1/*
2 *  linux/kernel/time/tick-sched.c
3 *
4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 *
8 *  No idle tick implementation for low and high resolution timers
9 *
10 *  Started by: Thomas Gleixner and Ingo Molnar
11 *
12 *  Distribute under GPLv2.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
22#include <linux/module.h>
23#include <linux/irq_work.h>
24#include <linux/posix-timers.h>
25#include <linux/perf_event.h>
26#include <linux/context_tracking.h>
27
28#include <asm/irq_regs.h>
29
30#include "tick-internal.h"
31
32#include <trace/events/timer.h>
33
34/*
35 * Per cpu nohz control structure
36 */
37static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39/*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42static ktime_t last_jiffies_update;
43
44struct tick_sched *tick_get_tick_sched(int cpu)
45{
46	return &per_cpu(tick_cpu_sched, cpu);
47}
48
49/*
50 * Must be called with interrupts disabled !
51 */
52static void tick_do_update_jiffies64(ktime_t now)
53{
54	unsigned long ticks = 0;
55	ktime_t delta;
56
57	/*
58	 * Do a quick check without holding jiffies_lock:
59	 */
60	delta = ktime_sub(now, last_jiffies_update);
61	if (delta.tv64 < tick_period.tv64)
62		return;
63
64	/* Reevalute with jiffies_lock held */
65	write_seqlock(&jiffies_lock);
66
67	delta = ktime_sub(now, last_jiffies_update);
68	if (delta.tv64 >= tick_period.tv64) {
69
70		delta = ktime_sub(delta, tick_period);
71		last_jiffies_update = ktime_add(last_jiffies_update,
72						tick_period);
73
74		/* Slow path for long timeouts */
75		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76			s64 incr = ktime_to_ns(tick_period);
77
78			ticks = ktime_divns(delta, incr);
79
80			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81							   incr * ticks);
82		}
83		do_timer(++ticks);
84
85		/* Keep the tick_next_period variable up to date */
86		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87	} else {
88		write_sequnlock(&jiffies_lock);
89		return;
90	}
91	write_sequnlock(&jiffies_lock);
92	update_wall_time();
93}
94
95/*
96 * Initialize and return retrieve the jiffies update.
97 */
98static ktime_t tick_init_jiffy_update(void)
99{
100	ktime_t period;
101
102	write_seqlock(&jiffies_lock);
103	/* Did we start the jiffies update yet ? */
104	if (last_jiffies_update.tv64 == 0)
105		last_jiffies_update = tick_next_period;
106	period = last_jiffies_update;
107	write_sequnlock(&jiffies_lock);
108	return period;
109}
110
111
112static void tick_sched_do_timer(ktime_t now)
113{
114	int cpu = smp_processor_id();
115
116#ifdef CONFIG_NO_HZ_COMMON
117	/*
118	 * Check if the do_timer duty was dropped. We don't care about
119	 * concurrency: This happens only when the cpu in charge went
120	 * into a long sleep. If two cpus happen to assign themself to
121	 * this duty, then the jiffies update is still serialized by
122	 * jiffies_lock.
123	 */
124	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125	    && !tick_nohz_full_cpu(cpu))
126		tick_do_timer_cpu = cpu;
127#endif
128
129	/* Check, if the jiffies need an update */
130	if (tick_do_timer_cpu == cpu)
131		tick_do_update_jiffies64(now);
132}
133
134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135{
136#ifdef CONFIG_NO_HZ_COMMON
137	/*
138	 * When we are idle and the tick is stopped, we have to touch
139	 * the watchdog as we might not schedule for a really long
140	 * time. This happens on complete idle SMP systems while
141	 * waiting on the login prompt. We also increment the "start of
142	 * idle" jiffy stamp so the idle accounting adjustment we do
143	 * when we go busy again does not account too much ticks.
