1/*
2 * linux/kernel/time/clockevents.c
3 *
4 * This file contains functions which manage clock event devices.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 *
10 * This code is licenced under the GPL version 2. For details see
11 * kernel-base/COPYING.
12 */
13
14#include <linux/clockchips.h>
15#include <linux/hrtimer.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/smp.h>
19#include <linux/device.h>
20
21#include "tick-internal.h"
22
23/* The registered clock event devices */
24static LIST_HEAD(clockevent_devices);
25static LIST_HEAD(clockevents_released);
26/* Protection for the above */
27static DEFINE_RAW_SPINLOCK(clockevents_lock);
28/* Protection for unbind operations */
29static DEFINE_MUTEX(clockevents_mutex);
30
31struct ce_unbind {
32	struct clock_event_device *ce;
33	int res;
34};
35
36static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37			bool ismax)
38{
39	u64 clc = (u64) latch << evt->shift;
40	u64 rnd;
41
42	if (unlikely(!evt->mult)) {
43		evt->mult = 1;
44		WARN_ON(1);
45	}
46	rnd = (u64) evt->mult - 1;
47
48	/*
49	 * Upper bound sanity check. If the backwards conversion is
50	 * not equal latch, we know that the above shift overflowed.
51	 */
52	if ((clc >> evt->shift) != (u64)latch)
53		clc = ~0ULL;
54
55	/*
56	 * Scaled math oddities:
57	 *
58	 * For mult <= (1 << shift) we can safely add mult - 1 to
59	 * prevent integer rounding loss. So the backwards conversion
60	 * from nsec to device ticks will be correct.
61	 *
62	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63	 * need to be careful. Adding mult - 1 will result in a value
64	 * which when converted back to device ticks can be larger
65	 * than latch by up to (mult - 1) >> shift. For the min_delta
66	 * calculation we still want to apply this in order to stay
67	 * above the minimum device ticks limit. For the upper limit
68	 * we would end up with a latch value larger than the upper
69	 * limit of the device, so we omit the add to stay below the
70	 * device upper boundary.
71	 *
72	 * Also omit the add if it would overflow the u64 boundary.
73	 */
74	if ((~0ULL - clc > rnd) &&
75	    (!ismax || evt->mult <= (1ULL << evt->shift)))
76		clc += rnd;
77
78	do_div(clc, evt->mult);
79
80	/* Deltas less than 1usec are pointless noise */
81	return clc > 1000 ? clc : 1000;
82}
83
84/**
85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86 * @latch:	value to convert
87 * @evt:	pointer to clock event device descriptor
88 *
89 * Math helper, returns latch value converted to nanoseconds (bound checked)
90 */
91u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92{
93	return cev_delta2ns(latch, evt, false);
94}
95EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96
97static int __clockevents_set_state(struct clock_event_device *dev,
98				   enum clock_event_state state)
99{
100	/* Transition with legacy set_mode() callback */
101	if (dev->set_mode) {
102		/* Legacy callback doesn't support new modes */
103		if (state > CLOCK_EVT_STATE_ONESHOT)
104			return -ENOSYS;
105		/*
106		 * 'clock_event_state' and 'clock_event_mode' have 1-to-1
107		 * mapping until *_ONESHOT, and so a simple cast will work.
108		 */
109		dev->set_mode((enum clock_event_mode)state, dev);
110		dev->mode = (enum clock_event_mode)state;
111		return 0;
112	}
113
114	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
115		return 0;
116
117	/* Transition with new state-specific callbacks */
118	switch (state) {
119	case CLOCK_EVT_STATE_DETACHED:
120		/* The clockevent device is getting replaced. Shut it down. */
121
122	case CLOCK_EVT_STATE_SHUTDOWN:
123		return dev->set_state_shutdown(dev);
124
125	case CLOCK_EVT_STATE_PERIODIC:
126		/* Core internal bug */
127		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
128			return -ENOSYS;
129		return dev->set_state_periodic(dev);
130
131	case CLOCK_EVT_STATE_ONESHOT:
132		/* Core internal bug */
133		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
134			return -ENOSYS;
135		return dev->set_state_oneshot(dev);
136
137	default:
138		return -ENOSYS;
139	}
140}
141
142/**
143 * clockevents_set_state - set the operating state of a clock event device
144 * @dev:	device to modify
145 * @state:	new state
146 *
147 * Must be called with interrupts disabled !
