1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	lockdep_assert_held(&rq->lock);
123
124	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125		return;
126
127	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128	if (delta < 0)
129		return;
130	rq->clock += delta;
131	update_rq_clock_task(rq, delta);
132}
133
134/*
135 * Debugging: various feature bits
136 */
137
138#define SCHED_FEAT(name, enabled)	\
139	(1UL << __SCHED_FEAT_##name) * enabled |
140
141const_debug unsigned int sysctl_sched_features =
142#include "features.h"
143	0;
144
145#undef SCHED_FEAT
146
147#ifdef CONFIG_SCHED_DEBUG
148#define SCHED_FEAT(name, enabled)	\
149	#name ,
150
151static const char * const sched_feat_names[] = {
152#include "features.h"
153};
154
155#undef SCHED_FEAT
156
157static int sched_feat_show(struct seq_file *m, void *v)
158{
159	int i;
160
161	for (i = 0; i < __SCHED_FEAT_NR; i++) {
162		if (!(sysctl_sched_features & (1UL << i)))
163			seq_puts(m, "NO_");
164		seq_printf(m, "%s ", sched_feat_names[i]);
165	}
166	seq_puts(m, "\n");
167
168	return 0;
169}
170
171#ifdef HAVE_JUMP_LABEL
172
173#define jump_label_key__true  STATIC_KEY_INIT_TRUE
174#define jump_label_key__false STATIC_KEY_INIT_FALSE
175
176#define SCHED_FEAT(name, enabled)	\
177	jump_label_key__##enabled ,
178
179struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180#include "features.h"
181};
182
183#undef SCHED_FEAT
184
185static void sched_feat_disable(int i)
186{
187	if (static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_dec(&sched_feat_keys[i]);
189}
190
191static void sched_feat_enable(int i)
192{
193	if (!static_key_enabled(&sched_feat_keys[i]))
194		static_key_slow_inc(&sched_feat_keys[i]);
195}
196#else
197static void sched_feat_disable(int i) { };
198static void sched_feat_enable(int i) { };
199#endif /* HAVE_JUMP_LABEL */
200
201static int sched_feat_set(char *cmp)
202{
203	int i;
204	int neg = 0;
205
206	if (strncmp(cmp, "NO_", 3) == 0) {
207		neg = 1;
208		cmp += 3;
209	}
210
211	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213			if (neg) {
214				sysctl_sched_features &= ~(1UL << i);
215				sched_feat_disable(i);
216			} else {
217				sysctl_sched_features |= (1UL << i);
218				sched_feat_enable(i);
219			}
220			break;
221		}
222	}
223
224	return i;
225}
226
227static ssize_t
228sched_feat_write(struct file *filp, const char __user *ubuf,
229		size_t cnt, loff_t *ppos)
230{
231	char buf[64];
232	char *cmp;
233	int i;
234	struct inode *inode;
235
236	if (cnt > 63)
237		cnt = 63;
238
239	if (copy_from_user(&buf, ubuf, cnt))
240		return -EFAULT;
241
242	buf[cnt] = 0;
243	cmp = strstrip(buf);
244
245	/* Ensure the static_key remains in a consistent state */
246	inode = file_inode(filp);
247	mutex_lock(&inode->i_mutex);
248	i = sched_feat_set(cmp);
249	mutex_unlock(&inode->i_mutex);
250	if (i == __SCHED_FEAT_NR)
251		return -EINVAL;
252
253	*ppos += cnt;
254
255	return cnt;
256}
257
258static int sched_feat_open(struct inode *inode, struct file *filp)
259{
260	return single_open(filp, sched_feat_show, NULL);
261}
262
263static const struct file_operations sched_feat_fops = {
264	.open		= sched_feat_open,
265	.write		= sched_feat_write,
266	.read		= seq_read,
267	.llseek		= seq_lseek,
268	.release	= single_release,
269};
270
271static __init int sched_init_debug(void)
272{
273	debugfs_create_file("sched_features", 0644, NULL, NULL,
274			&sched_feat_fops);
275
276	return 0;
277}
278late_initcall(sched_init_debug);
279#endif /* CONFIG_SCHED_DEBUG */
280
281/*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
287/*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
295/*
296 * period over which we measure -rt task cpu usage in us.
297 * default: 1s
298 */
299unsigned int sysctl_sched_rt_period = 1000000;
300
301__read_mostly int scheduler_running;
302
303/*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307int sysctl_sched_rt_runtime = 950000;
308
309/* cpus with isolated domains */
310cpumask_var_t cpu_isolated_map;
311
312/*
313 * this_rq_lock - lock this runqueue and disable interrupts.
314 */
315static struct rq *this_rq_lock(void)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	local_irq_disable();
321	rq = this_rq();
322	raw_spin_lock(&rq->lock);
323
324	return rq;
325}
326
327#ifdef CONFIG_SCHED_HRTICK
328/*
329 * Use HR-timers to deliver accurate preemption points.
330 */
331
332static void hrtick_clear(struct rq *rq)
333{
334	if (hrtimer_active(&rq->hrtick_timer))
335		hrtimer_cancel(&rq->hrtick_timer);
336}
337
338/*
339 * High-resolution timer tick.
340 * Runs from hardirq context with interrupts disabled.
341 */
342static enum hrtimer_restart hrtick(struct hrtimer *timer)
343{
344	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345
346	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347
348	raw_spin_lock(&rq->lock);
349	update_rq_clock(rq);
350	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351	raw_spin_unlock(&rq->lock);
352
353	return HRTIMER_NORESTART;
354}
355
356#ifdef CONFIG_SMP
357
358static int __hrtick_restart(struct rq *rq)
359{
360	struct hrtimer *timer = &rq->hrtick_timer;
361	ktime_t time = hrtimer_get_softexpires(timer);
362
363	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364}
365
366/*
367 * called from hardirq (IPI) context
368 */
369static void __hrtick_start(void *arg)
370{
371	struct rq *rq = arg;
372
373	raw_spin_lock(&rq->lock);
374	__hrtick_restart(rq);
375	rq->hrtick_csd_pending = 0;
376	raw_spin_unlock(&rq->lock);
377}
378
379/*
380 * Called to set the hrtick timer state.
381 *
382 * called with rq->lock held and irqs disabled
383 */
384void hrtick_start(struct rq *rq, u64 delay)
385{
386	struct hrtimer *timer = &rq->hrtick_timer;
387	ktime_t time;
388	s64 delta;
389
390	/*
391	 * Don't schedule slices shorter than 10000ns, that just
392	 * doesn't make sense and can cause timer DoS.
393	 */
394	delta = max_t(s64, delay, 10000LL);
395	time = ktime_add_ns(timer->base->get_time(), delta);
396
397	hrtimer_set_expires(timer, time);
398
399	if (rq == this_rq()) {
400		__hrtick_restart(rq);
401	} else if (!rq->hrtick_csd_pending) {
402		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403		rq->hrtick_csd_pending = 1;
404	}
405}
406
407static int
408hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409{
410	int cpu = (int)(long)hcpu;
411
412	switch (action) {
413	case CPU_UP_CANCELED:
414	case CPU_UP_CANCELED_FROZEN:
415	case CPU_DOWN_PREPARE:
416	case CPU_DOWN_PREPARE_FROZEN:
417	case CPU_DEAD:
418	case CPU_DEAD_FROZEN:
419		hrtick_clear(cpu_rq(cpu));
420		return NOTIFY_OK;
421	}
422
423	return NOTIFY_DONE;
424}
425
426static __init void init_hrtick(void)
427{
428	hotcpu_notifier(hotplug_hrtick, 0);
429}
430#else
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
436void hrtick_start(struct rq *rq, u64 delay)
437{
438	/*
439	 * Don't schedule slices shorter than 10000ns, that just
440	 * doesn't make sense. Rely on vruntime for fairness.
441	 */
442	delay = max_t(u64, delay, 10000LL);
443	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444			HRTIMER_MODE_REL_PINNED, 0);
445}
446
447static inline void init_hrtick(void)
448{
449}
450#endif /* CONFIG_SMP */
451
452static void init_rq_hrtick(struct rq *rq)
453{
454#ifdef CONFIG_SMP
455	rq->hrtick_csd_pending = 0;
456
457	rq->hrtick_csd.flags = 0;
458	rq->hrtick_csd.func = __hrtick_start;
459	rq->hrtick_csd.info = rq;
460#endif
461
462	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463	rq->hrtick_timer.function = hrtick;
464}
465#else	/* CONFIG_SCHED_HRTICK */
466static inline void hrtick_clear(struct rq *rq)
467{
468}
469
470static inline void init_rq_hrtick(struct rq *rq)
471{
472}
473
474static inline void init_hrtick(void)
475{
476}
477#endif	/* CONFIG_SCHED_HRTICK */
478
479/*
480 * cmpxchg based fetch_or, macro so it works for different integer types
481 */
482#define fetch_or(ptr, val)						\
483({	typeof(*(ptr)) __old, __val = *(ptr);				\
484 	for (;;) {							\
485 		__old = cmpxchg((ptr), __val, __val | (val));		\
486 		if (__old == __val)					\
487 			break;						\
488 		__val = __old;						\
489 	}								\
490 	__old;								\
491})
492
493#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494/*
495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496 * this avoids any races wrt polling state changes and thereby avoids
497 * spurious IPIs.
498 */
499static bool set_nr_and_not_polling(struct task_struct *p)
500{
501	struct thread_info *ti = task_thread_info(p);
502	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503}
504
505/*
506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507 *
508 * If this returns true, then the idle task promises to call
509 * sched_ttwu_pending() and reschedule soon.
510 */
511static bool set_nr_if_polling(struct task_struct *p)
512{
513	struct thread_info *ti = task_thread_info(p);
514	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515
516	for (;;) {
517		if (!(val & _TIF_POLLING_NRFLAG))
518			return false;
519		if (val & _TIF_NEED_RESCHED)
520			return true;
521		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522		if (old == val)
523			break;
524		val = old;
525	}
526	return true;
527}
528
529#else
530static bool set_nr_and_not_polling(struct task_struct *p)
531{
532	set_tsk_need_resched(p);
533	return true;
534}
535
536#ifdef CONFIG_SMP
537static bool set_nr_if_polling(struct task_struct *p)
538{
539	return false;
540}
541#endif
542#endif
543
544/*
545 * resched_curr - mark rq's current task 'to be rescheduled now'.
546 *
547 * On UP this means the setting of the need_resched flag, on SMP it
548 * might also involve a cross-CPU call to trigger the scheduler on
549 * the target CPU.
550 */
551void resched_curr(struct rq *rq)
552{
553	struct task_struct *curr = rq->curr;
554	int cpu;
555
556	lockdep_assert_held(&rq->lock);
557
558	if (test_tsk_need_resched(curr))
559		return;
560
561	cpu = cpu_of(rq);
562
563	if (cpu == smp_processor_id()) {
564		set_tsk_need_resched(curr);
565		set_preempt_need_resched();
566		return;
567	}
568
569	if (set_nr_and_not_polling(curr))
570		smp_send_reschedule(cpu);
571	else
572		trace_sched_wake_idle_without_ipi(cpu);
573}
574
575void resched_cpu(int cpu)
576{
577	struct rq *rq = cpu_rq(cpu);
578	unsigned long flags;
579
580	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
581		return;
582	resched_curr(rq);
583	raw_spin_unlock_irqrestore(&rq->lock, flags);
584}
585
586#ifdef CONFIG_SMP
587#ifdef CONFIG_NO_HZ_COMMON
588/*
589 * In the semi idle case, use the nearest busy cpu for migrating timers
590 * from an idle cpu.  This is good for power-savings.
591 *
592 * We don't do similar optimization for completely idle system, as
593 * selecting an idle cpu will add more delays to the timers than intended
594 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595 */
596int get_nohz_timer_target(int pinned)
597{
598	int cpu = smp_processor_id();
599	int i;
600	struct sched_domain *sd;
601
602	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603		return cpu;
604
605	rcu_read_lock();
606	for_each_domain(cpu, sd) {
607		for_each_cpu(i, sched_domain_span(sd)) {
608			if (!idle_cpu(i)) {
609				cpu = i;
610				goto unlock;
611			}
612		}
613	}
614unlock:
615	rcu_read_unlock();
616	return cpu;
617}
618/*
619 * When add_timer_on() enqueues a timer into the timer wheel of an
620 * idle CPU then this timer might expire before the next timer event
621 * which is scheduled to wake up that CPU. In case of a completely
622 * idle system the next event might even be infinite time into the
623 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624 * leaves the inner idle loop so the newly added timer is taken into
625 * account when the CPU goes back to idle and evaluates the timer
626 * wheel for the next timer event.
627 */
628static void wake_up_idle_cpu(int cpu)
629{
630	struct rq *rq = cpu_rq(cpu);
631
632	if (cpu == smp_processor_id())
633		return;
634
635	if (set_nr_and_not_polling(rq->idle))
636		smp_send_reschedule(cpu);
637	else
638		trace_sched_wake_idle_without_ipi(cpu);
639}
640
641static bool wake_up_full_nohz_cpu(int cpu)
642{
643	/*
644	 * We just need the target to call irq_exit() and re-evaluate
645	 * the next tick. The nohz full kick at least implies that.
646	 * If needed we can still optimize that later with an
647	 * empty IRQ.
648	 */
649	if (tick_nohz_full_cpu(cpu)) {
650		if (cpu != smp_processor_id() ||
651		    tick_nohz_tick_stopped())
652			tick_nohz_full_kick_cpu(cpu);
653		return true;
654	}
655
656	return false;
657}
658
659void wake_up_nohz_cpu(int cpu)
660{
661	if (!wake_up_full_nohz_cpu(cpu))
662		wake_up_idle_cpu(cpu);
663}
664
665static inline bool got_nohz_idle_kick(void)
666{
667	int cpu = smp_processor_id();
668
669	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670		return false;
671
672	if (idle_cpu(cpu) && !need_resched())
673		return true;
674
675	/*
676	 * We can't run Idle Load Balance on this CPU for this time so we
677	 * cancel it and clear NOHZ_BALANCE_KICK
678	 */
679	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680	return false;
681}
682
683#else /* CONFIG_NO_HZ_COMMON */
684
685static inline bool got_nohz_idle_kick(void)
686{
687	return false;
688}
689
690#endif /* CONFIG_NO_HZ_COMMON */
691
692#ifdef CONFIG_NO_HZ_FULL
693bool sched_can_stop_tick(void)
694{
695	/*
696	 * FIFO realtime policy runs the highest priority task. Other runnable
697	 * tasks are of a lower priority. The scheduler tick does nothing.
698	 */
699	if (current->policy == SCHED_FIFO)
700		return true;
701
702	/*
703	 * Round-robin realtime tasks time slice with other tasks at the same
704	 * realtime priority. Is this task the only one at this priority?
705	 */
706	if (current->policy == SCHED_RR) {
707		struct sched_rt_entity *rt_se = &current->rt;
708
709		return rt_se->run_list.prev == rt_se->run_list.next;
710	}
711
712	/*
713	 * More than one running task need preemption.
714	 * nr_running update is assumed to be visible
715	 * after IPI is sent from wakers.
716	 */
717	if (this_rq()->nr_running > 1)
718		return false;
719
720	return true;
721}
722#endif /* CONFIG_NO_HZ_FULL */
723
724void sched_avg_update(struct rq *rq)
725{
726	s64 period = sched_avg_period();
727
728	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729		/*
730		 * Inline assembly required to prevent the compiler
731		 * optimising this loop into a divmod call.
732		 * See __iter_div_u64_rem() for another example of this.
733		 */
734		asm("" : "+rm" (rq->age_stamp));
735		rq->age_stamp += period;
736		rq->rt_avg /= 2;
737	}
738}
739
740#endif /* CONFIG_SMP */
741
742#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744/*
745 * Iterate task_group tree rooted at *from, calling @down when first entering a
746 * node and @up when leaving it for the final time.
747 *
748 * Caller must hold rcu_lock or sufficient equivalent.
749 */
750int walk_tg_tree_from(struct task_group *from,
751			     tg_visitor down, tg_visitor up, void *data)
752{
753	struct task_group *parent, *child;
754	int ret;
755
756	parent = from;
757
758down:
759	ret = (*down)(parent, data);
760	if (ret)
761		goto out;
762	list_for_each_entry_rcu(child, &parent->children, siblings) {
763		parent = child;
764		goto down;
765
766up:
767		continue;
768	}
769	ret = (*up)(parent, data);
770	if (ret || parent == from)
771		goto out;
772
773	child = parent;
774	parent = parent->parent;
775	if (parent)
776		goto up;
777out:
778	return ret;
779}
780
781int tg_nop(struct task_group *tg, void *data)
782{
783	return 0;
784}
785#endif
786
787static void set_load_weight(struct task_struct *p)
788{
789	int prio = p->static_prio - MAX_RT_PRIO;
790	struct load_weight *load = &p->se.load;
791
792	/*
793	 * SCHED_IDLE tasks get minimal weight:
794	 */
795	if (p->policy == SCHED_IDLE) {
796		load->weight = scale_load(WEIGHT_IDLEPRIO);
797		load->inv_weight = WMULT_IDLEPRIO;
798		return;
799	}
800
801	load->weight = scale_load(prio_to_weight[prio]);
802	load->inv_weight = prio_to_wmult[prio];
803}
804
805static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806{
807	update_rq_clock(rq);
808	sched_info_queued(rq, p);
809	p->sched_class->enqueue_task(rq, p, flags);
810}
811
812static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813{
814	update_rq_clock(rq);
815	sched_info_dequeued(rq, p);
816	p->sched_class->dequeue_task(rq, p, flags);
817}
818
819void activate_task(struct rq *rq, struct task_struct *p, int flags)
820{
821	if (task_contributes_to_load(p))
822		rq->nr_uninterruptible--;
823
824	enqueue_task(rq, p, flags);
825}
826
827void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828{
829	if (task_contributes_to_load(p))
830		rq->nr_uninterruptible++;
831
832	dequeue_task(rq, p, flags);
833}
834
835static void update_rq_clock_task(struct rq *rq, s64 delta)
836{
837/*
838 * In theory, the compile should just see 0 here, and optimize out the call
839 * to sched_rt_avg_update. But I don't trust it...
840 */
841#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842	s64 steal = 0, irq_delta = 0;
843#endif
844#ifdef CONFIG_IRQ_TIME_ACCOUNTING
845	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846
847	/*
848	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849	 * this case when a previous update_rq_clock() happened inside a
850	 * {soft,}irq region.
851	 *
852	 * When this happens, we stop ->clock_task and only update the
853	 * prev_irq_time stamp to account for the part that fit, so that a next
854	 * update will consume the rest. This ensures ->clock_task is
855	 * monotonic.
856	 *
857	 * It does however cause some slight miss-attribution of {soft,}irq
858	 * time, a more accurate solution would be to update the irq_time using
859	 * the current rq->clock timestamp, except that would require using
860	 * atomic ops.
861	 */
862	if (irq_delta > delta)
863		irq_delta = delta;
864
865	rq->prev_irq_time += irq_delta;
866	delta -= irq_delta;
867#endif
868#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869	if (static_key_false((&paravirt_steal_rq_enabled))) {
870		steal = paravirt_steal_clock(cpu_of(rq));
871		steal -= rq->prev_steal_time_rq;
872
873		if (unlikely(steal > delta))
874			steal = delta;
875
876		rq->prev_steal_time_rq += steal;
877		delta -= steal;
878	}
879#endif
880
881	rq->clock_task += delta;
882
883#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885		sched_rt_avg_update(rq, irq_delta + steal);
886#endif
887}
888
889void sched_set_stop_task(int cpu, struct task_struct *stop)
890{
891	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892	struct task_struct *old_stop = cpu_rq(cpu)->stop;
893
894	if (stop) {
895		/*
896		 * Make it appear like a SCHED_FIFO task, its something
897		 * userspace knows about and won't get confused about.
898		 *
899		 * Also, it will make PI more or less work without too
900		 * much confusion -- but then, stop work should not
901		 * rely on PI working anyway.
902		 */
903		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904
905		stop->sched_class = &stop_sched_class;
906	}
907
908	cpu_rq(cpu)->stop = stop;
909
910	if (old_stop) {
911		/*
912		 * Reset it back to a normal scheduling class so that
913		 * it can die in pieces.
914		 */
915		old_stop->sched_class = &rt_sched_class;
916	}
917}
918
919/*
920 * __normal_prio - return the priority that is based on the static prio
921 */
922static inline int __normal_prio(struct task_struct *p)
923{
924	return p->static_prio;
925}
926
927/*
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
933 */
934static inline int normal_prio(struct task_struct *p)
935{
936	int prio;
937
938	if (task_has_dl_policy(p))
939		prio = MAX_DL_PRIO-1;
940	else if (task_has_rt_policy(p))
941		prio = MAX_RT_PRIO-1 - p->rt_priority;
942	else
943		prio = __normal_prio(p);
944	return prio;
945}
946
947/*
948 * Calculate the current priority, i.e. the priority
949 * taken into account by the scheduler. This value might
950 * be boosted by RT tasks, or might be boosted by
951 * interactivity modifiers. Will be RT if the task got
952 * RT-boosted. If not then it returns p->normal_prio.
953 */
954static int effective_prio(struct task_struct *p)
955{
956	p->normal_prio = normal_prio(p);
957	/*
958	 * If we are RT tasks or we were boosted to RT priority,
959	 * keep the priority unchanged. Otherwise, update priority
960	 * to the normal priority:
961	 */
962	if (!rt_prio(p->prio))
963		return p->normal_prio;
964	return p->prio;
965}
966
967/**
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
970 *
971 * Return: 1 if the task is currently executing. 0 otherwise.
972 */
973inline int task_curr(const struct task_struct *p)
974{
975	return cpu_curr(task_cpu(p)) == p;
976}
977
978/*
979 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980 */
981static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982				       const struct sched_class *prev_class,
983				       int oldprio)
984{
985	if (prev_class != p->sched_class) {
986		if (prev_class->switched_from)
987			prev_class->switched_from(rq, p);
988		/* Possble rq->lock 'hole'.  */
989		p->sched_class->switched_to(rq, p);
990	} else if (oldprio != p->prio || dl_task(p))
991		p->sched_class->prio_changed(rq, p, oldprio);
992}
993
994void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995{
996	const struct sched_class *class;
997
998	if (p->sched_class == rq->curr->sched_class) {
999		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000	} else {
1001		for_each_class(class) {
1002			if (class == rq->curr->sched_class)
1003				break;
1004			if (class == p->sched_class) {
1005				resched_curr(rq);
1006				break;
1007			}
1008		}
1009	}
1010
1011	/*
1012	 * A queue event has occurred, and we're going to schedule.  In
1013	 * this case, we can save a useless back to back clock update.
1014	 */
1015	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016		rq_clock_skip_update(rq, true);
1017}
1018
1019#ifdef CONFIG_SMP
1020void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1021{
1022#ifdef CONFIG_SCHED_DEBUG
1023	/*
1024	 * We should never call set_task_cpu() on a blocked task,
1025	 * ttwu() will sort out the placement.
1026	 */
1027	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1028			!p->on_rq);
1029
1030#ifdef CONFIG_LOCKDEP
1031	/*
1032	 * The caller should hold either p->pi_lock or rq->lock, when changing
1033	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034	 *
1035	 * sched_move_task() holds both and thus holding either pins the cgroup,
1036	 * see task_group().
1037	 *
1038	 * Furthermore, all task_rq users should acquire both locks, see
1039	 * task_rq_lock().
1040	 */
1041	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042				      lockdep_is_held(&task_rq(p)->lock)));
1043#endif
1044#endif
1045
1046	trace_sched_migrate_task(p, new_cpu);
1047
1048	if (task_cpu(p) != new_cpu) {
1049		if (p->sched_class->migrate_task_rq)
1050			p->sched_class->migrate_task_rq(p, new_cpu);
1051		p->se.nr_migrations++;
1052		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1053	}
1054
1055	__set_task_cpu(p, new_cpu);
1056}
1057
1058static void __migrate_swap_task(struct task_struct *p, int cpu)
1059{
1060	if (task_on_rq_queued(p)) {
1061		struct rq *src_rq, *dst_rq;
1062
1063		src_rq = task_rq(p);
1064		dst_rq = cpu_rq(cpu);
1065
1066		deactivate_task(src_rq, p, 0);
1067		set_task_cpu(p, cpu);
1068		activate_task(dst_rq, p, 0);
1069		check_preempt_curr(dst_rq, p, 0);
1070	} else {
1071		/*
1072		 * Task isn't running anymore; make it appear like we migrated
1073		 * it before it went to sleep. This means on wakeup we make the
1074		 * previous cpu our targer instead of where it really is.
1075		 */
1076		p->wake_cpu = cpu;
1077	}
1078}
1079
1080struct migration_swap_arg {
1081	struct task_struct *src_task, *dst_task;
1082	int src_cpu, dst_cpu;
1083};
1084
1085static int migrate_swap_stop(void *data)
1086{
1087	struct migration_swap_arg *arg = data;
1088	struct rq *src_rq, *dst_rq;
1089	int ret = -EAGAIN;
1090
1091	src_rq = cpu_rq(arg->src_cpu);
1092	dst_rq = cpu_rq(arg->dst_cpu);
1093
1094	double_raw_lock(&arg->src_task->pi_lock,
1095			&arg->dst_task->pi_lock);
1096	double_rq_lock(src_rq, dst_rq);
1097	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098		goto unlock;
1099
1100	if (task_cpu(arg->src_task) != arg->src_cpu)
1101		goto unlock;
1102
1103	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104		goto unlock;
1105
1106	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107		goto unlock;
1108
1109	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1110	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1111
1112	ret = 0;
1113
1114unlock:
1115	double_rq_unlock(src_rq, dst_rq);
1116	raw_spin_unlock(&arg->dst_task->pi_lock);
1117	raw_spin_unlock(&arg->src_task->pi_lock);
1118
1119	return ret;
1120}
1121
1122/*
1123 * Cross migrate two tasks
1124 */
1125int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126{
1127	struct migration_swap_arg arg;
1128	int ret = -EINVAL;
1129
1130	arg = (struct migration_swap_arg){
1131		.src_task = cur,
1132		.src_cpu = task_cpu(cur),
1133		.dst_task = p,
1134		.dst_cpu = task_cpu(p),
1135	};
1136
1137	if (arg.src_cpu == arg.dst_cpu)
1138		goto out;
1139
1140	/*
1141	 * These three tests are all lockless; this is OK since all of them
1142	 * will be re-checked with proper locks held further down the line.
1143	 */
1144	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145		goto out;
1146
1147	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148		goto out;
1149
1150	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151		goto out;
1152
1153	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1154	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155
1156out:
1157	return ret;
1158}
1159
1160struct migration_arg {
1161	struct task_struct *task;
1162	int dest_cpu;
1163};
1164
1165static int migration_cpu_stop(void *data);
1166
1167/*
1168 * wait_task_inactive - wait for a thread to unschedule.
1169 *
1170 * If @match_state is nonzero, it's the @p->state value just checked and
1171 * not expected to change.  If it changes, i.e. @p might have woken up,
1172 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1173 * we return a positive number (its total switch count).  If a second call
1174 * a short while later returns the same number, the caller can be sure that
1175 * @p has remained unscheduled the whole time.
1176 *
1177 * The caller must ensure that the task *will* unschedule sometime soon,
1178 * else this function might spin for a *long* time. This function can't
1179 * be called with interrupts off, or it may introduce deadlock with
1180 * smp_call_function() if an IPI is sent by the same process we are
1181 * waiting to become inactive.
1182 */
1183unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1184{
1185	unsigned long flags;
1186	int running, queued;
1187	unsigned long ncsw;
1188	struct rq *rq;
1189
1190	for (;;) {
1191		/*
1192		 * We do the initial early heuristics without holding
1193		 * any task-queue locks at all. We'll only try to get
1194		 * the runqueue lock when things look like they will
1195		 * work out!
1196		 */
1197		rq = task_rq(p);
1198
1199		/*
1200		 * If the task is actively running on another CPU
1201		 * still, just relax and busy-wait without holding
1202		 * any locks.
1203		 *
1204		 * NOTE! Since we don't hold any locks, it's not
1205		 * even sure that "rq" stays as the right runqueue!
1206		 * But we don't care, since "task_running()" will
1207		 * return false if the runqueue has changed and p
1208		 * is actually now running somewhere else!
1209		 */
1210		while (task_running(rq, p)) {
1211			if (match_state && unlikely(p->state != match_state))
1212				return 0;
1213			cpu_relax();
1214		}
1215
1216		/*
1217		 * Ok, time to look more closely! We need the rq
1218		 * lock now, to be *sure*. If we're wrong, we'll
1219		 * just go back and repeat.
1220		 */
1221		rq = task_rq_lock(p, &flags);
1222		trace_sched_wait_task(p);
1223		running = task_running(rq, p);
1224		queued = task_on_rq_queued(p);
1225		ncsw = 0;
1226		if (!match_state || p->state == match_state)
1227			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1228		task_rq_unlock(rq, p, &flags);
1229
1230		/*
1231		 * If it changed from the expected state, bail out now.
1232		 */
1233		if (unlikely(!ncsw))
1234			break;
1235
1236		/*
1237		 * Was it really running after all now that we
1238		 * checked with the proper locks actually held?
1239		 *
1240		 * Oops. Go back and try again..
1241		 */
1242		if (unlikely(running)) {
1243			cpu_relax();
1244			continue;
1245		}
1246
1247		/*
1248		 * It's not enough that it's not actively running,
1249		 * it must be off the runqueue _entirely_, and not
1250		 * preempted!
1251		 *
1252		 * So if it was still runnable (but just not actively
1253		 * running right now), it's preempted, and we should
1254		 * yield - it could be a while.
1255		 */
1256		if (unlikely(queued)) {
1257			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258
1259			set_current_state(TASK_UNINTERRUPTIBLE);
1260			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1261			continue;
1262		}
1263
1264		/*
1265		 * Ahh, all good. It wasn't running, and it wasn't
1266		 * runnable, which means that it will never become
1267		 * running in the future either. We're all done!