144	 */
145	if (ts->tick_stopped) {
146		touch_softlockup_watchdog();
147		if (is_idle_task(current))
148			ts->idle_jiffies++;
149	}
150#endif
151	update_process_times(user_mode(regs));
152	profile_tick(CPU_PROFILING);
153}
154
155#ifdef CONFIG_NO_HZ_FULL
156cpumask_var_t tick_nohz_full_mask;
157cpumask_var_t housekeeping_mask;
158bool tick_nohz_full_running;
159
160static bool can_stop_full_tick(void)
161{
162	WARN_ON_ONCE(!irqs_disabled());
163
164	if (!sched_can_stop_tick()) {
165		trace_tick_stop(0, "more than 1 task in runqueue\n");
166		return false;
167	}
168
169	if (!posix_cpu_timers_can_stop_tick(current)) {
170		trace_tick_stop(0, "posix timers running\n");
171		return false;
172	}
173
174	if (!perf_event_can_stop_tick()) {
175		trace_tick_stop(0, "perf events running\n");
176		return false;
177	}
178
179	/* sched_clock_tick() needs us? */
180#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181	/*
182	 * TODO: kick full dynticks CPUs when
183	 * sched_clock_stable is set.
184	 */
185	if (!sched_clock_stable()) {
186		trace_tick_stop(0, "unstable sched clock\n");
187		/*
188		 * Don't allow the user to think they can get
189		 * full NO_HZ with this machine.
190		 */
191		WARN_ONCE(tick_nohz_full_running,
192			  "NO_HZ FULL will not work with unstable sched clock");
193		return false;
194	}
195#endif
196
197	return true;
198}
199
200static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201
202/*
203 * Re-evaluate the need for the tick on the current CPU
204 * and restart it if necessary.
205 */
206void __tick_nohz_full_check(void)
207{
208	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
209
210	if (tick_nohz_full_cpu(smp_processor_id())) {
211		if (ts->tick_stopped && !is_idle_task(current)) {
212			if (!can_stop_full_tick())
213				tick_nohz_restart_sched_tick(ts, ktime_get());
214		}
215	}
216}
217
218static void nohz_full_kick_work_func(struct irq_work *work)
219{
220	__tick_nohz_full_check();
221}
222
223static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224	.func = nohz_full_kick_work_func,
225};
226
227/*
228 * Kick this CPU if it's full dynticks in order to force it to
229 * re-evaluate its dependency on the tick and restart it if necessary.
230 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231 * is NMI safe.
232 */
233void tick_nohz_full_kick(void)
234{
235	if (!tick_nohz_full_cpu(smp_processor_id()))
236		return;
237
238	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
239}
240
241/*
242 * Kick the CPU if it's full dynticks in order to force it to
243 * re-evaluate its dependency on the tick and restart it if necessary.
244 */
245void tick_nohz_full_kick_cpu(int cpu)
246{
247	if (!tick_nohz_full_cpu(cpu))
248		return;
249
250	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251}
252
253static void nohz_full_kick_ipi(void *info)
254{
255	__tick_nohz_full_check();
256}
257
258/*
259 * Kick all full dynticks CPUs in order to force these to re-evaluate
260 * their dependency on the tick and restart it if necessary.
261 */
262void tick_nohz_full_kick_all(void)
263{
264	if (!tick_nohz_full_running)
265		return;
266
267	preempt_disable();
268	smp_call_function_many(tick_nohz_full_mask,
269			       nohz_full_kick_ipi, NULL, false);
270	tick_nohz_full_kick();
271	preempt_enable();
272}
273
274/*
275 * Re-evaluate the need for the tick as we switch the current task.
276 * It might need the tick due to per task/process properties:
277 * perf events, posix cpu timers, ...
278 */
279void __tick_nohz_task_switch(struct task_struct *tsk)
280{
281	unsigned long flags;
282
283	local_irq_save(flags);
284
285	if (!tick_nohz_full_cpu(smp_processor_id()))
286		goto out;
287
288	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289		tick_nohz_full_kick();
290
291out:
292	local_irq_restore(flags);
293}
294
295/* Parse the boot-time nohz CPU list from the kernel parameters. */
296static int __init tick_nohz_full_setup(char *str)
297{
298	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301		free_bootmem_cpumask_var(tick_nohz_full_mask);
302		return 1;
303	}
304	tick_nohz_full_running = true;
305
306	return 1;
307}
308__setup("nohz_full=", tick_nohz_full_setup);
309
310static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311						 unsigned long action,
312						 void *hcpu)
313{
314	unsigned int cpu = (unsigned long)hcpu;
315
316	switch (action & ~CPU_TASKS_FROZEN) {
317	case CPU_DOWN_PREPARE:
318		/*
319		 * If we handle the timekeeping duty for full dynticks CPUs,
320		 * we can't safely shutdown that CPU.
