1/*
2 *  linux/kernel/signal.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *
6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7 *
8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9 *		Changes to use preallocated sigqueue structures
10 *		to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/export.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/coredump.h>
21#include <linux/security.h>
22#include <linux/syscalls.h>
23#include <linux/ptrace.h>
24#include <linux/signal.h>
25#include <linux/signalfd.h>
26#include <linux/ratelimit.h>
27#include <linux/tracehook.h>
28#include <linux/capability.h>
29#include <linux/freezer.h>
30#include <linux/pid_namespace.h>
31#include <linux/nsproxy.h>
32#include <linux/user_namespace.h>
33#include <linux/uprobes.h>
34#include <linux/compat.h>
35#include <linux/cn_proc.h>
36#include <linux/compiler.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/signal.h>
40
41#include <asm/param.h>
42#include <asm/uaccess.h>
43#include <asm/unistd.h>
44#include <asm/siginfo.h>
45#include <asm/cacheflush.h>
46#include "audit.h"	/* audit_signal_info() */
47
48/*
49 * SLAB caches for signal bits.
50 */
51
52static struct kmem_cache *sigqueue_cachep;
53
54int print_fatal_signals __read_mostly;
55
56static void __user *sig_handler(struct task_struct *t, int sig)
57{
58	return t->sighand->action[sig - 1].sa.sa_handler;
59}
60
61static int sig_handler_ignored(void __user *handler, int sig)
62{
63	/* Is it explicitly or implicitly ignored? */
64	return handler == SIG_IGN ||
65		(handler == SIG_DFL && sig_kernel_ignore(sig));
66}
67
68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69{
70	void __user *handler;
71
72	handler = sig_handler(t, sig);
73
74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75			handler == SIG_DFL && !force)
76		return 1;
77
78	return sig_handler_ignored(handler, sig);
79}
80
81static int sig_ignored(struct task_struct *t, int sig, bool force)
82{
83	/*
84	 * Blocked signals are never ignored, since the
85	 * signal handler may change by the time it is
86	 * unblocked.
87	 */
88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89		return 0;
90
91	if (!sig_task_ignored(t, sig, force))
92		return 0;
93
94	/*
95	 * Tracers may want to know about even ignored signals.
96	 */
97	return !t->ptrace;
98}
99
100/*
101 * Re-calculate pending state from the set of locally pending
102 * signals, globally pending signals, and blocked signals.
103 */
104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105{
106	unsigned long ready;
107	long i;
108
109	switch (_NSIG_WORDS) {
110	default:
111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112			ready |= signal->sig[i] &~ blocked->sig[i];
113		break;
114
115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
116		ready |= signal->sig[2] &~ blocked->sig[2];
117		ready |= signal->sig[1] &~ blocked->sig[1];
118		ready |= signal->sig[0] &~ blocked->sig[0];
119		break;
120
121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
122		ready |= signal->sig[0] &~ blocked->sig[0];
123		break;
124
125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
126	}
127	return ready !=	0;
128}
129
130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131
132static int recalc_sigpending_tsk(struct task_struct *t)
133{
134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135	    PENDING(&t->pending, &t->blocked) ||
136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
137		set_tsk_thread_flag(t, TIF_SIGPENDING);
138		return 1;
139	}
140	/*
141	 * We must never clear the flag in another thread, or in current
142	 * when it's possible the current syscall is returning -ERESTART*.
143	 * So we don't clear it here, and only callers who know they should do.
144	 */
145	return 0;
146}
147
148/*
149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150 * This is superfluous when called on current, the wakeup is a harmless no-op.
151 */
152void recalc_sigpending_and_wake(struct task_struct *t)
153{
154	if (recalc_sigpending_tsk(t))
155		signal_wake_up(t, 0);
156}
157
158void recalc_sigpending(void)
159{
160	if (!recalc_sigpending_tsk(current) && !freezing(current))
161		clear_thread_flag(TIF_SIGPENDING);
162
163}
164
165/* Given the mask, find the first available signal that should be serviced. */
166
167#define SYNCHRONOUS_MASK \
168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170
171int next_signal(struct sigpending *pending, sigset_t *mask)
172{
173	unsigned long i, *s, *m, x;
174	int sig = 0;
175
176	s = pending->signal.sig;
177	m = mask->sig;
178
179	/*
180	 * Handle the first word specially: it contains the
181	 * synchronous signals that need to be dequeued first.
182	 */
183	x = *s &~ *m;
184	if (x) {
185		if (x & SYNCHRONOUS_MASK)
186			x &= SYNCHRONOUS_MASK;
187		sig = ffz(~x) + 1;
188		return sig;
189	}
190
191	switch (_NSIG_WORDS) {
192	default:
193		for (i = 1; i < _NSIG_WORDS; ++i) {
194			x = *++s &~ *++m;
195			if (!x)
196				continue;
197			sig = ffz(~x) + i*_NSIG_BPW + 1;
198			break;
199		}
200		break;
201
202	case 2:
203		x = s[1] &~ m[1];
204		if (!x)
205			break;
206		sig = ffz(~x) + _NSIG_BPW + 1;
207		break;
208
209	case 1:
210		/* Nothing to do */
211		break;
212	}
213
214	return sig;
215}
216
217static inline void print_dropped_signal(int sig)
218{
219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220
221	if (!print_fatal_signals)
222		return;
223
224	if (!__ratelimit(&ratelimit_state))
225		return;
226
227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228				current->comm, current->pid, sig);
229}
230
231/**
232 * task_set_jobctl_pending - set jobctl pending bits
233 * @task: target task
234 * @mask: pending bits to set
235 *
236 * Clear @mask from @task->jobctl.  @mask must be subset of
237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
239 * cleared.  If @task is already being killed or exiting, this function
240 * becomes noop.
241 *
242 * CONTEXT:
243 * Must be called with @task->sighand->siglock held.
244 *
245 * RETURNS:
246 * %true if @mask is set, %false if made noop because @task was dying.
247 */
248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
249{
250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253
254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255		return false;
256
257	if (mask & JOBCTL_STOP_SIGMASK)
258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259
260	task->jobctl |= mask;
261	return true;
262}
263
264/**
265 * task_clear_jobctl_trapping - clear jobctl trapping bit
266 * @task: target task
267 *
268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269 * Clear it and wake up the ptracer.  Note that we don't need any further
270 * locking.  @task->siglock guarantees that @task->parent points to the
271 * ptracer.
272 *
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
275 */
276void task_clear_jobctl_trapping(struct task_struct *task)
277{
278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279		task->jobctl &= ~JOBCTL_TRAPPING;
280		smp_mb();	/* advised by wake_up_bit() */
281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282	}
283}
284
285/**
286 * task_clear_jobctl_pending - clear jobctl pending bits
287 * @task: target task
288 * @mask: pending bits to clear
289 *
290 * Clear @mask from @task->jobctl.  @mask must be subset of
291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
292 * STOP bits are cleared together.
293 *
294 * If clearing of @mask leaves no stop or trap pending, this function calls
295 * task_clear_jobctl_trapping().
296 *
297 * CONTEXT:
298 * Must be called with @task->sighand->siglock held.
299 */
300void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
301{
302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303
304	if (mask & JOBCTL_STOP_PENDING)
305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306
307	task->jobctl &= ~mask;
308
309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
310		task_clear_jobctl_trapping(task);
311}
312
313/**
314 * task_participate_group_stop - participate in a group stop
315 * @task: task participating in a group stop
316 *
317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318 * Group stop states are cleared and the group stop count is consumed if
319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
320 * stop, the appropriate %SIGNAL_* flags are set.
321 *
322 * CONTEXT:
323 * Must be called with @task->sighand->siglock held.
324 *
325 * RETURNS:
326 * %true if group stop completion should be notified to the parent, %false
327 * otherwise.
328 */
329static bool task_participate_group_stop(struct task_struct *task)
330{
331	struct signal_struct *sig = task->signal;
332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333
334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335
336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337
338	if (!consume)
339		return false;
340
341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342		sig->group_stop_count--;
343
344	/*
345	 * Tell the caller to notify completion iff we are entering into a
346	 * fresh group stop.  Read comment in do_signal_stop() for details.
347	 */
348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349		sig->flags = SIGNAL_STOP_STOPPED;
350		return true;
351	}
352	return false;
353}
354
355/*
356 * allocate a new signal queue record
357 * - this may be called without locks if and only if t == current, otherwise an
358 *   appropriate lock must be held to stop the target task from exiting
359 */
360static struct sigqueue *
361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362{
363	struct sigqueue *q = NULL;
364	struct user_struct *user;
365
366	/*
367	 * Protect access to @t credentials. This can go away when all
368	 * callers hold rcu read lock.
369	 */
370	rcu_read_lock();
371	user = get_uid(__task_cred(t)->user);
372	atomic_inc(&user->sigpending);
373	rcu_read_unlock();
374
375	if (override_rlimit ||
376	    atomic_read(&user->sigpending) <=
377			task_rlimit(t, RLIMIT_SIGPENDING)) {
378		q = kmem_cache_alloc(sigqueue_cachep, flags);
379	} else {
380		print_dropped_signal(sig);
381	}
382
383	if (unlikely(q == NULL)) {
384		atomic_dec(&user->sigpending);
385		free_uid(user);
386	} else {
387		INIT_LIST_HEAD(&q->list);
388		q->flags = 0;
389		q->user = user;
390	}
391
392	return q;
393}
394
395static void __sigqueue_free(struct sigqueue *q)
396{
397	if (q->flags & SIGQUEUE_PREALLOC)
398		return;
399	atomic_dec(&q->user->sigpending);
400	free_uid(q->user);
401	kmem_cache_free(sigqueue_cachep, q);
402}
403
404void flush_sigqueue(struct sigpending *queue)
405{
406	struct sigqueue *q;
407
408	sigemptyset(&queue->signal);
409	while (!list_empty(&queue->list)) {
410		q = list_entry(queue->list.next, struct sigqueue , list);
411		list_del_init(&q->list);
412		__sigqueue_free(q);
413	}
414}
415
416/*
417 * Flush all pending signals for a task.
418 */
419void __flush_signals(struct task_struct *t)
420{
421	clear_tsk_thread_flag(t, TIF_SIGPENDING);
422	flush_sigqueue(&t->pending);
423	flush_sigqueue(&t->signal->shared_pending);
424}
425
426void flush_signals(struct task_struct *t)
427{
428	unsigned long flags;
429
430	spin_lock_irqsave(&t->sighand->siglock, flags);
431	__flush_signals(t);
432	spin_unlock_irqrestore(&t->sighand->siglock, flags);
433}
434
435static void __flush_itimer_signals(struct sigpending *pending)
436{
437	sigset_t signal, retain;
438	struct sigqueue *q, *n;
439
440	signal = pending->signal;
441	sigemptyset(&retain);
442
443	list_for_each_entry_safe(q, n, &pending->list, list) {
444		int sig = q->info.si_signo;
445
446		if (likely(q->info.si_code != SI_TIMER)) {
447			sigaddset(&retain, sig);
448		} else {
449			sigdelset(&signal, sig);
450			list_del_init(&q->list);
451			__sigqueue_free(q);
452		}
453	}
454
455	sigorsets(&pending->signal, &signal, &retain);
456}
457
458void flush_itimer_signals(void)
459{
460	struct task_struct *tsk = current;
461	unsigned long flags;
462
463	spin_lock_irqsave(&tsk->sighand->siglock, flags);
464	__flush_itimer_signals(&tsk->pending);
465	__flush_itimer_signals(&tsk->signal->shared_pending);
466	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
467}
468
469void ignore_signals(struct task_struct *t)
470{
471	int i;
472
473	for (i = 0; i < _NSIG; ++i)
474		t->sighand->action[i].sa.sa_handler = SIG_IGN;
475
476	flush_signals(t);
477}
478
479/*
480 * Flush all handlers for a task.
481 */
482
483void
484flush_signal_handlers(struct task_struct *t, int force_default)
485{
486	int i;
487	struct k_sigaction *ka = &t->sighand->action[0];
488	for (i = _NSIG ; i != 0 ; i--) {
489		if (force_default || ka->sa.sa_handler != SIG_IGN)
490			ka->sa.sa_handler = SIG_DFL;
491		ka->sa.sa_flags = 0;
492#ifdef __ARCH_HAS_SA_RESTORER
493		ka->sa.sa_restorer = NULL;
494#endif
495		sigemptyset(&ka->sa.sa_mask);
496		ka++;
497	}
498}
499
500int unhandled_signal(struct task_struct *tsk, int sig)
501{
502	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
503	if (is_global_init(tsk))
504		return 1;
505	if (handler != SIG_IGN && handler != SIG_DFL)
506		return 0;
507	/* if ptraced, let the tracer determine */
508	return !tsk->ptrace;
509}
510
511/*
512 * Notify the system that a driver wants to block all signals for this
513 * process, and wants to be notified if any signals at all were to be
514 * sent/acted upon.  If the notifier routine returns non-zero, then the
515 * signal will be acted upon after all.  If the notifier routine returns 0,
516 * then then signal will be blocked.  Only one block per process is
517 * allowed.  priv is a pointer to private data that the notifier routine
518 * can use to determine if the signal should be blocked or not.