1268		 */
1269		break;
1270	}
1271
1272	return ncsw;
1273}
1274
1275/***
1276 * kick_process - kick a running thread to enter/exit the kernel
1277 * @p: the to-be-kicked thread
1278 *
1279 * Cause a process which is running on another CPU to enter
1280 * kernel-mode, without any delay. (to get signals handled.)
1281 *
1282 * NOTE: this function doesn't have to take the runqueue lock,
1283 * because all it wants to ensure is that the remote task enters
1284 * the kernel. If the IPI races and the task has been migrated
1285 * to another CPU then no harm is done and the purpose has been
1286 * achieved as well.
1287 */
1288void kick_process(struct task_struct *p)
1289{
1290	int cpu;
1291
1292	preempt_disable();
1293	cpu = task_cpu(p);
1294	if ((cpu != smp_processor_id()) && task_curr(p))
1295		smp_send_reschedule(cpu);
1296	preempt_enable();
1297}
1298EXPORT_SYMBOL_GPL(kick_process);
1299#endif /* CONFIG_SMP */
1300
1301#ifdef CONFIG_SMP
1302/*
1303 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1304 */
1305static int select_fallback_rq(int cpu, struct task_struct *p)
1306{
1307	int nid = cpu_to_node(cpu);
1308	const struct cpumask *nodemask = NULL;
1309	enum { cpuset, possible, fail } state = cpuset;
1310	int dest_cpu;
1311
1312	/*
1313	 * If the node that the cpu is on has been offlined, cpu_to_node()
1314	 * will return -1. There is no cpu on the node, and we should
1315	 * select the cpu on the other node.
1316	 */
1317	if (nid != -1) {
1318		nodemask = cpumask_of_node(nid);
1319
1320		/* Look for allowed, online CPU in same node. */
1321		for_each_cpu(dest_cpu, nodemask) {
1322			if (!cpu_online(dest_cpu))
1323				continue;
1324			if (!cpu_active(dest_cpu))
1325				continue;
1326			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327				return dest_cpu;
1328		}
1329	}
1330
1331	for (;;) {
1332		/* Any allowed, online CPU? */
1333		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1334			if (!cpu_online(dest_cpu))
1335				continue;
1336			if (!cpu_active(dest_cpu))
1337				continue;
1338			goto out;
1339		}
1340
1341		switch (state) {
1342		case cpuset:
1343			/* No more Mr. Nice Guy. */
1344			cpuset_cpus_allowed_fallback(p);
1345			state = possible;
1346			break;
1347
1348		case possible:
1349			do_set_cpus_allowed(p, cpu_possible_mask);
1350			state = fail;
1351			break;
1352
1353		case fail:
1354			BUG();
1355			break;
1356		}
1357	}
1358
1359out:
1360	if (state != cpuset) {
1361		/*
1362		 * Don't tell them about moving exiting tasks or
1363		 * kernel threads (both mm NULL), since they never
1364		 * leave kernel.
1365		 */
1366		if (p->mm && printk_ratelimit()) {
1367			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368					task_pid_nr(p), p->comm, cpu);
1369		}
1370	}
1371
1372	return dest_cpu;
1373}
1374
1375/*
1376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1377 */
1378static inline
1379int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1380{
1381	if (p->nr_cpus_allowed > 1)
1382		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1383
1384	/*
1385	 * In order not to call set_task_cpu() on a blocking task we need
1386	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387	 * cpu.
1388	 *
1389	 * Since this is common to all placement strategies, this lives here.
1390	 *
1391	 * [ this allows ->select_task() to simply return task_cpu(p) and
1392	 *   not worry about this generic constraint ]
1393	 */
1394	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1395		     !cpu_online(cpu)))
1396		cpu = select_fallback_rq(task_cpu(p), p);
1397
1398	return cpu;
1399}
1400
1401static void update_avg(u64 *avg, u64 sample)
1402{
1403	s64 diff = sample - *avg;
1404	*avg += diff >> 3;
1405}
1406#endif
1407
1408static void
1409ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1410{
1411#ifdef CONFIG_SCHEDSTATS
1412	struct rq *rq = this_rq();
1413
1414#ifdef CONFIG_SMP
1415	int this_cpu = smp_processor_id();
1416
1417	if (cpu == this_cpu) {
1418		schedstat_inc(rq, ttwu_local);
1419		schedstat_inc(p, se.statistics.nr_wakeups_local);
1420	} else {
1421		struct sched_domain *sd;
1422
1423		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1424		rcu_read_lock();
1425		for_each_domain(this_cpu, sd) {
1426			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427				schedstat_inc(sd, ttwu_wake_remote);
1428				break;
1429			}
1430		}
1431		rcu_read_unlock();
1432	}
1433
1434	if (wake_flags & WF_MIGRATED)
1435		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436
1437#endif /* CONFIG_SMP */
1438
1439	schedstat_inc(rq, ttwu_count);
1440	schedstat_inc(p, se.statistics.nr_wakeups);
1441
1442	if (wake_flags & WF_SYNC)
1443		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1444
1445#endif /* CONFIG_SCHEDSTATS */
1446}
1447
1448static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449{
1450	activate_task(rq, p, en_flags);
1451	p->on_rq = TASK_ON_RQ_QUEUED;
1452
1453	/* if a worker is waking up, notify workqueue */
1454	if (p->flags & PF_WQ_WORKER)
1455		wq_worker_waking_up(p, cpu_of(rq));
1456}
1457
1458/*
1459 * Mark the task runnable and perform wakeup-preemption.
1460 */
1461static void
1462ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1463{
1464	check_preempt_curr(rq, p, wake_flags);
1465	trace_sched_wakeup(p, true);
1466
1467	p->state = TASK_RUNNING;
1468#ifdef CONFIG_SMP
1469	if (p->sched_class->task_woken)
1470		p->sched_class->task_woken(rq, p);
1471
1472	if (rq->idle_stamp) {
1473		u64 delta = rq_clock(rq) - rq->idle_stamp;
1474		u64 max = 2*rq->max_idle_balance_cost;
1475
1476		update_avg(&rq->avg_idle, delta);
1477
1478		if (rq->avg_idle > max)
1479			rq->avg_idle = max;
1480
1481		rq->idle_stamp = 0;
1482	}
1483#endif
1484}
1485
1486static void
1487ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488{
1489#ifdef CONFIG_SMP
1490	if (p->sched_contributes_to_load)
1491		rq->nr_uninterruptible--;
1492#endif
1493
1494	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495	ttwu_do_wakeup(rq, p, wake_flags);
1496}
1497
1498/*
1499 * Called in case the task @p isn't fully descheduled from its runqueue,
1500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501 * since all we need to do is flip p->state to TASK_RUNNING, since
1502 * the task is still ->on_rq.
1503 */
1504static int ttwu_remote(struct task_struct *p, int wake_flags)
1505{
1506	struct rq *rq;
1507	int ret = 0;
1508
1509	rq = __task_rq_lock(p);
1510	if (task_on_rq_queued(p)) {
1511		/* check_preempt_curr() may use rq clock */
1512		update_rq_clock(rq);
1513		ttwu_do_wakeup(rq, p, wake_flags);
1514		ret = 1;
1515	}
1516	__task_rq_unlock(rq);
1517
1518	return ret;
1519}
1520
1521#ifdef CONFIG_SMP
1522void sched_ttwu_pending(void)
1523{
1524	struct rq *rq = this_rq();
1525	struct llist_node *llist = llist_del_all(&rq->wake_list);
1526	struct task_struct *p;
1527	unsigned long flags;
1528
1529	if (!llist)
1530		return;
1531
1532	raw_spin_lock_irqsave(&rq->lock, flags);
1533
1534	while (llist) {
1535		p = llist_entry(llist, struct task_struct, wake_entry);
1536		llist = llist_next(llist);
1537		ttwu_do_activate(rq, p, 0);
1538	}
1539
1540	raw_spin_unlock_irqrestore(&rq->lock, flags);
1541}
1542
1543void scheduler_ipi(void)
1544{
1545	/*
1546	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1548	 * this IPI.
1549	 */
1550	preempt_fold_need_resched();
1551
1552	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1553		return;
1554
1555	/*
1556	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557	 * traditionally all their work was done from the interrupt return
1558	 * path. Now that we actually do some work, we need to make sure
1559	 * we do call them.
1560	 *
1561	 * Some archs already do call them, luckily irq_enter/exit nest
1562	 * properly.
1563	 *
1564	 * Arguably we should visit all archs and update all handlers,
1565	 * however a fair share of IPIs are still resched only so this would
1566	 * somewhat pessimize the simple resched case.
1567	 */
1568	irq_enter();
1569	sched_ttwu_pending();
1570
1571	/*
1572	 * Check if someone kicked us for doing the nohz idle load balance.
1573	 */
1574	if (unlikely(got_nohz_idle_kick())) {
1575		this_rq()->idle_balance = 1;
1576		raise_softirq_irqoff(SCHED_SOFTIRQ);
1577	}
1578	irq_exit();
1579}
1580
1581static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582{
1583	struct rq *rq = cpu_rq(cpu);
1584
1585	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586		if (!set_nr_if_polling(rq->idle))
1587			smp_send_reschedule(cpu);
1588		else
1589			trace_sched_wake_idle_without_ipi(cpu);
1590	}
1591}
1592
1593void wake_up_if_idle(int cpu)
1594{
1595	struct rq *rq = cpu_rq(cpu);
1596	unsigned long flags;
1597
1598	rcu_read_lock();
1599
1600	if (!is_idle_task(rcu_dereference(rq->curr)))
1601		goto out;
1602
1603	if (set_nr_if_polling(rq->idle)) {
1604		trace_sched_wake_idle_without_ipi(cpu);
1605	} else {
1606		raw_spin_lock_irqsave(&rq->lock, flags);
1607		if (is_idle_task(rq->curr))
1608			smp_send_reschedule(cpu);
1609		/* Else cpu is not in idle, do nothing here */
1610		raw_spin_unlock_irqrestore(&rq->lock, flags);
1611	}
1612
1613out:
1614	rcu_read_unlock();
1615}
1616
1617bool cpus_share_cache(int this_cpu, int that_cpu)
1618{
1619	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620}
1621#endif /* CONFIG_SMP */
1622
1623static void ttwu_queue(struct task_struct *p, int cpu)
1624{
1625	struct rq *rq = cpu_rq(cpu);
1626
1627#if defined(CONFIG_SMP)
1628	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1629		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1630		ttwu_queue_remote(p, cpu);
1631		return;
1632	}
1633#endif
1634
1635	raw_spin_lock(&rq->lock);
1636	ttwu_do_activate(rq, p, 0);
1637	raw_spin_unlock(&rq->lock);
1638}
1639
1640/**
1641 * try_to_wake_up - wake up a thread
1642 * @p: the thread to be awakened
1643 * @state: the mask of task states that can be woken
1644 * @wake_flags: wake modifier flags (WF_*)
1645 *
1646 * Put it on the run-queue if it's not already there. The "current"
1647 * thread is always on the run-queue (except when the actual
1648 * re-schedule is in progress), and as such you're allowed to do
1649 * the simpler "current->state = TASK_RUNNING" to mark yourself
1650 * runnable without the overhead of this.
1651 *
1652 * Return: %true if @p was woken up, %false if it was already running.
1653 * or @state didn't match @p's state.
1654 */
1655static int
1656try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1657{
1658	unsigned long flags;
1659	int cpu, success = 0;
1660
1661	/*
1662	 * If we are going to wake up a thread waiting for CONDITION we
1663	 * need to ensure that CONDITION=1 done by the caller can not be
1664	 * reordered with p->state check below. This pairs with mb() in
1665	 * set_current_state() the waiting thread does.
1666	 */
1667	smp_mb__before_spinlock();
1668	raw_spin_lock_irqsave(&p->pi_lock, flags);
1669	if (!(p->state & state))
1670		goto out;
1671
1672	success = 1; /* we're going to change ->state */
1673	cpu = task_cpu(p);
1674
1675	if (p->on_rq && ttwu_remote(p, wake_flags))
1676		goto stat;
1677
1678#ifdef CONFIG_SMP
1679	/*
1680	 * If the owning (remote) cpu is still in the middle of schedule() with
1681	 * this task as prev, wait until its done referencing the task.
1682	 */
1683	while (p->on_cpu)
1684		cpu_relax();
1685	/*
1686	 * Pairs with the smp_wmb() in finish_lock_switch().
1687	 */
1688	smp_rmb();
1689
1690	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1691	p->state = TASK_WAKING;
1692
1693	if (p->sched_class->task_waking)
1694		p->sched_class->task_waking(p);
1695
1696	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1697	if (task_cpu(p) != cpu) {
1698		wake_flags |= WF_MIGRATED;
1699		set_task_cpu(p, cpu);
1700	}
1701#endif /* CONFIG_SMP */
1702
1703	ttwu_queue(p, cpu);
1704stat:
1705	ttwu_stat(p, cpu, wake_flags);
1706out:
1707	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1708
1709	return success;
1710}
1711
1712/**
1713 * try_to_wake_up_local - try to wake up a local task with rq lock held
1714 * @p: the thread to be awakened
1715 *
1716 * Put @p on the run-queue if it's not already there. The caller must
1717 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718 * the current task.
1719 */
1720static void try_to_wake_up_local(struct task_struct *p)
1721{
1722	struct rq *rq = task_rq(p);
1723
1724	if (WARN_ON_ONCE(rq != this_rq()) ||
1725	    WARN_ON_ONCE(p == current))
1726		return;
1727
1728	lockdep_assert_held(&rq->lock);
1729
1730	if (!raw_spin_trylock(&p->pi_lock)) {
1731		raw_spin_unlock(&rq->lock);
1732		raw_spin_lock(&p->pi_lock);
1733		raw_spin_lock(&rq->lock);
1734	}
1735
1736	if (!(p->state & TASK_NORMAL))
1737		goto out;
1738
1739	if (!task_on_rq_queued(p))
1740		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741
1742	ttwu_do_wakeup(rq, p, 0);
1743	ttwu_stat(p, smp_processor_id(), 0);
1744out:
1745	raw_spin_unlock(&p->pi_lock);
1746}
1747
1748/**
1749 * wake_up_process - Wake up a specific process
1750 * @p: The process to be woken up.
1751 *
1752 * Attempt to wake up the nominated process and move it to the set of runnable
1753 * processes.
1754 *
1755 * Return: 1 if the process was woken up, 0 if it was already running.
1756 *
1757 * It may be assumed that this function implies a write memory barrier before
1758 * changing the task state if and only if any tasks are woken up.
1759 */
1760int wake_up_process(struct task_struct *p)
1761{
1762	WARN_ON(task_is_stopped_or_traced(p));
1763	return try_to_wake_up(p, TASK_NORMAL, 0);
1764}
1765EXPORT_SYMBOL(wake_up_process);
1766
1767int wake_up_state(struct task_struct *p, unsigned int state)
1768{
1769	return try_to_wake_up(p, state, 0);
1770}
1771
1772/*
1773 * This function clears the sched_dl_entity static params.
1774 */
1775void __dl_clear_params(struct task_struct *p)
1776{
1777	struct sched_dl_entity *dl_se = &p->dl;
1778
1779	dl_se->dl_runtime = 0;
1780	dl_se->dl_deadline = 0;
1781	dl_se->dl_period = 0;
1782	dl_se->flags = 0;
1783	dl_se->dl_bw = 0;
1784
1785	dl_se->dl_throttled = 0;
1786	dl_se->dl_new = 1;
1787	dl_se->dl_yielded = 0;
1788}
1789
1790/*
1791 * Perform scheduler related setup for a newly forked process p.
1792 * p is forked by current.
1793 *
1794 * __sched_fork() is basic setup used by init_idle() too:
1795 */
1796static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1797{
1798	p->on_rq			= 0;
1799
1800	p->se.on_rq			= 0;
1801	p->se.exec_start		= 0;
1802	p->se.sum_exec_runtime		= 0;
1803	p->se.prev_sum_exec_runtime	= 0;
1804	p->se.nr_migrations		= 0;
1805	p->se.vruntime			= 0;
1806#ifdef CONFIG_SMP
1807	p->se.avg.decay_count		= 0;
1808#endif
1809	INIT_LIST_HEAD(&p->se.group_node);
1810
1811#ifdef CONFIG_SCHEDSTATS
1812	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1813#endif
1814
1815	RB_CLEAR_NODE(&p->dl.rb_node);
1816	init_dl_task_timer(&p->dl);
1817	__dl_clear_params(p);
1818
1819	INIT_LIST_HEAD(&p->rt.run_list);
1820
1821#ifdef CONFIG_PREEMPT_NOTIFIERS
1822	INIT_HLIST_HEAD(&p->preempt_notifiers);
1823#endif
1824
1825#ifdef CONFIG_NUMA_BALANCING
1826	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1827		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1828		p->mm->numa_scan_seq = 0;
1829	}
1830
1831	if (clone_flags & CLONE_VM)
1832		p->numa_preferred_nid = current->numa_preferred_nid;
1833	else
1834		p->numa_preferred_nid = -1;
1835
1836	p->node_stamp = 0ULL;
1837	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1838	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1839	p->numa_work.next = &p->numa_work;
1840	p->numa_faults = NULL;
1841	p->last_task_numa_placement = 0;
1842	p->last_sum_exec_runtime = 0;
1843
1844	p->numa_group = NULL;
1845#endif /* CONFIG_NUMA_BALANCING */
1846}
1847
1848#ifdef CONFIG_NUMA_BALANCING
1849#ifdef CONFIG_SCHED_DEBUG
1850void set_numabalancing_state(bool enabled)
1851{
1852	if (enabled)
1853		sched_feat_set("NUMA");
1854	else
1855		sched_feat_set("NO_NUMA");
1856}
1857#else
1858__read_mostly bool numabalancing_enabled;
1859
1860void set_numabalancing_state(bool enabled)
1861{
1862	numabalancing_enabled = enabled;
1863}
1864#endif /* CONFIG_SCHED_DEBUG */
1865
1866#ifdef CONFIG_PROC_SYSCTL
1867int sysctl_numa_balancing(struct ctl_table *table, int write,
1868			 void __user *buffer, size_t *lenp, loff_t *ppos)
1869{
1870	struct ctl_table t;
1871	int err;
1872	int state = numabalancing_enabled;
1873
1874	if (write && !capable(CAP_SYS_ADMIN))
1875		return -EPERM;
1876
1877	t = *table;
1878	t.data = &state;
1879	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880	if (err < 0)
1881		return err;
1882	if (write)
1883		set_numabalancing_state(state);
1884	return err;
1885}
1886#endif
1887#endif
1888
1889/*
1890 * fork()/clone()-time setup:
1891 */
1892int sched_fork(unsigned long clone_flags, struct task_struct *p)
1893{
1894	unsigned long flags;
1895	int cpu = get_cpu();
1896
1897	__sched_fork(clone_flags, p);
1898	/*
1899	 * We mark the process as running here. This guarantees that
1900	 * nobody will actually run it, and a signal or other external
1901	 * event cannot wake it up and insert it on the runqueue either.
1902	 */
1903	p->state = TASK_RUNNING;
1904
1905	/*
1906	 * Make sure we do not leak PI boosting priority to the child.
1907	 */
1908	p->prio = current->normal_prio;
1909
1910	/*
1911	 * Revert to default priority/policy on fork if requested.
1912	 */
1913	if (unlikely(p->sched_reset_on_fork)) {
1914		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1915			p->policy = SCHED_NORMAL;
1916			p->static_prio = NICE_TO_PRIO(0);
1917			p->rt_priority = 0;
1918		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1919			p->static_prio = NICE_TO_PRIO(0);
1920
1921		p->prio = p->normal_prio = __normal_prio(p);
1922		set_load_weight(p);
1923
1924		/*
1925		 * We don't need the reset flag anymore after the fork. It has
1926		 * fulfilled its duty:
1927		 */
1928		p->sched_reset_on_fork = 0;
1929	}
1930
1931	if (dl_prio(p->prio)) {
1932		put_cpu();
1933		return -EAGAIN;
1934	} else if (rt_prio(p->prio)) {
1935		p->sched_class = &rt_sched_class;
1936	} else {
1937		p->sched_class = &fair_sched_class;
1938	}
1939
1940	if (p->sched_class->task_fork)
1941		p->sched_class->task_fork(p);
1942
1943	/*
1944	 * The child is not yet in the pid-hash so no cgroup attach races,
1945	 * and the cgroup is pinned to this child due to cgroup_fork()
1946	 * is ran before sched_fork().
1947	 *
1948	 * Silence PROVE_RCU.
1949	 */
1950	raw_spin_lock_irqsave(&p->pi_lock, flags);
1951	set_task_cpu(p, cpu);
1952	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1953
1954#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955	if (likely(sched_info_on()))
1956		memset(&p->sched_info, 0, sizeof(p->sched_info));
1957#endif
1958#if defined(CONFIG_SMP)
1959	p->on_cpu = 0;
1960#endif
1961	init_task_preempt_count(p);
1962#ifdef CONFIG_SMP
1963	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1964	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1965#endif
1966
1967	put_cpu();
1968	return 0;
1969}
1970
1971unsigned long to_ratio(u64 period, u64 runtime)
1972{
1973	if (runtime == RUNTIME_INF)
1974		return 1ULL << 20;
1975
1976	/*
1977	 * Doing this here saves a lot of checks in all
1978	 * the calling paths, and returning zero seems
1979	 * safe for them anyway.
1980	 */
1981	if (period == 0)
1982		return 0;
1983
1984	return div64_u64(runtime << 20, period);
1985}
1986
1987#ifdef CONFIG_SMP
1988inline struct dl_bw *dl_bw_of(int i)
1989{
1990	rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991			   "sched RCU must be held");
1992	return &cpu_rq(i)->rd->dl_bw;
1993}
1994
1995static inline int dl_bw_cpus(int i)
1996{
1997	struct root_domain *rd = cpu_rq(i)->rd;
1998	int cpus = 0;
1999
2000	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001			   "sched RCU must be held");
2002	for_each_cpu_and(i, rd->span, cpu_active_mask)
2003		cpus++;
2004
2005	return cpus;
2006}
2007#else
2008inline struct dl_bw *dl_bw_of(int i)
2009{
2010	return &cpu_rq(i)->dl.dl_bw;
2011}
2012
2013static inline int dl_bw_cpus(int i)
2014{
2015	return 1;
2016}
2017#endif
2018
2019/*
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2024 *
2025 * This function is called while holding p's rq->lock.
2026 *
2027 * XXX we should delay bw change until the task's 0-lag point, see
2028 * __setparam_dl().
2029 */
2030static int dl_overflow(struct task_struct *p, int policy,
2031		       const struct sched_attr *attr)
2032{
2033
2034	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2035	u64 period = attr->sched_period ?: attr->sched_deadline;
2036	u64 runtime = attr->sched_runtime;
2037	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2038	int cpus, err = -1;
2039
2040	if (new_bw == p->dl.dl_bw)
2041		return 0;
2042
2043	/*
2044	 * Either if a task, enters, leave, or stays -deadline but changes
2045	 * its parameters, we may need to update accordingly the total
2046	 * allocated bandwidth of the container.
2047	 */
2048	raw_spin_lock(&dl_b->lock);
2049	cpus = dl_bw_cpus(task_cpu(p));
2050	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052		__dl_add(dl_b, new_bw);
2053		err = 0;
2054	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056		__dl_clear(dl_b, p->dl.dl_bw);
2057		__dl_add(dl_b, new_bw);
2058		err = 0;
2059	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060		__dl_clear(dl_b, p->dl.dl_bw);
2061		err = 0;
2062	}
2063	raw_spin_unlock(&dl_b->lock);
2064
2065	return err;
2066}
2067
2068extern void init_dl_bw(struct dl_bw *dl_b);
2069
2070/*
2071 * wake_up_new_task - wake up a newly created task for the first time.
2072 *
2073 * This function will do some initial scheduler statistics housekeeping
2074 * that must be done for every newly created context, then puts the task
2075 * on the runqueue and wakes it.
2076 */
2077void wake_up_new_task(struct task_struct *p)
2078{
2079	unsigned long flags;
2080	struct rq *rq;
2081
2082	raw_spin_lock_irqsave(&p->pi_lock, flags);
2083#ifdef CONFIG_SMP
2084	/*
2085	 * Fork balancing, do it here and not earlier because:
2086	 *  - cpus_allowed can change in the fork path
2087	 *  - any previously selected cpu might disappear through hotplug
2088	 */
2089	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2090#endif
2091
2092	/* Initialize new task's runnable average */
2093	init_task_runnable_average(p);
2094	rq = __task_rq_lock(p);
2095	activate_task(rq, p, 0);
2096	p->on_rq = TASK_ON_RQ_QUEUED;
2097	trace_sched_wakeup_new(p, true);
2098	check_preempt_curr(rq, p, WF_FORK);
2099#ifdef CONFIG_SMP
2100	if (p->sched_class->task_woken)
2101		p->sched_class->task_woken(rq, p);
2102#endif
2103	task_rq_unlock(rq, p, &flags);
2104}
2105
2106#ifdef CONFIG_PREEMPT_NOTIFIERS
2107
2108/**
2109 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2110 * @notifier: notifier struct to register
2111 */
2112void preempt_notifier_register(struct preempt_notifier *notifier)
2113{
2114	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2115}
2116EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117
2118/**
2119 * preempt_notifier_unregister - no longer interested in preemption notifications
2120 * @notifier: notifier struct to unregister
2121 *
2122 * This is safe to call from within a preemption notifier.
2123 */
2124void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125{
2126	hlist_del(&notifier->link);
2127}
2128EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129
2130static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131{
2132	struct preempt_notifier *notifier;
2133
2134	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2135		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136}
2137
2138static void
2139fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140				 struct task_struct *next)
2141{
2142	struct preempt_notifier *notifier;
2143
2144	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2145		notifier->ops->sched_out(notifier, next);
2146}
2147
2148#else /* !CONFIG_PREEMPT_NOTIFIERS */
2149
2150static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151{
2152}
2153
2154static void
2155fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156				 struct task_struct *next)
2157{
2158}
2159
2160#endif /* CONFIG_PREEMPT_NOTIFIERS */
2161
2162/**
2163 * prepare_task_switch - prepare to switch tasks
2164 * @rq: the runqueue preparing to switch
2165 * @prev: the current task that is being switched out
2166 * @next: the task we are going to switch to.
2167 *
2168 * This is called with the rq lock held and interrupts off. It must
2169 * be paired with a subsequent finish_task_switch after the context
2170 * switch.
2171 *
2172 * prepare_task_switch sets up locking and calls architecture specific
2173 * hooks.
2174 */
2175static inline void
2176prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177		    struct task_struct *next)
2178{
2179	trace_sched_switch(prev, next);
2180	sched_info_switch(rq, prev, next);
2181	perf_event_task_sched_out(prev, next);
2182	fire_sched_out_preempt_notifiers(prev, next);
2183	prepare_lock_switch(rq, next);
2184	prepare_arch_switch(next);
2185}
2186
2187/**
2188 * finish_task_switch - clean up after a task-switch
2189 * @prev: the thread we just switched away from.
2190 *
2191 * finish_task_switch must be called after the context switch, paired
2192 * with a prepare_task_switch call before the context switch.
2193 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194 * and do any other architecture-specific cleanup actions.
2195 *
2196 * Note that we may have delayed dropping an mm in context_switch(). If
2197 * so, we finish that here outside of the runqueue lock. (Doing it
2198 * with the lock held can cause deadlocks; see schedule() for
2199 * details.)
2200 *
2201 * The context switch have flipped the stack from under us and restored the
2202 * local variables which were saved when this task called schedule() in the
2203 * past. prev == current is still correct but we need to recalculate this_rq
2204 * because prev may have moved to another CPU.
2205 */
2206static struct rq *finish_task_switch(struct task_struct *prev)
2207	__releases(rq->lock)
2208{
2209	struct rq *rq = this_rq();
2210	struct mm_struct *mm = rq->prev_mm;
2211	long prev_state;
2212
2213	rq->prev_mm = NULL;
2214
2215	/*
2216	 * A task struct has one reference for the use as "current".
2217	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2218	 * schedule one last time. The schedule call will never return, and
2219	 * the scheduled task must drop that reference.
2220	 *
2221	 * We must observe prev->state before clearing prev->on_cpu (in
2222	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2223	 * running on another CPU and we could rave with its RUNNING -> DEAD
2224	 * transition, resulting in a double drop.
2225	 */
2226	prev_state = prev->state;
2227	vtime_task_switch(prev);
2228	finish_arch_switch(prev);
2229	perf_event_task_sched_in(prev, current);
2230	finish_lock_switch(rq, prev);
2231	finish_arch_post_lock_switch();
2232
2233	fire_sched_in_preempt_notifiers(current);
2234	if (mm)
2235		mmdrop(mm);
2236	if (unlikely(prev_state == TASK_DEAD)) {
2237		if (prev->sched_class->task_dead)
2238			prev->sched_class->task_dead(prev);
2239
2240		/*
2241		 * Remove function-return probe instances associated with this
2242		 * task and put them back on the free list.
2243		 */
2244		kprobe_flush_task(prev);
2245		put_task_struct(prev);
2246	}
2247
2248	tick_nohz_task_switch(current);
2249	return rq;
2250}
2251
2252#ifdef CONFIG_SMP
2253
2254/* rq->lock is NOT held, but preemption is disabled */
2255static inline void post_schedule(struct rq *rq)
2256{
2257	if (rq->post_schedule) {
2258		unsigned long flags;
2259
2260		raw_spin_lock_irqsave(&rq->lock, flags);
2261		if (rq->curr->sched_class->post_schedule)
2262			rq->curr->sched_class->post_schedule(rq);
2263		raw_spin_unlock_irqrestore(&rq->lock, flags);
2264
2265		rq->post_schedule = 0;
2266	}
2267}
2268
2269#else
2270
2271static inline void post_schedule(struct rq *rq)
2272{
2273}
2274
2275#endif
2276
2277/**
2278 * schedule_tail - first thing a freshly forked thread must call.