321		 */
322		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323			return NOTIFY_BAD;
324		break;
325	}
326	return NOTIFY_OK;
327}
328
329static int tick_nohz_init_all(void)
330{
331	int err = -1;
332
333#ifdef CONFIG_NO_HZ_FULL_ALL
334	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
335		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
336		return err;
337	}
338	err = 0;
339	cpumask_setall(tick_nohz_full_mask);
340	tick_nohz_full_running = true;
341#endif
342	return err;
343}
344
345void __init tick_nohz_init(void)
346{
347	int cpu;
348
349	if (!tick_nohz_full_running) {
350		if (tick_nohz_init_all() < 0)
351			return;
352	}
353
354	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
355		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
356		cpumask_clear(tick_nohz_full_mask);
357		tick_nohz_full_running = false;
358		return;
359	}
360
361	/*
362	 * Full dynticks uses irq work to drive the tick rescheduling on safe
363	 * locking contexts. But then we need irq work to raise its own
364	 * interrupts to avoid circular dependency on the tick
365	 */
366	if (!arch_irq_work_has_interrupt()) {
367		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
368			   "support irq work self-IPIs\n");
369		cpumask_clear(tick_nohz_full_mask);
370		cpumask_copy(housekeeping_mask, cpu_possible_mask);
371		tick_nohz_full_running = false;
372		return;
373	}
374
375	cpu = smp_processor_id();
376
377	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
378		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
379		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
380	}
381
382	cpumask_andnot(housekeeping_mask,
383		       cpu_possible_mask, tick_nohz_full_mask);
384
385	for_each_cpu(cpu, tick_nohz_full_mask)
386		context_tracking_cpu_set(cpu);
387
388	cpu_notifier(tick_nohz_cpu_down_callback, 0);
389	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
390		cpumask_pr_args(tick_nohz_full_mask));
391}
392#endif
393
394/*
395 * NOHZ - aka dynamic tick functionality
396 */
397#ifdef CONFIG_NO_HZ_COMMON
398/*
399 * NO HZ enabled ?
400 */
401static int tick_nohz_enabled __read_mostly  = 1;
402int tick_nohz_active  __read_mostly;
403/*
404 * Enable / Disable tickless mode
405 */
406static int __init setup_tick_nohz(char *str)
407{
408	if (!strcmp(str, "off"))
409		tick_nohz_enabled = 0;
410	else if (!strcmp(str, "on"))
411		tick_nohz_enabled = 1;
412	else
413		return 0;
414	return 1;
415}
416
417__setup("nohz=", setup_tick_nohz);
418
419int tick_nohz_tick_stopped(void)
420{
421	return __this_cpu_read(tick_cpu_sched.tick_stopped);
422}
423
424/**
425 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
426 *
427 * Called from interrupt entry when the CPU was idle
428 *
429 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
430 * must be updated. Otherwise an interrupt handler could use a stale jiffy
431 * value. We do this unconditionally on any cpu, as we don't know whether the
432 * cpu, which has the update task assigned is in a long sleep.
433 */
434static void tick_nohz_update_jiffies(ktime_t now)
435{
436	unsigned long flags;
437
438	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
439
440	local_irq_save(flags);
441	tick_do_update_jiffies64(now);
442	local_irq_restore(flags);
443
444	touch_softlockup_watchdog();
445}
446
447/*
448 * Updates the per cpu time idle statistics counters
449 */
450static void
451update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
452{
453	ktime_t delta;
454
455	if (ts->idle_active) {
456		delta = ktime_sub(now, ts->idle_entrytime);
457		if (nr_iowait_cpu(cpu) > 0)
458			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
459		else
460			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
461		ts->idle_entrytime = now;
462	}
463
464	if (last_update_time)
465		*last_update_time = ktime_to_us(now);
466
467}
468
469static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
470{
471	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
472	ts->idle_active = 0;
473
474	sched_clock_idle_wakeup_event(0);
475}
476
477static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
478{
479	ktime_t now = ktime_get();
480
481	ts->idle_entrytime = now;
482	ts->idle_active = 1;
483	sched_clock_idle_sleep_event();
484	return now;
485}
486
487/**
488 * get_cpu_idle_time_us - get the total idle time of a cpu
489 * @cpu: CPU number to query
490 * @last_update_time: variable to store update time in. Do not update
491 * counters if NULL.
492 *
493 * Return the cummulative idle time (since boot) for a given
494 * CPU, in microseconds.
