1/*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8#include <linux/capability.h>
9#include <linux/clocksource.h>
10#include <linux/workqueue.h>
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/rtc.h>
19
20#include "ntp_internal.h"
21
22/*
23 * NTP timekeeping variables:
24 *
25 * Note: All of the NTP state is protected by the timekeeping locks.
26 */
27
28
29/* USER_HZ period (usecs): */
30unsigned long			tick_usec = TICK_USEC;
31
32/* SHIFTED_HZ period (nsecs): */
33unsigned long			tick_nsec;
34
35static u64			tick_length;
36static u64			tick_length_base;
37
38#define MAX_TICKADJ		500LL		/* usecs */
39#define MAX_TICKADJ_SCALED \
40	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
41
42/*
43 * phase-lock loop variables
44 */
45
46/*
47 * clock synchronization status
48 *
49 * (TIME_ERROR prevents overwriting the CMOS clock)
50 */
51static int			time_state = TIME_OK;
52
53/* clock status bits:							*/
54static int			time_status = STA_UNSYNC;
55
56/* time adjustment (nsecs):						*/
57static s64			time_offset;
58
59/* pll time constant:							*/
60static long			time_constant = 2;
61
62/* maximum error (usecs):						*/
63static long			time_maxerror = NTP_PHASE_LIMIT;
64
65/* estimated error (usecs):						*/
66static long			time_esterror = NTP_PHASE_LIMIT;
67
68/* frequency offset (scaled nsecs/secs):				*/
69static s64			time_freq;
70
71/* time at last adjustment (secs):					*/
72static long			time_reftime;
73
74static long			time_adjust;
75
76/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
77static s64			ntp_tick_adj;
78
79#ifdef CONFIG_NTP_PPS
80
81/*
82 * The following variables are used when a pulse-per-second (PPS) signal
83 * is available. They establish the engineering parameters of the clock
84 * discipline loop when controlled by the PPS signal.
85 */
86#define PPS_VALID	10	/* PPS signal watchdog max (s) */
87#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
88#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
89#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
90#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
91				   increase pps_shift or consecutive bad
92				   intervals to decrease it */
93#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
94
95static int pps_valid;		/* signal watchdog counter */
96static long pps_tf[3];		/* phase median filter */
97static long pps_jitter;		/* current jitter (ns) */
98static struct timespec pps_fbase; /* beginning of the last freq interval */
99static int pps_shift;		/* current interval duration (s) (shift) */
100static int pps_intcnt;		/* interval counter */
101static s64 pps_freq;		/* frequency offset (scaled ns/s) */
102static long pps_stabil;		/* current stability (scaled ns/s) */
103
104/*
105 * PPS signal quality monitors
106 */
107static long pps_calcnt;		/* calibration intervals */
108static long pps_jitcnt;		/* jitter limit exceeded */
109static long pps_stbcnt;		/* stability limit exceeded */
110static long pps_errcnt;		/* calibration errors */
111
112
113/* PPS kernel consumer compensates the whole phase error immediately.
114 * Otherwise, reduce the offset by a fixed factor times the time constant.
115 */
116static inline s64 ntp_offset_chunk(s64 offset)
117{
118	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
119		return offset;
120	else
121		return shift_right(offset, SHIFT_PLL + time_constant);
122}
123
124static inline void pps_reset_freq_interval(void)
125{
126	/* the PPS calibration interval may end
127	   surprisingly early */
128	pps_shift = PPS_INTMIN;
129	pps_intcnt = 0;
130}
131
132/**
133 * pps_clear - Clears the PPS state variables
134 */
135static inline void pps_clear(void)
136{
137	pps_reset_freq_interval();
138	pps_tf[0] = 0;
139	pps_tf[1] = 0;
140	pps_tf[2] = 0;
141	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
142	pps_freq = 0;
143}
144
145/* Decrease pps_valid to indicate that another second has passed since
146 * the last PPS signal. When it reaches 0, indicate that PPS signal is
147 * missing.