519 */
520void
521block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
522{
523	unsigned long flags;
524
525	spin_lock_irqsave(&current->sighand->siglock, flags);
526	current->notifier_mask = mask;
527	current->notifier_data = priv;
528	current->notifier = notifier;
529	spin_unlock_irqrestore(&current->sighand->siglock, flags);
530}
531
532/* Notify the system that blocking has ended. */
533
534void
535unblock_all_signals(void)
536{
537	unsigned long flags;
538
539	spin_lock_irqsave(&current->sighand->siglock, flags);
540	current->notifier = NULL;
541	current->notifier_data = NULL;
542	recalc_sigpending();
543	spin_unlock_irqrestore(&current->sighand->siglock, flags);
544}
545
546static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
547{
548	struct sigqueue *q, *first = NULL;
549
550	/*
551	 * Collect the siginfo appropriate to this signal.  Check if
552	 * there is another siginfo for the same signal.
553	*/
554	list_for_each_entry(q, &list->list, list) {
555		if (q->info.si_signo == sig) {
556			if (first)
557				goto still_pending;
558			first = q;
559		}
560	}
561
562	sigdelset(&list->signal, sig);
563
564	if (first) {
565still_pending:
566		list_del_init(&first->list);
567		copy_siginfo(info, &first->info);
568		__sigqueue_free(first);
569	} else {
570		/*
571		 * Ok, it wasn't in the queue.  This must be
572		 * a fast-pathed signal or we must have been
573		 * out of queue space.  So zero out the info.
574		 */
575		info->si_signo = sig;
576		info->si_errno = 0;
577		info->si_code = SI_USER;
578		info->si_pid = 0;
579		info->si_uid = 0;
580	}
581}
582
583static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
584			siginfo_t *info)
585{
586	int sig = next_signal(pending, mask);
587
588	if (sig) {
589		if (current->notifier) {
590			if (sigismember(current->notifier_mask, sig)) {
591				if (!(current->notifier)(current->notifier_data)) {
592					clear_thread_flag(TIF_SIGPENDING);
593					return 0;
594				}
595			}
596		}
597
598		collect_signal(sig, pending, info);
599	}
600
601	return sig;
602}
603
604/*
605 * Dequeue a signal and return the element to the caller, which is
606 * expected to free it.
607 *
608 * All callers have to hold the siglock.
609 */
610int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
611{
612	int signr;
613
614	/* We only dequeue private signals from ourselves, we don't let
615	 * signalfd steal them
616	 */
617	signr = __dequeue_signal(&tsk->pending, mask, info);
618	if (!signr) {
619		signr = __dequeue_signal(&tsk->signal->shared_pending,
620					 mask, info);
621		/*
622		 * itimer signal ?
623		 *
624		 * itimers are process shared and we restart periodic
625		 * itimers in the signal delivery path to prevent DoS
626		 * attacks in the high resolution timer case. This is
627		 * compliant with the old way of self-restarting
628		 * itimers, as the SIGALRM is a legacy signal and only
629		 * queued once. Changing the restart behaviour to
630		 * restart the timer in the signal dequeue path is
631		 * reducing the timer noise on heavy loaded !highres
632		 * systems too.
633		 */
634		if (unlikely(signr == SIGALRM)) {
635			struct hrtimer *tmr = &tsk->signal->real_timer;
636
637			if (!hrtimer_is_queued(tmr) &&
638			    tsk->signal->it_real_incr.tv64 != 0) {
639				hrtimer_forward(tmr, tmr->base->get_time(),
640						tsk->signal->it_real_incr);
641				hrtimer_restart(tmr);
642			}
643		}
644	}
645
646	recalc_sigpending();
647	if (!signr)
648		return 0;
649
650	if (unlikely(sig_kernel_stop(signr))) {
651		/*
652		 * Set a marker that we have dequeued a stop signal.  Our
653		 * caller might release the siglock and then the pending
654		 * stop signal it is about to process is no longer in the
655		 * pending bitmasks, but must still be cleared by a SIGCONT
656		 * (and overruled by a SIGKILL).  So those cases clear this
657		 * shared flag after we've set it.  Note that this flag may
658		 * remain set after the signal we return is ignored or
659		 * handled.  That doesn't matter because its only purpose
660		 * is to alert stop-signal processing code when another
661		 * processor has come along and cleared the flag.
662		 */
663		current->jobctl |= JOBCTL_STOP_DEQUEUED;
664	}
665	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
666		/*
667		 * Release the siglock to ensure proper locking order
668		 * of timer locks outside of siglocks.  Note, we leave
669		 * irqs disabled here, since the posix-timers code is
670		 * about to disable them again anyway.
671		 */
672		spin_unlock(&tsk->sighand->siglock);
673		do_schedule_next_timer(info);
674		spin_lock(&tsk->sighand->siglock);
675	}
676	return signr;
677}
678
679/*
680 * Tell a process that it has a new active signal..
681 *
682 * NOTE! we rely on the previous spin_lock to
683 * lock interrupts for us! We can only be called with
684 * "siglock" held, and the local interrupt must
685 * have been disabled when that got acquired!
686 *
687 * No need to set need_resched since signal event passing
688 * goes through ->blocked
689 */
690void signal_wake_up_state(struct task_struct *t, unsigned int state)
691{
692	set_tsk_thread_flag(t, TIF_SIGPENDING);
693	/*
694	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
695	 * case. We don't check t->state here because there is a race with it
696	 * executing another processor and just now entering stopped state.
697	 * By using wake_up_state, we ensure the process will wake up and
698	 * handle its death signal.
699	 */
700	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
701		kick_process(t);
702}
703
704/*
705 * Remove signals in mask from the pending set and queue.
706 * Returns 1 if any signals were found.
707 *
708 * All callers must be holding the siglock.
709 */
710static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
711{
712	struct sigqueue *q, *n;
713	sigset_t m;
714
715	sigandsets(&m, mask, &s->signal);
716	if (sigisemptyset(&m))
717		return 0;
718
719	sigandnsets(&s->signal, &s->signal, mask);
720	list_for_each_entry_safe(q, n, &s->list, list) {
721		if (sigismember(mask, q->info.si_signo)) {
722			list_del_init(&q->list);
723			__sigqueue_free(q);
724		}
725	}
726	return 1;
727}
728
729static inline int is_si_special(const struct siginfo *info)
730{
731	return info <= SEND_SIG_FORCED;
732}
733
734static inline bool si_fromuser(const struct siginfo *info)
735{
736	return info == SEND_SIG_NOINFO ||
737		(!is_si_special(info) && SI_FROMUSER(info));
738}
739
740/*
741 * called with RCU read lock from check_kill_permission()
742 */
743static int kill_ok_by_cred(struct task_struct *t)
744{
745	const struct cred *cred = current_cred();
746	const struct cred *tcred = __task_cred(t);
747
748	if (uid_eq(cred->euid, tcred->suid) ||
749	    uid_eq(cred->euid, tcred->uid)  ||
750	    uid_eq(cred->uid,  tcred->suid) ||
751	    uid_eq(cred->uid,  tcred->uid))
752		return 1;
753
754	if (ns_capable(tcred->user_ns, CAP_KILL))
755		return 1;
756
757	return 0;
758}
759
760/*
761 * Bad permissions for sending the signal
762 * - the caller must hold the RCU read lock
763 */
764static int check_kill_permission(int sig, struct siginfo *info,
765				 struct task_struct *t)
766{
767	struct pid *sid;
768	int error;
769
770	if (!valid_signal(sig))
771		return -EINVAL;
772
773	if (!si_fromuser(info))
774		return 0;
775
776	error = audit_signal_info(sig, t); /* Let audit system see the signal */
777	if (error)
778		return error;
779
780	if (!same_thread_group(current, t) &&
781	    !kill_ok_by_cred(t)) {
782		switch (sig) {
783		case SIGCONT:
784			sid = task_session(t);
785			/*
786			 * We don't return the error if sid == NULL. The
787			 * task was unhashed, the caller must notice this.
788			 */
789			if (!sid || sid == task_session(current))
790				break;
791		default:
792			return -EPERM;
793		}
794	}
795
796	return security_task_kill(t, info, sig, 0);
797}
798
799/**
800 * ptrace_trap_notify - schedule trap to notify ptracer
801 * @t: tracee wanting to notify tracer
802 *
803 * This function schedules sticky ptrace trap which is cleared on the next
804 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
805 * ptracer.
806 *
807 * If @t is running, STOP trap will be taken.  If trapped for STOP and
808 * ptracer is listening for events, tracee is woken up so that it can
809 * re-trap for the new event.  If trapped otherwise, STOP trap will be
810 * eventually taken without returning to userland after the existing traps
811 * are finished by PTRACE_CONT.
812 *
813 * CONTEXT:
814 * Must be called with @task->sighand->siglock held.
815 */
816static void ptrace_trap_notify(struct task_struct *t)
817{
818	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
819	assert_spin_locked(&t->sighand->siglock);
820
821	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
822	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
823}
824
825/*
826 * Handle magic process-wide effects of stop/continue signals. Unlike
827 * the signal actions, these happen immediately at signal-generation
828 * time regardless of blocking, ignoring, or handling.  This does the
829 * actual continuing for SIGCONT, but not the actual stopping for stop
830 * signals. The process stop is done as a signal action for SIG_DFL.
831 *
832 * Returns true if the signal should be actually delivered, otherwise
833 * it should be dropped.
834 */
835static bool prepare_signal(int sig, struct task_struct *p, bool force)
836{
837	struct signal_struct *signal = p->signal;
838	struct task_struct *t;
839	sigset_t flush;
840
841	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
842		if (signal->flags & SIGNAL_GROUP_COREDUMP)
843			return sig == SIGKILL;
844		/*
845		 * The process is in the middle of dying, nothing to do.
846		 */
847	} else if (sig_kernel_stop(sig)) {
848		/*
849		 * This is a stop signal.  Remove SIGCONT from all queues.
850		 */
851		siginitset(&flush, sigmask(SIGCONT));
852		flush_sigqueue_mask(&flush, &signal->shared_pending);
853		for_each_thread(p, t)
854			flush_sigqueue_mask(&flush, &t->pending);
855	} else if (sig == SIGCONT) {
856		unsigned int why;
857		/*
858		 * Remove all stop signals from all queues, wake all threads.
859		 */
860		siginitset(&flush, SIG_KERNEL_STOP_MASK);
861		flush_sigqueue_mask(&flush, &signal->shared_pending);
862		for_each_thread(p, t) {
863			flush_sigqueue_mask(&flush, &t->pending);
864			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
865			if (likely(!(t->ptrace & PT_SEIZED)))
866				wake_up_state(t, __TASK_STOPPED);
867			else
868				ptrace_trap_notify(t);
869		}
870
871		/*
872		 * Notify the parent with CLD_CONTINUED if we were stopped.
873		 *
874		 * If we were in the middle of a group stop, we pretend it
875		 * was already finished, and then continued. Since SIGCHLD
876		 * doesn't queue we report only CLD_STOPPED, as if the next
877		 * CLD_CONTINUED was dropped.
878		 */
879		why = 0;
880		if (signal->flags & SIGNAL_STOP_STOPPED)
881			why |= SIGNAL_CLD_CONTINUED;
882		else if (signal->group_stop_count)
883			why |= SIGNAL_CLD_STOPPED;
884
885		if (why) {
886			/*
887			 * The first thread which returns from do_signal_stop()
888			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
889			 * notify its parent. See get_signal_to_deliver().
890			 */
891			signal->flags = why | SIGNAL_STOP_CONTINUED;
892			signal->group_stop_count = 0;
893			signal->group_exit_code = 0;
894		}
895	}
896
897	return !sig_ignored(p, sig, force);
898}
899
900/*
901 * Test if P wants to take SIG.  After we've checked all threads with this,
902 * it's equivalent to finding no threads not blocking SIG.  Any threads not
903 * blocking SIG were ruled out because they are not running and already
904 * have pending signals.  Such threads will dequeue from the shared queue
905 * as soon as they're available, so putting the signal on the shared queue
906 * will be equivalent to sending it to one such thread.
907 */
908static inline int wants_signal(int sig, struct task_struct *p)
909{
910	if (sigismember(&p->blocked, sig))
911		return 0;
912	if (p->flags & PF_EXITING)
913		return 0;
914	if (sig == SIGKILL)
915		return 1;
916	if (task_is_stopped_or_traced(p))
917		return 0;
918	return task_curr(p) || !signal_pending(p);
919}
920
921static void complete_signal(int sig, struct task_struct *p, int group)
922{
923	struct signal_struct *signal = p->signal;
924	struct task_struct *t;
925
926	/*
927	 * Now find a thread we can wake up to take the signal off the queue.
928	 *
929	 * If the main thread wants the signal, it gets first crack.
930	 * Probably the least surprising to the average bear.
931	 */
932	if (wants_signal(sig, p))
933		t = p;
934	else if (!group || thread_group_empty(p))
935		/*
936		 * There is just one thread and it does not need to be woken.
937		 * It will dequeue unblocked signals before it runs again.
938		 */
939		return;
940	else {
941		/*
942		 * Otherwise try to find a suitable thread.
943		 */
944		t = signal->curr_target;
945		while (!wants_signal(sig, t)) {
946			t = next_thread(t);
947			if (t == signal->curr_target)
948				/*
949				 * No thread needs to be woken.
950				 * Any eligible threads will see
951				 * the signal in the queue soon.
952				 */
953				return;
954		}
955		signal->curr_target = t;
956	}
957
958	/*
959	 * Found a killable thread.  If the signal will be fatal,
960	 * then start taking the whole group down immediately.
961	 */
962	if (sig_fatal(p, sig) &&
963	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
964	    !sigismember(&t->real_blocked, sig) &&
965	    (sig == SIGKILL || !t->ptrace)) {
966		/*
967		 * This signal will be fatal to the whole group.