495 *
496 * This time is measured via accounting rather than sampling,
497 * and is as accurate as ktime_get() is.
498 *
499 * This function returns -1 if NOHZ is not enabled.
500 */
501u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
502{
503	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
504	ktime_t now, idle;
505
506	if (!tick_nohz_active)
507		return -1;
508
509	now = ktime_get();
510	if (last_update_time) {
511		update_ts_time_stats(cpu, ts, now, last_update_time);
512		idle = ts->idle_sleeptime;
513	} else {
514		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
515			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
516
517			idle = ktime_add(ts->idle_sleeptime, delta);
518		} else {
519			idle = ts->idle_sleeptime;
520		}
521	}
522
523	return ktime_to_us(idle);
524
525}
526EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
527
528/**
529 * get_cpu_iowait_time_us - get the total iowait time of a cpu
530 * @cpu: CPU number to query
531 * @last_update_time: variable to store update time in. Do not update
532 * counters if NULL.
533 *
534 * Return the cummulative iowait time (since boot) for a given
535 * CPU, in microseconds.
536 *
537 * This time is measured via accounting rather than sampling,
538 * and is as accurate as ktime_get() is.
539 *
540 * This function returns -1 if NOHZ is not enabled.
541 */
542u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
543{
544	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
545	ktime_t now, iowait;
546
547	if (!tick_nohz_active)
548		return -1;
549
550	now = ktime_get();
551	if (last_update_time) {
552		update_ts_time_stats(cpu, ts, now, last_update_time);
553		iowait = ts->iowait_sleeptime;
554	} else {
555		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
556			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
557
558			iowait = ktime_add(ts->iowait_sleeptime, delta);
559		} else {
560			iowait = ts->iowait_sleeptime;
561		}
562	}
563
564	return ktime_to_us(iowait);
565}
566EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
567
568static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
569					 ktime_t now, int cpu)
570{
571	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
572	ktime_t last_update, expires, ret = { .tv64 = 0 };
573	unsigned long rcu_delta_jiffies;
574	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
575	u64 time_delta;
576
577	time_delta = timekeeping_max_deferment();
578
579	/* Read jiffies and the time when jiffies were updated last */
580	do {
581		seq = read_seqbegin(&jiffies_lock);
582		last_update = last_jiffies_update;
583		last_jiffies = jiffies;
584	} while (read_seqretry(&jiffies_lock, seq));
585
586	if (rcu_needs_cpu(&rcu_delta_jiffies) ||
587	    arch_needs_cpu() || irq_work_needs_cpu()) {
588		next_jiffies = last_jiffies + 1;
589		delta_jiffies = 1;
590	} else {
591		/* Get the next timer wheel timer */
592		next_jiffies = get_next_timer_interrupt(last_jiffies);
593		delta_jiffies = next_jiffies - last_jiffies;
594		if (rcu_delta_jiffies < delta_jiffies) {
595			next_jiffies = last_jiffies + rcu_delta_jiffies;
596			delta_jiffies = rcu_delta_jiffies;
597		}
598	}
599
600	/*
601	 * Do not stop the tick, if we are only one off (or less)
602	 * or if the cpu is required for RCU:
603	 */
604	if (!ts->tick_stopped && delta_jiffies <= 1)
605		goto out;
606
607	/* Schedule the tick, if we are at least one jiffie off */
608	if ((long)delta_jiffies >= 1) {
609
610		/*
611		 * If this cpu is the one which updates jiffies, then
612		 * give up the assignment and let it be taken by the
613		 * cpu which runs the tick timer next, which might be
614		 * this cpu as well. If we don't drop this here the
615		 * jiffies might be stale and do_timer() never
616		 * invoked. Keep track of the fact that it was the one
617		 * which had the do_timer() duty last. If this cpu is
618		 * the one which had the do_timer() duty last, we
619		 * limit the sleep time to the timekeeping
620		 * max_deferement value which we retrieved
621		 * above. Otherwise we can sleep as long as we want.
622		 */
623		if (cpu == tick_do_timer_cpu) {
624			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
625			ts->do_timer_last = 1;
626		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
627			time_delta = KTIME_MAX;
628			ts->do_timer_last = 0;
629		} else if (!ts->do_timer_last) {
630			time_delta = KTIME_MAX;
631		}
632
633#ifdef CONFIG_NO_HZ_FULL
634		if (!ts->inidle) {
635			time_delta = min(time_delta,
636					 scheduler_tick_max_deferment());
637		}
638#endif
639
640		/*
641		 * calculate the expiry time for the next timer wheel
642		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
643		 * that there is no timer pending or at least extremely
644		 * far into the future (12 days for HZ=1000). In this
645		 * case we set the expiry to the end of time.