148 */
149void clockevents_set_state(struct clock_event_device *dev,
150			   enum clock_event_state state)
151{
152	if (dev->state != state) {
153		if (__clockevents_set_state(dev, state))
154			return;
155
156		dev->state = state;
157
158		/*
159		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
160		 * on it, so fix it up and emit a warning:
161		 */
162		if (state == CLOCK_EVT_STATE_ONESHOT) {
163			if (unlikely(!dev->mult)) {
164				dev->mult = 1;
165				WARN_ON(1);
166			}
167		}
168	}
169}
170
171/**
172 * clockevents_shutdown - shutdown the device and clear next_event
173 * @dev:	device to shutdown
174 */
175void clockevents_shutdown(struct clock_event_device *dev)
176{
177	clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
178	dev->next_event.tv64 = KTIME_MAX;
179}
180
181/**
182 * clockevents_tick_resume -	Resume the tick device before using it again
183 * @dev:			device to resume
184 */
185int clockevents_tick_resume(struct clock_event_device *dev)
186{
187	int ret = 0;
188
189	if (dev->set_mode) {
190		dev->set_mode(CLOCK_EVT_MODE_RESUME, dev);
191		dev->mode = CLOCK_EVT_MODE_RESUME;
192	} else if (dev->tick_resume) {
193		ret = dev->tick_resume(dev);
194	}
195
196	return ret;
197}
198
199#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
200
201/* Limit min_delta to a jiffie */
202#define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
203
204/**
205 * clockevents_increase_min_delta - raise minimum delta of a clock event device
206 * @dev:       device to increase the minimum delta
207 *
208 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
209 */
210static int clockevents_increase_min_delta(struct clock_event_device *dev)
211{
212	/* Nothing to do if we already reached the limit */
213	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214		printk_deferred(KERN_WARNING
215				"CE: Reprogramming failure. Giving up\n");
216		dev->next_event.tv64 = KTIME_MAX;
217		return -ETIME;
218	}
219
220	if (dev->min_delta_ns < 5000)
221		dev->min_delta_ns = 5000;
222	else
223		dev->min_delta_ns += dev->min_delta_ns >> 1;
224
225	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226		dev->min_delta_ns = MIN_DELTA_LIMIT;
227
228	printk_deferred(KERN_WARNING
229			"CE: %s increased min_delta_ns to %llu nsec\n",
230			dev->name ? dev->name : "?",
231			(unsigned long long) dev->min_delta_ns);
232	return 0;
233}
234
235/**
236 * clockevents_program_min_delta - Set clock event device to the minimum delay.
237 * @dev:	device to program
238 *
239 * Returns 0 on success, -ETIME when the retry loop failed.
240 */
241static int clockevents_program_min_delta(struct clock_event_device *dev)
242{
243	unsigned long long clc;
244	int64_t delta;
245	int i;
246
247	for (i = 0;;) {
248		delta = dev->min_delta_ns;
249		dev->next_event = ktime_add_ns(ktime_get(), delta);
250
251		if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
252			return 0;
253
254		dev->retries++;
255		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256		if (dev->set_next_event((unsigned long) clc, dev) == 0)
257			return 0;
258
259		if (++i > 2) {
260			/*
261			 * We tried 3 times to program the device with the
262			 * given min_delta_ns. Try to increase the minimum
263			 * delta, if that fails as well get out of here.
264			 */
265			if (clockevents_increase_min_delta(dev))
266				return -ETIME;
267			i = 0;
268		}
269	}
270}
271
272#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
273
274/**
275 * clockevents_program_min_delta - Set clock event device to the minimum delay.
276 * @dev:	device to program
277 *
278 * Returns 0 on success, -ETIME when the retry loop failed.
279 */
280static int clockevents_program_min_delta(struct clock_event_device *dev)
281{
282	unsigned long long clc;
283	int64_t delta;
284
285	delta = dev->min_delta_ns;
286	dev->next_event = ktime_add_ns(ktime_get(), delta);
287
288	if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
289		return 0;
290
291	dev->retries++;
292	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
293	return dev->set_next_event((unsigned long) clc, dev);
294}
295
296#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
297
298/**
299 * clockevents_program_event - Reprogram the clock event device.
300 * @dev:	device to program
301 * @expires:	absolute expiry time (monotonic clock)
302 * @force:	program minimum delay if expires can not be set
303 *
304 * Returns 0 on success, -ETIME when the event is in the past.
