1/*
2 *  linux/kernel/time.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *
6 *  This file contains the interface functions for the various
7 *  time related system calls: time, stime, gettimeofday, settimeofday,
8 *			       adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02    Philip Gladstone
14 *      Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08    Torsten Duwe
16 *      adjtime interface update and CMOS clock write code
17 * 1995-08-13    Torsten Duwe
18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16    Ulrich Windl
20 *	Introduced error checking for many cases in adjtimex().
21 *	Updated NTP code according to technical memorandum Jan '96
22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 *	(Even though the technical memorandum forbids it)
25 * 2004-07-14	 Christoph Lameter
26 *	Added getnstimeofday to allow the posix timer functions to return
27 *	with nanosecond accuracy
28 */
29
30#include <linux/export.h>
31#include <linux/timex.h>
32#include <linux/capability.h>
33#include <linux/timekeeper_internal.h>
34#include <linux/errno.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/math64.h>
39#include <linux/ptrace.h>
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
44#include "timeconst.h"
45#include "timekeeping.h"
46
47/*
48 * The timezone where the local system is located.  Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51struct timezone sys_tz;
52
53EXPORT_SYMBOL(sys_tz);
54
55#ifdef __ARCH_WANT_SYS_TIME
56
57/*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63SYSCALL_DEFINE1(time, time_t __user *, tloc)
64{
65	time_t i = get_seconds();
66
67	if (tloc) {
68		if (put_user(i,tloc))
69			return -EFAULT;
70	}
71	force_successful_syscall_return();
72	return i;
73}
74
75/*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday().  Is this for backwards compatibility?  If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83{
84	struct timespec tv;
85	int err;
86
87	if (get_user(tv.tv_sec, tptr))
88		return -EFAULT;
89
90	tv.tv_nsec = 0;
91
92	err = security_settime(&tv, NULL);
93	if (err)
94		return err;
95
96	do_settimeofday(&tv);
97	return 0;
98}
99
100#endif /* __ARCH_WANT_SYS_TIME */
101
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103		struct timezone __user *, tz)
104{
105	if (likely(tv != NULL)) {
106		struct timeval ktv;
107		do_gettimeofday(&ktv);
108		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109			return -EFAULT;
110	}
111	if (unlikely(tz != NULL)) {
112		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113			return -EFAULT;
114	}
115	return 0;
116}
117
118/*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122int persistent_clock_is_local;
123
124/*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives.  Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours)  or
132 * compile in the timezone information into the kernel.  Bad, bad....
133 *
134 *						- TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140static inline void warp_clock(void)
141{
142	if (sys_tz.tz_minuteswest != 0) {
143		struct timespec adjust;
144
145		persistent_clock_is_local = 1;
146		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147		adjust.tv_nsec = 0;
148		timekeeping_inject_offset(&adjust);
149	}
150}
151
152/*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164{
165	static int firsttime = 1;
166	int error = 0;
167
168	if (tv && !timespec_valid(tv))
169		return -EINVAL;
170
171	error = security_settime(tv, tz);
172	if (error)
173		return error;
174
175	if (tz) {
176		sys_tz = *tz;
177		update_vsyscall_tz();
178		if (firsttime) {
179			firsttime = 0;
180			if (!tv)
181				warp_clock();
182		}
183	}
184	if (tv)
185		return do_settimeofday(tv);
186	return 0;
187}
188
189SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190		struct timezone __user *, tz)
191{
192	struct timeval user_tv;
193	struct timespec	new_ts;
194	struct timezone new_tz;
195
196	if (tv) {
197		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198			return -EFAULT;
199
200		if (!timeval_valid(&user_tv))
201			return -EINVAL;
202
203		new_ts.tv_sec = user_tv.tv_sec;
204		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
205	}
206	if (tz) {
207		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
208			return -EFAULT;
209	}
210
211	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
212}
213
214SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
215{
216	struct timex txc;		/* Local copy of parameter */
217	int ret;
218
219	/* Copy the user data space into the kernel copy
220	 * structure. But bear in mind that the structures
221	 * may change
222	 */
223	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
224		return -EFAULT;
225	ret = do_adjtimex(&txc);
226	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
227}
228
229/**
230 * current_fs_time - Return FS time
231 * @sb: Superblock.
