1/* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13#include <linux/slab.h> 14#include <linux/export.h> 15#include <linux/init.h> 16#include <linux/sched.h> 17#include <linux/fs.h> 18#include <linux/tty.h> 19#include <linux/binfmts.h> 20#include <linux/coredump.h> 21#include <linux/security.h> 22#include <linux/syscalls.h> 23#include <linux/ptrace.h> 24#include <linux/signal.h> 25#include <linux/signalfd.h> 26#include <linux/ratelimit.h> 27#include <linux/tracehook.h> 28#include <linux/capability.h> 29#include <linux/freezer.h> 30#include <linux/pid_namespace.h> 31#include <linux/nsproxy.h> 32#include <linux/user_namespace.h> 33#include <linux/uprobes.h> 34#include <linux/compat.h> 35#include <linux/cn_proc.h> 36#include <linux/compiler.h> 37 38#define CREATE_TRACE_POINTS 39#include <trace/events/signal.h> 40 41#include <asm/param.h> 42#include <asm/uaccess.h> 43#include <asm/unistd.h> 44#include <asm/siginfo.h> 45#include <asm/cacheflush.h> 46#include "audit.h" /* audit_signal_info() */ 47 48/* 49 * SLAB caches for signal bits. 50 */ 51 52static struct kmem_cache *sigqueue_cachep; 53 54int print_fatal_signals __read_mostly; 55 56static void __user *sig_handler(struct task_struct *t, int sig) 57{ 58 return t->sighand->action[sig - 1].sa.sa_handler; 59} 60 61static int sig_handler_ignored(void __user *handler, int sig) 62{ 63 /* Is it explicitly or implicitly ignored? */ 64 return handler == SIG_IGN || 65 (handler == SIG_DFL && sig_kernel_ignore(sig)); 66} 67 68static int sig_task_ignored(struct task_struct *t, int sig, bool force) 69{ 70 void __user *handler; 71 72 handler = sig_handler(t, sig); 73 74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 75 handler == SIG_DFL && !force) 76 return 1; 77 78 return sig_handler_ignored(handler, sig); 79} 80 81static int sig_ignored(struct task_struct *t, int sig, bool force) 82{ 83 /* 84 * Blocked signals are never ignored, since the 85 * signal handler may change by the time it is 86 * unblocked. 87 */ 88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 89 return 0; 90 91 if (!sig_task_ignored(t, sig, force)) 92 return 0; 93 94 /* 95 * Tracers may want to know about even ignored signals. 96 */ 97 return !t->ptrace; 98} 99 100/* 101 * Re-calculate pending state from the set of locally pending 102 * signals, globally pending signals, and blocked signals. 103 */ 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 105{ 106 unsigned long ready; 107 long i; 108 109 switch (_NSIG_WORDS) { 110 default: 111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 112 ready |= signal->sig[i] &~ blocked->sig[i]; 113 break; 114 115 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 116 ready |= signal->sig[2] &~ blocked->sig[2]; 117 ready |= signal->sig[1] &~ blocked->sig[1]; 118 ready |= signal->sig[0] &~ blocked->sig[0]; 119 break; 120 121 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 122 ready |= signal->sig[0] &~ blocked->sig[0]; 123 break; 124 125 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 126 } 127 return ready != 0; 128} 129 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 131 132static int recalc_sigpending_tsk(struct task_struct *t) 133{ 134 if ((t->jobctl & JOBCTL_PENDING_MASK) || 135 PENDING(&t->pending, &t->blocked) || 136 PENDING(&t->signal->shared_pending, &t->blocked)) { 137 set_tsk_thread_flag(t, TIF_SIGPENDING); 138 return 1; 139 } 140 /* 141 * We must never clear the flag in another thread, or in current 142 * when it's possible the current syscall is returning -ERESTART*. 143 * So we don't clear it here, and only callers who know they should do. 144 */ 145 return 0; 146} 147 148/* 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 150 * This is superfluous when called on current, the wakeup is a harmless no-op. 151 */ 152void recalc_sigpending_and_wake(struct task_struct *t) 153{ 154 if (recalc_sigpending_tsk(t)) 155 signal_wake_up(t, 0); 156} 157 158void recalc_sigpending(void) 159{ 160 if (!recalc_sigpending_tsk(current) && !freezing(current)) 161 clear_thread_flag(TIF_SIGPENDING); 162 163} 164 165/* Given the mask, find the first available signal that should be serviced. */ 166 167#define SYNCHRONOUS_MASK \ 168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 170 171int next_signal(struct sigpending *pending, sigset_t *mask) 172{ 173 unsigned long i, *s, *m, x; 174 int sig = 0; 175 176 s = pending->signal.sig; 177 m = mask->sig; 178 179 /* 180 * Handle the first word specially: it contains the 181 * synchronous signals that need to be dequeued first. 182 */ 183 x = *s &~ *m; 184 if (x) { 185 if (x & SYNCHRONOUS_MASK) 186 x &= SYNCHRONOUS_MASK; 187 sig = ffz(~x) + 1; 188 return sig; 189 } 190 191 switch (_NSIG_WORDS) { 192 default: 193 for (i = 1; i < _NSIG_WORDS; ++i) { 194 x = *++s &~ *++m; 195 if (!x) 196 continue; 197 sig = ffz(~x) + i*_NSIG_BPW + 1; 198 break; 199 } 200 break; 201 202 case 2: 203 x = s[1] &~ m[1]; 204 if (!x) 205 break; 206 sig = ffz(~x) + _NSIG_BPW + 1; 207 break; 208 209 case 1: 210 /* Nothing to do */ 211 break; 212 } 213 214 return sig; 215} 216 217static inline void print_dropped_signal(int sig) 218{ 219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 220 221 if (!print_fatal_signals) 222 return; 223 224 if (!__ratelimit(&ratelimit_state)) 225 return; 226 227 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 228 current->comm, current->pid, sig); 229} 230 231/** 232 * task_set_jobctl_pending - set jobctl pending bits 233 * @task: target task 234 * @mask: pending bits to set 235 * 236 * Clear @mask from @task->jobctl. @mask must be subset of 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 239 * cleared. If @task is already being killed or exiting, this function 240 * becomes noop. 241 * 242 * CONTEXT: 243 * Must be called with @task->sighand->siglock held. 244 * 245 * RETURNS: 246 * %true if @mask is set, %false if made noop because @task was dying. 247 */ 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 249{ 250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 253 254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 255 return false; 256 257 if (mask & JOBCTL_STOP_SIGMASK) 258 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 259 260 task->jobctl |= mask; 261 return true; 262} 263 264/** 265 * task_clear_jobctl_trapping - clear jobctl trapping bit 266 * @task: target task 267 * 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 269 * Clear it and wake up the ptracer. Note that we don't need any further 270 * locking. @task->siglock guarantees that @task->parent points to the 271 * ptracer. 272 * 273 * CONTEXT: 274 * Must be called with @task->sighand->siglock held. 275 */ 276void task_clear_jobctl_trapping(struct task_struct *task) 277{ 278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 279 task->jobctl &= ~JOBCTL_TRAPPING; 280 smp_mb(); /* advised by wake_up_bit() */ 281 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 282 } 283} 284 285/** 286 * task_clear_jobctl_pending - clear jobctl pending bits 287 * @task: target task 288 * @mask: pending bits to clear 289 * 290 * Clear @mask from @task->jobctl. @mask must be subset of 291 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 292 * STOP bits are cleared together. 293 * 294 * If clearing of @mask leaves no stop or trap pending, this function calls 295 * task_clear_jobctl_trapping(). 296 * 297 * CONTEXT: 298 * Must be called with @task->sighand->siglock held. 299 */ 300void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 301{ 302 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 303 304 if (mask & JOBCTL_STOP_PENDING) 305 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 306 307 task->jobctl &= ~mask; 308 309 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 310 task_clear_jobctl_trapping(task); 311} 312 313/** 314 * task_participate_group_stop - participate in a group stop 315 * @task: task participating in a group stop 316 * 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 318 * Group stop states are cleared and the group stop count is consumed if 319 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 320 * stop, the appropriate %SIGNAL_* flags are set. 321 * 322 * CONTEXT: 323 * Must be called with @task->sighand->siglock held. 324 * 325 * RETURNS: 326 * %true if group stop completion should be notified to the parent, %false 327 * otherwise. 328 */ 329static bool task_participate_group_stop(struct task_struct *task) 330{ 331 struct signal_struct *sig = task->signal; 332 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 333 334 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 335 336 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 337 338 if (!consume) 339 return false; 340 341 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 342 sig->group_stop_count--; 343 344 /* 345 * Tell the caller to notify completion iff we are entering into a 346 * fresh group stop. Read comment in do_signal_stop() for details. 347 */ 348 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 349 sig->flags = SIGNAL_STOP_STOPPED; 350 return true; 351 } 352 return false; 353} 354 355/* 356 * allocate a new signal queue record 357 * - this may be called without locks if and only if t == current, otherwise an 358 * appropriate lock must be held to stop the target task from exiting 359 */ 360static struct sigqueue * 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 362{ 363 struct sigqueue *q = NULL; 364 struct user_struct *user; 365 366 /* 367 * Protect access to @t credentials. This can go away when all 368 * callers hold rcu read lock. 369 */ 370 rcu_read_lock(); 371 user = get_uid(__task_cred(t)->user); 372 atomic_inc(&user->sigpending); 373 rcu_read_unlock(); 374 375 if (override_rlimit || 376 atomic_read(&user->sigpending) <= 377 task_rlimit(t, RLIMIT_SIGPENDING)) { 378 q = kmem_cache_alloc(sigqueue_cachep, flags); 379 } else { 380 print_dropped_signal(sig); 381 } 382 383 if (unlikely(q == NULL)) { 384 atomic_dec(&user->sigpending); 385 free_uid(user); 386 } else { 387 INIT_LIST_HEAD(&q->list); 388 q->flags = 0; 389 q->user = user; 390 } 391 392 return q; 393} 394 395static void __sigqueue_free(struct sigqueue *q) 396{ 397 if (q->flags & SIGQUEUE_PREALLOC) 398 return; 399 atomic_dec(&q->user->sigpending); 400 free_uid(q->user); 401 kmem_cache_free(sigqueue_cachep, q); 402} 403 404void flush_sigqueue(struct sigpending *queue) 405{ 406 struct sigqueue *q; 407 408 sigemptyset(&queue->signal); 409 while (!list_empty(&queue->list)) { 410 q = list_entry(queue->list.next, struct sigqueue , list); 411 list_del_init(&q->list); 412 __sigqueue_free(q); 413 } 414} 415 416/* 417 * Flush all pending signals for a task. 418 */ 419void __flush_signals(struct task_struct *t) 420{ 421 clear_tsk_thread_flag(t, TIF_SIGPENDING); 422 flush_sigqueue(&t->pending); 423 flush_sigqueue(&t->signal->shared_pending); 424} 425 426void flush_signals(struct task_struct *t) 427{ 428 unsigned long flags; 429 430 spin_lock_irqsave(&t->sighand->siglock, flags); 431 __flush_signals(t); 432 spin_unlock_irqrestore(&t->sighand->siglock, flags); 433} 434 435static void __flush_itimer_signals(struct sigpending *pending) 436{ 437 sigset_t signal, retain; 438 struct sigqueue *q, *n; 439 440 signal = pending->signal; 441 sigemptyset(&retain); 442 443 list_for_each_entry_safe(q, n, &pending->list, list) { 444 int sig = q->info.si_signo; 445 446 if (likely(q->info.si_code != SI_TIMER)) { 447 sigaddset(&retain, sig); 448 } else { 449 sigdelset(&signal, sig); 450 list_del_init(&q->list); 451 __sigqueue_free(q); 452 } 453 } 454 455 sigorsets(&pending->signal, &signal, &retain); 456} 457 458void flush_itimer_signals(void) 459{ 460 struct task_struct *tsk = current; 461 unsigned long flags; 462 463 spin_lock_irqsave(&tsk->sighand->siglock, flags); 464 __flush_itimer_signals(&tsk->pending); 465 __flush_itimer_signals(&tsk->signal->shared_pending); 466 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 467} 468 469void ignore_signals(struct task_struct *t) 470{ 471 int i; 472 473 for (i = 0; i < _NSIG; ++i) 474 t->sighand->action[i].sa.sa_handler = SIG_IGN; 475 476 flush_signals(t); 477} 478 479/* 480 * Flush all handlers for a task. 481 */ 482 483void 484flush_signal_handlers(struct task_struct *t, int force_default) 485{ 486 int i; 487 struct k_sigaction *ka = &t->sighand->action[0]; 488 for (i = _NSIG ; i != 0 ; i--) { 489 if (force_default || ka->sa.sa_handler != SIG_IGN) 490 ka->sa.sa_handler = SIG_DFL; 491 ka->sa.sa_flags = 0; 492#ifdef __ARCH_HAS_SA_RESTORER 493 ka->sa.sa_restorer = NULL; 494#endif 495 sigemptyset(&ka->sa.sa_mask); 496 ka++; 497 } 498} 499 500int unhandled_signal(struct task_struct *tsk, int sig) 501{ 502 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 503 if (is_global_init(tsk)) 504 return 1; 505 if (handler != SIG_IGN && handler != SIG_DFL) 506 return 0; 507 /* if ptraced, let the tracer determine */ 508 return !tsk->ptrace; 509} 510 511/* 512 * Notify the system that a driver wants to block all signals for this 513 * process, and wants to be notified if any signals at all were to be 514 * sent/acted upon. If the notifier routine returns non-zero, then the 515 * signal will be acted upon after all. If the notifier routine returns 0, 516 * then then signal will be blocked. Only one block per process is 517 * allowed. priv is a pointer to private data that the notifier routine 518 * can use to determine if the signal should be blocked or not. 519 */ 520void 521block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 522{ 523 unsigned long flags; 524 525 spin_lock_irqsave(¤t->sighand->siglock, flags); 526 current->notifier_mask = mask; 527 current->notifier_data = priv; 528 current->notifier = notifier; 529 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 530} 531 532/* Notify the system that blocking has ended. */ 533 534void 535unblock_all_signals(void) 536{ 537 unsigned long flags; 538 539 spin_lock_irqsave(¤t->sighand->siglock, flags); 540 current->notifier = NULL; 541 current->notifier_data = NULL; 542 recalc_sigpending(); 543 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 544} 545 546static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 547{ 548 struct sigqueue *q, *first = NULL; 549 550 /* 551 * Collect the siginfo appropriate to this signal. Check if 552 * there is another siginfo for the same signal. 