385#endif
1386
1387	mutex_init(&buffer->mutex);
1388
1389	return buffer;
1390
1391 fail_free_buffers:
1392	for_each_buffer_cpu(buffer, cpu) {
1393		if (buffer->buffers[cpu])
1394			rb_free_cpu_buffer(buffer->buffers[cpu]);
1395	}
1396	kfree(buffer->buffers);
1397
1398 fail_free_cpumask:
1399	free_cpumask_var(buffer->cpumask);
1400#ifdef CONFIG_HOTPLUG_CPU
1401	cpu_notifier_register_done();
1402#endif
1403
1404 fail_free_buffer:
1405	kfree(buffer);
1406	return NULL;
1407}
1408EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1409
1410/**
1411 * ring_buffer_free - free a ring buffer.
1412 * @buffer: the buffer to free.
1413 */
1414void
1415ring_buffer_free(struct ring_buffer *buffer)
1416{
1417	int cpu;
1418
1419#ifdef CONFIG_HOTPLUG_CPU
1420	cpu_notifier_register_begin();
1421	__unregister_cpu_notifier(&buffer->cpu_notify);
1422#endif
1423
1424	for_each_buffer_cpu(buffer, cpu)
1425		rb_free_cpu_buffer(buffer->buffers[cpu]);
1426
1427#ifdef CONFIG_HOTPLUG_CPU
1428	cpu_notifier_register_done();
1429#endif
1430
1431	kfree(buffer->buffers);
1432	free_cpumask_var(buffer->cpumask);
1433
1434	kfree(buffer);
1435}
1436EXPORT_SYMBOL_GPL(ring_buffer_free);
1437
1438void ring_buffer_set_clock(struct ring_buffer *buffer,
1439			   u64 (*clock)(void))
1440{
1441	buffer->clock = clock;
1442}
1443
1444static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1445
1446static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1447{
1448	return local_read(&bpage->entries) & RB_WRITE_MASK;
1449}
1450
1451static inline unsigned long rb_page_write(struct buffer_page *bpage)
1452{
1453	return local_read(&bpage->write) & RB_WRITE_MASK;
1454}
1455
1456static int
1457rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1458{
1459	struct list_head *tail_page, *to_remove, *next_page;
1460	struct buffer_page *to_remove_page, *tmp_iter_page;
1461	struct buffer_page *last_page, *first_page;
1462	unsigned long nr_removed;
1463	unsigned long head_bit;
1464	int page_entries;
1465
1466	head_bit = 0;
1467
1468	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1469	atomic_inc(&cpu_buffer->record_disabled);
1470	/*
1471	 * We don't race with the readers since we have acquired the reader
1472	 * lock. We also don't race with writers after disabling recording.
1473	 * This makes it easy to figure out the first and the last page to be
1474	 * removed from the list. We unlink all the pages in between including
1475	 * the first and last pages. This is done in a busy loop so that we
1476	 * lose the least number of traces.
1477	 * The pages are freed after we restart recording and unlock readers.
1478	 */
1479	tail_page = &cpu_buffer->tail_page->list;
1480
1481	/*
1482	 * tail page might be on reader page, we remove the next page
1483	 * from the ring buffer
1484	 */
1485	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1486		tail_page = rb_list_head(tail_page->next);
1487	to_remove = tail_page;
1488
1489	/* start of pages to remove */
1490	first_page = list_entry(rb_list_head(to_remove->next),
1491				struct buffer_page, list);
1492
1493	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1494		to_remove = rb_list_head(to_remove)->next;
1495		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1496	}
1497
1498	next_page = rb_list_head(to_remove)->next;
1499
1500	/*
1501	 * Now we remove all pages between tail_page and next_page.
1502	 * Make sure that we have head_bit value preserved for the
1503	 * next page
1504	 */
1505	tail_page->next = (struct list_head *)((unsigned long)next_page |
1506						head_bit);
1507	next_page = rb_list_head(next_page);
1508	next_page->prev = tail_page;
1509
1510	/* make sure pages points to a valid page in the ring buffer */
1511	cpu_buffer->pages = next_page;
1512
1513	/* update head page */
1514	if (head_bit)
1515		cpu_buffer->head_page = list_entry(next_page,
1516						struct buffer_page, list);
1517
1518	/*
1519	 * change read pointer to make sure any read iterators reset
1520	 * themselves
1521	 */
1522	cpu_buffer->read = 0;
1523
1524	/* pages are removed, resume tracing and then free the pages */
1525	atomic_dec(&cpu_buffer->record_disabled);
1526	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1527
1528	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1529
1530	/* last buffer page to remove */
1531	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1532				list);
1533	tmp_iter_page = first_page;
1534
1535	do {
1536		to_remove_page = tmp_iter_page;
1537		rb_inc_page(cpu_buffer, &tmp_iter_page);
1538
1539		/* update the counters */
1540		page_entries = rb_page_entries(to_remove_page);
1541		if (page_entries) {
1542			/*
1543			 * If something was added to this page, it was full
1544			 * since it is not the tail page. So we deduct the
1545			 * bytes consumed in ring buffer from here.
1546			 * Increment overrun to account for the lost events.
1547			 */
1548			local_add(page_entries, &cpu_buffer->overrun);
1549			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1550		}
1551
1552		/*
1553		 * We have already removed references to this list item, just
1554		 * free up the buffer_page and its page
1555		 */
1556		free_buffer_page(to_remove_page);
1557		nr_removed--;
1558
1559	} while (to_remove_page != last_page);
1560
1561	RB_WARN_ON(cpu_buffer, nr_removed);
1562
1563	return nr_removed == 0;
1564}
1565
1566static int
1567rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1568{
1569	struct list_head *pages = &cpu_buffer->new_pages;
1570	int retries, success;
1571
1572	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1573	/*
1574	 * We are holding the reader lock, so the reader page won't be swapped
1575	 * in the ring buffer. Now we are racing with the writer trying to
1576	 * move head page and the tail page.
1577	 * We are going to adapt the reader page update process where:
1578	 * 1. We first splice the start and end of list of new pages between
1579	 *    the head page and its previous page.
1580	 * 2. We cmpxchg the prev_page->next to point from head page to the
1581	 *    start of new pages list.
1582	 * 3. Finally, we update the head->prev to the end of new list.
1583	 *
1584	 * We will try this process 10 times, to make sure that we don't keep
1585	 * spinning.
1586	 */
1587	retries = 10;
1588	success = 0;
1589	while (retries--) {
1590		struct list_head *head_page, *prev_page, *r;
1591		struct list_head *last_page, *first_page;
1592		struct list_head *head_page_with_bit;
1593
1594		head_page = &rb_set_head_page(cpu_buffer)->list;
1595		if (!head_page)
1596			break;
1597		prev_page = head_page->prev;
1598
1599		first_page = pages->next;
1600		last_page  = pages->prev;
1601
1602		head_page_with_bit = (struct list_head *)
1603				     ((unsigned long)head_page | RB_PAGE_HEAD);
1604
1605		last_page->next = head_page_with_bit;
1606		first_page->prev = prev_page;
1607
1608		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1609
1610		if (r == head_page_with_bit) {
1611			/*
1612			 * yay, we replaced the page pointer to our new list,
1613			 * now, we just have to update to head page's prev
1614			 * pointer to point to end of list
1615			 */
1616			head_page->prev = last_page;
1617			success = 1;
1618			break;
1619		}
1620	}
1621
1622	if (success)
1623		INIT_LIST_HEAD(pages);
1624	/*
1625	 * If we weren't successful in adding in new pages, warn and stop
1626	 * tracing
1627	 */
1628	RB_WARN_ON(cpu_buffer, !success);
1629	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1630
1631	/* free pages if they weren't inserted */
1632	if (!success) {
1633		struct buffer_page *bpage, *tmp;
1634		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1635					 list) {
1636			list_del_init(&bpage->list);
1637			free_buffer_page(bpage);
1638		}
1639	}
1640	return success;
1641}
1642
1643static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1644{
1645	int success;
1646
1647	if (cpu_buffer->nr_pages_to_update > 0)
1648		success = rb_insert_pages(cpu_buffer);
1649	else
1650		success = rb_remove_pages(cpu_buffer,
1651					-cpu_buffer->nr_pages_to_update);
1652
1653	if (success)
1654		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1655}
1656
1657static void update_pages_handler(struct work_struct *work)
1658{
1659	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1660			struct ring_buffer_per_cpu, update_pages_work);
1661	rb_update_pages(cpu_buffer);
1662	complete(&cpu_buffer->update_done);
1663}
1664
1665/**
1666 * ring_buffer_resize - resize the ring buffer
1667 * @buffer: the buffer to resize.
1668 * @size: the new size.
1669 * @cpu_id: the cpu buffer to resize
1670 *
1671 * Minimum size is 2 * BUF_PAGE_SIZE.
1672 *
1673 * Returns 0 on success and < 0 on failure.
1674 */
1675int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1676			int cpu_id)
1677{
1678	struct ring_buffer_per_cpu *cpu_buffer;
1679	unsigned long nr_pages;
1680	int cpu, err = 0;
1681
1682	/*
1683	 * Always succeed at resizing a non-existent buffer:
1684	 */
1685	if (!buffer)
1686		return size;
1687
1688	/* Make sure the requested buffer exists */
1689	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1690	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1691		return size;
1692
1693	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1694
1695	/* we need a minimum of two pages */
1696	if (nr_pages < 2)
1697		nr_pages = 2;
1698
1699	size = nr_pages * BUF_PAGE_SIZE;
1700
1701	/*
1702	 * Don't succeed if resizing is disabled, as a reader might be
1703	 * manipulating the ring buffer and is expecting a sane state while
1704	 * this is true.
1705	 */
1706	if (atomic_read(&buffer->resize_disabled))
1707		return -EBUSY;
1708
1709	/* prevent another thread from changing buffer sizes */
1710	mutex_lock(&buffer->mutex);
1711
1712	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1713		/* calculate the pages to update */
1714		for_each_buffer_cpu(buffer, cpu) {
1715			cpu_buffer = buffer->buffers[cpu];
1716
1717			cpu_buffer->nr_pages_to_update = nr_pages -
1718							cpu_buffer->nr_pages;
1719			/*
1720			 * nothing more to do for removing pages or no update
1721			 */
1722			if (cpu_buffer->nr_pages_to_update <= 0)
1723				continue;
1724			/*
1725			 * to add pages, make sure all new pages can be
1726			 * allocated without receiving ENOMEM
1727			 */
1728			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1729			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730						&cpu_buffer->new_pages, cpu)) {
1731				/* not enough memory for new pages */
1732				err = -ENOMEM;
1733				goto out_err;
1734			}
1735		}
1736
1737		get_online_cpus();
1738		/*
1739		 * Fire off all the required work handlers
1740		 * We can't schedule on offline CPUs, but it's not necessary
1741		 * since we can change their buffer sizes without any race.
1742		 */
1743		for_each_buffer_cpu(buffer, cpu) {
1744			cpu_buffer = buffer->buffers[cpu];
1745			if (!cpu_buffer->nr_pages_to_update)
1746				continue;
1747
1748			/* Can't run something on an offline CPU. */
1749			if (!cpu_online(cpu)) {
1750				rb_update_pages(cpu_buffer);
1751				cpu_buffer->nr_pages_to_update = 0;
1752			} else {
1753				schedule_work_on(cpu,
1754						&cpu_buffer->update_pages_work);
1755			}
1756		}
1757
1758		/* wait for all the updates to complete */
1759		for_each_buffer_cpu(buffer, cpu) {
1760			cpu_buffer = buffer->buffers[cpu];
1761			if (!cpu_buffer->nr_pages_to_update)
1762				continue;
1763
1764			if (cpu_online(cpu))
1765				wait_for_completion(&cpu_buffer->update_done);
1766			cpu_buffer->nr_pages_to_update = 0;
1767		}
1768
1769		put_online_cpus();
1770	} else {
1771		/* Make sure this CPU has been intitialized */
1772		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1773			goto out;
1774
1775		cpu_buffer = buffer->buffers[cpu_id];
1776
1777		if (nr_pages == cpu_buffer->nr_pages)
1778			goto out;
1779
1780		cpu_buffer->nr_pages_to_update = nr_pages -
1781						cpu_buffer->nr_pages;
1782
1783		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1784		if (cpu_buffer->nr_pages_to_update > 0 &&
1785			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1786					    &cpu_buffer->new_pages, cpu_id)) {
1787			err = -ENOMEM;
1788			goto out_err;
1789		}
1790
1791		get_online_cpus();
1792
1793		/* Can't run something on an offline CPU. */
1794		if (!cpu_online(cpu_id))
1795			rb_update_pages(cpu_buffer);
1796		else {
1797			schedule_work_on(cpu_id,
1798					 &cpu_buffer->update_pages_work);
1799			wait_for_completion(&cpu_buffer->update_done);
1800		}
1801
1802		cpu_buffer->nr_pages_to_update = 0;
1803		put_online_cpus();
1804	}
1805
1806 out:
1807	/*
1808	 * The ring buffer resize can happen with the ring buffer
1809	 * enabled, so that the update disturbs the tracing as little
1810	 * as possible. But if the buffer is disabled, we do not need
1811	 * to worry about that, and we can take the time to verify
1812	 * that the buffer is not corrupt.
1813	 */
1814	if (atomic_read(&buffer->record_disabled)) {
1815		atomic_inc(&buffer->record_disabled);
1816		/*
1817		 * Even though the buffer was disabled, we must make sure
1818		 * that it is truly disabled before calling rb_check_pages.
1819		 * There could have been a race between checking
1820		 * record_disable and incrementing it.
