1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
6#include <linux/context_tracking.h>
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31	sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36	sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
47void irqtime_account_irq(struct task_struct *curr)
48{
49	unsigned long flags;
50	s64 delta;
51	int cpu;
52
53	if (!sched_clock_irqtime)
54		return;
55
56	local_irq_save(flags);
57
58	cpu = smp_processor_id();
59	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60	__this_cpu_add(irq_start_time, delta);
61
62	irq_time_write_begin();
63	/*
64	 * We do not account for softirq time from ksoftirqd here.
65	 * We want to continue accounting softirq time to ksoftirqd thread
66	 * in that case, so as not to confuse scheduler with a special task
67	 * that do not consume any time, but still wants to run.
68	 */
69	if (hardirq_count())
70		__this_cpu_add(cpu_hardirq_time, delta);
71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72		__this_cpu_add(cpu_softirq_time, delta);
73
74	irq_time_write_end();
75	local_irq_restore(flags);
76}
77EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79static int irqtime_account_hi_update(void)
80{
81	u64 *cpustat = kcpustat_this_cpu->cpustat;
82	unsigned long flags;
83	u64 latest_ns;
84	int ret = 0;
85
86	local_irq_save(flags);
87	latest_ns = this_cpu_read(cpu_hardirq_time);
88	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89		ret = 1;
90	local_irq_restore(flags);
91	return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96	u64 *cpustat = kcpustat_this_cpu->cpustat;
97	unsigned long flags;
98	u64 latest_ns;
99	int ret = 0;
100
101	local_irq_save(flags);
102	latest_ns = this_cpu_read(cpu_softirq_time);
103	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104		ret = 1;
105	local_irq_restore(flags);
106	return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime	(0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116					    u64 tmp)
117{
118	/*
119	 * Since all updates are sure to touch the root cgroup, we
120	 * get ourselves ahead and touch it first. If the root cgroup
121	 * is the only cgroup, then nothing else should be necessary.
122	 *
123	 */
124	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125
126	cpuacct_account_field(p, index, tmp);
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136		       cputime_t cputime_scaled)
137{
138	int index;
139
140	/* Add user time to process. */
141	p->utime += cputime;
142	p->utimescaled += cputime_scaled;
143	account_group_user_time(p, cputime);
144
145	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147	/* Add user time to cpustat. */
148	task_group_account_field(p, index, (__force u64) cputime);
149
150	/* Account for user time used */
151	acct_account_cputime(p);
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161			       cputime_t cputime_scaled)
162{
163	u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165	/* Add guest time to process. */
166	p->utime += cputime;
167	p->utimescaled += cputime_scaled;
168	account_group_user_time(p, cputime);
169	p->gtime += cputime;
170
171	/* Add guest time to cpustat. */
172	if (task_nice(p) > 0) {
173		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175	} else {
176		cpustat[CPUTIME_USER] += (__force u64) cputime;
177		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178	}
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190			cputime_t cputime_scaled, int index)
191{
192	/* Add system time to process. */
193	p->stime += cputime;
194	p->stimescaled += cputime_scaled;
195	account_group_system_time(p, cputime);
196
197	/* Add system time to cpustat. */
198	task_group_account_field(p, index, (__force u64) cputime);
199
200	/* Account for system time used */
201	acct_account_cputime(p);
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212			 cputime_t cputime, cputime_t cputime_scaled)
213{
214	int index;
215
216	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217		account_guest_time(p, cputime, cputime_scaled);
218		return;
219	}
220
221	if (hardirq_count() - hardirq_offset)
222		index = CPUTIME_IRQ;
223	else if (in_serving_softirq())
224		index = CPUTIME_SOFTIRQ;
225	else
226		index = CPUTIME_SYSTEM;
227
228	__account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237	u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248	u64 *cpustat = kcpustat_this_cpu->cpustat;
249	struct rq *rq = this_rq();
250
251	if (atomic_read(&rq->nr_iowait) > 0)
252		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253	else
254		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260	if (static_key_false(&paravirt_steal_enabled)) {
261		u64 steal;
262		unsigned long steal_jiffies;
263
264		steal = paravirt_steal_clock(smp_processor_id());
265		steal -= this_rq()->prev_steal_time;
266
267		/*
268		 * steal is in nsecs but our caller is expecting steal
269		 * time in jiffies. Lets cast the result to jiffies
270		 * granularity and account the rest on the next rounds.