553 */ 554 list_for_each_entry(q, &list->list, list) { 555 if (q->info.si_signo == sig) { 556 if (first) 557 goto still_pending; 558 first = q; 559 } 560 } 561 562 sigdelset(&list->signal, sig); 563 564 if (first) { 565still_pending: 566 list_del_init(&first->list); 567 copy_siginfo(info, &first->info); 568 __sigqueue_free(first); 569 } else { 570 /* 571 * Ok, it wasn't in the queue. This must be 572 * a fast-pathed signal or we must have been 573 * out of queue space. So zero out the info. 574 */ 575 info->si_signo = sig; 576 info->si_errno = 0; 577 info->si_code = SI_USER; 578 info->si_pid = 0; 579 info->si_uid = 0; 580 } 581} 582 583static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 584 siginfo_t *info) 585{ 586 int sig = next_signal(pending, mask); 587 588 if (sig) { 589 if (current->notifier) { 590 if (sigismember(current->notifier_mask, sig)) { 591 if (!(current->notifier)(current->notifier_data)) { 592 clear_thread_flag(TIF_SIGPENDING); 593 return 0; 594 } 595 } 596 } 597 598 collect_signal(sig, pending, info); 599 } 600 601 return sig; 602} 603 604/* 605 * Dequeue a signal and return the element to the caller, which is 606 * expected to free it. 607 * 608 * All callers have to hold the siglock. 609 */ 610int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 611{ 612 int signr; 613 614 /* We only dequeue private signals from ourselves, we don't let 615 * signalfd steal them 616 */ 617 signr = __dequeue_signal(&tsk->pending, mask, info); 618 if (!signr) { 619 signr = __dequeue_signal(&tsk->signal->shared_pending, 620 mask, info); 621 /* 622 * itimer signal ? 623 * 624 * itimers are process shared and we restart periodic 625 * itimers in the signal delivery path to prevent DoS 626 * attacks in the high resolution timer case. This is 627 * compliant with the old way of self-restarting 628 * itimers, as the SIGALRM is a legacy signal and only 629 * queued once. Changing the restart behaviour to 630 * restart the timer in the signal dequeue path is 631 * reducing the timer noise on heavy loaded !highres 632 * systems too. 633 */ 634 if (unlikely(signr == SIGALRM)) { 635 struct hrtimer *tmr = &tsk->signal->real_timer; 636 637 if (!hrtimer_is_queued(tmr) && 638 tsk->signal->it_real_incr.tv64 != 0) { 639 hrtimer_forward(tmr, tmr->base->get_time(), 640 tsk->signal->it_real_incr); 641 hrtimer_restart(tmr); 642 } 643 } 644 } 645 646 recalc_sigpending(); 647 if (!signr) 648 return 0; 649 650 if (unlikely(sig_kernel_stop(signr))) { 651 /* 652 * Set a marker that we have dequeued a stop signal. Our 653 * caller might release the siglock and then the pending 654 * stop signal it is about to process is no longer in the 655 * pending bitmasks, but must still be cleared by a SIGCONT 656 * (and overruled by a SIGKILL). So those cases clear this 657 * shared flag after we've set it. Note that this flag may 658 * remain set after the signal we return is ignored or 659 * handled. That doesn't matter because its only purpose 660 * is to alert stop-signal processing code when another 661 * processor has come along and cleared the flag. 662 */ 663 current->jobctl |= JOBCTL_STOP_DEQUEUED; 664 } 665 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 666 /* 667 * Release the siglock to ensure proper locking order 668 * of timer locks outside of siglocks. Note, we leave 669 * irqs disabled here, since the posix-timers code is 670 * about to disable them again anyway. 671 */ 672 spin_unlock(&tsk->sighand->siglock); 673 do_schedule_next_timer(info); 674 spin_lock(&tsk->sighand->siglock); 675 } 676 return signr; 677} 678 679/* 680 * Tell a process that it has a new active signal.. 681 * 682 * NOTE! we rely on the previous spin_lock to 683 * lock interrupts for us! We can only be called with 684 * "siglock" held, and the local interrupt must 685 * have been disabled when that got acquired! 686 * 687 * No need to set need_resched since signal event passing 688 * goes through ->blocked 689 */ 690void signal_wake_up_state(struct task_struct *t, unsigned int state) 691{ 692 set_tsk_thread_flag(t, TIF_SIGPENDING); 693 /* 694 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 695 * case. We don't check t->state here because there is a race with it 696 * executing another processor and just now entering stopped state. 697 * By using wake_up_state, we ensure the process will wake up and 698 * handle its death signal. 699 */ 700 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 701 kick_process(t); 702} 703 704/* 705 * Remove signals in mask from the pending set and queue. 706 * Returns 1 if any signals were found. 707 * 708 * All callers must be holding the siglock. 709 */ 710static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 711{ 712 struct sigqueue *q, *n; 713 sigset_t m; 714 715 sigandsets(&m, mask, &s->signal); 716 if (sigisemptyset(&m)) 717 return 0; 718 719 sigandnsets(&s->signal, &s->signal, mask); 720 list_for_each_entry_safe(q, n, &s->list, list) { 721 if (sigismember(mask, q->info.si_signo)) { 722 list_del_init(&q->list); 723 __sigqueue_free(q); 724 } 725 } 726 return 1; 727} 728 729static inline int is_si_special(const struct siginfo *info) 730{ 731 return info <= SEND_SIG_FORCED; 732} 733 734static inline bool si_fromuser(const struct siginfo *info) 735{ 736 return info == SEND_SIG_NOINFO || 737 (!is_si_special(info) && SI_FROMUSER(info)); 738} 739 740/* 741 * called with RCU read lock from check_kill_permission() 742 */ 743static int kill_ok_by_cred(struct task_struct *t) 744{ 745 const struct cred *cred = current_cred(); 746 const struct cred *tcred = __task_cred(t); 747 748 if (uid_eq(cred->euid, tcred->suid) || 749 uid_eq(cred->euid, tcred->uid) || 750 uid_eq(cred->uid, tcred->suid) || 751 uid_eq(cred->uid, tcred->uid)) 752 return 1; 753 754 if (ns_capable(tcred->user_ns, CAP_KILL)) 755 return 1; 756 757 return 0; 758} 759 760/* 761 * Bad permissions for sending the signal 762 * - the caller must hold the RCU read lock 763 */ 764static int check_kill_permission(int sig, struct siginfo *info, 765 struct task_struct *t) 766{ 767 struct pid *sid; 768 int error; 769 770 if (!valid_signal(sig)) 771 return -EINVAL; 772 773 if (!si_fromuser(info)) 774 return 0; 775 776 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 777 if (error) 778 return error; 779 780 if (!same_thread_group(current, t) && 781 !kill_ok_by_cred(t)) { 782 switch (sig) { 783 case SIGCONT: 784 sid = task_session(t); 785 /* 786 * We don't return the error if sid == NULL. The 787 * task was unhashed, the caller must notice this. 788 */ 789 if (!sid || sid == task_session(current)) 790 break; 791 default: 792 return -EPERM; 793 } 794 } 795 796 return security_task_kill(t, info, sig, 0); 797} 798 799/** 800 * ptrace_trap_notify - schedule trap to notify ptracer 801 * @t: tracee wanting to notify tracer 802 * 803 * This function schedules sticky ptrace trap which is cleared on the next 804 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 805 * ptracer. 806 * 807 * If @t is running, STOP trap will be taken. If trapped for STOP and 808 * ptracer is listening for events, tracee is woken up so that it can 809 * re-trap for the new event. If trapped otherwise, STOP trap will be 810 * eventually taken without returning to userland after the existing traps 811 * are finished by PTRACE_CONT. 812 * 813 * CONTEXT: 814 * Must be called with @task->sighand->siglock held. 815 */ 816static void ptrace_trap_notify(struct task_struct *t) 817{ 818 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 819 assert_spin_locked(&t->sighand->siglock); 820 821 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 822 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 823} 824 825/* 826 * Handle magic process-wide effects of stop/continue signals. Unlike 827 * the signal actions, these happen immediately at signal-generation 828 * time regardless of blocking, ignoring, or handling. This does the 829 * actual continuing for SIGCONT, but not the actual stopping for stop 830 * signals. The process stop is done as a signal action for SIG_DFL. 831 * 832 * Returns true if the signal should be actually delivered, otherwise 833 * it should be dropped. 834 */ 835static bool prepare_signal(int sig, struct task_struct *p, bool force) 836{ 837 struct signal_struct *signal = p->signal; 838 struct task_struct *t; 839 sigset_t flush; 840 841 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 842 if (signal->flags & SIGNAL_GROUP_COREDUMP) 843 return sig == SIGKILL; 844 /* 845 * The process is in the middle of dying, nothing to do. 846 */ 847 } else if (sig_kernel_stop(sig)) { 848 /* 849 * This is a stop signal. Remove SIGCONT from all queues. 850 */ 851 siginitset(&flush, sigmask(SIGCONT)); 852 flush_sigqueue_mask(&flush, &signal->shared_pending); 853 for_each_thread(p, t) 854 flush_sigqueue_mask(&flush, &t->pending); 855 } else if (sig == SIGCONT) { 856 unsigned int why; 857 /* 858 * Remove all stop signals from all queues, wake all threads. 859 */ 860 siginitset(&flush, SIG_KERNEL_STOP_MASK); 861 flush_sigqueue_mask(&flush, &signal->shared_pending); 862 for_each_thread(p, t) { 863 flush_sigqueue_mask(&flush, &t->pending); 864 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 865 if (likely(!(t->ptrace & PT_SEIZED))) 866 wake_up_state(t, __TASK_STOPPED); 867 else 868 ptrace_trap_notify(t); 869 } 870 871 /* 872 * Notify the parent with CLD_CONTINUED if we were stopped. 873 * 874 * If we were in the middle of a group stop, we pretend it 875 * was already finished, and then continued. Since SIGCHLD 876 * doesn't queue we report only CLD_STOPPED, as if the next 877 * CLD_CONTINUED was dropped. 878 */ 879 why = 0; 880 if (signal->flags & SIGNAL_STOP_STOPPED) 881 why |= SIGNAL_CLD_CONTINUED; 882 else if (signal->group_stop_count) 883 why |= SIGNAL_CLD_STOPPED; 884 885 if (why) { 886 /* 887 * The first thread which returns from do_signal_stop() 888 * will take ->siglock, notice SIGNAL_CLD_MASK, and 889 * notify its parent. See get_signal_to_deliver(). 890 */ 891 signal->flags = why | SIGNAL_STOP_CONTINUED; 892 signal->group_stop_count = 0; 893 signal->group_exit_code = 0; 894 } 895 } 896 897 return !sig_ignored(p, sig, force); 898} 899 900/* 901 * Test if P wants to take SIG. After we've checked all threads with this, 902 * it's equivalent to finding no threads not blocking SIG. Any threads not 903 * blocking SIG were ruled out because they are not running and already 904 * have pending signals. Such threads will dequeue from the shared queue 905 * as soon as they're available, so putting the signal on the shared queue 906 * will be equivalent to sending it to one such thread. 907 */ 908static inline int wants_signal(int sig, struct task_struct *p) 909{ 910 if (sigismember(&p->blocked, sig)) 911 return 0; 912 if (p->flags & PF_EXITING) 913 return 0; 914 if (sig == SIGKILL) 915 return 1; 916 if (task_is_stopped_or_traced(p)) 917 return 0; 918 return task_curr(p) || !signal_pending(p); 919} 920 921static void complete_signal(int sig, struct task_struct *p, int group) 922{ 923 struct signal_struct *signal = p->signal; 924 struct task_struct *t; 925 926 /* 927 * Now find a thread we can wake up to take the signal off the queue. 928 * 929 * If the main thread wants the signal, it gets first crack. 930 * Probably the least surprising to the average bear. 931 */ 932 if (wants_signal(sig, p)) 933 t = p; 934 else if (!group || thread_group_empty(p)) 935 /* 936 * There is just one thread and it does not need to be woken. 937 * It will dequeue unblocked signals before it runs again. 938 */ 939 return; 940 else { 941 /* 942 * Otherwise try to find a suitable thread. 943 */ 944 t = signal->curr_target; 945 while (!wants_signal(sig, t)) { 946 t = next_thread(t); 947 if (t == signal->curr_target) 948 /* 949 * No thread needs to be woken. 950 * Any eligible threads will see 951 * the signal in the queue soon. 952 */ 953 return; 954 } 955 signal->curr_target = t; 956 } 957 958 /* 959 * Found a killable thread. If the signal will be fatal, 960 * then start taking the whole group down immediately. 961 */ 962 if (sig_fatal(p, sig) && 963 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 964 !sigismember(&t->real_blocked, sig) && 965 (sig == SIGKILL || !t->ptrace)) { 966 /* 967 * This signal will be fatal to the whole group. 