1821		 */
1822		synchronize_sched();
1823		for_each_buffer_cpu(buffer, cpu) {
1824			cpu_buffer = buffer->buffers[cpu];
1825			rb_check_pages(cpu_buffer);
1826		}
1827		atomic_dec(&buffer->record_disabled);
1828	}
1829
1830	mutex_unlock(&buffer->mutex);
1831	return size;
1832
1833 out_err:
1834	for_each_buffer_cpu(buffer, cpu) {
1835		struct buffer_page *bpage, *tmp;
1836
1837		cpu_buffer = buffer->buffers[cpu];
1838		cpu_buffer->nr_pages_to_update = 0;
1839
1840		if (list_empty(&cpu_buffer->new_pages))
1841			continue;
1842
1843		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1844					list) {
1845			list_del_init(&bpage->list);
1846			free_buffer_page(bpage);
1847		}
1848	}
1849	mutex_unlock(&buffer->mutex);
1850	return err;
1851}
1852EXPORT_SYMBOL_GPL(ring_buffer_resize);
1853
1854void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1855{
1856	mutex_lock(&buffer->mutex);
1857	if (val)
1858		buffer->flags |= RB_FL_OVERWRITE;
1859	else
1860		buffer->flags &= ~RB_FL_OVERWRITE;
1861	mutex_unlock(&buffer->mutex);
1862}
1863EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1864
1865static inline void *
1866__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1867{
1868	return bpage->data + index;
1869}
1870
1871static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1872{
1873	return bpage->page->data + index;
1874}
1875
1876static inline struct ring_buffer_event *
1877rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1878{
1879	return __rb_page_index(cpu_buffer->reader_page,
1880			       cpu_buffer->reader_page->read);
1881}
1882
1883static inline struct ring_buffer_event *
1884rb_iter_head_event(struct ring_buffer_iter *iter)
1885{
1886	return __rb_page_index(iter->head_page, iter->head);
1887}
1888
1889static inline unsigned rb_page_commit(struct buffer_page *bpage)
1890{
1891	return local_read(&bpage->page->commit);
1892}
1893
1894/* Size is determined by what has been committed */
1895static inline unsigned rb_page_size(struct buffer_page *bpage)
1896{
1897	return rb_page_commit(bpage);
1898}
1899
1900static inline unsigned
1901rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1902{
1903	return rb_page_commit(cpu_buffer->commit_page);
1904}
1905
1906static inline unsigned
1907rb_event_index(struct ring_buffer_event *event)
1908{
1909	unsigned long addr = (unsigned long)event;
1910
1911	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1912}
1913
1914static inline int
1915rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1916		   struct ring_buffer_event *event)
1917{
1918	unsigned long addr = (unsigned long)event;
1919	unsigned long index;
1920
1921	index = rb_event_index(event);
1922	addr &= PAGE_MASK;
1923
1924	return cpu_buffer->commit_page->page == (void *)addr &&
1925		rb_commit_index(cpu_buffer) == index;
1926}
1927
1928static void
1929rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1930{
1931	unsigned long max_count;
1932
1933	/*
1934	 * We only race with interrupts and NMIs on this CPU.
1935	 * If we own the commit event, then we can commit
1936	 * all others that interrupted us, since the interruptions
1937	 * are in stack format (they finish before they come
1938	 * back to us). This allows us to do a simple loop to
1939	 * assign the commit to the tail.
1940	 */
1941 again:
1942	max_count = cpu_buffer->nr_pages * 100;
1943
1944	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1945		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1946			return;
1947		if (RB_WARN_ON(cpu_buffer,
1948			       rb_is_reader_page(cpu_buffer->tail_page)))
1949			return;
1950		local_set(&cpu_buffer->commit_page->page->commit,
1951			  rb_page_write(cpu_buffer->commit_page));
1952		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1953		cpu_buffer->write_stamp =
1954			cpu_buffer->commit_page->page->time_stamp;
1955		/* add barrier to keep gcc from optimizing too much */
1956		barrier();
1957	}
1958	while (rb_commit_index(cpu_buffer) !=
1959	       rb_page_write(cpu_buffer->commit_page)) {
1960
1961		local_set(&cpu_buffer->commit_page->page->commit,
1962			  rb_page_write(cpu_buffer->commit_page));
1963		RB_WARN_ON(cpu_buffer,
1964			   local_read(&cpu_buffer->commit_page->page->commit) &
1965			   ~RB_WRITE_MASK);
1966		barrier();
1967	}
1968
1969	/* again, keep gcc from optimizing */
1970	barrier();
1971
1972	/*
1973	 * If an interrupt came in just after the first while loop
1974	 * and pushed the tail page forward, we will be left with
1975	 * a dangling commit that will never go forward.
1976	 */
1977	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1978		goto again;
1979}
1980
1981static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1982{
1983	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1984	cpu_buffer->reader_page->read = 0;
1985}
1986
1987static void rb_inc_iter(struct ring_buffer_iter *iter)
1988{
1989	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1990
1991	/*
1992	 * The iterator could be on the reader page (it starts there).
1993	 * But the head could have moved, since the reader was
1994	 * found. Check for this case and assign the iterator
1995	 * to the head page instead of next.
1996	 */
1997	if (iter->head_page == cpu_buffer->reader_page)
1998		iter->head_page = rb_set_head_page(cpu_buffer);
1999	else
2000		rb_inc_page(cpu_buffer, &iter->head_page);
2001
2002	iter->read_stamp = iter->head_page->page->time_stamp;
2003	iter->head = 0;
2004}
2005
2006/* Slow path, do not inline */
2007static noinline struct ring_buffer_event *
2008rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2009{
2010	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2011
2012	/* Not the first event on the page? */
2013	if (rb_event_index(event)) {
2014		event->time_delta = delta & TS_MASK;
2015		event->array[0] = delta >> TS_SHIFT;
2016	} else {
2017		/* nope, just zero it */
2018		event->time_delta = 0;
2019		event->array[0] = 0;
2020	}
2021
2022	return skip_time_extend(event);
2023}
2024
2025/**
2026 * rb_update_event - update event type and data
2027 * @event: the event to update
2028 * @type: the type of event
2029 * @length: the size of the event field in the ring buffer
2030 *
2031 * Update the type and data fields of the event. The length
2032 * is the actual size that is written to the ring buffer,
2033 * and with this, we can determine what to place into the
2034 * data field.
2035 */
2036static void
2037rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2038		struct ring_buffer_event *event, unsigned length,
2039		int add_timestamp, u64 delta)
2040{
2041	/* Only a commit updates the timestamp */
2042	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2043		delta = 0;
2044
2045	/*
2046	 * If we need to add a timestamp, then we
2047	 * add it to the start of the resevered space.
2048	 */
2049	if (unlikely(add_timestamp)) {
2050		event = rb_add_time_stamp(event, delta);
2051		length -= RB_LEN_TIME_EXTEND;
2052		delta = 0;
2053	}
2054
2055	event->time_delta = delta;
2056	length -= RB_EVNT_HDR_SIZE;
2057	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2058		event->type_len = 0;
2059		event->array[0] = length;
2060	} else
2061		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2062}
2063
2064/*
2065 * rb_handle_head_page - writer hit the head page
2066 *
2067 * Returns: +1 to retry page
2068 *           0 to continue
2069 *          -1 on error
2070 */
2071static int
2072rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2073		    struct buffer_page *tail_page,
2074		    struct buffer_page *next_page)
2075{
2076	struct buffer_page *new_head;
2077	int entries;
2078	int type;
2079	int ret;
2080
2081	entries = rb_page_entries(next_page);
2082
2083	/*
2084	 * The hard part is here. We need to move the head
2085	 * forward, and protect against both readers on
2086	 * other CPUs and writers coming in via interrupts.
2087	 */
2088	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2089				       RB_PAGE_HEAD);
2090
2091	/*
2092	 * type can be one of four:
2093	 *  NORMAL - an interrupt already moved it for us
2094	 *  HEAD   - we are the first to get here.
2095	 *  UPDATE - we are the interrupt interrupting
2096	 *           a current move.
2097	 *  MOVED  - a reader on another CPU moved the next
2098	 *           pointer to its reader page. Give up
2099	 *           and try again.
2100	 */
2101
2102	switch (type) {
2103	case RB_PAGE_HEAD:
2104		/*
2105		 * We changed the head to UPDATE, thus
2106		 * it is our responsibility to update
2107		 * the counters.
2108		 */
2109		local_add(entries, &cpu_buffer->overrun);
2110		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2111
2112		/*
2113		 * The entries will be zeroed out when we move the
2114		 * tail page.
2115		 */
2116
2117		/* still more to do */
2118		break;
2119
2120	case RB_PAGE_UPDATE:
2121		/*
2122		 * This is an interrupt that interrupt the
2123		 * previous update. Still more to do.
2124		 */
2125		break;
2126	case RB_PAGE_NORMAL:
2127		/*
2128		 * An interrupt came in before the update
2129		 * and processed this for us.
2130		 * Nothing left to do.
2131		 */
2132		return 1;
2133	case RB_PAGE_MOVED:
2134		/*
2135		 * The reader is on another CPU and just did
2136		 * a swap with our next_page.
2137		 * Try again.
2138		 */
2139		return 1;
2140	default:
2141		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2142		return -1;
2143	}
2144
2145	/*
2146	 * Now that we are here, the old head pointer is
2147	 * set to UPDATE. This will keep the reader from
2148	 * swapping the head page with the reader page.
2149	 * The reader (on another CPU) will spin till
2150	 * we are finished.
2151	 *
2152	 * We just need to protect against interrupts
2153	 * doing the job. We will set the next pointer
2154	 * to HEAD. After that, we set the old pointer
2155	 * to NORMAL, but only if it was HEAD before.
2156	 * otherwise we are an interrupt, and only
2157	 * want the outer most commit to reset it.
2158	 */
2159	new_head = next_page;
2160	rb_inc_page(cpu_buffer, &new_head);
2161
2162	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2163				    RB_PAGE_NORMAL);
2164
2165	/*
2166	 * Valid returns are:
2167	 *  HEAD   - an interrupt came in and already set it.
2168	 *  NORMAL - One of two things:
2169	 *            1) We really set it.
2170	 *            2) A bunch of interrupts came in and moved
2171	 *               the page forward again.
2172	 */
2173	switch (ret) {
2174	case RB_PAGE_HEAD:
2175	case RB_PAGE_NORMAL:
2176		/* OK */
2177		break;
2178	default:
2179		RB_WARN_ON(cpu_buffer, 1);
2180		return -1;
2181	}
2182
2183	/*
2184	 * It is possible that an interrupt came in,
2185	 * set the head up, then more interrupts came in
2186	 * and moved it again. When we get back here,
2187	 * the page would have been set to NORMAL but we
2188	 * just set it back to HEAD.
2189	 *
2190	 * How do you detect this? Well, if that happened
2191	 * the tail page would have moved.
2192	 */
2193	if (ret == RB_PAGE_NORMAL) {
2194		/*
2195		 * If the tail had moved passed next, then we need
2196		 * to reset the pointer.
2197		 */
2198		if (cpu_buffer->tail_page != tail_page &&
2199		    cpu_buffer->tail_page != next_page)
2200			rb_head_page_set_normal(cpu_buffer, new_head,
2201						next_page,
2202						RB_PAGE_HEAD);
2203	}
2204
2205	/*
2206	 * If this was the outer most commit (the one that
2207	 * changed the original pointer from HEAD to UPDATE),
2208	 * then it is up to us to reset it to NORMAL.
2209	 */
2210	if (type == RB_PAGE_HEAD) {
2211		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2212					      tail_page,
2213					      RB_PAGE_UPDATE);
2214		if (RB_WARN_ON(cpu_buffer,
2215			       ret != RB_PAGE_UPDATE))
2216			return -1;
2217	}
2218
2219	return 0;
2220}
2221
2222static unsigned rb_calculate_event_length(unsigned length)
2223{
2224	struct ring_buffer_event event; /* Used only for sizeof array */
2225
2226	/* zero length can cause confusions */
2227	if (!length)
2228		length = 1;
2229
2230	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2231		length += sizeof(event.array[0]);
2232
2233	length += RB_EVNT_HDR_SIZE;
2234	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2235
2236	return length;
2237}
2238
2239static inline void
2240rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2241	      struct buffer_page *tail_page,
2242	      unsigned long tail, unsigned long length)
2243{
2244	struct ring_buffer_event *event;
2245
2246	/*
2247	 * Only the event that crossed the page boundary
2248	 * must fill the old tail_page with padding.
2249	 */
2250	if (tail >= BUF_PAGE_SIZE) {
2251		/*
2252		 * If the page was filled, then we still need
2253		 * to update the real_end. Reset it to zero
2254		 * and the reader will ignore it.
2255		 */
2256		if (tail == BUF_PAGE_SIZE)
2257			tail_page->real_end = 0;
2258
2259		local_sub(length, &tail_page->write);
2260		return;
2261	}
2262
2263	event = __rb_page_index(tail_page, tail);
2264	kmemcheck_annotate_bitfield(event, bitfield);
2265
2266	/* account for padding bytes */
2267	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2268
2269	/*
2270	 * Save the original length to the meta data.
2271	 * This will be used by the reader to add lost event
2272	 * counter.
2273	 */
2274	tail_page->real_end = tail;
2275
2276	/*
2277	 * If this event is bigger than the minimum size, then
2278	 * we need to be careful that we don't subtract the
2279	 * write counter enough to allow another writer to slip
2280	 * in on this page.
2281	 * We put in a discarded commit instead, to make sure
2282	 * that this space is not used again.