2279 * @prev: the thread we just switched away from.
2280 */
2281asmlinkage __visible void schedule_tail(struct task_struct *prev)
2282	__releases(rq->lock)
2283{
2284	struct rq *rq;
2285
2286	/* finish_task_switch() drops rq->lock and enables preemtion */
2287	preempt_disable();
2288	rq = finish_task_switch(prev);
2289	post_schedule(rq);
2290	preempt_enable();
2291
2292	if (current->set_child_tid)
2293		put_user(task_pid_vnr(current), current->set_child_tid);
2294}
2295
2296/*
2297 * context_switch - switch to the new MM and the new thread's register state.
2298 */
2299static inline struct rq *
2300context_switch(struct rq *rq, struct task_struct *prev,
2301	       struct task_struct *next)
2302{
2303	struct mm_struct *mm, *oldmm;
2304
2305	prepare_task_switch(rq, prev, next);
2306
2307	mm = next->mm;
2308	oldmm = prev->active_mm;
2309	/*
2310	 * For paravirt, this is coupled with an exit in switch_to to
2311	 * combine the page table reload and the switch backend into
2312	 * one hypercall.
2313	 */
2314	arch_start_context_switch(prev);
2315
2316	if (!mm) {
2317		next->active_mm = oldmm;
2318		atomic_inc(&oldmm->mm_count);
2319		enter_lazy_tlb(oldmm, next);
2320	} else
2321		switch_mm(oldmm, mm, next);
2322
2323	if (!prev->mm) {
2324		prev->active_mm = NULL;
2325		rq->prev_mm = oldmm;
2326	}
2327	/*
2328	 * Since the runqueue lock will be released by the next
2329	 * task (which is an invalid locking op but in the case
2330	 * of the scheduler it's an obvious special-case), so we
2331	 * do an early lockdep release here:
2332	 */
2333	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2334
2335	context_tracking_task_switch(prev, next);
2336	/* Here we just switch the register state and the stack. */
2337	switch_to(prev, next, prev);
2338	barrier();
2339
2340	return finish_task_switch(prev);
2341}
2342
2343/*
2344 * nr_running and nr_context_switches:
2345 *
2346 * externally visible scheduler statistics: current number of runnable
2347 * threads, total number of context switches performed since bootup.
2348 */
2349unsigned long nr_running(void)
2350{
2351	unsigned long i, sum = 0;
2352
2353	for_each_online_cpu(i)
2354		sum += cpu_rq(i)->nr_running;
2355
2356	return sum;
2357}
2358
2359/*
2360 * Check if only the current task is running on the cpu.
2361 *
2362 * Caution: this function does not check that the caller has disabled
2363 * preemption, thus the result might have a time-of-check-to-time-of-use
2364 * race.  The caller is responsible to use it correctly, for example:
2365 *
2366 * - from a non-preemptable section (of course)
2367 *
2368 * - from a thread that is bound to a single CPU
2369 *
2370 * - in a loop with very short iterations (e.g. a polling loop)
2371 */
2372bool single_task_running(void)
2373{
2374	return raw_rq()->nr_running == 1;
2375}
2376EXPORT_SYMBOL(single_task_running);
2377
2378unsigned long long nr_context_switches(void)
2379{
2380	int i;
2381	unsigned long long sum = 0;
2382
2383	for_each_possible_cpu(i)
2384		sum += cpu_rq(i)->nr_switches;
2385
2386	return sum;
2387}
2388
2389unsigned long nr_iowait(void)
2390{
2391	unsigned long i, sum = 0;
2392
2393	for_each_possible_cpu(i)
2394		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2395
2396	return sum;
2397}
2398
2399unsigned long nr_iowait_cpu(int cpu)
2400{
2401	struct rq *this = cpu_rq(cpu);
2402	return atomic_read(&this->nr_iowait);
2403}
2404
2405void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2406{
2407	struct rq *this = this_rq();
2408	*nr_waiters = atomic_read(&this->nr_iowait);
2409	*load = this->cpu_load[0];
2410}
2411
2412#ifdef CONFIG_SMP
2413
2414/*
2415 * sched_exec - execve() is a valuable balancing opportunity, because at
2416 * this point the task has the smallest effective memory and cache footprint.
2417 */
2418void sched_exec(void)
2419{
2420	struct task_struct *p = current;
2421	unsigned long flags;
2422	int dest_cpu;
2423
2424	raw_spin_lock_irqsave(&p->pi_lock, flags);
2425	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2426	if (dest_cpu == smp_processor_id())
2427		goto unlock;
2428
2429	if (likely(cpu_active(dest_cpu))) {
2430		struct migration_arg arg = { p, dest_cpu };
2431
2432		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2433		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2434		return;
2435	}
2436unlock:
2437	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2438}
2439
2440#endif
2441
2442DEFINE_PER_CPU(struct kernel_stat, kstat);
2443DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2444
2445EXPORT_PER_CPU_SYMBOL(kstat);
2446EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2447
2448/*
2449 * Return accounted runtime for the task.
2450 * In case the task is currently running, return the runtime plus current's
2451 * pending runtime that have not been accounted yet.
2452 */
2453unsigned long long task_sched_runtime(struct task_struct *p)
2454{
2455	unsigned long flags;
2456	struct rq *rq;
2457	u64 ns;
2458
2459#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2460	/*
2461	 * 64-bit doesn't need locks to atomically read a 64bit value.
2462	 * So we have a optimization chance when the task's delta_exec is 0.
2463	 * Reading ->on_cpu is racy, but this is ok.
2464	 *
2465	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2466	 * If we race with it entering cpu, unaccounted time is 0. This is
2467	 * indistinguishable from the read occurring a few cycles earlier.
2468	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2469	 * been accounted, so we're correct here as well.
2470	 */
2471	if (!p->on_cpu || !task_on_rq_queued(p))
2472		return p->se.sum_exec_runtime;
2473#endif
2474
2475	rq = task_rq_lock(p, &flags);
2476	/*
2477	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2478	 * project cycles that may never be accounted to this
2479	 * thread, breaking clock_gettime().
2480	 */
2481	if (task_current(rq, p) && task_on_rq_queued(p)) {
2482		update_rq_clock(rq);
2483		p->sched_class->update_curr(rq);
2484	}
2485	ns = p->se.sum_exec_runtime;
2486	task_rq_unlock(rq, p, &flags);
2487
2488	return ns;
2489}
2490
2491/*
2492 * This function gets called by the timer code, with HZ frequency.
2493 * We call it with interrupts disabled.
2494 */
2495void scheduler_tick(void)
2496{
2497	int cpu = smp_processor_id();
2498	struct rq *rq = cpu_rq(cpu);
2499	struct task_struct *curr = rq->curr;
2500
2501	sched_clock_tick();
2502
2503	raw_spin_lock(&rq->lock);
2504	update_rq_clock(rq);
2505	curr->sched_class->task_tick(rq, curr, 0);
2506	update_cpu_load_active(rq);
2507	raw_spin_unlock(&rq->lock);
2508
2509	perf_event_task_tick();
2510
2511#ifdef CONFIG_SMP
2512	rq->idle_balance = idle_cpu(cpu);
2513	trigger_load_balance(rq);
2514#endif
2515	rq_last_tick_reset(rq);
2516}
2517
2518#ifdef CONFIG_NO_HZ_FULL
2519/**
2520 * scheduler_tick_max_deferment
2521 *
2522 * Keep at least one tick per second when a single
2523 * active task is running because the scheduler doesn't
2524 * yet completely support full dynticks environment.
2525 *
2526 * This makes sure that uptime, CFS vruntime, load
2527 * balancing, etc... continue to move forward, even
2528 * with a very low granularity.
2529 *
2530 * Return: Maximum deferment in nanoseconds.
2531 */
2532u64 scheduler_tick_max_deferment(void)
2533{
2534	struct rq *rq = this_rq();
2535	unsigned long next, now = ACCESS_ONCE(jiffies);
2536
2537	next = rq->last_sched_tick + HZ;
2538
2539	if (time_before_eq(next, now))
2540		return 0;
2541
2542	return jiffies_to_nsecs(next - now);
2543}
2544#endif
2545
2546notrace unsigned long get_parent_ip(unsigned long addr)
2547{
2548	if (in_lock_functions(addr)) {
2549		addr = CALLER_ADDR2;
2550		if (in_lock_functions(addr))
2551			addr = CALLER_ADDR3;
2552	}
2553	return addr;
2554}
2555
2556#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2557				defined(CONFIG_PREEMPT_TRACER))
2558
2559void preempt_count_add(int val)
2560{
2561#ifdef CONFIG_DEBUG_PREEMPT
2562	/*
2563	 * Underflow?
2564	 */
2565	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2566		return;
2567#endif
2568	__preempt_count_add(val);
2569#ifdef CONFIG_DEBUG_PREEMPT
2570	/*
2571	 * Spinlock count overflowing soon?
2572	 */
2573	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2574				PREEMPT_MASK - 10);
2575#endif
2576	if (preempt_count() == val) {
2577		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2578#ifdef CONFIG_DEBUG_PREEMPT
2579		current->preempt_disable_ip = ip;
2580#endif
2581		trace_preempt_off(CALLER_ADDR0, ip);
2582	}
2583}
2584EXPORT_SYMBOL(preempt_count_add);
2585NOKPROBE_SYMBOL(preempt_count_add);
2586
2587void preempt_count_sub(int val)
2588{
2589#ifdef CONFIG_DEBUG_PREEMPT
2590	/*
2591	 * Underflow?
2592	 */
2593	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2594		return;
2595	/*
2596	 * Is the spinlock portion underflowing?
2597	 */
2598	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2599			!(preempt_count() & PREEMPT_MASK)))
2600		return;
2601#endif
2602
2603	if (preempt_count() == val)
2604		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2605	__preempt_count_sub(val);
2606}
2607EXPORT_SYMBOL(preempt_count_sub);
2608NOKPROBE_SYMBOL(preempt_count_sub);
2609
2610#endif
2611
2612/*
2613 * Print scheduling while atomic bug:
2614 */
2615static noinline void __schedule_bug(struct task_struct *prev)
2616{
2617	if (oops_in_progress)
2618		return;
2619
2620	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2621		prev->comm, prev->pid, preempt_count());
2622
2623	debug_show_held_locks(prev);
2624	print_modules();
2625	if (irqs_disabled())
2626		print_irqtrace_events(prev);
2627#ifdef CONFIG_DEBUG_PREEMPT
2628	if (in_atomic_preempt_off()) {
2629		pr_err("Preemption disabled at:");
2630		print_ip_sym(current->preempt_disable_ip);
2631		pr_cont("\n");
2632	}
2633#endif
2634	dump_stack();
2635	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2636}
2637
2638/*
2639 * Various schedule()-time debugging checks and statistics:
2640 */
2641static inline void schedule_debug(struct task_struct *prev)
2642{
2643#ifdef CONFIG_SCHED_STACK_END_CHECK
2644	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2645#endif
2646	/*
2647	 * Test if we are atomic. Since do_exit() needs to call into
2648	 * schedule() atomically, we ignore that path. Otherwise whine
2649	 * if we are scheduling when we should not.
2650	 */
2651	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2652		__schedule_bug(prev);
2653	rcu_sleep_check();
2654
2655	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2656
2657	schedstat_inc(this_rq(), sched_count);
2658}
2659
2660/*
2661 * Pick up the highest-prio task:
2662 */
2663static inline struct task_struct *
2664pick_next_task(struct rq *rq, struct task_struct *prev)
2665{
2666	const struct sched_class *class = &fair_sched_class;
2667	struct task_struct *p;
2668
2669	/*
2670	 * Optimization: we know that if all tasks are in
2671	 * the fair class we can call that function directly:
2672	 */
2673	if (likely(prev->sched_class == class &&
2674		   rq->nr_running == rq->cfs.h_nr_running)) {
2675		p = fair_sched_class.pick_next_task(rq, prev);
2676		if (unlikely(p == RETRY_TASK))
2677			goto again;
2678
2679		/* assumes fair_sched_class->next == idle_sched_class */
2680		if (unlikely(!p))
2681			p = idle_sched_class.pick_next_task(rq, prev);
2682
2683		return p;
2684	}
2685
2686again:
2687	for_each_class(class) {
2688		p = class->pick_next_task(rq, prev);
2689		if (p) {
2690			if (unlikely(p == RETRY_TASK))
2691				goto again;
2692			return p;
2693		}
2694	}
2695
2696	BUG(); /* the idle class will always have a runnable task */
2697}
2698
2699/*
2700 * __schedule() is the main scheduler function.
2701 *
2702 * The main means of driving the scheduler and thus entering this function are:
2703 *
2704 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2705 *
2706 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2707 *      paths. For example, see arch/x86/entry_64.S.
2708 *
2709 *      To drive preemption between tasks, the scheduler sets the flag in timer
2710 *      interrupt handler scheduler_tick().
2711 *
2712 *   3. Wakeups don't really cause entry into schedule(). They add a
2713 *      task to the run-queue and that's it.
2714 *
2715 *      Now, if the new task added to the run-queue preempts the current
2716 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2717 *      called on the nearest possible occasion:
2718 *
2719 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2720 *
2721 *         - in syscall or exception context, at the next outmost
2722 *           preempt_enable(). (this might be as soon as the wake_up()'s
2723 *           spin_unlock()!)
2724 *
2725 *         - in IRQ context, return from interrupt-handler to
2726 *           preemptible context
2727 *
2728 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2729 *         then at the next:
2730 *
2731 *          - cond_resched() call
2732 *          - explicit schedule() call
2733 *          - return from syscall or exception to user-space
2734 *          - return from interrupt-handler to user-space
2735 *
2736 * WARNING: all callers must re-check need_resched() afterward and reschedule
2737 * accordingly in case an event triggered the need for rescheduling (such as
2738 * an interrupt waking up a task) while preemption was disabled in __schedule().
2739 */
2740static void __sched __schedule(void)
2741{
2742	struct task_struct *prev, *next;
2743	unsigned long *switch_count;
2744	struct rq *rq;
2745	int cpu;
2746
2747	preempt_disable();
2748	cpu = smp_processor_id();
2749	rq = cpu_rq(cpu);
2750	rcu_note_context_switch();
2751	prev = rq->curr;
2752
2753	schedule_debug(prev);
2754
2755	if (sched_feat(HRTICK))
2756		hrtick_clear(rq);
2757
2758	/*
2759	 * Make sure that signal_pending_state()->signal_pending() below
2760	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2761	 * done by the caller to avoid the race with signal_wake_up().
2762	 */
2763	smp_mb__before_spinlock();
2764	raw_spin_lock_irq(&rq->lock);
2765
2766	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2767
2768	switch_count = &prev->nivcsw;
2769	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2770		if (unlikely(signal_pending_state(prev->state, prev))) {
2771			prev->state = TASK_RUNNING;
2772		} else {
2773			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2774			prev->on_rq = 0;
2775
2776			/*
2777			 * If a worker went to sleep, notify and ask workqueue
2778			 * whether it wants to wake up a task to maintain
2779			 * concurrency.
2780			 */
2781			if (prev->flags & PF_WQ_WORKER) {
2782				struct task_struct *to_wakeup;
2783
2784				to_wakeup = wq_worker_sleeping(prev, cpu);
2785				if (to_wakeup)
2786					try_to_wake_up_local(to_wakeup);
2787			}
2788		}
2789		switch_count = &prev->nvcsw;
2790	}
2791
2792	if (task_on_rq_queued(prev))
2793		update_rq_clock(rq);
2794
2795	next = pick_next_task(rq, prev);
2796	clear_tsk_need_resched(prev);
2797	clear_preempt_need_resched();
2798	rq->clock_skip_update = 0;
2799
2800	if (likely(prev != next)) {
2801		rq->nr_switches++;
2802		rq->curr = next;
2803		++*switch_count;
2804
2805		rq = context_switch(rq, prev, next); /* unlocks the rq */
2806		cpu = cpu_of(rq);
2807	} else
2808		raw_spin_unlock_irq(&rq->lock);
2809
2810	post_schedule(rq);
2811
2812	sched_preempt_enable_no_resched();
2813}
2814
2815static inline void sched_submit_work(struct task_struct *tsk)
2816{
2817	if (!tsk->state || tsk_is_pi_blocked(tsk))
2818		return;
2819	/*
2820	 * If we are going to sleep and we have plugged IO queued,
2821	 * make sure to submit it to avoid deadlocks.
2822	 */
2823	if (blk_needs_flush_plug(tsk))
2824		blk_schedule_flush_plug(tsk);
2825}
2826
2827asmlinkage __visible void __sched schedule(void)
2828{
2829	struct task_struct *tsk = current;
2830
2831	sched_submit_work(tsk);
2832	do {
2833		__schedule();
2834	} while (need_resched());
2835}
2836EXPORT_SYMBOL(schedule);
2837
2838#ifdef CONFIG_CONTEXT_TRACKING
2839asmlinkage __visible void __sched schedule_user(void)
2840{
2841	/*
2842	 * If we come here after a random call to set_need_resched(),
2843	 * or we have been woken up remotely but the IPI has not yet arrived,
2844	 * we haven't yet exited the RCU idle mode. Do it here manually until
2845	 * we find a better solution.
2846	 *
2847	 * NB: There are buggy callers of this function.  Ideally we
2848	 * should warn if prev_state != CONTEXT_USER, but that will trigger
2849	 * too frequently to make sense yet.
2850	 */
2851	enum ctx_state prev_state = exception_enter();
2852	schedule();
2853	exception_exit(prev_state);
2854}
2855#endif
2856
2857/**
2858 * schedule_preempt_disabled - called with preemption disabled
2859 *
2860 * Returns with preemption disabled. Note: preempt_count must be 1
2861 */
2862void __sched schedule_preempt_disabled(void)
2863{
2864	sched_preempt_enable_no_resched();
2865	schedule();
2866	preempt_disable();
2867}
2868
2869static void __sched notrace preempt_schedule_common(void)
2870{
2871	do {
2872		__preempt_count_add(PREEMPT_ACTIVE);
2873		__schedule();
2874		__preempt_count_sub(PREEMPT_ACTIVE);
2875
2876		/*
2877		 * Check again in case we missed a preemption opportunity
2878		 * between schedule and now.
2879		 */
2880		barrier();
2881	} while (need_resched());
2882}
2883
2884#ifdef CONFIG_PREEMPT
2885/*
2886 * this is the entry point to schedule() from in-kernel preemption
2887 * off of preempt_enable. Kernel preemptions off return from interrupt
2888 * occur there and call schedule directly.
2889 */
2890asmlinkage __visible void __sched notrace preempt_schedule(void)
2891{
2892	/*
2893	 * If there is a non-zero preempt_count or interrupts are disabled,
2894	 * we do not want to preempt the current task. Just return..
2895	 */
2896	if (likely(!preemptible()))
2897		return;
2898
2899	preempt_schedule_common();
2900}
2901NOKPROBE_SYMBOL(preempt_schedule);
2902EXPORT_SYMBOL(preempt_schedule);
2903
2904#ifdef CONFIG_CONTEXT_TRACKING
2905/**
2906 * preempt_schedule_context - preempt_schedule called by tracing
2907 *
2908 * The tracing infrastructure uses preempt_enable_notrace to prevent
2909 * recursion and tracing preempt enabling caused by the tracing
2910 * infrastructure itself. But as tracing can happen in areas coming
2911 * from userspace or just about to enter userspace, a preempt enable
2912 * can occur before user_exit() is called. This will cause the scheduler
2913 * to be called when the system is still in usermode.
2914 *
2915 * To prevent this, the preempt_enable_notrace will use this function
2916 * instead of preempt_schedule() to exit user context if needed before
2917 * calling the scheduler.
2918 */
2919asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2920{
2921	enum ctx_state prev_ctx;
2922
2923	if (likely(!preemptible()))
2924		return;
2925
2926	do {
2927		__preempt_count_add(PREEMPT_ACTIVE);
2928		/*
2929		 * Needs preempt disabled in case user_exit() is traced
2930		 * and the tracer calls preempt_enable_notrace() causing
2931		 * an infinite recursion.
2932		 */
2933		prev_ctx = exception_enter();
2934		__schedule();
2935		exception_exit(prev_ctx);
2936
2937		__preempt_count_sub(PREEMPT_ACTIVE);
2938		barrier();
2939	} while (need_resched());
2940}
2941EXPORT_SYMBOL_GPL(preempt_schedule_context);
2942#endif /* CONFIG_CONTEXT_TRACKING */
2943
2944#endif /* CONFIG_PREEMPT */
2945
2946/*
2947 * this is the entry point to schedule() from kernel preemption
2948 * off of irq context.
2949 * Note, that this is called and return with irqs disabled. This will
2950 * protect us against recursive calling from irq.
2951 */
2952asmlinkage __visible void __sched preempt_schedule_irq(void)
2953{
2954	enum ctx_state prev_state;
2955
2956	/* Catch callers which need to be fixed */
2957	BUG_ON(preempt_count() || !irqs_disabled());
2958
2959	prev_state = exception_enter();
2960
2961	do {
2962		__preempt_count_add(PREEMPT_ACTIVE);
2963		local_irq_enable();
2964		__schedule();
2965		local_irq_disable();
2966		__preempt_count_sub(PREEMPT_ACTIVE);
2967
2968		/*
2969		 * Check again in case we missed a preemption opportunity
2970		 * between schedule and now.
2971		 */
2972		barrier();
2973	} while (need_resched());
2974
2975	exception_exit(prev_state);
2976}
2977
2978int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2979			  void *key)
2980{
2981	return try_to_wake_up(curr->private, mode, wake_flags);
2982}
2983EXPORT_SYMBOL(default_wake_function);
2984
2985#ifdef CONFIG_RT_MUTEXES
2986
2987/*
2988 * rt_mutex_setprio - set the current priority of a task
2989 * @p: task
2990 * @prio: prio value (kernel-internal form)
2991 *
2992 * This function changes the 'effective' priority of a task. It does
2993 * not touch ->normal_prio like __setscheduler().
2994 *
2995 * Used by the rt_mutex code to implement priority inheritance
2996 * logic. Call site only calls if the priority of the task changed.
2997 */
2998void rt_mutex_setprio(struct task_struct *p, int prio)
2999{
3000	int oldprio, queued, running, enqueue_flag = 0;
3001	struct rq *rq;
3002	const struct sched_class *prev_class;
3003
3004	BUG_ON(prio > MAX_PRIO);
3005
3006	rq = __task_rq_lock(p);
3007
3008	/*
3009	 * Idle task boosting is a nono in general. There is one
3010	 * exception, when PREEMPT_RT and NOHZ is active:
3011	 *
3012	 * The idle task calls get_next_timer_interrupt() and holds
3013	 * the timer wheel base->lock on the CPU and another CPU wants
3014	 * to access the timer (probably to cancel it). We can safely
3015	 * ignore the boosting request, as the idle CPU runs this code
3016	 * with interrupts disabled and will complete the lock
3017	 * protected section without being interrupted. So there is no
3018	 * real need to boost.
3019	 */
3020	if (unlikely(p == rq->idle)) {
3021		WARN_ON(p != rq->curr);
3022		WARN_ON(p->pi_blocked_on);
3023		goto out_unlock;
3024	}
3025
3026	trace_sched_pi_setprio(p, prio);
3027	oldprio = p->prio;
3028	prev_class = p->sched_class;
3029	queued = task_on_rq_queued(p);
3030	running = task_current(rq, p);
3031	if (queued)
3032		dequeue_task(rq, p, 0);
3033	if (running)
3034		put_prev_task(rq, p);
3035
3036	/*
3037	 * Boosting condition are:
3038	 * 1. -rt task is running and holds mutex A
3039	 *      --> -dl task blocks on mutex A
3040	 *
3041	 * 2. -dl task is running and holds mutex A
3042	 *      --> -dl task blocks on mutex A and could preempt the
3043	 *          running task
3044	 */
3045	if (dl_prio(prio)) {
3046		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3047		if (!dl_prio(p->normal_prio) ||
3048		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3049			p->dl.dl_boosted = 1;
3050			p->dl.dl_throttled = 0;
3051			enqueue_flag = ENQUEUE_REPLENISH;
3052		} else
3053			p->dl.dl_boosted = 0;
3054		p->sched_class = &dl_sched_class;
3055	} else if (rt_prio(prio)) {
3056		if (dl_prio(oldprio))
3057			p->dl.dl_boosted = 0;
3058		if (oldprio < prio)
3059			enqueue_flag = ENQUEUE_HEAD;
3060		p->sched_class = &rt_sched_class;
3061	} else {
3062		if (dl_prio(oldprio))
3063			p->dl.dl_boosted = 0;
3064		if (rt_prio(oldprio))
3065			p->rt.timeout = 0;
3066		p->sched_class = &fair_sched_class;
3067	}
3068
3069	p->prio = prio;
3070
3071	if (running)
3072		p->sched_class->set_curr_task(rq);
3073	if (queued)
3074		enqueue_task(rq, p, enqueue_flag);
3075
3076	check_class_changed(rq, p, prev_class, oldprio);
3077out_unlock:
3078	__task_rq_unlock(rq);
3079}
3080#endif
3081
3082void set_user_nice(struct task_struct *p, long nice)
3083{
3084	int old_prio, delta, queued;
3085	unsigned long flags;
3086	struct rq *rq;
3087
3088	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3089		return;
3090	/*
3091	 * We have to be careful, if called from sys_setpriority(),
3092	 * the task might be in the middle of scheduling on another CPU.
3093	 */
3094	rq = task_rq_lock(p, &flags);
3095	/*
3096	 * The RT priorities are set via sched_setscheduler(), but we still
3097	 * allow the 'normal' nice value to be set - but as expected
3098	 * it wont have any effect on scheduling until the task is
3099	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3100	 */
3101	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3102		p->static_prio = NICE_TO_PRIO(nice);
3103		goto out_unlock;
3104	}
3105	queued = task_on_rq_queued(p);
3106	if (queued)
3107		dequeue_task(rq, p, 0);
3108
3109	p->static_prio = NICE_TO_PRIO(nice);
3110	set_load_weight(p);
3111	old_prio = p->prio;
3112	p->prio = effective_prio(p);
3113	delta = p->prio - old_prio;
3114
3115	if (queued) {
3116		enqueue_task(rq, p, 0);
3117		/*
3118		 * If the task increased its priority or is running and
3119		 * lowered its priority, then reschedule its CPU:
3120		 */
3121		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3122			resched_curr(rq);
3123	}
3124out_unlock:
3125	task_rq_unlock(rq, p, &flags);
3126}
3127EXPORT_SYMBOL(set_user_nice);
3128
3129/*
3130 * can_nice - check if a task can reduce its nice value
3131 * @p: task
3132 * @nice: nice value
3133 */
3134int can_nice(const struct task_struct *p, const int nice)
3135{
3136	/* convert nice value [19,-20] to rlimit style value [1,40] */
3137	int nice_rlim = nice_to_rlimit(nice);
3138
3139	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3140		capable(CAP_SYS_NICE));
3141}
3142
3143#ifdef __ARCH_WANT_SYS_NICE
3144
3145/*
3146 * sys_nice - change the priority of the current process.
3147 * @increment: priority increment
3148 *
3149 * sys_setpriority is a more generic, but much slower function that
3150 * does similar things.
3151 */
3152SYSCALL_DEFINE1(nice, int, increment)
3153{
3154	long nice, retval;
3155
3156	/*
3157	 * Setpriority might change our priority at the same moment.
3158	 * We don't have to worry. Conceptually one call occurs first
3159	 * and we have a single winner.
3160	 */
3161	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3162	nice = task_nice(current) + increment;
3163
3164	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3165	if (increment < 0 && !can_nice(current, nice))
3166		return -EPERM;
3167
3168	retval = security_task_setnice(current, nice);
3169	if (retval)
3170		return retval;
3171
3172	set_user_nice(current, nice);
3173	return 0;
3174}
3175
3176#endif
3177
3178/**
3179 * task_prio - return the priority value of a given task.
3180 * @p: the task in question.
3181 *
3182 * Return: The priority value as seen by users in /proc.
3183 * RT tasks are offset by -200. Normal tasks are centered
3184 * around 0, value goes from -16 to +15.
3185 */
3186int task_prio(const struct task_struct *p)
3187{
3188	return p->prio - MAX_RT_PRIO;
3189}
3190
3191/**
3192 * idle_cpu - is a given cpu idle currently?
3193 * @cpu: the processor in question.
3194 *
3195 * Return: 1 if the CPU is currently idle. 0 otherwise.
3196 */
3197int idle_cpu(int cpu)
3198{
3199	struct rq *rq = cpu_rq(cpu);
3200
3201	if (rq->curr != rq->idle)
3202		return 0;
3203
3204	if (rq->nr_running)
3205		return 0;
3206
3207#ifdef CONFIG_SMP
3208	if (!llist_empty(&rq->wake_list))
3209		return 0;
3210#endif
3211
3212	return 1;
3213}
3214
3215/**
3216 * idle_task - return the idle task for a given cpu.
3217 * @cpu: the processor in question.
3218 *
3219 * Return: The idle task for the cpu @cpu.
3220 */
3221struct task_struct *idle_task(int cpu)
3222{
3223	return cpu_rq(cpu)->idle;
3224}
3225
3226/**
3227 * find_process_by_pid - find a process with a matching PID value.
3228 * @pid: the pid in question.
3229 *
3230 * The task of @pid, if found. %NULL otherwise.
3231 */
3232static struct task_struct *find_process_by_pid(pid_t pid)
3233{
3234	return pid ? find_task_by_vpid(pid) : current;
3235}
3236
3237/*
3238 * This function initializes the sched_dl_entity of a newly becoming
3239 * SCHED_DEADLINE task.
3240 *
3241 * Only the static values are considered here, the actual runtime and the
3242 * absolute deadline will be properly calculated when the task is enqueued
3243 * for the first time with its new policy.