968 */ 969 if (!sig_kernel_coredump(sig)) { 970 /* 971 * Start a group exit and wake everybody up. 972 * This way we don't have other threads 973 * running and doing things after a slower 974 * thread has the fatal signal pending. 975 */ 976 signal->flags = SIGNAL_GROUP_EXIT; 977 signal->group_exit_code = sig; 978 signal->group_stop_count = 0; 979 t = p; 980 do { 981 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 982 sigaddset(&t->pending.signal, SIGKILL); 983 signal_wake_up(t, 1); 984 } while_each_thread(p, t); 985 return; 986 } 987 } 988 989 /* 990 * The signal is already in the shared-pending queue. 991 * Tell the chosen thread to wake up and dequeue it. 992 */ 993 signal_wake_up(t, sig == SIGKILL); 994 return; 995} 996 997static inline int legacy_queue(struct sigpending *signals, int sig) 998{ 999 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1000} 1001 1002#ifdef CONFIG_USER_NS 1003static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1004{ 1005 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1006 return; 1007 1008 if (SI_FROMKERNEL(info)) 1009 return; 1010 1011 rcu_read_lock(); 1012 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1013 make_kuid(current_user_ns(), info->si_uid)); 1014 rcu_read_unlock(); 1015} 1016#else 1017static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1018{ 1019 return; 1020} 1021#endif 1022 1023static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1024 int group, int from_ancestor_ns) 1025{ 1026 struct sigpending *pending; 1027 struct sigqueue *q; 1028 int override_rlimit; 1029 int ret = 0, result; 1030 1031 assert_spin_locked(&t->sighand->siglock); 1032 1033 result = TRACE_SIGNAL_IGNORED; 1034 if (!prepare_signal(sig, t, 1035 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1036 goto ret; 1037 1038 pending = group ? &t->signal->shared_pending : &t->pending; 1039 /* 1040 * Short-circuit ignored signals and support queuing 1041 * exactly one non-rt signal, so that we can get more 1042 * detailed information about the cause of the signal. 1043 */ 1044 result = TRACE_SIGNAL_ALREADY_PENDING; 1045 if (legacy_queue(pending, sig)) 1046 goto ret; 1047 1048 result = TRACE_SIGNAL_DELIVERED; 1049 /* 1050 * fast-pathed signals for kernel-internal things like SIGSTOP 1051 * or SIGKILL. 1052 */ 1053 if (info == SEND_SIG_FORCED) 1054 goto out_set; 1055 1056 /* 1057 * Real-time signals must be queued if sent by sigqueue, or 1058 * some other real-time mechanism. It is implementation 1059 * defined whether kill() does so. We attempt to do so, on 1060 * the principle of least surprise, but since kill is not 1061 * allowed to fail with EAGAIN when low on memory we just 1062 * make sure at least one signal gets delivered and don't 1063 * pass on the info struct. 1064 */ 1065 if (sig < SIGRTMIN) 1066 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1067 else 1068 override_rlimit = 0; 1069 1070 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1071 override_rlimit); 1072 if (q) { 1073 list_add_tail(&q->list, &pending->list); 1074 switch ((unsigned long) info) { 1075 case (unsigned long) SEND_SIG_NOINFO: 1076 q->info.si_signo = sig; 1077 q->info.si_errno = 0; 1078 q->info.si_code = SI_USER; 1079 q->info.si_pid = task_tgid_nr_ns(current, 1080 task_active_pid_ns(t)); 1081 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1082 break; 1083 case (unsigned long) SEND_SIG_PRIV: 1084 q->info.si_signo = sig; 1085 q->info.si_errno = 0; 1086 q->info.si_code = SI_KERNEL; 1087 q->info.si_pid = 0; 1088 q->info.si_uid = 0; 1089 break; 1090 default: 1091 copy_siginfo(&q->info, info); 1092 if (from_ancestor_ns) 1093 q->info.si_pid = 0; 1094 break; 1095 } 1096 1097 userns_fixup_signal_uid(&q->info, t); 1098 1099 } else if (!is_si_special(info)) { 1100 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1101 /* 1102 * Queue overflow, abort. We may abort if the 1103 * signal was rt and sent by user using something 1104 * other than kill(). 1105 */ 1106 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1107 ret = -EAGAIN; 1108 goto ret; 1109 } else { 1110 /* 1111 * This is a silent loss of information. We still 1112 * send the signal, but the *info bits are lost. 1113 */ 1114 result = TRACE_SIGNAL_LOSE_INFO; 1115 } 1116 } 1117 1118out_set: 1119 signalfd_notify(t, sig); 1120 sigaddset(&pending->signal, sig); 1121 complete_signal(sig, t, group); 1122ret: 1123 trace_signal_generate(sig, info, t, group, result); 1124 return ret; 1125} 1126 1127static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1128 int group) 1129{ 1130 int from_ancestor_ns = 0; 1131 1132#ifdef CONFIG_PID_NS 1133 from_ancestor_ns = si_fromuser(info) && 1134 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1135#endif 1136 1137 return __send_signal(sig, info, t, group, from_ancestor_ns); 1138} 1139 1140static void print_fatal_signal(int signr) 1141{ 1142 struct pt_regs *regs = signal_pt_regs(); 1143 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr); 1144 1145#if defined(__i386__) && !defined(__arch_um__) 1146 printk(KERN_INFO "code at %08lx: ", regs->ip); 1147 { 1148 int i; 1149 for (i = 0; i < 16; i++) { 1150 unsigned char insn; 1151 1152 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1153 break; 1154 printk(KERN_CONT "%02x ", insn); 1155 } 1156 } 1157 printk(KERN_CONT "\n"); 1158#endif 1159 preempt_disable(); 1160 show_regs(regs); 1161 preempt_enable(); 1162} 1163 1164static int __init setup_print_fatal_signals(char *str) 1165{ 1166 get_option (&str, &print_fatal_signals); 1167 1168 return 1; 1169} 1170 1171__setup("print-fatal-signals=", setup_print_fatal_signals); 1172 1173int 1174__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1175{ 1176 return send_signal(sig, info, p, 1); 1177} 1178 1179static int 1180specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1181{ 1182 return send_signal(sig, info, t, 0); 1183} 1184 1185int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1186 bool group) 1187{ 1188 unsigned long flags; 1189 int ret = -ESRCH; 1190 1191 if (lock_task_sighand(p, &flags)) { 1192 ret = send_signal(sig, info, p, group); 1193 unlock_task_sighand(p, &flags); 1194 } 1195 1196 return ret; 1197} 1198 1199/* 1200 * Force a signal that the process can't ignore: if necessary 1201 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1202 * 1203 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1204 * since we do not want to have a signal handler that was blocked 1205 * be invoked when user space had explicitly blocked it. 1206 * 1207 * We don't want to have recursive SIGSEGV's etc, for example, 1208 * that is why we also clear SIGNAL_UNKILLABLE. 1209 */ 1210int 1211force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1212{ 1213 unsigned long int flags; 1214 int ret, blocked, ignored; 1215 struct k_sigaction *action; 1216 1217 spin_lock_irqsave(&t->sighand->siglock, flags); 1218 action = &t->sighand->action[sig-1]; 1219 ignored = action->sa.sa_handler == SIG_IGN; 1220 blocked = sigismember(&t->blocked, sig); 1221 if (blocked || ignored) { 1222 action->sa.sa_handler = SIG_DFL; 1223 if (blocked) { 1224 sigdelset(&t->blocked, sig); 1225 recalc_sigpending_and_wake(t); 1226 } 1227 } 1228 if (action->sa.sa_handler == SIG_DFL) 1229 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1230 ret = specific_send_sig_info(sig, info, t); 1231 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1232 1233 return ret; 1234} 1235 1236/* 1237 * Nuke all other threads in the group. 1238 */ 1239int zap_other_threads(struct task_struct *p) 1240{ 1241 struct task_struct *t = p; 1242 int count = 0; 1243 1244 p->signal->group_stop_count = 0; 1245 1246 while_each_thread(p, t) { 1247 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1248 count++; 1249 1250 /* Don't bother with already dead threads */ 1251 if (t->exit_state) 1252 continue; 1253 sigaddset(&t->pending.signal, SIGKILL); 1254 signal_wake_up(t, 1); 1255 } 1256 1257 return count; 1258} 1259 1260struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1261 unsigned long *flags) 1262{ 1263 struct sighand_struct *sighand; 1264 1265 for (;;) { 1266 /* 1267 * Disable interrupts early to avoid deadlocks. 1268 * See rcu_read_unlock() comment header for details. 1269 */ 1270 local_irq_save(*flags); 1271 rcu_read_lock(); 1272 sighand = rcu_dereference(tsk->sighand); 1273 if (unlikely(sighand == NULL)) { 1274 rcu_read_unlock(); 1275 local_irq_restore(*flags); 1276 break; 1277 } 1278 /* 1279 * This sighand can be already freed and even reused, but 1280 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which 1281 * initializes ->siglock: this slab can't go away, it has 1282 * the same object type, ->siglock can't be reinitialized. 1283 * 1284 * We need to ensure that tsk->sighand is still the same 1285 * after we take the lock, we can race with de_thread() or 1286 * __exit_signal(). In the latter case the next iteration 1287 * must see ->sighand == NULL. 1288 */ 1289 spin_lock(&sighand->siglock); 1290 if (likely(sighand == tsk->sighand)) { 1291 rcu_read_unlock(); 1292 break; 1293 } 1294 spin_unlock(&sighand->siglock); 1295 rcu_read_unlock(); 1296 local_irq_restore(*flags); 1297 } 1298 1299 return sighand; 1300} 1301 1302/* 1303 * send signal info to all the members of a group 1304 */ 1305int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1306{ 1307 int ret; 1308 1309 rcu_read_lock(); 1310 ret = check_kill_permission(sig, info, p); 1311 rcu_read_unlock(); 1312 1313 if (!ret && sig) 1314 ret = do_send_sig_info(sig, info, p, true); 1315 1316 return ret; 1317} 1318 1319/* 1320 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1321 * control characters do (^C, ^Z etc) 1322 * - the caller must hold at least a readlock on tasklist_lock 1323 */ 1324int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1325{ 1326 struct task_struct *p = NULL; 1327 int retval, success; 1328 1329 success = 0; 1330 retval = -ESRCH; 1331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1332 int err = group_send_sig_info(sig, info, p); 1333 success |= !err; 1334 retval = err; 1335 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1336 return success ? 0 : retval; 1337} 1338 1339int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1340{ 1341 int error = -ESRCH; 1342 struct task_struct *p; 1343 1344 for (;;) { 1345 rcu_read_lock(); 1346 p = pid_task(pid, PIDTYPE_PID); 1347 if (p) 1348 error = group_send_sig_info(sig, info, p); 1349 rcu_read_unlock(); 1350 if (likely(!p || error != -ESRCH)) 1351 return error; 1352 1353 /* 1354 * The task was unhashed in between, try again. If it 1355 * is dead, pid_task() will return NULL, if we race with 1356 * de_thread() it will find the new leader. 1357 */ 1358 } 1359} 1360 1361int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1362{ 1363 int error; 1364 rcu_read_lock(); 1365 error = kill_pid_info(sig, info, find_vpid(pid)); 1366 rcu_read_unlock(); 1367 return error; 1368} 1369 1370static int kill_as_cred_perm(const struct cred *cred, 1371 struct task_struct *target) 1372{ 1373 const struct cred *pcred = __task_cred(target); 1374 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1375 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1376 return 0; 1377 return 1; 1378} 1379 1380/* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1381int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1382 const struct cred *cred, u32 secid) 1383{ 1384 int ret = -EINVAL; 1385 struct task_struct *p; 1386 unsigned long flags; 1387 1388 if (!valid_signal(sig)) 1389 return ret; 1390 1391 rcu_read_lock(); 1392 p = pid_task(pid, PIDTYPE_PID); 1393 if (!p) { 1394 ret = -ESRCH; 1395 goto out_unlock; 1396 } 1397 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1398 ret = -EPERM; 1399 goto out_unlock; 1400 } 1401 ret = security_task_kill(p, info, sig, secid); 1402 if (ret) 1403 goto out_unlock; 1404 1405 if (sig) { 1406 if (lock_task_sighand(p, &flags)) { 1407 ret = __send_signal(sig, info, p, 1, 0); 1408 unlock_task_sighand(p, &flags); 1409 } else 1410 ret = -ESRCH; 1411 } 1412out_unlock: 1413 rcu_read_unlock(); 1414 return ret; 1415} 1416EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1417 1418/* 1419 * kill_something_info() interprets pid in interesting ways just like kill(2). 1420 * 1421 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1422 * is probably wrong. Should make it like BSD or SYSV. 1423 */ 1424 1425static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1426{ 1427 int ret; 1428 1429 if (pid > 0) { 1430 rcu_read_lock(); 1431 ret = kill_pid_info(sig, info, find_vpid(pid)); 1432 rcu_read_unlock(); 1433 return ret; 1434 } 1435 1436 read_lock(&tasklist_lock); 1437 if (pid != -1) { 1438 ret = __kill_pgrp_info(sig, info, 1439 pid ? find_vpid(-pid) : task_pgrp(current)); 1440 } else { 1441 int retval = 0, count = 0; 1442 struct task_struct * p; 1443 1444 for_each_process(p) { 1445 if (task_pid_vnr(p) > 1 && 1446 !same_thread_group(p, current)) { 1447 int err = group_send_sig_info(sig, info, p); 1448 ++count; 1449 if (err != -EPERM) 1450 retval = err; 1451 } 1452 } 1453 ret = count ? retval : -ESRCH; 1454 } 1455 read_unlock(&tasklist_lock); 1456 1457 return ret; 1458} 1459 1460/* 1461 * These are for backward compatibility with the rest of the kernel source. 