2283	 *
2284	 * If we are less than the minimum size, we don't need to
2285	 * worry about it.
2286	 */
2287	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2288		/* No room for any events */
2289
2290		/* Mark the rest of the page with padding */
2291		rb_event_set_padding(event);
2292
2293		/* Set the write back to the previous setting */
2294		local_sub(length, &tail_page->write);
2295		return;
2296	}
2297
2298	/* Put in a discarded event */
2299	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2300	event->type_len = RINGBUF_TYPE_PADDING;
2301	/* time delta must be non zero */
2302	event->time_delta = 1;
2303
2304	/* Set write to end of buffer */
2305	length = (tail + length) - BUF_PAGE_SIZE;
2306	local_sub(length, &tail_page->write);
2307}
2308
2309/*
2310 * This is the slow path, force gcc not to inline it.
2311 */
2312static noinline struct ring_buffer_event *
2313rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2314	     unsigned long length, unsigned long tail,
2315	     struct buffer_page *tail_page, u64 ts)
2316{
2317	struct buffer_page *commit_page = cpu_buffer->commit_page;
2318	struct ring_buffer *buffer = cpu_buffer->buffer;
2319	struct buffer_page *next_page;
2320	int ret;
2321
2322	next_page = tail_page;
2323
2324	rb_inc_page(cpu_buffer, &next_page);
2325
2326	/*
2327	 * If for some reason, we had an interrupt storm that made
2328	 * it all the way around the buffer, bail, and warn
2329	 * about it.
2330	 */
2331	if (unlikely(next_page == commit_page)) {
2332		local_inc(&cpu_buffer->commit_overrun);
2333		goto out_reset;
2334	}
2335
2336	/*
2337	 * This is where the fun begins!
2338	 *
2339	 * We are fighting against races between a reader that
2340	 * could be on another CPU trying to swap its reader
2341	 * page with the buffer head.
2342	 *
2343	 * We are also fighting against interrupts coming in and
2344	 * moving the head or tail on us as well.
2345	 *
2346	 * If the next page is the head page then we have filled
2347	 * the buffer, unless the commit page is still on the
2348	 * reader page.
2349	 */
2350	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2351
2352		/*
2353		 * If the commit is not on the reader page, then
2354		 * move the header page.
2355		 */
2356		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2357			/*
2358			 * If we are not in overwrite mode,
2359			 * this is easy, just stop here.
2360			 */
2361			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2362				local_inc(&cpu_buffer->dropped_events);
2363				goto out_reset;
2364			}
2365
2366			ret = rb_handle_head_page(cpu_buffer,
2367						  tail_page,
2368						  next_page);
2369			if (ret < 0)
2370				goto out_reset;
2371			if (ret)
2372				goto out_again;
2373		} else {
2374			/*
2375			 * We need to be careful here too. The
2376			 * commit page could still be on the reader
2377			 * page. We could have a small buffer, and
2378			 * have filled up the buffer with events
2379			 * from interrupts and such, and wrapped.
2380			 *
2381			 * Note, if the tail page is also the on the
2382			 * reader_page, we let it move out.
2383			 */
2384			if (unlikely((cpu_buffer->commit_page !=
2385				      cpu_buffer->tail_page) &&
2386				     (cpu_buffer->commit_page ==
2387				      cpu_buffer->reader_page))) {
2388				local_inc(&cpu_buffer->commit_overrun);
2389				goto out_reset;
2390			}
2391		}
2392	}
2393
2394	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2395	if (ret) {
2396		/*
2397		 * Nested commits always have zero deltas, so
2398		 * just reread the time stamp
2399		 */
2400		ts = rb_time_stamp(buffer);
2401		next_page->page->time_stamp = ts;
2402	}
2403
2404 out_again:
2405
2406	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2407
2408	/* fail and let the caller try again */
2409	return ERR_PTR(-EAGAIN);
2410
2411 out_reset:
2412	/* reset write */
2413	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2414
2415	return NULL;
2416}
2417
2418static struct ring_buffer_event *
2419__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2420		  unsigned long length, u64 ts,
2421		  u64 delta, int add_timestamp)
2422{
2423	struct buffer_page *tail_page;
2424	struct ring_buffer_event *event;
2425	unsigned long tail, write;
2426
2427	/*
2428	 * If the time delta since the last event is too big to
2429	 * hold in the time field of the event, then we append a
2430	 * TIME EXTEND event ahead of the data event.
2431	 */
2432	if (unlikely(add_timestamp))
2433		length += RB_LEN_TIME_EXTEND;
2434
2435	tail_page = cpu_buffer->tail_page;
2436	write = local_add_return(length, &tail_page->write);
2437
2438	/* set write to only the index of the write */
2439	write &= RB_WRITE_MASK;
2440	tail = write - length;
2441
2442	/*
2443	 * If this is the first commit on the page, then it has the same
2444	 * timestamp as the page itself.
2445	 */
2446	if (!tail)
2447		delta = 0;
2448
2449	/* See if we shot pass the end of this buffer page */
2450	if (unlikely(write > BUF_PAGE_SIZE))
2451		return rb_move_tail(cpu_buffer, length, tail,
2452				    tail_page, ts);
2453
2454	/* We reserved something on the buffer */
2455
2456	event = __rb_page_index(tail_page, tail);
2457	kmemcheck_annotate_bitfield(event, bitfield);
2458	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2459
2460	local_inc(&tail_page->entries);
2461
2462	/*
2463	 * If this is the first commit on the page, then update
2464	 * its timestamp.
2465	 */
2466	if (!tail)
2467		tail_page->page->time_stamp = ts;
2468
2469	/* account for these added bytes */
2470	local_add(length, &cpu_buffer->entries_bytes);
2471
2472	return event;
2473}
2474
2475static inline int
2476rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2477		  struct ring_buffer_event *event)
2478{
2479	unsigned long new_index, old_index;
2480	struct buffer_page *bpage;
2481	unsigned long index;
2482	unsigned long addr;
2483
2484	new_index = rb_event_index(event);
2485	old_index = new_index + rb_event_ts_length(event);
2486	addr = (unsigned long)event;
2487	addr &= PAGE_MASK;
2488
2489	bpage = cpu_buffer->tail_page;
2490
2491	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2492		unsigned long write_mask =
2493			local_read(&bpage->write) & ~RB_WRITE_MASK;
2494		unsigned long event_length = rb_event_length(event);
2495		/*
2496		 * This is on the tail page. It is possible that
2497		 * a write could come in and move the tail page
2498		 * and write to the next page. That is fine
2499		 * because we just shorten what is on this page.
2500		 */
2501		old_index += write_mask;
2502		new_index += write_mask;
2503		index = local_cmpxchg(&bpage->write, old_index, new_index);
2504		if (index == old_index) {
2505			/* update counters */
2506			local_sub(event_length, &cpu_buffer->entries_bytes);
2507			return 1;
2508		}
2509	}
2510
2511	/* could not discard */
2512	return 0;
2513}
2514
2515static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2516{
2517	local_inc(&cpu_buffer->committing);
2518	local_inc(&cpu_buffer->commits);
2519}
2520
2521static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2522{
2523	unsigned long commits;
2524
2525	if (RB_WARN_ON(cpu_buffer,
2526		       !local_read(&cpu_buffer->committing)))
2527		return;
2528
2529 again:
2530	commits = local_read(&cpu_buffer->commits);
2531	/* synchronize with interrupts */
2532	barrier();
2533	if (local_read(&cpu_buffer->committing) == 1)
2534		rb_set_commit_to_write(cpu_buffer);
2535
2536	local_dec(&cpu_buffer->committing);
2537
2538	/* synchronize with interrupts */
2539	barrier();
2540
2541	/*
2542	 * Need to account for interrupts coming in between the
2543	 * updating of the commit page and the clearing of the
2544	 * committing counter.
2545	 */
2546	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2547	    !local_read(&cpu_buffer->committing)) {
2548		local_inc(&cpu_buffer->committing);
2549		goto again;
2550	}
2551}
2552
2553static struct ring_buffer_event *
2554rb_reserve_next_event(struct ring_buffer *buffer,
2555		      struct ring_buffer_per_cpu *cpu_buffer,
2556		      unsigned long length)
2557{
2558	struct ring_buffer_event *event;
2559	u64 ts, delta;
2560	int nr_loops = 0;
2561	int add_timestamp;
2562	u64 diff;
2563
2564	rb_start_commit(cpu_buffer);
2565
2566#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2567	/*
2568	 * Due to the ability to swap a cpu buffer from a buffer
2569	 * it is possible it was swapped before we committed.
2570	 * (committing stops a swap). We check for it here and
2571	 * if it happened, we have to fail the write.
2572	 */
2573	barrier();
2574	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2575		local_dec(&cpu_buffer->committing);
2576		local_dec(&cpu_buffer->commits);
2577		return NULL;
2578	}
2579#endif
2580
2581	length = rb_calculate_event_length(length);
2582 again:
2583	add_timestamp = 0;
2584	delta = 0;
2585
2586	/*
2587	 * We allow for interrupts to reenter here and do a trace.
2588	 * If one does, it will cause this original code to loop
2589	 * back here. Even with heavy interrupts happening, this
2590	 * should only happen a few times in a row. If this happens
2591	 * 1000 times in a row, there must be either an interrupt
2592	 * storm or we have something buggy.
2593	 * Bail!
2594	 */
2595	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2596		goto out_fail;
2597
2598	ts = rb_time_stamp(cpu_buffer->buffer);
2599	diff = ts - cpu_buffer->write_stamp;
2600
2601	/* make sure this diff is calculated here */
2602	barrier();
2603
2604	/* Did the write stamp get updated already? */
2605	if (likely(ts >= cpu_buffer->write_stamp)) {
2606		delta = diff;
2607		if (unlikely(test_time_stamp(delta))) {
2608			int local_clock_stable = 1;
2609#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2610			local_clock_stable = sched_clock_stable();
2611#endif
2612			WARN_ONCE(delta > (1ULL << 59),
2613				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2614				  (unsigned long long)delta,
2615				  (unsigned long long)ts,
2616				  (unsigned long long)cpu_buffer->write_stamp,
2617				  local_clock_stable ? "" :
2618				  "If you just came from a suspend/resume,\n"
2619				  "please switch to the trace global clock:\n"
2620				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2621			add_timestamp = 1;
2622		}
2623	}
2624
2625	event = __rb_reserve_next(cpu_buffer, length, ts,
2626				  delta, add_timestamp);
2627	if (unlikely(PTR_ERR(event) == -EAGAIN))
2628		goto again;
2629
2630	if (!event)
2631		goto out_fail;
2632
2633	return event;
2634
2635 out_fail:
2636	rb_end_commit(cpu_buffer);
2637	return NULL;
2638}
2639
2640#ifdef CONFIG_TRACING
2641
2642/*
2643 * The lock and unlock are done within a preempt disable section.
2644 * The current_context per_cpu variable can only be modified
2645 * by the current task between lock and unlock. But it can
2646 * be modified more than once via an interrupt. To pass this
2647 * information from the lock to the unlock without having to
2648 * access the 'in_interrupt()' functions again (which do show
2649 * a bit of overhead in something as critical as function tracing,
2650 * we use a bitmask trick.
2651 *
2652 *  bit 0 =  NMI context
2653 *  bit 1 =  IRQ context
2654 *  bit 2 =  SoftIRQ context
2655 *  bit 3 =  normal context.
2656 *
2657 * This works because this is the order of contexts that can
2658 * preempt other contexts. A SoftIRQ never preempts an IRQ
2659 * context.
2660 *
2661 * When the context is determined, the corresponding bit is
2662 * checked and set (if it was set, then a recursion of that context
2663 * happened).
2664 *
2665 * On unlock, we need to clear this bit. To do so, just subtract
2666 * 1 from the current_context and AND it to itself.
2667 *
2668 * (binary)
2669 *  101 - 1 = 100
2670 *  101 & 100 = 100 (clearing bit zero)
2671 *
2672 *  1010 - 1 = 1001
2673 *  1010 & 1001 = 1000 (clearing bit 1)
2674 *
2675 * The least significant bit can be cleared this way, and it
2676 * just so happens that it is the same bit corresponding to
2677 * the current context.
2678 */
2679
2680static __always_inline int
2681trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2682{
2683	unsigned int val = cpu_buffer->current_context;
2684	int bit;
2685
2686	if (in_interrupt()) {
2687		if (in_nmi())
2688			bit = 0;
2689		else if (in_irq())
2690			bit = 1;
2691		else
2692			bit = 2;
2693	} else
2694		bit = 3;
2695
2696	if (unlikely(val & (1 << bit)))
2697		return 1;
2698
2699	val |= (1 << bit);
2700	cpu_buffer->current_context = val;
2701
2702	return 0;
2703}
2704
2705static __always_inline void
2706trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2707{
2708	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2709}
2710
2711#else
2712
2713#define trace_recursive_lock(cpu_buffer)	(0)
2714#define trace_recursive_unlock(cpu_buffer)	do { } while (0)
2715
2716#endif
2717
2718/**
2719 * ring_buffer_lock_reserve - reserve a part of the buffer
2720 * @buffer: the ring buffer to reserve from
2721 * @length: the length of the data to reserve (excluding event header)
2722 *
2723 * Returns a reseverd event on the ring buffer to copy directly to.
2724 * The user of this interface will need to get the body to write into
2725 * and can use the ring_buffer_event_data() interface.
2726 *
2727 * The length is the length of the data needed, not the event length
2728 * which also includes the event header.
2729 *
2730 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2731 * If NULL is returned, then nothing has been allocated or locked.