968		 */
969		if (!sig_kernel_coredump(sig)) {
970			/*
971			 * Start a group exit and wake everybody up.
972			 * This way we don't have other threads
973			 * running and doing things after a slower
974			 * thread has the fatal signal pending.
975			 */
976			signal->flags = SIGNAL_GROUP_EXIT;
977			signal->group_exit_code = sig;
978			signal->group_stop_count = 0;
979			t = p;
980			do {
981				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
982				sigaddset(&t->pending.signal, SIGKILL);
983				signal_wake_up(t, 1);
984			} while_each_thread(p, t);
985			return;
986		}
987	}
988
989	/*
990	 * The signal is already in the shared-pending queue.
991	 * Tell the chosen thread to wake up and dequeue it.
992	 */
993	signal_wake_up(t, sig == SIGKILL);
994	return;
995}
996
997static inline int legacy_queue(struct sigpending *signals, int sig)
998{
999	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1000}
1001
1002#ifdef CONFIG_USER_NS
1003static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1004{
1005	if (current_user_ns() == task_cred_xxx(t, user_ns))
1006		return;
1007
1008	if (SI_FROMKERNEL(info))
1009		return;
1010
1011	rcu_read_lock();
1012	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1013					make_kuid(current_user_ns(), info->si_uid));
1014	rcu_read_unlock();
1015}
1016#else
1017static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1018{
1019	return;
1020}
1021#endif
1022
1023static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1024			int group, int from_ancestor_ns)
1025{
1026	struct sigpending *pending;
1027	struct sigqueue *q;
1028	int override_rlimit;
1029	int ret = 0, result;
1030
1031	assert_spin_locked(&t->sighand->siglock);
1032
1033	result = TRACE_SIGNAL_IGNORED;
1034	if (!prepare_signal(sig, t,
1035			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1036		goto ret;
1037
1038	pending = group ? &t->signal->shared_pending : &t->pending;
1039	/*
1040	 * Short-circuit ignored signals and support queuing
1041	 * exactly one non-rt signal, so that we can get more
1042	 * detailed information about the cause of the signal.
1043	 */
1044	result = TRACE_SIGNAL_ALREADY_PENDING;
1045	if (legacy_queue(pending, sig))
1046		goto ret;
1047
1048	result = TRACE_SIGNAL_DELIVERED;
1049	/*
1050	 * fast-pathed signals for kernel-internal things like SIGSTOP
1051	 * or SIGKILL.
1052	 */
1053	if (info == SEND_SIG_FORCED)
1054		goto out_set;
1055
1056	/*
1057	 * Real-time signals must be queued if sent by sigqueue, or
1058	 * some other real-time mechanism.  It is implementation
1059	 * defined whether kill() does so.  We attempt to do so, on
1060	 * the principle of least surprise, but since kill is not
1061	 * allowed to fail with EAGAIN when low on memory we just
1062	 * make sure at least one signal gets delivered and don't
1063	 * pass on the info struct.
1064	 */
1065	if (sig < SIGRTMIN)
1066		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1067	else
1068		override_rlimit = 0;
1069
1070	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1071		override_rlimit);
1072	if (q) {
1073		list_add_tail(&q->list, &pending->list);
1074		switch ((unsigned long) info) {
1075		case (unsigned long) SEND_SIG_NOINFO:
1076			q->info.si_signo = sig;
1077			q->info.si_errno = 0;
1078			q->info.si_code = SI_USER;
1079			q->info.si_pid = task_tgid_nr_ns(current,
1080							task_active_pid_ns(t));
1081			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1082			break;
1083		case (unsigned long) SEND_SIG_PRIV:
1084			q->info.si_signo = sig;
1085			q->info.si_errno = 0;
1086			q->info.si_code = SI_KERNEL;
1087			q->info.si_pid = 0;
1088			q->info.si_uid = 0;
1089			break;
1090		default:
1091			copy_siginfo(&q->info, info);
1092			if (from_ancestor_ns)
1093				q->info.si_pid = 0;
1094			break;
1095		}
1096
1097		userns_fixup_signal_uid(&q->info, t);
1098
1099	} else if (!is_si_special(info)) {
1100		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1101			/*
1102			 * Queue overflow, abort.  We may abort if the
1103			 * signal was rt and sent by user using something
1104			 * other than kill().
1105			 */
1106			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1107			ret = -EAGAIN;
1108			goto ret;
1109		} else {
1110			/*
1111			 * This is a silent loss of information.  We still
1112			 * send the signal, but the *info bits are lost.
1113			 */
1114			result = TRACE_SIGNAL_LOSE_INFO;
1115		}
1116	}
1117
1118out_set:
1119	signalfd_notify(t, sig);
1120	sigaddset(&pending->signal, sig);
1121	complete_signal(sig, t, group);
1122ret:
1123	trace_signal_generate(sig, info, t, group, result);
1124	return ret;
1125}
1126
1127static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1128			int group)
1129{
1130	int from_ancestor_ns = 0;
1131
1132#ifdef CONFIG_PID_NS
1133	from_ancestor_ns = si_fromuser(info) &&
1134			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1135#endif
1136
1137	return __send_signal(sig, info, t, group, from_ancestor_ns);
1138}
1139
1140static void print_fatal_signal(int signr)
1141{
1142	struct pt_regs *regs = signal_pt_regs();
1143	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1144
1145#if defined(__i386__) && !defined(__arch_um__)
1146	printk(KERN_INFO "code at %08lx: ", regs->ip);
1147	{
1148		int i;
1149		for (i = 0; i < 16; i++) {
1150			unsigned char insn;
1151
1152			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1153				break;
1154			printk(KERN_CONT "%02x ", insn);
1155		}
1156	}
1157	printk(KERN_CONT "\n");
1158#endif
1159	preempt_disable();
1160	show_regs(regs);
1161	preempt_enable();
1162}
1163
1164static int __init setup_print_fatal_signals(char *str)
1165{
1166	get_option (&str, &print_fatal_signals);
1167
1168	return 1;
1169}
1170
1171__setup("print-fatal-signals=", setup_print_fatal_signals);
1172
1173int
1174__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1175{
1176	return send_signal(sig, info, p, 1);
1177}
1178
1179static int
1180specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1181{
1182	return send_signal(sig, info, t, 0);
1183}
1184
1185int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1186			bool group)
1187{
1188	unsigned long flags;
1189	int ret = -ESRCH;
1190
1191	if (lock_task_sighand(p, &flags)) {
1192		ret = send_signal(sig, info, p, group);
1193		unlock_task_sighand(p, &flags);
1194	}
1195
1196	return ret;
1197}
1198
1199/*
1200 * Force a signal that the process can't ignore: if necessary
1201 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1202 *
1203 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1204 * since we do not want to have a signal handler that was blocked
1205 * be invoked when user space had explicitly blocked it.
1206 *
1207 * We don't want to have recursive SIGSEGV's etc, for example,
1208 * that is why we also clear SIGNAL_UNKILLABLE.
1209 */
1210int
1211force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1212{
1213	unsigned long int flags;
1214	int ret, blocked, ignored;
1215	struct k_sigaction *action;
1216
1217	spin_lock_irqsave(&t->sighand->siglock, flags);
1218	action = &t->sighand->action[sig-1];
1219	ignored = action->sa.sa_handler == SIG_IGN;
1220	blocked = sigismember(&t->blocked, sig);
1221	if (blocked || ignored) {
1222		action->sa.sa_handler = SIG_DFL;
1223		if (blocked) {
1224			sigdelset(&t->blocked, sig);
1225			recalc_sigpending_and_wake(t);
1226		}
1227	}
1228	if (action->sa.sa_handler == SIG_DFL)
1229		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1230	ret = specific_send_sig_info(sig, info, t);
1231	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1232
1233	return ret;
1234}
1235
1236/*
1237 * Nuke all other threads in the group.
1238 */
1239int zap_other_threads(struct task_struct *p)
1240{
1241	struct task_struct *t = p;
1242	int count = 0;
1243
1244	p->signal->group_stop_count = 0;
1245
1246	while_each_thread(p, t) {
1247		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1248		count++;
1249
1250		/* Don't bother with already dead threads */
1251		if (t->exit_state)
1252			continue;
1253		sigaddset(&t->pending.signal, SIGKILL);
1254		signal_wake_up(t, 1);
1255	}
1256
1257	return count;
1258}
1259
1260struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1261					   unsigned long *flags)
1262{
1263	struct sighand_struct *sighand;
1264
1265	for (;;) {
1266		/*
1267		 * Disable interrupts early to avoid deadlocks.
1268		 * See rcu_read_unlock() comment header for details.
1269		 */
1270		local_irq_save(*flags);
1271		rcu_read_lock();
1272		sighand = rcu_dereference(tsk->sighand);
1273		if (unlikely(sighand == NULL)) {
1274			rcu_read_unlock();
1275			local_irq_restore(*flags);
1276			break;
1277		}
1278		/*
1279		 * This sighand can be already freed and even reused, but
1280		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1281		 * initializes ->siglock: this slab can't go away, it has
1282		 * the same object type, ->siglock can't be reinitialized.
1283		 *
1284		 * We need to ensure that tsk->sighand is still the same
1285		 * after we take the lock, we can race with de_thread() or
1286		 * __exit_signal(). In the latter case the next iteration
1287		 * must see ->sighand == NULL.
1288		 */
1289		spin_lock(&sighand->siglock);
1290		if (likely(sighand == tsk->sighand)) {
1291			rcu_read_unlock();
1292			break;
1293		}
1294		spin_unlock(&sighand->siglock);
1295		rcu_read_unlock();
1296		local_irq_restore(*flags);
1297	}
1298
1299	return sighand;
1300}
1301
1302/*
1303 * send signal info to all the members of a group
1304 */
1305int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1306{
1307	int ret;
1308
1309	rcu_read_lock();
1310	ret = check_kill_permission(sig, info, p);
1311	rcu_read_unlock();
1312
1313	if (!ret && sig)
1314		ret = do_send_sig_info(sig, info, p, true);
1315
1316	return ret;
1317}
1318
1319/*
1320 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1321 * control characters do (^C, ^Z etc)
1322 * - the caller must hold at least a readlock on tasklist_lock
1323 */
1324int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1325{
1326	struct task_struct *p = NULL;
1327	int retval, success;
1328
1329	success = 0;
1330	retval = -ESRCH;
1331	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1332		int err = group_send_sig_info(sig, info, p);
1333		success |= !err;
1334		retval = err;
1335	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1336	return success ? 0 : retval;
1337}
1338
1339int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1340{
1341	int error = -ESRCH;
1342	struct task_struct *p;
1343
1344	for (;;) {
1345		rcu_read_lock();
1346		p = pid_task(pid, PIDTYPE_PID);
1347		if (p)
1348			error = group_send_sig_info(sig, info, p);
1349		rcu_read_unlock();
1350		if (likely(!p || error != -ESRCH))
1351			return error;
1352
1353		/*
1354		 * The task was unhashed in between, try again.  If it
1355		 * is dead, pid_task() will return NULL, if we race with
1356		 * de_thread() it will find the new leader.
1357		 */
1358	}
1359}
1360
1361int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1362{
1363	int error;
1364	rcu_read_lock();
1365	error = kill_pid_info(sig, info, find_vpid(pid));
1366	rcu_read_unlock();
1367	return error;
1368}
1369
1370static int kill_as_cred_perm(const struct cred *cred,
1371			     struct task_struct *target)
1372{
1373	const struct cred *pcred = __task_cred(target);
1374	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1375	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1376		return 0;
1377	return 1;
1378}
1379
1380/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1381int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1382			 const struct cred *cred, u32 secid)
1383{
1384	int ret = -EINVAL;
1385	struct task_struct *p;
1386	unsigned long flags;
1387
1388	if (!valid_signal(sig))
1389		return ret;
1390
1391	rcu_read_lock();
1392	p = pid_task(pid, PIDTYPE_PID);
1393	if (!p) {
1394		ret = -ESRCH;
1395		goto out_unlock;
1396	}
1397	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1398		ret = -EPERM;
1399		goto out_unlock;
1400	}
1401	ret = security_task_kill(p, info, sig, secid);
1402	if (ret)
1403		goto out_unlock;
1404
1405	if (sig) {
1406		if (lock_task_sighand(p, &flags)) {
1407			ret = __send_signal(sig, info, p, 1, 0);
1408			unlock_task_sighand(p, &flags);
1409		} else
1410			ret = -ESRCH;
1411	}
1412out_unlock:
1413	rcu_read_unlock();
1414	return ret;
1415}
1416EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1417
1418/*
1419 * kill_something_info() interprets pid in interesting ways just like kill(2).
1420 *
1421 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1422 * is probably wrong.  Should make it like BSD or SYSV.
1423 */
1424
1425static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1426{
1427	int ret;
1428
1429	if (pid > 0) {
1430		rcu_read_lock();
1431		ret = kill_pid_info(sig, info, find_vpid(pid));
1432		rcu_read_unlock();
1433		return ret;
1434	}
1435
1436	read_lock(&tasklist_lock);
1437	if (pid != -1) {
1438		ret = __kill_pgrp_info(sig, info,
1439				pid ? find_vpid(-pid) : task_pgrp(current));
1440	} else {
1441		int retval = 0, count = 0;
1442		struct task_struct * p;
1443
1444		for_each_process(p) {
1445			if (task_pid_vnr(p) > 1 &&
1446					!same_thread_group(p, current)) {
1447				int err = group_send_sig_info(sig, info, p);
1448				++count;
1449				if (err != -EPERM)
1450					retval = err;
1451			}
1452		}
1453		ret = count ? retval : -ESRCH;
1454	}
1455	read_unlock(&tasklist_lock);
1456
1457	return ret;
1458}
1459
1460/*
1461 * These are for backward compatibility with the rest of the kernel source.