232 *
233 * Return the current time truncated to the time granularity supported by
234 * the fs.
235 */
236struct timespec current_fs_time(struct super_block *sb)
237{
238	struct timespec now = current_kernel_time();
239	return timespec_trunc(now, sb->s_time_gran);
240}
241EXPORT_SYMBOL(current_fs_time);
242
243/*
244 * Convert jiffies to milliseconds and back.
245 *
246 * Avoid unnecessary multiplications/divisions in the
247 * two most common HZ cases:
248 */
249unsigned int jiffies_to_msecs(const unsigned long j)
250{
251#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
252	return (MSEC_PER_SEC / HZ) * j;
253#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
254	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
255#else
256# if BITS_PER_LONG == 32
257	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
258# else
259	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
260# endif
261#endif
262}
263EXPORT_SYMBOL(jiffies_to_msecs);
264
265unsigned int jiffies_to_usecs(const unsigned long j)
266{
267#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
268	return (USEC_PER_SEC / HZ) * j;
269#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
270	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
271#else
272# if BITS_PER_LONG == 32
273	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
274# else
275	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
276# endif
277#endif
278}
279EXPORT_SYMBOL(jiffies_to_usecs);
280
281/**
282 * timespec_trunc - Truncate timespec to a granularity
283 * @t: Timespec
284 * @gran: Granularity in ns.
285 *
286 * Truncate a timespec to a granularity. gran must be smaller than a second.
287 * Always rounds down.
288 *
289 * This function should be only used for timestamps returned by
290 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
291 * it doesn't handle the better resolution of the latter.
292 */
293struct timespec timespec_trunc(struct timespec t, unsigned gran)
294{
295	/*
296	 * Division is pretty slow so avoid it for common cases.
297	 * Currently current_kernel_time() never returns better than
298	 * jiffies resolution. Exploit that.
299	 */
300	if (gran <= jiffies_to_usecs(1) * 1000) {
301		/* nothing */
302	} else if (gran == 1000000000) {
303		t.tv_nsec = 0;
304	} else {
305		t.tv_nsec -= t.tv_nsec % gran;
306	}
307	return t;
308}
309EXPORT_SYMBOL(timespec_trunc);
310
311/*
312 * mktime64 - Converts date to seconds.
313 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
314 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
315 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
316 *
317 * [For the Julian calendar (which was used in Russia before 1917,
318 * Britain & colonies before 1752, anywhere else before 1582,
319 * and is still in use by some communities) leave out the
320 * -year/100+year/400 terms, and add 10.]
321 *
322 * This algorithm was first published by Gauss (I think).
323 */
324time64_t mktime64(const unsigned int year0, const unsigned int mon0,
325		const unsigned int day, const unsigned int hour,
326		const unsigned int min, const unsigned int sec)
327{
328	unsigned int mon = mon0, year = year0;
329
330	/* 1..12 -> 11,12,1..10 */
331	if (0 >= (int) (mon -= 2)) {
332		mon += 12;	/* Puts Feb last since it has leap day */
333		year -= 1;
334	}
335
336	return ((((time64_t)
337		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
338		  year*365 - 719499
339	    )*24 + hour /* now have hours */
340	  )*60 + min /* now have minutes */
341	)*60 + sec; /* finally seconds */
342}
343EXPORT_SYMBOL(mktime64);
344
345/**
346 * set_normalized_timespec - set timespec sec and nsec parts and normalize
347 *
348 * @ts:		pointer to timespec variable to be set
349 * @sec:	seconds to set
350 * @nsec:	nanoseconds to set
351 *
352 * Set seconds and nanoseconds field of a timespec variable and
353 * normalize to the timespec storage format
354 *
355 * Note: The tv_nsec part is always in the range of
356 *	0 <= tv_nsec < NSEC_PER_SEC
357 * For negative values only the tv_sec field is negative !