2732 */
2733struct ring_buffer_event *
2734ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2735{
2736	struct ring_buffer_per_cpu *cpu_buffer;
2737	struct ring_buffer_event *event;
2738	int cpu;
2739
2740	if (ring_buffer_flags != RB_BUFFERS_ON)
2741		return NULL;
2742
2743	/* If we are tracing schedule, we don't want to recurse */
2744	preempt_disable_notrace();
2745
2746	if (unlikely(atomic_read(&buffer->record_disabled)))
2747		goto out;
2748
2749	cpu = raw_smp_processor_id();
2750
2751	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2752		goto out;
2753
2754	cpu_buffer = buffer->buffers[cpu];
2755
2756	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2757		goto out;
2758
2759	if (unlikely(length > BUF_MAX_DATA_SIZE))
2760		goto out;
2761
2762	if (unlikely(trace_recursive_lock(cpu_buffer)))
2763		goto out;
2764
2765	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2766	if (!event)
2767		goto out_unlock;
2768
2769	return event;
2770
2771 out_unlock:
2772	trace_recursive_unlock(cpu_buffer);
2773 out:
2774	preempt_enable_notrace();
2775	return NULL;
2776}
2777EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2778
2779static void
2780rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2781		      struct ring_buffer_event *event)
2782{
2783	u64 delta;
2784
2785	/*
2786	 * The event first in the commit queue updates the
2787	 * time stamp.
2788	 */
2789	if (rb_event_is_commit(cpu_buffer, event)) {
2790		/*
2791		 * A commit event that is first on a page
2792		 * updates the write timestamp with the page stamp
2793		 */
2794		if (!rb_event_index(event))
2795			cpu_buffer->write_stamp =
2796				cpu_buffer->commit_page->page->time_stamp;
2797		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2798			delta = event->array[0];
2799			delta <<= TS_SHIFT;
2800			delta += event->time_delta;
2801			cpu_buffer->write_stamp += delta;
2802		} else
2803			cpu_buffer->write_stamp += event->time_delta;
2804	}
2805}
2806
2807static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2808		      struct ring_buffer_event *event)
2809{
2810	local_inc(&cpu_buffer->entries);
2811	rb_update_write_stamp(cpu_buffer, event);
2812	rb_end_commit(cpu_buffer);
2813}
2814
2815static __always_inline void
2816rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2817{
2818	bool pagebusy;
2819
2820	if (buffer->irq_work.waiters_pending) {
2821		buffer->irq_work.waiters_pending = false;
2822		/* irq_work_queue() supplies it's own memory barriers */
2823		irq_work_queue(&buffer->irq_work.work);
2824	}
2825
2826	if (cpu_buffer->irq_work.waiters_pending) {
2827		cpu_buffer->irq_work.waiters_pending = false;
2828		/* irq_work_queue() supplies it's own memory barriers */
2829		irq_work_queue(&cpu_buffer->irq_work.work);
2830	}
2831
2832	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2833
2834	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2835		cpu_buffer->irq_work.wakeup_full = true;
2836		cpu_buffer->irq_work.full_waiters_pending = false;
2837		/* irq_work_queue() supplies it's own memory barriers */
2838		irq_work_queue(&cpu_buffer->irq_work.work);
2839	}
2840}
2841
2842/**
2843 * ring_buffer_unlock_commit - commit a reserved
2844 * @buffer: The buffer to commit to
2845 * @event: The event pointer to commit.
2846 *
2847 * This commits the data to the ring buffer, and releases any locks held.
2848 *
2849 * Must be paired with ring_buffer_lock_reserve.
2850 */
2851int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2852			      struct ring_buffer_event *event)
2853{
2854	struct ring_buffer_per_cpu *cpu_buffer;
2855	int cpu = raw_smp_processor_id();
2856
2857	cpu_buffer = buffer->buffers[cpu];
2858
2859	rb_commit(cpu_buffer, event);
2860
2861	rb_wakeups(buffer, cpu_buffer);
2862
2863	trace_recursive_unlock(cpu_buffer);
2864
2865	preempt_enable_notrace();
2866
2867	return 0;
2868}
2869EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2870
2871static inline void rb_event_discard(struct ring_buffer_event *event)
2872{
2873	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2874		event = skip_time_extend(event);
2875
2876	/* array[0] holds the actual length for the discarded event */
2877	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2878	event->type_len = RINGBUF_TYPE_PADDING;
2879	/* time delta must be non zero */
2880	if (!event->time_delta)
2881		event->time_delta = 1;
2882}
2883
2884/*
2885 * Decrement the entries to the page that an event is on.
2886 * The event does not even need to exist, only the pointer
2887 * to the page it is on. This may only be called before the commit
2888 * takes place.
2889 */
2890static inline void
2891rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2892		   struct ring_buffer_event *event)
2893{
2894	unsigned long addr = (unsigned long)event;
2895	struct buffer_page *bpage = cpu_buffer->commit_page;
2896	struct buffer_page *start;
2897
2898	addr &= PAGE_MASK;
2899
2900	/* Do the likely case first */
2901	if (likely(bpage->page == (void *)addr)) {
2902		local_dec(&bpage->entries);
2903		return;
2904	}
2905
2906	/*
2907	 * Because the commit page may be on the reader page we
2908	 * start with the next page and check the end loop there.
2909	 */
2910	rb_inc_page(cpu_buffer, &bpage);
2911	start = bpage;
2912	do {
2913		if (bpage->page == (void *)addr) {
2914			local_dec(&bpage->entries);
2915			return;
2916		}
2917		rb_inc_page(cpu_buffer, &bpage);
2918	} while (bpage != start);
2919
2920	/* commit not part of this buffer?? */
2921	RB_WARN_ON(cpu_buffer, 1);
2922}
2923
2924/**
2925 * ring_buffer_commit_discard - discard an event that has not been committed
2926 * @buffer: the ring buffer
2927 * @event: non committed event to discard
2928 *
2929 * Sometimes an event that is in the ring buffer needs to be ignored.
2930 * This function lets the user discard an event in the ring buffer
2931 * and then that event will not be read later.
2932 *
2933 * This function only works if it is called before the the item has been
2934 * committed. It will try to free the event from the ring buffer
2935 * if another event has not been added behind it.
2936 *
2937 * If another event has been added behind it, it will set the event
2938 * up as discarded, and perform the commit.
2939 *
2940 * If this function is called, do not call ring_buffer_unlock_commit on
2941 * the event.
2942 */
2943void ring_buffer_discard_commit(struct ring_buffer *buffer,
2944				struct ring_buffer_event *event)
2945{
2946	struct ring_buffer_per_cpu *cpu_buffer;
2947	int cpu;
2948
2949	/* The event is discarded regardless */
2950	rb_event_discard(event);
2951
2952	cpu = smp_processor_id();
2953	cpu_buffer = buffer->buffers[cpu];
2954
2955	/*
2956	 * This must only be called if the event has not been
2957	 * committed yet. Thus we can assume that preemption
2958	 * is still disabled.
2959	 */
2960	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2961
2962	rb_decrement_entry(cpu_buffer, event);
2963	if (rb_try_to_discard(cpu_buffer, event))
2964		goto out;
2965
2966	/*
2967	 * The commit is still visible by the reader, so we
2968	 * must still update the timestamp.
2969	 */
2970	rb_update_write_stamp(cpu_buffer, event);
2971 out:
2972	rb_end_commit(cpu_buffer);
2973
2974	trace_recursive_unlock(cpu_buffer);
2975
2976	preempt_enable_notrace();
2977
2978}
2979EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2980
2981/**
2982 * ring_buffer_write - write data to the buffer without reserving
2983 * @buffer: The ring buffer to write to.
2984 * @length: The length of the data being written (excluding the event header)
2985 * @data: The data to write to the buffer.
2986 *
2987 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2988 * one function. If you already have the data to write to the buffer, it
2989 * may be easier to simply call this function.
2990 *
2991 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2992 * and not the length of the event which would hold the header.
2993 */
2994int ring_buffer_write(struct ring_buffer *buffer,
2995		      unsigned long length,
2996		      void *data)
2997{
2998	struct ring_buffer_per_cpu *cpu_buffer;
2999	struct ring_buffer_event *event;
3000	void *body;
3001	int ret = -EBUSY;
3002	int cpu;
3003
3004	if (ring_buffer_flags != RB_BUFFERS_ON)
3005		return -EBUSY;
3006
3007	preempt_disable_notrace();
3008
3009	if (atomic_read(&buffer->record_disabled))
3010		goto out;
3011
3012	cpu = raw_smp_processor_id();
3013
3014	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3015		goto out;
3016
3017	cpu_buffer = buffer->buffers[cpu];
3018
3019	if (atomic_read(&cpu_buffer->record_disabled))
3020		goto out;
3021
3022	if (length > BUF_MAX_DATA_SIZE)
3023		goto out;
3024
3025	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3026	if (!event)
3027		goto out;
3028
3029	body = rb_event_data(event);
3030
3031	memcpy(body, data, length);
3032
3033	rb_commit(cpu_buffer, event);
3034
3035	rb_wakeups(buffer, cpu_buffer);
3036
3037	ret = 0;
3038 out:
3039	preempt_enable_notrace();
3040
3041	return ret;
3042}
3043EXPORT_SYMBOL_GPL(ring_buffer_write);
3044
3045static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3046{
3047	struct buffer_page *reader = cpu_buffer->reader_page;
3048	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3049	struct buffer_page *commit = cpu_buffer->commit_page;
3050
3051	/* In case of error, head will be NULL */
3052	if (unlikely(!head))
3053		return 1;
3054
3055	return reader->read == rb_page_commit(reader) &&
3056		(commit == reader ||
3057		 (commit == head &&
3058		  head->read == rb_page_commit(commit)));
3059}
3060
3061/**
3062 * ring_buffer_record_disable - stop all writes into the buffer
3063 * @buffer: The ring buffer to stop writes to.
3064 *
3065 * This prevents all writes to the buffer. Any attempt to write
3066 * to the buffer after this will fail and return NULL.
3067 *
3068 * The caller should call synchronize_sched() after this.
3069 */
3070void ring_buffer_record_disable(struct ring_buffer *buffer)
3071{
3072	atomic_inc(&buffer->record_disabled);
3073}
3074EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3075
3076/**
3077 * ring_buffer_record_enable - enable writes to the buffer
3078 * @buffer: The ring buffer to enable writes
3079 *
3080 * Note, multiple disables will need the same number of enables
3081 * to truly enable the writing (much like preempt_disable).
3082 */
3083void ring_buffer_record_enable(struct ring_buffer *buffer)
3084{
3085	atomic_dec(&buffer->record_disabled);
3086}
3087EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3088
3089/**
3090 * ring_buffer_record_off - stop all writes into the buffer
3091 * @buffer: The ring buffer to stop writes to.
3092 *
3093 * This prevents all writes to the buffer. Any attempt to write
3094 * to the buffer after this will fail and return NULL.
3095 *
3096 * This is different than ring_buffer_record_disable() as
3097 * it works like an on/off switch, where as the disable() version
3098 * must be paired with a enable().
3099 */
3100void ring_buffer_record_off(struct ring_buffer *buffer)
3101{
3102	unsigned int rd;
3103	unsigned int new_rd;
3104
3105	do {
3106		rd = atomic_read(&buffer->record_disabled);
3107		new_rd = rd | RB_BUFFER_OFF;
3108	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3109}
3110EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3111
3112/**
3113 * ring_buffer_record_on - restart writes into the buffer
3114 * @buffer: The ring buffer to start writes to.
3115 *
3116 * This enables all writes to the buffer that was disabled by
3117 * ring_buffer_record_off().
3118 *
3119 * This is different than ring_buffer_record_enable() as
3120 * it works like an on/off switch, where as the enable() version
3121 * must be paired with a disable().
3122 */
3123void ring_buffer_record_on(struct ring_buffer *buffer)
3124{
3125	unsigned int rd;
3126	unsigned int new_rd;
3127
3128	do {
3129		rd = atomic_read(&buffer->record_disabled);
3130		new_rd = rd & ~RB_BUFFER_OFF;
3131	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3132}
3133EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3134
3135/**
3136 * ring_buffer_record_is_on - return true if the ring buffer can write
3137 * @buffer: The ring buffer to see if write is enabled
3138 *
3139 * Returns true if the ring buffer is in a state that it accepts writes.
3140 */
3141int ring_buffer_record_is_on(struct ring_buffer *buffer)
3142{
3143	return !atomic_read(&buffer->record_disabled);
3144}
3145
3146/**
3147 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3148 * @buffer: The ring buffer to stop writes to.
3149 * @cpu: The CPU buffer to stop
3150 *
3151 * This prevents all writes to the buffer. Any attempt to write
3152 * to the buffer after this will fail and return NULL.
3153 *
3154 * The caller should call synchronize_sched() after this.
3155 */
3156void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3157{
3158	struct ring_buffer_per_cpu *cpu_buffer;
3159
3160	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3161		return;
3162
3163	cpu_buffer = buffer->buffers[cpu];
3164	atomic_inc(&cpu_buffer->record_disabled);
3165}
3166EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3167
3168/**
3169 * ring_buffer_record_enable_cpu - enable writes to the buffer
3170 * @buffer: The ring buffer to enable writes
3171 * @cpu: The CPU to enable.
3172 *
3173 * Note, multiple disables will need the same number of enables
3174 * to truly enable the writing (much like preempt_disable).
3175 */
3176void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3177{
3178	struct ring_buffer_per_cpu *cpu_buffer;
3179
3180	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3181		return;
3182
3183	cpu_buffer = buffer->buffers[cpu];
3184	atomic_dec(&cpu_buffer->record_disabled);
3185}
3186EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3187
3188/*
3189 * The total entries in the ring buffer is the running counter
3190 * of entries entered into the ring buffer, minus the sum of
3191 * the entries read from the ring buffer and the number of
3192 * entries that were overwritten.