1462 */
1463
1464int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1465{
1466	/*
1467	 * Make sure legacy kernel users don't send in bad values
1468	 * (normal paths check this in check_kill_permission).
1469	 */
1470	if (!valid_signal(sig))
1471		return -EINVAL;
1472
1473	return do_send_sig_info(sig, info, p, false);
1474}
1475
1476#define __si_special(priv) \
1477	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1478
1479int
1480send_sig(int sig, struct task_struct *p, int priv)
1481{
1482	return send_sig_info(sig, __si_special(priv), p);
1483}
1484
1485void
1486force_sig(int sig, struct task_struct *p)
1487{
1488	force_sig_info(sig, SEND_SIG_PRIV, p);
1489}
1490
1491/*
1492 * When things go south during signal handling, we
1493 * will force a SIGSEGV. And if the signal that caused
1494 * the problem was already a SIGSEGV, we'll want to
1495 * make sure we don't even try to deliver the signal..
1496 */
1497int
1498force_sigsegv(int sig, struct task_struct *p)
1499{
1500	if (sig == SIGSEGV) {
1501		unsigned long flags;
1502		spin_lock_irqsave(&p->sighand->siglock, flags);
1503		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1504		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1505	}
1506	force_sig(SIGSEGV, p);
1507	return 0;
1508}
1509
1510int kill_pgrp(struct pid *pid, int sig, int priv)
1511{
1512	int ret;
1513
1514	read_lock(&tasklist_lock);
1515	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1516	read_unlock(&tasklist_lock);
1517
1518	return ret;
1519}
1520EXPORT_SYMBOL(kill_pgrp);
1521
1522int kill_pid(struct pid *pid, int sig, int priv)
1523{
1524	return kill_pid_info(sig, __si_special(priv), pid);
1525}
1526EXPORT_SYMBOL(kill_pid);
1527
1528/*
1529 * These functions support sending signals using preallocated sigqueue
1530 * structures.  This is needed "because realtime applications cannot
1531 * afford to lose notifications of asynchronous events, like timer
1532 * expirations or I/O completions".  In the case of POSIX Timers
1533 * we allocate the sigqueue structure from the timer_create.  If this
1534 * allocation fails we are able to report the failure to the application
1535 * with an EAGAIN error.
1536 */
1537struct sigqueue *sigqueue_alloc(void)
1538{
1539	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1540
1541	if (q)
1542		q->flags |= SIGQUEUE_PREALLOC;
1543
1544	return q;
1545}
1546
1547void sigqueue_free(struct sigqueue *q)
1548{
1549	unsigned long flags;
1550	spinlock_t *lock = &current->sighand->siglock;
1551
1552	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1553	/*
1554	 * We must hold ->siglock while testing q->list
1555	 * to serialize with collect_signal() or with
1556	 * __exit_signal()->flush_sigqueue().
1557	 */
1558	spin_lock_irqsave(lock, flags);
1559	q->flags &= ~SIGQUEUE_PREALLOC;
1560	/*
1561	 * If it is queued it will be freed when dequeued,
1562	 * like the "regular" sigqueue.
1563	 */
1564	if (!list_empty(&q->list))
1565		q = NULL;
1566	spin_unlock_irqrestore(lock, flags);
1567
1568	if (q)
1569		__sigqueue_free(q);
1570}
1571
1572int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1573{
1574	int sig = q->info.si_signo;
1575	struct sigpending *pending;
1576	unsigned long flags;
1577	int ret, result;
1578
1579	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1580
1581	ret = -1;
1582	if (!likely(lock_task_sighand(t, &flags)))
1583		goto ret;
1584
1585	ret = 1; /* the signal is ignored */
1586	result = TRACE_SIGNAL_IGNORED;
1587	if (!prepare_signal(sig, t, false))
1588		goto out;
1589
1590	ret = 0;
1591	if (unlikely(!list_empty(&q->list))) {
1592		/*
1593		 * If an SI_TIMER entry is already queue just increment
1594		 * the overrun count.
1595		 */
1596		BUG_ON(q->info.si_code != SI_TIMER);
1597		q->info.si_overrun++;
1598		result = TRACE_SIGNAL_ALREADY_PENDING;
1599		goto out;
1600	}
1601	q->info.si_overrun = 0;
1602
1603	signalfd_notify(t, sig);
1604	pending = group ? &t->signal->shared_pending : &t->pending;
1605	list_add_tail(&q->list, &pending->list);
1606	sigaddset(&pending->signal, sig);
1607	complete_signal(sig, t, group);
1608	result = TRACE_SIGNAL_DELIVERED;
1609out:
1610	trace_signal_generate(sig, &q->info, t, group, result);
1611	unlock_task_sighand(t, &flags);
1612ret:
1613	return ret;
1614}
1615
1616/*
1617 * Let a parent know about the death of a child.
1618 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1619 *
1620 * Returns true if our parent ignored us and so we've switched to
1621 * self-reaping.
1622 */
1623bool do_notify_parent(struct task_struct *tsk, int sig)
1624{
1625	struct siginfo info;
1626	unsigned long flags;
1627	struct sighand_struct *psig;
1628	bool autoreap = false;
1629	cputime_t utime, stime;
1630
1631	BUG_ON(sig == -1);
1632
1633 	/* do_notify_parent_cldstop should have been called instead.  */
1634 	BUG_ON(task_is_stopped_or_traced(tsk));
1635
1636	BUG_ON(!tsk->ptrace &&
1637	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1638
1639	if (sig != SIGCHLD) {
1640		/*
1641		 * This is only possible if parent == real_parent.
1642		 * Check if it has changed security domain.
1643		 */
1644		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1645			sig = SIGCHLD;
1646	}
1647
1648	info.si_signo = sig;
1649	info.si_errno = 0;
1650	/*
1651	 * We are under tasklist_lock here so our parent is tied to
1652	 * us and cannot change.
1653	 *
1654	 * task_active_pid_ns will always return the same pid namespace
1655	 * until a task passes through release_task.
1656	 *
1657	 * write_lock() currently calls preempt_disable() which is the
1658	 * same as rcu_read_lock(), but according to Oleg, this is not
1659	 * correct to rely on this
1660	 */
1661	rcu_read_lock();
1662	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1663	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1664				       task_uid(tsk));
1665	rcu_read_unlock();
1666
1667	task_cputime(tsk, &utime, &stime);
1668	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1669	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1670
1671	info.si_status = tsk->exit_code & 0x7f;
1672	if (tsk->exit_code & 0x80)
1673		info.si_code = CLD_DUMPED;
1674	else if (tsk->exit_code & 0x7f)
1675		info.si_code = CLD_KILLED;
1676	else {
1677		info.si_code = CLD_EXITED;
1678		info.si_status = tsk->exit_code >> 8;
1679	}
1680
1681	psig = tsk->parent->sighand;
1682	spin_lock_irqsave(&psig->siglock, flags);
1683	if (!tsk->ptrace && sig == SIGCHLD &&
1684	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1685	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1686		/*
1687		 * We are exiting and our parent doesn't care.  POSIX.1
1688		 * defines special semantics for setting SIGCHLD to SIG_IGN
1689		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1690		 * automatically and not left for our parent's wait4 call.
1691		 * Rather than having the parent do it as a magic kind of
1692		 * signal handler, we just set this to tell do_exit that we
1693		 * can be cleaned up without becoming a zombie.  Note that
1694		 * we still call __wake_up_parent in this case, because a
1695		 * blocked sys_wait4 might now return -ECHILD.
1696		 *
1697		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1698		 * is implementation-defined: we do (if you don't want
1699		 * it, just use SIG_IGN instead).
1700		 */
1701		autoreap = true;
1702		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1703			sig = 0;
1704	}
1705	if (valid_signal(sig) && sig)
1706		__group_send_sig_info(sig, &info, tsk->parent);
1707	__wake_up_parent(tsk, tsk->parent);
1708	spin_unlock_irqrestore(&psig->siglock, flags);
1709
1710	return autoreap;
1711}
1712
1713/**
1714 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1715 * @tsk: task reporting the state change
1716 * @for_ptracer: the notification is for ptracer
1717 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1718 *
1719 * Notify @tsk's parent that the stopped/continued state has changed.  If
1720 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1721 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1722 *
1723 * CONTEXT:
1724 * Must be called with tasklist_lock at least read locked.
1725 */
1726static void do_notify_parent_cldstop(struct task_struct *tsk,
1727				     bool for_ptracer, int why)
1728{
1729	struct siginfo info;
1730	unsigned long flags;
1731	struct task_struct *parent;
1732	struct sighand_struct *sighand;
1733	cputime_t utime, stime;
1734
1735	if (for_ptracer) {
1736		parent = tsk->parent;
1737	} else {
1738		tsk = tsk->group_leader;
1739		parent = tsk->real_parent;
1740	}
1741
1742	info.si_signo = SIGCHLD;
1743	info.si_errno = 0;
1744	/*
1745	 * see comment in do_notify_parent() about the following 4 lines
1746	 */
1747	rcu_read_lock();
1748	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1749	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1750	rcu_read_unlock();
1751
1752	task_cputime(tsk, &utime, &stime);
1753	info.si_utime = cputime_to_clock_t(utime);
1754	info.si_stime = cputime_to_clock_t(stime);
1755
1756 	info.si_code = why;
1757 	switch (why) {
1758 	case CLD_CONTINUED:
1759 		info.si_status = SIGCONT;
1760 		break;
1761 	case CLD_STOPPED:
1762 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1763 		break;
1764 	case CLD_TRAPPED:
1765 		info.si_status = tsk->exit_code & 0x7f;
1766 		break;
1767 	default:
1768 		BUG();
1769 	}
1770
1771	sighand = parent->sighand;
1772	spin_lock_irqsave(&sighand->siglock, flags);
1773	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1774	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1775		__group_send_sig_info(SIGCHLD, &info, parent);
1776	/*
1777	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1778	 */
1779	__wake_up_parent(tsk, parent);
1780	spin_unlock_irqrestore(&sighand->siglock, flags);
1781}
1782
1783static inline int may_ptrace_stop(void)
1784{
1785	if (!likely(current->ptrace))
1786		return 0;
1787	/*
1788	 * Are we in the middle of do_coredump?
1789	 * If so and our tracer is also part of the coredump stopping
1790	 * is a deadlock situation, and pointless because our tracer
1791	 * is dead so don't allow us to stop.
1792	 * If SIGKILL was already sent before the caller unlocked
1793	 * ->siglock we must see ->core_state != NULL. Otherwise it
1794	 * is safe to enter schedule().
1795	 *
1796	 * This is almost outdated, a task with the pending SIGKILL can't
1797	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1798	 * after SIGKILL was already dequeued.
1799	 */
1800	if (unlikely(current->mm->core_state) &&
1801	    unlikely(current->mm == current->parent->mm))
1802		return 0;
1803
1804	return 1;
1805}
1806
1807/*
1808 * Return non-zero if there is a SIGKILL that should be waking us up.
1809 * Called with the siglock held.
1810 */
1811static int sigkill_pending(struct task_struct *tsk)
1812{
1813	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1814		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1815}
1816
1817/*
1818 * This must be called with current->sighand->siglock held.
1819 *
1820 * This should be the path for all ptrace stops.
1821 * We always set current->last_siginfo while stopped here.
1822 * That makes it a way to test a stopped process for
1823 * being ptrace-stopped vs being job-control-stopped.
1824 *
1825 * If we actually decide not to stop at all because the tracer
1826 * is gone, we keep current->exit_code unless clear_code.
1827 */
1828static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1829	__releases(&current->sighand->siglock)
1830	__acquires(&current->sighand->siglock)
1831{
1832	bool gstop_done = false;
1833
1834	if (arch_ptrace_stop_needed(exit_code, info)) {
1835		/*
1836		 * The arch code has something special to do before a
1837		 * ptrace stop.  This is allowed to block, e.g. for faults
1838		 * on user stack pages.  We can't keep the siglock while
1839		 * calling arch_ptrace_stop, so we must release it now.
1840		 * To preserve proper semantics, we must do this before
1841		 * any signal bookkeeping like checking group_stop_count.
1842		 * Meanwhile, a SIGKILL could come in before we retake the
1843		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1844		 * So after regaining the lock, we must check for SIGKILL.
1845		 */
1846		spin_unlock_irq(&current->sighand->siglock);
1847		arch_ptrace_stop(exit_code, info);
1848		spin_lock_irq(&current->sighand->siglock);
1849		if (sigkill_pending(current))
1850			return;
1851	}
1852
1853	/*
1854	 * We're committing to trapping.  TRACED should be visible before
1855	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1856	 * Also, transition to TRACED and updates to ->jobctl should be
1857	 * atomic with respect to siglock and should be done after the arch
1858	 * hook as siglock is released and regrabbed across it.
1859	 */
1860	set_current_state(TASK_TRACED);
1861
1862	current->last_siginfo = info;
1863	current->exit_code = exit_code;
1864
1865	/*
1866	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1867	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1868	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1869	 * could be clear now.  We act as if SIGCONT is received after
1870	 * TASK_TRACED is entered - ignore it.
1871	 */
1872	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1873		gstop_done = task_participate_group_stop(current);
1874
1875	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1876	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1877	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1878		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1879
1880	/* entering a trap, clear TRAPPING */
1881	task_clear_jobctl_trapping(current);
1882
1883	spin_unlock_irq(&current->sighand->siglock);
1884	read_lock(&tasklist_lock);
1885	if (may_ptrace_stop()) {
1886		/*
1887		 * Notify parents of the stop.
