1/*
2 *	linux/kernel/resource.c
3 *
4 * Copyright (C) 1999	Linus Torvalds
5 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/export.h>
13#include <linux/errno.h>
14#include <linux/ioport.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/device.h>
23#include <linux/pfn.h>
24#include <linux/mm.h>
25#include <linux/resource_ext.h>
26#include <asm/io.h>
27
28
29struct resource ioport_resource = {
30	.name	= "PCI IO",
31	.start	= 0,
32	.end	= IO_SPACE_LIMIT,
33	.flags	= IORESOURCE_IO,
34};
35EXPORT_SYMBOL(ioport_resource);
36
37struct resource iomem_resource = {
38	.name	= "PCI mem",
39	.start	= 0,
40	.end	= -1,
41	.flags	= IORESOURCE_MEM,
42};
43EXPORT_SYMBOL(iomem_resource);
44
45/* constraints to be met while allocating resources */
46struct resource_constraint {
47	resource_size_t min, max, align;
48	resource_size_t (*alignf)(void *, const struct resource *,
49			resource_size_t, resource_size_t);
50	void *alignf_data;
51};
52
53static DEFINE_RWLOCK(resource_lock);
54
55/*
56 * For memory hotplug, there is no way to free resource entries allocated
57 * by boot mem after the system is up. So for reusing the resource entry
58 * we need to remember the resource.
59 */
60static struct resource *bootmem_resource_free;
61static DEFINE_SPINLOCK(bootmem_resource_lock);
62
63static struct resource *next_resource(struct resource *p, bool sibling_only)
64{
65	/* Caller wants to traverse through siblings only */
66	if (sibling_only)
67		return p->sibling;
68
69	if (p->child)
70		return p->child;
71	while (!p->sibling && p->parent)
72		p = p->parent;
73	return p->sibling;
74}
75
76static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77{
78	struct resource *p = v;
79	(*pos)++;
80	return (void *)next_resource(p, false);
81}
82
83#ifdef CONFIG_PROC_FS
84
85enum { MAX_IORES_LEVEL = 5 };
86
87static void *r_start(struct seq_file *m, loff_t *pos)
88	__acquires(resource_lock)
89{
90	struct resource *p = m->private;
91	loff_t l = 0;
92	read_lock(&resource_lock);
93	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94		;
95	return p;
96}
97
98static void r_stop(struct seq_file *m, void *v)
99	__releases(resource_lock)
100{
101	read_unlock(&resource_lock);
102}
103
104static int r_show(struct seq_file *m, void *v)
105{
106	struct resource *root = m->private;
107	struct resource *r = v, *p;
108	int width = root->end < 0x10000 ? 4 : 8;
109	int depth;
110
111	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
112		if (p->parent == root)
113			break;
114	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
115			depth * 2, "",
116			width, (unsigned long long) r->start,
117			width, (unsigned long long) r->end,
118			r->name ? r->name : "<BAD>");
119	return 0;
120}
121
122static const struct seq_operations resource_op = {
123	.start	= r_start,
124	.next	= r_next,
125	.stop	= r_stop,
126	.show	= r_show,
127};
128
129static int ioports_open(struct inode *inode, struct file *file)
130{
131	int res = seq_open(file, &resource_op);
132	if (!res) {
133		struct seq_file *m = file->private_data;
134		m->private = &ioport_resource;
135	}
136	return res;
137}
138
139static int iomem_open(struct inode *inode, struct file *file)
140{
141	int res = seq_open(file, &resource_op);
142	if (!res) {
143		struct seq_file *m = file->private_data;
144		m->private = &iomem_resource;
145	}
146	return res;
147}
148
149static const struct file_operations proc_ioports_operations = {
150	.open		= ioports_open,
151	.read		= seq_read,
152	.llseek		= seq_lseek,
153	.release	= seq_release,
154};
155
156static const struct file_operations proc_iomem_operations = {
157	.open		= iomem_open,
158	.read		= seq_read,
159	.llseek		= seq_lseek,
160	.release	= seq_release,
161};
162
163static int __init ioresources_init(void)
164{
165	proc_create("ioports", 0, NULL, &proc_ioports_operations);
166	proc_create("iomem", 0, NULL, &proc_iomem_operations);
167	return 0;
168}
169__initcall(ioresources_init);
170
171#endif /* CONFIG_PROC_FS */
172
173static void free_resource(struct resource *res)
174{
175	if (!res)
176		return;
177
178	if (!PageSlab(virt_to_head_page(res))) {
179		spin_lock(&bootmem_resource_lock);
180		res->sibling = bootmem_resource_free;
181		bootmem_resource_free = res;
182		spin_unlock(&bootmem_resource_lock);
183	} else {
184		kfree(res);
185	}
186}
187
188static struct resource *alloc_resource(gfp_t flags)
189{
190	struct resource *res = NULL;
191
192	spin_lock(&bootmem_resource_lock);
193	if (bootmem_resource_free) {
194		res = bootmem_resource_free;
195		bootmem_resource_free = res->sibling;
196	}
197	spin_unlock(&bootmem_resource_lock);
198
199	if (res)