3244 */
3245static void
3246__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3247{
3248	struct sched_dl_entity *dl_se = &p->dl;
3249
3250	dl_se->dl_runtime = attr->sched_runtime;
3251	dl_se->dl_deadline = attr->sched_deadline;
3252	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3253	dl_se->flags = attr->sched_flags;
3254	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3255
3256	/*
3257	 * Changing the parameters of a task is 'tricky' and we're not doing
3258	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3259	 *
3260	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3261	 * point. This would include retaining the task_struct until that time
3262	 * and change dl_overflow() to not immediately decrement the current
3263	 * amount.
3264	 *
3265	 * Instead we retain the current runtime/deadline and let the new
3266	 * parameters take effect after the current reservation period lapses.
3267	 * This is safe (albeit pessimistic) because the 0-lag point is always
3268	 * before the current scheduling deadline.
3269	 *
3270	 * We can still have temporary overloads because we do not delay the
3271	 * change in bandwidth until that time; so admission control is
3272	 * not on the safe side. It does however guarantee tasks will never
3273	 * consume more than promised.
3274	 */
3275}
3276
3277/*
3278 * sched_setparam() passes in -1 for its policy, to let the functions
3279 * it calls know not to change it.
3280 */
3281#define SETPARAM_POLICY	-1
3282
3283static void __setscheduler_params(struct task_struct *p,
3284		const struct sched_attr *attr)
3285{
3286	int policy = attr->sched_policy;
3287
3288	if (policy == SETPARAM_POLICY)
3289		policy = p->policy;
3290
3291	p->policy = policy;
3292
3293	if (dl_policy(policy))
3294		__setparam_dl(p, attr);
3295	else if (fair_policy(policy))
3296		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3297
3298	/*
3299	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3300	 * !rt_policy. Always setting this ensures that things like
3301	 * getparam()/getattr() don't report silly values for !rt tasks.
3302	 */
3303	p->rt_priority = attr->sched_priority;
3304	p->normal_prio = normal_prio(p);
3305	set_load_weight(p);
3306}
3307
3308/* Actually do priority change: must hold pi & rq lock. */
3309static void __setscheduler(struct rq *rq, struct task_struct *p,
3310			   const struct sched_attr *attr, bool keep_boost)
3311{
3312	__setscheduler_params(p, attr);
3313
3314	/*
3315	 * Keep a potential priority boosting if called from
3316	 * sched_setscheduler().
3317	 */
3318	if (keep_boost)
3319		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3320	else
3321		p->prio = normal_prio(p);
3322
3323	if (dl_prio(p->prio))
3324		p->sched_class = &dl_sched_class;
3325	else if (rt_prio(p->prio))
3326		p->sched_class = &rt_sched_class;
3327	else
3328		p->sched_class = &fair_sched_class;
3329}
3330
3331static void
3332__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3333{
3334	struct sched_dl_entity *dl_se = &p->dl;
3335
3336	attr->sched_priority = p->rt_priority;
3337	attr->sched_runtime = dl_se->dl_runtime;
3338	attr->sched_deadline = dl_se->dl_deadline;
3339	attr->sched_period = dl_se->dl_period;
3340	attr->sched_flags = dl_se->flags;
3341}
3342
3343/*
3344 * This function validates the new parameters of a -deadline task.
3345 * We ask for the deadline not being zero, and greater or equal
3346 * than the runtime, as well as the period of being zero or
3347 * greater than deadline. Furthermore, we have to be sure that
3348 * user parameters are above the internal resolution of 1us (we
3349 * check sched_runtime only since it is always the smaller one) and
3350 * below 2^63 ns (we have to check both sched_deadline and
3351 * sched_period, as the latter can be zero).
3352 */
3353static bool
3354__checkparam_dl(const struct sched_attr *attr)
3355{
3356	/* deadline != 0 */
3357	if (attr->sched_deadline == 0)
3358		return false;
3359
3360	/*
3361	 * Since we truncate DL_SCALE bits, make sure we're at least
3362	 * that big.
3363	 */
3364	if (attr->sched_runtime < (1ULL << DL_SCALE))
3365		return false;
3366
3367	/*
3368	 * Since we use the MSB for wrap-around and sign issues, make
3369	 * sure it's not set (mind that period can be equal to zero).
3370	 */
3371	if (attr->sched_deadline & (1ULL << 63) ||
3372	    attr->sched_period & (1ULL << 63))
3373		return false;
3374
3375	/* runtime <= deadline <= period (if period != 0) */
3376	if ((attr->sched_period != 0 &&
3377	     attr->sched_period < attr->sched_deadline) ||
3378	    attr->sched_deadline < attr->sched_runtime)
3379		return false;
3380
3381	return true;
3382}
3383
3384/*
3385 * check the target process has a UID that matches the current process's
3386 */
3387static bool check_same_owner(struct task_struct *p)
3388{
3389	const struct cred *cred = current_cred(), *pcred;
3390	bool match;
3391
3392	rcu_read_lock();
3393	pcred = __task_cred(p);
3394	match = (uid_eq(cred->euid, pcred->euid) ||
3395		 uid_eq(cred->euid, pcred->uid));
3396	rcu_read_unlock();
3397	return match;
3398}
3399
3400static bool dl_param_changed(struct task_struct *p,
3401		const struct sched_attr *attr)
3402{
3403	struct sched_dl_entity *dl_se = &p->dl;
3404
3405	if (dl_se->dl_runtime != attr->sched_runtime ||
3406		dl_se->dl_deadline != attr->sched_deadline ||
3407		dl_se->dl_period != attr->sched_period ||
3408		dl_se->flags != attr->sched_flags)
3409		return true;
3410
3411	return false;
3412}
3413
3414static int __sched_setscheduler(struct task_struct *p,
3415				const struct sched_attr *attr,
3416				bool user)
3417{
3418	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3419		      MAX_RT_PRIO - 1 - attr->sched_priority;
3420	int retval, oldprio, oldpolicy = -1, queued, running;
3421	int new_effective_prio, policy = attr->sched_policy;
3422	unsigned long flags;
3423	const struct sched_class *prev_class;
3424	struct rq *rq;
3425	int reset_on_fork;
3426
3427	/* may grab non-irq protected spin_locks */
3428	BUG_ON(in_interrupt());
3429recheck:
3430	/* double check policy once rq lock held */
3431	if (policy < 0) {
3432		reset_on_fork = p->sched_reset_on_fork;
3433		policy = oldpolicy = p->policy;
3434	} else {
3435		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3436
3437		if (policy != SCHED_DEADLINE &&
3438				policy != SCHED_FIFO && policy != SCHED_RR &&
3439				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3440				policy != SCHED_IDLE)
3441			return -EINVAL;
3442	}
3443
3444	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3445		return -EINVAL;
3446
3447	/*
3448	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3449	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3450	 * SCHED_BATCH and SCHED_IDLE is 0.
3451	 */
3452	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3453	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3454		return -EINVAL;
3455	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3456	    (rt_policy(policy) != (attr->sched_priority != 0)))
3457		return -EINVAL;
3458
3459	/*
3460	 * Allow unprivileged RT tasks to decrease priority:
3461	 */
3462	if (user && !capable(CAP_SYS_NICE)) {
3463		if (fair_policy(policy)) {
3464			if (attr->sched_nice < task_nice(p) &&
3465			    !can_nice(p, attr->sched_nice))
3466				return -EPERM;
3467		}
3468
3469		if (rt_policy(policy)) {
3470			unsigned long rlim_rtprio =
3471					task_rlimit(p, RLIMIT_RTPRIO);
3472
3473			/* can't set/change the rt policy */
3474			if (policy != p->policy && !rlim_rtprio)
3475				return -EPERM;
3476
3477			/* can't increase priority */
3478			if (attr->sched_priority > p->rt_priority &&
3479			    attr->sched_priority > rlim_rtprio)
3480				return -EPERM;
3481		}
3482
3483		 /*
3484		  * Can't set/change SCHED_DEADLINE policy at all for now
3485		  * (safest behavior); in the future we would like to allow
3486		  * unprivileged DL tasks to increase their relative deadline
3487		  * or reduce their runtime (both ways reducing utilization)
3488		  */
3489		if (dl_policy(policy))
3490			return -EPERM;
3491
3492		/*
3493		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3494		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3495		 */
3496		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3497			if (!can_nice(p, task_nice(p)))
3498				return -EPERM;
3499		}
3500
3501		/* can't change other user's priorities */
3502		if (!check_same_owner(p))
3503			return -EPERM;
3504
3505		/* Normal users shall not reset the sched_reset_on_fork flag */
3506		if (p->sched_reset_on_fork && !reset_on_fork)
3507			return -EPERM;
3508	}
3509
3510	if (user) {
3511		retval = security_task_setscheduler(p);
3512		if (retval)
3513			return retval;
3514	}
3515
3516	/*
3517	 * make sure no PI-waiters arrive (or leave) while we are
3518	 * changing the priority of the task:
3519	 *
3520	 * To be able to change p->policy safely, the appropriate
3521	 * runqueue lock must be held.
3522	 */
3523	rq = task_rq_lock(p, &flags);
3524
3525	/*
3526	 * Changing the policy of the stop threads its a very bad idea
3527	 */
3528	if (p == rq->stop) {
3529		task_rq_unlock(rq, p, &flags);
3530		return -EINVAL;
3531	}
3532
3533	/*
3534	 * If not changing anything there's no need to proceed further,
3535	 * but store a possible modification of reset_on_fork.
3536	 */
3537	if (unlikely(policy == p->policy)) {
3538		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3539			goto change;
3540		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3541			goto change;
3542		if (dl_policy(policy) && dl_param_changed(p, attr))
3543			goto change;
3544
3545		p->sched_reset_on_fork = reset_on_fork;
3546		task_rq_unlock(rq, p, &flags);
3547		return 0;
3548	}
3549change:
3550
3551	if (user) {
3552#ifdef CONFIG_RT_GROUP_SCHED
3553		/*
3554		 * Do not allow realtime tasks into groups that have no runtime
3555		 * assigned.
3556		 */
3557		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3558				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3559				!task_group_is_autogroup(task_group(p))) {
3560			task_rq_unlock(rq, p, &flags);
3561			return -EPERM;
3562		}
3563#endif
3564#ifdef CONFIG_SMP
3565		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3566			cpumask_t *span = rq->rd->span;
3567
3568			/*
3569			 * Don't allow tasks with an affinity mask smaller than
3570			 * the entire root_domain to become SCHED_DEADLINE. We
3571			 * will also fail if there's no bandwidth available.
3572			 */
3573			if (!cpumask_subset(span, &p->cpus_allowed) ||
3574			    rq->rd->dl_bw.bw == 0) {
3575				task_rq_unlock(rq, p, &flags);
3576				return -EPERM;
3577			}
3578		}
3579#endif
3580	}
3581
3582	/* recheck policy now with rq lock held */
3583	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3584		policy = oldpolicy = -1;
3585		task_rq_unlock(rq, p, &flags);
3586		goto recheck;
3587	}
3588
3589	/*
3590	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3591	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3592	 * is available.
3593	 */
3594	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3595		task_rq_unlock(rq, p, &flags);
3596		return -EBUSY;
3597	}
3598
3599	p->sched_reset_on_fork = reset_on_fork;
3600	oldprio = p->prio;
3601
3602	/*
3603	 * Take priority boosted tasks into account. If the new
3604	 * effective priority is unchanged, we just store the new
3605	 * normal parameters and do not touch the scheduler class and
3606	 * the runqueue. This will be done when the task deboost
3607	 * itself.
3608	 */
3609	new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3610	if (new_effective_prio == oldprio) {
3611		__setscheduler_params(p, attr);
3612		task_rq_unlock(rq, p, &flags);
3613		return 0;
3614	}
3615
3616	queued = task_on_rq_queued(p);
3617	running = task_current(rq, p);
3618	if (queued)
3619		dequeue_task(rq, p, 0);
3620	if (running)
3621		put_prev_task(rq, p);
3622
3623	prev_class = p->sched_class;
3624	__setscheduler(rq, p, attr, true);
3625
3626	if (running)
3627		p->sched_class->set_curr_task(rq);
3628	if (queued) {
3629		/*
3630		 * We enqueue to tail when the priority of a task is
3631		 * increased (user space view).
3632		 */
3633		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3634	}
3635
3636	check_class_changed(rq, p, prev_class, oldprio);
3637	task_rq_unlock(rq, p, &flags);
3638
3639	rt_mutex_adjust_pi(p);
3640
3641	return 0;
3642}
3643
3644static int _sched_setscheduler(struct task_struct *p, int policy,
3645			       const struct sched_param *param, bool check)
3646{
3647	struct sched_attr attr = {
3648		.sched_policy   = policy,
3649		.sched_priority = param->sched_priority,
3650		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3651	};
3652
3653	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3654	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3655		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3656		policy &= ~SCHED_RESET_ON_FORK;
3657		attr.sched_policy = policy;
3658	}
3659
3660	return __sched_setscheduler(p, &attr, check);
3661}
3662/**
3663 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3664 * @p: the task in question.
3665 * @policy: new policy.
3666 * @param: structure containing the new RT priority.
3667 *
3668 * Return: 0 on success. An error code otherwise.
3669 *
3670 * NOTE that the task may be already dead.
3671 */
3672int sched_setscheduler(struct task_struct *p, int policy,
3673		       const struct sched_param *param)
3674{
3675	return _sched_setscheduler(p, policy, param, true);
3676}
3677EXPORT_SYMBOL_GPL(sched_setscheduler);
3678
3679int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3680{
3681	return __sched_setscheduler(p, attr, true);
3682}
3683EXPORT_SYMBOL_GPL(sched_setattr);
3684
3685/**
3686 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3687 * @p: the task in question.
3688 * @policy: new policy.
3689 * @param: structure containing the new RT priority.
3690 *
3691 * Just like sched_setscheduler, only don't bother checking if the
3692 * current context has permission.  For example, this is needed in
3693 * stop_machine(): we create temporary high priority worker threads,
3694 * but our caller might not have that capability.
3695 *
3696 * Return: 0 on success. An error code otherwise.
3697 */
3698int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3699			       const struct sched_param *param)
3700{
3701	return _sched_setscheduler(p, policy, param, false);
3702}
3703
3704static int
3705do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3706{
3707	struct sched_param lparam;
3708	struct task_struct *p;
3709	int retval;
3710
3711	if (!param || pid < 0)
3712		return -EINVAL;
3713	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3714		return -EFAULT;
3715
3716	rcu_read_lock();
3717	retval = -ESRCH;
3718	p = find_process_by_pid(pid);
3719	if (p != NULL)
3720		retval = sched_setscheduler(p, policy, &lparam);
3721	rcu_read_unlock();
3722
3723	return retval;
3724}
3725
3726/*
3727 * Mimics kernel/events/core.c perf_copy_attr().
3728 */
3729static int sched_copy_attr(struct sched_attr __user *uattr,
3730			   struct sched_attr *attr)
3731{
3732	u32 size;
3733	int ret;
3734
3735	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3736		return -EFAULT;
3737
3738	/*
3739	 * zero the full structure, so that a short copy will be nice.
3740	 */
3741	memset(attr, 0, sizeof(*attr));
3742
3743	ret = get_user(size, &uattr->size);
3744	if (ret)
3745		return ret;
3746
3747	if (size > PAGE_SIZE)	/* silly large */
3748		goto err_size;
3749
3750	if (!size)		/* abi compat */
3751		size = SCHED_ATTR_SIZE_VER0;
3752
3753	if (size < SCHED_ATTR_SIZE_VER0)
3754		goto err_size;
3755
3756	/*
3757	 * If we're handed a bigger struct than we know of,
3758	 * ensure all the unknown bits are 0 - i.e. new
3759	 * user-space does not rely on any kernel feature
3760	 * extensions we dont know about yet.
3761	 */
3762	if (size > sizeof(*attr)) {
3763		unsigned char __user *addr;
3764		unsigned char __user *end;
3765		unsigned char val;
3766
3767		addr = (void __user *)uattr + sizeof(*attr);
3768		end  = (void __user *)uattr + size;
3769
3770		for (; addr < end; addr++) {
3771			ret = get_user(val, addr);
3772			if (ret)
3773				return ret;
3774			if (val)
3775				goto err_size;
3776		}
3777		size = sizeof(*attr);
3778	}
3779
3780	ret = copy_from_user(attr, uattr, size);
3781	if (ret)
3782		return -EFAULT;
3783
3784	/*
3785	 * XXX: do we want to be lenient like existing syscalls; or do we want
3786	 * to be strict and return an error on out-of-bounds values?
3787	 */
3788	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3789
3790	return 0;
3791
3792err_size:
3793	put_user(sizeof(*attr), &uattr->size);
3794	return -E2BIG;
3795}
3796
3797/**
3798 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3799 * @pid: the pid in question.
3800 * @policy: new policy.
3801 * @param: structure containing the new RT priority.
3802 *
3803 * Return: 0 on success. An error code otherwise.
3804 */
3805SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3806		struct sched_param __user *, param)
3807{
3808	/* negative values for policy are not valid */
3809	if (policy < 0)
3810		return -EINVAL;
3811
3812	return do_sched_setscheduler(pid, policy, param);
3813}
3814
3815/**
3816 * sys_sched_setparam - set/change the RT priority of a thread
3817 * @pid: the pid in question.
3818 * @param: structure containing the new RT priority.
3819 *
3820 * Return: 0 on success. An error code otherwise.
3821 */
3822SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3823{
3824	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3825}
3826
3827/**
3828 * sys_sched_setattr - same as above, but with extended sched_attr
3829 * @pid: the pid in question.
3830 * @uattr: structure containing the extended parameters.
3831 * @flags: for future extension.
3832 */
3833SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3834			       unsigned int, flags)
3835{
3836	struct sched_attr attr;
3837	struct task_struct *p;
3838	int retval;
3839
3840	if (!uattr || pid < 0 || flags)
3841		return -EINVAL;
3842
3843	retval = sched_copy_attr(uattr, &attr);
3844	if (retval)
3845		return retval;
3846
3847	if ((int)attr.sched_policy < 0)
3848		return -EINVAL;
3849
3850	rcu_read_lock();
3851	retval = -ESRCH;
3852	p = find_process_by_pid(pid);
3853	if (p != NULL)
3854		retval = sched_setattr(p, &attr);
3855	rcu_read_unlock();
3856
3857	return retval;
3858}
3859
3860/**
3861 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3862 * @pid: the pid in question.
3863 *
3864 * Return: On success, the policy of the thread. Otherwise, a negative error
3865 * code.
3866 */
3867SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3868{
3869	struct task_struct *p;
3870	int retval;
3871
3872	if (pid < 0)
3873		return -EINVAL;
3874
3875	retval = -ESRCH;
3876	rcu_read_lock();
3877	p = find_process_by_pid(pid);
3878	if (p) {
3879		retval = security_task_getscheduler(p);
3880		if (!retval)
3881			retval = p->policy
3882				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3883	}
3884	rcu_read_unlock();
3885	return retval;
3886}
3887
3888/**
3889 * sys_sched_getparam - get the RT priority of a thread
3890 * @pid: the pid in question.
3891 * @param: structure containing the RT priority.
3892 *
3893 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3894 * code.
3895 */
3896SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3897{
3898	struct sched_param lp = { .sched_priority = 0 };
3899	struct task_struct *p;
3900	int retval;
3901
3902	if (!param || pid < 0)
3903		return -EINVAL;
3904
3905	rcu_read_lock();
3906	p = find_process_by_pid(pid);
3907	retval = -ESRCH;
3908	if (!p)
3909		goto out_unlock;
3910
3911	retval = security_task_getscheduler(p);
3912	if (retval)
3913		goto out_unlock;
3914
3915	if (task_has_rt_policy(p))
3916		lp.sched_priority = p->rt_priority;
3917	rcu_read_unlock();
3918
3919	/*
3920	 * This one might sleep, we cannot do it with a spinlock held ...
3921	 */
3922	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3923
3924	return retval;
3925
3926out_unlock:
3927	rcu_read_unlock();
3928	return retval;
3929}
3930
3931static int sched_read_attr(struct sched_attr __user *uattr,
3932			   struct sched_attr *attr,
3933			   unsigned int usize)
3934{
3935	int ret;
3936
3937	if (!access_ok(VERIFY_WRITE, uattr, usize))
3938		return -EFAULT;
3939
3940	/*
3941	 * If we're handed a smaller struct than we know of,
3942	 * ensure all the unknown bits are 0 - i.e. old
3943	 * user-space does not get uncomplete information.
3944	 */
3945	if (usize < sizeof(*attr)) {
3946		unsigned char *addr;
3947		unsigned char *end;
3948
3949		addr = (void *)attr + usize;
3950		end  = (void *)attr + sizeof(*attr);
3951
3952		for (; addr < end; addr++) {
3953			if (*addr)
3954				return -EFBIG;
3955		}
3956
3957		attr->size = usize;
3958	}
3959
3960	ret = copy_to_user(uattr, attr, attr->size);
3961	if (ret)
3962		return -EFAULT;
3963
3964	return 0;
3965}
3966
3967/**
3968 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3969 * @pid: the pid in question.
3970 * @uattr: structure containing the extended parameters.
3971 * @size: sizeof(attr) for fwd/bwd comp.
3972 * @flags: for future extension.
3973 */
3974SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3975		unsigned int, size, unsigned int, flags)
3976{
3977	struct sched_attr attr = {
3978		.size = sizeof(struct sched_attr),
3979	};
3980	struct task_struct *p;
3981	int retval;
3982
3983	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3984	    size < SCHED_ATTR_SIZE_VER0 || flags)
3985		return -EINVAL;
3986
3987	rcu_read_lock();
3988	p = find_process_by_pid(pid);
3989	retval = -ESRCH;
3990	if (!p)
3991		goto out_unlock;
3992
3993	retval = security_task_getscheduler(p);
3994	if (retval)
3995		goto out_unlock;
3996
3997	attr.sched_policy = p->policy;
3998	if (p->sched_reset_on_fork)
3999		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4000	if (task_has_dl_policy(p))
4001		__getparam_dl(p, &attr);
4002	else if (task_has_rt_policy(p))
4003		attr.sched_priority = p->rt_priority;
4004	else
4005		attr.sched_nice = task_nice(p);
4006
4007	rcu_read_unlock();
4008
4009	retval = sched_read_attr(uattr, &attr, size);
4010	return retval;
4011
4012out_unlock:
4013	rcu_read_unlock();
4014	return retval;
4015}
4016
4017long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4018{
4019	cpumask_var_t cpus_allowed, new_mask;
4020	struct task_struct *p;
4021	int retval;
4022
4023	rcu_read_lock();
4024
4025	p = find_process_by_pid(pid);
4026	if (!p) {
4027		rcu_read_unlock();
4028		return -ESRCH;
4029	}
4030
4031	/* Prevent p going away */
4032	get_task_struct(p);
4033	rcu_read_unlock();
4034
4035	if (p->flags & PF_NO_SETAFFINITY) {
4036		retval = -EINVAL;
4037		goto out_put_task;
4038	}
4039	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4040		retval = -ENOMEM;
4041		goto out_put_task;
4042	}
4043	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4044		retval = -ENOMEM;
4045		goto out_free_cpus_allowed;
4046	}
4047	retval = -EPERM;
4048	if (!check_same_owner(p)) {
4049		rcu_read_lock();
4050		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4051			rcu_read_unlock();
4052			goto out_free_new_mask;
4053		}
4054		rcu_read_unlock();
4055	}
4056
4057	retval = security_task_setscheduler(p);
4058	if (retval)
4059		goto out_free_new_mask;
4060
4061
4062	cpuset_cpus_allowed(p, cpus_allowed);
4063	cpumask_and(new_mask, in_mask, cpus_allowed);
4064
4065	/*
4066	 * Since bandwidth control happens on root_domain basis,
4067	 * if admission test is enabled, we only admit -deadline
4068	 * tasks allowed to run on all the CPUs in the task's
4069	 * root_domain.
4070	 */
4071#ifdef CONFIG_SMP
4072	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4073		rcu_read_lock();
4074		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4075			retval = -EBUSY;
4076			rcu_read_unlock();
4077			goto out_free_new_mask;
4078		}
4079		rcu_read_unlock();
4080	}
4081#endif
4082again:
4083	retval = set_cpus_allowed_ptr(p, new_mask);
4084
4085	if (!retval) {
4086		cpuset_cpus_allowed(p, cpus_allowed);
4087		if (!cpumask_subset(new_mask, cpus_allowed)) {
4088			/*
4089			 * We must have raced with a concurrent cpuset
4090			 * update. Just reset the cpus_allowed to the
4091			 * cpuset's cpus_allowed
4092			 */
4093			cpumask_copy(new_mask, cpus_allowed);
4094			goto again;
4095		}
4096	}
4097out_free_new_mask:
4098	free_cpumask_var(new_mask);
4099out_free_cpus_allowed:
4100	free_cpumask_var(cpus_allowed);
4101out_put_task:
4102	put_task_struct(p);
4103	return retval;
4104}
4105
4106static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4107			     struct cpumask *new_mask)
4108{
4109	if (len < cpumask_size())
4110		cpumask_clear(new_mask);
4111	else if (len > cpumask_size())
4112		len = cpumask_size();
4113
4114	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4115}
4116
4117/**
4118 * sys_sched_setaffinity - set the cpu affinity of a process
4119 * @pid: pid of the process
4120 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4121 * @user_mask_ptr: user-space pointer to the new cpu mask
4122 *
4123 * Return: 0 on success. An error code otherwise.
4124 */
4125SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4126		unsigned long __user *, user_mask_ptr)
4127{
4128	cpumask_var_t new_mask;
4129	int retval;
4130
4131	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4132		return -ENOMEM;
4133
4134	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4135	if (retval == 0)
4136		retval = sched_setaffinity(pid, new_mask);
4137	free_cpumask_var(new_mask);
4138	return retval;
4139}
4140
4141long sched_getaffinity(pid_t pid, struct cpumask *mask)
4142{
4143	struct task_struct *p;
4144	unsigned long flags;
4145	int retval;
4146
4147	rcu_read_lock();
4148
4149	retval = -ESRCH;
4150	p = find_process_by_pid(pid);
4151	if (!p)
4152		goto out_unlock;
4153
4154	retval = security_task_getscheduler(p);
4155	if (retval)
4156		goto out_unlock;
4157
4158	raw_spin_lock_irqsave(&p->pi_lock, flags);
4159	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4160	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4161
4162out_unlock:
4163	rcu_read_unlock();
4164
4165	return retval;
4166}
4167
4168/**
4169 * sys_sched_getaffinity - get the cpu affinity of a process
4170 * @pid: pid of the process
4171 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4172 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4173 *
4174 * Return: 0 on success. An error code otherwise.
4175 */
4176SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4177		unsigned long __user *, user_mask_ptr)
4178{
4179	int ret;
4180	cpumask_var_t mask;
4181
4182	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4183		return -EINVAL;
4184	if (len & (sizeof(unsigned long)-1))
4185		return -EINVAL;
4186
4187	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4188		return -ENOMEM;
4189
4190	ret = sched_getaffinity(pid, mask);
4191	if (ret == 0) {
4192		size_t retlen = min_t(size_t, len, cpumask_size());
4193
4194		if (copy_to_user(user_mask_ptr, mask, retlen))
4195			ret = -EFAULT;
4196		else
4197			ret = retlen;
4198	}
4199	free_cpumask_var(mask);
4200
4201	return ret;
4202}
4203
4204/**
4205 * sys_sched_yield - yield the current processor to other threads.
4206 *
4207 * This function yields the current CPU to other tasks. If there are no
4208 * other threads running on this CPU then this function will return.
4209 *
4210 * Return: 0.
4211 */
4212SYSCALL_DEFINE0(sched_yield)
4213{
4214	struct rq *rq = this_rq_lock();
4215
4216	schedstat_inc(rq, yld_count);
4217	current->sched_class->yield_task(rq);
4218
4219	/*
4220	 * Since we are going to call schedule() anyway, there's
4221	 * no need to preempt or enable interrupts:
4222	 */
4223	__release(rq->lock);
4224	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4225	do_raw_spin_unlock(&rq->lock);
4226	sched_preempt_enable_no_resched();
4227
4228	schedule();
4229
4230	return 0;
4231}
4232
4233int __sched _cond_resched(void)
4234{
4235	if (should_resched(0)) {
4236		preempt_schedule_common();
4237		return 1;
4238	}
4239	return 0;
4240}
4241EXPORT_SYMBOL(_cond_resched);
4242
4243/*
4244 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4245 * call schedule, and on return reacquire the lock.
4246 *
4247 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4248 * operations here to prevent schedule() from being called twice (once via
4249 * spin_unlock(), once by hand).
4250 */
4251int __cond_resched_lock(spinlock_t *lock)
4252{
4253	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4254	int ret = 0;
4255
4256	lockdep_assert_held(lock);
4257
4258	if (spin_needbreak(lock) || resched) {
4259		spin_unlock(lock);
4260		if (resched)
4261			preempt_schedule_common();
4262		else
4263			cpu_relax();
4264		ret = 1;
4265		spin_lock(lock);
4266	}
4267	return ret;
4268}
4269EXPORT_SYMBOL(__cond_resched_lock);
4270
4271int __sched __cond_resched_softirq(void)
4272{
4273	BUG_ON(!in_softirq());
4274
4275	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4276		local_bh_enable();
4277		preempt_schedule_common();
4278		local_bh_disable();
4279		return 1;
4280	}
4281	return 0;
4282}
4283EXPORT_SYMBOL(__cond_resched_softirq);
4284
4285/**
4286 * yield - yield the current processor to other threads.
4287 *
4288 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4289 *
4290 * The scheduler is at all times free to pick the calling task as the most
4291 * eligible task to run, if removing the yield() call from your code breaks
4292 * it, its already broken.
4293 *
4294 * Typical broken usage is:
4295 *
4296 * while (!event)
4297 * 	yield();
4298 *
4299 * where one assumes that yield() will let 'the other' process run that will
4300 * make event true. If the current task is a SCHED_FIFO task that will never
4301 * happen. Never use yield() as a progress guarantee!!
4302 *
4303 * If you want to use yield() to wait for something, use wait_event().