646		 */
647		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
648			/*
649			 * Calculate the time delta for the next timer event.
650			 * If the time delta exceeds the maximum time delta
651			 * permitted by the current clocksource then adjust
652			 * the time delta accordingly to ensure the
653			 * clocksource does not wrap.
654			 */
655			time_delta = min_t(u64, time_delta,
656					   tick_period.tv64 * delta_jiffies);
657		}
658
659		if (time_delta < KTIME_MAX)
660			expires = ktime_add_ns(last_update, time_delta);
661		else
662			expires.tv64 = KTIME_MAX;
663
664		/* Skip reprogram of event if its not changed */
665		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
666			goto out;
667
668		ret = expires;
669
670		/*
671		 * nohz_stop_sched_tick can be called several times before
672		 * the nohz_restart_sched_tick is called. This happens when
673		 * interrupts arrive which do not cause a reschedule. In the
674		 * first call we save the current tick time, so we can restart
675		 * the scheduler tick in nohz_restart_sched_tick.
676		 */
677		if (!ts->tick_stopped) {
678			nohz_balance_enter_idle(cpu);
679			calc_load_enter_idle();
680
681			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
682			ts->tick_stopped = 1;
683			trace_tick_stop(1, " ");
684		}
685
686		/*
687		 * If the expiration time == KTIME_MAX, then
688		 * in this case we simply stop the tick timer.
689		 */
690		 if (unlikely(expires.tv64 == KTIME_MAX)) {
691			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
692				hrtimer_cancel(&ts->sched_timer);
693			goto out;
694		}
695
696		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
697			hrtimer_start(&ts->sched_timer, expires,
698				      HRTIMER_MODE_ABS_PINNED);
699			/* Check, if the timer was already in the past */
700			if (hrtimer_active(&ts->sched_timer))
701				goto out;
702		} else if (!tick_program_event(expires, 0))
703				goto out;
704		/*
705		 * We are past the event already. So we crossed a
706		 * jiffie boundary. Update jiffies and raise the
707		 * softirq.
708		 */
709		tick_do_update_jiffies64(ktime_get());
710	}
711	raise_softirq_irqoff(TIMER_SOFTIRQ);
712out:
713	ts->next_jiffies = next_jiffies;
714	ts->last_jiffies = last_jiffies;
715	ts->sleep_length = ktime_sub(dev->next_event, now);
716
717	return ret;
718}
719
720static void tick_nohz_full_stop_tick(struct tick_sched *ts)
721{
722#ifdef CONFIG_NO_HZ_FULL
723	int cpu = smp_processor_id();
724
725	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
726		return;
727
728	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
729		return;
730
731	if (!can_stop_full_tick())
732		return;
733
734	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
735#endif
736}
737
738static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
739{
740	/*
741	 * If this cpu is offline and it is the one which updates
742	 * jiffies, then give up the assignment and let it be taken by
743	 * the cpu which runs the tick timer next. If we don't drop
744	 * this here the jiffies might be stale and do_timer() never
745	 * invoked.
746	 */
747	if (unlikely(!cpu_online(cpu))) {
748		if (cpu == tick_do_timer_cpu)
749			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
750		return false;
751	}
752
753	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
754		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
755		return false;
756	}
757
758	if (need_resched())
759		return false;
760
761	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
762		static int ratelimit;
763
764		if (ratelimit < 10 &&
765		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
766			pr_warn("NOHZ: local_softirq_pending %02x\n",
767				(unsigned int) local_softirq_pending());
768			ratelimit++;
769		}
770		return false;
771	}
772
773	if (tick_nohz_full_enabled()) {
774		/*
775		 * Keep the tick alive to guarantee timekeeping progression
776		 * if there are full dynticks CPUs around
777		 */
778		if (tick_do_timer_cpu == cpu)
779			return false;
780		/*
781		 * Boot safety: make sure the timekeeping duty has been
782		 * assigned before entering dyntick-idle mode,
783		 */
784		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
785			return false;
786	}
787
788	return true;
789}
790
791static void __tick_nohz_idle_enter(struct tick_sched *ts)
792{
793	ktime_t now, expires;
794	int cpu = smp_processor_id();
795
796	now = tick_nohz_start_idle(ts);
797
798	if (can_stop_idle_tick(cpu, ts)) {
799		int was_stopped = ts->tick_stopped;
800
801		ts->idle_calls++;
802
803		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
804		if (expires.tv64 > 0LL) {
805			ts->idle_sleeps++;
806			ts->idle_expires = expires;
807		}
808
809		if (!was_stopped && ts->tick_stopped)
810			ts->idle_jiffies = ts->last_jiffies;
811	}
812}
813
814/**
815 * tick_nohz_idle_enter - stop the idle tick from the idle task
816 *
817 * When the next event is more than a tick into the future, stop the idle tick
818 * Called when we start the idle loop.