1888		 *
1889		 * While ptraced, there are two parents - the ptracer and
1890		 * the real_parent of the group_leader.  The ptracer should
1891		 * know about every stop while the real parent is only
1892		 * interested in the completion of group stop.  The states
1893		 * for the two don't interact with each other.  Notify
1894		 * separately unless they're gonna be duplicates.
1895		 */
1896		do_notify_parent_cldstop(current, true, why);
1897		if (gstop_done && ptrace_reparented(current))
1898			do_notify_parent_cldstop(current, false, why);
1899
1900		/*
1901		 * Don't want to allow preemption here, because
1902		 * sys_ptrace() needs this task to be inactive.
1903		 *
1904		 * XXX: implement read_unlock_no_resched().
1905		 */
1906		preempt_disable();
1907		read_unlock(&tasklist_lock);
1908		preempt_enable_no_resched();
1909		freezable_schedule();
1910	} else {
1911		/*
1912		 * By the time we got the lock, our tracer went away.
1913		 * Don't drop the lock yet, another tracer may come.
1914		 *
1915		 * If @gstop_done, the ptracer went away between group stop
1916		 * completion and here.  During detach, it would have set
1917		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1918		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1919		 * the real parent of the group stop completion is enough.
1920		 */
1921		if (gstop_done)
1922			do_notify_parent_cldstop(current, false, why);
1923
1924		/* tasklist protects us from ptrace_freeze_traced() */
1925		__set_current_state(TASK_RUNNING);
1926		if (clear_code)
1927			current->exit_code = 0;
1928		read_unlock(&tasklist_lock);
1929	}
1930
1931	/*
1932	 * We are back.  Now reacquire the siglock before touching
1933	 * last_siginfo, so that we are sure to have synchronized with
1934	 * any signal-sending on another CPU that wants to examine it.
1935	 */
1936	spin_lock_irq(&current->sighand->siglock);
1937	current->last_siginfo = NULL;
1938
1939	/* LISTENING can be set only during STOP traps, clear it */
1940	current->jobctl &= ~JOBCTL_LISTENING;
1941
1942	/*
1943	 * Queued signals ignored us while we were stopped for tracing.
1944	 * So check for any that we should take before resuming user mode.
1945	 * This sets TIF_SIGPENDING, but never clears it.
1946	 */
1947	recalc_sigpending_tsk(current);
1948}
1949
1950static void ptrace_do_notify(int signr, int exit_code, int why)
1951{
1952	siginfo_t info;
1953
1954	memset(&info, 0, sizeof info);
1955	info.si_signo = signr;
1956	info.si_code = exit_code;
1957	info.si_pid = task_pid_vnr(current);
1958	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1959
1960	/* Let the debugger run.  */
1961	ptrace_stop(exit_code, why, 1, &info);
1962}
1963
1964void ptrace_notify(int exit_code)
1965{
1966	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1967	if (unlikely(current->task_works))
1968		task_work_run();
1969
1970	spin_lock_irq(&current->sighand->siglock);
1971	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1972	spin_unlock_irq(&current->sighand->siglock);
1973}
1974
1975/**
1976 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1977 * @signr: signr causing group stop if initiating
1978 *
1979 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1980 * and participate in it.  If already set, participate in the existing
1981 * group stop.  If participated in a group stop (and thus slept), %true is
1982 * returned with siglock released.
1983 *
1984 * If ptraced, this function doesn't handle stop itself.  Instead,
1985 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1986 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1987 * places afterwards.
1988 *
1989 * CONTEXT:
1990 * Must be called with @current->sighand->siglock held, which is released
1991 * on %true return.
1992 *
1993 * RETURNS:
1994 * %false if group stop is already cancelled or ptrace trap is scheduled.
1995 * %true if participated in group stop.
1996 */
1997static bool do_signal_stop(int signr)
1998	__releases(&current->sighand->siglock)
1999{
2000	struct signal_struct *sig = current->signal;
2001
2002	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2003		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2004		struct task_struct *t;
2005
2006		/* signr will be recorded in task->jobctl for retries */
2007		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2008
2009		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2010		    unlikely(signal_group_exit(sig)))
2011			return false;
2012		/*
2013		 * There is no group stop already in progress.  We must
2014		 * initiate one now.
2015		 *
2016		 * While ptraced, a task may be resumed while group stop is
2017		 * still in effect and then receive a stop signal and
2018		 * initiate another group stop.  This deviates from the
2019		 * usual behavior as two consecutive stop signals can't
2020		 * cause two group stops when !ptraced.  That is why we
2021		 * also check !task_is_stopped(t) below.
2022		 *
2023		 * The condition can be distinguished by testing whether
2024		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2025		 * group_exit_code in such case.
2026		 *
2027		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2028		 * an intervening stop signal is required to cause two
2029		 * continued events regardless of ptrace.
2030		 */
2031		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2032			sig->group_exit_code = signr;
2033
2034		sig->group_stop_count = 0;
2035
2036		if (task_set_jobctl_pending(current, signr | gstop))
2037			sig->group_stop_count++;
2038
2039		t = current;
2040		while_each_thread(current, t) {
2041			/*
2042			 * Setting state to TASK_STOPPED for a group
2043			 * stop is always done with the siglock held,
2044			 * so this check has no races.
2045			 */
2046			if (!task_is_stopped(t) &&
2047			    task_set_jobctl_pending(t, signr | gstop)) {
2048				sig->group_stop_count++;
2049				if (likely(!(t->ptrace & PT_SEIZED)))
2050					signal_wake_up(t, 0);
2051				else
2052					ptrace_trap_notify(t);
2053			}
2054		}
2055	}
2056
2057	if (likely(!current->ptrace)) {
2058		int notify = 0;
2059
2060		/*
2061		 * If there are no other threads in the group, or if there
2062		 * is a group stop in progress and we are the last to stop,
2063		 * report to the parent.
2064		 */
2065		if (task_participate_group_stop(current))
2066			notify = CLD_STOPPED;
2067
2068		__set_current_state(TASK_STOPPED);
2069		spin_unlock_irq(&current->sighand->siglock);
2070
2071		/*
2072		 * Notify the parent of the group stop completion.  Because
2073		 * we're not holding either the siglock or tasklist_lock
2074		 * here, ptracer may attach inbetween; however, this is for
2075		 * group stop and should always be delivered to the real
2076		 * parent of the group leader.  The new ptracer will get
2077		 * its notification when this task transitions into
2078		 * TASK_TRACED.
2079		 */
2080		if (notify) {
2081			read_lock(&tasklist_lock);
2082			do_notify_parent_cldstop(current, false, notify);
2083			read_unlock(&tasklist_lock);
2084		}
2085
2086		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2087		freezable_schedule();
2088		return true;
2089	} else {
2090		/*
2091		 * While ptraced, group stop is handled by STOP trap.
2092		 * Schedule it and let the caller deal with it.
2093		 */
2094		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2095		return false;
2096	}
2097}
2098
2099/**
2100 * do_jobctl_trap - take care of ptrace jobctl traps
2101 *
2102 * When PT_SEIZED, it's used for both group stop and explicit
2103 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2104 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2105 * the stop signal; otherwise, %SIGTRAP.
2106 *
2107 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2108 * number as exit_code and no siginfo.
2109 *
2110 * CONTEXT:
2111 * Must be called with @current->sighand->siglock held, which may be
2112 * released and re-acquired before returning with intervening sleep.
2113 */
2114static void do_jobctl_trap(void)
2115{
2116	struct signal_struct *signal = current->signal;
2117	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2118
2119	if (current->ptrace & PT_SEIZED) {
2120		if (!signal->group_stop_count &&
2121		    !(signal->flags & SIGNAL_STOP_STOPPED))
2122			signr = SIGTRAP;
2123		WARN_ON_ONCE(!signr);
2124		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2125				 CLD_STOPPED);
2126	} else {
2127		WARN_ON_ONCE(!signr);
2128		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2129		current->exit_code = 0;
2130	}
2131}
2132
2133static int ptrace_signal(int signr, siginfo_t *info)
2134{
2135	ptrace_signal_deliver();
2136	/*
2137	 * We do not check sig_kernel_stop(signr) but set this marker
2138	 * unconditionally because we do not know whether debugger will
2139	 * change signr. This flag has no meaning unless we are going
2140	 * to stop after return from ptrace_stop(). In this case it will
2141	 * be checked in do_signal_stop(), we should only stop if it was
2142	 * not cleared by SIGCONT while we were sleeping. See also the
2143	 * comment in dequeue_signal().
2144	 */
2145	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2146	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2147
2148	/* We're back.  Did the debugger cancel the sig?  */
2149	signr = current->exit_code;
2150	if (signr == 0)
2151		return signr;
2152
2153	current->exit_code = 0;
2154
2155	/*
2156	 * Update the siginfo structure if the signal has
2157	 * changed.  If the debugger wanted something
2158	 * specific in the siginfo structure then it should
2159	 * have updated *info via PTRACE_SETSIGINFO.
2160	 */
2161	if (signr != info->si_signo) {
2162		info->si_signo = signr;
2163		info->si_errno = 0;
2164		info->si_code = SI_USER;
2165		rcu_read_lock();
2166		info->si_pid = task_pid_vnr(current->parent);
2167		info->si_uid = from_kuid_munged(current_user_ns(),
2168						task_uid(current->parent));
2169		rcu_read_unlock();
2170	}
2171
2172	/* If the (new) signal is now blocked, requeue it.  */
2173	if (sigismember(&current->blocked, signr)) {
2174		specific_send_sig_info(signr, info, current);
2175		signr = 0;
2176	}
2177
2178	return signr;
2179}
2180
2181int get_signal(struct ksignal *ksig)
2182{
2183	struct sighand_struct *sighand = current->sighand;
2184	struct signal_struct *signal = current->signal;
2185	int signr;
2186
2187	if (unlikely(current->task_works))
2188		task_work_run();
2189
2190	if (unlikely(uprobe_deny_signal()))
2191		return 0;
2192
2193	/*
2194	 * Do this once, we can't return to user-mode if freezing() == T.
2195	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2196	 * thus do not need another check after return.
2197	 */
2198	try_to_freeze();
2199
2200relock:
2201	spin_lock_irq(&sighand->siglock);
2202	/*
2203	 * Every stopped thread goes here after wakeup. Check to see if
2204	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2205	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2206	 */
2207	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2208		int why;
2209
2210		if (signal->flags & SIGNAL_CLD_CONTINUED)
2211			why = CLD_CONTINUED;
2212		else
2213			why = CLD_STOPPED;
2214
2215		signal->flags &= ~SIGNAL_CLD_MASK;
2216
2217		spin_unlock_irq(&sighand->siglock);
2218
2219		/*
2220		 * Notify the parent that we're continuing.  This event is
2221		 * always per-process and doesn't make whole lot of sense
2222		 * for ptracers, who shouldn't consume the state via
2223		 * wait(2) either, but, for backward compatibility, notify
2224		 * the ptracer of the group leader too unless it's gonna be
2225		 * a duplicate.
2226		 */
2227		read_lock(&tasklist_lock);
2228		do_notify_parent_cldstop(current, false, why);
2229
2230		if (ptrace_reparented(current->group_leader))
2231			do_notify_parent_cldstop(current->group_leader,
2232						true, why);
2233		read_unlock(&tasklist_lock);
2234
2235		goto relock;
2236	}
2237
2238	for (;;) {
2239		struct k_sigaction *ka;
2240
2241		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2242		    do_signal_stop(0))
2243			goto relock;
2244
2245		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2246			do_jobctl_trap();
2247			spin_unlock_irq(&sighand->siglock);
2248			goto relock;
2249		}
2250
2251		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2252
2253		if (!signr)
2254			break; /* will return 0 */
2255
2256		if (unlikely(current->ptrace) && signr != SIGKILL) {
2257			signr = ptrace_signal(signr, &ksig->info);
2258			if (!signr)
2259				continue;
2260		}
2261
2262		ka = &sighand->action[signr-1];
2263
2264		/* Trace actually delivered signals. */
2265		trace_signal_deliver(signr, &ksig->info, ka);
2266
2267		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2268			continue;
2269		if (ka->sa.sa_handler != SIG_DFL) {
2270			/* Run the handler.  */
2271			ksig->ka = *ka;
2272
2273			if (ka->sa.sa_flags & SA_ONESHOT)
2274				ka->sa.sa_handler = SIG_DFL;
2275
2276			break; /* will return non-zero "signr" value */
2277		}
2278
2279		/*
2280		 * Now we are doing the default action for this signal.
2281		 */
2282		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2283			continue;
2284
2285		/*
2286		 * Global init gets no signals it doesn't want.
2287		 * Container-init gets no signals it doesn't want from same
2288		 * container.
2289		 *
2290		 * Note that if global/container-init sees a sig_kernel_only()
2291		 * signal here, the signal must have been generated internally
2292		 * or must have come from an ancestor namespace. In either
2293		 * case, the signal cannot be dropped.
2294		 */
2295		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2296				!sig_kernel_only(signr))
2297			continue;
2298
2299		if (sig_kernel_stop(signr)) {
2300			/*
2301			 * The default action is to stop all threads in
2302			 * the thread group.  The job control signals
2303			 * do nothing in an orphaned pgrp, but SIGSTOP
2304			 * always works.  Note that siglock needs to be
2305			 * dropped during the call to is_orphaned_pgrp()
2306			 * because of lock ordering with tasklist_lock.