4304 * If you want to use yield() to be 'nice' for others, use cond_resched().
4305 * If you still want to use yield(), do not!
4306 */
4307void __sched yield(void)
4308{
4309	set_current_state(TASK_RUNNING);
4310	sys_sched_yield();
4311}
4312EXPORT_SYMBOL(yield);
4313
4314/**
4315 * yield_to - yield the current processor to another thread in
4316 * your thread group, or accelerate that thread toward the
4317 * processor it's on.
4318 * @p: target task
4319 * @preempt: whether task preemption is allowed or not
4320 *
4321 * It's the caller's job to ensure that the target task struct
4322 * can't go away on us before we can do any checks.
4323 *
4324 * Return:
4325 *	true (>0) if we indeed boosted the target task.
4326 *	false (0) if we failed to boost the target.
4327 *	-ESRCH if there's no task to yield to.
4328 */
4329int __sched yield_to(struct task_struct *p, bool preempt)
4330{
4331	struct task_struct *curr = current;
4332	struct rq *rq, *p_rq;
4333	unsigned long flags;
4334	int yielded = 0;
4335
4336	local_irq_save(flags);
4337	rq = this_rq();
4338
4339again:
4340	p_rq = task_rq(p);
4341	/*
4342	 * If we're the only runnable task on the rq and target rq also
4343	 * has only one task, there's absolutely no point in yielding.
4344	 */
4345	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4346		yielded = -ESRCH;
4347		goto out_irq;
4348	}
4349
4350	double_rq_lock(rq, p_rq);
4351	if (task_rq(p) != p_rq) {
4352		double_rq_unlock(rq, p_rq);
4353		goto again;
4354	}
4355
4356	if (!curr->sched_class->yield_to_task)
4357		goto out_unlock;
4358
4359	if (curr->sched_class != p->sched_class)
4360		goto out_unlock;
4361
4362	if (task_running(p_rq, p) || p->state)
4363		goto out_unlock;
4364
4365	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4366	if (yielded) {
4367		schedstat_inc(rq, yld_count);
4368		/*
4369		 * Make p's CPU reschedule; pick_next_entity takes care of
4370		 * fairness.
4371		 */
4372		if (preempt && rq != p_rq)
4373			resched_curr(p_rq);
4374	}
4375
4376out_unlock:
4377	double_rq_unlock(rq, p_rq);
4378out_irq:
4379	local_irq_restore(flags);
4380
4381	if (yielded > 0)
4382		schedule();
4383
4384	return yielded;
4385}
4386EXPORT_SYMBOL_GPL(yield_to);
4387
4388/*
4389 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4390 * that process accounting knows that this is a task in IO wait state.
4391 */
4392long __sched io_schedule_timeout(long timeout)
4393{
4394	int old_iowait = current->in_iowait;
4395	struct rq *rq;
4396	long ret;
4397
4398	current->in_iowait = 1;
4399	blk_schedule_flush_plug(current);
4400
4401	delayacct_blkio_start();
4402	rq = raw_rq();
4403	atomic_inc(&rq->nr_iowait);
4404	ret = schedule_timeout(timeout);
4405	current->in_iowait = old_iowait;
4406	atomic_dec(&rq->nr_iowait);
4407	delayacct_blkio_end();
4408
4409	return ret;
4410}
4411EXPORT_SYMBOL(io_schedule_timeout);
4412
4413/**
4414 * sys_sched_get_priority_max - return maximum RT priority.
4415 * @policy: scheduling class.
4416 *
4417 * Return: On success, this syscall returns the maximum
4418 * rt_priority that can be used by a given scheduling class.
4419 * On failure, a negative error code is returned.
4420 */
4421SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4422{
4423	int ret = -EINVAL;
4424
4425	switch (policy) {
4426	case SCHED_FIFO:
4427	case SCHED_RR:
4428		ret = MAX_USER_RT_PRIO-1;
4429		break;
4430	case SCHED_DEADLINE:
4431	case SCHED_NORMAL:
4432	case SCHED_BATCH:
4433	case SCHED_IDLE:
4434		ret = 0;
4435		break;
4436	}
4437	return ret;
4438}
4439
4440/**
4441 * sys_sched_get_priority_min - return minimum RT priority.
4442 * @policy: scheduling class.
4443 *
4444 * Return: On success, this syscall returns the minimum
4445 * rt_priority that can be used by a given scheduling class.
4446 * On failure, a negative error code is returned.
4447 */
4448SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4449{
4450	int ret = -EINVAL;
4451
4452	switch (policy) {
4453	case SCHED_FIFO:
4454	case SCHED_RR:
4455		ret = 1;
4456		break;
4457	case SCHED_DEADLINE:
4458	case SCHED_NORMAL:
4459	case SCHED_BATCH:
4460	case SCHED_IDLE:
4461		ret = 0;
4462	}
4463	return ret;
4464}
4465
4466/**
4467 * sys_sched_rr_get_interval - return the default timeslice of a process.
4468 * @pid: pid of the process.
4469 * @interval: userspace pointer to the timeslice value.
4470 *
4471 * this syscall writes the default timeslice value of a given process
4472 * into the user-space timespec buffer. A value of '0' means infinity.
4473 *
4474 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4475 * an error code.
4476 */
4477SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4478		struct timespec __user *, interval)
4479{
4480	struct task_struct *p;
4481	unsigned int time_slice;
4482	unsigned long flags;
4483	struct rq *rq;
4484	int retval;
4485	struct timespec t;
4486
4487	if (pid < 0)
4488		return -EINVAL;
4489
4490	retval = -ESRCH;
4491	rcu_read_lock();
4492	p = find_process_by_pid(pid);
4493	if (!p)
4494		goto out_unlock;
4495
4496	retval = security_task_getscheduler(p);
4497	if (retval)
4498		goto out_unlock;
4499
4500	rq = task_rq_lock(p, &flags);
4501	time_slice = 0;
4502	if (p->sched_class->get_rr_interval)
4503		time_slice = p->sched_class->get_rr_interval(rq, p);
4504	task_rq_unlock(rq, p, &flags);
4505
4506	rcu_read_unlock();
4507	jiffies_to_timespec(time_slice, &t);
4508	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4509	return retval;
4510
4511out_unlock:
4512	rcu_read_unlock();
4513	return retval;
4514}
4515
4516static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4517
4518void sched_show_task(struct task_struct *p)
4519{
4520	unsigned long free = 0;
4521	int ppid;
4522	unsigned long state = p->state;
4523
4524	if (state)
4525		state = __ffs(state) + 1;
4526	printk(KERN_INFO "%-15.15s %c", p->comm,
4527		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4528#if BITS_PER_LONG == 32
4529	if (state == TASK_RUNNING)
4530		printk(KERN_CONT " running  ");
4531	else
4532		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4533#else
4534	if (state == TASK_RUNNING)
4535		printk(KERN_CONT "  running task    ");
4536	else
4537		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4538#endif
4539#ifdef CONFIG_DEBUG_STACK_USAGE
4540	free = stack_not_used(p);
4541#endif
4542	ppid = 0;
4543	rcu_read_lock();
4544	if (pid_alive(p))
4545		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4546	rcu_read_unlock();
4547	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4548		task_pid_nr(p), ppid,
4549		(unsigned long)task_thread_info(p)->flags);
4550
4551	print_worker_info(KERN_INFO, p);
4552	show_stack(p, NULL);
4553}
4554
4555void show_state_filter(unsigned long state_filter)
4556{
4557	struct task_struct *g, *p;
4558
4559#if BITS_PER_LONG == 32
4560	printk(KERN_INFO
4561		"  task                PC stack   pid father\n");
4562#else
4563	printk(KERN_INFO
4564		"  task                        PC stack   pid father\n");
4565#endif
4566	rcu_read_lock();
4567	for_each_process_thread(g, p) {
4568		/*
4569		 * reset the NMI-timeout, listing all files on a slow
4570		 * console might take a lot of time:
4571		 */
4572		touch_nmi_watchdog();
4573		if (!state_filter || (p->state & state_filter))
4574			sched_show_task(p);
4575	}
4576
4577	touch_all_softlockup_watchdogs();
4578
4579#ifdef CONFIG_SCHED_DEBUG
4580	sysrq_sched_debug_show();
4581#endif
4582	rcu_read_unlock();
4583	/*
4584	 * Only show locks if all tasks are dumped:
4585	 */
4586	if (!state_filter)
4587		debug_show_all_locks();
4588}
4589
4590void init_idle_bootup_task(struct task_struct *idle)
4591{
4592	idle->sched_class = &idle_sched_class;
4593}
4594
4595/**
4596 * init_idle - set up an idle thread for a given CPU
4597 * @idle: task in question
4598 * @cpu: cpu the idle task belongs to
4599 *
4600 * NOTE: this function does not set the idle thread's NEED_RESCHED
4601 * flag, to make booting more robust.
4602 */
4603void init_idle(struct task_struct *idle, int cpu)
4604{
4605	struct rq *rq = cpu_rq(cpu);
4606	unsigned long flags;
4607
4608	raw_spin_lock_irqsave(&rq->lock, flags);
4609
4610	__sched_fork(0, idle);
4611	idle->state = TASK_RUNNING;
4612	idle->se.exec_start = sched_clock();
4613
4614	do_set_cpus_allowed(idle, cpumask_of(cpu));
4615	/*
4616	 * We're having a chicken and egg problem, even though we are
4617	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4618	 * lockdep check in task_group() will fail.
4619	 *
4620	 * Similar case to sched_fork(). / Alternatively we could
4621	 * use task_rq_lock() here and obtain the other rq->lock.
4622	 *
4623	 * Silence PROVE_RCU
4624	 */
4625	rcu_read_lock();
4626	__set_task_cpu(idle, cpu);
4627	rcu_read_unlock();
4628
4629	rq->curr = rq->idle = idle;
4630	idle->on_rq = TASK_ON_RQ_QUEUED;
4631#if defined(CONFIG_SMP)
4632	idle->on_cpu = 1;
4633#endif
4634	raw_spin_unlock_irqrestore(&rq->lock, flags);
4635
4636	/* Set the preempt count _outside_ the spinlocks! */
4637	init_idle_preempt_count(idle, cpu);
4638
4639	/*
4640	 * The idle tasks have their own, simple scheduling class:
4641	 */
4642	idle->sched_class = &idle_sched_class;
4643	ftrace_graph_init_idle_task(idle, cpu);
4644	vtime_init_idle(idle, cpu);
4645#if defined(CONFIG_SMP)
4646	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4647#endif
4648}
4649
4650int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4651			      const struct cpumask *trial)
4652{
4653	int ret = 1, trial_cpus;
4654	struct dl_bw *cur_dl_b;
4655	unsigned long flags;
4656
4657	if (!cpumask_weight(cur))
4658		return ret;
4659
4660	rcu_read_lock_sched();
4661	cur_dl_b = dl_bw_of(cpumask_any(cur));
4662	trial_cpus = cpumask_weight(trial);
4663
4664	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4665	if (cur_dl_b->bw != -1 &&
4666	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4667		ret = 0;
4668	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4669	rcu_read_unlock_sched();
4670
4671	return ret;
4672}
4673
4674int task_can_attach(struct task_struct *p,
4675		    const struct cpumask *cs_cpus_allowed)
4676{
4677	int ret = 0;
4678
4679	/*
4680	 * Kthreads which disallow setaffinity shouldn't be moved
4681	 * to a new cpuset; we don't want to change their cpu
4682	 * affinity and isolating such threads by their set of
4683	 * allowed nodes is unnecessary.  Thus, cpusets are not
4684	 * applicable for such threads.  This prevents checking for
4685	 * success of set_cpus_allowed_ptr() on all attached tasks
4686	 * before cpus_allowed may be changed.
4687	 */
4688	if (p->flags & PF_NO_SETAFFINITY) {
4689		ret = -EINVAL;
4690		goto out;
4691	}
4692
4693#ifdef CONFIG_SMP
4694	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4695					      cs_cpus_allowed)) {
4696		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4697							cs_cpus_allowed);
4698		struct dl_bw *dl_b;
4699		bool overflow;
4700		int cpus;
4701		unsigned long flags;
4702
4703		rcu_read_lock_sched();
4704		dl_b = dl_bw_of(dest_cpu);
4705		raw_spin_lock_irqsave(&dl_b->lock, flags);
4706		cpus = dl_bw_cpus(dest_cpu);
4707		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4708		if (overflow)
4709			ret = -EBUSY;
4710		else {
4711			/*
4712			 * We reserve space for this task in the destination
4713			 * root_domain, as we can't fail after this point.
4714			 * We will free resources in the source root_domain
4715			 * later on (see set_cpus_allowed_dl()).
4716			 */
4717			__dl_add(dl_b, p->dl.dl_bw);
4718		}
4719		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4720		rcu_read_unlock_sched();
4721
4722	}
4723#endif
4724out:
4725	return ret;
4726}
4727
4728#ifdef CONFIG_SMP
4729/*
4730 * move_queued_task - move a queued task to new rq.
4731 *
4732 * Returns (locked) new rq. Old rq's lock is released.
4733 */
4734static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4735{
4736	struct rq *rq = task_rq(p);
4737
4738	lockdep_assert_held(&rq->lock);
4739
4740	dequeue_task(rq, p, 0);
4741	p->on_rq = TASK_ON_RQ_MIGRATING;
4742	set_task_cpu(p, new_cpu);
4743	raw_spin_unlock(&rq->lock);
4744
4745	rq = cpu_rq(new_cpu);
4746
4747	raw_spin_lock(&rq->lock);
4748	BUG_ON(task_cpu(p) != new_cpu);
4749	p->on_rq = TASK_ON_RQ_QUEUED;
4750	enqueue_task(rq, p, 0);
4751	check_preempt_curr(rq, p, 0);
4752
4753	return rq;
4754}
4755
4756void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4757{
4758	if (p->sched_class->set_cpus_allowed)
4759		p->sched_class->set_cpus_allowed(p, new_mask);
4760
4761	cpumask_copy(&p->cpus_allowed, new_mask);
4762	p->nr_cpus_allowed = cpumask_weight(new_mask);
4763}
4764
4765/*
4766 * This is how migration works:
4767 *
4768 * 1) we invoke migration_cpu_stop() on the target CPU using
4769 *    stop_one_cpu().
4770 * 2) stopper starts to run (implicitly forcing the migrated thread
4771 *    off the CPU)
4772 * 3) it checks whether the migrated task is still in the wrong runqueue.
4773 * 4) if it's in the wrong runqueue then the migration thread removes
4774 *    it and puts it into the right queue.
4775 * 5) stopper completes and stop_one_cpu() returns and the migration
4776 *    is done.
4777 */
4778
4779/*
4780 * Change a given task's CPU affinity. Migrate the thread to a
4781 * proper CPU and schedule it away if the CPU it's executing on
4782 * is removed from the allowed bitmask.
4783 *
4784 * NOTE: the caller must have a valid reference to the task, the
4785 * task must not exit() & deallocate itself prematurely. The
4786 * call is not atomic; no spinlocks may be held.
4787 */
4788int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4789{
4790	unsigned long flags;
4791	struct rq *rq;
4792	unsigned int dest_cpu;
4793	int ret = 0;
4794
4795	rq = task_rq_lock(p, &flags);
4796
4797	if (cpumask_equal(&p->cpus_allowed, new_mask))
4798		goto out;
4799
4800	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4801		ret = -EINVAL;
4802		goto out;
4803	}
4804
4805	do_set_cpus_allowed(p, new_mask);
4806
4807	/* Can the task run on the task's current CPU? If so, we're done */
4808	if (cpumask_test_cpu(task_cpu(p), new_mask))
4809		goto out;
4810
4811	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4812	if (task_running(rq, p) || p->state == TASK_WAKING) {
4813		struct migration_arg arg = { p, dest_cpu };
4814		/* Need help from migration thread: drop lock and wait. */
4815		task_rq_unlock(rq, p, &flags);
4816		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4817		tlb_migrate_finish(p->mm);
4818		return 0;
4819	} else if (task_on_rq_queued(p))
4820		rq = move_queued_task(p, dest_cpu);
4821out:
4822	task_rq_unlock(rq, p, &flags);
4823
4824	return ret;
4825}
4826EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4827
4828/*
4829 * Move (not current) task off this cpu, onto dest cpu. We're doing
4830 * this because either it can't run here any more (set_cpus_allowed()
4831 * away from this CPU, or CPU going down), or because we're
4832 * attempting to rebalance this task on exec (sched_exec).
4833 *
4834 * So we race with normal scheduler movements, but that's OK, as long
4835 * as the task is no longer on this CPU.
4836 *
4837 * Returns non-zero if task was successfully migrated.
4838 */
4839static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4840{
4841	struct rq *rq;
4842	int ret = 0;
4843
4844	if (unlikely(!cpu_active(dest_cpu)))
4845		return ret;
4846
4847	rq = cpu_rq(src_cpu);
4848
4849	raw_spin_lock(&p->pi_lock);
4850	raw_spin_lock(&rq->lock);
4851	/* Already moved. */
4852	if (task_cpu(p) != src_cpu)
4853		goto done;
4854
4855	/* Affinity changed (again). */
4856	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4857		goto fail;
4858
4859	/*
4860	 * If we're not on a rq, the next wake-up will ensure we're
4861	 * placed properly.
4862	 */
4863	if (task_on_rq_queued(p))
4864		rq = move_queued_task(p, dest_cpu);
4865done:
4866	ret = 1;
4867fail:
4868	raw_spin_unlock(&rq->lock);
4869	raw_spin_unlock(&p->pi_lock);
4870	return ret;
4871}
4872
4873#ifdef CONFIG_NUMA_BALANCING
4874/* Migrate current task p to target_cpu */
4875int migrate_task_to(struct task_struct *p, int target_cpu)
4876{
4877	struct migration_arg arg = { p, target_cpu };
4878	int curr_cpu = task_cpu(p);
4879
4880	if (curr_cpu == target_cpu)
4881		return 0;
4882
4883	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4884		return -EINVAL;
4885
4886	/* TODO: This is not properly updating schedstats */
4887
4888	trace_sched_move_numa(p, curr_cpu, target_cpu);
4889	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4890}
4891
4892/*
4893 * Requeue a task on a given node and accurately track the number of NUMA
4894 * tasks on the runqueues
4895 */
4896void sched_setnuma(struct task_struct *p, int nid)
4897{
4898	struct rq *rq;
4899	unsigned long flags;
4900	bool queued, running;
4901
4902	rq = task_rq_lock(p, &flags);
4903	queued = task_on_rq_queued(p);
4904	running = task_current(rq, p);
4905
4906	if (queued)
4907		dequeue_task(rq, p, 0);
4908	if (running)
4909		put_prev_task(rq, p);
4910
4911	p->numa_preferred_nid = nid;
4912
4913	if (running)
4914		p->sched_class->set_curr_task(rq);
4915	if (queued)
4916		enqueue_task(rq, p, 0);
4917	task_rq_unlock(rq, p, &flags);
4918}
4919#endif
4920
4921/*
4922 * migration_cpu_stop - this will be executed by a highprio stopper thread
4923 * and performs thread migration by bumping thread off CPU then
4924 * 'pushing' onto another runqueue.
4925 */
4926static int migration_cpu_stop(void *data)
4927{
4928	struct migration_arg *arg = data;
4929
4930	/*
4931	 * The original target cpu might have gone down and we might
4932	 * be on another cpu but it doesn't matter.
4933	 */
4934	local_irq_disable();
4935	/*
4936	 * We need to explicitly wake pending tasks before running
4937	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4938	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4939	 */
4940	sched_ttwu_pending();
4941	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4942	local_irq_enable();
4943	return 0;
4944}
4945
4946#ifdef CONFIG_HOTPLUG_CPU
4947
4948/*
4949 * Ensures that the idle task is using init_mm right before its cpu goes
4950 * offline.
4951 */
4952void idle_task_exit(void)
4953{
4954	struct mm_struct *mm = current->active_mm;
4955
4956	BUG_ON(cpu_online(smp_processor_id()));
4957
4958	if (mm != &init_mm) {
4959		switch_mm(mm, &init_mm, current);
4960		finish_arch_post_lock_switch();
4961	}
4962	mmdrop(mm);
4963}
4964
4965/*
4966 * Since this CPU is going 'away' for a while, fold any nr_active delta
4967 * we might have. Assumes we're called after migrate_tasks() so that the
4968 * nr_active count is stable.
4969 *
4970 * Also see the comment "Global load-average calculations".
4971 */
4972static void calc_load_migrate(struct rq *rq)
4973{
4974	long delta = calc_load_fold_active(rq);
4975	if (delta)
4976		atomic_long_add(delta, &calc_load_tasks);
4977}
4978
4979static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4980{
4981}
4982
4983static const struct sched_class fake_sched_class = {
4984	.put_prev_task = put_prev_task_fake,
4985};
4986
4987static struct task_struct fake_task = {
4988	/*
4989	 * Avoid pull_{rt,dl}_task()
4990	 */
4991	.prio = MAX_PRIO + 1,
4992	.sched_class = &fake_sched_class,
4993};
4994
4995/*
4996 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4997 * try_to_wake_up()->select_task_rq().
4998 *
4999 * Called with rq->lock held even though we'er in stop_machine() and
5000 * there's no concurrency possible, we hold the required locks anyway
5001 * because of lock validation efforts.
5002 */
5003static void migrate_tasks(unsigned int dead_cpu)
5004{
5005	struct rq *rq = cpu_rq(dead_cpu);
5006	struct task_struct *next, *stop = rq->stop;
5007	int dest_cpu;
5008
5009	/*
5010	 * Fudge the rq selection such that the below task selection loop
5011	 * doesn't get stuck on the currently eligible stop task.
5012	 *
5013	 * We're currently inside stop_machine() and the rq is either stuck
5014	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5015	 * either way we should never end up calling schedule() until we're
5016	 * done here.
5017	 */
5018	rq->stop = NULL;
5019
5020	/*
5021	 * put_prev_task() and pick_next_task() sched
5022	 * class method both need to have an up-to-date
5023	 * value of rq->clock[_task]
5024	 */
5025	update_rq_clock(rq);
5026
5027	for ( ; ; ) {
5028		/*
5029		 * There's this thread running, bail when that's the only
5030		 * remaining thread.
5031		 */
5032		if (rq->nr_running == 1)
5033			break;
5034
5035		next = pick_next_task(rq, &fake_task);
5036		BUG_ON(!next);
5037		next->sched_class->put_prev_task(rq, next);
5038
5039		/* Find suitable destination for @next, with force if needed. */
5040		dest_cpu = select_fallback_rq(dead_cpu, next);
5041		raw_spin_unlock(&rq->lock);
5042
5043		__migrate_task(next, dead_cpu, dest_cpu);
5044
5045		raw_spin_lock(&rq->lock);
5046	}
5047
5048	rq->stop = stop;
5049}
5050
5051#endif /* CONFIG_HOTPLUG_CPU */
5052
5053#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5054
5055static struct ctl_table sd_ctl_dir[] = {
5056	{
5057		.procname	= "sched_domain",
5058		.mode		= 0555,
5059	},
5060	{}
5061};
5062
5063static struct ctl_table sd_ctl_root[] = {
5064	{
5065		.procname	= "kernel",
5066		.mode		= 0555,
5067		.child		= sd_ctl_dir,
5068	},
5069	{}
5070};
5071
5072static struct ctl_table *sd_alloc_ctl_entry(int n)
5073{
5074	struct ctl_table *entry =
5075		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5076
5077	return entry;
5078}
5079
5080static void sd_free_ctl_entry(struct ctl_table **tablep)
5081{
5082	struct ctl_table *entry;
5083
5084	/*
5085	 * In the intermediate directories, both the child directory and
5086	 * procname are dynamically allocated and could fail but the mode
5087	 * will always be set. In the lowest directory the names are
5088	 * static strings and all have proc handlers.
5089	 */
5090	for (entry = *tablep; entry->mode; entry++) {
5091		if (entry->child)
5092			sd_free_ctl_entry(&entry->child);
5093		if (entry->proc_handler == NULL)
5094			kfree(entry->procname);
5095	}
5096
5097	kfree(*tablep);
5098	*tablep = NULL;
5099}
5100
5101static int min_load_idx = 0;
5102static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5103
5104static void
5105set_table_entry(struct ctl_table *entry,
5106		const char *procname, void *data, int maxlen,
5107		umode_t mode, proc_handler *proc_handler,
5108		bool load_idx)
5109{
5110	entry->procname = procname;
5111	entry->data = data;
5112	entry->maxlen = maxlen;
5113	entry->mode = mode;
5114	entry->proc_handler = proc_handler;
5115
5116	if (load_idx) {
5117		entry->extra1 = &min_load_idx;
5118		entry->extra2 = &max_load_idx;
5119	}
5120}
5121
5122static struct ctl_table *
5123sd_alloc_ctl_domain_table(struct sched_domain *sd)
5124{
5125	struct ctl_table *table = sd_alloc_ctl_entry(14);
5126
5127	if (table == NULL)
5128		return NULL;
5129
5130	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5131		sizeof(long), 0644, proc_doulongvec_minmax, false);
5132	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5133		sizeof(long), 0644, proc_doulongvec_minmax, false);
5134	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5135		sizeof(int), 0644, proc_dointvec_minmax, true);
5136	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5137		sizeof(int), 0644, proc_dointvec_minmax, true);
5138	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5139		sizeof(int), 0644, proc_dointvec_minmax, true);
5140	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5141		sizeof(int), 0644, proc_dointvec_minmax, true);
5142	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5143		sizeof(int), 0644, proc_dointvec_minmax, true);
5144	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5145		sizeof(int), 0644, proc_dointvec_minmax, false);
5146	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5147		sizeof(int), 0644, proc_dointvec_minmax, false);
5148	set_table_entry(&table[9], "cache_nice_tries",
5149		&sd->cache_nice_tries,
5150		sizeof(int), 0644, proc_dointvec_minmax, false);
5151	set_table_entry(&table[10], "flags", &sd->flags,
5152		sizeof(int), 0644, proc_dointvec_minmax, false);
5153	set_table_entry(&table[11], "max_newidle_lb_cost",
5154		&sd->max_newidle_lb_cost,
5155		sizeof(long), 0644, proc_doulongvec_minmax, false);
5156	set_table_entry(&table[12], "name", sd->name,
5157		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5158	/* &table[13] is terminator */
5159
5160	return table;
5161}
5162
5163static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5164{
5165	struct ctl_table *entry, *table;
5166	struct sched_domain *sd;
5167	int domain_num = 0, i;
5168	char buf[32];
5169
5170	for_each_domain(cpu, sd)
5171		domain_num++;
5172	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5173	if (table == NULL)
5174		return NULL;
5175
5176	i = 0;
5177	for_each_domain(cpu, sd) {
5178		snprintf(buf, 32, "domain%d", i);
5179		entry->procname = kstrdup(buf, GFP_KERNEL);
5180		entry->mode = 0555;
5181		entry->child = sd_alloc_ctl_domain_table(sd);
5182		entry++;
5183		i++;
5184	}
5185	return table;
5186}
5187
5188static struct ctl_table_header *sd_sysctl_header;
5189static void register_sched_domain_sysctl(void)
5190{
5191	int i, cpu_num = num_possible_cpus();
5192	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5193	char buf[32];
5194
5195	WARN_ON(sd_ctl_dir[0].child);
5196	sd_ctl_dir[0].child = entry;
5197
5198	if (entry == NULL)
5199		return;
5200
5201	for_each_possible_cpu(i) {
5202		snprintf(buf, 32, "cpu%d", i);
5203		entry->procname = kstrdup(buf, GFP_KERNEL);
5204		entry->mode = 0555;
5205		entry->child = sd_alloc_ctl_cpu_table(i);
5206		entry++;
5207	}
5208
5209	WARN_ON(sd_sysctl_header);
5210	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5211}
5212
5213/* may be called multiple times per register */
5214static void unregister_sched_domain_sysctl(void)
5215{
5216	if (sd_sysctl_header)
5217		unregister_sysctl_table(sd_sysctl_header);
5218	sd_sysctl_header = NULL;
5219	if (sd_ctl_dir[0].child)
5220		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5221}
5222#else
5223static void register_sched_domain_sysctl(void)
5224{
5225}
5226static void unregister_sched_domain_sysctl(void)
5227{
5228}
5229#endif
5230
5231static void set_rq_online(struct rq *rq)
5232{
5233	if (!rq->online) {
5234		const struct sched_class *class;
5235
5236		cpumask_set_cpu(rq->cpu, rq->rd->online);
5237		rq->online = 1;
5238
5239		for_each_class(class) {
5240			if (class->rq_online)
5241				class->rq_online(rq);
5242		}
5243	}
5244}
5245
5246static void set_rq_offline(struct rq *rq)
5247{
5248	if (rq->online) {
5249		const struct sched_class *class;
5250
5251		for_each_class(class) {
5252			if (class->rq_offline)
5253				class->rq_offline(rq);
5254		}
5255
5256		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5257		rq->online = 0;
5258	}
5259}
5260
5261/*
5262 * migration_call - callback that gets triggered when a CPU is added.
5263 * Here we can start up the necessary migration thread for the new CPU.
5264 */
5265static int
5266migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5267{
5268	int cpu = (long)hcpu;
5269	unsigned long flags;
5270	struct rq *rq = cpu_rq(cpu);
5271
5272	switch (action & ~CPU_TASKS_FROZEN) {
5273
5274	case CPU_UP_PREPARE:
5275		rq->calc_load_update = calc_load_update;
5276		break;
5277
5278	case CPU_ONLINE:
5279		/* Update our root-domain */
5280		raw_spin_lock_irqsave(&rq->lock, flags);
5281		if (rq->rd) {
5282			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5283
5284			set_rq_online(rq);
5285		}
5286		raw_spin_unlock_irqrestore(&rq->lock, flags);
5287		break;
5288
5289#ifdef CONFIG_HOTPLUG_CPU
5290	case CPU_DYING:
5291		sched_ttwu_pending();
5292		/* Update our root-domain */
5293		raw_spin_lock_irqsave(&rq->lock, flags);
5294		if (rq->rd) {
5295			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5296			set_rq_offline(rq);
5297		}
5298		migrate_tasks(cpu);
5299		BUG_ON(rq->nr_running != 1); /* the migration thread */
5300		raw_spin_unlock_irqrestore(&rq->lock, flags);
5301		break;
5302
5303	case CPU_DEAD:
5304		calc_load_migrate(rq);
5305		break;
5306#endif
5307	}
5308
5309	update_max_interval();
5310
5311	return NOTIFY_OK;
5312}
5313
5314/*
5315 * Register at high priority so that task migration (migrate_all_tasks)
5316 * happens before everything else.  This has to be lower priority than
5317 * the notifier in the perf_event subsystem, though.