3193 */
3194static inline unsigned long
3195rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3196{
3197	return local_read(&cpu_buffer->entries) -
3198		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3199}
3200
3201/**
3202 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3203 * @buffer: The ring buffer
3204 * @cpu: The per CPU buffer to read from.
3205 */
3206u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3207{
3208	unsigned long flags;
3209	struct ring_buffer_per_cpu *cpu_buffer;
3210	struct buffer_page *bpage;
3211	u64 ret = 0;
3212
3213	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3214		return 0;
3215
3216	cpu_buffer = buffer->buffers[cpu];
3217	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3218	/*
3219	 * if the tail is on reader_page, oldest time stamp is on the reader
3220	 * page
3221	 */
3222	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3223		bpage = cpu_buffer->reader_page;
3224	else
3225		bpage = rb_set_head_page(cpu_buffer);
3226	if (bpage)
3227		ret = bpage->page->time_stamp;
3228	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3229
3230	return ret;
3231}
3232EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3233
3234/**
3235 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3236 * @buffer: The ring buffer
3237 * @cpu: The per CPU buffer to read from.
3238 */
3239unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3240{
3241	struct ring_buffer_per_cpu *cpu_buffer;
3242	unsigned long ret;
3243
3244	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3245		return 0;
3246
3247	cpu_buffer = buffer->buffers[cpu];
3248	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3249
3250	return ret;
3251}
3252EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3253
3254/**
3255 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3256 * @buffer: The ring buffer
3257 * @cpu: The per CPU buffer to get the entries from.
3258 */
3259unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3260{
3261	struct ring_buffer_per_cpu *cpu_buffer;
3262
3263	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264		return 0;
3265
3266	cpu_buffer = buffer->buffers[cpu];
3267
3268	return rb_num_of_entries(cpu_buffer);
3269}
3270EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3271
3272/**
3273 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3274 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3275 * @buffer: The ring buffer
3276 * @cpu: The per CPU buffer to get the number of overruns from
3277 */
3278unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3279{
3280	struct ring_buffer_per_cpu *cpu_buffer;
3281	unsigned long ret;
3282
3283	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3284		return 0;
3285
3286	cpu_buffer = buffer->buffers[cpu];
3287	ret = local_read(&cpu_buffer->overrun);
3288
3289	return ret;
3290}
3291EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3292
3293/**
3294 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3295 * commits failing due to the buffer wrapping around while there are uncommitted
3296 * events, such as during an interrupt storm.
3297 * @buffer: The ring buffer
3298 * @cpu: The per CPU buffer to get the number of overruns from
3299 */
3300unsigned long
3301ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3302{
3303	struct ring_buffer_per_cpu *cpu_buffer;
3304	unsigned long ret;
3305
3306	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307		return 0;
3308
3309	cpu_buffer = buffer->buffers[cpu];
3310	ret = local_read(&cpu_buffer->commit_overrun);
3311
3312	return ret;
3313}
3314EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3315
3316/**
3317 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3318 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3319 * @buffer: The ring buffer
3320 * @cpu: The per CPU buffer to get the number of overruns from
3321 */
3322unsigned long
3323ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3324{
3325	struct ring_buffer_per_cpu *cpu_buffer;
3326	unsigned long ret;
3327
3328	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3329		return 0;
3330
3331	cpu_buffer = buffer->buffers[cpu];
3332	ret = local_read(&cpu_buffer->dropped_events);
3333
3334	return ret;
3335}
3336EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3337
3338/**
3339 * ring_buffer_read_events_cpu - get the number of events successfully read
3340 * @buffer: The ring buffer
3341 * @cpu: The per CPU buffer to get the number of events read
3342 */
3343unsigned long
3344ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3345{
3346	struct ring_buffer_per_cpu *cpu_buffer;
3347
3348	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3349		return 0;
3350
3351	cpu_buffer = buffer->buffers[cpu];
3352	return cpu_buffer->read;
3353}
3354EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3355
3356/**
3357 * ring_buffer_entries - get the number of entries in a buffer
3358 * @buffer: The ring buffer
3359 *
3360 * Returns the total number of entries in the ring buffer
3361 * (all CPU entries)
3362 */
3363unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3364{
3365	struct ring_buffer_per_cpu *cpu_buffer;
3366	unsigned long entries = 0;
3367	int cpu;
3368
3369	/* if you care about this being correct, lock the buffer */
3370	for_each_buffer_cpu(buffer, cpu) {
3371		cpu_buffer = buffer->buffers[cpu];
3372		entries += rb_num_of_entries(cpu_buffer);
3373	}
3374
3375	return entries;
3376}
3377EXPORT_SYMBOL_GPL(ring_buffer_entries);
3378
3379/**
3380 * ring_buffer_overruns - get the number of overruns in buffer
3381 * @buffer: The ring buffer
3382 *
3383 * Returns the total number of overruns in the ring buffer
3384 * (all CPU entries)
3385 */
3386unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3387{
3388	struct ring_buffer_per_cpu *cpu_buffer;
3389	unsigned long overruns = 0;
3390	int cpu;
3391
3392	/* if you care about this being correct, lock the buffer */
3393	for_each_buffer_cpu(buffer, cpu) {
3394		cpu_buffer = buffer->buffers[cpu];
3395		overruns += local_read(&cpu_buffer->overrun);
3396	}
3397
3398	return overruns;
3399}
3400EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3401
3402static void rb_iter_reset(struct ring_buffer_iter *iter)
3403{
3404	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3405
3406	/* Iterator usage is expected to have record disabled */
3407	iter->head_page = cpu_buffer->reader_page;
3408	iter->head = cpu_buffer->reader_page->read;
3409
3410	iter->cache_reader_page = iter->head_page;
3411	iter->cache_read = cpu_buffer->read;
3412
3413	if (iter->head)
3414		iter->read_stamp = cpu_buffer->read_stamp;
3415	else
3416		iter->read_stamp = iter->head_page->page->time_stamp;
3417}
3418
3419/**
3420 * ring_buffer_iter_reset - reset an iterator
3421 * @iter: The iterator to reset
3422 *
3423 * Resets the iterator, so that it will start from the beginning
3424 * again.
3425 */
3426void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3427{
3428	struct ring_buffer_per_cpu *cpu_buffer;
3429	unsigned long flags;
3430
3431	if (!iter)
3432		return;
3433
3434	cpu_buffer = iter->cpu_buffer;
3435
3436	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3437	rb_iter_reset(iter);
3438	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3439}
3440EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3441
3442/**
3443 * ring_buffer_iter_empty - check if an iterator has no more to read
3444 * @iter: The iterator to check
3445 */
3446int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3447{
3448	struct ring_buffer_per_cpu *cpu_buffer;
3449
3450	cpu_buffer = iter->cpu_buffer;
3451
3452	return iter->head_page == cpu_buffer->commit_page &&
3453		iter->head == rb_commit_index(cpu_buffer);
3454}
3455EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3456
3457static void
3458rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3459		     struct ring_buffer_event *event)
3460{
3461	u64 delta;
3462
3463	switch (event->type_len) {
3464	case RINGBUF_TYPE_PADDING:
3465		return;
3466
3467	case RINGBUF_TYPE_TIME_EXTEND:
3468		delta = event->array[0];
3469		delta <<= TS_SHIFT;
3470		delta += event->time_delta;
3471		cpu_buffer->read_stamp += delta;
3472		return;
3473
3474	case RINGBUF_TYPE_TIME_STAMP:
3475		/* FIXME: not implemented */
3476		return;
3477
3478	case RINGBUF_TYPE_DATA:
3479		cpu_buffer->read_stamp += event->time_delta;
3480		return;
3481
3482	default:
3483		BUG();
3484	}
3485	return;
3486}
3487
3488static void
3489rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3490			  struct ring_buffer_event *event)
3491{
3492	u64 delta;
3493
3494	switch (event->type_len) {
3495	case RINGBUF_TYPE_PADDING:
3496		return;
3497
3498	case RINGBUF_TYPE_TIME_EXTEND:
3499		delta = event->array[0];
3500		delta <<= TS_SHIFT;
3501		delta += event->time_delta;
3502		iter->read_stamp += delta;
3503		return;
3504
3505	case RINGBUF_TYPE_TIME_STAMP:
3506		/* FIXME: not implemented */
3507		return;
3508
3509	case RINGBUF_TYPE_DATA:
3510		iter->read_stamp += event->time_delta;
3511		return;
3512
3513	default:
3514		BUG();
3515	}
3516	return;
3517}
3518
3519static struct buffer_page *
3520rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3521{
3522	struct buffer_page *reader = NULL;
3523	unsigned long overwrite;
3524	unsigned long flags;
3525	int nr_loops = 0;
3526	int ret;
3527
3528	local_irq_save(flags);
3529	arch_spin_lock(&cpu_buffer->lock);
3530
3531 again:
3532	/*
3533	 * This should normally only loop twice. But because the
3534	 * start of the reader inserts an empty page, it causes
3535	 * a case where we will loop three times. There should be no
3536	 * reason to loop four times (that I know of).
3537	 */
3538	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3539		reader = NULL;
3540		goto out;
3541	}
3542
3543	reader = cpu_buffer->reader_page;
3544
3545	/* If there's more to read, return this page */
3546	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3547		goto out;
3548
3549	/* Never should we have an index greater than the size */
3550	if (RB_WARN_ON(cpu_buffer,
3551		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3552		goto out;
3553
3554	/* check if we caught up to the tail */
3555	reader = NULL;
3556	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3557		goto out;
3558
3559	/* Don't bother swapping if the ring buffer is empty */
3560	if (rb_num_of_entries(cpu_buffer) == 0)
3561		goto out;
3562
3563	/*
3564	 * Reset the reader page to size zero.
3565	 */
3566	local_set(&cpu_buffer->reader_page->write, 0);
3567	local_set(&cpu_buffer->reader_page->entries, 0);
3568	local_set(&cpu_buffer->reader_page->page->commit, 0);
3569	cpu_buffer->reader_page->real_end = 0;
3570
3571 spin:
3572	/*
3573	 * Splice the empty reader page into the list around the head.
3574	 */
3575	reader = rb_set_head_page(cpu_buffer);
3576	if (!reader)
3577		goto out;
3578	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3579	cpu_buffer->reader_page->list.prev = reader->list.prev;
3580
3581	/*
3582	 * cpu_buffer->pages just needs to point to the buffer, it
3583	 *  has no specific buffer page to point to. Lets move it out
3584	 *  of our way so we don't accidentally swap it.
3585	 */
3586	cpu_buffer->pages = reader->list.prev;
3587
3588	/* The reader page will be pointing to the new head */
3589	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3590
3591	/*
3592	 * We want to make sure we read the overruns after we set up our
3593	 * pointers to the next object. The writer side does a
3594	 * cmpxchg to cross pages which acts as the mb on the writer
3595	 * side. Note, the reader will constantly fail the swap
3596	 * while the writer is updating the pointers, so this
3597	 * guarantees that the overwrite recorded here is the one we
3598	 * want to compare with the last_overrun.
3599	 */
3600	smp_mb();
3601	overwrite = local_read(&(cpu_buffer->overrun));
3602
3603	/*
3604	 * Here's the tricky part.
3605	 *
3606	 * We need to move the pointer past the header page.
3607	 * But we can only do that if a writer is not currently
3608	 * moving it. The page before the header page has the
3609	 * flag bit '1' set if it is pointing to the page we want.
3610	 * but if the writer is in the process of moving it
3611	 * than it will be '2' or already moved '0'.
3612	 */
3613
3614	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3615
3616	/*
3617	 * If we did not convert it, then we must try again.
3618	 */
3619	if (!ret)
3620		goto spin;
3621
3622	/*
3623	 * Yeah! We succeeded in replacing the page.
3624	 *
3625	 * Now make the new head point back to the reader page.
3626	 */
3627	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3628	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3629
3630	/* Finally update the reader page to the new head */
3631	cpu_buffer->reader_page = reader;
3632	rb_reset_reader_page(cpu_buffer);
3633
3634	if (overwrite != cpu_buffer->last_overrun) {
3635		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3636		cpu_buffer->last_overrun = overwrite;
3637	}
3638
3639	goto again;
3640
3641 out:
3642	arch_spin_unlock(&cpu_buffer->lock);
3643	local_irq_restore(flags);
3644
3645	return reader;
3646}
3647
3648static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3649{
3650	struct ring_buffer_event *event;
3651	struct buffer_page *reader;
3652	unsigned length;
3653
3654	reader = rb_get_reader_page(cpu_buffer);
3655
3656	/* This function should not be called when buffer is empty */
3657	if (RB_WARN_ON(cpu_buffer, !reader))
3658		return;
3659
3660	event = rb_reader_event(cpu_buffer);
3661
3662	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3663		cpu_buffer->read++;
3664
3665	rb_update_read_stamp(cpu_buffer, event);
3666
3667	length = rb_event_length(event);
3668	cpu_buffer->reader_page->read += length;
3669}
3670
3671static void rb_advance_iter(struct ring_buffer_iter *iter)
3672{
3673	struct ring_buffer_per_cpu *cpu_buffer;
3674	struct ring_buffer_event *event;
3675	unsigned length;
3676
3677	cpu_buffer = iter->cpu_buffer;
3678
3679	/*
3680	 * Check if we are at the end of the buffer.