148 */
149static inline void pps_dec_valid(void)
150{
151	if (pps_valid > 0)
152		pps_valid--;
153	else {
154		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
155				 STA_PPSWANDER | STA_PPSERROR);
156		pps_clear();
157	}
158}
159
160static inline void pps_set_freq(s64 freq)
161{
162	pps_freq = freq;
163}
164
165static inline int is_error_status(int status)
166{
167	return (status & (STA_UNSYNC|STA_CLOCKERR))
168		/* PPS signal lost when either PPS time or
169		 * PPS frequency synchronization requested
170		 */
171		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
172			&& !(status & STA_PPSSIGNAL))
173		/* PPS jitter exceeded when
174		 * PPS time synchronization requested */
175		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
176			== (STA_PPSTIME|STA_PPSJITTER))
177		/* PPS wander exceeded or calibration error when
178		 * PPS frequency synchronization requested
179		 */
180		|| ((status & STA_PPSFREQ)
181			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
182}
183
184static inline void pps_fill_timex(struct timex *txc)
185{
186	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
187					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
188	txc->jitter	   = pps_jitter;
189	if (!(time_status & STA_NANO))
190		txc->jitter /= NSEC_PER_USEC;
191	txc->shift	   = pps_shift;
192	txc->stabil	   = pps_stabil;
193	txc->jitcnt	   = pps_jitcnt;
194	txc->calcnt	   = pps_calcnt;
195	txc->errcnt	   = pps_errcnt;
196	txc->stbcnt	   = pps_stbcnt;
197}
198
199#else /* !CONFIG_NTP_PPS */
200
201static inline s64 ntp_offset_chunk(s64 offset)
202{
203	return shift_right(offset, SHIFT_PLL + time_constant);
204}
205
206static inline void pps_reset_freq_interval(void) {}
207static inline void pps_clear(void) {}
208static inline void pps_dec_valid(void) {}
209static inline void pps_set_freq(s64 freq) {}
210
211static inline int is_error_status(int status)
212{
213	return status & (STA_UNSYNC|STA_CLOCKERR);
214}
215
216static inline void pps_fill_timex(struct timex *txc)
217{
218	/* PPS is not implemented, so these are zero */
219	txc->ppsfreq	   = 0;
220	txc->jitter	   = 0;
221	txc->shift	   = 0;
222	txc->stabil	   = 0;
223	txc->jitcnt	   = 0;
224	txc->calcnt	   = 0;
225	txc->errcnt	   = 0;
226	txc->stbcnt	   = 0;
227}
228
229#endif /* CONFIG_NTP_PPS */
230
231
232/**
233 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
234 *
235 */
236static inline int ntp_synced(void)
237{
238	return !(time_status & STA_UNSYNC);
239}
240
241
242/*
243 * NTP methods:
244 */
245
246/*
247 * Update (tick_length, tick_length_base, tick_nsec), based
248 * on (tick_usec, ntp_tick_adj, time_freq):
249 */
250static void ntp_update_frequency(void)
251{
252	u64 second_length;
253	u64 new_base;
254
255	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
256						<< NTP_SCALE_SHIFT;
257
258	second_length		+= ntp_tick_adj;
259	second_length		+= time_freq;
260
261	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
262	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
263
264	/*
265	 * Don't wait for the next second_overflow, apply
266	 * the change to the tick length immediately:
267	 */
268	tick_length		+= new_base - tick_length_base;
269	tick_length_base	 = new_base;
270}
271
272static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
273{
274	time_status &= ~STA_MODE;
275
276	if (secs < MINSEC)
277		return 0;
278
279	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
280		return 0;
281
282	time_status |= STA_MODE;
283
284	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
285}
286
287static void ntp_update_offset(long offset)
288{
289	s64 freq_adj;
290	s64 offset64;
291	long secs;
292
293	if (!(time_status & STA_PLL))
294		return;
295
296	if (!(time_status & STA_NANO))
297		offset *= NSEC_PER_USEC;
298
299	/*
300	 * Scale the phase adjustment and
301	 * clamp to the operating range.