1462 */ 1463 1464int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1465{ 1466 /* 1467 * Make sure legacy kernel users don't send in bad values 1468 * (normal paths check this in check_kill_permission). 1469 */ 1470 if (!valid_signal(sig)) 1471 return -EINVAL; 1472 1473 return do_send_sig_info(sig, info, p, false); 1474} 1475 1476#define __si_special(priv) \ 1477 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1478 1479int 1480send_sig(int sig, struct task_struct *p, int priv) 1481{ 1482 return send_sig_info(sig, __si_special(priv), p); 1483} 1484 1485void 1486force_sig(int sig, struct task_struct *p) 1487{ 1488 force_sig_info(sig, SEND_SIG_PRIV, p); 1489} 1490 1491/* 1492 * When things go south during signal handling, we 1493 * will force a SIGSEGV. And if the signal that caused 1494 * the problem was already a SIGSEGV, we'll want to 1495 * make sure we don't even try to deliver the signal.. 1496 */ 1497int 1498force_sigsegv(int sig, struct task_struct *p) 1499{ 1500 if (sig == SIGSEGV) { 1501 unsigned long flags; 1502 spin_lock_irqsave(&p->sighand->siglock, flags); 1503 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1504 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1505 } 1506 force_sig(SIGSEGV, p); 1507 return 0; 1508} 1509 1510int kill_pgrp(struct pid *pid, int sig, int priv) 1511{ 1512 int ret; 1513 1514 read_lock(&tasklist_lock); 1515 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1516 read_unlock(&tasklist_lock); 1517 1518 return ret; 1519} 1520EXPORT_SYMBOL(kill_pgrp); 1521 1522int kill_pid(struct pid *pid, int sig, int priv) 1523{ 1524 return kill_pid_info(sig, __si_special(priv), pid); 1525} 1526EXPORT_SYMBOL(kill_pid); 1527 1528/* 1529 * These functions support sending signals using preallocated sigqueue 1530 * structures. This is needed "because realtime applications cannot 1531 * afford to lose notifications of asynchronous events, like timer 1532 * expirations or I/O completions". In the case of POSIX Timers 1533 * we allocate the sigqueue structure from the timer_create. If this 1534 * allocation fails we are able to report the failure to the application 1535 * with an EAGAIN error. 1536 */ 1537struct sigqueue *sigqueue_alloc(void) 1538{ 1539 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1540 1541 if (q) 1542 q->flags |= SIGQUEUE_PREALLOC; 1543 1544 return q; 1545} 1546 1547void sigqueue_free(struct sigqueue *q) 1548{ 1549 unsigned long flags; 1550 spinlock_t *lock = ¤t->sighand->siglock; 1551 1552 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1553 /* 1554 * We must hold ->siglock while testing q->list 1555 * to serialize with collect_signal() or with 1556 * __exit_signal()->flush_sigqueue(). 1557 */ 1558 spin_lock_irqsave(lock, flags); 1559 q->flags &= ~SIGQUEUE_PREALLOC; 1560 /* 1561 * If it is queued it will be freed when dequeued, 1562 * like the "regular" sigqueue. 1563 */ 1564 if (!list_empty(&q->list)) 1565 q = NULL; 1566 spin_unlock_irqrestore(lock, flags); 1567 1568 if (q) 1569 __sigqueue_free(q); 1570} 1571 1572int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1573{ 1574 int sig = q->info.si_signo; 1575 struct sigpending *pending; 1576 unsigned long flags; 1577 int ret, result; 1578 1579 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1580 1581 ret = -1; 1582 if (!likely(lock_task_sighand(t, &flags))) 1583 goto ret; 1584 1585 ret = 1; /* the signal is ignored */ 1586 result = TRACE_SIGNAL_IGNORED; 1587 if (!prepare_signal(sig, t, false)) 1588 goto out; 1589 1590 ret = 0; 1591 if (unlikely(!list_empty(&q->list))) { 1592 /* 1593 * If an SI_TIMER entry is already queue just increment 1594 * the overrun count. 1595 */ 1596 BUG_ON(q->info.si_code != SI_TIMER); 1597 q->info.si_overrun++; 1598 result = TRACE_SIGNAL_ALREADY_PENDING; 1599 goto out; 1600 } 1601 q->info.si_overrun = 0; 1602 1603 signalfd_notify(t, sig); 1604 pending = group ? &t->signal->shared_pending : &t->pending; 1605 list_add_tail(&q->list, &pending->list); 1606 sigaddset(&pending->signal, sig); 1607 complete_signal(sig, t, group); 1608 result = TRACE_SIGNAL_DELIVERED; 1609out: 1610 trace_signal_generate(sig, &q->info, t, group, result); 1611 unlock_task_sighand(t, &flags); 1612ret: 1613 return ret; 1614} 1615 1616/* 1617 * Let a parent know about the death of a child. 1618 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1619 * 1620 * Returns true if our parent ignored us and so we've switched to 1621 * self-reaping. 1622 */ 1623bool do_notify_parent(struct task_struct *tsk, int sig) 1624{ 1625 struct siginfo info; 1626 unsigned long flags; 1627 struct sighand_struct *psig; 1628 bool autoreap = false; 1629 cputime_t utime, stime; 1630 1631 BUG_ON(sig == -1); 1632 1633 /* do_notify_parent_cldstop should have been called instead. */ 1634 BUG_ON(task_is_stopped_or_traced(tsk)); 1635 1636 BUG_ON(!tsk->ptrace && 1637 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1638 1639 if (sig != SIGCHLD) { 1640 /* 1641 * This is only possible if parent == real_parent. 1642 * Check if it has changed security domain. 1643 */ 1644 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1645 sig = SIGCHLD; 1646 } 1647 1648 info.si_signo = sig; 1649 info.si_errno = 0; 1650 /* 1651 * We are under tasklist_lock here so our parent is tied to 1652 * us and cannot change. 1653 * 1654 * task_active_pid_ns will always return the same pid namespace 1655 * until a task passes through release_task. 1656 * 1657 * write_lock() currently calls preempt_disable() which is the 1658 * same as rcu_read_lock(), but according to Oleg, this is not 1659 * correct to rely on this 1660 */ 1661 rcu_read_lock(); 1662 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1663 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1664 task_uid(tsk)); 1665 rcu_read_unlock(); 1666 1667 task_cputime(tsk, &utime, &stime); 1668 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime); 1669 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime); 1670 1671 info.si_status = tsk->exit_code & 0x7f; 1672 if (tsk->exit_code & 0x80) 1673 info.si_code = CLD_DUMPED; 1674 else if (tsk->exit_code & 0x7f) 1675 info.si_code = CLD_KILLED; 1676 else { 1677 info.si_code = CLD_EXITED; 1678 info.si_status = tsk->exit_code >> 8; 1679 } 1680 1681 psig = tsk->parent->sighand; 1682 spin_lock_irqsave(&psig->siglock, flags); 1683 if (!tsk->ptrace && sig == SIGCHLD && 1684 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1685 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1686 /* 1687 * We are exiting and our parent doesn't care. POSIX.1 1688 * defines special semantics for setting SIGCHLD to SIG_IGN 1689 * or setting the SA_NOCLDWAIT flag: we should be reaped 1690 * automatically and not left for our parent's wait4 call. 1691 * Rather than having the parent do it as a magic kind of 1692 * signal handler, we just set this to tell do_exit that we 1693 * can be cleaned up without becoming a zombie. Note that 1694 * we still call __wake_up_parent in this case, because a 1695 * blocked sys_wait4 might now return -ECHILD. 1696 * 1697 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1698 * is implementation-defined: we do (if you don't want 1699 * it, just use SIG_IGN instead). 1700 */ 1701 autoreap = true; 1702 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1703 sig = 0; 1704 } 1705 if (valid_signal(sig) && sig) 1706 __group_send_sig_info(sig, &info, tsk->parent); 1707 __wake_up_parent(tsk, tsk->parent); 1708 spin_unlock_irqrestore(&psig->siglock, flags); 1709 1710 return autoreap; 1711} 1712 1713/** 1714 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1715 * @tsk: task reporting the state change 1716 * @for_ptracer: the notification is for ptracer 1717 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1718 * 1719 * Notify @tsk's parent that the stopped/continued state has changed. If 1720 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1721 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1722 * 1723 * CONTEXT: 1724 * Must be called with tasklist_lock at least read locked. 1725 */ 1726static void do_notify_parent_cldstop(struct task_struct *tsk, 1727 bool for_ptracer, int why) 1728{ 1729 struct siginfo info; 1730 unsigned long flags; 1731 struct task_struct *parent; 1732 struct sighand_struct *sighand; 1733 cputime_t utime, stime; 1734 1735 if (for_ptracer) { 1736 parent = tsk->parent; 1737 } else { 1738 tsk = tsk->group_leader; 1739 parent = tsk->real_parent; 1740 } 1741 1742 info.si_signo = SIGCHLD; 1743 info.si_errno = 0; 1744 /* 1745 * see comment in do_notify_parent() about the following 4 lines 1746 */ 1747 rcu_read_lock(); 1748 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1749 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1750 rcu_read_unlock(); 1751 1752 task_cputime(tsk, &utime, &stime); 1753 info.si_utime = cputime_to_clock_t(utime); 1754 info.si_stime = cputime_to_clock_t(stime); 1755 1756 info.si_code = why; 1757 switch (why) { 1758 case CLD_CONTINUED: 1759 info.si_status = SIGCONT; 1760 break; 1761 case CLD_STOPPED: 1762 info.si_status = tsk->signal->group_exit_code & 0x7f; 1763 break; 1764 case CLD_TRAPPED: 1765 info.si_status = tsk->exit_code & 0x7f; 1766 break; 1767 default: 1768 BUG(); 1769 } 1770 1771 sighand = parent->sighand; 1772 spin_lock_irqsave(&sighand->siglock, flags); 1773 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1774 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1775 __group_send_sig_info(SIGCHLD, &info, parent); 1776 /* 1777 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1778 */ 1779 __wake_up_parent(tsk, parent); 1780 spin_unlock_irqrestore(&sighand->siglock, flags); 1781} 1782 1783static inline int may_ptrace_stop(void) 1784{ 1785 if (!likely(current->ptrace)) 1786 return 0; 1787 /* 1788 * Are we in the middle of do_coredump? 1789 * If so and our tracer is also part of the coredump stopping 1790 * is a deadlock situation, and pointless because our tracer 1791 * is dead so don't allow us to stop. 1792 * If SIGKILL was already sent before the caller unlocked 1793 * ->siglock we must see ->core_state != NULL. Otherwise it 1794 * is safe to enter schedule(). 1795 * 1796 * This is almost outdated, a task with the pending SIGKILL can't 1797 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1798 * after SIGKILL was already dequeued. 1799 */ 1800 if (unlikely(current->mm->core_state) && 1801 unlikely(current->mm == current->parent->mm)) 1802 return 0; 1803 1804 return 1; 1805} 1806 1807/* 1808 * Return non-zero if there is a SIGKILL that should be waking us up. 1809 * Called with the siglock held. 1810 */ 1811static int sigkill_pending(struct task_struct *tsk) 1812{ 1813 return sigismember(&tsk->pending.signal, SIGKILL) || 1814 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1815} 1816 1817/* 1818 * This must be called with current->sighand->siglock held. 1819 * 1820 * This should be the path for all ptrace stops. 1821 * We always set current->last_siginfo while stopped here. 1822 * That makes it a way to test a stopped process for 1823 * being ptrace-stopped vs being job-control-stopped. 1824 * 1825 * If we actually decide not to stop at all because the tracer 1826 * is gone, we keep current->exit_code unless clear_code. 1827 */ 1828static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1829 __releases(¤t->sighand->siglock) 1830 __acquires(¤t->sighand->siglock) 1831{ 1832 bool gstop_done = false; 1833 1834 if (arch_ptrace_stop_needed(exit_code, info)) { 1835 /* 1836 * The arch code has something special to do before a 1837 * ptrace stop. This is allowed to block, e.g. for faults 1838 * on user stack pages. We can't keep the siglock while 1839 * calling arch_ptrace_stop, so we must release it now. 1840 * To preserve proper semantics, we must do this before 1841 * any signal bookkeeping like checking group_stop_count. 1842 * Meanwhile, a SIGKILL could come in before we retake the 1843 * siglock. That must prevent us from sleeping in TASK_TRACED. 1844 * So after regaining the lock, we must check for SIGKILL. 1845 */ 1846 spin_unlock_irq(¤t->sighand->siglock); 1847 arch_ptrace_stop(exit_code, info); 1848 spin_lock_irq(¤t->sighand->siglock); 1849 if (sigkill_pending(current)) 1850 return; 1851 } 1852 1853 /* 1854 * We're committing to trapping. TRACED should be visible before 1855 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1856 * Also, transition to TRACED and updates to ->jobctl should be 1857 * atomic with respect to siglock and should be done after the arch 1858 * hook as siglock is released and regrabbed across it. 1859 */ 1860 set_current_state(TASK_TRACED); 1861 1862 current->last_siginfo = info; 1863 current->exit_code = exit_code; 1864 1865 /* 1866 * If @why is CLD_STOPPED, we're trapping to participate in a group 1867 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1868 * across siglock relocks since INTERRUPT was scheduled, PENDING 1869 * could be clear now. We act as if SIGCONT is received after 1870 * TASK_TRACED is entered - ignore it. 1871 */ 1872 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1873 gstop_done = task_participate_group_stop(current); 1874 1875 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1876 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1877 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1878 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1879 1880 /* entering a trap, clear TRAPPING */ 1881 task_clear_jobctl_trapping(current); 1882 1883 spin_unlock_irq(¤t->sighand->siglock); 1884 read_lock(&tasklist_lock); 1885 if (may_ptrace_stop()) { 1886 /* 1887 * Notify parents of the stop. 1888 * 1889 * While ptraced, there are two parents - the ptracer and 1890 * the real_parent of the group_leader. The ptracer should 1891 * know about every stop while the real parent is only 1892 * interested in the completion of group stop. The states 1893 * for the two don't interact with each other. Notify 1894 * separately unless they're gonna be duplicates. 