819 *
820 * The arch is responsible of calling:
821 *
822 * - rcu_idle_enter() after its last use of RCU before the CPU is put
823 *  to sleep.
824 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
825 */
826void tick_nohz_idle_enter(void)
827{
828	struct tick_sched *ts;
829
830	WARN_ON_ONCE(irqs_disabled());
831
832	/*
833 	 * Update the idle state in the scheduler domain hierarchy
834 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
835 	 * State will be updated to busy during the first busy tick after
836 	 * exiting idle.
837 	 */
838	set_cpu_sd_state_idle();
839
840	local_irq_disable();
841
842	ts = this_cpu_ptr(&tick_cpu_sched);
843	ts->inidle = 1;
844	__tick_nohz_idle_enter(ts);
845
846	local_irq_enable();
847}
848
849/**
850 * tick_nohz_irq_exit - update next tick event from interrupt exit
851 *
852 * When an interrupt fires while we are idle and it doesn't cause
853 * a reschedule, it may still add, modify or delete a timer, enqueue
854 * an RCU callback, etc...
855 * So we need to re-calculate and reprogram the next tick event.
856 */
857void tick_nohz_irq_exit(void)
858{
859	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
860
861	if (ts->inidle)
862		__tick_nohz_idle_enter(ts);
863	else
864		tick_nohz_full_stop_tick(ts);
865}
866
867/**
868 * tick_nohz_get_sleep_length - return the length of the current sleep
869 *
870 * Called from power state control code with interrupts disabled
871 */
872ktime_t tick_nohz_get_sleep_length(void)
873{
874	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
875
876	return ts->sleep_length;
877}
878
879static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
880{
881	hrtimer_cancel(&ts->sched_timer);
882	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
883
884	while (1) {
885		/* Forward the time to expire in the future */
886		hrtimer_forward(&ts->sched_timer, now, tick_period);
887
888		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
889			hrtimer_start_expires(&ts->sched_timer,
890					      HRTIMER_MODE_ABS_PINNED);
891			/* Check, if the timer was already in the past */
892			if (hrtimer_active(&ts->sched_timer))
893				break;
894		} else {
895			if (!tick_program_event(
896				hrtimer_get_expires(&ts->sched_timer), 0))
897				break;
898		}
899		/* Reread time and update jiffies */
900		now = ktime_get();
901		tick_do_update_jiffies64(now);
902	}
903}
904
905static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
906{
907	/* Update jiffies first */
908	tick_do_update_jiffies64(now);
909	update_cpu_load_nohz();
910
911	calc_load_exit_idle();
912	touch_softlockup_watchdog();
913	/*
914	 * Cancel the scheduled timer and restore the tick
915	 */
916	ts->tick_stopped  = 0;
917	ts->idle_exittime = now;
918
919	tick_nohz_restart(ts, now);
920}
921
922static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
923{
924#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
925	unsigned long ticks;
926
927	if (vtime_accounting_enabled())
928		return;
929	/*
930	 * We stopped the tick in idle. Update process times would miss the
931	 * time we slept as update_process_times does only a 1 tick
932	 * accounting. Enforce that this is accounted to idle !
933	 */
934	ticks = jiffies - ts->idle_jiffies;
935	/*
936	 * We might be one off. Do not randomly account a huge number of ticks!
937	 */
938	if (ticks && ticks < LONG_MAX)
939		account_idle_ticks(ticks);
940#endif
941}
942
943/**
944 * tick_nohz_idle_exit - restart the idle tick from the idle task
945 *
946 * Restart the idle tick when the CPU is woken up from idle
947 * This also exit the RCU extended quiescent state. The CPU
948 * can use RCU again after this function is called.