271		 */
272		steal_jiffies = nsecs_to_jiffies(steal);
273		this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies);
274
275		account_steal_time(jiffies_to_cputime(steal_jiffies));
276		return steal_jiffies;
277	}
278#endif
279	return false;
280}
281
282/*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287{
288	struct signal_struct *sig = tsk->signal;
289	cputime_t utime, stime;
290	struct task_struct *t;
291	unsigned int seq, nextseq;
292	unsigned long flags;
293
294	rcu_read_lock();
295	/* Attempt a lockless read on the first round. */
296	nextseq = 0;
297	do {
298		seq = nextseq;
299		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
300		times->utime = sig->utime;
301		times->stime = sig->stime;
302		times->sum_exec_runtime = sig->sum_sched_runtime;
303
304		for_each_thread(tsk, t) {
305			task_cputime(t, &utime, &stime);
306			times->utime += utime;
307			times->stime += stime;
308			times->sum_exec_runtime += task_sched_runtime(t);
309		}
310		/* If lockless access failed, take the lock. */
311		nextseq = 1;
312	} while (need_seqretry(&sig->stats_lock, seq));
313	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
314	rcu_read_unlock();
315}
316
317#ifdef CONFIG_IRQ_TIME_ACCOUNTING
318/*
319 * Account a tick to a process and cpustat
320 * @p: the process that the cpu time gets accounted to
321 * @user_tick: is the tick from userspace
322 * @rq: the pointer to rq
323 *
324 * Tick demultiplexing follows the order
325 * - pending hardirq update
326 * - pending softirq update
327 * - user_time
328 * - idle_time
329 * - system time
330 *   - check for guest_time
331 *   - else account as system_time
332 *
333 * Check for hardirq is done both for system and user time as there is
334 * no timer going off while we are on hardirq and hence we may never get an
335 * opportunity to update it solely in system time.
336 * p->stime and friends are only updated on system time and not on irq
337 * softirq as those do not count in task exec_runtime any more.
338 */
339static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
340					 struct rq *rq, int ticks)
341{
342	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
343	u64 cputime = (__force u64) cputime_one_jiffy;
344	u64 *cpustat = kcpustat_this_cpu->cpustat;
345
346	if (steal_account_process_tick())
347		return;
348
349	cputime *= ticks;
350	scaled *= ticks;
351
352	if (irqtime_account_hi_update()) {
353		cpustat[CPUTIME_IRQ] += cputime;
354	} else if (irqtime_account_si_update()) {
355		cpustat[CPUTIME_SOFTIRQ] += cputime;
356	} else if (this_cpu_ksoftirqd() == p) {
357		/*
358		 * ksoftirqd time do not get accounted in cpu_softirq_time.
359		 * So, we have to handle it separately here.
360		 * Also, p->stime needs to be updated for ksoftirqd.
361		 */
362		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
363	} else if (user_tick) {
364		account_user_time(p, cputime, scaled);
365	} else if (p == rq->idle) {
366		account_idle_time(cputime);
367	} else if (p->flags & PF_VCPU) { /* System time or guest time */
368		account_guest_time(p, cputime, scaled);
369	} else {
370		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
371	}
372}
373
374static void irqtime_account_idle_ticks(int ticks)
375{
376	struct rq *rq = this_rq();
377
378	irqtime_account_process_tick(current, 0, rq, ticks);
379}
380#else /* CONFIG_IRQ_TIME_ACCOUNTING */
381static inline void irqtime_account_idle_ticks(int ticks) {}
382static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
383						struct rq *rq, int nr_ticks) {}
384#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
385
386/*
387 * Use precise platform statistics if available:
388 */
389#ifdef CONFIG_VIRT_CPU_ACCOUNTING
390
391#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
392void vtime_common_task_switch(struct task_struct *prev)
393{
394	if (is_idle_task(prev))
395		vtime_account_idle(prev);
396	else
397		vtime_account_system(prev);
398
399#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
400	vtime_account_user(prev);
401#endif
402	arch_vtime_task_switch(prev);
403}
404#endif
405
406/*
407 * Archs that account the whole time spent in the idle task
408 * (outside irq) as idle time can rely on this and just implement
409 * vtime_account_system() and vtime_account_idle(). Archs that
410 * have other meaning of the idle time (s390 only includes the
411 * time spent by the CPU when it's in low power mode) must override
412 * vtime_account().