1895 */ 1896 do_notify_parent_cldstop(current, true, why); 1897 if (gstop_done && ptrace_reparented(current)) 1898 do_notify_parent_cldstop(current, false, why); 1899 1900 /* 1901 * Don't want to allow preemption here, because 1902 * sys_ptrace() needs this task to be inactive. 1903 * 1904 * XXX: implement read_unlock_no_resched(). 1905 */ 1906 preempt_disable(); 1907 read_unlock(&tasklist_lock); 1908 preempt_enable_no_resched(); 1909 freezable_schedule(); 1910 } else { 1911 /* 1912 * By the time we got the lock, our tracer went away. 1913 * Don't drop the lock yet, another tracer may come. 1914 * 1915 * If @gstop_done, the ptracer went away between group stop 1916 * completion and here. During detach, it would have set 1917 * JOBCTL_STOP_PENDING on us and we'll re-enter 1918 * TASK_STOPPED in do_signal_stop() on return, so notifying 1919 * the real parent of the group stop completion is enough. 1920 */ 1921 if (gstop_done) 1922 do_notify_parent_cldstop(current, false, why); 1923 1924 /* tasklist protects us from ptrace_freeze_traced() */ 1925 __set_current_state(TASK_RUNNING); 1926 if (clear_code) 1927 current->exit_code = 0; 1928 read_unlock(&tasklist_lock); 1929 } 1930 1931 /* 1932 * We are back. Now reacquire the siglock before touching 1933 * last_siginfo, so that we are sure to have synchronized with 1934 * any signal-sending on another CPU that wants to examine it. 1935 */ 1936 spin_lock_irq(¤t->sighand->siglock); 1937 current->last_siginfo = NULL; 1938 1939 /* LISTENING can be set only during STOP traps, clear it */ 1940 current->jobctl &= ~JOBCTL_LISTENING; 1941 1942 /* 1943 * Queued signals ignored us while we were stopped for tracing. 1944 * So check for any that we should take before resuming user mode. 1945 * This sets TIF_SIGPENDING, but never clears it. 1946 */ 1947 recalc_sigpending_tsk(current); 1948} 1949 1950static void ptrace_do_notify(int signr, int exit_code, int why) 1951{ 1952 siginfo_t info; 1953 1954 memset(&info, 0, sizeof info); 1955 info.si_signo = signr; 1956 info.si_code = exit_code; 1957 info.si_pid = task_pid_vnr(current); 1958 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1959 1960 /* Let the debugger run. */ 1961 ptrace_stop(exit_code, why, 1, &info); 1962} 1963 1964void ptrace_notify(int exit_code) 1965{ 1966 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1967 if (unlikely(current->task_works)) 1968 task_work_run(); 1969 1970 spin_lock_irq(¤t->sighand->siglock); 1971 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1972 spin_unlock_irq(¤t->sighand->siglock); 1973} 1974 1975/** 1976 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1977 * @signr: signr causing group stop if initiating 1978 * 1979 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1980 * and participate in it. If already set, participate in the existing 1981 * group stop. If participated in a group stop (and thus slept), %true is 1982 * returned with siglock released. 1983 * 1984 * If ptraced, this function doesn't handle stop itself. Instead, 1985 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1986 * untouched. The caller must ensure that INTERRUPT trap handling takes 1987 * places afterwards. 1988 * 1989 * CONTEXT: 1990 * Must be called with @current->sighand->siglock held, which is released 1991 * on %true return. 1992 * 1993 * RETURNS: 1994 * %false if group stop is already cancelled or ptrace trap is scheduled. 1995 * %true if participated in group stop. 1996 */ 1997static bool do_signal_stop(int signr) 1998 __releases(¤t->sighand->siglock) 1999{ 2000 struct signal_struct *sig = current->signal; 2001 2002 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2003 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2004 struct task_struct *t; 2005 2006 /* signr will be recorded in task->jobctl for retries */ 2007 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2008 2009 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2010 unlikely(signal_group_exit(sig))) 2011 return false; 2012 /* 2013 * There is no group stop already in progress. We must 2014 * initiate one now. 2015 * 2016 * While ptraced, a task may be resumed while group stop is 2017 * still in effect and then receive a stop signal and 2018 * initiate another group stop. This deviates from the 2019 * usual behavior as two consecutive stop signals can't 2020 * cause two group stops when !ptraced. That is why we 2021 * also check !task_is_stopped(t) below. 2022 * 2023 * The condition can be distinguished by testing whether 2024 * SIGNAL_STOP_STOPPED is already set. Don't generate 2025 * group_exit_code in such case. 2026 * 2027 * This is not necessary for SIGNAL_STOP_CONTINUED because 2028 * an intervening stop signal is required to cause two 2029 * continued events regardless of ptrace. 2030 */ 2031 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2032 sig->group_exit_code = signr; 2033 2034 sig->group_stop_count = 0; 2035 2036 if (task_set_jobctl_pending(current, signr | gstop)) 2037 sig->group_stop_count++; 2038 2039 t = current; 2040 while_each_thread(current, t) { 2041 /* 2042 * Setting state to TASK_STOPPED for a group 2043 * stop is always done with the siglock held, 2044 * so this check has no races. 2045 */ 2046 if (!task_is_stopped(t) && 2047 task_set_jobctl_pending(t, signr | gstop)) { 2048 sig->group_stop_count++; 2049 if (likely(!(t->ptrace & PT_SEIZED))) 2050 signal_wake_up(t, 0); 2051 else 2052 ptrace_trap_notify(t); 2053 } 2054 } 2055 } 2056 2057 if (likely(!current->ptrace)) { 2058 int notify = 0; 2059 2060 /* 2061 * If there are no other threads in the group, or if there 2062 * is a group stop in progress and we are the last to stop, 2063 * report to the parent. 2064 */ 2065 if (task_participate_group_stop(current)) 2066 notify = CLD_STOPPED; 2067 2068 __set_current_state(TASK_STOPPED); 2069 spin_unlock_irq(¤t->sighand->siglock); 2070 2071 /* 2072 * Notify the parent of the group stop completion. Because 2073 * we're not holding either the siglock or tasklist_lock 2074 * here, ptracer may attach inbetween; however, this is for 2075 * group stop and should always be delivered to the real 2076 * parent of the group leader. The new ptracer will get 2077 * its notification when this task transitions into 2078 * TASK_TRACED. 2079 */ 2080 if (notify) { 2081 read_lock(&tasklist_lock); 2082 do_notify_parent_cldstop(current, false, notify); 2083 read_unlock(&tasklist_lock); 2084 } 2085 2086 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2087 freezable_schedule(); 2088 return true; 2089 } else { 2090 /* 2091 * While ptraced, group stop is handled by STOP trap. 2092 * Schedule it and let the caller deal with it. 2093 */ 2094 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2095 return false; 2096 } 2097} 2098 2099/** 2100 * do_jobctl_trap - take care of ptrace jobctl traps 2101 * 2102 * When PT_SEIZED, it's used for both group stop and explicit 2103 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2104 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2105 * the stop signal; otherwise, %SIGTRAP. 2106 * 2107 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2108 * number as exit_code and no siginfo. 2109 * 2110 * CONTEXT: 2111 * Must be called with @current->sighand->siglock held, which may be 2112 * released and re-acquired before returning with intervening sleep. 2113 */ 2114static void do_jobctl_trap(void) 2115{ 2116 struct signal_struct *signal = current->signal; 2117 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2118 2119 if (current->ptrace & PT_SEIZED) { 2120 if (!signal->group_stop_count && 2121 !(signal->flags & SIGNAL_STOP_STOPPED)) 2122 signr = SIGTRAP; 2123 WARN_ON_ONCE(!signr); 2124 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2125 CLD_STOPPED); 2126 } else { 2127 WARN_ON_ONCE(!signr); 2128 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2129 current->exit_code = 0; 2130 } 2131} 2132 2133static int ptrace_signal(int signr, siginfo_t *info) 2134{ 2135 ptrace_signal_deliver(); 2136 /* 2137 * We do not check sig_kernel_stop(signr) but set this marker 2138 * unconditionally because we do not know whether debugger will 2139 * change signr. This flag has no meaning unless we are going 2140 * to stop after return from ptrace_stop(). In this case it will 2141 * be checked in do_signal_stop(), we should only stop if it was 2142 * not cleared by SIGCONT while we were sleeping. See also the 2143 * comment in dequeue_signal(). 2144 */ 2145 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2146 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2147 2148 /* We're back. Did the debugger cancel the sig? */ 2149 signr = current->exit_code; 2150 if (signr == 0) 2151 return signr; 2152 2153 current->exit_code = 0; 2154 2155 /* 2156 * Update the siginfo structure if the signal has 2157 * changed. If the debugger wanted something 2158 * specific in the siginfo structure then it should 2159 * have updated *info via PTRACE_SETSIGINFO. 2160 */ 2161 if (signr != info->si_signo) { 2162 info->si_signo = signr; 2163 info->si_errno = 0; 2164 info->si_code = SI_USER; 2165 rcu_read_lock(); 2166 info->si_pid = task_pid_vnr(current->parent); 2167 info->si_uid = from_kuid_munged(current_user_ns(), 2168 task_uid(current->parent)); 2169 rcu_read_unlock(); 2170 } 2171 2172 /* If the (new) signal is now blocked, requeue it. */ 2173 if (sigismember(¤t->blocked, signr)) { 2174 specific_send_sig_info(signr, info, current); 2175 signr = 0; 2176 } 2177 2178 return signr; 2179} 2180 2181int get_signal(struct ksignal *ksig) 2182{ 2183 struct sighand_struct *sighand = current->sighand; 2184 struct signal_struct *signal = current->signal; 2185 int signr; 2186 2187 if (unlikely(current->task_works)) 2188 task_work_run(); 2189 2190 if (unlikely(uprobe_deny_signal())) 2191 return 0; 2192 2193 /* 2194 * Do this once, we can't return to user-mode if freezing() == T. 2195 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2196 * thus do not need another check after return. 2197 */ 2198 try_to_freeze(); 2199 2200relock: 2201 spin_lock_irq(&sighand->siglock); 2202 /* 2203 * Every stopped thread goes here after wakeup. Check to see if 2204 * we should notify the parent, prepare_signal(SIGCONT) encodes 2205 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2206 */ 2207 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2208 int why; 2209 2210 if (signal->flags & SIGNAL_CLD_CONTINUED) 2211 why = CLD_CONTINUED; 2212 else 2213 why = CLD_STOPPED; 2214 2215 signal->flags &= ~SIGNAL_CLD_MASK; 2216 2217 spin_unlock_irq(&sighand->siglock); 2218 2219 /* 2220 * Notify the parent that we're continuing. This event is 2221 * always per-process and doesn't make whole lot of sense 2222 * for ptracers, who shouldn't consume the state via 2223 * wait(2) either, but, for backward compatibility, notify 2224 * the ptracer of the group leader too unless it's gonna be 2225 * a duplicate. 2226 */ 2227 read_lock(&tasklist_lock); 2228 do_notify_parent_cldstop(current, false, why); 2229 2230 if (ptrace_reparented(current->group_leader)) 2231 do_notify_parent_cldstop(current->group_leader, 2232 true, why); 2233 read_unlock(&tasklist_lock); 2234 2235 goto relock; 2236 } 2237 2238 for (;;) { 2239 struct k_sigaction *ka; 2240 2241 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2242 do_signal_stop(0)) 2243 goto relock; 2244 2245 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2246 do_jobctl_trap(); 2247 spin_unlock_irq(&sighand->siglock); 2248 goto relock; 2249 } 2250 2251 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2252 2253 if (!signr) 2254 break; /* will return 0 */ 2255 2256 if (unlikely(current->ptrace) && signr != SIGKILL) { 2257 signr = ptrace_signal(signr, &ksig->info); 2258 if (!signr) 2259 continue; 2260 } 2261 2262 ka = &sighand->action[signr-1]; 2263 2264 /* Trace actually delivered signals. */ 2265 trace_signal_deliver(signr, &ksig->info, ka); 2266 2267 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2268 continue; 2269 if (ka->sa.sa_handler != SIG_DFL) { 2270 /* Run the handler. */ 2271 ksig->ka = *ka; 2272 2273 if (ka->sa.sa_flags & SA_ONESHOT) 2274 ka->sa.sa_handler = SIG_DFL; 2275 2276 break; /* will return non-zero "signr" value */ 2277 } 2278 2279 /* 2280 * Now we are doing the default action for this signal. 2281 */ 2282 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2283 continue; 2284 2285 /* 2286 * Global init gets no signals it doesn't want. 2287 * Container-init gets no signals it doesn't want from same 2288 * container. 