200		memset(res, 0, sizeof(struct resource));
201	else
202		res = kzalloc(sizeof(struct resource), flags);
203
204	return res;
205}
206
207/* Return the conflict entry if you can't request it */
208static struct resource * __request_resource(struct resource *root, struct resource *new)
209{
210	resource_size_t start = new->start;
211	resource_size_t end = new->end;
212	struct resource *tmp, **p;
213
214	if (end < start)
215		return root;
216	if (start < root->start)
217		return root;
218	if (end > root->end)
219		return root;
220	p = &root->child;
221	for (;;) {
222		tmp = *p;
223		if (!tmp || tmp->start > end) {
224			new->sibling = tmp;
225			*p = new;
226			new->parent = root;
227			return NULL;
228		}
229		p = &tmp->sibling;
230		if (tmp->end < start)
231			continue;
232		return tmp;
233	}
234}
235
236static int __release_resource(struct resource *old)
237{
238	struct resource *tmp, **p;
239
240	p = &old->parent->child;
241	for (;;) {
242		tmp = *p;
243		if (!tmp)
244			break;
245		if (tmp == old) {
246			*p = tmp->sibling;
247			old->parent = NULL;
248			return 0;
249		}
250		p = &tmp->sibling;
251	}
252	return -EINVAL;
253}
254
255static void __release_child_resources(struct resource *r)
256{
257	struct resource *tmp, *p;
258	resource_size_t size;
259
260	p = r->child;
261	r->child = NULL;
262	while (p) {
263		tmp = p;
264		p = p->sibling;
265
266		tmp->parent = NULL;
267		tmp->sibling = NULL;
268		__release_child_resources(tmp);
269
270		printk(KERN_DEBUG "release child resource %pR\n", tmp);
271		/* need to restore size, and keep flags */
272		size = resource_size(tmp);
273		tmp->start = 0;
274		tmp->end = size - 1;
275	}
276}
277
278void release_child_resources(struct resource *r)
279{
280	write_lock(&resource_lock);
281	__release_child_resources(r);
282	write_unlock(&resource_lock);
283}
284
285/**
286 * request_resource_conflict - request and reserve an I/O or memory resource
287 * @root: root resource descriptor
288 * @new: resource descriptor desired by caller
289 *
290 * Returns 0 for success, conflict resource on error.
291 */
292struct resource *request_resource_conflict(struct resource *root, struct resource *new)
293{
294	struct resource *conflict;
295
296	write_lock(&resource_lock);
297	conflict = __request_resource(root, new);
298	write_unlock(&resource_lock);
299	return conflict;
300}
301
302/**
303 * request_resource - request and reserve an I/O or memory resource
304 * @root: root resource descriptor
305 * @new: resource descriptor desired by caller
306 *
307 * Returns 0 for success, negative error code on error.
308 */
309int request_resource(struct resource *root, struct resource *new)
310{
311	struct resource *conflict;
312
313	conflict = request_resource_conflict(root, new);
314	return conflict ? -EBUSY : 0;
315}
316
317EXPORT_SYMBOL(request_resource);
318
319/**
320 * release_resource - release a previously reserved resource
321 * @old: resource pointer
322 */
323int release_resource(struct resource *old)
324{
325	int retval;
326
327	write_lock(&resource_lock);
328	retval = __release_resource(old);
329	write_unlock(&resource_lock);
330	return retval;
331}
332
333EXPORT_SYMBOL(release_resource);
334
335/*
336 * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
337 * the caller must specify res->start, res->end, res->flags and "name".
338 * If found, returns 0, res is overwritten, if not found, returns -1.
339 * This walks through whole tree and not just first level children
340 * until and unless first_level_children_only is true.
341 */
342static int find_next_iomem_res(struct resource *res, char *name,
343			       bool first_level_children_only)
344{
345	resource_size_t start, end;
346	struct resource *p;
347	bool sibling_only = false;
348
349	BUG_ON(!res);
350
351	start = res->start;
352	end = res->end;
353	BUG_ON(start >= end);
354
355	if (first_level_children_only)
356		sibling_only = true;
357
358	read_lock(&resource_lock);
359
360	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
361		if (p->flags != res->flags)
362			continue;
363		if (name && strcmp(p->name, name))
364			continue;
365		if (p->start > end) {
366			p = NULL;
367			break;
368		}
369		if ((p->end >= start) && (p->start < end))
370			break;
371	}
372
373	read_unlock(&resource_lock);
374	if (!p)
375		return -1;
376	/* copy data */
377	if (res->start < p->start)
378		res->start = p->start;
379	if (res->end > p->end)
380		res->end = p->end;
381	return 0;
382}
383
384/*
385 * Walks through iomem resources and calls func() with matching resource
386 * ranges. This walks through whole tree and not just first level children.