305 */
306int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
307			      bool force)
308{
309	unsigned long long clc;
310	int64_t delta;
311	int rc;
312
313	if (unlikely(expires.tv64 < 0)) {
314		WARN_ON_ONCE(1);
315		return -ETIME;
316	}
317
318	dev->next_event = expires;
319
320	if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
321		return 0;
322
323	/* Shortcut for clockevent devices that can deal with ktime. */
324	if (dev->features & CLOCK_EVT_FEAT_KTIME)
325		return dev->set_next_ktime(expires, dev);
326
327	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
328	if (delta <= 0)
329		return force ? clockevents_program_min_delta(dev) : -ETIME;
330
331	delta = min(delta, (int64_t) dev->max_delta_ns);
332	delta = max(delta, (int64_t) dev->min_delta_ns);
333
334	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
335	rc = dev->set_next_event((unsigned long) clc, dev);
336
337	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
338}
339
340/*
341 * Called after a notify add to make devices available which were
342 * released from the notifier call.
343 */
344static void clockevents_notify_released(void)
345{
346	struct clock_event_device *dev;
347
348	while (!list_empty(&clockevents_released)) {
349		dev = list_entry(clockevents_released.next,
350				 struct clock_event_device, list);
351		list_del(&dev->list);
352		list_add(&dev->list, &clockevent_devices);
353		tick_check_new_device(dev);
354	}
355}
356
357/*
358 * Try to install a replacement clock event device
359 */
360static int clockevents_replace(struct clock_event_device *ced)
361{
362	struct clock_event_device *dev, *newdev = NULL;
363
364	list_for_each_entry(dev, &clockevent_devices, list) {
365		if (dev == ced || dev->state != CLOCK_EVT_STATE_DETACHED)
366			continue;
367
368		if (!tick_check_replacement(newdev, dev))
369			continue;
370
371		if (!try_module_get(dev->owner))
372			continue;
373
374		if (newdev)
375			module_put(newdev->owner);
376		newdev = dev;
377	}
378	if (newdev) {
379		tick_install_replacement(newdev);
380		list_del_init(&ced->list);
381	}
382	return newdev ? 0 : -EBUSY;
383}
384
385/*
386 * Called with clockevents_mutex and clockevents_lock held
387 */
388static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
389{
390	/* Fast track. Device is unused */
391	if (ced->state == CLOCK_EVT_STATE_DETACHED) {
392		list_del_init(&ced->list);
393		return 0;
394	}
395
396	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
397}
398
399/*
400 * SMP function call to unbind a device
401 */
402static void __clockevents_unbind(void *arg)
403{
404	struct ce_unbind *cu = arg;
405	int res;
406
407	raw_spin_lock(&clockevents_lock);
408	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
409	if (res == -EAGAIN)
410		res = clockevents_replace(cu->ce);
411	cu->res = res;
412	raw_spin_unlock(&clockevents_lock);
413}
414
415/*
416 * Issues smp function call to unbind a per cpu device. Called with
417 * clockevents_mutex held.
418 */
419static int clockevents_unbind(struct clock_event_device *ced, int cpu)
420{
421	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
422
423	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
424	return cu.res;
425}
426
427/*
428 * Unbind a clockevents device.
429 */
430int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
431{
432	int ret;
433
434	mutex_lock(&clockevents_mutex);
435	ret = clockevents_unbind(ced, cpu);
436	mutex_unlock(&clockevents_mutex);
437	return ret;
438}
439EXPORT_SYMBOL_GPL(clockevents_unbind_device);
440
441/* Sanity check of state transition callbacks */
442static int clockevents_sanity_check(struct clock_event_device *dev)
443{
444	/* Legacy set_mode() callback */
445	if (dev->set_mode) {
446		/* We shouldn't be supporting new modes now */
447		WARN_ON(dev->set_state_periodic || dev->set_state_oneshot ||
448			dev->set_state_shutdown || dev->tick_resume);
449
450		BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
451		return 0;
452	}
453
454	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
455		return 0;
456
457	/* New state-specific callbacks */
458	if (!dev->set_state_shutdown)
459		return -EINVAL;
460
461	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
462	    !dev->set_state_periodic)
463		return -EINVAL;
464
465	if ((dev->features & CLOCK_EVT_FEAT_ONESHOT) &&
466	    !dev->set_state_oneshot)
467		return -EINVAL;
468
469	return 0;
470}
471
472/**
473 * clockevents_register_device - register a clock event device
474 * @dev:	device to register
475 */
476void clockevents_register_device(struct clock_event_device *dev)
477{
478	unsigned long flags;
479
480	BUG_ON(clockevents_sanity_check(dev));
481
482	/* Initialize state to DETACHED */
483	dev->state = CLOCK_EVT_STATE_DETACHED;
484
485	if (!dev->cpumask) {
486		WARN_ON(num_possible_cpus() > 1);
487		dev->cpumask = cpumask_of(smp_processor_id());
488	}
489
490	raw_spin_lock_irqsave(&clockevents_lock, flags);
491
492	list_add(&dev->list, &clockevent_devices);
493	tick_check_new_device(dev);
494	clockevents_notify_released();
495
496	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
497}
498EXPORT_SYMBOL_GPL(clockevents_register_device);
499
500void clockevents_config(struct clock_event_device *dev, u32 freq)
501{
502	u64 sec;
503
504	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
505		return;
506
507	/*
508	 * Calculate the maximum number of seconds we can sleep. Limit
509	 * to 10 minutes for hardware which can program more than
510	 * 32bit ticks so we still get reasonable conversion values.