302	 */
303	offset = min(offset, MAXPHASE);
304	offset = max(offset, -MAXPHASE);
305
306	/*
307	 * Select how the frequency is to be controlled
308	 * and in which mode (PLL or FLL).
309	 */
310	secs = get_seconds() - time_reftime;
311	if (unlikely(time_status & STA_FREQHOLD))
312		secs = 0;
313
314	time_reftime = get_seconds();
315
316	offset64    = offset;
317	freq_adj    = ntp_update_offset_fll(offset64, secs);
318
319	/*
320	 * Clamp update interval to reduce PLL gain with low
321	 * sampling rate (e.g. intermittent network connection)
322	 * to avoid instability.
323	 */
324	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
325		secs = 1 << (SHIFT_PLL + 1 + time_constant);
326
327	freq_adj    += (offset64 * secs) <<
328			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
329
330	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
331
332	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
333
334	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
335}
336
337/**
338 * ntp_clear - Clears the NTP state variables
339 */
340void ntp_clear(void)
341{
342	time_adjust	= 0;		/* stop active adjtime() */
343	time_status	|= STA_UNSYNC;
344	time_maxerror	= NTP_PHASE_LIMIT;
345	time_esterror	= NTP_PHASE_LIMIT;
346
347	ntp_update_frequency();
348
349	tick_length	= tick_length_base;
350	time_offset	= 0;
351
352	/* Clear PPS state variables */
353	pps_clear();
354}
355
356
357u64 ntp_tick_length(void)
358{
359	return tick_length;
360}
361
362
363/*
364 * this routine handles the overflow of the microsecond field
365 *
366 * The tricky bits of code to handle the accurate clock support
367 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
368 * They were originally developed for SUN and DEC kernels.
369 * All the kudos should go to Dave for this stuff.
370 *
371 * Also handles leap second processing, and returns leap offset
372 */
373int second_overflow(unsigned long secs)
374{
375	s64 delta;
376	int leap = 0;
377
378	/*
379	 * Leap second processing. If in leap-insert state at the end of the
380	 * day, the system clock is set back one second; if in leap-delete
381	 * state, the system clock is set ahead one second.
382	 */
383	switch (time_state) {
384	case TIME_OK:
385		if (time_status & STA_INS)
386			time_state = TIME_INS;
387		else if (time_status & STA_DEL)
388			time_state = TIME_DEL;
389		break;
390	case TIME_INS:
391		if (!(time_status & STA_INS))
392			time_state = TIME_OK;
393		else if (secs % 86400 == 0) {
394			leap = -1;
395			time_state = TIME_OOP;
396			printk(KERN_NOTICE
397				"Clock: inserting leap second 23:59:60 UTC\n");
398		}
399		break;
400	case TIME_DEL:
401		if (!(time_status & STA_DEL))
402			time_state = TIME_OK;
403		else if ((secs + 1) % 86400 == 0) {
404			leap = 1;
405			time_state = TIME_WAIT;
406			printk(KERN_NOTICE
407				"Clock: deleting leap second 23:59:59 UTC\n");
408		}
409		break;
410	case TIME_OOP:
411		time_state = TIME_WAIT;
412		break;
413
414	case TIME_WAIT:
415		if (!(time_status & (STA_INS | STA_DEL)))
416			time_state = TIME_OK;
417		break;
418	}
419
420
421	/* Bump the maxerror field */
422	time_maxerror += MAXFREQ / NSEC_PER_USEC;
423	if (time_maxerror > NTP_PHASE_LIMIT) {
424		time_maxerror = NTP_PHASE_LIMIT;
425		time_status |= STA_UNSYNC;
426	}
427
428	/* Compute the phase adjustment for the next second */