413 */
414#ifndef __ARCH_HAS_VTIME_ACCOUNT
415void vtime_common_account_irq_enter(struct task_struct *tsk)
416{
417	if (!in_interrupt()) {
418		/*
419		 * If we interrupted user, context_tracking_in_user()
420		 * is 1 because the context tracking don't hook
421		 * on irq entry/exit. This way we know if
422		 * we need to flush user time on kernel entry.
423		 */
424		if (context_tracking_in_user()) {
425			vtime_account_user(tsk);
426			return;
427		}
428
429		if (is_idle_task(tsk)) {
430			vtime_account_idle(tsk);
431			return;
432		}
433	}
434	vtime_account_system(tsk);
435}
436EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
437#endif /* __ARCH_HAS_VTIME_ACCOUNT */
438#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
439
440
441#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
443{
444	*ut = p->utime;
445	*st = p->stime;
446}
447
448void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
449{
450	struct task_cputime cputime;
451
452	thread_group_cputime(p, &cputime);
453
454	*ut = cputime.utime;
455	*st = cputime.stime;
456}
457#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
458/*
459 * Account a single tick of cpu time.
460 * @p: the process that the cpu time gets accounted to
461 * @user_tick: indicates if the tick is a user or a system tick
462 */
463void account_process_tick(struct task_struct *p, int user_tick)
464{
465	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
466	struct rq *rq = this_rq();
467
468	if (vtime_accounting_enabled())
469		return;
470
471	if (sched_clock_irqtime) {
472		irqtime_account_process_tick(p, user_tick, rq, 1);
473		return;
474	}
475
476	if (steal_account_process_tick())
477		return;
478
479	if (user_tick)
480		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
481	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
482		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
483				    one_jiffy_scaled);
484	else
485		account_idle_time(cputime_one_jiffy);
486}
487
488/*
489 * Account multiple ticks of steal time.
490 * @p: the process from which the cpu time has been stolen
491 * @ticks: number of stolen ticks
492 */
493void account_steal_ticks(unsigned long ticks)
494{
495	account_steal_time(jiffies_to_cputime(ticks));
496}
497
498/*
499 * Account multiple ticks of idle time.
500 * @ticks: number of stolen ticks
501 */
502void account_idle_ticks(unsigned long ticks)
503{
504
505	if (sched_clock_irqtime) {
506		irqtime_account_idle_ticks(ticks);
507		return;
508	}
509
510	account_idle_time(jiffies_to_cputime(ticks));
511}
512
513/*
514 * Perform (stime * rtime) / total, but avoid multiplication overflow by
515 * loosing precision when the numbers are big.
516 */
517static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
518{
519	u64 scaled;
520
521	for (;;) {
522		/* Make sure "rtime" is the bigger of stime/rtime */
523		if (stime > rtime)
524			swap(rtime, stime);
525
526		/* Make sure 'total' fits in 32 bits */
527		if (total >> 32)
528			goto drop_precision;
529
530		/* Does rtime (and thus stime) fit in 32 bits? */
531		if (!(rtime >> 32))
532			break;
533
534		/* Can we just balance rtime/stime rather than dropping bits? */
535		if (stime >> 31)
536			goto drop_precision;
537
538		/* We can grow stime and shrink rtime and try to make them both fit */
539		stime <<= 1;
540		rtime >>= 1;
541		continue;
542
543drop_precision:
544		/* We drop from rtime, it has more bits than stime */
545		rtime >>= 1;
546		total >>= 1;
547	}
548
549	/*
550	 * Make sure gcc understands that this is a 32x32->64 multiply,
551	 * followed by a 64/32->64 divide.
552	 */
553	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
554	return (__force cputime_t) scaled;
555}
556
557/*
558 * Atomically advance counter to the new value. Interrupts, vcpu
559 * scheduling, and scaling inaccuracies can cause cputime_advance
560 * to be occasionally called with a new value smaller than counter.
561 * Let's enforce atomicity.
562 *
563 * Normally a caller will only go through this loop once, or not
564 * at all in case a previous caller updated counter the same jiffy.
565 */
566static void cputime_advance(cputime_t *counter, cputime_t new)
567{
568	cputime_t old;
569
570	while (new > (old = ACCESS_ONCE(*counter)))
571		cmpxchg_cputime(counter, old, new);
572}
573
574/*
575 * Adjust tick based cputime random precision against scheduler
576 * runtime accounting.