511	 */
512	sec = dev->max_delta_ticks;
513	do_div(sec, freq);
514	if (!sec)
515		sec = 1;
516	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
517		sec = 600;
518
519	clockevents_calc_mult_shift(dev, freq, sec);
520	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
521	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
522}
523
524/**
525 * clockevents_config_and_register - Configure and register a clock event device
526 * @dev:	device to register
527 * @freq:	The clock frequency
528 * @min_delta:	The minimum clock ticks to program in oneshot mode
529 * @max_delta:	The maximum clock ticks to program in oneshot mode
530 *
531 * min/max_delta can be 0 for devices which do not support oneshot mode.
532 */
533void clockevents_config_and_register(struct clock_event_device *dev,
534				     u32 freq, unsigned long min_delta,
535				     unsigned long max_delta)
536{
537	dev->min_delta_ticks = min_delta;
538	dev->max_delta_ticks = max_delta;
539	clockevents_config(dev, freq);
540	clockevents_register_device(dev);
541}
542EXPORT_SYMBOL_GPL(clockevents_config_and_register);
543
544int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
545{
546	clockevents_config(dev, freq);
547
548	if (dev->state == CLOCK_EVT_STATE_ONESHOT)
549		return clockevents_program_event(dev, dev->next_event, false);
550
551	if (dev->state == CLOCK_EVT_STATE_PERIODIC)
552		return __clockevents_set_state(dev, CLOCK_EVT_STATE_PERIODIC);
553
554	return 0;
555}
556
557/**
558 * clockevents_update_freq - Update frequency and reprogram a clock event device.
559 * @dev:	device to modify
560 * @freq:	new device frequency
561 *
562 * Reconfigure and reprogram a clock event device in oneshot
563 * mode. Must be called on the cpu for which the device delivers per
564 * cpu timer events. If called for the broadcast device the core takes
565 * care of serialization.
566 *
567 * Returns 0 on success, -ETIME when the event is in the past.
568 */
569int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
570{
571	unsigned long flags;
572	int ret;
573
574	local_irq_save(flags);
575	ret = tick_broadcast_update_freq(dev, freq);
576	if (ret == -ENODEV)
577		ret = __clockevents_update_freq(dev, freq);
578	local_irq_restore(flags);
579	return ret;
580}
581
582/*
583 * Noop handler when we shut down an event device
584 */
585void clockevents_handle_noop(struct clock_event_device *dev)
586{
587}
588
589/**
590 * clockevents_exchange_device - release and request clock devices
591 * @old:	device to release (can be NULL)
592 * @new:	device to request (can be NULL)
593 *
594 * Called from various tick functions with clockevents_lock held and
595 * interrupts disabled.
596 */
597void clockevents_exchange_device(struct clock_event_device *old,
598				 struct clock_event_device *new)
599{
600	/*
601	 * Caller releases a clock event device. We queue it into the
602	 * released list and do a notify add later.
603	 */
604	if (old) {
605		module_put(old->owner);
606		clockevents_set_state(old, CLOCK_EVT_STATE_DETACHED);
607		list_del(&old->list);
608		list_add(&old->list, &clockevents_released);
609	}
610
611	if (new) {
612		BUG_ON(new->state != CLOCK_EVT_STATE_DETACHED);
613		clockevents_shutdown(new);
614	}
615}
616
617/**
618 * clockevents_suspend - suspend clock devices
619 */
620void clockevents_suspend(void)
621{
622	struct clock_event_device *dev;
623
624	list_for_each_entry_reverse(dev, &clockevent_devices, list)
625		if (dev->suspend)
626			dev->suspend(dev);
627}
628
629/**
630 * clockevents_resume - resume clock devices
631 */
632void clockevents_resume(void)
633{
634	struct clock_event_device *dev;
635
636	list_for_each_entry(dev, &clockevent_devices, list)
637		if (dev->resume)
638			dev->resume(dev);
639}
640
641#ifdef CONFIG_HOTPLUG_CPU
642/**
643 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
644 */
645void tick_cleanup_dead_cpu(int cpu)
646{
647	struct clock_event_device *dev, *tmp;
648	unsigned long flags;
649
650	raw_spin_lock_irqsave(&clockevents_lock, flags);
651
652	tick_shutdown_broadcast_oneshot(cpu);
653	tick_shutdown_broadcast(cpu);
654	tick_shutdown(cpu);
655	/*
656	 * Unregister the clock event devices which were
657	 * released from the users in the notify chain.