358 */
359void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
360{
361	while (nsec >= NSEC_PER_SEC) {
362		/*
363		 * The following asm() prevents the compiler from
364		 * optimising this loop into a modulo operation. See
365		 * also __iter_div_u64_rem() in include/linux/time.h
366		 */
367		asm("" : "+rm"(nsec));
368		nsec -= NSEC_PER_SEC;
369		++sec;
370	}
371	while (nsec < 0) {
372		asm("" : "+rm"(nsec));
373		nsec += NSEC_PER_SEC;
374		--sec;
375	}
376	ts->tv_sec = sec;
377	ts->tv_nsec = nsec;
378}
379EXPORT_SYMBOL(set_normalized_timespec);
380
381/**
382 * ns_to_timespec - Convert nanoseconds to timespec
383 * @nsec:       the nanoseconds value to be converted
384 *
385 * Returns the timespec representation of the nsec parameter.
386 */
387struct timespec ns_to_timespec(const s64 nsec)
388{
389	struct timespec ts;
390	s32 rem;
391
392	if (!nsec)
393		return (struct timespec) {0, 0};
394
395	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
396	if (unlikely(rem < 0)) {
397		ts.tv_sec--;
398		rem += NSEC_PER_SEC;
399	}
400	ts.tv_nsec = rem;
401
402	return ts;
403}
404EXPORT_SYMBOL(ns_to_timespec);
405
406/**
407 * ns_to_timeval - Convert nanoseconds to timeval
408 * @nsec:       the nanoseconds value to be converted
409 *
410 * Returns the timeval representation of the nsec parameter.
411 */
412struct timeval ns_to_timeval(const s64 nsec)
413{
414	struct timespec ts = ns_to_timespec(nsec);
415	struct timeval tv;
416
417	tv.tv_sec = ts.tv_sec;
418	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
419
420	return tv;
421}
422EXPORT_SYMBOL(ns_to_timeval);
423
424#if BITS_PER_LONG == 32
425/**
426 * set_normalized_timespec - set timespec sec and nsec parts and normalize
427 *
428 * @ts:		pointer to timespec variable to be set
429 * @sec:	seconds to set
430 * @nsec:	nanoseconds to set
431 *
432 * Set seconds and nanoseconds field of a timespec variable and
433 * normalize to the timespec storage format
434 *
435 * Note: The tv_nsec part is always in the range of
436 *	0 <= tv_nsec < NSEC_PER_SEC
437 * For negative values only the tv_sec field is negative !
438 */
439void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
440{
441	while (nsec >= NSEC_PER_SEC) {
442		/*
443		 * The following asm() prevents the compiler from
444		 * optimising this loop into a modulo operation. See
445		 * also __iter_div_u64_rem() in include/linux/time.h
446		 */
447		asm("" : "+rm"(nsec));
448		nsec -= NSEC_PER_SEC;
449		++sec;
450	}
451	while (nsec < 0) {
452		asm("" : "+rm"(nsec));
453		nsec += NSEC_PER_SEC;
454		--sec;
455	}
456	ts->tv_sec = sec;
457	ts->tv_nsec = nsec;
458}
459EXPORT_SYMBOL(set_normalized_timespec64);
460
461/**
462 * ns_to_timespec64 - Convert nanoseconds to timespec64
463 * @nsec:       the nanoseconds value to be converted
464 *
465 * Returns the timespec64 representation of the nsec parameter.
466 */
467struct timespec64 ns_to_timespec64(const s64 nsec)
468{
469	struct timespec64 ts;
470	s32 rem;
471
472	if (!nsec)
473		return (struct timespec64) {0, 0};
474
475	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
476	if (unlikely(rem < 0)) {
477		ts.tv_sec--;
478		rem += NSEC_PER_SEC;
479	}
480	ts.tv_nsec = rem;
481
482	return ts;
483}
484EXPORT_SYMBOL(ns_to_timespec64);
485#endif
486/*
487 * When we convert to jiffies then we interpret incoming values
488 * the following way:
489 *
490 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
491 *
492 * - 'too large' values [that would result in larger than
493 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
494 *
495 * - all other values are converted to jiffies by either multiplying
496 *   the input value by a factor or dividing it with a factor
497 *
498 * We must also be careful about 32-bit overflows.