577 */
578static void cputime_adjust(struct task_cputime *curr,
579			   struct cputime *prev,
580			   cputime_t *ut, cputime_t *st)
581{
582	cputime_t rtime, stime, utime;
583
584	/*
585	 * Tick based cputime accounting depend on random scheduling
586	 * timeslices of a task to be interrupted or not by the timer.
587	 * Depending on these circumstances, the number of these interrupts
588	 * may be over or under-optimistic, matching the real user and system
589	 * cputime with a variable precision.
590	 *
591	 * Fix this by scaling these tick based values against the total
592	 * runtime accounted by the CFS scheduler.
593	 */
594	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
595
596	/*
597	 * Update userspace visible utime/stime values only if actual execution
598	 * time is bigger than already exported. Note that can happen, that we
599	 * provided bigger values due to scaling inaccuracy on big numbers.
600	 */
601	if (prev->stime + prev->utime >= rtime)
602		goto out;
603
604	stime = curr->stime;
605	utime = curr->utime;
606
607	if (utime == 0) {
608		stime = rtime;
609	} else if (stime == 0) {
610		utime = rtime;
611	} else {
612		cputime_t total = stime + utime;
613
614		stime = scale_stime((__force u64)stime,
615				    (__force u64)rtime, (__force u64)total);
616		utime = rtime - stime;
617	}
618
619	cputime_advance(&prev->stime, stime);
620	cputime_advance(&prev->utime, utime);
621
622out:
623	*ut = prev->utime;
624	*st = prev->stime;
625}
626
627void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
628{
629	struct task_cputime cputime = {
630		.sum_exec_runtime = p->se.sum_exec_runtime,
631	};
632
633	task_cputime(p, &cputime.utime, &cputime.stime);
634	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
635}
636
637void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
638{
639	struct task_cputime cputime;
640
641	thread_group_cputime(p, &cputime);
642	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
643}
644#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
645
646#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
647static unsigned long long vtime_delta(struct task_struct *tsk)
648{
649	unsigned long long clock;
650
651	clock = local_clock();
652	if (clock < tsk->vtime_snap)
653		return 0;
654
655	return clock - tsk->vtime_snap;
656}
657
658static cputime_t get_vtime_delta(struct task_struct *tsk)
659{
660	unsigned long long delta = vtime_delta(tsk);
661
662	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
663	tsk->vtime_snap += delta;
664
665	/* CHECKME: always safe to convert nsecs to cputime? */
666	return nsecs_to_cputime(delta);
667}
668
669static void __vtime_account_system(struct task_struct *tsk)
670{
671	cputime_t delta_cpu = get_vtime_delta(tsk);
672
673	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
674}
675
676void vtime_account_system(struct task_struct *tsk)
677{
678	write_seqlock(&tsk->vtime_seqlock);
679	__vtime_account_system(tsk);
680	write_sequnlock(&tsk->vtime_seqlock);
681}
682
683void vtime_gen_account_irq_exit(struct task_struct *tsk)
684{
685	write_seqlock(&tsk->vtime_seqlock);
686	__vtime_account_system(tsk);
687	if (context_tracking_in_user())
688		tsk->vtime_snap_whence = VTIME_USER;
689	write_sequnlock(&tsk->vtime_seqlock);
690}
691
692void vtime_account_user(struct task_struct *tsk)
693{
694	cputime_t delta_cpu;
695
696	write_seqlock(&tsk->vtime_seqlock);
697	delta_cpu = get_vtime_delta(tsk);
698	tsk->vtime_snap_whence = VTIME_SYS;
699	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
700	write_sequnlock(&tsk->vtime_seqlock);
701}
702
703void vtime_user_enter(struct task_struct *tsk)
704{
705	write_seqlock(&tsk->vtime_seqlock);
706	__vtime_account_system(tsk);
707	tsk->vtime_snap_whence = VTIME_USER;
708	write_sequnlock(&tsk->vtime_seqlock);
709}
710
711void vtime_guest_enter(struct task_struct *tsk)
712{
713	/*
714	 * The flags must be updated under the lock with
715	 * the vtime_snap flush and update.