429	tick_length	 = tick_length_base;
430
431	delta		 = ntp_offset_chunk(time_offset);
432	time_offset	-= delta;
433	tick_length	+= delta;
434
435	/* Check PPS signal */
436	pps_dec_valid();
437
438	if (!time_adjust)
439		goto out;
440
441	if (time_adjust > MAX_TICKADJ) {
442		time_adjust -= MAX_TICKADJ;
443		tick_length += MAX_TICKADJ_SCALED;
444		goto out;
445	}
446
447	if (time_adjust < -MAX_TICKADJ) {
448		time_adjust += MAX_TICKADJ;
449		tick_length -= MAX_TICKADJ_SCALED;
450		goto out;
451	}
452
453	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
454							 << NTP_SCALE_SHIFT;
455	time_adjust = 0;
456
457out:
458	return leap;
459}
460
461#ifdef CONFIG_GENERIC_CMOS_UPDATE
462int __weak update_persistent_clock64(struct timespec64 now64)
463{
464	struct timespec now;
465
466	now = timespec64_to_timespec(now64);
467	return update_persistent_clock(now);
468}
469#endif
470
471#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
472static void sync_cmos_clock(struct work_struct *work);
473
474static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
475
476static void sync_cmos_clock(struct work_struct *work)
477{
478	struct timespec64 now;
479	struct timespec next;
480	int fail = 1;
481
482	/*
483	 * If we have an externally synchronized Linux clock, then update
484	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
485	 * called as close as possible to 500 ms before the new second starts.
486	 * This code is run on a timer.  If the clock is set, that timer
487	 * may not expire at the correct time.  Thus, we adjust...
488	 * We want the clock to be within a couple of ticks from the target.
489	 */
490	if (!ntp_synced()) {
491		/*
492		 * Not synced, exit, do not restart a timer (if one is
493		 * running, let it run out).
494		 */
495		return;
496	}
497
498	getnstimeofday64(&now);
499	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
500		struct timespec64 adjust = now;
501
502		fail = -ENODEV;
503		if (persistent_clock_is_local)
504			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
505#ifdef CONFIG_GENERIC_CMOS_UPDATE
506		fail = update_persistent_clock64(adjust);
507#endif
508
509#ifdef CONFIG_RTC_SYSTOHC
510		if (fail == -ENODEV)
511			fail = rtc_set_ntp_time(adjust);
512#endif
513	}
514
515	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
516	if (next.tv_nsec <= 0)
517		next.tv_nsec += NSEC_PER_SEC;
518
519	if (!fail || fail == -ENODEV)
520		next.tv_sec = 659;
521	else
522		next.tv_sec = 0;
523
524	if (next.tv_nsec >= NSEC_PER_SEC) {
525		next.tv_sec++;
526		next.tv_nsec -= NSEC_PER_SEC;
527	}
528	queue_delayed_work(system_power_efficient_wq,
529			   &sync_cmos_work, timespec_to_jiffies(&next));
530}
531
532void ntp_notify_cmos_timer(void)
533{
534	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
535}
536
537#else
538void ntp_notify_cmos_timer(void) { }
539#endif
540
541
542/*
543 * Propagate a new txc->status value into the NTP state:
544 */
545static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
546{
547	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
548		time_state = TIME_OK;
549		time_status = STA_UNSYNC;
550		/* restart PPS frequency calibration */
551		pps_reset_freq_interval();
552	}
553
554	/*
555	 * If we turn on PLL adjustments then reset the
556	 * reference time to current time.