949 */
950void tick_nohz_idle_exit(void)
951{
952	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
953	ktime_t now;
954
955	local_irq_disable();
956
957	WARN_ON_ONCE(!ts->inidle);
958
959	ts->inidle = 0;
960
961	if (ts->idle_active || ts->tick_stopped)
962		now = ktime_get();
963
964	if (ts->idle_active)
965		tick_nohz_stop_idle(ts, now);
966
967	if (ts->tick_stopped) {
968		tick_nohz_restart_sched_tick(ts, now);
969		tick_nohz_account_idle_ticks(ts);
970	}
971
972	local_irq_enable();
973}
974
975static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
976{
977	hrtimer_forward(&ts->sched_timer, now, tick_period);
978	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
979}
980
981/*
982 * The nohz low res interrupt handler
983 */
984static void tick_nohz_handler(struct clock_event_device *dev)
985{
986	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
987	struct pt_regs *regs = get_irq_regs();
988	ktime_t now = ktime_get();
989
990	dev->next_event.tv64 = KTIME_MAX;
991
992	tick_sched_do_timer(now);
993	tick_sched_handle(ts, regs);
994
995	/* No need to reprogram if we are running tickless  */
996	if (unlikely(ts->tick_stopped))
997		return;
998
999	while (tick_nohz_reprogram(ts, now)) {
1000		now = ktime_get();
1001		tick_do_update_jiffies64(now);
1002	}
1003}
1004
1005/**
1006 * tick_nohz_switch_to_nohz - switch to nohz mode
1007 */
1008static void tick_nohz_switch_to_nohz(void)
1009{
1010	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1011	ktime_t next;
1012
1013	if (!tick_nohz_enabled)
1014		return;
1015
1016	local_irq_disable();
1017	if (tick_switch_to_oneshot(tick_nohz_handler)) {
1018		local_irq_enable();
1019		return;
1020	}
1021	tick_nohz_active = 1;
1022	ts->nohz_mode = NOHZ_MODE_LOWRES;
1023
1024	/*
1025	 * Recycle the hrtimer in ts, so we can share the
1026	 * hrtimer_forward with the highres code.
1027	 */
1028	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1029	/* Get the next period */
1030	next = tick_init_jiffy_update();
1031
1032	for (;;) {
1033		hrtimer_set_expires(&ts->sched_timer, next);
1034		if (!tick_program_event(next, 0))
1035			break;
1036		next = ktime_add(next, tick_period);
1037	}
1038	local_irq_enable();
1039}
1040
1041/*
1042 * When NOHZ is enabled and the tick is stopped, we need to kick the
1043 * tick timer from irq_enter() so that the jiffies update is kept
1044 * alive during long running softirqs. That's ugly as hell, but
1045 * correctness is key even if we need to fix the offending softirq in
1046 * the first place.
1047 *
1048 * Note, this is different to tick_nohz_restart. We just kick the
1049 * timer and do not touch the other magic bits which need to be done
1050 * when idle is left.
1051 */
1052static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1053{
1054#if 0
1055	/* Switch back to 2.6.27 behaviour */
1056	ktime_t delta;
1057
1058	/*
1059	 * Do not touch the tick device, when the next expiry is either
1060	 * already reached or less/equal than the tick period.
1061	 */
1062	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1063	if (delta.tv64 <= tick_period.tv64)
1064		return;
1065
1066	tick_nohz_restart(ts, now);
1067#endif
1068}
1069
1070static inline void tick_nohz_irq_enter(void)
1071{
1072	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1073	ktime_t now;
1074
1075	if (!ts->idle_active && !ts->tick_stopped)
1076		return;
1077	now = ktime_get();
1078	if (ts->idle_active)
1079		tick_nohz_stop_idle(ts, now);
1080	if (ts->tick_stopped) {
1081		tick_nohz_update_jiffies(now);
1082		tick_nohz_kick_tick(ts, now);
1083	}
1084}
1085
1086#else
1087
1088static inline void tick_nohz_switch_to_nohz(void) { }
1089static inline void tick_nohz_irq_enter(void) { }
1090
1091#endif /* CONFIG_NO_HZ_COMMON */
1092
1093/*
1094 * Called from irq_enter to notify about the possible interruption of idle()
1095 */
1096void tick_irq_enter(void)
1097{
1098	tick_check_oneshot_broadcast_this_cpu();
1099	tick_nohz_irq_enter();
1100}
1101
1102/*
1103 * High resolution timer specific code
1104 */
1105#ifdef CONFIG_HIGH_RES_TIMERS
1106/*
1107 * We rearm the timer until we get disabled by the idle code.