3681	 */
3682	if (iter->head >= rb_page_size(iter->head_page)) {
3683		/* discarded commits can make the page empty */
3684		if (iter->head_page == cpu_buffer->commit_page)
3685			return;
3686		rb_inc_iter(iter);
3687		return;
3688	}
3689
3690	event = rb_iter_head_event(iter);
3691
3692	length = rb_event_length(event);
3693
3694	/*
3695	 * This should not be called to advance the header if we are
3696	 * at the tail of the buffer.
3697	 */
3698	if (RB_WARN_ON(cpu_buffer,
3699		       (iter->head_page == cpu_buffer->commit_page) &&
3700		       (iter->head + length > rb_commit_index(cpu_buffer))))
3701		return;
3702
3703	rb_update_iter_read_stamp(iter, event);
3704
3705	iter->head += length;
3706
3707	/* check for end of page padding */
3708	if ((iter->head >= rb_page_size(iter->head_page)) &&
3709	    (iter->head_page != cpu_buffer->commit_page))
3710		rb_inc_iter(iter);
3711}
3712
3713static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3714{
3715	return cpu_buffer->lost_events;
3716}
3717
3718static struct ring_buffer_event *
3719rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3720	       unsigned long *lost_events)
3721{
3722	struct ring_buffer_event *event;
3723	struct buffer_page *reader;
3724	int nr_loops = 0;
3725
3726 again:
3727	/*
3728	 * We repeat when a time extend is encountered.
3729	 * Since the time extend is always attached to a data event,
3730	 * we should never loop more than once.
3731	 * (We never hit the following condition more than twice).
3732	 */
3733	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3734		return NULL;
3735
3736	reader = rb_get_reader_page(cpu_buffer);
3737	if (!reader)
3738		return NULL;
3739
3740	event = rb_reader_event(cpu_buffer);
3741
3742	switch (event->type_len) {
3743	case RINGBUF_TYPE_PADDING:
3744		if (rb_null_event(event))
3745			RB_WARN_ON(cpu_buffer, 1);
3746		/*
3747		 * Because the writer could be discarding every
3748		 * event it creates (which would probably be bad)
3749		 * if we were to go back to "again" then we may never
3750		 * catch up, and will trigger the warn on, or lock
3751		 * the box. Return the padding, and we will release
3752		 * the current locks, and try again.
3753		 */
3754		return event;
3755
3756	case RINGBUF_TYPE_TIME_EXTEND:
3757		/* Internal data, OK to advance */
3758		rb_advance_reader(cpu_buffer);
3759		goto again;
3760
3761	case RINGBUF_TYPE_TIME_STAMP:
3762		/* FIXME: not implemented */
3763		rb_advance_reader(cpu_buffer);
3764		goto again;
3765
3766	case RINGBUF_TYPE_DATA:
3767		if (ts) {
3768			*ts = cpu_buffer->read_stamp + event->time_delta;
3769			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3770							 cpu_buffer->cpu, ts);
3771		}
3772		if (lost_events)
3773			*lost_events = rb_lost_events(cpu_buffer);
3774		return event;
3775
3776	default:
3777		BUG();
3778	}
3779
3780	return NULL;
3781}
3782EXPORT_SYMBOL_GPL(ring_buffer_peek);
3783
3784static struct ring_buffer_event *
3785rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3786{
3787	struct ring_buffer *buffer;
3788	struct ring_buffer_per_cpu *cpu_buffer;
3789	struct ring_buffer_event *event;
3790	int nr_loops = 0;
3791
3792	cpu_buffer = iter->cpu_buffer;
3793	buffer = cpu_buffer->buffer;
3794
3795	/*
3796	 * Check if someone performed a consuming read to
3797	 * the buffer. A consuming read invalidates the iterator
3798	 * and we need to reset the iterator in this case.
3799	 */
3800	if (unlikely(iter->cache_read != cpu_buffer->read ||
3801		     iter->cache_reader_page != cpu_buffer->reader_page))
3802		rb_iter_reset(iter);
3803
3804 again:
3805	if (ring_buffer_iter_empty(iter))
3806		return NULL;
3807
3808	/*
3809	 * We repeat when a time extend is encountered or we hit
3810	 * the end of the page. Since the time extend is always attached
3811	 * to a data event, we should never loop more than three times.
3812	 * Once for going to next page, once on time extend, and
3813	 * finally once to get the event.
3814	 * (We never hit the following condition more than thrice).
3815	 */
3816	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3817		return NULL;
3818
3819	if (rb_per_cpu_empty(cpu_buffer))
3820		return NULL;
3821
3822	if (iter->head >= rb_page_size(iter->head_page)) {
3823		rb_inc_iter(iter);
3824		goto again;
3825	}
3826
3827	event = rb_iter_head_event(iter);
3828
3829	switch (event->type_len) {
3830	case RINGBUF_TYPE_PADDING:
3831		if (rb_null_event(event)) {
3832			rb_inc_iter(iter);
3833			goto again;
3834		}
3835		rb_advance_iter(iter);
3836		return event;
3837
3838	case RINGBUF_TYPE_TIME_EXTEND:
3839		/* Internal data, OK to advance */
3840		rb_advance_iter(iter);
3841		goto again;
3842
3843	case RINGBUF_TYPE_TIME_STAMP:
3844		/* FIXME: not implemented */
3845		rb_advance_iter(iter);
3846		goto again;
3847
3848	case RINGBUF_TYPE_DATA:
3849		if (ts) {
3850			*ts = iter->read_stamp + event->time_delta;
3851			ring_buffer_normalize_time_stamp(buffer,
3852							 cpu_buffer->cpu, ts);
3853		}
3854		return event;
3855
3856	default:
3857		BUG();
3858	}
3859
3860	return NULL;
3861}
3862EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3863
3864static inline int rb_ok_to_lock(void)
3865{
3866	/*
3867	 * If an NMI die dumps out the content of the ring buffer
3868	 * do not grab locks. We also permanently disable the ring
3869	 * buffer too. A one time deal is all you get from reading
3870	 * the ring buffer from an NMI.
3871	 */
3872	if (likely(!in_nmi()))
3873		return 1;
3874
3875	tracing_off_permanent();
3876	return 0;
3877}
3878
3879/**
3880 * ring_buffer_peek - peek at the next event to be read
3881 * @buffer: The ring buffer to read
3882 * @cpu: The cpu to peak at
3883 * @ts: The timestamp counter of this event.
3884 * @lost_events: a variable to store if events were lost (may be NULL)
3885 *
3886 * This will return the event that will be read next, but does
3887 * not consume the data.
3888 */
3889struct ring_buffer_event *
3890ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3891		 unsigned long *lost_events)
3892{
3893	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3894	struct ring_buffer_event *event;
3895	unsigned long flags;
3896	int dolock;
3897
3898	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3899		return NULL;
3900
3901	dolock = rb_ok_to_lock();
3902 again:
3903	local_irq_save(flags);
3904	if (dolock)
3905		raw_spin_lock(&cpu_buffer->reader_lock);
3906	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3907	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3908		rb_advance_reader(cpu_buffer);
3909	if (dolock)
3910		raw_spin_unlock(&cpu_buffer->reader_lock);
3911	local_irq_restore(flags);
3912
3913	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3914		goto again;
3915
3916	return event;
3917}
3918
3919/**
3920 * ring_buffer_iter_peek - peek at the next event to be read
3921 * @iter: The ring buffer iterator
3922 * @ts: The timestamp counter of this event.
3923 *
3924 * This will return the event that will be read next, but does
3925 * not increment the iterator.
3926 */
3927struct ring_buffer_event *
3928ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3929{
3930	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3931	struct ring_buffer_event *event;
3932	unsigned long flags;
3933
3934 again:
3935	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3936	event = rb_iter_peek(iter, ts);
3937	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3938
3939	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3940		goto again;
3941
3942	return event;
3943}
3944
3945/**
3946 * ring_buffer_consume - return an event and consume it
3947 * @buffer: The ring buffer to get the next event from
3948 * @cpu: the cpu to read the buffer from
3949 * @ts: a variable to store the timestamp (may be NULL)
3950 * @lost_events: a variable to store if events were lost (may be NULL)
3951 *
3952 * Returns the next event in the ring buffer, and that event is consumed.
3953 * Meaning, that sequential reads will keep returning a different event,
3954 * and eventually empty the ring buffer if the producer is slower.
3955 */
3956struct ring_buffer_event *
3957ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3958		    unsigned long *lost_events)
3959{
3960	struct ring_buffer_per_cpu *cpu_buffer;
3961	struct ring_buffer_event *event = NULL;
3962	unsigned long flags;
3963	int dolock;
3964
3965	dolock = rb_ok_to_lock();
3966
3967 again:
3968	/* might be called in atomic */
3969	preempt_disable();
3970
3971	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3972		goto out;
3973
3974	cpu_buffer = buffer->buffers[cpu];
3975	local_irq_save(flags);
3976	if (dolock)
3977		raw_spin_lock(&cpu_buffer->reader_lock);
3978
3979	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3980	if (event) {
3981		cpu_buffer->lost_events = 0;
3982		rb_advance_reader(cpu_buffer);
3983	}
3984
3985	if (dolock)
3986		raw_spin_unlock(&cpu_buffer->reader_lock);
3987	local_irq_restore(flags);
3988
3989 out:
3990	preempt_enable();
3991
3992	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3993		goto again;
3994
3995	return event;
3996}
3997EXPORT_SYMBOL_GPL(ring_buffer_consume);
3998
3999/**
4000 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4001 * @buffer: The ring buffer to read from
4002 * @cpu: The cpu buffer to iterate over
4003 *
4004 * This performs the initial preparations necessary to iterate
4005 * through the buffer.  Memory is allocated, buffer recording
4006 * is disabled, and the iterator pointer is returned to the caller.
4007 *
4008 * Disabling buffer recordng prevents the reading from being
4009 * corrupted. This is not a consuming read, so a producer is not
4010 * expected.
4011 *
4012 * After a sequence of ring_buffer_read_prepare calls, the user is
4013 * expected to make at least one call to ring_buffer_read_prepare_sync.
4014 * Afterwards, ring_buffer_read_start is invoked to get things going
4015 * for real.
4016 *
4017 * This overall must be paired with ring_buffer_read_finish.
4018 */
4019struct ring_buffer_iter *
4020ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4021{
4022	struct ring_buffer_per_cpu *cpu_buffer;
4023	struct ring_buffer_iter *iter;
4024
4025	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4026		return NULL;
4027
4028	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4029	if (!iter)
4030		return NULL;
4031
4032	cpu_buffer = buffer->buffers[cpu];
4033
4034	iter->cpu_buffer = cpu_buffer;
4035
4036	atomic_inc(&buffer->resize_disabled);
4037	atomic_inc(&cpu_buffer->record_disabled);
4038
4039	return iter;
4040}
4041EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4042
4043/**
4044 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4045 *
4046 * All previously invoked ring_buffer_read_prepare calls to prepare
4047 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4048 * calls on those iterators are allowed.
4049 */
4050void
4051ring_buffer_read_prepare_sync(void)
4052{
4053	synchronize_sched();
4054}
4055EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4056
4057/**
4058 * ring_buffer_read_start - start a non consuming read of the buffer
4059 * @iter: The iterator returned by ring_buffer_read_prepare
4060 *
4061 * This finalizes the startup of an iteration through the buffer.
4062 * The iterator comes from a call to ring_buffer_read_prepare and
4063 * an intervening ring_buffer_read_prepare_sync must have been
4064 * performed.
4065 *
4066 * Must be paired with ring_buffer_read_finish.
4067 */
4068void
4069ring_buffer_read_start(struct ring_buffer_iter *iter)
4070{
4071	struct ring_buffer_per_cpu *cpu_buffer;
4072	unsigned long flags;
4073
4074	if (!iter)
4075		return;
4076
4077	cpu_buffer = iter->cpu_buffer;
4078
4079	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4080	arch_spin_lock(&cpu_buffer->lock);
4081	rb_iter_reset(iter);
4082	arch_spin_unlock(&cpu_buffer->lock);
4083	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4084}
4085EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4086
4087/**
4088 * ring_buffer_read_finish - finish reading the iterator of the buffer
4089 * @iter: The iterator retrieved by ring_buffer_start
4090 *
4091 * This re-enables the recording to the buffer, and frees the
4092 * iterator.
4093 */
4094void
4095ring_buffer_read_finish(struct ring_buffer_iter *iter)
4096{
4097	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4098	unsigned long flags;
4099
4100	/*
4101	 * Ring buffer is disabled from recording, here's a good place
4102	 * to check the integrity of the ring buffer.
4103	 * Must prevent readers from trying to read, as the check
4104	 * clears the HEAD page and readers require it.
4105	 */
4106	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4107	rb_check_pages(cpu_buffer);
4108	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4109
4110	atomic_dec(&cpu_buffer->record_disabled);
4111	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4112	kfree(iter);
4113}
4114EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4115
4116/**
4117 * ring_buffer_read - read the next item in the ring buffer by the iterator
4118 * @iter: The ring buffer iterator
4119 * @ts: The time stamp of the event read.
4120 *
4121 * This reads the next event in the ring buffer and increments the iterator.
4122 */
4123struct ring_buffer_event *
4124ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4125{
4126	struct ring_buffer_event *event;
4127	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4128	unsigned long flags;
4129
4130	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4131 again:
4132	event = rb_iter_peek(iter, ts);
4133	if (!event)
4134		goto out;
4135
4136	if (event->type_len == RINGBUF_TYPE_PADDING)
4137		goto again;
4138
4139	rb_advance_iter(iter);
4140 out:
4141	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4142
4143	return event;
4144}
4145EXPORT_SYMBOL_GPL(ring_buffer_read);
4146
4147/**
4148 * ring_buffer_size - return the size of the ring buffer (in bytes)
4149 * @buffer: The ring buffer.