2307			 * This allows an intervening SIGCONT to be posted.
2308			 * We need to check for that and bail out if necessary.
2309			 */
2310			if (signr != SIGSTOP) {
2311				spin_unlock_irq(&sighand->siglock);
2312
2313				/* signals can be posted during this window */
2314
2315				if (is_current_pgrp_orphaned())
2316					goto relock;
2317
2318				spin_lock_irq(&sighand->siglock);
2319			}
2320
2321			if (likely(do_signal_stop(ksig->info.si_signo))) {
2322				/* It released the siglock.  */
2323				goto relock;
2324			}
2325
2326			/*
2327			 * We didn't actually stop, due to a race
2328			 * with SIGCONT or something like that.
2329			 */
2330			continue;
2331		}
2332
2333		spin_unlock_irq(&sighand->siglock);
2334
2335		/*
2336		 * Anything else is fatal, maybe with a core dump.
2337		 */
2338		current->flags |= PF_SIGNALED;
2339
2340		if (sig_kernel_coredump(signr)) {
2341			if (print_fatal_signals)
2342				print_fatal_signal(ksig->info.si_signo);
2343			proc_coredump_connector(current);
2344			/*
2345			 * If it was able to dump core, this kills all
2346			 * other threads in the group and synchronizes with
2347			 * their demise.  If we lost the race with another
2348			 * thread getting here, it set group_exit_code
2349			 * first and our do_group_exit call below will use
2350			 * that value and ignore the one we pass it.
2351			 */
2352			do_coredump(&ksig->info);
2353		}
2354
2355		/*
2356		 * Death signals, no core dump.
2357		 */
2358		do_group_exit(ksig->info.si_signo);
2359		/* NOTREACHED */
2360	}
2361	spin_unlock_irq(&sighand->siglock);
2362
2363	ksig->sig = signr;
2364	return ksig->sig > 0;
2365}
2366
2367/**
2368 * signal_delivered -
2369 * @ksig:		kernel signal struct
2370 * @stepping:		nonzero if debugger single-step or block-step in use
2371 *
2372 * This function should be called when a signal has successfully been
2373 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2374 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2375 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2376 */
2377static void signal_delivered(struct ksignal *ksig, int stepping)
2378{
2379	sigset_t blocked;
2380
2381	/* A signal was successfully delivered, and the
2382	   saved sigmask was stored on the signal frame,
2383	   and will be restored by sigreturn.  So we can
2384	   simply clear the restore sigmask flag.  */
2385	clear_restore_sigmask();
2386
2387	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2388	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2389		sigaddset(&blocked, ksig->sig);
2390	set_current_blocked(&blocked);
2391	tracehook_signal_handler(stepping);
2392}
2393
2394void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2395{
2396	if (failed)
2397		force_sigsegv(ksig->sig, current);
2398	else
2399		signal_delivered(ksig, stepping);
2400}
2401
2402/*
2403 * It could be that complete_signal() picked us to notify about the
2404 * group-wide signal. Other threads should be notified now to take
2405 * the shared signals in @which since we will not.
2406 */
2407static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2408{
2409	sigset_t retarget;
2410	struct task_struct *t;
2411
2412	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2413	if (sigisemptyset(&retarget))
2414		return;
2415
2416	t = tsk;
2417	while_each_thread(tsk, t) {
2418		if (t->flags & PF_EXITING)
2419			continue;
2420
2421		if (!has_pending_signals(&retarget, &t->blocked))
2422			continue;
2423		/* Remove the signals this thread can handle. */
2424		sigandsets(&retarget, &retarget, &t->blocked);
2425
2426		if (!signal_pending(t))
2427			signal_wake_up(t, 0);
2428
2429		if (sigisemptyset(&retarget))
2430			break;
2431	}
2432}
2433
2434void exit_signals(struct task_struct *tsk)
2435{
2436	int group_stop = 0;
2437	sigset_t unblocked;
2438
2439	/*
2440	 * @tsk is about to have PF_EXITING set - lock out users which
2441	 * expect stable threadgroup.
2442	 */
2443	threadgroup_change_begin(tsk);
2444
2445	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2446		tsk->flags |= PF_EXITING;
2447		threadgroup_change_end(tsk);
2448		return;
2449	}
2450
2451	spin_lock_irq(&tsk->sighand->siglock);
2452	/*
2453	 * From now this task is not visible for group-wide signals,
2454	 * see wants_signal(), do_signal_stop().
2455	 */
2456	tsk->flags |= PF_EXITING;
2457
2458	threadgroup_change_end(tsk);
2459
2460	if (!signal_pending(tsk))
2461		goto out;
2462
2463	unblocked = tsk->blocked;
2464	signotset(&unblocked);
2465	retarget_shared_pending(tsk, &unblocked);
2466
2467	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2468	    task_participate_group_stop(tsk))
2469		group_stop = CLD_STOPPED;
2470out:
2471	spin_unlock_irq(&tsk->sighand->siglock);
2472
2473	/*
2474	 * If group stop has completed, deliver the notification.  This
2475	 * should always go to the real parent of the group leader.
2476	 */
2477	if (unlikely(group_stop)) {
2478		read_lock(&tasklist_lock);
2479		do_notify_parent_cldstop(tsk, false, group_stop);
2480		read_unlock(&tasklist_lock);
2481	}
2482}
2483
2484EXPORT_SYMBOL(recalc_sigpending);
2485EXPORT_SYMBOL_GPL(dequeue_signal);
2486EXPORT_SYMBOL(flush_signals);
2487EXPORT_SYMBOL(force_sig);
2488EXPORT_SYMBOL(send_sig);
2489EXPORT_SYMBOL(send_sig_info);
2490EXPORT_SYMBOL(sigprocmask);
2491EXPORT_SYMBOL(block_all_signals);
2492EXPORT_SYMBOL(unblock_all_signals);
2493
2494
2495/*
2496 * System call entry points.
2497 */
2498
2499/**
2500 *  sys_restart_syscall - restart a system call
2501 */
2502SYSCALL_DEFINE0(restart_syscall)
2503{
2504	struct restart_block *restart = &current->restart_block;
2505	return restart->fn(restart);
2506}
2507
2508long do_no_restart_syscall(struct restart_block *param)
2509{
2510	return -EINTR;
2511}
2512
2513static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2514{
2515	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2516		sigset_t newblocked;
2517		/* A set of now blocked but previously unblocked signals. */
2518		sigandnsets(&newblocked, newset, &current->blocked);
2519		retarget_shared_pending(tsk, &newblocked);
2520	}
2521	tsk->blocked = *newset;
2522	recalc_sigpending();
2523}
2524
2525/**
2526 * set_current_blocked - change current->blocked mask
2527 * @newset: new mask
2528 *
2529 * It is wrong to change ->blocked directly, this helper should be used
2530 * to ensure the process can't miss a shared signal we are going to block.
2531 */
2532void set_current_blocked(sigset_t *newset)
2533{
2534	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535	__set_current_blocked(newset);
2536}
2537
2538void __set_current_blocked(const sigset_t *newset)
2539{
2540	struct task_struct *tsk = current;
2541
2542	spin_lock_irq(&tsk->sighand->siglock);
2543	__set_task_blocked(tsk, newset);
2544	spin_unlock_irq(&tsk->sighand->siglock);
2545}
2546
2547/*
2548 * This is also useful for kernel threads that want to temporarily
2549 * (or permanently) block certain signals.
2550 *
2551 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2552 * interface happily blocks "unblockable" signals like SIGKILL
2553 * and friends.
2554 */
2555int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2556{
2557	struct task_struct *tsk = current;
2558	sigset_t newset;
2559
2560	/* Lockless, only current can change ->blocked, never from irq */
2561	if (oldset)
2562		*oldset = tsk->blocked;
2563
2564	switch (how) {
2565	case SIG_BLOCK:
2566		sigorsets(&newset, &tsk->blocked, set);
2567		break;
2568	case SIG_UNBLOCK:
2569		sigandnsets(&newset, &tsk->blocked, set);
2570		break;
2571	case SIG_SETMASK:
2572		newset = *set;
2573		break;
2574	default:
2575		return -EINVAL;
2576	}
2577
2578	__set_current_blocked(&newset);
2579	return 0;
2580}
2581
2582/**
2583 *  sys_rt_sigprocmask - change the list of currently blocked signals
2584 *  @how: whether to add, remove, or set signals
2585 *  @nset: stores pending signals
2586 *  @oset: previous value of signal mask if non-null
2587 *  @sigsetsize: size of sigset_t type
2588 */
2589SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2590		sigset_t __user *, oset, size_t, sigsetsize)
2591{
2592	sigset_t old_set, new_set;
2593	int error;
2594
2595	/* XXX: Don't preclude handling different sized sigset_t's.  */
2596	if (sigsetsize != sizeof(sigset_t))
2597		return -EINVAL;
2598
2599	old_set = current->blocked;
2600
2601	if (nset) {
2602		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2603			return -EFAULT;
2604		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2605
2606		error = sigprocmask(how, &new_set, NULL);
2607		if (error)
2608			return error;
2609	}
2610
2611	if (oset) {
2612		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2613			return -EFAULT;
2614	}
2615
2616	return 0;
2617}
2618
2619#ifdef CONFIG_COMPAT
2620COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2621		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2622{
2623#ifdef __BIG_ENDIAN
2624	sigset_t old_set = current->blocked;
2625
2626	/* XXX: Don't preclude handling different sized sigset_t's.  */
2627	if (sigsetsize != sizeof(sigset_t))
2628		return -EINVAL;
2629
2630	if (nset) {
2631		compat_sigset_t new32;
2632		sigset_t new_set;
2633		int error;
2634		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2635			return -EFAULT;
2636
2637		sigset_from_compat(&new_set, &new32);
2638		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2639
2640		error = sigprocmask(how, &new_set, NULL);
2641		if (error)
2642			return error;
2643	}
2644	if (oset) {
2645		compat_sigset_t old32;
2646		sigset_to_compat(&old32, &old_set);
2647		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2648			return -EFAULT;
2649	}
2650	return 0;
2651#else
2652	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2653				  (sigset_t __user *)oset, sigsetsize);
2654#endif
2655}
2656#endif
2657
2658static int do_sigpending(void *set, unsigned long sigsetsize)
2659{
2660	if (sigsetsize > sizeof(sigset_t))
2661		return -EINVAL;
2662
2663	spin_lock_irq(&current->sighand->siglock);
2664	sigorsets(set, &current->pending.signal,
2665		  &current->signal->shared_pending.signal);
2666	spin_unlock_irq(&current->sighand->siglock);
2667
2668	/* Outside the lock because only this thread touches it.  */
2669	sigandsets(set, &current->blocked, set);
2670	return 0;
2671}
2672
2673/**
2674 *  sys_rt_sigpending - examine a pending signal that has been raised
2675 *			while blocked
2676 *  @uset: stores pending signals
2677 *  @sigsetsize: size of sigset_t type or larger
2678 */
2679SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2680{
2681	sigset_t set;
2682	int err = do_sigpending(&set, sigsetsize);
2683	if (!err && copy_to_user(uset, &set, sigsetsize))
2684		err = -EFAULT;
2685	return err;
2686}
2687
2688#ifdef CONFIG_COMPAT
2689COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2690		compat_size_t, sigsetsize)
2691{
2692#ifdef __BIG_ENDIAN
2693	sigset_t set;
2694	int err = do_sigpending(&set, sigsetsize);
2695	if (!err) {
2696		compat_sigset_t set32;
2697		sigset_to_compat(&set32, &set);
2698		/* we can get here only if sigsetsize <= sizeof(set) */
2699		if (copy_to_user(uset, &set32, sigsetsize))
2700			err = -EFAULT;
2701	}
2702	return err;
2703#else
2704	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2705#endif
2706}
2707#endif
2708
2709#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2710
2711int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2712{
2713	int err;
2714
2715	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2716		return -EFAULT;
2717	if (from->si_code < 0)
2718		return __copy_to_user(to, from, sizeof(siginfo_t))
2719			? -EFAULT : 0;
2720	/*
2721	 * If you change siginfo_t structure, please be sure
2722	 * this code is fixed accordingly.
2723	 * Please remember to update the signalfd_copyinfo() function
2724	 * inside fs/signalfd.c too, in case siginfo_t changes.
2725	 * It should never copy any pad contained in the structure
2726	 * to avoid security leaks, but must copy the generic
2727	 * 3 ints plus the relevant union member.
2728	 */
2729	err = __put_user(from->si_signo, &to->si_signo);
2730	err |= __put_user(from->si_errno, &to->si_errno);
2731	err |= __put_user((short)from->si_code, &to->si_code);
2732	switch (from->si_code & __SI_MASK) {
2733	case __SI_KILL:
2734		err |= __put_user(from->si_pid, &to->si_pid);
2735		err |= __put_user(from->si_uid, &to->si_uid);
2736		break;
2737	case __SI_TIMER:
2738		 err |= __put_user(from->si_tid, &to->si_tid);
2739		 err |= __put_user(from->si_overrun, &to->si_overrun);
2740		 err |= __put_user(from->si_ptr, &to->si_ptr);
2741		break;
2742	case __SI_POLL:
2743		err |= __put_user(from->si_band, &to->si_band);
2744		err |= __put_user(from->si_fd, &to->si_fd);
2745		break;
2746	case __SI_FAULT:
2747		err |= __put_user(from->si_addr, &to->si_addr);
2748#ifdef __ARCH_SI_TRAPNO
2749		err |= __put_user(from->si_trapno, &to->si_trapno);
2750#endif
2751#ifdef BUS_MCEERR_AO
2752		/*
2753		 * Other callers might not initialize the si_lsb field,
2754		 * so check explicitly for the right codes here.