2289 * 2290 * Note that if global/container-init sees a sig_kernel_only() 2291 * signal here, the signal must have been generated internally 2292 * or must have come from an ancestor namespace. In either 2293 * case, the signal cannot be dropped. 2294 */ 2295 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2296 !sig_kernel_only(signr)) 2297 continue; 2298 2299 if (sig_kernel_stop(signr)) { 2300 /* 2301 * The default action is to stop all threads in 2302 * the thread group. The job control signals 2303 * do nothing in an orphaned pgrp, but SIGSTOP 2304 * always works. Note that siglock needs to be 2305 * dropped during the call to is_orphaned_pgrp() 2306 * because of lock ordering with tasklist_lock. 2307 * This allows an intervening SIGCONT to be posted. 2308 * We need to check for that and bail out if necessary. 2309 */ 2310 if (signr != SIGSTOP) { 2311 spin_unlock_irq(&sighand->siglock); 2312 2313 /* signals can be posted during this window */ 2314 2315 if (is_current_pgrp_orphaned()) 2316 goto relock; 2317 2318 spin_lock_irq(&sighand->siglock); 2319 } 2320 2321 if (likely(do_signal_stop(ksig->info.si_signo))) { 2322 /* It released the siglock. */ 2323 goto relock; 2324 } 2325 2326 /* 2327 * We didn't actually stop, due to a race 2328 * with SIGCONT or something like that. 2329 */ 2330 continue; 2331 } 2332 2333 spin_unlock_irq(&sighand->siglock); 2334 2335 /* 2336 * Anything else is fatal, maybe with a core dump. 2337 */ 2338 current->flags |= PF_SIGNALED; 2339 2340 if (sig_kernel_coredump(signr)) { 2341 if (print_fatal_signals) 2342 print_fatal_signal(ksig->info.si_signo); 2343 proc_coredump_connector(current); 2344 /* 2345 * If it was able to dump core, this kills all 2346 * other threads in the group and synchronizes with 2347 * their demise. If we lost the race with another 2348 * thread getting here, it set group_exit_code 2349 * first and our do_group_exit call below will use 2350 * that value and ignore the one we pass it. 2351 */ 2352 do_coredump(&ksig->info); 2353 } 2354 2355 /* 2356 * Death signals, no core dump. 2357 */ 2358 do_group_exit(ksig->info.si_signo); 2359 /* NOTREACHED */ 2360 } 2361 spin_unlock_irq(&sighand->siglock); 2362 2363 ksig->sig = signr; 2364 return ksig->sig > 0; 2365} 2366 2367/** 2368 * signal_delivered - 2369 * @ksig: kernel signal struct 2370 * @stepping: nonzero if debugger single-step or block-step in use 2371 * 2372 * This function should be called when a signal has successfully been 2373 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2374 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2375 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2376 */ 2377static void signal_delivered(struct ksignal *ksig, int stepping) 2378{ 2379 sigset_t blocked; 2380 2381 /* A signal was successfully delivered, and the 2382 saved sigmask was stored on the signal frame, 2383 and will be restored by sigreturn. So we can 2384 simply clear the restore sigmask flag. */ 2385 clear_restore_sigmask(); 2386 2387 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2388 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2389 sigaddset(&blocked, ksig->sig); 2390 set_current_blocked(&blocked); 2391 tracehook_signal_handler(stepping); 2392} 2393 2394void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2395{ 2396 if (failed) 2397 force_sigsegv(ksig->sig, current); 2398 else 2399 signal_delivered(ksig, stepping); 2400} 2401 2402/* 2403 * It could be that complete_signal() picked us to notify about the 2404 * group-wide signal. Other threads should be notified now to take 2405 * the shared signals in @which since we will not. 2406 */ 2407static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2408{ 2409 sigset_t retarget; 2410 struct task_struct *t; 2411 2412 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2413 if (sigisemptyset(&retarget)) 2414 return; 2415 2416 t = tsk; 2417 while_each_thread(tsk, t) { 2418 if (t->flags & PF_EXITING) 2419 continue; 2420 2421 if (!has_pending_signals(&retarget, &t->blocked)) 2422 continue; 2423 /* Remove the signals this thread can handle. */ 2424 sigandsets(&retarget, &retarget, &t->blocked); 2425 2426 if (!signal_pending(t)) 2427 signal_wake_up(t, 0); 2428 2429 if (sigisemptyset(&retarget)) 2430 break; 2431 } 2432} 2433 2434void exit_signals(struct task_struct *tsk) 2435{ 2436 int group_stop = 0; 2437 sigset_t unblocked; 2438 2439 /* 2440 * @tsk is about to have PF_EXITING set - lock out users which 2441 * expect stable threadgroup. 2442 */ 2443 threadgroup_change_begin(tsk); 2444 2445 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2446 tsk->flags |= PF_EXITING; 2447 threadgroup_change_end(tsk); 2448 return; 2449 } 2450 2451 spin_lock_irq(&tsk->sighand->siglock); 2452 /* 2453 * From now this task is not visible for group-wide signals, 2454 * see wants_signal(), do_signal_stop(). 2455 */ 2456 tsk->flags |= PF_EXITING; 2457 2458 threadgroup_change_end(tsk); 2459 2460 if (!signal_pending(tsk)) 2461 goto out; 2462 2463 unblocked = tsk->blocked; 2464 signotset(&unblocked); 2465 retarget_shared_pending(tsk, &unblocked); 2466 2467 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2468 task_participate_group_stop(tsk)) 2469 group_stop = CLD_STOPPED; 2470out: 2471 spin_unlock_irq(&tsk->sighand->siglock); 2472 2473 /* 2474 * If group stop has completed, deliver the notification. This 2475 * should always go to the real parent of the group leader. 2476 */ 2477 if (unlikely(group_stop)) { 2478 read_lock(&tasklist_lock); 2479 do_notify_parent_cldstop(tsk, false, group_stop); 2480 read_unlock(&tasklist_lock); 2481 } 2482} 2483 2484EXPORT_SYMBOL(recalc_sigpending); 2485EXPORT_SYMBOL_GPL(dequeue_signal); 2486EXPORT_SYMBOL(flush_signals); 2487EXPORT_SYMBOL(force_sig); 2488EXPORT_SYMBOL(send_sig); 2489EXPORT_SYMBOL(send_sig_info); 2490EXPORT_SYMBOL(sigprocmask); 2491EXPORT_SYMBOL(block_all_signals); 2492EXPORT_SYMBOL(unblock_all_signals); 2493 2494 2495/* 2496 * System call entry points. 2497 */ 2498 2499/** 2500 * sys_restart_syscall - restart a system call 2501 */ 2502SYSCALL_DEFINE0(restart_syscall) 2503{ 2504 struct restart_block *restart = ¤t->restart_block; 2505 return restart->fn(restart); 2506} 2507 2508long do_no_restart_syscall(struct restart_block *param) 2509{ 2510 return -EINTR; 2511} 2512 2513static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2514{ 2515 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2516 sigset_t newblocked; 2517 /* A set of now blocked but previously unblocked signals. */ 2518 sigandnsets(&newblocked, newset, ¤t->blocked); 2519 retarget_shared_pending(tsk, &newblocked); 2520 } 2521 tsk->blocked = *newset; 2522 recalc_sigpending(); 2523} 2524 2525/** 2526 * set_current_blocked - change current->blocked mask 2527 * @newset: new mask 2528 * 2529 * It is wrong to change ->blocked directly, this helper should be used 2530 * to ensure the process can't miss a shared signal we are going to block. 2531 */ 2532void set_current_blocked(sigset_t *newset) 2533{ 2534 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2535 __set_current_blocked(newset); 2536} 2537 2538void __set_current_blocked(const sigset_t *newset) 2539{ 2540 struct task_struct *tsk = current; 2541 2542 spin_lock_irq(&tsk->sighand->siglock); 2543 __set_task_blocked(tsk, newset); 2544 spin_unlock_irq(&tsk->sighand->siglock); 2545} 2546 2547/* 2548 * This is also useful for kernel threads that want to temporarily 2549 * (or permanently) block certain signals. 2550 * 2551 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2552 * interface happily blocks "unblockable" signals like SIGKILL 2553 * and friends. 2554 */ 2555int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2556{ 2557 struct task_struct *tsk = current; 2558 sigset_t newset; 2559 2560 /* Lockless, only current can change ->blocked, never from irq */ 2561 if (oldset) 2562 *oldset = tsk->blocked; 2563 2564 switch (how) { 2565 case SIG_BLOCK: 2566 sigorsets(&newset, &tsk->blocked, set); 2567 break; 2568 case SIG_UNBLOCK: 2569 sigandnsets(&newset, &tsk->blocked, set); 2570 break; 2571 case SIG_SETMASK: 2572 newset = *set; 2573 break; 2574 default: 2575 return -EINVAL; 2576 } 2577 2578 __set_current_blocked(&newset); 2579 return 0; 2580} 2581 2582/** 2583 * sys_rt_sigprocmask - change the list of currently blocked signals 2584 * @how: whether to add, remove, or set signals 2585 * @nset: stores pending signals 2586 * @oset: previous value of signal mask if non-null 2587 * @sigsetsize: size of sigset_t type 2588 */ 2589SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2590 sigset_t __user *, oset, size_t, sigsetsize) 2591{ 2592 sigset_t old_set, new_set; 2593 int error; 2594 2595 /* XXX: Don't preclude handling different sized sigset_t's. */ 2596 if (sigsetsize != sizeof(sigset_t)) 2597 return -EINVAL; 2598 2599 old_set = current->blocked; 2600 2601 if (nset) { 2602 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2603 return -EFAULT; 2604 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2605 2606 error = sigprocmask(how, &new_set, NULL); 2607 if (error) 2608 return error; 2609 } 2610 2611 if (oset) { 2612 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2613 return -EFAULT; 2614 } 2615 2616 return 0; 2617} 2618 2619#ifdef CONFIG_COMPAT 2620COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2621 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2622{ 2623#ifdef __BIG_ENDIAN 2624 sigset_t old_set = current->blocked; 2625 2626 /* XXX: Don't preclude handling different sized sigset_t's. */ 2627 if (sigsetsize != sizeof(sigset_t)) 2628 return -EINVAL; 2629 2630 if (nset) { 2631 compat_sigset_t new32; 2632 sigset_t new_set; 2633 int error; 2634 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2635 return -EFAULT; 2636 2637 sigset_from_compat(&new_set, &new32); 2638 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2639 2640 error = sigprocmask(how, &new_set, NULL); 2641 if (error) 2642 return error; 2643 } 2644 if (oset) { 2645 compat_sigset_t old32; 2646 sigset_to_compat(&old32, &old_set); 2647 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2648 return -EFAULT; 2649 } 2650 return 0; 2651#else 2652 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2653 (sigset_t __user *)oset, sigsetsize); 2654#endif 2655} 2656#endif 2657 2658static int do_sigpending(void *set, unsigned long sigsetsize) 2659{ 2660 if (sigsetsize > sizeof(sigset_t)) 2661 return -EINVAL; 2662 2663 spin_lock_irq(¤t->sighand->siglock); 2664 sigorsets(set, ¤t->pending.signal, 2665 ¤t->signal->shared_pending.signal); 2666 spin_unlock_irq(¤t->sighand->siglock); 2667 2668 /* Outside the lock because only this thread touches it. */ 2669 sigandsets(set, ¤t->blocked, set); 2670 return 0; 2671} 2672 2673/** 2674 * sys_rt_sigpending - examine a pending signal that has been raised 2675 * while blocked 2676 * @uset: stores pending signals 2677 * @sigsetsize: size of sigset_t type or larger 2678 */ 2679SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2680{ 2681 sigset_t set; 2682 int err = do_sigpending(&set, sigsetsize); 2683 if (!err && copy_to_user(uset, &set, sigsetsize)) 2684 err = -EFAULT; 2685 return err; 2686} 2687 2688#ifdef CONFIG_COMPAT 2689COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2690 compat_size_t, sigsetsize) 2691{ 2692#ifdef __BIG_ENDIAN 2693 sigset_t set; 2694 int err = do_sigpending(&set, sigsetsize); 2695 if (!err) { 2696 compat_sigset_t set32; 2697 sigset_to_compat(&set32, &set); 2698 /* we can get here only if sigsetsize <= sizeof(set) */ 2699 if (copy_to_user(uset, &set32, sigsetsize)) 2700 err = -EFAULT; 2701 } 2702 return err; 2703#else 2704 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2705#endif 2706} 2707#endif 2708 2709#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2710 2711int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2712{ 2713 int err; 2714 2715 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2716 return -EFAULT; 2717 if (from->si_code < 0) 2718 return __copy_to_user(to, from, sizeof(siginfo_t)) 2719 ? -EFAULT : 0; 2720 /* 2721 * If you change siginfo_t structure, please be sure 2722 * this code is fixed accordingly. 2723 * Please remember to update the signalfd_copyinfo() function 2724 * inside fs/signalfd.c too, in case siginfo_t changes. 2725 * It should never copy any pad contained in the structure 2726 * to avoid security leaks, but must copy the generic 2727 * 3 ints plus the relevant union member. 