557	 */
558	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
559		time_reftime = get_seconds();
560
561	/* only set allowed bits */
562	time_status &= STA_RONLY;
563	time_status |= txc->status & ~STA_RONLY;
564}
565
566
567static inline void process_adjtimex_modes(struct timex *txc,
568						struct timespec64 *ts,
569						s32 *time_tai)
570{
571	if (txc->modes & ADJ_STATUS)
572		process_adj_status(txc, ts);
573
574	if (txc->modes & ADJ_NANO)
575		time_status |= STA_NANO;
576
577	if (txc->modes & ADJ_MICRO)
578		time_status &= ~STA_NANO;
579
580	if (txc->modes & ADJ_FREQUENCY) {
581		time_freq = txc->freq * PPM_SCALE;
582		time_freq = min(time_freq, MAXFREQ_SCALED);
583		time_freq = max(time_freq, -MAXFREQ_SCALED);
584		/* update pps_freq */
585		pps_set_freq(time_freq);
586	}
587
588	if (txc->modes & ADJ_MAXERROR)
589		time_maxerror = txc->maxerror;
590
591	if (txc->modes & ADJ_ESTERROR)
592		time_esterror = txc->esterror;
593
594	if (txc->modes & ADJ_TIMECONST) {
595		time_constant = txc->constant;
596		if (!(time_status & STA_NANO))
597			time_constant += 4;
598		time_constant = min(time_constant, (long)MAXTC);
599		time_constant = max(time_constant, 0l);
600	}
601
602	if (txc->modes & ADJ_TAI && txc->constant > 0)
603		*time_tai = txc->constant;
604
605	if (txc->modes & ADJ_OFFSET)
606		ntp_update_offset(txc->offset);
607
608	if (txc->modes & ADJ_TICK)
609		tick_usec = txc->tick;
610
611	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
612		ntp_update_frequency();
613}
614
615
616
617/**
618 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
619 */
620int ntp_validate_timex(struct timex *txc)
621{
622	if (txc->modes & ADJ_ADJTIME) {
623		/* singleshot must not be used with any other mode bits */
624		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
625			return -EINVAL;
626		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
627		    !capable(CAP_SYS_TIME))
628			return -EPERM;
629	} else {
630		/* In order to modify anything, you gotta be super-user! */
631		 if (txc->modes && !capable(CAP_SYS_TIME))
632			return -EPERM;
633		/*
634		 * if the quartz is off by more than 10% then
635		 * something is VERY wrong!
636		 */
637		if (txc->modes & ADJ_TICK &&
638		    (txc->tick <  900000/USER_HZ ||
639		     txc->tick > 1100000/USER_HZ))
640			return -EINVAL;
641	}
642
643	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
644		return -EPERM;
645
646	/*
647	 * Check for potential multiplication overflows that can
648	 * only happen on 64-bit systems:
649	 */
650	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
651		if (LLONG_MIN / PPM_SCALE > txc->freq)
652			return -EINVAL;
653		if (LLONG_MAX / PPM_SCALE < txc->freq)
654			return -EINVAL;
655	}
656
657	return 0;
658}
659
660
661/*
662 * adjtimex mainly allows reading (and writing, if superuser) of
663 * kernel time-keeping variables. used by xntpd.
664 */
665int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
666{
667	int result;
668
669	if (txc->modes & ADJ_ADJTIME) {
670		long save_adjust = time_adjust;
671
672		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
673			/* adjtime() is independent from ntp_adjtime() */
674			time_adjust = txc->offset;
675			ntp_update_frequency();
676		}
677		txc->offset = save_adjust;
678	} else {
679
680		/* If there are input parameters, then process them: */
681		if (txc->modes)
682			process_adjtimex_modes(txc, ts, time_tai);
683
684		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
685				  NTP_SCALE_SHIFT);
686		if (!(time_status & STA_NANO))
687			txc->offset /= NSEC_PER_USEC;
688	}
689
690	result = time_state;	/* mostly `TIME_OK' */
691	/* check for errors */
692	if (is_error_status(time_status))