658	 */
659	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
660		list_del(&dev->list);
661	/*
662	 * Now check whether the CPU has left unused per cpu devices
663	 */
664	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
665		if (cpumask_test_cpu(cpu, dev->cpumask) &&
666		    cpumask_weight(dev->cpumask) == 1 &&
667		    !tick_is_broadcast_device(dev)) {
668			BUG_ON(dev->state != CLOCK_EVT_STATE_DETACHED);
669			list_del(&dev->list);
670		}
671	}
672	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
673}
674#endif
675
676#ifdef CONFIG_SYSFS
677struct bus_type clockevents_subsys = {
678	.name		= "clockevents",
679	.dev_name       = "clockevent",
680};
681
682static DEFINE_PER_CPU(struct device, tick_percpu_dev);
683static struct tick_device *tick_get_tick_dev(struct device *dev);
684
685static ssize_t sysfs_show_current_tick_dev(struct device *dev,
686					   struct device_attribute *attr,
687					   char *buf)
688{
689	struct tick_device *td;
690	ssize_t count = 0;
691
692	raw_spin_lock_irq(&clockevents_lock);
693	td = tick_get_tick_dev(dev);
694	if (td && td->evtdev)
695		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
696	raw_spin_unlock_irq(&clockevents_lock);
697	return count;
698}
699static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
700
701/* We don't support the abomination of removable broadcast devices */
702static ssize_t sysfs_unbind_tick_dev(struct device *dev,
703				     struct device_attribute *attr,
704				     const char *buf, size_t count)
705{
706	char name[CS_NAME_LEN];
707	ssize_t ret = sysfs_get_uname(buf, name, count);
708	struct clock_event_device *ce;
709
710	if (ret < 0)
711		return ret;
712
713	ret = -ENODEV;
714	mutex_lock(&clockevents_mutex);
715	raw_spin_lock_irq(&clockevents_lock);
716	list_for_each_entry(ce, &clockevent_devices, list) {
717		if (!strcmp(ce->name, name)) {
718			ret = __clockevents_try_unbind(ce, dev->id);
719			break;
720		}
721	}
722	raw_spin_unlock_irq(&clockevents_lock);
723	/*
724	 * We hold clockevents_mutex, so ce can't go away
725	 */
726	if (ret == -EAGAIN)
727		ret = clockevents_unbind(ce, dev->id);
728	mutex_unlock(&clockevents_mutex);
729	return ret ? ret : count;
730}
731static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
732
733#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
734static struct device tick_bc_dev = {
735	.init_name	= "broadcast",
736	.id		= 0,
737	.bus		= &clockevents_subsys,
738};
739
740static struct tick_device *tick_get_tick_dev(struct device *dev)
741{
742	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
743		&per_cpu(tick_cpu_device, dev->id);
744}
745
746static __init int tick_broadcast_init_sysfs(void)
747{
748	int err = device_register(&tick_bc_dev);
749
750	if (!err)
751		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
752	return err;
753}
754#else
755static struct tick_device *tick_get_tick_dev(struct device *dev)
756{
757	return &per_cpu(tick_cpu_device, dev->id);
758}
759static inline int tick_broadcast_init_sysfs(void) { return 0; }
760#endif
761
762static int __init tick_init_sysfs(void)
763{
764	int cpu;
765
766	for_each_possible_cpu(cpu) {
767		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
768		int err;
769
770		dev->id = cpu;
771		dev->bus = &clockevents_subsys;
772		err = device_register(dev);
773		if (!err)
774			err = device_create_file(dev, &dev_attr_current_device);
775		if (!err)
776			err = device_create_file(dev, &dev_attr_unbind_device);
777		if (err)
778			return err;
779	}
780	return tick_broadcast_init_sysfs();
781}
782
783static int __init clockevents_init_sysfs(void)
784{
785	int err = subsys_system_register(&clockevents_subsys, NULL);
786
787	if (!err)
788		err = tick_init_sysfs();
789	return err;
790}
791device_initcall(clockevents_init_sysfs);
792#endif /* SYSFS */
793