716	 * That enforces a right ordering and update sequence
717	 * synchronization against the reader (task_gtime())
718	 * that can thus safely catch up with a tickless delta.
719	 */
720	write_seqlock(&tsk->vtime_seqlock);
721	__vtime_account_system(tsk);
722	current->flags |= PF_VCPU;
723	write_sequnlock(&tsk->vtime_seqlock);
724}
725EXPORT_SYMBOL_GPL(vtime_guest_enter);
726
727void vtime_guest_exit(struct task_struct *tsk)
728{
729	write_seqlock(&tsk->vtime_seqlock);
730	__vtime_account_system(tsk);
731	current->flags &= ~PF_VCPU;
732	write_sequnlock(&tsk->vtime_seqlock);
733}
734EXPORT_SYMBOL_GPL(vtime_guest_exit);
735
736void vtime_account_idle(struct task_struct *tsk)
737{
738	cputime_t delta_cpu = get_vtime_delta(tsk);
739
740	account_idle_time(delta_cpu);
741}
742
743void arch_vtime_task_switch(struct task_struct *prev)
744{
745	write_seqlock(&prev->vtime_seqlock);
746	prev->vtime_snap_whence = VTIME_SLEEPING;
747	write_sequnlock(&prev->vtime_seqlock);
748
749	write_seqlock(&current->vtime_seqlock);
750	current->vtime_snap_whence = VTIME_SYS;
751	current->vtime_snap = sched_clock_cpu(smp_processor_id());
752	write_sequnlock(&current->vtime_seqlock);
753}
754
755void vtime_init_idle(struct task_struct *t, int cpu)
756{
757	unsigned long flags;
758
759	write_seqlock_irqsave(&t->vtime_seqlock, flags);
760	t->vtime_snap_whence = VTIME_SYS;
761	t->vtime_snap = sched_clock_cpu(cpu);
762	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
763}
764
765cputime_t task_gtime(struct task_struct *t)
766{
767	unsigned int seq;
768	cputime_t gtime;
769
770	do {
771		seq = read_seqbegin(&t->vtime_seqlock);
772
773		gtime = t->gtime;
774		if (t->flags & PF_VCPU)
775			gtime += vtime_delta(t);
776
777	} while (read_seqretry(&t->vtime_seqlock, seq));
778
779	return gtime;
780}
781
782/*
783 * Fetch cputime raw values from fields of task_struct and
784 * add up the pending nohz execution time since the last
785 * cputime snapshot.
786 */
787static void
788fetch_task_cputime(struct task_struct *t,
789		   cputime_t *u_dst, cputime_t *s_dst,
790		   cputime_t *u_src, cputime_t *s_src,
791		   cputime_t *udelta, cputime_t *sdelta)
792{
793	unsigned int seq;
794	unsigned long long delta;
795
796	do {
797		*udelta = 0;
798		*sdelta = 0;
799
800		seq = read_seqbegin(&t->vtime_seqlock);
801
802		if (u_dst)
803			*u_dst = *u_src;
804		if (s_dst)
805			*s_dst = *s_src;
806
807		/* Task is sleeping, nothing to add */
808		if (t->vtime_snap_whence == VTIME_SLEEPING ||
809		    is_idle_task(t))
810			continue;
811
812		delta = vtime_delta(t);
813
814		/*
815		 * Task runs either in user or kernel space, add pending nohz time to
816		 * the right place.
817		 */
818		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
819			*udelta = delta;
820		} else {
821			if (t->vtime_snap_whence == VTIME_SYS)
822				*sdelta = delta;
823		}
824	} while (read_seqretry(&t->vtime_seqlock, seq));
825}
826
827
828void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
829{
830	cputime_t udelta, sdelta;
831
832	fetch_task_cputime(t, utime, stime, &t->utime,
833			   &t->stime, &udelta, &sdelta);
834	if (utime)
835		*utime += udelta;
836	if (stime)
837		*stime += sdelta;
838}
839
840void task_cputime_scaled(struct task_struct *t,
841			 cputime_t *utimescaled, cputime_t *stimescaled)
842{
843	cputime_t udelta, sdelta;
844
845	fetch_task_cputime(t, utimescaled, stimescaled,
846			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
847	if (utimescaled)
848		*utimescaled += cputime_to_scaled(udelta);
849	if (stimescaled)
850		*stimescaled += cputime_to_scaled(sdelta);
851}
852#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
853