387 * All the memory ranges which overlap start,end and also match flags and
388 * name are valid candidates.
389 *
390 * @name: name of resource
391 * @flags: resource flags
392 * @start: start addr
393 * @end: end addr
394 */
395int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
396		void *arg, int (*func)(u64, u64, void *))
397{
398	struct resource res;
399	u64 orig_end;
400	int ret = -1;
401
402	res.start = start;
403	res.end = end;
404	res.flags = flags;
405	orig_end = res.end;
406	while ((res.start < res.end) &&
407		(!find_next_iomem_res(&res, name, false))) {
408		ret = (*func)(res.start, res.end, arg);
409		if (ret)
410			break;
411		res.start = res.end + 1;
412		res.end = orig_end;
413	}
414	return ret;
415}
416
417/*
418 * This function calls callback against all memory range of "System RAM"
419 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
420 * Now, this function is only for "System RAM". This function deals with
421 * full ranges and not pfn. If resources are not pfn aligned, dealing
422 * with pfn can truncate ranges.
423 */
424int walk_system_ram_res(u64 start, u64 end, void *arg,
425				int (*func)(u64, u64, void *))
426{
427	struct resource res;
428	u64 orig_end;
429	int ret = -1;
430
431	res.start = start;
432	res.end = end;
433	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
434	orig_end = res.end;
435	while ((res.start < res.end) &&
436		(!find_next_iomem_res(&res, "System RAM", true))) {
437		ret = (*func)(res.start, res.end, arg);
438		if (ret)
439			break;
440		res.start = res.end + 1;
441		res.end = orig_end;
442	}
443	return ret;
444}
445
446#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
447
448/*
449 * This function calls callback against all memory range of "System RAM"
450 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
451 * Now, this function is only for "System RAM".
452 */
453int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
454		void *arg, int (*func)(unsigned long, unsigned long, void *))
455{
456	struct resource res;
457	unsigned long pfn, end_pfn;
458	u64 orig_end;
459	int ret = -1;
460
461	res.start = (u64) start_pfn << PAGE_SHIFT;
462	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
463	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
464	orig_end = res.end;
465	while ((res.start < res.end) &&
466		(find_next_iomem_res(&res, "System RAM", true) >= 0)) {
467		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
468		end_pfn = (res.end + 1) >> PAGE_SHIFT;
469		if (end_pfn > pfn)
470			ret = (*func)(pfn, end_pfn - pfn, arg);
471		if (ret)
472			break;
473		res.start = res.end + 1;
474		res.end = orig_end;
475	}
476	return ret;
477}
478
479#endif
480
481static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
482{
483	return 1;
484}
485/*
486 * This generic page_is_ram() returns true if specified address is
487 * registered as "System RAM" in iomem_resource list.
488 */
489int __weak page_is_ram(unsigned long pfn)
490{
491	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
492}
493EXPORT_SYMBOL_GPL(page_is_ram);
494
495/*
496 * Search for a resouce entry that fully contains the specified region.
497 * If found, return 1 if it is RAM, 0 if not.
498 * If not found, or region is not fully contained, return -1
499 *
500 * Used by the ioremap functions to ensure the user is not remapping RAM and is
501 * a vast speed up over walking through the resource table page by page.
502 */
503int region_is_ram(resource_size_t start, unsigned long size)
504{
505	struct resource *p;
506	resource_size_t end = start + size - 1;
507	int flags = IORESOURCE_MEM | IORESOURCE_BUSY;
508	const char *name = "System RAM";
509	int ret = -1;
510
511	read_lock(&resource_lock);
512	for (p = iomem_resource.child; p ; p = p->sibling) {
513		if (end < p->start)
514			continue;
515
516		if (p->start <= start && end <= p->end) {
517			/* resource fully contains region */
518			if ((p->flags != flags) || strcmp(p->name, name))
519				ret = 0;
520			else
521				ret = 1;
522			break;
523		}
524		if (p->end < start)
525			break;	/* not found */
526	}
527	read_unlock(&resource_lock);
528	return ret;
529}
530
531void __weak arch_remove_reservations(struct resource *avail)
532{
533}
534
535static resource_size_t simple_align_resource(void *data,
536					     const struct resource *avail,
537					     resource_size_t size,
538					     resource_size_t align)
539{
540	return avail->start;
541}
542
543static void resource_clip(struct resource *res, resource_size_t min,
544			  resource_size_t max)
545{
546	if (res->start < min)
547		res->start = min;
548	if (res->end > max)
549		res->end = max;
550}
551
552/*
553 * Find empty slot in the resource tree with the given range and
554 * alignment constraints
555 */
556static int __find_resource(struct resource *root, struct resource *old,
557			 struct resource *new,
558			 resource_size_t  size,
559			 struct resource_constraint *constraint)
560{
561	struct resource *this = root->child;
562	struct resource tmp = *new, avail, alloc;
563
564	tmp.start = root->start;
565	/*
566	 * Skip past an allocated resource that starts at 0, since the assignment
567	 * of this->start - 1 to tmp->end below would cause an underflow.