693		result = TIME_ERROR;
694
695	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
696					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
697	txc->maxerror	   = time_maxerror;
698	txc->esterror	   = time_esterror;
699	txc->status	   = time_status;
700	txc->constant	   = time_constant;
701	txc->precision	   = 1;
702	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
703	txc->tick	   = tick_usec;
704	txc->tai	   = *time_tai;
705
706	/* fill PPS status fields */
707	pps_fill_timex(txc);
708
709	txc->time.tv_sec = (time_t)ts->tv_sec;
710	txc->time.tv_usec = ts->tv_nsec;
711	if (!(time_status & STA_NANO))
712		txc->time.tv_usec /= NSEC_PER_USEC;
713
714	return result;
715}
716
717#ifdef	CONFIG_NTP_PPS
718
719/* actually struct pps_normtime is good old struct timespec, but it is
720 * semantically different (and it is the reason why it was invented):
721 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
722 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
723struct pps_normtime {
724	__kernel_time_t	sec;	/* seconds */
725	long		nsec;	/* nanoseconds */
726};
727
728/* normalize the timestamp so that nsec is in the
729   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
730static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
731{
732	struct pps_normtime norm = {
733		.sec = ts.tv_sec,
734		.nsec = ts.tv_nsec
735	};
736
737	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
738		norm.nsec -= NSEC_PER_SEC;
739		norm.sec++;
740	}
741
742	return norm;
743}
744
745/* get current phase correction and jitter */
746static inline long pps_phase_filter_get(long *jitter)
747{
748	*jitter = pps_tf[0] - pps_tf[1];
749	if (*jitter < 0)
750		*jitter = -*jitter;
751
752	/* TODO: test various filters */
753	return pps_tf[0];
754}
755
756/* add the sample to the phase filter */
757static inline void pps_phase_filter_add(long err)
758{
759	pps_tf[2] = pps_tf[1];
760	pps_tf[1] = pps_tf[0];
761	pps_tf[0] = err;
762}
763
764/* decrease frequency calibration interval length.
765 * It is halved after four consecutive unstable intervals.
766 */
767static inline void pps_dec_freq_interval(void)
768{
769	if (--pps_intcnt <= -PPS_INTCOUNT) {
770		pps_intcnt = -PPS_INTCOUNT;
771		if (pps_shift > PPS_INTMIN) {
772			pps_shift--;
773			pps_intcnt = 0;
774		}
775	}
776}
777
778/* increase frequency calibration interval length.
779 * It is doubled after four consecutive stable intervals.
780 */
781static inline void pps_inc_freq_interval(void)
782{
783	if (++pps_intcnt >= PPS_INTCOUNT) {
784		pps_intcnt = PPS_INTCOUNT;
785		if (pps_shift < PPS_INTMAX) {
786			pps_shift++;
787			pps_intcnt = 0;
788		}
789	}
790}
791
792/* update clock frequency based on MONOTONIC_RAW clock PPS signal
793 * timestamps
794 *
795 * At the end of the calibration interval the difference between the
796 * first and last MONOTONIC_RAW clock timestamps divided by the length
797 * of the interval becomes the frequency update. If the interval was
798 * too long, the data are discarded.
799 * Returns the difference between old and new frequency values.
800 */
801static long hardpps_update_freq(struct pps_normtime freq_norm)
802{
803	long delta, delta_mod;
804	s64 ftemp;
805
806	/* check if the frequency interval was too long */
807	if (freq_norm.sec > (2 << pps_shift)) {
808		time_status |= STA_PPSERROR;
809		pps_errcnt++;
810		pps_dec_freq_interval();
811		printk_deferred(KERN_ERR
812			"hardpps: PPSERROR: interval too long - %ld s\n",
813			freq_norm.sec);
814		return 0;
815	}
816
817	/* here the raw frequency offset and wander (stability) is
818	 * calculated. If the wander is less than the wander threshold
819	 * the interval is increased; otherwise it is decreased.