2728 */ 2729 err = __put_user(from->si_signo, &to->si_signo); 2730 err |= __put_user(from->si_errno, &to->si_errno); 2731 err |= __put_user((short)from->si_code, &to->si_code); 2732 switch (from->si_code & __SI_MASK) { 2733 case __SI_KILL: 2734 err |= __put_user(from->si_pid, &to->si_pid); 2735 err |= __put_user(from->si_uid, &to->si_uid); 2736 break; 2737 case __SI_TIMER: 2738 err |= __put_user(from->si_tid, &to->si_tid); 2739 err |= __put_user(from->si_overrun, &to->si_overrun); 2740 err |= __put_user(from->si_ptr, &to->si_ptr); 2741 break; 2742 case __SI_POLL: 2743 err |= __put_user(from->si_band, &to->si_band); 2744 err |= __put_user(from->si_fd, &to->si_fd); 2745 break; 2746 case __SI_FAULT: 2747 err |= __put_user(from->si_addr, &to->si_addr); 2748#ifdef __ARCH_SI_TRAPNO 2749 err |= __put_user(from->si_trapno, &to->si_trapno); 2750#endif 2751#ifdef BUS_MCEERR_AO 2752 /* 2753 * Other callers might not initialize the si_lsb field, 2754 * so check explicitly for the right codes here. 2755 */ 2756 if (from->si_signo == SIGBUS && 2757 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)) 2758 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2759#endif 2760#ifdef SEGV_BNDERR 2761 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2762 err |= __put_user(from->si_lower, &to->si_lower); 2763 err |= __put_user(from->si_upper, &to->si_upper); 2764 } 2765#endif 2766 break; 2767 case __SI_CHLD: 2768 err |= __put_user(from->si_pid, &to->si_pid); 2769 err |= __put_user(from->si_uid, &to->si_uid); 2770 err |= __put_user(from->si_status, &to->si_status); 2771 err |= __put_user(from->si_utime, &to->si_utime); 2772 err |= __put_user(from->si_stime, &to->si_stime); 2773 break; 2774 case __SI_RT: /* This is not generated by the kernel as of now. */ 2775 case __SI_MESGQ: /* But this is */ 2776 err |= __put_user(from->si_pid, &to->si_pid); 2777 err |= __put_user(from->si_uid, &to->si_uid); 2778 err |= __put_user(from->si_ptr, &to->si_ptr); 2779 break; 2780#ifdef __ARCH_SIGSYS 2781 case __SI_SYS: 2782 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2783 err |= __put_user(from->si_syscall, &to->si_syscall); 2784 err |= __put_user(from->si_arch, &to->si_arch); 2785 break; 2786#endif 2787 default: /* this is just in case for now ... */ 2788 err |= __put_user(from->si_pid, &to->si_pid); 2789 err |= __put_user(from->si_uid, &to->si_uid); 2790 break; 2791 } 2792 return err; 2793} 2794 2795#endif 2796 2797/** 2798 * do_sigtimedwait - wait for queued signals specified in @which 2799 * @which: queued signals to wait for 2800 * @info: if non-null, the signal's siginfo is returned here 2801 * @ts: upper bound on process time suspension 2802 */ 2803int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2804 const struct timespec *ts) 2805{ 2806 struct task_struct *tsk = current; 2807 long timeout = MAX_SCHEDULE_TIMEOUT; 2808 sigset_t mask = *which; 2809 int sig; 2810 2811 if (ts) { 2812 if (!timespec_valid(ts)) 2813 return -EINVAL; 2814 timeout = timespec_to_jiffies(ts); 2815 /* 2816 * We can be close to the next tick, add another one 2817 * to ensure we will wait at least the time asked for. 2818 */ 2819 if (ts->tv_sec || ts->tv_nsec) 2820 timeout++; 2821 } 2822 2823 /* 2824 * Invert the set of allowed signals to get those we want to block. 2825 */ 2826 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2827 signotset(&mask); 2828 2829 spin_lock_irq(&tsk->sighand->siglock); 2830 sig = dequeue_signal(tsk, &mask, info); 2831 if (!sig && timeout) { 2832 /* 2833 * None ready, temporarily unblock those we're interested 2834 * while we are sleeping in so that we'll be awakened when 2835 * they arrive. Unblocking is always fine, we can avoid 2836 * set_current_blocked(). 2837 */ 2838 tsk->real_blocked = tsk->blocked; 2839 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2840 recalc_sigpending(); 2841 spin_unlock_irq(&tsk->sighand->siglock); 2842 2843 timeout = freezable_schedule_timeout_interruptible(timeout); 2844 2845 spin_lock_irq(&tsk->sighand->siglock); 2846 __set_task_blocked(tsk, &tsk->real_blocked); 2847 sigemptyset(&tsk->real_blocked); 2848 sig = dequeue_signal(tsk, &mask, info); 2849 } 2850 spin_unlock_irq(&tsk->sighand->siglock); 2851 2852 if (sig) 2853 return sig; 2854 return timeout ? -EINTR : -EAGAIN; 2855} 2856 2857/** 2858 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2859 * in @uthese 2860 * @uthese: queued signals to wait for 2861 * @uinfo: if non-null, the signal's siginfo is returned here 2862 * @uts: upper bound on process time suspension 2863 * @sigsetsize: size of sigset_t type 2864 */ 2865SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2866 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2867 size_t, sigsetsize) 2868{ 2869 sigset_t these; 2870 struct timespec ts; 2871 siginfo_t info; 2872 int ret; 2873 2874 /* XXX: Don't preclude handling different sized sigset_t's. */ 2875 if (sigsetsize != sizeof(sigset_t)) 2876 return -EINVAL; 2877 2878 if (copy_from_user(&these, uthese, sizeof(these))) 2879 return -EFAULT; 2880 2881 if (uts) { 2882 if (copy_from_user(&ts, uts, sizeof(ts))) 2883 return -EFAULT; 2884 } 2885 2886 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2887 2888 if (ret > 0 && uinfo) { 2889 if (copy_siginfo_to_user(uinfo, &info)) 2890 ret = -EFAULT; 2891 } 2892 2893 return ret; 2894} 2895 2896/** 2897 * sys_kill - send a signal to a process 2898 * @pid: the PID of the process 2899 * @sig: signal to be sent 2900 */ 2901SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2902{ 2903 struct siginfo info; 2904 2905 info.si_signo = sig; 2906 info.si_errno = 0; 2907 info.si_code = SI_USER; 2908 info.si_pid = task_tgid_vnr(current); 2909 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2910 2911 return kill_something_info(sig, &info, pid); 2912} 2913 2914static int 2915do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2916{ 2917 struct task_struct *p; 2918 int error = -ESRCH; 2919 2920 rcu_read_lock(); 2921 p = find_task_by_vpid(pid); 2922 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2923 error = check_kill_permission(sig, info, p); 2924 /* 2925 * The null signal is a permissions and process existence 2926 * probe. No signal is actually delivered. 2927 */ 2928 if (!error && sig) { 2929 error = do_send_sig_info(sig, info, p, false); 2930 /* 2931 * If lock_task_sighand() failed we pretend the task 2932 * dies after receiving the signal. The window is tiny, 2933 * and the signal is private anyway. 2934 */ 2935 if (unlikely(error == -ESRCH)) 2936 error = 0; 2937 } 2938 } 2939 rcu_read_unlock(); 2940 2941 return error; 2942} 2943 2944static int do_tkill(pid_t tgid, pid_t pid, int sig) 2945{ 2946 struct siginfo info = {}; 2947 2948 info.si_signo = sig; 2949 info.si_errno = 0; 2950 info.si_code = SI_TKILL; 2951 info.si_pid = task_tgid_vnr(current); 2952 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2953 2954 return do_send_specific(tgid, pid, sig, &info); 2955} 2956 2957/** 2958 * sys_tgkill - send signal to one specific thread 2959 * @tgid: the thread group ID of the thread 2960 * @pid: the PID of the thread 2961 * @sig: signal to be sent 2962 * 2963 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2964 * exists but it's not belonging to the target process anymore. This 2965 * method solves the problem of threads exiting and PIDs getting reused. 2966 */ 2967SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2968{ 2969 /* This is only valid for single tasks */ 2970 if (pid <= 0 || tgid <= 0) 2971 return -EINVAL; 2972 2973 return do_tkill(tgid, pid, sig); 2974} 2975 2976/** 2977 * sys_tkill - send signal to one specific task 2978 * @pid: the PID of the task 2979 * @sig: signal to be sent 2980 * 2981 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2982 */ 2983SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2984{ 2985 /* This is only valid for single tasks */ 2986 if (pid <= 0) 2987 return -EINVAL; 2988 2989 return do_tkill(0, pid, sig); 2990} 2991 2992static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2993{ 2994 /* Not even root can pretend to send signals from the kernel. 2995 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2996 */ 2997 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 2998 (task_pid_vnr(current) != pid)) 2999 return -EPERM; 3000 3001 info->si_signo = sig; 3002 3003 /* POSIX.1b doesn't mention process groups. */ 3004 return kill_proc_info(sig, info, pid); 3005} 3006 3007/** 3008 * sys_rt_sigqueueinfo - send signal information to a signal 3009 * @pid: the PID of the thread 3010 * @sig: signal to be sent 3011 * @uinfo: signal info to be sent 3012 */ 3013SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3014 siginfo_t __user *, uinfo) 3015{ 3016 siginfo_t info; 3017 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3018 return -EFAULT; 3019 return do_rt_sigqueueinfo(pid, sig, &info); 3020} 3021 3022#ifdef CONFIG_COMPAT 3023COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3024 compat_pid_t, pid, 3025 int, sig, 3026 struct compat_siginfo __user *, uinfo) 3027{ 3028 siginfo_t info = {}; 3029 int ret = copy_siginfo_from_user32(&info, uinfo); 3030 if (unlikely(ret)) 3031 return ret; 3032 return do_rt_sigqueueinfo(pid, sig, &info); 3033} 3034#endif 3035 3036static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3037{ 3038 /* This is only valid for single tasks */ 3039 if (pid <= 0 || tgid <= 0) 3040 return -EINVAL; 3041 3042 /* Not even root can pretend to send signals from the kernel. 3043 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3044 */ 3045 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3046 (task_pid_vnr(current) != pid)) 3047 return -EPERM; 3048 3049 info->si_signo = sig; 3050 3051 return do_send_specific(tgid, pid, sig, info); 3052} 3053 3054SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3055 siginfo_t __user *, uinfo) 3056{ 3057 siginfo_t info; 3058 3059 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3060 return -EFAULT; 3061 3062 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3063} 3064 3065#ifdef CONFIG_COMPAT 3066COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3067 compat_pid_t, tgid, 3068 compat_pid_t, pid, 3069 int, sig, 3070 struct compat_siginfo __user *, uinfo) 3071{ 3072 siginfo_t info = {}; 3073 3074 if (copy_siginfo_from_user32(&info, uinfo)) 3075 return -EFAULT; 3076 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3077} 3078#endif 3079 3080/* 3081 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3082 */ 3083void kernel_sigaction(int sig, __sighandler_t action) 3084{ 3085 spin_lock_irq(¤t->sighand->siglock); 3086 current->sighand->action[sig - 1].sa.sa_handler = action; 3087 if (action == SIG_IGN) { 3088 sigset_t mask; 3089 3090 sigemptyset(&mask); 3091 sigaddset(&mask, sig); 3092 3093 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3094 flush_sigqueue_mask(&mask, ¤t->pending); 3095 recalc_sigpending(); 3096 } 3097 spin_unlock_irq(¤t->sighand->siglock); 3098} 3099EXPORT_SYMBOL(kernel_sigaction); 3100 3101int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3102{ 3103 struct task_struct *p = current, *t; 3104 struct k_sigaction *k; 3105 sigset_t mask; 3106 3107 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3108 return -EINVAL; 3109 3110 k = &p->sighand->action[sig-1]; 3111 3112 spin_lock_irq(&p->sighand->siglock); 3113 if (oact) 3114 *oact = *k; 3115 3116 if (act) { 3117 sigdelsetmask(&act->sa.sa_mask, 3118 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3119 *k = *act; 3120 /* 3121 * POSIX 3.3.1.3: 3122 * "Setting a signal action to SIG_IGN for a signal that is 3123 * pending shall cause the pending signal to be discarded, 3124 * whether or not it is blocked." 3125 * 3126 * "Setting a signal action to SIG_DFL for a signal that is 3127 * pending and whose default action is to ignore the signal 3128 * (for example, SIGCHLD), shall cause the pending signal to 3129 * be discarded, whether or not it is blocked" 3130 */ 3131 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3132 sigemptyset(&mask); 3133 sigaddset(&mask, sig); 3134 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3135 for_each_thread(p, t) 3136 flush_sigqueue_mask(&mask, &t->pending); 3137 } 3138 } 3139 3140 spin_unlock_irq(&p->sighand->siglock); 3141 return 0; 3142} 3143 3144static int 3145do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3146{ 3147 stack_t oss; 3148 int error; 3149 3150 oss.ss_sp = (void __user *) current->sas_ss_sp; 3151 oss.ss_size = current->sas_ss_size; 3152 oss.ss_flags = sas_ss_flags(sp); 3153 3154 if (uss) { 3155 void __user *ss_sp; 3156 size_t ss_size; 3157 int ss_flags; 3158 3159 error = -EFAULT; 3160 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3161 goto out; 3162 error = __get_user(ss_sp, &uss->ss_sp) | 3163 __get_user(ss_flags, &uss->ss_flags) | 3164 __get_user(ss_size, &uss->ss_size); 3165 if (error) 3166 goto out; 3167 3168 error = -EPERM; 3169 if (on_sig_stack(sp)) 3170 goto out; 3171 3172 error = -EINVAL; 3173 /* 3174 * Note - this code used to test ss_flags incorrectly: 3175 * old code may have been written using ss_flags==0 3176 * to mean ss_flags==SS_ONSTACK (as this was the only 3177 * way that worked) - this fix preserves that older 3178 * mechanism. 