2755		 */
2756		if (from->si_signo == SIGBUS &&
2757		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2758			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2759#endif
2760#ifdef SEGV_BNDERR
2761		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2762			err |= __put_user(from->si_lower, &to->si_lower);
2763			err |= __put_user(from->si_upper, &to->si_upper);
2764		}
2765#endif
2766		break;
2767	case __SI_CHLD:
2768		err |= __put_user(from->si_pid, &to->si_pid);
2769		err |= __put_user(from->si_uid, &to->si_uid);
2770		err |= __put_user(from->si_status, &to->si_status);
2771		err |= __put_user(from->si_utime, &to->si_utime);
2772		err |= __put_user(from->si_stime, &to->si_stime);
2773		break;
2774	case __SI_RT: /* This is not generated by the kernel as of now. */
2775	case __SI_MESGQ: /* But this is */
2776		err |= __put_user(from->si_pid, &to->si_pid);
2777		err |= __put_user(from->si_uid, &to->si_uid);
2778		err |= __put_user(from->si_ptr, &to->si_ptr);
2779		break;
2780#ifdef __ARCH_SIGSYS
2781	case __SI_SYS:
2782		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2783		err |= __put_user(from->si_syscall, &to->si_syscall);
2784		err |= __put_user(from->si_arch, &to->si_arch);
2785		break;
2786#endif
2787	default: /* this is just in case for now ... */
2788		err |= __put_user(from->si_pid, &to->si_pid);
2789		err |= __put_user(from->si_uid, &to->si_uid);
2790		break;
2791	}
2792	return err;
2793}
2794
2795#endif
2796
2797/**
2798 *  do_sigtimedwait - wait for queued signals specified in @which
2799 *  @which: queued signals to wait for
2800 *  @info: if non-null, the signal's siginfo is returned here
2801 *  @ts: upper bound on process time suspension
2802 */
2803int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2804			const struct timespec *ts)
2805{
2806	struct task_struct *tsk = current;
2807	long timeout = MAX_SCHEDULE_TIMEOUT;
2808	sigset_t mask = *which;
2809	int sig;
2810
2811	if (ts) {
2812		if (!timespec_valid(ts))
2813			return -EINVAL;
2814		timeout = timespec_to_jiffies(ts);
2815		/*
2816		 * We can be close to the next tick, add another one
2817		 * to ensure we will wait at least the time asked for.
2818		 */
2819		if (ts->tv_sec || ts->tv_nsec)
2820			timeout++;
2821	}
2822
2823	/*
2824	 * Invert the set of allowed signals to get those we want to block.
2825	 */
2826	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2827	signotset(&mask);
2828
2829	spin_lock_irq(&tsk->sighand->siglock);
2830	sig = dequeue_signal(tsk, &mask, info);
2831	if (!sig && timeout) {
2832		/*
2833		 * None ready, temporarily unblock those we're interested
2834		 * while we are sleeping in so that we'll be awakened when
2835		 * they arrive. Unblocking is always fine, we can avoid
2836		 * set_current_blocked().
2837		 */
2838		tsk->real_blocked = tsk->blocked;
2839		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2840		recalc_sigpending();
2841		spin_unlock_irq(&tsk->sighand->siglock);
2842
2843		timeout = freezable_schedule_timeout_interruptible(timeout);
2844
2845		spin_lock_irq(&tsk->sighand->siglock);
2846		__set_task_blocked(tsk, &tsk->real_blocked);
2847		sigemptyset(&tsk->real_blocked);
2848		sig = dequeue_signal(tsk, &mask, info);
2849	}
2850	spin_unlock_irq(&tsk->sighand->siglock);
2851
2852	if (sig)
2853		return sig;
2854	return timeout ? -EINTR : -EAGAIN;
2855}
2856
2857/**
2858 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2859 *			in @uthese
2860 *  @uthese: queued signals to wait for
2861 *  @uinfo: if non-null, the signal's siginfo is returned here
2862 *  @uts: upper bound on process time suspension
2863 *  @sigsetsize: size of sigset_t type
2864 */
2865SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2866		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2867		size_t, sigsetsize)
2868{
2869	sigset_t these;
2870	struct timespec ts;
2871	siginfo_t info;
2872	int ret;
2873
2874	/* XXX: Don't preclude handling different sized sigset_t's.  */
2875	if (sigsetsize != sizeof(sigset_t))
2876		return -EINVAL;
2877
2878	if (copy_from_user(&these, uthese, sizeof(these)))
2879		return -EFAULT;
2880
2881	if (uts) {
2882		if (copy_from_user(&ts, uts, sizeof(ts)))
2883			return -EFAULT;
2884	}
2885
2886	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2887
2888	if (ret > 0 && uinfo) {
2889		if (copy_siginfo_to_user(uinfo, &info))
2890			ret = -EFAULT;
2891	}
2892
2893	return ret;
2894}
2895
2896/**
2897 *  sys_kill - send a signal to a process
2898 *  @pid: the PID of the process
2899 *  @sig: signal to be sent
2900 */
2901SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2902{
2903	struct siginfo info;
2904
2905	info.si_signo = sig;
2906	info.si_errno = 0;
2907	info.si_code = SI_USER;
2908	info.si_pid = task_tgid_vnr(current);
2909	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2910
2911	return kill_something_info(sig, &info, pid);
2912}
2913
2914static int
2915do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2916{
2917	struct task_struct *p;
2918	int error = -ESRCH;
2919
2920	rcu_read_lock();
2921	p = find_task_by_vpid(pid);
2922	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2923		error = check_kill_permission(sig, info, p);
2924		/*
2925		 * The null signal is a permissions and process existence
2926		 * probe.  No signal is actually delivered.
2927		 */
2928		if (!error && sig) {
2929			error = do_send_sig_info(sig, info, p, false);
2930			/*
2931			 * If lock_task_sighand() failed we pretend the task
2932			 * dies after receiving the signal. The window is tiny,
2933			 * and the signal is private anyway.
2934			 */
2935			if (unlikely(error == -ESRCH))
2936				error = 0;
2937		}
2938	}
2939	rcu_read_unlock();
2940
2941	return error;
2942}
2943
2944static int do_tkill(pid_t tgid, pid_t pid, int sig)
2945{
2946	struct siginfo info = {};
2947
2948	info.si_signo = sig;
2949	info.si_errno = 0;
2950	info.si_code = SI_TKILL;
2951	info.si_pid = task_tgid_vnr(current);
2952	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2953
2954	return do_send_specific(tgid, pid, sig, &info);
2955}
2956
2957/**
2958 *  sys_tgkill - send signal to one specific thread
2959 *  @tgid: the thread group ID of the thread
2960 *  @pid: the PID of the thread
2961 *  @sig: signal to be sent
2962 *
2963 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2964 *  exists but it's not belonging to the target process anymore. This
2965 *  method solves the problem of threads exiting and PIDs getting reused.
2966 */
2967SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2968{
2969	/* This is only valid for single tasks */
2970	if (pid <= 0 || tgid <= 0)
2971		return -EINVAL;
2972
2973	return do_tkill(tgid, pid, sig);
2974}
2975
2976/**
2977 *  sys_tkill - send signal to one specific task
2978 *  @pid: the PID of the task
2979 *  @sig: signal to be sent
2980 *
2981 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2982 */
2983SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2984{
2985	/* This is only valid for single tasks */
2986	if (pid <= 0)
2987		return -EINVAL;
2988
2989	return do_tkill(0, pid, sig);
2990}
2991
2992static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2993{
2994	/* Not even root can pretend to send signals from the kernel.
2995	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2996	 */
2997	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2998	    (task_pid_vnr(current) != pid))
2999		return -EPERM;
3000
3001	info->si_signo = sig;
3002
3003	/* POSIX.1b doesn't mention process groups.  */
3004	return kill_proc_info(sig, info, pid);
3005}
3006
3007/**
3008 *  sys_rt_sigqueueinfo - send signal information to a signal
3009 *  @pid: the PID of the thread
3010 *  @sig: signal to be sent
3011 *  @uinfo: signal info to be sent
3012 */
3013SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3014		siginfo_t __user *, uinfo)
3015{
3016	siginfo_t info;
3017	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3018		return -EFAULT;
3019	return do_rt_sigqueueinfo(pid, sig, &info);
3020}
3021
3022#ifdef CONFIG_COMPAT
3023COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3024			compat_pid_t, pid,
3025			int, sig,
3026			struct compat_siginfo __user *, uinfo)
3027{
3028	siginfo_t info = {};
3029	int ret = copy_siginfo_from_user32(&info, uinfo);
3030	if (unlikely(ret))
3031		return ret;
3032	return do_rt_sigqueueinfo(pid, sig, &info);
3033}
3034#endif
3035
3036static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3037{
3038	/* This is only valid for single tasks */
3039	if (pid <= 0 || tgid <= 0)
3040		return -EINVAL;
3041
3042	/* Not even root can pretend to send signals from the kernel.
3043	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3044	 */
3045	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3046	    (task_pid_vnr(current) != pid))
3047		return -EPERM;
3048
3049	info->si_signo = sig;
3050
3051	return do_send_specific(tgid, pid, sig, info);
3052}
3053
3054SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3055		siginfo_t __user *, uinfo)
3056{
3057	siginfo_t info;
3058
3059	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3060		return -EFAULT;
3061
3062	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3063}
3064
3065#ifdef CONFIG_COMPAT
3066COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3067			compat_pid_t, tgid,
3068			compat_pid_t, pid,
3069			int, sig,
3070			struct compat_siginfo __user *, uinfo)
3071{
3072	siginfo_t info = {};
3073
3074	if (copy_siginfo_from_user32(&info, uinfo))
3075		return -EFAULT;
3076	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078#endif
3079
3080/*
3081 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3082 */
3083void kernel_sigaction(int sig, __sighandler_t action)
3084{
3085	spin_lock_irq(&current->sighand->siglock);
3086	current->sighand->action[sig - 1].sa.sa_handler = action;
3087	if (action == SIG_IGN) {
3088		sigset_t mask;
3089
3090		sigemptyset(&mask);
3091		sigaddset(&mask, sig);
3092
3093		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3094		flush_sigqueue_mask(&mask, &current->pending);
3095		recalc_sigpending();
3096	}
3097	spin_unlock_irq(&current->sighand->siglock);
3098}
3099EXPORT_SYMBOL(kernel_sigaction);
3100
3101int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3102{
3103	struct task_struct *p = current, *t;
3104	struct k_sigaction *k;
3105	sigset_t mask;
3106
3107	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3108		return -EINVAL;
3109
3110	k = &p->sighand->action[sig-1];
3111
3112	spin_lock_irq(&p->sighand->siglock);
3113	if (oact)
3114		*oact = *k;
3115
3116	if (act) {
3117		sigdelsetmask(&act->sa.sa_mask,
3118			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3119		*k = *act;
3120		/*
3121		 * POSIX 3.3.1.3:
3122		 *  "Setting a signal action to SIG_IGN for a signal that is
3123		 *   pending shall cause the pending signal to be discarded,
3124		 *   whether or not it is blocked."
3125		 *
3126		 *  "Setting a signal action to SIG_DFL for a signal that is
3127		 *   pending and whose default action is to ignore the signal
3128		 *   (for example, SIGCHLD), shall cause the pending signal to
3129		 *   be discarded, whether or not it is blocked"
3130		 */
3131		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3132			sigemptyset(&mask);
3133			sigaddset(&mask, sig);
3134			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3135			for_each_thread(p, t)
3136				flush_sigqueue_mask(&mask, &t->pending);
3137		}
3138	}
3139
3140	spin_unlock_irq(&p->sighand->siglock);
3141	return 0;
3142}
3143
3144static int
3145do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3146{
3147	stack_t oss;
3148	int error;
3149
3150	oss.ss_sp = (void __user *) current->sas_ss_sp;
3151	oss.ss_size = current->sas_ss_size;
3152	oss.ss_flags = sas_ss_flags(sp);
3153
3154	if (uss) {
3155		void __user *ss_sp;
3156		size_t ss_size;
3157		int ss_flags;
3158
3159		error = -EFAULT;
3160		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3161			goto out;
3162		error = __get_user(ss_sp, &uss->ss_sp) |
3163			__get_user(ss_flags, &uss->ss_flags) |
3164			__get_user(ss_size, &uss->ss_size);
3165		if (error)
3166			goto out;
3167
3168		error = -EPERM;
3169		if (on_sig_stack(sp))
3170			goto out;
3171
3172		error = -EINVAL;
3173		/*
3174		 * Note - this code used to test ss_flags incorrectly:
3175		 *  	  old code may have been written using ss_flags==0
3176		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3177		 *	  way that worked) - this fix preserves that older
3178		 *	  mechanism.