4150 */
4151unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4152{
4153	/*
4154	 * Earlier, this method returned
4155	 *	BUF_PAGE_SIZE * buffer->nr_pages
4156	 * Since the nr_pages field is now removed, we have converted this to
4157	 * return the per cpu buffer value.
4158	 */
4159	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4160		return 0;
4161
4162	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4163}
4164EXPORT_SYMBOL_GPL(ring_buffer_size);
4165
4166static void
4167rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4168{
4169	rb_head_page_deactivate(cpu_buffer);
4170
4171	cpu_buffer->head_page
4172		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4173	local_set(&cpu_buffer->head_page->write, 0);
4174	local_set(&cpu_buffer->head_page->entries, 0);
4175	local_set(&cpu_buffer->head_page->page->commit, 0);
4176
4177	cpu_buffer->head_page->read = 0;
4178
4179	cpu_buffer->tail_page = cpu_buffer->head_page;
4180	cpu_buffer->commit_page = cpu_buffer->head_page;
4181
4182	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4183	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4184	local_set(&cpu_buffer->reader_page->write, 0);
4185	local_set(&cpu_buffer->reader_page->entries, 0);
4186	local_set(&cpu_buffer->reader_page->page->commit, 0);
4187	cpu_buffer->reader_page->read = 0;
4188
4189	local_set(&cpu_buffer->entries_bytes, 0);
4190	local_set(&cpu_buffer->overrun, 0);
4191	local_set(&cpu_buffer->commit_overrun, 0);
4192	local_set(&cpu_buffer->dropped_events, 0);
4193	local_set(&cpu_buffer->entries, 0);
4194	local_set(&cpu_buffer->committing, 0);
4195	local_set(&cpu_buffer->commits, 0);
4196	cpu_buffer->read = 0;
4197	cpu_buffer->read_bytes = 0;
4198
4199	cpu_buffer->write_stamp = 0;
4200	cpu_buffer->read_stamp = 0;
4201
4202	cpu_buffer->lost_events = 0;
4203	cpu_buffer->last_overrun = 0;
4204
4205	rb_head_page_activate(cpu_buffer);
4206}
4207
4208/**
4209 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4210 * @buffer: The ring buffer to reset a per cpu buffer of
4211 * @cpu: The CPU buffer to be reset
4212 */
4213void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4214{
4215	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4216	unsigned long flags;
4217
4218	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4219		return;
4220
4221	atomic_inc(&buffer->resize_disabled);
4222	atomic_inc(&cpu_buffer->record_disabled);
4223
4224	/* Make sure all commits have finished */
4225	synchronize_sched();
4226
4227	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4228
4229	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4230		goto out;
4231
4232	arch_spin_lock(&cpu_buffer->lock);
4233
4234	rb_reset_cpu(cpu_buffer);
4235
4236	arch_spin_unlock(&cpu_buffer->lock);
4237
4238 out:
4239	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4240
4241	atomic_dec(&cpu_buffer->record_disabled);
4242	atomic_dec(&buffer->resize_disabled);
4243}
4244EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4245
4246/**
4247 * ring_buffer_reset - reset a ring buffer
4248 * @buffer: The ring buffer to reset all cpu buffers
4249 */
4250void ring_buffer_reset(struct ring_buffer *buffer)
4251{
4252	int cpu;
4253
4254	for_each_buffer_cpu(buffer, cpu)
4255		ring_buffer_reset_cpu(buffer, cpu);
4256}
4257EXPORT_SYMBOL_GPL(ring_buffer_reset);
4258
4259/**
4260 * rind_buffer_empty - is the ring buffer empty?
4261 * @buffer: The ring buffer to test
4262 */
4263int ring_buffer_empty(struct ring_buffer *buffer)
4264{
4265	struct ring_buffer_per_cpu *cpu_buffer;
4266	unsigned long flags;
4267	int dolock;
4268	int cpu;
4269	int ret;
4270
4271	dolock = rb_ok_to_lock();
4272
4273	/* yes this is racy, but if you don't like the race, lock the buffer */
4274	for_each_buffer_cpu(buffer, cpu) {
4275		cpu_buffer = buffer->buffers[cpu];
4276		local_irq_save(flags);
4277		if (dolock)
4278			raw_spin_lock(&cpu_buffer->reader_lock);
4279		ret = rb_per_cpu_empty(cpu_buffer);
4280		if (dolock)
4281			raw_spin_unlock(&cpu_buffer->reader_lock);
4282		local_irq_restore(flags);
4283
4284		if (!ret)
4285			return 0;
4286	}
4287
4288	return 1;
4289}
4290EXPORT_SYMBOL_GPL(ring_buffer_empty);
4291
4292/**
4293 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4294 * @buffer: The ring buffer
4295 * @cpu: The CPU buffer to test
4296 */
4297int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4298{
4299	struct ring_buffer_per_cpu *cpu_buffer;
4300	unsigned long flags;
4301	int dolock;
4302	int ret;
4303
4304	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4305		return 1;
4306
4307	dolock = rb_ok_to_lock();
4308
4309	cpu_buffer = buffer->buffers[cpu];
4310	local_irq_save(flags);
4311	if (dolock)
4312		raw_spin_lock(&cpu_buffer->reader_lock);
4313	ret = rb_per_cpu_empty(cpu_buffer);
4314	if (dolock)
4315		raw_spin_unlock(&cpu_buffer->reader_lock);
4316	local_irq_restore(flags);
4317
4318	return ret;
4319}
4320EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4321
4322#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4323/**
4324 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325 * @buffer_a: One buffer to swap with
4326 * @buffer_b: The other buffer to swap with
4327 *
4328 * This function is useful for tracers that want to take a "snapshot"
4329 * of a CPU buffer and has another back up buffer lying around.
4330 * it is expected that the tracer handles the cpu buffer not being
4331 * used at the moment.
4332 */
4333int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334			 struct ring_buffer *buffer_b, int cpu)
4335{
4336	struct ring_buffer_per_cpu *cpu_buffer_a;
4337	struct ring_buffer_per_cpu *cpu_buffer_b;
4338	int ret = -EINVAL;
4339
4340	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4342		goto out;
4343
4344	cpu_buffer_a = buffer_a->buffers[cpu];
4345	cpu_buffer_b = buffer_b->buffers[cpu];
4346
4347	/* At least make sure the two buffers are somewhat the same */
4348	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4349		goto out;
4350
4351	ret = -EAGAIN;
4352
4353	if (ring_buffer_flags != RB_BUFFERS_ON)
4354		goto out;
4355
4356	if (atomic_read(&buffer_a->record_disabled))
4357		goto out;
4358
4359	if (atomic_read(&buffer_b->record_disabled))
4360		goto out;
4361
4362	if (atomic_read(&cpu_buffer_a->record_disabled))
4363		goto out;
4364
4365	if (atomic_read(&cpu_buffer_b->record_disabled))
4366		goto out;
4367
4368	/*
4369	 * We can't do a synchronize_sched here because this
4370	 * function can be called in atomic context.
4371	 * Normally this will be called from the same CPU as cpu.
4372	 * If not it's up to the caller to protect this.
4373	 */
4374	atomic_inc(&cpu_buffer_a->record_disabled);
4375	atomic_inc(&cpu_buffer_b->record_disabled);
4376
4377	ret = -EBUSY;
4378	if (local_read(&cpu_buffer_a->committing))
4379		goto out_dec;
4380	if (local_read(&cpu_buffer_b->committing))
4381		goto out_dec;
4382
4383	buffer_a->buffers[cpu] = cpu_buffer_b;
4384	buffer_b->buffers[cpu] = cpu_buffer_a;
4385
4386	cpu_buffer_b->buffer = buffer_a;
4387	cpu_buffer_a->buffer = buffer_b;
4388
4389	ret = 0;
4390
4391out_dec:
4392	atomic_dec(&cpu_buffer_a->record_disabled);
4393	atomic_dec(&cpu_buffer_b->record_disabled);
4394out:
4395	return ret;
4396}
4397EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4398#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4399
4400/**
4401 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4402 * @buffer: the buffer to allocate for.
4403 * @cpu: the cpu buffer to allocate.
4404 *
4405 * This function is used in conjunction with ring_buffer_read_page.
4406 * When reading a full page from the ring buffer, these functions
4407 * can be used to speed up the process. The calling function should
4408 * allocate a few pages first with this function. Then when it
4409 * needs to get pages from the ring buffer, it passes the result
4410 * of this function into ring_buffer_read_page, which will swap
4411 * the page that was allocated, with the read page of the buffer.
4412 *
4413 * Returns:
4414 *  The page allocated, or NULL on error.
4415 */
4416void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4417{
4418	struct buffer_data_page *bpage;
4419	struct page *page;
4420
4421	page = alloc_pages_node(cpu_to_node(cpu),
4422				GFP_KERNEL | __GFP_NORETRY, 0);
4423	if (!page)
4424		return NULL;
4425
4426	bpage = page_address(page);
4427
4428	rb_init_page(bpage);
4429
4430	return bpage;
4431}
4432EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4433
4434/**
4435 * ring_buffer_free_read_page - free an allocated read page
4436 * @buffer: the buffer the page was allocate for
4437 * @data: the page to free
4438 *
4439 * Free a page allocated from ring_buffer_alloc_read_page.
4440 */
4441void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4442{
4443	free_page((unsigned long)data);
4444}
4445EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4446
4447/**
4448 * ring_buffer_read_page - extract a page from the ring buffer
4449 * @buffer: buffer to extract from
4450 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4451 * @len: amount to extract
4452 * @cpu: the cpu of the buffer to extract
4453 * @full: should the extraction only happen when the page is full.
4454 *
4455 * This function will pull out a page from the ring buffer and consume it.
4456 * @data_page must be the address of the variable that was returned
4457 * from ring_buffer_alloc_read_page. This is because the page might be used
4458 * to swap with a page in the ring buffer.
4459 *
4460 * for example:
4461 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4462 *	if (!rpage)
4463 *		return error;
4464 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4465 *	if (ret >= 0)
4466 *		process_page(rpage, ret);
4467 *
4468 * When @full is set, the function will not return true unless
4469 * the writer is off the reader page.
4470 *
4471 * Note: it is up to the calling functions to handle sleeps and wakeups.
4472 *  The ring buffer can be used anywhere in the kernel and can not
4473 *  blindly call wake_up. The layer that uses the ring buffer must be
4474 *  responsible for that.
4475 *
4476 * Returns:
4477 *  >=0 if data has been transferred, returns the offset of consumed data.
4478 *  <0 if no data has been transferred.
4479 */
4480int ring_buffer_read_page(struct ring_buffer *buffer,
4481			  void **data_page, size_t len, int cpu, int full)
4482{
4483	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4484	struct ring_buffer_event *event;
4485	struct buffer_data_page *bpage;
4486	struct buffer_page *reader;
4487	unsigned long missed_events;
4488	unsigned long flags;
4489	unsigned int commit;
4490	unsigned int read;
4491	u64 save_timestamp;
4492	int ret = -1;
4493
4494	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4495		goto out;
4496
4497	/*
4498	 * If len is not big enough to hold the page header, then
4499	 * we can not copy anything.
4500	 */
4501	if (len <= BUF_PAGE_HDR_SIZE)
4502		goto out;
4503
4504	len -= BUF_PAGE_HDR_SIZE;
4505
4506	if (!data_page)
4507		goto out;
4508
4509	bpage = *data_page;
4510	if (!bpage)
4511		goto out;
4512
4513	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4514
4515	reader = rb_get_reader_page(cpu_buffer);
4516	if (!reader)
4517		goto out_unlock;
4518
4519	event = rb_reader_event(cpu_buffer);
4520
4521	read = reader->read;
4522	commit = rb_page_commit(reader);
4523
4524	/* Check if any events were dropped */
4525	missed_events = cpu_buffer->lost_events;
4526
4527	/*
4528	 * If this page has been partially read or
4529	 * if len is not big enough to read the rest of the page or
4530	 * a writer is still on the page, then
4531	 * we must copy the data from the page to the buffer.
4532	 * Otherwise, we can simply swap the page with the one passed in.
4533	 */
4534	if (read || (len < (commit - read)) ||
4535	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4536		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4537		unsigned int rpos = read;
4538		unsigned int pos = 0;
4539		unsigned int size;
4540
4541		if (full)
4542			goto out_unlock;
4543
4544		if (len > (commit - read))
4545			len = (commit - read);
4546
4547		/* Always keep the time extend and data together */
4548		size = rb_event_ts_length(event);
4549
4550		if (len < size)
4551			goto out_unlock;
4552
4553		/* save the current timestamp, since the user will need it */
4554		save_timestamp = cpu_buffer->read_stamp;
4555
4556		/* Need to copy one event at a time */
4557		do {
4558			/* We need the size of one event, because
4559			 * rb_advance_reader only advances by one event,
4560			 * whereas rb_event_ts_length may include the size of
4561			 * one or two events.