5318 */
5319static struct notifier_block migration_notifier = {
5320	.notifier_call = migration_call,
5321	.priority = CPU_PRI_MIGRATION,
5322};
5323
5324static void __cpuinit set_cpu_rq_start_time(void)
5325{
5326	int cpu = smp_processor_id();
5327	struct rq *rq = cpu_rq(cpu);
5328	rq->age_stamp = sched_clock_cpu(cpu);
5329}
5330
5331static int sched_cpu_active(struct notifier_block *nfb,
5332				      unsigned long action, void *hcpu)
5333{
5334	switch (action & ~CPU_TASKS_FROZEN) {
5335	case CPU_STARTING:
5336		set_cpu_rq_start_time();
5337		return NOTIFY_OK;
5338	case CPU_ONLINE:
5339		/*
5340		 * At this point a starting CPU has marked itself as online via
5341		 * set_cpu_online(). But it might not yet have marked itself
5342		 * as active, which is essential from here on.
5343		 *
5344		 * Thus, fall-through and help the starting CPU along.
5345		 */
5346	case CPU_DOWN_FAILED:
5347		set_cpu_active((long)hcpu, true);
5348		return NOTIFY_OK;
5349	default:
5350		return NOTIFY_DONE;
5351	}
5352}
5353
5354static int sched_cpu_inactive(struct notifier_block *nfb,
5355					unsigned long action, void *hcpu)
5356{
5357	switch (action & ~CPU_TASKS_FROZEN) {
5358	case CPU_DOWN_PREPARE:
5359		set_cpu_active((long)hcpu, false);
5360		return NOTIFY_OK;
5361	default:
5362		return NOTIFY_DONE;
5363	}
5364}
5365
5366static int __init migration_init(void)
5367{
5368	void *cpu = (void *)(long)smp_processor_id();
5369	int err;
5370
5371	/* Initialize migration for the boot CPU */
5372	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5373	BUG_ON(err == NOTIFY_BAD);
5374	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5375	register_cpu_notifier(&migration_notifier);
5376
5377	/* Register cpu active notifiers */
5378	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5379	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5380
5381	return 0;
5382}
5383early_initcall(migration_init);
5384#endif
5385
5386#ifdef CONFIG_SMP
5387
5388static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5389
5390#ifdef CONFIG_SCHED_DEBUG
5391
5392static __read_mostly int sched_debug_enabled;
5393
5394static int __init sched_debug_setup(char *str)
5395{
5396	sched_debug_enabled = 1;
5397
5398	return 0;
5399}
5400early_param("sched_debug", sched_debug_setup);
5401
5402static inline bool sched_debug(void)
5403{
5404	return sched_debug_enabled;
5405}
5406
5407static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5408				  struct cpumask *groupmask)
5409{
5410	struct sched_group *group = sd->groups;
5411
5412	cpumask_clear(groupmask);
5413
5414	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5415
5416	if (!(sd->flags & SD_LOAD_BALANCE)) {
5417		printk("does not load-balance\n");
5418		if (sd->parent)
5419			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5420					" has parent");
5421		return -1;
5422	}
5423
5424	printk(KERN_CONT "span %*pbl level %s\n",
5425	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5426
5427	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5428		printk(KERN_ERR "ERROR: domain->span does not contain "
5429				"CPU%d\n", cpu);
5430	}
5431	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5432		printk(KERN_ERR "ERROR: domain->groups does not contain"
5433				" CPU%d\n", cpu);
5434	}
5435
5436	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5437	do {
5438		if (!group) {
5439			printk("\n");
5440			printk(KERN_ERR "ERROR: group is NULL\n");
5441			break;
5442		}
5443
5444		if (!cpumask_weight(sched_group_cpus(group))) {
5445			printk(KERN_CONT "\n");
5446			printk(KERN_ERR "ERROR: empty group\n");
5447			break;
5448		}
5449
5450		if (!(sd->flags & SD_OVERLAP) &&
5451		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5452			printk(KERN_CONT "\n");
5453			printk(KERN_ERR "ERROR: repeated CPUs\n");
5454			break;
5455		}
5456
5457		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5458
5459		printk(KERN_CONT " %*pbl",
5460		       cpumask_pr_args(sched_group_cpus(group)));
5461		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5462			printk(KERN_CONT " (cpu_capacity = %d)",
5463				group->sgc->capacity);
5464		}
5465
5466		group = group->next;
5467	} while (group != sd->groups);
5468	printk(KERN_CONT "\n");
5469
5470	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5471		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5472
5473	if (sd->parent &&
5474	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5475		printk(KERN_ERR "ERROR: parent span is not a superset "
5476			"of domain->span\n");
5477	return 0;
5478}
5479
5480static void sched_domain_debug(struct sched_domain *sd, int cpu)
5481{
5482	int level = 0;
5483
5484	if (!sched_debug_enabled)
5485		return;
5486
5487	if (!sd) {
5488		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5489		return;
5490	}
5491
5492	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5493
5494	for (;;) {
5495		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5496			break;
5497		level++;
5498		sd = sd->parent;
5499		if (!sd)
5500			break;
5501	}
5502}
5503#else /* !CONFIG_SCHED_DEBUG */
5504# define sched_domain_debug(sd, cpu) do { } while (0)
5505static inline bool sched_debug(void)
5506{
5507	return false;
5508}
5509#endif /* CONFIG_SCHED_DEBUG */
5510
5511static int sd_degenerate(struct sched_domain *sd)
5512{
5513	if (cpumask_weight(sched_domain_span(sd)) == 1)
5514		return 1;
5515
5516	/* Following flags need at least 2 groups */
5517	if (sd->flags & (SD_LOAD_BALANCE |
5518			 SD_BALANCE_NEWIDLE |
5519			 SD_BALANCE_FORK |
5520			 SD_BALANCE_EXEC |
5521			 SD_SHARE_CPUCAPACITY |
5522			 SD_SHARE_PKG_RESOURCES |
5523			 SD_SHARE_POWERDOMAIN)) {
5524		if (sd->groups != sd->groups->next)
5525			return 0;
5526	}
5527
5528	/* Following flags don't use groups */
5529	if (sd->flags & (SD_WAKE_AFFINE))
5530		return 0;
5531
5532	return 1;
5533}
5534
5535static int
5536sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5537{
5538	unsigned long cflags = sd->flags, pflags = parent->flags;
5539
5540	if (sd_degenerate(parent))
5541		return 1;
5542
5543	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5544		return 0;
5545
5546	/* Flags needing groups don't count if only 1 group in parent */
5547	if (parent->groups == parent->groups->next) {
5548		pflags &= ~(SD_LOAD_BALANCE |
5549				SD_BALANCE_NEWIDLE |
5550				SD_BALANCE_FORK |
5551				SD_BALANCE_EXEC |
5552				SD_SHARE_CPUCAPACITY |
5553				SD_SHARE_PKG_RESOURCES |
5554				SD_PREFER_SIBLING |
5555				SD_SHARE_POWERDOMAIN);
5556		if (nr_node_ids == 1)
5557			pflags &= ~SD_SERIALIZE;
5558	}
5559	if (~cflags & pflags)
5560		return 0;
5561
5562	return 1;
5563}
5564
5565static void free_rootdomain(struct rcu_head *rcu)
5566{
5567	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5568
5569	cpupri_cleanup(&rd->cpupri);
5570	cpudl_cleanup(&rd->cpudl);
5571	free_cpumask_var(rd->dlo_mask);
5572	free_cpumask_var(rd->rto_mask);
5573	free_cpumask_var(rd->online);
5574	free_cpumask_var(rd->span);
5575	kfree(rd);
5576}
5577
5578static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5579{
5580	struct root_domain *old_rd = NULL;
5581	unsigned long flags;
5582
5583	raw_spin_lock_irqsave(&rq->lock, flags);
5584
5585	if (rq->rd) {
5586		old_rd = rq->rd;
5587
5588		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5589			set_rq_offline(rq);
5590
5591		cpumask_clear_cpu(rq->cpu, old_rd->span);
5592
5593		/*
5594		 * If we dont want to free the old_rd yet then
5595		 * set old_rd to NULL to skip the freeing later
5596		 * in this function:
5597		 */
5598		if (!atomic_dec_and_test(&old_rd->refcount))
5599			old_rd = NULL;
5600	}
5601
5602	atomic_inc(&rd->refcount);
5603	rq->rd = rd;
5604
5605	cpumask_set_cpu(rq->cpu, rd->span);
5606	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5607		set_rq_online(rq);
5608
5609	raw_spin_unlock_irqrestore(&rq->lock, flags);
5610
5611	if (old_rd)
5612		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5613}
5614
5615static int init_rootdomain(struct root_domain *rd)
5616{
5617	memset(rd, 0, sizeof(*rd));
5618
5619	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5620		goto out;
5621	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5622		goto free_span;
5623	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5624		goto free_online;
5625	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5626		goto free_dlo_mask;
5627
5628	init_dl_bw(&rd->dl_bw);
5629	if (cpudl_init(&rd->cpudl) != 0)
5630		goto free_dlo_mask;
5631
5632	if (cpupri_init(&rd->cpupri) != 0)
5633		goto free_rto_mask;
5634	return 0;
5635
5636free_rto_mask:
5637	free_cpumask_var(rd->rto_mask);
5638free_dlo_mask:
5639	free_cpumask_var(rd->dlo_mask);
5640free_online:
5641	free_cpumask_var(rd->online);
5642free_span:
5643	free_cpumask_var(rd->span);
5644out:
5645	return -ENOMEM;
5646}
5647
5648/*
5649 * By default the system creates a single root-domain with all cpus as
5650 * members (mimicking the global state we have today).
5651 */
5652struct root_domain def_root_domain;
5653
5654static void init_defrootdomain(void)
5655{
5656	init_rootdomain(&def_root_domain);
5657
5658	atomic_set(&def_root_domain.refcount, 1);
5659}
5660
5661static struct root_domain *alloc_rootdomain(void)
5662{
5663	struct root_domain *rd;
5664
5665	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5666	if (!rd)
5667		return NULL;
5668
5669	if (init_rootdomain(rd) != 0) {
5670		kfree(rd);
5671		return NULL;
5672	}
5673
5674	return rd;
5675}
5676
5677static void free_sched_groups(struct sched_group *sg, int free_sgc)
5678{
5679	struct sched_group *tmp, *first;
5680
5681	if (!sg)
5682		return;
5683
5684	first = sg;
5685	do {
5686		tmp = sg->next;
5687
5688		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5689			kfree(sg->sgc);
5690
5691		kfree(sg);
5692		sg = tmp;
5693	} while (sg != first);
5694}
5695
5696static void free_sched_domain(struct rcu_head *rcu)
5697{
5698	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5699
5700	/*
5701	 * If its an overlapping domain it has private groups, iterate and
5702	 * nuke them all.
5703	 */
5704	if (sd->flags & SD_OVERLAP) {
5705		free_sched_groups(sd->groups, 1);
5706	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5707		kfree(sd->groups->sgc);
5708		kfree(sd->groups);
5709	}
5710	kfree(sd);
5711}
5712
5713static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5714{
5715	call_rcu(&sd->rcu, free_sched_domain);
5716}
5717
5718static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5719{
5720	for (; sd; sd = sd->parent)
5721		destroy_sched_domain(sd, cpu);
5722}
5723
5724/*
5725 * Keep a special pointer to the highest sched_domain that has
5726 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5727 * allows us to avoid some pointer chasing select_idle_sibling().
5728 *
5729 * Also keep a unique ID per domain (we use the first cpu number in
5730 * the cpumask of the domain), this allows us to quickly tell if
5731 * two cpus are in the same cache domain, see cpus_share_cache().
5732 */
5733DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5734DEFINE_PER_CPU(int, sd_llc_size);
5735DEFINE_PER_CPU(int, sd_llc_id);
5736DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5737DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5738DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5739
5740static void update_top_cache_domain(int cpu)
5741{
5742	struct sched_domain *sd;
5743	struct sched_domain *busy_sd = NULL;
5744	int id = cpu;
5745	int size = 1;
5746
5747	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5748	if (sd) {
5749		id = cpumask_first(sched_domain_span(sd));
5750		size = cpumask_weight(sched_domain_span(sd));
5751		busy_sd = sd->parent; /* sd_busy */
5752	}
5753	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5754
5755	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5756	per_cpu(sd_llc_size, cpu) = size;
5757	per_cpu(sd_llc_id, cpu) = id;
5758
5759	sd = lowest_flag_domain(cpu, SD_NUMA);
5760	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5761
5762	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5763	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5764}
5765
5766/*
5767 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5768 * hold the hotplug lock.
5769 */
5770static void
5771cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5772{
5773	struct rq *rq = cpu_rq(cpu);
5774	struct sched_domain *tmp;
5775
5776	/* Remove the sched domains which do not contribute to scheduling. */
5777	for (tmp = sd; tmp; ) {
5778		struct sched_domain *parent = tmp->parent;
5779		if (!parent)
5780			break;
5781
5782		if (sd_parent_degenerate(tmp, parent)) {
5783			tmp->parent = parent->parent;
5784			if (parent->parent)
5785				parent->parent->child = tmp;
5786			/*
5787			 * Transfer SD_PREFER_SIBLING down in case of a
5788			 * degenerate parent; the spans match for this
5789			 * so the property transfers.
5790			 */
5791			if (parent->flags & SD_PREFER_SIBLING)
5792				tmp->flags |= SD_PREFER_SIBLING;
5793			destroy_sched_domain(parent, cpu);
5794		} else
5795			tmp = tmp->parent;
5796	}
5797
5798	if (sd && sd_degenerate(sd)) {
5799		tmp = sd;
5800		sd = sd->parent;
5801		destroy_sched_domain(tmp, cpu);
5802		if (sd)
5803			sd->child = NULL;
5804	}
5805
5806	sched_domain_debug(sd, cpu);
5807
5808	rq_attach_root(rq, rd);
5809	tmp = rq->sd;
5810	rcu_assign_pointer(rq->sd, sd);
5811	destroy_sched_domains(tmp, cpu);
5812
5813	update_top_cache_domain(cpu);
5814}
5815
5816/* Setup the mask of cpus configured for isolated domains */
5817static int __init isolated_cpu_setup(char *str)
5818{
5819	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5820	cpulist_parse(str, cpu_isolated_map);
5821	return 1;
5822}
5823
5824__setup("isolcpus=", isolated_cpu_setup);
5825
5826struct s_data {
5827	struct sched_domain ** __percpu sd;
5828	struct root_domain	*rd;
5829};
5830
5831enum s_alloc {
5832	sa_rootdomain,
5833	sa_sd,
5834	sa_sd_storage,
5835	sa_none,
5836};
5837
5838/*
5839 * Build an iteration mask that can exclude certain CPUs from the upwards
5840 * domain traversal.
5841 *
5842 * Asymmetric node setups can result in situations where the domain tree is of
5843 * unequal depth, make sure to skip domains that already cover the entire
5844 * range.
5845 *
5846 * In that case build_sched_domains() will have terminated the iteration early
5847 * and our sibling sd spans will be empty. Domains should always include the
5848 * cpu they're built on, so check that.
5849 *
5850 */
5851static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5852{
5853	const struct cpumask *span = sched_domain_span(sd);
5854	struct sd_data *sdd = sd->private;
5855	struct sched_domain *sibling;
5856	int i;
5857
5858	for_each_cpu(i, span) {
5859		sibling = *per_cpu_ptr(sdd->sd, i);
5860		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5861			continue;
5862
5863		cpumask_set_cpu(i, sched_group_mask(sg));
5864	}
5865}
5866
5867/*
5868 * Return the canonical balance cpu for this group, this is the first cpu
5869 * of this group that's also in the iteration mask.
5870 */
5871int group_balance_cpu(struct sched_group *sg)
5872{
5873	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5874}
5875
5876static int
5877build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5878{
5879	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5880	const struct cpumask *span = sched_domain_span(sd);
5881	struct cpumask *covered = sched_domains_tmpmask;
5882	struct sd_data *sdd = sd->private;
5883	struct sched_domain *sibling;
5884	int i;
5885
5886	cpumask_clear(covered);
5887
5888	for_each_cpu(i, span) {
5889		struct cpumask *sg_span;
5890
5891		if (cpumask_test_cpu(i, covered))
5892			continue;
5893
5894		sibling = *per_cpu_ptr(sdd->sd, i);
5895
5896		/* See the comment near build_group_mask(). */
5897		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5898			continue;
5899
5900		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5901				GFP_KERNEL, cpu_to_node(cpu));
5902
5903		if (!sg)
5904			goto fail;
5905
5906		sg_span = sched_group_cpus(sg);
5907		if (sibling->child)
5908			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5909		else
5910			cpumask_set_cpu(i, sg_span);
5911
5912		cpumask_or(covered, covered, sg_span);
5913
5914		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5915		if (atomic_inc_return(&sg->sgc->ref) == 1)
5916			build_group_mask(sd, sg);
5917
5918		/*
5919		 * Initialize sgc->capacity such that even if we mess up the
5920		 * domains and no possible iteration will get us here, we won't
5921		 * die on a /0 trap.
5922		 */
5923		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5924
5925		/*
5926		 * Make sure the first group of this domain contains the
5927		 * canonical balance cpu. Otherwise the sched_domain iteration
5928		 * breaks. See update_sg_lb_stats().
5929		 */
5930		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5931		    group_balance_cpu(sg) == cpu)
5932			groups = sg;
5933
5934		if (!first)
5935			first = sg;
5936		if (last)
5937			last->next = sg;
5938		last = sg;
5939		last->next = first;
5940	}
5941	sd->groups = groups;
5942
5943	return 0;
5944
5945fail:
5946	free_sched_groups(first, 0);
5947
5948	return -ENOMEM;
5949}
5950
5951static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5952{
5953	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5954	struct sched_domain *child = sd->child;
5955
5956	if (child)
5957		cpu = cpumask_first(sched_domain_span(child));
5958
5959	if (sg) {
5960		*sg = *per_cpu_ptr(sdd->sg, cpu);
5961		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5962		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5963	}
5964
5965	return cpu;
5966}
5967
5968/*
5969 * build_sched_groups will build a circular linked list of the groups
5970 * covered by the given span, and will set each group's ->cpumask correctly,
5971 * and ->cpu_capacity to 0.
5972 *
5973 * Assumes the sched_domain tree is fully constructed
5974 */
5975static int
5976build_sched_groups(struct sched_domain *sd, int cpu)
5977{
5978	struct sched_group *first = NULL, *last = NULL;
5979	struct sd_data *sdd = sd->private;
5980	const struct cpumask *span = sched_domain_span(sd);
5981	struct cpumask *covered;
5982	int i;
5983
5984	get_group(cpu, sdd, &sd->groups);
5985	atomic_inc(&sd->groups->ref);
5986
5987	if (cpu != cpumask_first(span))
5988		return 0;
5989
5990	lockdep_assert_held(&sched_domains_mutex);
5991	covered = sched_domains_tmpmask;
5992
5993	cpumask_clear(covered);
5994
5995	for_each_cpu(i, span) {
5996		struct sched_group *sg;
5997		int group, j;
5998
5999		if (cpumask_test_cpu(i, covered))
6000			continue;
6001
6002		group = get_group(i, sdd, &sg);
6003		cpumask_setall(sched_group_mask(sg));
6004
6005		for_each_cpu(j, span) {
6006			if (get_group(j, sdd, NULL) != group)
6007				continue;
6008
6009			cpumask_set_cpu(j, covered);
6010			cpumask_set_cpu(j, sched_group_cpus(sg));
6011		}
6012
6013		if (!first)
6014			first = sg;
6015		if (last)
6016			last->next = sg;
6017		last = sg;
6018	}
6019	last->next = first;
6020
6021	return 0;
6022}
6023
6024/*
6025 * Initialize sched groups cpu_capacity.
6026 *
6027 * cpu_capacity indicates the capacity of sched group, which is used while
6028 * distributing the load between different sched groups in a sched domain.
6029 * Typically cpu_capacity for all the groups in a sched domain will be same
6030 * unless there are asymmetries in the topology. If there are asymmetries,
6031 * group having more cpu_capacity will pickup more load compared to the
6032 * group having less cpu_capacity.
6033 */
6034static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6035{
6036	struct sched_group *sg = sd->groups;
6037
6038	WARN_ON(!sg);
6039
6040	do {
6041		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6042		sg = sg->next;
6043	} while (sg != sd->groups);
6044
6045	if (cpu != group_balance_cpu(sg))
6046		return;
6047
6048	update_group_capacity(sd, cpu);
6049	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6050}
6051
6052/*
6053 * Initializers for schedule domains
6054 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6055 */
6056
6057static int default_relax_domain_level = -1;
6058int sched_domain_level_max;
6059
6060static int __init setup_relax_domain_level(char *str)
6061{
6062	if (kstrtoint(str, 0, &default_relax_domain_level))
6063		pr_warn("Unable to set relax_domain_level\n");
6064
6065	return 1;
6066}
6067__setup("relax_domain_level=", setup_relax_domain_level);
6068
6069static void set_domain_attribute(struct sched_domain *sd,
6070				 struct sched_domain_attr *attr)
6071{
6072	int request;
6073
6074	if (!attr || attr->relax_domain_level < 0) {
6075		if (default_relax_domain_level < 0)
6076			return;
6077		else
6078			request = default_relax_domain_level;
6079	} else
6080		request = attr->relax_domain_level;
6081	if (request < sd->level) {
6082		/* turn off idle balance on this domain */
6083		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6084	} else {
6085		/* turn on idle balance on this domain */
6086		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6087	}
6088}
6089
6090static void __sdt_free(const struct cpumask *cpu_map);
6091static int __sdt_alloc(const struct cpumask *cpu_map);
6092
6093static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6094				 const struct cpumask *cpu_map)
6095{
6096	switch (what) {
6097	case sa_rootdomain:
6098		if (!atomic_read(&d->rd->refcount))
6099			free_rootdomain(&d->rd->rcu); /* fall through */
6100	case sa_sd:
6101		free_percpu(d->sd); /* fall through */
6102	case sa_sd_storage:
6103		__sdt_free(cpu_map); /* fall through */
6104	case sa_none:
6105		break;
6106	}
6107}
6108
6109static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6110						   const struct cpumask *cpu_map)
6111{
6112	memset(d, 0, sizeof(*d));
6113
6114	if (__sdt_alloc(cpu_map))
6115		return sa_sd_storage;
6116	d->sd = alloc_percpu(struct sched_domain *);
6117	if (!d->sd)
6118		return sa_sd_storage;
6119	d->rd = alloc_rootdomain();
6120	if (!d->rd)
6121		return sa_sd;
6122	return sa_rootdomain;
6123}
6124
6125/*
6126 * NULL the sd_data elements we've used to build the sched_domain and
6127 * sched_group structure so that the subsequent __free_domain_allocs()
6128 * will not free the data we're using.
6129 */
6130static void claim_allocations(int cpu, struct sched_domain *sd)
6131{
6132	struct sd_data *sdd = sd->private;
6133
6134	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6135	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6136
6137	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6138		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6139
6140	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6141		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6142}
6143
6144#ifdef CONFIG_NUMA
6145static int sched_domains_numa_levels;
6146enum numa_topology_type sched_numa_topology_type;
6147static int *sched_domains_numa_distance;
6148int sched_max_numa_distance;
6149static struct cpumask ***sched_domains_numa_masks;
6150static int sched_domains_curr_level;
6151#endif
6152
6153/*
6154 * SD_flags allowed in topology descriptions.
6155 *
6156 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6157 * SD_SHARE_PKG_RESOURCES - describes shared caches
6158 * SD_NUMA                - describes NUMA topologies
6159 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6160 *
6161 * Odd one out:
6162 * SD_ASYM_PACKING        - describes SMT quirks
6163 */
6164#define TOPOLOGY_SD_FLAGS		\
6165	(SD_SHARE_CPUCAPACITY |		\
6166	 SD_SHARE_PKG_RESOURCES |	\
6167	 SD_NUMA |			\
6168	 SD_ASYM_PACKING |		\
6169	 SD_SHARE_POWERDOMAIN)
6170
6171static struct sched_domain *
6172sd_init(struct sched_domain_topology_level *tl, int cpu)
6173{
6174	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6175	int sd_weight, sd_flags = 0;
6176
6177#ifdef CONFIG_NUMA
6178	/*
6179	 * Ugly hack to pass state to sd_numa_mask()...
6180	 */
6181	sched_domains_curr_level = tl->numa_level;
6182#endif
6183
6184	sd_weight = cpumask_weight(tl->mask(cpu));
6185
6186	if (tl->sd_flags)
6187		sd_flags = (*tl->sd_flags)();
6188	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6189			"wrong sd_flags in topology description\n"))
6190		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6191
6192	*sd = (struct sched_domain){
6193		.min_interval		= sd_weight,
6194		.max_interval		= 2*sd_weight,
6195		.busy_factor		= 32,
6196		.imbalance_pct		= 125,
6197
6198		.cache_nice_tries	= 0,
6199		.busy_idx		= 0,
6200		.idle_idx		= 0,
6201		.newidle_idx		= 0,
6202		.wake_idx		= 0,
6203		.forkexec_idx		= 0,
6204
6205		.flags			= 1*SD_LOAD_BALANCE
6206					| 1*SD_BALANCE_NEWIDLE
6207					| 1*SD_BALANCE_EXEC
6208					| 1*SD_BALANCE_FORK
6209					| 0*SD_BALANCE_WAKE
6210					| 1*SD_WAKE_AFFINE
6211					| 0*SD_SHARE_CPUCAPACITY
6212					| 0*SD_SHARE_PKG_RESOURCES
6213					| 0*SD_SERIALIZE
6214					| 0*SD_PREFER_SIBLING
6215					| 0*SD_NUMA
6216					| sd_flags
6217					,
6218
6219		.last_balance		= jiffies,
6220		.balance_interval	= sd_weight,
6221		.smt_gain		= 0,
6222		.max_newidle_lb_cost	= 0,
6223		.next_decay_max_lb_cost	= jiffies,
6224#ifdef CONFIG_SCHED_DEBUG
6225		.name			= tl->name,
6226#endif
6227	};
6228
6229	/*
6230	 * Convert topological properties into behaviour.
6231	 */
6232
6233	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6234		sd->flags |= SD_PREFER_SIBLING;
6235		sd->imbalance_pct = 110;
6236		sd->smt_gain = 1178; /* ~15% */
6237
6238	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6239		sd->imbalance_pct = 117;
6240		sd->cache_nice_tries = 1;
6241		sd->busy_idx = 2;
6242
6243#ifdef CONFIG_NUMA
6244	} else if (sd->flags & SD_NUMA) {
6245		sd->cache_nice_tries = 2;
6246		sd->busy_idx = 3;
6247		sd->idle_idx = 2;
6248
6249		sd->flags |= SD_SERIALIZE;
6250		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6251			sd->flags &= ~(SD_BALANCE_EXEC |
6252				       SD_BALANCE_FORK |
6253				       SD_WAKE_AFFINE);
6254		}
6255
6256#endif
6257	} else {
6258		sd->flags |= SD_PREFER_SIBLING;
6259		sd->cache_nice_tries = 1;
6260		sd->busy_idx = 2;
6261		sd->idle_idx = 1;
6262	}
6263
6264	sd->private = &tl->data;
6265
6266	return sd;
6267}
6268
6269/*
6270 * Topology list, bottom-up.
6271 */
6272static struct sched_domain_topology_level default_topology[] = {
6273#ifdef CONFIG_SCHED_SMT
6274	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6275#endif
6276#ifdef CONFIG_SCHED_MC
6277	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6278#endif
6279	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6280	{ NULL, },
6281};
6282
6283struct sched_domain_topology_level *sched_domain_topology = default_topology;
6284
6285#define for_each_sd_topology(tl)			\
6286	for (tl = sched_domain_topology; tl->mask; tl++)
6287
6288void set_sched_topology(struct sched_domain_topology_level *tl)
6289{
6290	sched_domain_topology = tl;
6291}
6292
6293#ifdef CONFIG_NUMA
6294
6295static const struct cpumask *sd_numa_mask(int cpu)
6296{
6297	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6298}
6299
6300static void sched_numa_warn(const char *str)
6301{
6302	static int done = false;
6303	int i,j;
6304
6305	if (done)
6306		return;
6307
6308	done = true;
6309
6310	printk(KERN_WARNING "ERROR: %s\n\n", str);
6311
6312	for (i = 0; i < nr_node_ids; i++) {
6313		printk(KERN_WARNING "  ");
6314		for (j = 0; j < nr_node_ids; j++)
6315			printk(KERN_CONT "%02d ", node_distance(i,j));
6316		printk(KERN_CONT "\n");
6317	}
6318	printk(KERN_WARNING "\n");
6319}
6320
6321bool find_numa_distance(int distance)
6322{
6323	int i;
6324
6325	if (distance == node_distance(0, 0))
6326		return true;
6327
6328	for (i = 0; i < sched_domains_numa_levels; i++) {
6329		if (sched_domains_numa_distance[i] == distance)
6330			return true;
6331	}
6332
6333	return false;
6334}
6335
6336/*
6337 * A system can have three types of NUMA topology:
6338 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6339 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6340 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6341 *
6342 * The difference between a glueless mesh topology and a backplane
6343 * topology lies in whether communication between not directly
6344 * connected nodes goes through intermediary nodes (where programs
6345 * could run), or through backplane controllers. This affects
6346 * placement of programs.