3179		 */
3180		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3181			goto out;
3182
3183		if (ss_flags == SS_DISABLE) {
3184			ss_size = 0;
3185			ss_sp = NULL;
3186		} else {
3187			error = -ENOMEM;
3188			if (ss_size < MINSIGSTKSZ)
3189				goto out;
3190		}
3191
3192		current->sas_ss_sp = (unsigned long) ss_sp;
3193		current->sas_ss_size = ss_size;
3194	}
3195
3196	error = 0;
3197	if (uoss) {
3198		error = -EFAULT;
3199		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3200			goto out;
3201		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3202			__put_user(oss.ss_size, &uoss->ss_size) |
3203			__put_user(oss.ss_flags, &uoss->ss_flags);
3204	}
3205
3206out:
3207	return error;
3208}
3209SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3210{
3211	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3212}
3213
3214int restore_altstack(const stack_t __user *uss)
3215{
3216	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3217	/* squash all but EFAULT for now */
3218	return err == -EFAULT ? err : 0;
3219}
3220
3221int __save_altstack(stack_t __user *uss, unsigned long sp)
3222{
3223	struct task_struct *t = current;
3224	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3225		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3226		__put_user(t->sas_ss_size, &uss->ss_size);
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(sigaltstack,
3231			const compat_stack_t __user *, uss_ptr,
3232			compat_stack_t __user *, uoss_ptr)
3233{
3234	stack_t uss, uoss;
3235	int ret;
3236	mm_segment_t seg;
3237
3238	if (uss_ptr) {
3239		compat_stack_t uss32;
3240
3241		memset(&uss, 0, sizeof(stack_t));
3242		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3243			return -EFAULT;
3244		uss.ss_sp = compat_ptr(uss32.ss_sp);
3245		uss.ss_flags = uss32.ss_flags;
3246		uss.ss_size = uss32.ss_size;
3247	}
3248	seg = get_fs();
3249	set_fs(KERNEL_DS);
3250	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3251			     (stack_t __force __user *) &uoss,
3252			     compat_user_stack_pointer());
3253	set_fs(seg);
3254	if (ret >= 0 && uoss_ptr)  {
3255		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3256		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3257		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3258		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3259			ret = -EFAULT;
3260	}
3261	return ret;
3262}
3263
3264int compat_restore_altstack(const compat_stack_t __user *uss)
3265{
3266	int err = compat_sys_sigaltstack(uss, NULL);
3267	/* squash all but -EFAULT for now */
3268	return err == -EFAULT ? err : 0;
3269}
3270
3271int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3272{
3273	struct task_struct *t = current;
3274	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3275		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3276		__put_user(t->sas_ss_size, &uss->ss_size);
3277}
3278#endif
3279
3280#ifdef __ARCH_WANT_SYS_SIGPENDING
3281
3282/**
3283 *  sys_sigpending - examine pending signals
3284 *  @set: where mask of pending signal is returned
3285 */
3286SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3287{
3288	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3289}
3290
3291#endif
3292
3293#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3294/**
3295 *  sys_sigprocmask - examine and change blocked signals
3296 *  @how: whether to add, remove, or set signals
3297 *  @nset: signals to add or remove (if non-null)
3298 *  @oset: previous value of signal mask if non-null
3299 *
3300 * Some platforms have their own version with special arguments;
3301 * others support only sys_rt_sigprocmask.
3302 */
3303
3304SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3305		old_sigset_t __user *, oset)
3306{
3307	old_sigset_t old_set, new_set;
3308	sigset_t new_blocked;
3309
3310	old_set = current->blocked.sig[0];
3311
3312	if (nset) {
3313		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3314			return -EFAULT;
3315
3316		new_blocked = current->blocked;
3317
3318		switch (how) {
3319		case SIG_BLOCK:
3320			sigaddsetmask(&new_blocked, new_set);
3321			break;
3322		case SIG_UNBLOCK:
3323			sigdelsetmask(&new_blocked, new_set);
3324			break;
3325		case SIG_SETMASK:
3326			new_blocked.sig[0] = new_set;
3327			break;
3328		default:
3329			return -EINVAL;
3330		}
3331
3332		set_current_blocked(&new_blocked);
3333	}
3334
3335	if (oset) {
3336		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3337			return -EFAULT;
3338	}
3339
3340	return 0;
3341}
3342#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3343
3344#ifndef CONFIG_ODD_RT_SIGACTION
3345/**
3346 *  sys_rt_sigaction - alter an action taken by a process
3347 *  @sig: signal to be sent
3348 *  @act: new sigaction
3349 *  @oact: used to save the previous sigaction
3350 *  @sigsetsize: size of sigset_t type
3351 */
3352SYSCALL_DEFINE4(rt_sigaction, int, sig,
3353		const struct sigaction __user *, act,
3354		struct sigaction __user *, oact,
3355		size_t, sigsetsize)
3356{
3357	struct k_sigaction new_sa, old_sa;
3358	int ret = -EINVAL;
3359
3360	/* XXX: Don't preclude handling different sized sigset_t's.  */
3361	if (sigsetsize != sizeof(sigset_t))
3362		goto out;
3363
3364	if (act) {
3365		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3366			return -EFAULT;
3367	}
3368
3369	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3370
3371	if (!ret && oact) {
3372		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3373			return -EFAULT;
3374	}
3375out:
3376	return ret;
3377}
3378#ifdef CONFIG_COMPAT
3379COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3380		const struct compat_sigaction __user *, act,
3381		struct compat_sigaction __user *, oact,
3382		compat_size_t, sigsetsize)
3383{
3384	struct k_sigaction new_ka, old_ka;
3385	compat_sigset_t mask;
3386#ifdef __ARCH_HAS_SA_RESTORER
3387	compat_uptr_t restorer;
3388#endif
3389	int ret;
3390
3391	/* XXX: Don't preclude handling different sized sigset_t's.  */
3392	if (sigsetsize != sizeof(compat_sigset_t))
3393		return -EINVAL;
3394
3395	if (act) {
3396		compat_uptr_t handler;
3397		ret = get_user(handler, &act->sa_handler);
3398		new_ka.sa.sa_handler = compat_ptr(handler);
3399#ifdef __ARCH_HAS_SA_RESTORER
3400		ret |= get_user(restorer, &act->sa_restorer);
3401		new_ka.sa.sa_restorer = compat_ptr(restorer);
3402#endif
3403		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3404		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3405		if (ret)
3406			return -EFAULT;
3407		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3408	}
3409
3410	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3411	if (!ret && oact) {
3412		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3413		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3414			       &oact->sa_handler);
3415		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3416		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3417#ifdef __ARCH_HAS_SA_RESTORER
3418		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3419				&oact->sa_restorer);
3420#endif
3421	}
3422	return ret;
3423}
3424#endif
3425#endif /* !CONFIG_ODD_RT_SIGACTION */
3426
3427#ifdef CONFIG_OLD_SIGACTION
3428SYSCALL_DEFINE3(sigaction, int, sig,
3429		const struct old_sigaction __user *, act,
3430	        struct old_sigaction __user *, oact)
3431{
3432	struct k_sigaction new_ka, old_ka;
3433	int ret;
3434
3435	if (act) {
3436		old_sigset_t mask;
3437		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3438		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3439		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3440		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3441		    __get_user(mask, &act->sa_mask))
3442			return -EFAULT;
3443#ifdef __ARCH_HAS_KA_RESTORER
3444		new_ka.ka_restorer = NULL;
3445#endif
3446		siginitset(&new_ka.sa.sa_mask, mask);
3447	}
3448
3449	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3450
3451	if (!ret && oact) {
3452		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3453		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3454		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3455		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3456		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3457			return -EFAULT;
3458	}
3459
3460	return ret;
3461}
3462#endif
3463#ifdef CONFIG_COMPAT_OLD_SIGACTION
3464COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3465		const struct compat_old_sigaction __user *, act,
3466	        struct compat_old_sigaction __user *, oact)
3467{
3468	struct k_sigaction new_ka, old_ka;
3469	int ret;
3470	compat_old_sigset_t mask;
3471	compat_uptr_t handler, restorer;
3472
3473	if (act) {
3474		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3475		    __get_user(handler, &act->sa_handler) ||
3476		    __get_user(restorer, &act->sa_restorer) ||
3477		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3478		    __get_user(mask, &act->sa_mask))
3479			return -EFAULT;
3480
3481#ifdef __ARCH_HAS_KA_RESTORER
3482		new_ka.ka_restorer = NULL;
3483#endif
3484		new_ka.sa.sa_handler = compat_ptr(handler);
3485		new_ka.sa.sa_restorer = compat_ptr(restorer);
3486		siginitset(&new_ka.sa.sa_mask, mask);
3487	}
3488
3489	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3490
3491	if (!ret && oact) {
3492		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3493		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3494			       &oact->sa_handler) ||
3495		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3496			       &oact->sa_restorer) ||
3497		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3498		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3499			return -EFAULT;
3500	}
3501	return ret;
3502}
3503#endif
3504
3505#ifdef CONFIG_SGETMASK_SYSCALL
3506
3507/*
3508 * For backwards compatibility.  Functionality superseded by sigprocmask.
3509 */
3510SYSCALL_DEFINE0(sgetmask)
3511{
3512	/* SMP safe */
3513	return current->blocked.sig[0];
3514}
3515
3516SYSCALL_DEFINE1(ssetmask, int, newmask)
3517{
3518	int old = current->blocked.sig[0];
3519	sigset_t newset;
3520
3521	siginitset(&newset, newmask);
3522	set_current_blocked(&newset);
3523
3524	return old;
3525}
3526#endif /* CONFIG_SGETMASK_SYSCALL */
3527
3528#ifdef __ARCH_WANT_SYS_SIGNAL
3529/*
3530 * For backwards compatibility.  Functionality superseded by sigaction.
3531 */
3532SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3533{
3534	struct k_sigaction new_sa, old_sa;
3535	int ret;
3536
3537	new_sa.sa.sa_handler = handler;
3538	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3539	sigemptyset(&new_sa.sa.sa_mask);
3540
3541	ret = do_sigaction(sig, &new_sa, &old_sa);
3542
3543	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3544}
3545#endif /* __ARCH_WANT_SYS_SIGNAL */
3546
3547#ifdef __ARCH_WANT_SYS_PAUSE
3548
3549SYSCALL_DEFINE0(pause)
3550{
3551	while (!signal_pending(current)) {
3552		__set_current_state(TASK_INTERRUPTIBLE);
3553		schedule();
3554	}
3555	return -ERESTARTNOHAND;
3556}
3557
3558#endif
3559
3560int sigsuspend(sigset_t *set)
3561{
3562	current->saved_sigmask = current->blocked;
3563	set_current_blocked(set);
3564
3565	__set_current_state(TASK_INTERRUPTIBLE);
3566	schedule();
3567	set_restore_sigmask();
3568	return -ERESTARTNOHAND;
3569}
3570
3571/**
3572 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3573 *	@unewset value until a signal is received
3574 *  @unewset: new signal mask value
3575 *  @sigsetsize: size of sigset_t type
3576 */
3577SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3578{
3579	sigset_t newset;
3580
3581	/* XXX: Don't preclude handling different sized sigset_t's.  */
3582	if (sigsetsize != sizeof(sigset_t))
3583		return -EINVAL;
3584
3585	if (copy_from_user(&newset, unewset, sizeof(newset)))
3586		return -EFAULT;
3587	return sigsuspend(&newset);
3588}
3589
3590#ifdef CONFIG_COMPAT
3591COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3592{
3593#ifdef __BIG_ENDIAN
3594	sigset_t newset;
3595	compat_sigset_t newset32;
3596
3597	/* XXX: Don't preclude handling different sized sigset_t's.  */
3598	if (sigsetsize != sizeof(sigset_t))
3599		return -EINVAL;
3600
3601	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3602		return -EFAULT;
3603	sigset_from_compat(&newset, &newset32);
3604	return sigsuspend(&newset);
3605#else
3606	/* on little-endian bitmaps don't care about granularity */
3607	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3608#endif
3609}
3610#endif
3611
3612#ifdef CONFIG_OLD_SIGSUSPEND
3613SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3614{
3615	sigset_t blocked;
3616	siginitset(&blocked, mask);
3617	return sigsuspend(&blocked);
3618}
3619#endif
3620#ifdef CONFIG_OLD_SIGSUSPEND3
3621SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3622{
3623	sigset_t blocked;
3624	siginitset(&blocked, mask);
3625	return sigsuspend(&blocked);
3626}
3627#endif
3628
3629__weak const char *arch_vma_name(struct vm_area_struct *vma)
3630{
3631	return NULL;
3632}
3633
3634void __init signals_init(void)
3635{
3636	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3637}
3638
3639#ifdef CONFIG_KGDB_KDB
3640#include <linux/kdb.h>
3641/*
3642 * kdb_send_sig_info - Allows kdb to send signals without exposing
3643 * signal internals.  This function checks if the required locks are
3644 * available before calling the main signal code, to avoid kdb
3645 * deadlocks.
3646 */
3647void
3648kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3649{
3650	static struct task_struct *kdb_prev_t;
3651	int sig, new_t;
3652	if (!spin_trylock(&t->sighand->siglock)) {
3653		kdb_printf("Can't do kill command now.\n"
3654			   "The sigmask lock is held somewhere else in "
3655			   "kernel, try again later\n");
3656		return;
3657	}
3658	spin_unlock(&t->sighand->siglock);
3659	new_t = kdb_prev_t != t;
3660	kdb_prev_t = t;
3661	if (t->state != TASK_RUNNING && new_t) {
3662		kdb_printf("Process is not RUNNING, sending a signal from "
3663			   "kdb risks deadlock\n"
3664			   "on the run queue locks. "
3665			   "The signal has _not_ been sent.\n"
3666			   "Reissue the kill command if you want to risk "
3667			   "the deadlock.\n");
3668		return;
3669	}
3670	sig = info->si_signo;
3671	if (send_sig_info(sig, info, t))
3672		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3673			   sig, t->pid);
3674	else
3675		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3676}
3677#endif	/* CONFIG_KGDB_KDB */
3678