499 */
500unsigned long msecs_to_jiffies(const unsigned int m)
501{
502	/*
503	 * Negative value, means infinite timeout:
504	 */
505	if ((int)m < 0)
506		return MAX_JIFFY_OFFSET;
507
508#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
509	/*
510	 * HZ is equal to or smaller than 1000, and 1000 is a nice
511	 * round multiple of HZ, divide with the factor between them,
512	 * but round upwards:
513	 */
514	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
515#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
516	/*
517	 * HZ is larger than 1000, and HZ is a nice round multiple of
518	 * 1000 - simply multiply with the factor between them.
519	 *
520	 * But first make sure the multiplication result cannot
521	 * overflow:
522	 */
523	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
524		return MAX_JIFFY_OFFSET;
525
526	return m * (HZ / MSEC_PER_SEC);
527#else
528	/*
529	 * Generic case - multiply, round and divide. But first
530	 * check that if we are doing a net multiplication, that
531	 * we wouldn't overflow:
532	 */
533	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
534		return MAX_JIFFY_OFFSET;
535
536	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
537		>> MSEC_TO_HZ_SHR32;
538#endif
539}
540EXPORT_SYMBOL(msecs_to_jiffies);
541
542unsigned long usecs_to_jiffies(const unsigned int u)
543{
544	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
545		return MAX_JIFFY_OFFSET;
546#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
547	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
548#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
549	return u * (HZ / USEC_PER_SEC);
550#else
551	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
552		>> USEC_TO_HZ_SHR32;
553#endif
554}
555EXPORT_SYMBOL(usecs_to_jiffies);
556
557/*
558 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
559 * that a remainder subtract here would not do the right thing as the
560 * resolution values don't fall on second boundries.  I.e. the line:
561 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
562 * Note that due to the small error in the multiplier here, this
563 * rounding is incorrect for sufficiently large values of tv_nsec, but
564 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
565 * OK.
566 *
567 * Rather, we just shift the bits off the right.
568 *
569 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
570 * value to a scaled second value.
571 */
572static unsigned long
573__timespec_to_jiffies(unsigned long sec, long nsec)
574{
575	nsec = nsec + TICK_NSEC - 1;
576
577	if (sec >= MAX_SEC_IN_JIFFIES){
578		sec = MAX_SEC_IN_JIFFIES;
579		nsec = 0;
580	}
581	return (((u64)sec * SEC_CONVERSION) +
582		(((u64)nsec * NSEC_CONVERSION) >>
583		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
584
585}
586
587unsigned long
588timespec_to_jiffies(const struct timespec *value)
589{
590	return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
591}
592
593EXPORT_SYMBOL(timespec_to_jiffies);
594
595void
596jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
597{
598	/*
599	 * Convert jiffies to nanoseconds and separate with
600	 * one divide.
601	 */
602	u32 rem;
603	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
604				    NSEC_PER_SEC, &rem);
605	value->tv_nsec = rem;
606}
607EXPORT_SYMBOL(jiffies_to_timespec);
608
609/*
610 * We could use a similar algorithm to timespec_to_jiffies (with a
611 * different multiplier for usec instead of nsec). But this has a
612 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
613 * usec value, since it's not necessarily integral.
614 *
615 * We could instead round in the intermediate scaled representation
616 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
617 * perilous: the scaling introduces a small positive error, which
618 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
619 * units to the intermediate before shifting) leads to accidental
620 * overflow and overestimates.
621 *
622 * At the cost of one additional multiplication by a constant, just
623 * use the timespec implementation.
624 */
625unsigned long
626timeval_to_jiffies(const struct timeval *value)
627{
628	return __timespec_to_jiffies(value->tv_sec,
629				     value->tv_usec * NSEC_PER_USEC);
630}
631EXPORT_SYMBOL(timeval_to_jiffies);
632
633void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
634{
635	/*
636	 * Convert jiffies to nanoseconds and separate with
637	 * one divide.