4562			 * We have already ensured there's enough space if this
4563			 * is a time extend. */
4564			size = rb_event_length(event);
4565			memcpy(bpage->data + pos, rpage->data + rpos, size);
4566
4567			len -= size;
4568
4569			rb_advance_reader(cpu_buffer);
4570			rpos = reader->read;
4571			pos += size;
4572
4573			if (rpos >= commit)
4574				break;
4575
4576			event = rb_reader_event(cpu_buffer);
4577			/* Always keep the time extend and data together */
4578			size = rb_event_ts_length(event);
4579		} while (len >= size);
4580
4581		/* update bpage */
4582		local_set(&bpage->commit, pos);
4583		bpage->time_stamp = save_timestamp;
4584
4585		/* we copied everything to the beginning */
4586		read = 0;
4587	} else {
4588		/* update the entry counter */
4589		cpu_buffer->read += rb_page_entries(reader);
4590		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4591
4592		/* swap the pages */
4593		rb_init_page(bpage);
4594		bpage = reader->page;
4595		reader->page = *data_page;
4596		local_set(&reader->write, 0);
4597		local_set(&reader->entries, 0);
4598		reader->read = 0;
4599		*data_page = bpage;
4600
4601		/*
4602		 * Use the real_end for the data size,
4603		 * This gives us a chance to store the lost events
4604		 * on the page.
4605		 */
4606		if (reader->real_end)
4607			local_set(&bpage->commit, reader->real_end);
4608	}
4609	ret = read;
4610
4611	cpu_buffer->lost_events = 0;
4612
4613	commit = local_read(&bpage->commit);
4614	/*
4615	 * Set a flag in the commit field if we lost events
4616	 */
4617	if (missed_events) {
4618		/* If there is room at the end of the page to save the
4619		 * missed events, then record it there.
4620		 */
4621		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4622			memcpy(&bpage->data[commit], &missed_events,
4623			       sizeof(missed_events));
4624			local_add(RB_MISSED_STORED, &bpage->commit);
4625			commit += sizeof(missed_events);
4626		}
4627		local_add(RB_MISSED_EVENTS, &bpage->commit);
4628	}
4629
4630	/*
4631	 * This page may be off to user land. Zero it out here.
4632	 */
4633	if (commit < BUF_PAGE_SIZE)
4634		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4635
4636 out_unlock:
4637	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4638
4639 out:
4640	return ret;
4641}
4642EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4643
4644#ifdef CONFIG_HOTPLUG_CPU
4645static int rb_cpu_notify(struct notifier_block *self,
4646			 unsigned long action, void *hcpu)
4647{
4648	struct ring_buffer *buffer =
4649		container_of(self, struct ring_buffer, cpu_notify);
4650	long cpu = (long)hcpu;
4651	long nr_pages_same;
4652	int cpu_i;
4653	unsigned long nr_pages;
4654
4655	switch (action) {
4656	case CPU_UP_PREPARE:
4657	case CPU_UP_PREPARE_FROZEN:
4658		if (cpumask_test_cpu(cpu, buffer->cpumask))
4659			return NOTIFY_OK;
4660
4661		nr_pages = 0;
4662		nr_pages_same = 1;
4663		/* check if all cpu sizes are same */
4664		for_each_buffer_cpu(buffer, cpu_i) {
4665			/* fill in the size from first enabled cpu */
4666			if (nr_pages == 0)
4667				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4668			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4669				nr_pages_same = 0;
4670				break;
4671			}
4672		}
4673		/* allocate minimum pages, user can later expand it */
4674		if (!nr_pages_same)
4675			nr_pages = 2;
4676		buffer->buffers[cpu] =
4677			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4678		if (!buffer->buffers[cpu]) {
4679			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4680			     cpu);
4681			return NOTIFY_OK;
4682		}
4683		smp_wmb();
4684		cpumask_set_cpu(cpu, buffer->cpumask);
4685		break;
4686	case CPU_DOWN_PREPARE:
4687	case CPU_DOWN_PREPARE_FROZEN:
4688		/*
4689		 * Do nothing.
4690		 *  If we were to free the buffer, then the user would
4691		 *  lose any trace that was in the buffer.
4692		 */
4693		break;
4694	default:
4695		break;
4696	}
4697	return NOTIFY_OK;
4698}
4699#endif
4700
4701#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4702/*
4703 * This is a basic integrity check of the ring buffer.
4704 * Late in the boot cycle this test will run when configured in.
4705 * It will kick off a thread per CPU that will go into a loop
4706 * writing to the per cpu ring buffer various sizes of data.
4707 * Some of the data will be large items, some small.
4708 *
4709 * Another thread is created that goes into a spin, sending out
4710 * IPIs to the other CPUs to also write into the ring buffer.
4711 * this is to test the nesting ability of the buffer.
4712 *
4713 * Basic stats are recorded and reported. If something in the
4714 * ring buffer should happen that's not expected, a big warning
4715 * is displayed and all ring buffers are disabled.
4716 */
4717static struct task_struct *rb_threads[NR_CPUS] __initdata;
4718
4719struct rb_test_data {
4720	struct ring_buffer	*buffer;
4721	unsigned long		events;
4722	unsigned long		bytes_written;
4723	unsigned long		bytes_alloc;
4724	unsigned long		bytes_dropped;
4725	unsigned long		events_nested;
4726	unsigned long		bytes_written_nested;
4727	unsigned long		bytes_alloc_nested;
4728	unsigned long		bytes_dropped_nested;
4729	int			min_size_nested;
4730	int			max_size_nested;
4731	int			max_size;
4732	int			min_size;
4733	int			cpu;
4734	int			cnt;
4735};
4736
4737static struct rb_test_data rb_data[NR_CPUS] __initdata;
4738
4739/* 1 meg per cpu */
4740#define RB_TEST_BUFFER_SIZE	1048576
4741
4742static char rb_string[] __initdata =
4743	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4744	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4745	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4746
4747static bool rb_test_started __initdata;
4748
4749struct rb_item {
4750	int size;
4751	char str[];
4752};
4753
4754static __init int rb_write_something(struct rb_test_data *data, bool nested)
4755{
4756	struct ring_buffer_event *event;
4757	struct rb_item *item;
4758	bool started;
4759	int event_len;
4760	int size;
4761	int len;
4762	int cnt;
4763
4764	/* Have nested writes different that what is written */
4765	cnt = data->cnt + (nested ? 27 : 0);
4766
4767	/* Multiply cnt by ~e, to make some unique increment */
4768	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4769
4770	len = size + sizeof(struct rb_item);
4771
4772	started = rb_test_started;
4773	/* read rb_test_started before checking buffer enabled */
4774	smp_rmb();
4775
4776	event = ring_buffer_lock_reserve(data->buffer, len);
4777	if (!event) {
4778		/* Ignore dropped events before test starts. */
4779		if (started) {
4780			if (nested)
4781				data->bytes_dropped += len;
4782			else
4783				data->bytes_dropped_nested += len;
4784		}
4785		return len;
4786	}
4787
4788	event_len = ring_buffer_event_length(event);
4789
4790	if (RB_WARN_ON(data->buffer, event_len < len))
4791		goto out;
4792
4793	item = ring_buffer_event_data(event);
4794	item->size = size;
4795	memcpy(item->str, rb_string, size);
4796
4797	if (nested) {
4798		data->bytes_alloc_nested += event_len;
4799		data->bytes_written_nested += len;
4800		data->events_nested++;
4801		if (!data->min_size_nested || len < data->min_size_nested)
4802			data->min_size_nested = len;
4803		if (len > data->max_size_nested)
4804			data->max_size_nested = len;
4805	} else {
4806		data->bytes_alloc += event_len;
4807		data->bytes_written += len;
4808		data->events++;
4809		if (!data->min_size || len < data->min_size)
4810			data->max_size = len;
4811		if (len > data->max_size)
4812			data->max_size = len;
4813	}
4814
4815 out:
4816	ring_buffer_unlock_commit(data->buffer, event);
4817
4818	return 0;
4819}
4820
4821static __init int rb_test(void *arg)
4822{
4823	struct rb_test_data *data = arg;
4824
4825	while (!kthread_should_stop()) {
4826		rb_write_something(data, false);
4827		data->cnt++;
4828
4829		set_current_state(TASK_INTERRUPTIBLE);
4830		/* Now sleep between a min of 100-300us and a max of 1ms */
4831		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4832	}
4833
4834	return 0;
4835}
4836
4837static __init void rb_ipi(void *ignore)
4838{
4839	struct rb_test_data *data;
4840	int cpu = smp_processor_id();
4841
4842	data = &rb_data[cpu];
4843	rb_write_something(data, true);
4844}
4845
4846static __init int rb_hammer_test(void *arg)
4847{
4848	while (!kthread_should_stop()) {
4849
4850		/* Send an IPI to all cpus to write data! */
4851		smp_call_function(rb_ipi, NULL, 1);
4852		/* No sleep, but for non preempt, let others run */
4853		schedule();
4854	}
4855
4856	return 0;
4857}
4858
4859static __init int test_ringbuffer(void)
4860{
4861	struct task_struct *rb_hammer;
4862	struct ring_buffer *buffer;
4863	int cpu;
4864	int ret = 0;
4865
4866	pr_info("Running ring buffer tests...\n");
4867
4868	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4869	if (WARN_ON(!buffer))
4870		return 0;
4871
4872	/* Disable buffer so that threads can't write to it yet */
4873	ring_buffer_record_off(buffer);
4874
4875	for_each_online_cpu(cpu) {
4876		rb_data[cpu].buffer = buffer;
4877		rb_data[cpu].cpu = cpu;
4878		rb_data[cpu].cnt = cpu;
4879		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4880						 "rbtester/%d", cpu);
4881		if (WARN_ON(!rb_threads[cpu])) {
4882			pr_cont("FAILED\n");
4883			ret = -1;
4884			goto out_free;
4885		}
4886
4887		kthread_bind(rb_threads[cpu], cpu);
4888 		wake_up_process(rb_threads[cpu]);
4889	}
4890
4891	/* Now create the rb hammer! */
4892	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4893	if (WARN_ON(!rb_hammer)) {
4894		pr_cont("FAILED\n");
4895		ret = -1;
4896		goto out_free;
4897	}
4898
4899	ring_buffer_record_on(buffer);
4900	/*
4901	 * Show buffer is enabled before setting rb_test_started.
4902	 * Yes there's a small race window where events could be
4903	 * dropped and the thread wont catch it. But when a ring
4904	 * buffer gets enabled, there will always be some kind of
4905	 * delay before other CPUs see it. Thus, we don't care about
4906	 * those dropped events. We care about events dropped after
4907	 * the threads see that the buffer is active.
4908	 */
4909	smp_wmb();
4910	rb_test_started = true;
4911
4912	set_current_state(TASK_INTERRUPTIBLE);
4913	/* Just run for 10 seconds */;
4914	schedule_timeout(10 * HZ);
4915
4916	kthread_stop(rb_hammer);
4917
4918 out_free:
4919	for_each_online_cpu(cpu) {
4920		if (!rb_threads[cpu])
4921			break;
4922		kthread_stop(rb_threads[cpu]);
4923	}
4924	if (ret) {
4925		ring_buffer_free(buffer);
4926		return ret;
4927	}
4928
4929	/* Report! */
4930	pr_info("finished\n");
4931	for_each_online_cpu(cpu) {
4932		struct ring_buffer_event *event;
4933		struct rb_test_data *data = &rb_data[cpu];
4934		struct rb_item *item;
4935		unsigned long total_events;
4936		unsigned long total_dropped;
4937		unsigned long total_written;
4938		unsigned long total_alloc;
4939		unsigned long total_read = 0;
4940		unsigned long total_size = 0;
4941		unsigned long total_len = 0;
4942		unsigned long total_lost = 0;
4943		unsigned long lost;
4944		int big_event_size;
4945		int small_event_size;
4946
4947		ret = -1;
4948
4949		total_events = data->events + data->events_nested;
4950		total_written = data->bytes_written + data->bytes_written_nested;
4951		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4952		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4953
4954		big_event_size = data->max_size + data->max_size_nested;
4955		small_event_size = data->min_size + data->min_size_nested;
4956
4957		pr_info("CPU %d:\n", cpu);
4958		pr_info("              events:    %ld\n", total_events);
4959		pr_info("       dropped bytes:    %ld\n", total_dropped);
4960		pr_info("       alloced bytes:    %ld\n", total_alloc);
4961		pr_info("       written bytes:    %ld\n", total_written);
4962		pr_info("       biggest event:    %d\n", big_event_size);
4963		pr_info("      smallest event:    %d\n", small_event_size);
4964
4965		if (RB_WARN_ON(buffer, total_dropped))
4966			break;
4967
4968		ret = 0;
4969
4970		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4971			total_lost += lost;
4972			item = ring_buffer_event_data(event);
4973			total_len += ring_buffer_event_length(event);
4974			total_size += item->size + sizeof(struct rb_item);
4975			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4976				pr_info("FAILED!\n");
4977				pr_info("buffer had: %.*s\n", item->size, item->str);
4978				pr_info("expected:   %.*s\n", item->size, rb_string);
4979				RB_WARN_ON(buffer, 1);
4980				ret = -1;
4981				break;
4982			}
4983			total_read++;
4984		}
4985		if (ret)
4986			break;
4987
4988		ret = -1;
4989
4990		pr_info("         read events:   %ld\n", total_read);
4991		pr_info("         lost events:   %ld\n", total_lost);
4992		pr_info("        total events:   %ld\n", total_lost + total_read);
4993		pr_info("  recorded len bytes:   %ld\n", total_len);
4994		pr_info(" recorded size bytes:   %ld\n", total_size);
4995		if (total_lost)
4996			pr_info(" With dropped events, record len and size may not match\n"
4997				" alloced and written from above\n");
4998		if (!total_lost) {
4999			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5000				       total_size != total_written))
5001				break;
5002		}
5003		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5004			break;
5005
5006		ret = 0;
5007	}
5008	if (!ret)
5009		pr_info("Ring buffer PASSED!\n");
5010
5011	ring_buffer_free(buffer);
5012	return 0;
5013}
5014
5015late_initcall(test_ringbuffer);
5016#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5017