1108 * Called with interrupts disabled.
1109 */
1110static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1111{
1112	struct tick_sched *ts =
1113		container_of(timer, struct tick_sched, sched_timer);
1114	struct pt_regs *regs = get_irq_regs();
1115	ktime_t now = ktime_get();
1116
1117	tick_sched_do_timer(now);
1118
1119	/*
1120	 * Do not call, when we are not in irq context and have
1121	 * no valid regs pointer
1122	 */
1123	if (regs)
1124		tick_sched_handle(ts, regs);
1125
1126	/* No need to reprogram if we are in idle or full dynticks mode */
1127	if (unlikely(ts->tick_stopped))
1128		return HRTIMER_NORESTART;
1129
1130	hrtimer_forward(timer, now, tick_period);
1131
1132	return HRTIMER_RESTART;
1133}
1134
1135static int sched_skew_tick;
1136
1137static int __init skew_tick(char *str)
1138{
1139	get_option(&str, &sched_skew_tick);
1140
1141	return 0;
1142}
1143early_param("skew_tick", skew_tick);
1144
1145/**
1146 * tick_setup_sched_timer - setup the tick emulation timer
1147 */
1148void tick_setup_sched_timer(void)
1149{
1150	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1151	ktime_t now = ktime_get();
1152
1153	/*
1154	 * Emulate tick processing via per-CPU hrtimers:
1155	 */
1156	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1157	ts->sched_timer.function = tick_sched_timer;
1158
1159	/* Get the next period (per cpu) */
1160	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1161
1162	/* Offset the tick to avert jiffies_lock contention. */
1163	if (sched_skew_tick) {
1164		u64 offset = ktime_to_ns(tick_period) >> 1;
1165		do_div(offset, num_possible_cpus());
1166		offset *= smp_processor_id();
1167		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1168	}
1169
1170	for (;;) {
1171		hrtimer_forward(&ts->sched_timer, now, tick_period);
1172		hrtimer_start_expires(&ts->sched_timer,
1173				      HRTIMER_MODE_ABS_PINNED);
1174		/* Check, if the timer was already in the past */
1175		if (hrtimer_active(&ts->sched_timer))
1176			break;
1177		now = ktime_get();
1178	}
1179
1180#ifdef CONFIG_NO_HZ_COMMON
1181	if (tick_nohz_enabled) {
1182		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1183		tick_nohz_active = 1;
1184	}
1185#endif
1186}
1187#endif /* HIGH_RES_TIMERS */
1188
1189#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1190void tick_cancel_sched_timer(int cpu)
1191{
1192	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1193
1194# ifdef CONFIG_HIGH_RES_TIMERS
1195	if (ts->sched_timer.base)
1196		hrtimer_cancel(&ts->sched_timer);
1197# endif
1198
1199	memset(ts, 0, sizeof(*ts));
1200}
1201#endif
1202
1203/**
1204 * Async notification about clocksource changes
1205 */
1206void tick_clock_notify(void)
1207{
1208	int cpu;
1209
1210	for_each_possible_cpu(cpu)
1211		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1212}
1213
1214/*
1215 * Async notification about clock event changes
1216 */
1217void tick_oneshot_notify(void)
1218{
1219	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1220
1221	set_bit(0, &ts->check_clocks);
1222}
1223
1224/**
1225 * Check, if a change happened, which makes oneshot possible.
1226 *
1227 * Called cyclic from the hrtimer softirq (driven by the timer
1228 * softirq) allow_nohz signals, that we can switch into low-res nohz
1229 * mode, because high resolution timers are disabled (either compile
1230 * or runtime).
1231 */
1232int tick_check_oneshot_change(int allow_nohz)
1233{
1234	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1235
1236	if (!test_and_clear_bit(0, &ts->check_clocks))
1237		return 0;
1238
1239	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1240		return 0;
1241
1242	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1243		return 0;
1244
1245	if (!allow_nohz)
1246		return 1;
1247
1248	tick_nohz_switch_to_nohz();
1249	return 0;
1250}
1251