6347 *
6348 * The type of topology can be discerned with the following tests:
6349 * - If the maximum distance between any nodes is 1 hop, the system
6350 *   is directly connected.
6351 * - If for two nodes A and B, located N > 1 hops away from each other,
6352 *   there is an intermediary node C, which is < N hops away from both
6353 *   nodes A and B, the system is a glueless mesh.
6354 */
6355static void init_numa_topology_type(void)
6356{
6357	int a, b, c, n;
6358
6359	n = sched_max_numa_distance;
6360
6361	if (n <= 1)
6362		sched_numa_topology_type = NUMA_DIRECT;
6363
6364	for_each_online_node(a) {
6365		for_each_online_node(b) {
6366			/* Find two nodes furthest removed from each other. */
6367			if (node_distance(a, b) < n)
6368				continue;
6369
6370			/* Is there an intermediary node between a and b? */
6371			for_each_online_node(c) {
6372				if (node_distance(a, c) < n &&
6373				    node_distance(b, c) < n) {
6374					sched_numa_topology_type =
6375							NUMA_GLUELESS_MESH;
6376					return;
6377				}
6378			}
6379
6380			sched_numa_topology_type = NUMA_BACKPLANE;
6381			return;
6382		}
6383	}
6384}
6385
6386static void sched_init_numa(void)
6387{
6388	int next_distance, curr_distance = node_distance(0, 0);
6389	struct sched_domain_topology_level *tl;
6390	int level = 0;
6391	int i, j, k;
6392
6393	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6394	if (!sched_domains_numa_distance)
6395		return;
6396
6397	/*
6398	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6399	 * unique distances in the node_distance() table.
6400	 *
6401	 * Assumes node_distance(0,j) includes all distances in
6402	 * node_distance(i,j) in order to avoid cubic time.
6403	 */
6404	next_distance = curr_distance;
6405	for (i = 0; i < nr_node_ids; i++) {
6406		for (j = 0; j < nr_node_ids; j++) {
6407			for (k = 0; k < nr_node_ids; k++) {
6408				int distance = node_distance(i, k);
6409
6410				if (distance > curr_distance &&
6411				    (distance < next_distance ||
6412				     next_distance == curr_distance))
6413					next_distance = distance;
6414
6415				/*
6416				 * While not a strong assumption it would be nice to know
6417				 * about cases where if node A is connected to B, B is not
6418				 * equally connected to A.
6419				 */
6420				if (sched_debug() && node_distance(k, i) != distance)
6421					sched_numa_warn("Node-distance not symmetric");
6422
6423				if (sched_debug() && i && !find_numa_distance(distance))
6424					sched_numa_warn("Node-0 not representative");
6425			}
6426			if (next_distance != curr_distance) {
6427				sched_domains_numa_distance[level++] = next_distance;
6428				sched_domains_numa_levels = level;
6429				curr_distance = next_distance;
6430			} else break;
6431		}
6432
6433		/*
6434		 * In case of sched_debug() we verify the above assumption.
6435		 */
6436		if (!sched_debug())
6437			break;
6438	}
6439
6440	if (!level)
6441		return;
6442
6443	/*
6444	 * 'level' contains the number of unique distances, excluding the
6445	 * identity distance node_distance(i,i).
6446	 *
6447	 * The sched_domains_numa_distance[] array includes the actual distance
6448	 * numbers.
6449	 */
6450
6451	/*
6452	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6453	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6454	 * the array will contain less then 'level' members. This could be
6455	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6456	 * in other functions.
6457	 *
6458	 * We reset it to 'level' at the end of this function.
6459	 */
6460	sched_domains_numa_levels = 0;
6461
6462	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6463	if (!sched_domains_numa_masks)
6464		return;
6465
6466	/*
6467	 * Now for each level, construct a mask per node which contains all
6468	 * cpus of nodes that are that many hops away from us.
6469	 */
6470	for (i = 0; i < level; i++) {
6471		sched_domains_numa_masks[i] =
6472			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6473		if (!sched_domains_numa_masks[i])
6474			return;
6475
6476		for (j = 0; j < nr_node_ids; j++) {
6477			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6478			if (!mask)
6479				return;
6480
6481			sched_domains_numa_masks[i][j] = mask;
6482
6483			for_each_node(k) {
6484				if (node_distance(j, k) > sched_domains_numa_distance[i])
6485					continue;
6486
6487				cpumask_or(mask, mask, cpumask_of_node(k));
6488			}
6489		}
6490	}
6491
6492	/* Compute default topology size */
6493	for (i = 0; sched_domain_topology[i].mask; i++);
6494
6495	tl = kzalloc((i + level + 1) *
6496			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6497	if (!tl)
6498		return;
6499
6500	/*
6501	 * Copy the default topology bits..
6502	 */
6503	for (i = 0; sched_domain_topology[i].mask; i++)
6504		tl[i] = sched_domain_topology[i];
6505
6506	/*
6507	 * .. and append 'j' levels of NUMA goodness.
6508	 */
6509	for (j = 0; j < level; i++, j++) {
6510		tl[i] = (struct sched_domain_topology_level){
6511			.mask = sd_numa_mask,
6512			.sd_flags = cpu_numa_flags,
6513			.flags = SDTL_OVERLAP,
6514			.numa_level = j,
6515			SD_INIT_NAME(NUMA)
6516		};
6517	}
6518
6519	sched_domain_topology = tl;
6520
6521	sched_domains_numa_levels = level;
6522	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6523
6524	init_numa_topology_type();
6525}
6526
6527static void sched_domains_numa_masks_set(int cpu)
6528{
6529	int i, j;
6530	int node = cpu_to_node(cpu);
6531
6532	for (i = 0; i < sched_domains_numa_levels; i++) {
6533		for (j = 0; j < nr_node_ids; j++) {
6534			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6535				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6536		}
6537	}
6538}
6539
6540static void sched_domains_numa_masks_clear(int cpu)
6541{
6542	int i, j;
6543	for (i = 0; i < sched_domains_numa_levels; i++) {
6544		for (j = 0; j < nr_node_ids; j++)
6545			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6546	}
6547}
6548
6549/*
6550 * Update sched_domains_numa_masks[level][node] array when new cpus
6551 * are onlined.
6552 */
6553static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6554					   unsigned long action,
6555					   void *hcpu)
6556{
6557	int cpu = (long)hcpu;
6558
6559	switch (action & ~CPU_TASKS_FROZEN) {
6560	case CPU_ONLINE:
6561		sched_domains_numa_masks_set(cpu);
6562		break;
6563
6564	case CPU_DEAD:
6565		sched_domains_numa_masks_clear(cpu);
6566		break;
6567
6568	default:
6569		return NOTIFY_DONE;
6570	}
6571
6572	return NOTIFY_OK;
6573}
6574#else
6575static inline void sched_init_numa(void)
6576{
6577}
6578
6579static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6580					   unsigned long action,
6581					   void *hcpu)
6582{
6583	return 0;
6584}
6585#endif /* CONFIG_NUMA */
6586
6587static int __sdt_alloc(const struct cpumask *cpu_map)
6588{
6589	struct sched_domain_topology_level *tl;
6590	int j;
6591
6592	for_each_sd_topology(tl) {
6593		struct sd_data *sdd = &tl->data;
6594
6595		sdd->sd = alloc_percpu(struct sched_domain *);
6596		if (!sdd->sd)
6597			return -ENOMEM;
6598
6599		sdd->sg = alloc_percpu(struct sched_group *);
6600		if (!sdd->sg)
6601			return -ENOMEM;
6602
6603		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6604		if (!sdd->sgc)
6605			return -ENOMEM;
6606
6607		for_each_cpu(j, cpu_map) {
6608			struct sched_domain *sd;
6609			struct sched_group *sg;
6610			struct sched_group_capacity *sgc;
6611
6612		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6613					GFP_KERNEL, cpu_to_node(j));
6614			if (!sd)
6615				return -ENOMEM;
6616
6617			*per_cpu_ptr(sdd->sd, j) = sd;
6618
6619			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6620					GFP_KERNEL, cpu_to_node(j));
6621			if (!sg)
6622				return -ENOMEM;
6623
6624			sg->next = sg;
6625
6626			*per_cpu_ptr(sdd->sg, j) = sg;
6627
6628			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6629					GFP_KERNEL, cpu_to_node(j));
6630			if (!sgc)
6631				return -ENOMEM;
6632
6633			*per_cpu_ptr(sdd->sgc, j) = sgc;
6634		}
6635	}
6636
6637	return 0;
6638}
6639
6640static void __sdt_free(const struct cpumask *cpu_map)
6641{
6642	struct sched_domain_topology_level *tl;
6643	int j;
6644
6645	for_each_sd_topology(tl) {
6646		struct sd_data *sdd = &tl->data;
6647
6648		for_each_cpu(j, cpu_map) {
6649			struct sched_domain *sd;
6650
6651			if (sdd->sd) {
6652				sd = *per_cpu_ptr(sdd->sd, j);
6653				if (sd && (sd->flags & SD_OVERLAP))
6654					free_sched_groups(sd->groups, 0);
6655				kfree(*per_cpu_ptr(sdd->sd, j));
6656			}
6657
6658			if (sdd->sg)
6659				kfree(*per_cpu_ptr(sdd->sg, j));
6660			if (sdd->sgc)
6661				kfree(*per_cpu_ptr(sdd->sgc, j));
6662		}
6663		free_percpu(sdd->sd);
6664		sdd->sd = NULL;
6665		free_percpu(sdd->sg);
6666		sdd->sg = NULL;
6667		free_percpu(sdd->sgc);
6668		sdd->sgc = NULL;
6669	}
6670}
6671
6672struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6673		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6674		struct sched_domain *child, int cpu)
6675{
6676	struct sched_domain *sd = sd_init(tl, cpu);
6677	if (!sd)
6678		return child;
6679
6680	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6681	if (child) {
6682		sd->level = child->level + 1;
6683		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6684		child->parent = sd;
6685		sd->child = child;
6686
6687		if (!cpumask_subset(sched_domain_span(child),
6688				    sched_domain_span(sd))) {
6689			pr_err("BUG: arch topology borken\n");
6690#ifdef CONFIG_SCHED_DEBUG
6691			pr_err("     the %s domain not a subset of the %s domain\n",
6692					child->name, sd->name);
6693#endif
6694			/* Fixup, ensure @sd has at least @child cpus. */
6695			cpumask_or(sched_domain_span(sd),
6696				   sched_domain_span(sd),
6697				   sched_domain_span(child));
6698		}
6699
6700	}
6701	set_domain_attribute(sd, attr);
6702
6703	return sd;
6704}
6705
6706/*
6707 * Build sched domains for a given set of cpus and attach the sched domains
6708 * to the individual cpus
6709 */
6710static int build_sched_domains(const struct cpumask *cpu_map,
6711			       struct sched_domain_attr *attr)
6712{
6713	enum s_alloc alloc_state;
6714	struct sched_domain *sd;
6715	struct s_data d;
6716	int i, ret = -ENOMEM;
6717
6718	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6719	if (alloc_state != sa_rootdomain)
6720		goto error;
6721
6722	/* Set up domains for cpus specified by the cpu_map. */
6723	for_each_cpu(i, cpu_map) {
6724		struct sched_domain_topology_level *tl;
6725
6726		sd = NULL;
6727		for_each_sd_topology(tl) {
6728			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6729			if (tl == sched_domain_topology)
6730				*per_cpu_ptr(d.sd, i) = sd;
6731			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6732				sd->flags |= SD_OVERLAP;
6733			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6734				break;
6735		}
6736	}
6737
6738	/* Build the groups for the domains */
6739	for_each_cpu(i, cpu_map) {
6740		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6741			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6742			if (sd->flags & SD_OVERLAP) {
6743				if (build_overlap_sched_groups(sd, i))
6744					goto error;
6745			} else {
6746				if (build_sched_groups(sd, i))
6747					goto error;
6748			}
6749		}
6750	}
6751
6752	/* Calculate CPU capacity for physical packages and nodes */
6753	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6754		if (!cpumask_test_cpu(i, cpu_map))
6755			continue;
6756
6757		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6758			claim_allocations(i, sd);
6759			init_sched_groups_capacity(i, sd);
6760		}
6761	}
6762
6763	/* Attach the domains */
6764	rcu_read_lock();
6765	for_each_cpu(i, cpu_map) {
6766		sd = *per_cpu_ptr(d.sd, i);
6767		cpu_attach_domain(sd, d.rd, i);
6768	}
6769	rcu_read_unlock();
6770
6771	ret = 0;
6772error:
6773	__free_domain_allocs(&d, alloc_state, cpu_map);
6774	return ret;
6775}
6776
6777static cpumask_var_t *doms_cur;	/* current sched domains */
6778static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6779static struct sched_domain_attr *dattr_cur;
6780				/* attribues of custom domains in 'doms_cur' */
6781
6782/*
6783 * Special case: If a kmalloc of a doms_cur partition (array of
6784 * cpumask) fails, then fallback to a single sched domain,
6785 * as determined by the single cpumask fallback_doms.
6786 */
6787static cpumask_var_t fallback_doms;
6788
6789/*
6790 * arch_update_cpu_topology lets virtualized architectures update the
6791 * cpu core maps. It is supposed to return 1 if the topology changed
6792 * or 0 if it stayed the same.
6793 */
6794int __weak arch_update_cpu_topology(void)
6795{
6796	return 0;
6797}
6798
6799cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6800{
6801	int i;
6802	cpumask_var_t *doms;
6803
6804	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6805	if (!doms)
6806		return NULL;
6807	for (i = 0; i < ndoms; i++) {
6808		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6809			free_sched_domains(doms, i);
6810			return NULL;
6811		}
6812	}
6813	return doms;
6814}
6815
6816void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6817{
6818	unsigned int i;
6819	for (i = 0; i < ndoms; i++)
6820		free_cpumask_var(doms[i]);
6821	kfree(doms);
6822}
6823
6824/*
6825 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6826 * For now this just excludes isolated cpus, but could be used to
6827 * exclude other special cases in the future.
6828 */
6829static int init_sched_domains(const struct cpumask *cpu_map)
6830{
6831	int err;
6832
6833	arch_update_cpu_topology();
6834	ndoms_cur = 1;
6835	doms_cur = alloc_sched_domains(ndoms_cur);
6836	if (!doms_cur)
6837		doms_cur = &fallback_doms;
6838	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6839	err = build_sched_domains(doms_cur[0], NULL);
6840	register_sched_domain_sysctl();
6841
6842	return err;
6843}
6844
6845/*
6846 * Detach sched domains from a group of cpus specified in cpu_map
6847 * These cpus will now be attached to the NULL domain
6848 */
6849static void detach_destroy_domains(const struct cpumask *cpu_map)
6850{
6851	int i;
6852
6853	rcu_read_lock();
6854	for_each_cpu(i, cpu_map)
6855		cpu_attach_domain(NULL, &def_root_domain, i);
6856	rcu_read_unlock();
6857}
6858
6859/* handle null as "default" */
6860static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6861			struct sched_domain_attr *new, int idx_new)
6862{
6863	struct sched_domain_attr tmp;
6864
6865	/* fast path */
6866	if (!new && !cur)
6867		return 1;
6868
6869	tmp = SD_ATTR_INIT;
6870	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6871			new ? (new + idx_new) : &tmp,
6872			sizeof(struct sched_domain_attr));
6873}
6874
6875/*
6876 * Partition sched domains as specified by the 'ndoms_new'
6877 * cpumasks in the array doms_new[] of cpumasks. This compares
6878 * doms_new[] to the current sched domain partitioning, doms_cur[].
6879 * It destroys each deleted domain and builds each new domain.
6880 *
6881 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6882 * The masks don't intersect (don't overlap.) We should setup one
6883 * sched domain for each mask. CPUs not in any of the cpumasks will
6884 * not be load balanced. If the same cpumask appears both in the
6885 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6886 * it as it is.
6887 *
6888 * The passed in 'doms_new' should be allocated using
6889 * alloc_sched_domains.  This routine takes ownership of it and will
6890 * free_sched_domains it when done with it. If the caller failed the
6891 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6892 * and partition_sched_domains() will fallback to the single partition
6893 * 'fallback_doms', it also forces the domains to be rebuilt.
6894 *
6895 * If doms_new == NULL it will be replaced with cpu_online_mask.
6896 * ndoms_new == 0 is a special case for destroying existing domains,
6897 * and it will not create the default domain.
6898 *
6899 * Call with hotplug lock held
6900 */
6901void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6902			     struct sched_domain_attr *dattr_new)
6903{
6904	int i, j, n;
6905	int new_topology;
6906
6907	mutex_lock(&sched_domains_mutex);
6908
6909	/* always unregister in case we don't destroy any domains */
6910	unregister_sched_domain_sysctl();
6911
6912	/* Let architecture update cpu core mappings. */
6913	new_topology = arch_update_cpu_topology();
6914
6915	n = doms_new ? ndoms_new : 0;
6916
6917	/* Destroy deleted domains */
6918	for (i = 0; i < ndoms_cur; i++) {
6919		for (j = 0; j < n && !new_topology; j++) {
6920			if (cpumask_equal(doms_cur[i], doms_new[j])
6921			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6922				goto match1;
6923		}
6924		/* no match - a current sched domain not in new doms_new[] */
6925		detach_destroy_domains(doms_cur[i]);
6926match1:
6927		;
6928	}
6929
6930	n = ndoms_cur;
6931	if (doms_new == NULL) {
6932		n = 0;
6933		doms_new = &fallback_doms;
6934		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6935		WARN_ON_ONCE(dattr_new);
6936	}
6937
6938	/* Build new domains */
6939	for (i = 0; i < ndoms_new; i++) {
6940		for (j = 0; j < n && !new_topology; j++) {
6941			if (cpumask_equal(doms_new[i], doms_cur[j])
6942			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6943				goto match2;
6944		}
6945		/* no match - add a new doms_new */
6946		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6947match2:
6948		;
6949	}
6950
6951	/* Remember the new sched domains */
6952	if (doms_cur != &fallback_doms)
6953		free_sched_domains(doms_cur, ndoms_cur);
6954	kfree(dattr_cur);	/* kfree(NULL) is safe */
6955	doms_cur = doms_new;
6956	dattr_cur = dattr_new;
6957	ndoms_cur = ndoms_new;
6958
6959	register_sched_domain_sysctl();
6960
6961	mutex_unlock(&sched_domains_mutex);
6962}
6963
6964static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6965
6966/*
6967 * Update cpusets according to cpu_active mask.  If cpusets are
6968 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6969 * around partition_sched_domains().
6970 *
6971 * If we come here as part of a suspend/resume, don't touch cpusets because we
6972 * want to restore it back to its original state upon resume anyway.
6973 */
6974static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6975			     void *hcpu)
6976{
6977	switch (action) {
6978	case CPU_ONLINE_FROZEN:
6979	case CPU_DOWN_FAILED_FROZEN:
6980
6981		/*
6982		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6983		 * resume sequence. As long as this is not the last online
6984		 * operation in the resume sequence, just build a single sched
6985		 * domain, ignoring cpusets.
6986		 */
6987		num_cpus_frozen--;
6988		if (likely(num_cpus_frozen)) {
6989			partition_sched_domains(1, NULL, NULL);
6990			break;
6991		}
6992
6993		/*
6994		 * This is the last CPU online operation. So fall through and
6995		 * restore the original sched domains by considering the
6996		 * cpuset configurations.
6997		 */
6998
6999	case CPU_ONLINE:
7000		cpuset_update_active_cpus(true);
7001		break;
7002	default:
7003		return NOTIFY_DONE;
7004	}
7005	return NOTIFY_OK;
7006}
7007
7008static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7009			       void *hcpu)
7010{
7011	unsigned long flags;
7012	long cpu = (long)hcpu;
7013	struct dl_bw *dl_b;
7014	bool overflow;
7015	int cpus;
7016
7017	switch (action) {
7018	case CPU_DOWN_PREPARE:
7019		rcu_read_lock_sched();
7020		dl_b = dl_bw_of(cpu);
7021
7022		raw_spin_lock_irqsave(&dl_b->lock, flags);
7023		cpus = dl_bw_cpus(cpu);
7024		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7025		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7026
7027		rcu_read_unlock_sched();
7028
7029		if (overflow)
7030			return notifier_from_errno(-EBUSY);
7031		cpuset_update_active_cpus(false);
7032		break;
7033	case CPU_DOWN_PREPARE_FROZEN:
7034		num_cpus_frozen++;
7035		partition_sched_domains(1, NULL, NULL);
7036		break;
7037	default:
7038		return NOTIFY_DONE;
7039	}
7040	return NOTIFY_OK;
7041}
7042
7043void __init sched_init_smp(void)
7044{
7045	cpumask_var_t non_isolated_cpus;
7046
7047	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7048	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7049
7050	sched_init_numa();
7051
7052	/*
7053	 * There's no userspace yet to cause hotplug operations; hence all the
7054	 * cpu masks are stable and all blatant races in the below code cannot
7055	 * happen.
7056	 */
7057	mutex_lock(&sched_domains_mutex);
7058	init_sched_domains(cpu_active_mask);
7059	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7060	if (cpumask_empty(non_isolated_cpus))
7061		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7062	mutex_unlock(&sched_domains_mutex);
7063
7064	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7065	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7066	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7067
7068	init_hrtick();
7069
7070	/* Move init over to a non-isolated CPU */
7071	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7072		BUG();
7073	sched_init_granularity();
7074	free_cpumask_var(non_isolated_cpus);
7075
7076	init_sched_rt_class();
7077	init_sched_dl_class();
7078}
7079#else
7080void __init sched_init_smp(void)
7081{
7082	sched_init_granularity();
7083}
7084#endif /* CONFIG_SMP */
7085
7086const_debug unsigned int sysctl_timer_migration = 1;
7087
7088int in_sched_functions(unsigned long addr)
7089{
7090	return in_lock_functions(addr) ||
7091		(addr >= (unsigned long)__sched_text_start
7092		&& addr < (unsigned long)__sched_text_end);
7093}
7094
7095#ifdef CONFIG_CGROUP_SCHED
7096/*
7097 * Default task group.
7098 * Every task in system belongs to this group at bootup.
7099 */
7100struct task_group root_task_group;
7101LIST_HEAD(task_groups);
7102#endif
7103
7104DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7105
7106void __init sched_init(void)
7107{
7108	int i, j;
7109	unsigned long alloc_size = 0, ptr;
7110
7111#ifdef CONFIG_FAIR_GROUP_SCHED
7112	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7113#endif
7114#ifdef CONFIG_RT_GROUP_SCHED
7115	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7116#endif
7117	if (alloc_size) {
7118		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7119
7120#ifdef CONFIG_FAIR_GROUP_SCHED
7121		root_task_group.se = (struct sched_entity **)ptr;
7122		ptr += nr_cpu_ids * sizeof(void **);
7123
7124		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7125		ptr += nr_cpu_ids * sizeof(void **);
7126
7127#endif /* CONFIG_FAIR_GROUP_SCHED */
7128#ifdef CONFIG_RT_GROUP_SCHED
7129		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7130		ptr += nr_cpu_ids * sizeof(void **);
7131
7132		root_task_group.rt_rq = (struct rt_rq **)ptr;
7133		ptr += nr_cpu_ids * sizeof(void **);
7134
7135#endif /* CONFIG_RT_GROUP_SCHED */
7136	}
7137#ifdef CONFIG_CPUMASK_OFFSTACK
7138	for_each_possible_cpu(i) {
7139		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7140			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7141	}
7142#endif /* CONFIG_CPUMASK_OFFSTACK */
7143
7144	init_rt_bandwidth(&def_rt_bandwidth,
7145			global_rt_period(), global_rt_runtime());
7146	init_dl_bandwidth(&def_dl_bandwidth,
7147			global_rt_period(), global_rt_runtime());
7148
7149#ifdef CONFIG_SMP
7150	init_defrootdomain();
7151#endif
7152
7153#ifdef CONFIG_RT_GROUP_SCHED
7154	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7155			global_rt_period(), global_rt_runtime());
7156#endif /* CONFIG_RT_GROUP_SCHED */
7157
7158#ifdef CONFIG_CGROUP_SCHED
7159	list_add(&root_task_group.list, &task_groups);
7160	INIT_LIST_HEAD(&root_task_group.children);
7161	INIT_LIST_HEAD(&root_task_group.siblings);
7162	autogroup_init(&init_task);
7163
7164#endif /* CONFIG_CGROUP_SCHED */
7165
7166	for_each_possible_cpu(i) {
7167		struct rq *rq;
7168
7169		rq = cpu_rq(i);
7170		raw_spin_lock_init(&rq->lock);
7171		rq->nr_running = 0;
7172		rq->calc_load_active = 0;
7173		rq->calc_load_update = jiffies + LOAD_FREQ;
7174		init_cfs_rq(&rq->cfs);
7175		init_rt_rq(&rq->rt);
7176		init_dl_rq(&rq->dl);
7177#ifdef CONFIG_FAIR_GROUP_SCHED
7178		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7179		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7180		/*
7181		 * How much cpu bandwidth does root_task_group get?
7182		 *
7183		 * In case of task-groups formed thr' the cgroup filesystem, it
7184		 * gets 100% of the cpu resources in the system. This overall
7185		 * system cpu resource is divided among the tasks of
7186		 * root_task_group and its child task-groups in a fair manner,
7187		 * based on each entity's (task or task-group's) weight
7188		 * (se->load.weight).
7189		 *
7190		 * In other words, if root_task_group has 10 tasks of weight
7191		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7192		 * then A0's share of the cpu resource is:
7193		 *
7194		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7195		 *
7196		 * We achieve this by letting root_task_group's tasks sit
7197		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7198		 */
7199		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7200		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7201#endif /* CONFIG_FAIR_GROUP_SCHED */
7202
7203		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7204#ifdef CONFIG_RT_GROUP_SCHED
7205		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7206#endif
7207
7208		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7209			rq->cpu_load[j] = 0;
7210
7211		rq->last_load_update_tick = jiffies;
7212
7213#ifdef CONFIG_SMP
7214		rq->sd = NULL;
7215		rq->rd = NULL;
7216		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7217		rq->post_schedule = 0;
7218		rq->active_balance = 0;
7219		rq->next_balance = jiffies;
7220		rq->push_cpu = 0;
7221		rq->cpu = i;
7222		rq->online = 0;
7223		rq->idle_stamp = 0;
7224		rq->avg_idle = 2*sysctl_sched_migration_cost;
7225		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7226
7227		INIT_LIST_HEAD(&rq->cfs_tasks);
7228
7229		rq_attach_root(rq, &def_root_domain);
7230#ifdef CONFIG_NO_HZ_COMMON
7231		rq->nohz_flags = 0;
7232#endif
7233#ifdef CONFIG_NO_HZ_FULL
7234		rq->last_sched_tick = 0;
7235#endif
7236#endif
7237		init_rq_hrtick(rq);
7238		atomic_set(&rq->nr_iowait, 0);
7239	}
7240
7241	set_load_weight(&init_task);
7242
7243#ifdef CONFIG_PREEMPT_NOTIFIERS
7244	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7245#endif
7246
7247	/*
7248	 * The boot idle thread does lazy MMU switching as well:
7249	 */
7250	atomic_inc(&init_mm.mm_count);
7251	enter_lazy_tlb(&init_mm, current);
7252
7253	/*
7254	 * During early bootup we pretend to be a normal task:
7255	 */
7256	current->sched_class = &fair_sched_class;
7257
7258	/*
7259	 * Make us the idle thread. Technically, schedule() should not be
7260	 * called from this thread, however somewhere below it might be,
7261	 * but because we are the idle thread, we just pick up running again
7262	 * when this runqueue becomes "idle".
7263	 */
7264	init_idle(current, smp_processor_id());
7265
7266	calc_load_update = jiffies + LOAD_FREQ;
7267
7268#ifdef CONFIG_SMP
7269	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7270	/* May be allocated at isolcpus cmdline parse time */
7271	if (cpu_isolated_map == NULL)
7272		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7273	idle_thread_set_boot_cpu();
7274	set_cpu_rq_start_time();
7275#endif
7276	init_sched_fair_class();
7277
7278	scheduler_running = 1;
7279}
7280
7281#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7282static inline int preempt_count_equals(int preempt_offset)
7283{
7284	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7285
7286	return (nested == preempt_offset);
7287}
7288
7289void __might_sleep(const char *file, int line, int preempt_offset)
7290{
7291	/*
7292	 * Blocking primitives will set (and therefore destroy) current->state,
7293	 * since we will exit with TASK_RUNNING make sure we enter with it,
7294	 * otherwise we will destroy state.