820	 */
821	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
822			freq_norm.sec);
823	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
824	pps_freq = ftemp;
825	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
826		printk_deferred(KERN_WARNING
827				"hardpps: PPSWANDER: change=%ld\n", delta);
828		time_status |= STA_PPSWANDER;
829		pps_stbcnt++;
830		pps_dec_freq_interval();
831	} else {	/* good sample */
832		pps_inc_freq_interval();
833	}
834
835	/* the stability metric is calculated as the average of recent
836	 * frequency changes, but is used only for performance
837	 * monitoring
838	 */
839	delta_mod = delta;
840	if (delta_mod < 0)
841		delta_mod = -delta_mod;
842	pps_stabil += (div_s64(((s64)delta_mod) <<
843				(NTP_SCALE_SHIFT - SHIFT_USEC),
844				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
845
846	/* if enabled, the system clock frequency is updated */
847	if ((time_status & STA_PPSFREQ) != 0 &&
848	    (time_status & STA_FREQHOLD) == 0) {
849		time_freq = pps_freq;
850		ntp_update_frequency();
851	}
852
853	return delta;
854}
855
856/* correct REALTIME clock phase error against PPS signal */
857static void hardpps_update_phase(long error)
858{
859	long correction = -error;
860	long jitter;
861
862	/* add the sample to the median filter */
863	pps_phase_filter_add(correction);
864	correction = pps_phase_filter_get(&jitter);
865
866	/* Nominal jitter is due to PPS signal noise. If it exceeds the
867	 * threshold, the sample is discarded; otherwise, if so enabled,
868	 * the time offset is updated.
869	 */
870	if (jitter > (pps_jitter << PPS_POPCORN)) {
871		printk_deferred(KERN_WARNING
872				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
873				jitter, (pps_jitter << PPS_POPCORN));
874		time_status |= STA_PPSJITTER;
875		pps_jitcnt++;
876	} else if (time_status & STA_PPSTIME) {
877		/* correct the time using the phase offset */
878		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
879				NTP_INTERVAL_FREQ);
880		/* cancel running adjtime() */
881		time_adjust = 0;
882	}
883	/* update jitter */
884	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
885}
886
887/*
888 * __hardpps() - discipline CPU clock oscillator to external PPS signal
889 *
890 * This routine is called at each PPS signal arrival in order to
891 * discipline the CPU clock oscillator to the PPS signal. It takes two
892 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
893 * is used to correct clock phase error and the latter is used to
894 * correct the frequency.
895 *
896 * This code is based on David Mills's reference nanokernel
897 * implementation. It was mostly rewritten but keeps the same idea.
898 */
899void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
900{
901	struct pps_normtime pts_norm, freq_norm;
902
903	pts_norm = pps_normalize_ts(*phase_ts);
904
905	/* clear the error bits, they will be set again if needed */
906	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
907
908	/* indicate signal presence */
909	time_status |= STA_PPSSIGNAL;
910	pps_valid = PPS_VALID;
911
912	/* when called for the first time,
913	 * just start the frequency interval */
914	if (unlikely(pps_fbase.tv_sec == 0)) {
915		pps_fbase = *raw_ts;
916		return;
917	}
918
919	/* ok, now we have a base for frequency calculation */
920	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
921
922	/* check that the signal is in the range
923	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
924	if ((freq_norm.sec == 0) ||
925			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
926			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
927		time_status |= STA_PPSJITTER;
928		/* restart the frequency calibration interval */
929		pps_fbase = *raw_ts;
930		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
931		return;
932	}
933
934	/* signal is ok */
935
936	/* check if the current frequency interval is finished */
937	if (freq_norm.sec >= (1 << pps_shift)) {
938		pps_calcnt++;
939		/* restart the frequency calibration interval */
940		pps_fbase = *raw_ts;
941		hardpps_update_freq(freq_norm);
942	}
943
944	hardpps_update_phase(pts_norm.nsec);
945
946}
947#endif	/* CONFIG_NTP_PPS */
948
949static int __init ntp_tick_adj_setup(char *str)
950{
951	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
952
953	if (rc)
954		return rc;
955	ntp_tick_adj <<= NTP_SCALE_SHIFT;
956
957	return 1;
958}
959
960__setup("ntp_tick_adj=", ntp_tick_adj_setup);
961
962void __init ntp_init(void)
963{
964	ntp_clear();
965}
966