3179 */ 3180 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3181 goto out; 3182 3183 if (ss_flags == SS_DISABLE) { 3184 ss_size = 0; 3185 ss_sp = NULL; 3186 } else { 3187 error = -ENOMEM; 3188 if (ss_size < MINSIGSTKSZ) 3189 goto out; 3190 } 3191 3192 current->sas_ss_sp = (unsigned long) ss_sp; 3193 current->sas_ss_size = ss_size; 3194 } 3195 3196 error = 0; 3197 if (uoss) { 3198 error = -EFAULT; 3199 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3200 goto out; 3201 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3202 __put_user(oss.ss_size, &uoss->ss_size) | 3203 __put_user(oss.ss_flags, &uoss->ss_flags); 3204 } 3205 3206out: 3207 return error; 3208} 3209SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3210{ 3211 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3212} 3213 3214int restore_altstack(const stack_t __user *uss) 3215{ 3216 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3217 /* squash all but EFAULT for now */ 3218 return err == -EFAULT ? err : 0; 3219} 3220 3221int __save_altstack(stack_t __user *uss, unsigned long sp) 3222{ 3223 struct task_struct *t = current; 3224 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3225 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3226 __put_user(t->sas_ss_size, &uss->ss_size); 3227} 3228 3229#ifdef CONFIG_COMPAT 3230COMPAT_SYSCALL_DEFINE2(sigaltstack, 3231 const compat_stack_t __user *, uss_ptr, 3232 compat_stack_t __user *, uoss_ptr) 3233{ 3234 stack_t uss, uoss; 3235 int ret; 3236 mm_segment_t seg; 3237 3238 if (uss_ptr) { 3239 compat_stack_t uss32; 3240 3241 memset(&uss, 0, sizeof(stack_t)); 3242 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3243 return -EFAULT; 3244 uss.ss_sp = compat_ptr(uss32.ss_sp); 3245 uss.ss_flags = uss32.ss_flags; 3246 uss.ss_size = uss32.ss_size; 3247 } 3248 seg = get_fs(); 3249 set_fs(KERNEL_DS); 3250 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3251 (stack_t __force __user *) &uoss, 3252 compat_user_stack_pointer()); 3253 set_fs(seg); 3254 if (ret >= 0 && uoss_ptr) { 3255 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3256 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3257 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3258 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3259 ret = -EFAULT; 3260 } 3261 return ret; 3262} 3263 3264int compat_restore_altstack(const compat_stack_t __user *uss) 3265{ 3266 int err = compat_sys_sigaltstack(uss, NULL); 3267 /* squash all but -EFAULT for now */ 3268 return err == -EFAULT ? err : 0; 3269} 3270 3271int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3272{ 3273 struct task_struct *t = current; 3274 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | 3275 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3276 __put_user(t->sas_ss_size, &uss->ss_size); 3277} 3278#endif 3279 3280#ifdef __ARCH_WANT_SYS_SIGPENDING 3281 3282/** 3283 * sys_sigpending - examine pending signals 3284 * @set: where mask of pending signal is returned 3285 */ 3286SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3287{ 3288 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3289} 3290 3291#endif 3292 3293#ifdef __ARCH_WANT_SYS_SIGPROCMASK 3294/** 3295 * sys_sigprocmask - examine and change blocked signals 3296 * @how: whether to add, remove, or set signals 3297 * @nset: signals to add or remove (if non-null) 3298 * @oset: previous value of signal mask if non-null 3299 * 3300 * Some platforms have their own version with special arguments; 3301 * others support only sys_rt_sigprocmask. 3302 */ 3303 3304SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3305 old_sigset_t __user *, oset) 3306{ 3307 old_sigset_t old_set, new_set; 3308 sigset_t new_blocked; 3309 3310 old_set = current->blocked.sig[0]; 3311 3312 if (nset) { 3313 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3314 return -EFAULT; 3315 3316 new_blocked = current->blocked; 3317 3318 switch (how) { 3319 case SIG_BLOCK: 3320 sigaddsetmask(&new_blocked, new_set); 3321 break; 3322 case SIG_UNBLOCK: 3323 sigdelsetmask(&new_blocked, new_set); 3324 break; 3325 case SIG_SETMASK: 3326 new_blocked.sig[0] = new_set; 3327 break; 3328 default: 3329 return -EINVAL; 3330 } 3331 3332 set_current_blocked(&new_blocked); 3333 } 3334 3335 if (oset) { 3336 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3337 return -EFAULT; 3338 } 3339 3340 return 0; 3341} 3342#endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3343 3344#ifndef CONFIG_ODD_RT_SIGACTION 3345/** 3346 * sys_rt_sigaction - alter an action taken by a process 3347 * @sig: signal to be sent 3348 * @act: new sigaction 3349 * @oact: used to save the previous sigaction 3350 * @sigsetsize: size of sigset_t type 3351 */ 3352SYSCALL_DEFINE4(rt_sigaction, int, sig, 3353 const struct sigaction __user *, act, 3354 struct sigaction __user *, oact, 3355 size_t, sigsetsize) 3356{ 3357 struct k_sigaction new_sa, old_sa; 3358 int ret = -EINVAL; 3359 3360 /* XXX: Don't preclude handling different sized sigset_t's. */ 3361 if (sigsetsize != sizeof(sigset_t)) 3362 goto out; 3363 3364 if (act) { 3365 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3366 return -EFAULT; 3367 } 3368 3369 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3370 3371 if (!ret && oact) { 3372 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3373 return -EFAULT; 3374 } 3375out: 3376 return ret; 3377} 3378#ifdef CONFIG_COMPAT 3379COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3380 const struct compat_sigaction __user *, act, 3381 struct compat_sigaction __user *, oact, 3382 compat_size_t, sigsetsize) 3383{ 3384 struct k_sigaction new_ka, old_ka; 3385 compat_sigset_t mask; 3386#ifdef __ARCH_HAS_SA_RESTORER 3387 compat_uptr_t restorer; 3388#endif 3389 int ret; 3390 3391 /* XXX: Don't preclude handling different sized sigset_t's. */ 3392 if (sigsetsize != sizeof(compat_sigset_t)) 3393 return -EINVAL; 3394 3395 if (act) { 3396 compat_uptr_t handler; 3397 ret = get_user(handler, &act->sa_handler); 3398 new_ka.sa.sa_handler = compat_ptr(handler); 3399#ifdef __ARCH_HAS_SA_RESTORER 3400 ret |= get_user(restorer, &act->sa_restorer); 3401 new_ka.sa.sa_restorer = compat_ptr(restorer); 3402#endif 3403 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3404 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3405 if (ret) 3406 return -EFAULT; 3407 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3408 } 3409 3410 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3411 if (!ret && oact) { 3412 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3413 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3414 &oact->sa_handler); 3415 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3416 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3417#ifdef __ARCH_HAS_SA_RESTORER 3418 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3419 &oact->sa_restorer); 3420#endif 3421 } 3422 return ret; 3423} 3424#endif 3425#endif /* !CONFIG_ODD_RT_SIGACTION */ 3426 3427#ifdef CONFIG_OLD_SIGACTION 3428SYSCALL_DEFINE3(sigaction, int, sig, 3429 const struct old_sigaction __user *, act, 3430 struct old_sigaction __user *, oact) 3431{ 3432 struct k_sigaction new_ka, old_ka; 3433 int ret; 3434 3435 if (act) { 3436 old_sigset_t mask; 3437 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3438 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3439 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3440 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3441 __get_user(mask, &act->sa_mask)) 3442 return -EFAULT; 3443#ifdef __ARCH_HAS_KA_RESTORER 3444 new_ka.ka_restorer = NULL; 3445#endif 3446 siginitset(&new_ka.sa.sa_mask, mask); 3447 } 3448 3449 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3450 3451 if (!ret && oact) { 3452 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3453 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3454 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3455 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3456 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3457 return -EFAULT; 3458 } 3459 3460 return ret; 3461} 3462#endif 3463#ifdef CONFIG_COMPAT_OLD_SIGACTION 3464COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3465 const struct compat_old_sigaction __user *, act, 3466 struct compat_old_sigaction __user *, oact) 3467{ 3468 struct k_sigaction new_ka, old_ka; 3469 int ret; 3470 compat_old_sigset_t mask; 3471 compat_uptr_t handler, restorer; 3472 3473 if (act) { 3474 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3475 __get_user(handler, &act->sa_handler) || 3476 __get_user(restorer, &act->sa_restorer) || 3477 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3478 __get_user(mask, &act->sa_mask)) 3479 return -EFAULT; 3480 3481#ifdef __ARCH_HAS_KA_RESTORER 3482 new_ka.ka_restorer = NULL; 3483#endif 3484 new_ka.sa.sa_handler = compat_ptr(handler); 3485 new_ka.sa.sa_restorer = compat_ptr(restorer); 3486 siginitset(&new_ka.sa.sa_mask, mask); 3487 } 3488 3489 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3490 3491 if (!ret && oact) { 3492 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3493 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3494 &oact->sa_handler) || 3495 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3496 &oact->sa_restorer) || 3497 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3498 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3499 return -EFAULT; 3500 } 3501 return ret; 3502} 3503#endif 3504 3505#ifdef CONFIG_SGETMASK_SYSCALL 3506 3507/* 3508 * For backwards compatibility. Functionality superseded by sigprocmask. 3509 */ 3510SYSCALL_DEFINE0(sgetmask) 3511{ 3512 /* SMP safe */ 3513 return current->blocked.sig[0]; 3514} 3515 3516SYSCALL_DEFINE1(ssetmask, int, newmask) 3517{ 3518 int old = current->blocked.sig[0]; 3519 sigset_t newset; 3520 3521 siginitset(&newset, newmask); 3522 set_current_blocked(&newset); 3523 3524 return old; 3525} 3526#endif /* CONFIG_SGETMASK_SYSCALL */ 3527 3528#ifdef __ARCH_WANT_SYS_SIGNAL 3529/* 3530 * For backwards compatibility. Functionality superseded by sigaction. 3531 */ 3532SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3533{ 3534 struct k_sigaction new_sa, old_sa; 3535 int ret; 3536 3537 new_sa.sa.sa_handler = handler; 3538 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3539 sigemptyset(&new_sa.sa.sa_mask); 3540 3541 ret = do_sigaction(sig, &new_sa, &old_sa); 3542 3543 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3544} 3545#endif /* __ARCH_WANT_SYS_SIGNAL */ 3546 3547#ifdef __ARCH_WANT_SYS_PAUSE 3548 3549SYSCALL_DEFINE0(pause) 3550{ 3551 while (!signal_pending(current)) { 3552 __set_current_state(TASK_INTERRUPTIBLE); 3553 schedule(); 3554 } 3555 return -ERESTARTNOHAND; 3556} 3557 3558#endif 3559 3560int sigsuspend(sigset_t *set) 3561{ 3562 current->saved_sigmask = current->blocked; 3563 set_current_blocked(set); 3564 3565 __set_current_state(TASK_INTERRUPTIBLE); 3566 schedule(); 3567 set_restore_sigmask(); 3568 return -ERESTARTNOHAND; 3569} 3570 3571/** 3572 * sys_rt_sigsuspend - replace the signal mask for a value with the 3573 * @unewset value until a signal is received 3574 * @unewset: new signal mask value 3575 * @sigsetsize: size of sigset_t type 3576 */ 3577SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3578{ 3579 sigset_t newset; 3580 3581 /* XXX: Don't preclude handling different sized sigset_t's. */ 3582 if (sigsetsize != sizeof(sigset_t)) 3583 return -EINVAL; 3584 3585 if (copy_from_user(&newset, unewset, sizeof(newset))) 3586 return -EFAULT; 3587 return sigsuspend(&newset); 3588} 3589 3590#ifdef CONFIG_COMPAT 3591COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3592{ 3593#ifdef __BIG_ENDIAN 3594 sigset_t newset; 3595 compat_sigset_t newset32; 3596 3597 /* XXX: Don't preclude handling different sized sigset_t's. */ 3598 if (sigsetsize != sizeof(sigset_t)) 3599 return -EINVAL; 3600 3601 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3602 return -EFAULT; 3603 sigset_from_compat(&newset, &newset32); 3604 return sigsuspend(&newset); 3605#else 3606 /* on little-endian bitmaps don't care about granularity */ 3607 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3608#endif 3609} 3610#endif 3611 3612#ifdef CONFIG_OLD_SIGSUSPEND 3613SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3614{ 3615 sigset_t blocked; 3616 siginitset(&blocked, mask); 3617 return sigsuspend(&blocked); 3618} 3619#endif 3620#ifdef CONFIG_OLD_SIGSUSPEND3 3621SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3622{ 3623 sigset_t blocked; 3624 siginitset(&blocked, mask); 3625 return sigsuspend(&blocked); 3626} 3627#endif 3628 3629__weak const char *arch_vma_name(struct vm_area_struct *vma) 3630{ 3631 return NULL; 3632} 3633 3634void __init signals_init(void) 3635{ 3636 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3637} 3638 3639#ifdef CONFIG_KGDB_KDB 3640#include <linux/kdb.h> 3641/* 3642 * kdb_send_sig_info - Allows kdb to send signals without exposing 3643 * signal internals. This function checks if the required locks are 3644 * available before calling the main signal code, to avoid kdb 3645 * deadlocks. 3646 */ 3647void 3648kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3649{ 3650 static struct task_struct *kdb_prev_t; 3651 int sig, new_t; 3652 if (!spin_trylock(&t->sighand->siglock)) { 3653 kdb_printf("Can't do kill command now.\n" 3654 "The sigmask lock is held somewhere else in " 3655 "kernel, try again later\n"); 3656 return; 3657 } 3658 spin_unlock(&t->sighand->siglock); 3659 new_t = kdb_prev_t != t; 3660 kdb_prev_t = t; 3661 if (t->state != TASK_RUNNING && new_t) { 3662 kdb_printf("Process is not RUNNING, sending a signal from " 3663 "kdb risks deadlock\n" 3664 "on the run queue locks. " 3665 "The signal has _not_ been sent.\n" 3666 "Reissue the kill command if you want to risk " 3667 "the deadlock.\n"); 3668 return; 3669 } 3670 sig = info->si_signo; 3671 if (send_sig_info(sig, info, t)) 3672 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3673 sig, t->pid); 3674 else 3675 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3676} 3677#endif /* CONFIG_KGDB_KDB */ 3678