7295	 */
7296	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7297			"do not call blocking ops when !TASK_RUNNING; "
7298			"state=%lx set at [<%p>] %pS\n",
7299			current->state,
7300			(void *)current->task_state_change,
7301			(void *)current->task_state_change);
7302
7303	___might_sleep(file, line, preempt_offset);
7304}
7305EXPORT_SYMBOL(__might_sleep);
7306
7307void ___might_sleep(const char *file, int line, int preempt_offset)
7308{
7309	static unsigned long prev_jiffy;	/* ratelimiting */
7310
7311	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7312	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7313	     !is_idle_task(current)) ||
7314	    system_state != SYSTEM_RUNNING || oops_in_progress)
7315		return;
7316	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7317		return;
7318	prev_jiffy = jiffies;
7319
7320	printk(KERN_ERR
7321		"BUG: sleeping function called from invalid context at %s:%d\n",
7322			file, line);
7323	printk(KERN_ERR
7324		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7325			in_atomic(), irqs_disabled(),
7326			current->pid, current->comm);
7327
7328	if (task_stack_end_corrupted(current))
7329		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7330
7331	debug_show_held_locks(current);
7332	if (irqs_disabled())
7333		print_irqtrace_events(current);
7334#ifdef CONFIG_DEBUG_PREEMPT
7335	if (!preempt_count_equals(preempt_offset)) {
7336		pr_err("Preemption disabled at:");
7337		print_ip_sym(current->preempt_disable_ip);
7338		pr_cont("\n");
7339	}
7340#endif
7341	dump_stack();
7342}
7343EXPORT_SYMBOL(___might_sleep);
7344#endif
7345
7346#ifdef CONFIG_MAGIC_SYSRQ
7347static void normalize_task(struct rq *rq, struct task_struct *p)
7348{
7349	const struct sched_class *prev_class = p->sched_class;
7350	struct sched_attr attr = {
7351		.sched_policy = SCHED_NORMAL,
7352	};
7353	int old_prio = p->prio;
7354	int queued;
7355
7356	queued = task_on_rq_queued(p);
7357	if (queued)
7358		dequeue_task(rq, p, 0);
7359	__setscheduler(rq, p, &attr, false);
7360	if (queued) {
7361		enqueue_task(rq, p, 0);
7362		resched_curr(rq);
7363	}
7364
7365	check_class_changed(rq, p, prev_class, old_prio);
7366}
7367
7368void normalize_rt_tasks(void)
7369{
7370	struct task_struct *g, *p;
7371	unsigned long flags;
7372	struct rq *rq;
7373
7374	read_lock(&tasklist_lock);
7375	for_each_process_thread(g, p) {
7376		/*
7377		 * Only normalize user tasks:
7378		 */
7379		if (p->flags & PF_KTHREAD)
7380			continue;
7381
7382		p->se.exec_start		= 0;
7383#ifdef CONFIG_SCHEDSTATS
7384		p->se.statistics.wait_start	= 0;
7385		p->se.statistics.sleep_start	= 0;
7386		p->se.statistics.block_start	= 0;
7387#endif
7388
7389		if (!dl_task(p) && !rt_task(p)) {
7390			/*
7391			 * Renice negative nice level userspace
7392			 * tasks back to 0:
7393			 */
7394			if (task_nice(p) < 0)
7395				set_user_nice(p, 0);
7396			continue;
7397		}
7398
7399		rq = task_rq_lock(p, &flags);
7400		normalize_task(rq, p);
7401		task_rq_unlock(rq, p, &flags);
7402	}
7403	read_unlock(&tasklist_lock);
7404}
7405
7406#endif /* CONFIG_MAGIC_SYSRQ */
7407
7408#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7409/*
7410 * These functions are only useful for the IA64 MCA handling, or kdb.
7411 *
7412 * They can only be called when the whole system has been
7413 * stopped - every CPU needs to be quiescent, and no scheduling
7414 * activity can take place. Using them for anything else would
7415 * be a serious bug, and as a result, they aren't even visible
7416 * under any other configuration.
7417 */
7418
7419/**
7420 * curr_task - return the current task for a given cpu.
7421 * @cpu: the processor in question.
7422 *
7423 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7424 *
7425 * Return: The current task for @cpu.
7426 */
7427struct task_struct *curr_task(int cpu)
7428{
7429	return cpu_curr(cpu);
7430}
7431
7432#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7433
7434#ifdef CONFIG_IA64
7435/**
7436 * set_curr_task - set the current task for a given cpu.
7437 * @cpu: the processor in question.
7438 * @p: the task pointer to set.
7439 *
7440 * Description: This function must only be used when non-maskable interrupts
7441 * are serviced on a separate stack. It allows the architecture to switch the
7442 * notion of the current task on a cpu in a non-blocking manner. This function
7443 * must be called with all CPU's synchronized, and interrupts disabled, the
7444 * and caller must save the original value of the current task (see
7445 * curr_task() above) and restore that value before reenabling interrupts and
7446 * re-starting the system.
7447 *
7448 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7449 */
7450void set_curr_task(int cpu, struct task_struct *p)
7451{
7452	cpu_curr(cpu) = p;
7453}
7454
7455#endif
7456
7457#ifdef CONFIG_CGROUP_SCHED
7458/* task_group_lock serializes the addition/removal of task groups */
7459static DEFINE_SPINLOCK(task_group_lock);
7460
7461static void free_sched_group(struct task_group *tg)
7462{
7463	free_fair_sched_group(tg);
7464	free_rt_sched_group(tg);
7465	autogroup_free(tg);
7466	kfree(tg);
7467}
7468
7469/* allocate runqueue etc for a new task group */
7470struct task_group *sched_create_group(struct task_group *parent)
7471{
7472	struct task_group *tg;
7473
7474	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7475	if (!tg)
7476		return ERR_PTR(-ENOMEM);
7477
7478	if (!alloc_fair_sched_group(tg, parent))
7479		goto err;
7480
7481	if (!alloc_rt_sched_group(tg, parent))
7482		goto err;
7483
7484	return tg;
7485
7486err:
7487	free_sched_group(tg);
7488	return ERR_PTR(-ENOMEM);
7489}
7490
7491void sched_online_group(struct task_group *tg, struct task_group *parent)
7492{
7493	unsigned long flags;
7494
7495	spin_lock_irqsave(&task_group_lock, flags);
7496	list_add_rcu(&tg->list, &task_groups);
7497
7498	WARN_ON(!parent); /* root should already exist */
7499
7500	tg->parent = parent;
7501	INIT_LIST_HEAD(&tg->children);
7502	list_add_rcu(&tg->siblings, &parent->children);
7503	spin_unlock_irqrestore(&task_group_lock, flags);
7504}
7505
7506/* rcu callback to free various structures associated with a task group */
7507static void free_sched_group_rcu(struct rcu_head *rhp)
7508{
7509	/* now it should be safe to free those cfs_rqs */
7510	free_sched_group(container_of(rhp, struct task_group, rcu));
7511}
7512
7513/* Destroy runqueue etc associated with a task group */
7514void sched_destroy_group(struct task_group *tg)
7515{
7516	/* wait for possible concurrent references to cfs_rqs complete */
7517	call_rcu(&tg->rcu, free_sched_group_rcu);
7518}
7519
7520void sched_offline_group(struct task_group *tg)
7521{
7522	unsigned long flags;
7523	int i;
7524
7525	/* end participation in shares distribution */
7526	for_each_possible_cpu(i)
7527		unregister_fair_sched_group(tg, i);
7528
7529	spin_lock_irqsave(&task_group_lock, flags);
7530	list_del_rcu(&tg->list);
7531	list_del_rcu(&tg->siblings);
7532	spin_unlock_irqrestore(&task_group_lock, flags);
7533}
7534
7535/* change task's runqueue when it moves between groups.
7536 *	The caller of this function should have put the task in its new group
7537 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7538 *	reflect its new group.
7539 */
7540void sched_move_task(struct task_struct *tsk)
7541{
7542	struct task_group *tg;
7543	int queued, running;
7544	unsigned long flags;
7545	struct rq *rq;
7546
7547	rq = task_rq_lock(tsk, &flags);
7548
7549	running = task_current(rq, tsk);
7550	queued = task_on_rq_queued(tsk);
7551
7552	if (queued)
7553		dequeue_task(rq, tsk, 0);
7554	if (unlikely(running))
7555		put_prev_task(rq, tsk);
7556
7557	/*
7558	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7559	 * which is pointless here. Thus, we pass "true" to task_css_check()
7560	 * to prevent lockdep warnings.
7561	 */
7562	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7563			  struct task_group, css);
7564	tg = autogroup_task_group(tsk, tg);
7565	tsk->sched_task_group = tg;
7566
7567#ifdef CONFIG_FAIR_GROUP_SCHED
7568	if (tsk->sched_class->task_move_group)
7569		tsk->sched_class->task_move_group(tsk, queued);
7570	else
7571#endif
7572		set_task_rq(tsk, task_cpu(tsk));
7573
7574	if (unlikely(running))
7575		tsk->sched_class->set_curr_task(rq);
7576	if (queued)
7577		enqueue_task(rq, tsk, 0);
7578
7579	task_rq_unlock(rq, tsk, &flags);
7580}
7581#endif /* CONFIG_CGROUP_SCHED */
7582
7583#ifdef CONFIG_RT_GROUP_SCHED
7584/*
7585 * Ensure that the real time constraints are schedulable.
7586 */
7587static DEFINE_MUTEX(rt_constraints_mutex);
7588
7589/* Must be called with tasklist_lock held */
7590static inline int tg_has_rt_tasks(struct task_group *tg)
7591{
7592	struct task_struct *g, *p;
7593
7594	/*
7595	 * Autogroups do not have RT tasks; see autogroup_create().
7596	 */
7597	if (task_group_is_autogroup(tg))
7598		return 0;
7599
7600	for_each_process_thread(g, p) {
7601		if (rt_task(p) && task_group(p) == tg)
7602			return 1;
7603	}
7604
7605	return 0;
7606}
7607
7608struct rt_schedulable_data {
7609	struct task_group *tg;
7610	u64 rt_period;
7611	u64 rt_runtime;
7612};
7613
7614static int tg_rt_schedulable(struct task_group *tg, void *data)
7615{
7616	struct rt_schedulable_data *d = data;
7617	struct task_group *child;
7618	unsigned long total, sum = 0;
7619	u64 period, runtime;
7620
7621	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7622	runtime = tg->rt_bandwidth.rt_runtime;
7623
7624	if (tg == d->tg) {
7625		period = d->rt_period;
7626		runtime = d->rt_runtime;
7627	}
7628
7629	/*
7630	 * Cannot have more runtime than the period.
7631	 */
7632	if (runtime > period && runtime != RUNTIME_INF)
7633		return -EINVAL;
7634
7635	/*
7636	 * Ensure we don't starve existing RT tasks.
7637	 */
7638	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7639		return -EBUSY;
7640
7641	total = to_ratio(period, runtime);
7642
7643	/*
7644	 * Nobody can have more than the global setting allows.
7645	 */
7646	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7647		return -EINVAL;
7648
7649	/*
7650	 * The sum of our children's runtime should not exceed our own.
7651	 */
7652	list_for_each_entry_rcu(child, &tg->children, siblings) {
7653		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7654		runtime = child->rt_bandwidth.rt_runtime;
7655
7656		if (child == d->tg) {
7657			period = d->rt_period;
7658			runtime = d->rt_runtime;
7659		}
7660
7661		sum += to_ratio(period, runtime);
7662	}
7663
7664	if (sum > total)
7665		return -EINVAL;
7666
7667	return 0;
7668}
7669
7670static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7671{
7672	int ret;
7673
7674	struct rt_schedulable_data data = {
7675		.tg = tg,
7676		.rt_period = period,
7677		.rt_runtime = runtime,
7678	};
7679
7680	rcu_read_lock();
7681	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7682	rcu_read_unlock();
7683
7684	return ret;
7685}
7686
7687static int tg_set_rt_bandwidth(struct task_group *tg,
7688		u64 rt_period, u64 rt_runtime)
7689{
7690	int i, err = 0;
7691
7692	/*
7693	 * Disallowing the root group RT runtime is BAD, it would disallow the
7694	 * kernel creating (and or operating) RT threads.
7695	 */
7696	if (tg == &root_task_group && rt_runtime == 0)
7697		return -EINVAL;
7698
7699	/* No period doesn't make any sense. */
7700	if (rt_period == 0)
7701		return -EINVAL;
7702
7703	mutex_lock(&rt_constraints_mutex);
7704	read_lock(&tasklist_lock);
7705	err = __rt_schedulable(tg, rt_period, rt_runtime);
7706	if (err)
7707		goto unlock;
7708
7709	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7710	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7711	tg->rt_bandwidth.rt_runtime = rt_runtime;
7712
7713	for_each_possible_cpu(i) {
7714		struct rt_rq *rt_rq = tg->rt_rq[i];
7715
7716		raw_spin_lock(&rt_rq->rt_runtime_lock);
7717		rt_rq->rt_runtime = rt_runtime;
7718		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7719	}
7720	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7721unlock:
7722	read_unlock(&tasklist_lock);
7723	mutex_unlock(&rt_constraints_mutex);
7724
7725	return err;
7726}
7727
7728static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7729{
7730	u64 rt_runtime, rt_period;
7731
7732	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7733	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7734	if (rt_runtime_us < 0)
7735		rt_runtime = RUNTIME_INF;
7736
7737	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7738}
7739
7740static long sched_group_rt_runtime(struct task_group *tg)
7741{
7742	u64 rt_runtime_us;
7743
7744	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7745		return -1;
7746
7747	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7748	do_div(rt_runtime_us, NSEC_PER_USEC);
7749	return rt_runtime_us;
7750}
7751
7752static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7753{
7754	u64 rt_runtime, rt_period;
7755
7756	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7757	rt_runtime = tg->rt_bandwidth.rt_runtime;
7758
7759	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7760}
7761
7762static long sched_group_rt_period(struct task_group *tg)
7763{
7764	u64 rt_period_us;
7765
7766	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7767	do_div(rt_period_us, NSEC_PER_USEC);
7768	return rt_period_us;
7769}
7770#endif /* CONFIG_RT_GROUP_SCHED */
7771
7772#ifdef CONFIG_RT_GROUP_SCHED
7773static int sched_rt_global_constraints(void)
7774{
7775	int ret = 0;
7776
7777	mutex_lock(&rt_constraints_mutex);
7778	read_lock(&tasklist_lock);
7779	ret = __rt_schedulable(NULL, 0, 0);
7780	read_unlock(&tasklist_lock);
7781	mutex_unlock(&rt_constraints_mutex);
7782
7783	return ret;
7784}
7785
7786static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7787{
7788	/* Don't accept realtime tasks when there is no way for them to run */
7789	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7790		return 0;
7791
7792	return 1;
7793}
7794
7795#else /* !CONFIG_RT_GROUP_SCHED */
7796static int sched_rt_global_constraints(void)
7797{
7798	unsigned long flags;
7799	int i, ret = 0;
7800
7801	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7802	for_each_possible_cpu(i) {
7803		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7804
7805		raw_spin_lock(&rt_rq->rt_runtime_lock);
7806		rt_rq->rt_runtime = global_rt_runtime();
7807		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7808	}
7809	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7810
7811	return ret;
7812}
7813#endif /* CONFIG_RT_GROUP_SCHED */
7814
7815static int sched_dl_global_validate(void)
7816{
7817	u64 runtime = global_rt_runtime();
7818	u64 period = global_rt_period();
7819	u64 new_bw = to_ratio(period, runtime);
7820	struct dl_bw *dl_b;
7821	int cpu, ret = 0;
7822	unsigned long flags;
7823
7824	/*
7825	 * Here we want to check the bandwidth not being set to some
7826	 * value smaller than the currently allocated bandwidth in
7827	 * any of the root_domains.
7828	 *
7829	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7830	 * cycling on root_domains... Discussion on different/better
7831	 * solutions is welcome!
7832	 */
7833	for_each_possible_cpu(cpu) {
7834		rcu_read_lock_sched();
7835		dl_b = dl_bw_of(cpu);
7836
7837		raw_spin_lock_irqsave(&dl_b->lock, flags);
7838		if (new_bw < dl_b->total_bw)
7839			ret = -EBUSY;
7840		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7841
7842		rcu_read_unlock_sched();
7843
7844		if (ret)
7845			break;
7846	}
7847
7848	return ret;
7849}
7850
7851static void sched_dl_do_global(void)
7852{
7853	u64 new_bw = -1;
7854	struct dl_bw *dl_b;
7855	int cpu;
7856	unsigned long flags;
7857
7858	def_dl_bandwidth.dl_period = global_rt_period();
7859	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7860
7861	if (global_rt_runtime() != RUNTIME_INF)
7862		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7863
7864	/*
7865	 * FIXME: As above...
7866	 */
7867	for_each_possible_cpu(cpu) {
7868		rcu_read_lock_sched();
7869		dl_b = dl_bw_of(cpu);
7870
7871		raw_spin_lock_irqsave(&dl_b->lock, flags);
7872		dl_b->bw = new_bw;
7873		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7874
7875		rcu_read_unlock_sched();
7876	}
7877}
7878
7879static int sched_rt_global_validate(void)
7880{
7881	if (sysctl_sched_rt_period <= 0)
7882		return -EINVAL;
7883
7884	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7885		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7886		return -EINVAL;
7887
7888	return 0;
7889}
7890
7891static void sched_rt_do_global(void)
7892{
7893	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7894	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7895}
7896
7897int sched_rt_handler(struct ctl_table *table, int write,
7898		void __user *buffer, size_t *lenp,
7899		loff_t *ppos)
7900{
7901	int old_period, old_runtime;
7902	static DEFINE_MUTEX(mutex);
7903	int ret;
7904
7905	mutex_lock(&mutex);
7906	old_period = sysctl_sched_rt_period;
7907	old_runtime = sysctl_sched_rt_runtime;
7908
7909	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7910
7911	if (!ret && write) {
7912		ret = sched_rt_global_validate();
7913		if (ret)
7914			goto undo;
7915
7916		ret = sched_dl_global_validate();
7917		if (ret)
7918			goto undo;
7919
7920		ret = sched_rt_global_constraints();
7921		if (ret)
7922			goto undo;
7923
7924		sched_rt_do_global();
7925		sched_dl_do_global();
7926	}
7927	if (0) {
7928undo:
7929		sysctl_sched_rt_period = old_period;
7930		sysctl_sched_rt_runtime = old_runtime;
7931	}
7932	mutex_unlock(&mutex);
7933
7934	return ret;
7935}
7936
7937int sched_rr_handler(struct ctl_table *table, int write,
7938		void __user *buffer, size_t *lenp,
7939		loff_t *ppos)
7940{
7941	int ret;
7942	static DEFINE_MUTEX(mutex);
7943
7944	mutex_lock(&mutex);
7945	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7946	/* make sure that internally we keep jiffies */
7947	/* also, writing zero resets timeslice to default */
7948	if (!ret && write) {
7949		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7950			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7951	}
7952	mutex_unlock(&mutex);
7953	return ret;
7954}
7955
7956#ifdef CONFIG_CGROUP_SCHED
7957
7958static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7959{
7960	return css ? container_of(css, struct task_group, css) : NULL;
7961}
7962
7963static struct cgroup_subsys_state *
7964cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7965{
7966	struct task_group *parent = css_tg(parent_css);
7967	struct task_group *tg;
7968
7969	if (!parent) {
7970		/* This is early initialization for the top cgroup */
7971		return &root_task_group.css;
7972	}
7973
7974	tg = sched_create_group(parent);
7975	if (IS_ERR(tg))
7976		return ERR_PTR(-ENOMEM);
7977
7978	return &tg->css;
7979}
7980
7981static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7982{
7983	struct task_group *tg = css_tg(css);
7984	struct task_group *parent = css_tg(css->parent);
7985
7986	if (parent)
7987		sched_online_group(tg, parent);
7988	return 0;
7989}
7990
7991static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7992{
7993	struct task_group *tg = css_tg(css);
7994
7995	sched_destroy_group(tg);
7996}
7997
7998static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7999{
8000	struct task_group *tg = css_tg(css);
8001
8002	sched_offline_group(tg);
8003}
8004
8005static void cpu_cgroup_fork(struct task_struct *task)
8006{
8007	sched_move_task(task);
8008}
8009
8010static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8011				 struct cgroup_taskset *tset)
8012{
8013	struct task_struct *task;
8014
8015	cgroup_taskset_for_each(task, tset) {
8016#ifdef CONFIG_RT_GROUP_SCHED
8017		if (!sched_rt_can_attach(css_tg(css), task))
8018			return -EINVAL;
8019#else
8020		/* We don't support RT-tasks being in separate groups */
8021		if (task->sched_class != &fair_sched_class)
8022			return -EINVAL;
8023#endif
8024	}
8025	return 0;
8026}
8027
8028static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8029			      struct cgroup_taskset *tset)
8030{
8031	struct task_struct *task;
8032
8033	cgroup_taskset_for_each(task, tset)
8034		sched_move_task(task);
8035}
8036
8037static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8038			    struct cgroup_subsys_state *old_css,
8039			    struct task_struct *task)
8040{
8041	/*
8042	 * cgroup_exit() is called in the copy_process() failure path.
8043	 * Ignore this case since the task hasn't ran yet, this avoids
8044	 * trying to poke a half freed task state from generic code.
8045	 */
8046	if (!(task->flags & PF_EXITING))
8047		return;
8048
8049	sched_move_task(task);
8050}
8051
8052#ifdef CONFIG_FAIR_GROUP_SCHED
8053static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8054				struct cftype *cftype, u64 shareval)
8055{
8056	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8057}
8058
8059static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8060			       struct cftype *cft)
8061{
8062	struct task_group *tg = css_tg(css);
8063
8064	return (u64) scale_load_down(tg->shares);
8065}
8066
8067#ifdef CONFIG_CFS_BANDWIDTH
8068static DEFINE_MUTEX(cfs_constraints_mutex);
8069
8070const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8071const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8072
8073static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8074
8075static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8076{
8077	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8078	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8079
8080	if (tg == &root_task_group)
8081		return -EINVAL;
8082
8083	/*
8084	 * Ensure we have at some amount of bandwidth every period.  This is
8085	 * to prevent reaching a state of large arrears when throttled via
8086	 * entity_tick() resulting in prolonged exit starvation.
8087	 */
8088	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8089		return -EINVAL;
8090
8091	/*
8092	 * Likewise, bound things on the otherside by preventing insane quota
8093	 * periods.  This also allows us to normalize in computing quota
8094	 * feasibility.
8095	 */
8096	if (period > max_cfs_quota_period)
8097		return -EINVAL;
8098
8099	/*
8100	 * Prevent race between setting of cfs_rq->runtime_enabled and
8101	 * unthrottle_offline_cfs_rqs().
8102	 */
8103	get_online_cpus();
8104	mutex_lock(&cfs_constraints_mutex);
8105	ret = __cfs_schedulable(tg, period, quota);
8106	if (ret)
8107		goto out_unlock;
8108
8109	runtime_enabled = quota != RUNTIME_INF;
8110	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8111	/*
8112	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8113	 * before making related changes, and on->off must occur afterwards
8114	 */
8115	if (runtime_enabled && !runtime_was_enabled)
8116		cfs_bandwidth_usage_inc();
8117	raw_spin_lock_irq(&cfs_b->lock);
8118	cfs_b->period = ns_to_ktime(period);
8119	cfs_b->quota = quota;
8120
8121	__refill_cfs_bandwidth_runtime(cfs_b);
8122	/* restart the period timer (if active) to handle new period expiry */
8123	if (runtime_enabled && cfs_b->timer_active) {
8124		/* force a reprogram */
8125		__start_cfs_bandwidth(cfs_b, true);
8126	}
8127	raw_spin_unlock_irq(&cfs_b->lock);
8128
8129	for_each_online_cpu(i) {
8130		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8131		struct rq *rq = cfs_rq->rq;
8132
8133		raw_spin_lock_irq(&rq->lock);
8134		cfs_rq->runtime_enabled = runtime_enabled;
8135		cfs_rq->runtime_remaining = 0;
8136
8137		if (cfs_rq->throttled)
8138			unthrottle_cfs_rq(cfs_rq);
8139		raw_spin_unlock_irq(&rq->lock);
8140	}
8141	if (runtime_was_enabled && !runtime_enabled)
8142		cfs_bandwidth_usage_dec();
8143out_unlock:
8144	mutex_unlock(&cfs_constraints_mutex);
8145	put_online_cpus();
8146
8147	return ret;
8148}
8149
8150int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8151{
8152	u64 quota, period;
8153
8154	period = ktime_to_ns(tg->cfs_bandwidth.period);
8155	if (cfs_quota_us < 0)
8156		quota = RUNTIME_INF;
8157	else
8158		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8159
8160	return tg_set_cfs_bandwidth(tg, period, quota);
8161}
8162
8163long tg_get_cfs_quota(struct task_group *tg)
8164{
8165	u64 quota_us;
8166
8167	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8168		return -1;
8169
8170	quota_us = tg->cfs_bandwidth.quota;
8171	do_div(quota_us, NSEC_PER_USEC);
8172
8173	return quota_us;
8174}
8175
8176int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8177{
8178	u64 quota, period;
8179
8180	period = (u64)cfs_period_us * NSEC_PER_USEC;
8181	quota = tg->cfs_bandwidth.quota;
8182
8183	return tg_set_cfs_bandwidth(tg, period, quota);
8184}
8185
8186long tg_get_cfs_period(struct task_group *tg)
8187{
8188	u64 cfs_period_us;
8189
8190	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8191	do_div(cfs_period_us, NSEC_PER_USEC);
8192
8193	return cfs_period_us;
8194}
8195
8196static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8197				  struct cftype *cft)
8198{
8199	return tg_get_cfs_quota(css_tg(css));
8200}
8201
8202static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8203				   struct cftype *cftype, s64 cfs_quota_us)
8204{
8205	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8206}
8207
8208static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8209				   struct cftype *cft)
8210{
8211	return tg_get_cfs_period(css_tg(css));
8212}
8213
8214static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8215				    struct cftype *cftype, u64 cfs_period_us)
8216{
8217	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8218}
8219
8220struct cfs_schedulable_data {
8221	struct task_group *tg;
8222	u64 period, quota;
8223};
8224
8225/*
8226 * normalize group quota/period to be quota/max_period
8227 * note: units are usecs
8228 */
8229static u64 normalize_cfs_quota(struct task_group *tg,
8230			       struct cfs_schedulable_data *d)
8231{
8232	u64 quota, period;
8233
8234	if (tg == d->tg) {
8235		period = d->period;
8236		quota = d->quota;
8237	} else {
8238		period = tg_get_cfs_period(tg);
8239		quota = tg_get_cfs_quota(tg);
8240	}
8241
8242	/* note: these should typically be equivalent */
8243	if (quota == RUNTIME_INF || quota == -1)
8244		return RUNTIME_INF;
8245
8246	return to_ratio(period, quota);
8247}
8248
8249static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8250{
8251	struct cfs_schedulable_data *d = data;
8252	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8253	s64 quota = 0, parent_quota = -1;
8254
8255	if (!tg->parent) {
8256		quota = RUNTIME_INF;
8257	} else {
8258		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8259
8260		quota = normalize_cfs_quota(tg, d);
8261		parent_quota = parent_b->hierarchical_quota;
8262
8263		/*
8264		 * ensure max(child_quota) <= parent_quota, inherit when no
8265		 * limit is set
8266		 */
8267		if (quota == RUNTIME_INF)
8268			quota = parent_quota;
8269		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8270			return -EINVAL;
8271	}
8272	cfs_b->hierarchical_quota = quota;
8273
8274	return 0;
8275}
8276
8277static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8278{
8279	int ret;
8280	struct cfs_schedulable_data data = {
8281		.tg = tg,
8282		.period = period,
8283		.quota = quota,
8284	};
8285
8286	if (quota != RUNTIME_INF) {
8287		do_div(data.period, NSEC_PER_USEC);
8288		do_div(data.quota, NSEC_PER_USEC);
8289	}
8290
8291	rcu_read_lock();
8292	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8293	rcu_read_unlock();
8294
8295	return ret;
8296}
8297
8298static int cpu_stats_show(struct seq_file *sf, void *v)
8299{
8300	struct task_group *tg = css_tg(seq_css(sf));
8301	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8302
8303	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8304	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8305	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8306
8307	return 0;
8308}
8309#endif /* CONFIG_CFS_BANDWIDTH */
8310#endif /* CONFIG_FAIR_GROUP_SCHED */
8311
8312#ifdef CONFIG_RT_GROUP_SCHED
8313static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8314				struct cftype *cft, s64 val)
8315{
8316	return sched_group_set_rt_runtime(css_tg(css), val);
8317}
8318
8319static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8320			       struct cftype *cft)
8321{
8322	return sched_group_rt_runtime(css_tg(css));
8323}
8324
8325static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8326				    struct cftype *cftype, u64 rt_period_us)
8327{
8328	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8329}
8330
8331static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8332				   struct cftype *cft)
8333{
8334	return sched_group_rt_period(css_tg(css));
8335}
8336#endif /* CONFIG_RT_GROUP_SCHED */
8337
8338static struct cftype cpu_files[] = {
8339#ifdef CONFIG_FAIR_GROUP_SCHED
8340	{
8341		.name = "shares",
8342		.read_u64 = cpu_shares_read_u64,
8343		.write_u64 = cpu_shares_write_u64,
8344	},
8345#endif
8346#ifdef CONFIG_CFS_BANDWIDTH
8347	{
8348		.name = "cfs_quota_us",
8349		.read_s64 = cpu_cfs_quota_read_s64,
8350		.write_s64 = cpu_cfs_quota_write_s64,
8351	},
8352	{
8353		.name = "cfs_period_us",
8354		.read_u64 = cpu_cfs_period_read_u64,
8355		.write_u64 = cpu_cfs_period_write_u64,
8356	},
8357	{
8358		.name = "stat",
8359		.seq_show = cpu_stats_show,
8360	},
8361#endif
8362#ifdef CONFIG_RT_GROUP_SCHED
8363	{
8364		.name = "rt_runtime_us",
8365		.read_s64 = cpu_rt_runtime_read,
8366		.write_s64 = cpu_rt_runtime_write,
8367	},
8368	{
8369		.name = "rt_period_us",
8370		.read_u64 = cpu_rt_period_read_uint,
8371		.write_u64 = cpu_rt_period_write_uint,
8372	},
8373#endif
8374	{ }	/* terminate */
8375};
8376
8377struct cgroup_subsys cpu_cgrp_subsys = {
8378	.css_alloc	= cpu_cgroup_css_alloc,
8379	.css_free	= cpu_cgroup_css_free,
8380	.css_online	= cpu_cgroup_css_online,
8381	.css_offline	= cpu_cgroup_css_offline,
8382	.fork		= cpu_cgroup_fork,
8383	.can_attach	= cpu_cgroup_can_attach,
8384	.attach		= cpu_cgroup_attach,
8385	.exit		= cpu_cgroup_exit,
8386	.legacy_cftypes	= cpu_files,
8387	.early_init	= 1,
8388};
8389
8390#endif	/* CONFIG_CGROUP_SCHED */
8391
8392void dump_cpu_task(int cpu)
8393{
8394	pr_info("Task dump for CPU %d:\n", cpu);
8395	sched_show_task(cpu_curr(cpu));
8396}
8397