638	 */
639	u32 rem;
640
641	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
642				    NSEC_PER_SEC, &rem);
643	value->tv_usec = rem / NSEC_PER_USEC;
644}
645EXPORT_SYMBOL(jiffies_to_timeval);
646
647/*
648 * Convert jiffies/jiffies_64 to clock_t and back.
649 */
650clock_t jiffies_to_clock_t(unsigned long x)
651{
652#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
653# if HZ < USER_HZ
654	return x * (USER_HZ / HZ);
655# else
656	return x / (HZ / USER_HZ);
657# endif
658#else
659	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
660#endif
661}
662EXPORT_SYMBOL(jiffies_to_clock_t);
663
664unsigned long clock_t_to_jiffies(unsigned long x)
665{
666#if (HZ % USER_HZ)==0
667	if (x >= ~0UL / (HZ / USER_HZ))
668		return ~0UL;
669	return x * (HZ / USER_HZ);
670#else
671	/* Don't worry about loss of precision here .. */
672	if (x >= ~0UL / HZ * USER_HZ)
673		return ~0UL;
674
675	/* .. but do try to contain it here */
676	return div_u64((u64)x * HZ, USER_HZ);
677#endif
678}
679EXPORT_SYMBOL(clock_t_to_jiffies);
680
681u64 jiffies_64_to_clock_t(u64 x)
682{
683#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
684# if HZ < USER_HZ
685	x = div_u64(x * USER_HZ, HZ);
686# elif HZ > USER_HZ
687	x = div_u64(x, HZ / USER_HZ);
688# else
689	/* Nothing to do */
690# endif
691#else
692	/*
693	 * There are better ways that don't overflow early,
694	 * but even this doesn't overflow in hundreds of years
695	 * in 64 bits, so..
696	 */
697	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
698#endif
699	return x;
700}
701EXPORT_SYMBOL(jiffies_64_to_clock_t);
702
703u64 nsec_to_clock_t(u64 x)
704{
705#if (NSEC_PER_SEC % USER_HZ) == 0
706	return div_u64(x, NSEC_PER_SEC / USER_HZ);
707#elif (USER_HZ % 512) == 0
708	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
709#else
710	/*
711         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
712         * overflow after 64.99 years.
713         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
714         */
715	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
716#endif
717}
718
719/**
720 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
721 *
722 * @n:	nsecs in u64
723 *
724 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
725 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
726 * for scheduler, not for use in device drivers to calculate timeout value.
727 *
728 * note:
729 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
730 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
731 */
732u64 nsecs_to_jiffies64(u64 n)
733{
734#if (NSEC_PER_SEC % HZ) == 0
735	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
736	return div_u64(n, NSEC_PER_SEC / HZ);
737#elif (HZ % 512) == 0
738	/* overflow after 292 years if HZ = 1024 */
739	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
740#else
741	/*
742	 * Generic case - optimized for cases where HZ is a multiple of 3.
743	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
744	 */
745	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
746#endif
747}
748EXPORT_SYMBOL(nsecs_to_jiffies64);
749
750/**
751 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
752 *
753 * @n:	nsecs in u64
754 *
755 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
756 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
757 * for scheduler, not for use in device drivers to calculate timeout value.
758 *
759 * note:
760 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
761 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
762 */
763unsigned long nsecs_to_jiffies(u64 n)
764{
765	return (unsigned long)nsecs_to_jiffies64(n);
766}
767EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
768
769/*
770 * Add two timespec values and do a safety check for overflow.
771 * It's assumed that both values are valid (>= 0)
772 */
773struct timespec timespec_add_safe(const struct timespec lhs,
774				  const struct timespec rhs)
775{
776	struct timespec res;
777
778	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
779				lhs.tv_nsec + rhs.tv_nsec);
780
781	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
782		res.tv_sec = TIME_T_MAX;
783
784	return res;
785}
786