568	 */
569	if (this && this->start == root->start) {
570		tmp.start = (this == old) ? old->start : this->end + 1;
571		this = this->sibling;
572	}
573	for(;;) {
574		if (this)
575			tmp.end = (this == old) ?  this->end : this->start - 1;
576		else
577			tmp.end = root->end;
578
579		if (tmp.end < tmp.start)
580			goto next;
581
582		resource_clip(&tmp, constraint->min, constraint->max);
583		arch_remove_reservations(&tmp);
584
585		/* Check for overflow after ALIGN() */
586		avail.start = ALIGN(tmp.start, constraint->align);
587		avail.end = tmp.end;
588		avail.flags = new->flags & ~IORESOURCE_UNSET;
589		if (avail.start >= tmp.start) {
590			alloc.flags = avail.flags;
591			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
592					size, constraint->align);
593			alloc.end = alloc.start + size - 1;
594			if (resource_contains(&avail, &alloc)) {
595				new->start = alloc.start;
596				new->end = alloc.end;
597				return 0;
598			}
599		}
600
601next:		if (!this || this->end == root->end)
602			break;
603
604		if (this != old)
605			tmp.start = this->end + 1;
606		this = this->sibling;
607	}
608	return -EBUSY;
609}
610
611/*
612 * Find empty slot in the resource tree given range and alignment.
613 */
614static int find_resource(struct resource *root, struct resource *new,
615			resource_size_t size,
616			struct resource_constraint  *constraint)
617{
618	return  __find_resource(root, NULL, new, size, constraint);
619}
620
621/**
622 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
623 *	The resource will be relocated if the new size cannot be reallocated in the
624 *	current location.
625 *
626 * @root: root resource descriptor
627 * @old:  resource descriptor desired by caller
628 * @newsize: new size of the resource descriptor
629 * @constraint: the size and alignment constraints to be met.
630 */
631static int reallocate_resource(struct resource *root, struct resource *old,
632			resource_size_t newsize,
633			struct resource_constraint  *constraint)
634{
635	int err=0;
636	struct resource new = *old;
637	struct resource *conflict;
638
639	write_lock(&resource_lock);
640
641	if ((err = __find_resource(root, old, &new, newsize, constraint)))
642		goto out;
643
644	if (resource_contains(&new, old)) {
645		old->start = new.start;
646		old->end = new.end;
647		goto out;
648	}
649
650	if (old->child) {
651		err = -EBUSY;
652		goto out;
653	}
654
655	if (resource_contains(old, &new)) {
656		old->start = new.start;
657		old->end = new.end;
658	} else {
659		__release_resource(old);
660		*old = new;
661		conflict = __request_resource(root, old);
662		BUG_ON(conflict);
663	}
664out:
665	write_unlock(&resource_lock);
666	return err;
667}
668
669
670/**
671 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
672 * 	The resource will be reallocated with a new size if it was already allocated
673 * @root: root resource descriptor
674 * @new: resource descriptor desired by caller
675 * @size: requested resource region size
676 * @min: minimum boundary to allocate
677 * @max: maximum boundary to allocate
678 * @align: alignment requested, in bytes
679 * @alignf: alignment function, optional, called if not NULL
680 * @alignf_data: arbitrary data to pass to the @alignf function
681 */
682int allocate_resource(struct resource *root, struct resource *new,
683		      resource_size_t size, resource_size_t min,
684		      resource_size_t max, resource_size_t align,
685		      resource_size_t (*alignf)(void *,
686						const struct resource *,
687						resource_size_t,
688						resource_size_t),
689		      void *alignf_data)
690{
691	int err;
692	struct resource_constraint constraint;
693
694	if (!alignf)
695		alignf = simple_align_resource;
696
697	constraint.min = min;
698	constraint.max = max;
699	constraint.align = align;
700	constraint.alignf = alignf;
701	constraint.alignf_data = alignf_data;
702
703	if ( new->parent ) {
704		/* resource is already allocated, try reallocating with
705		   the new constraints */
706		return reallocate_resource(root, new, size, &constraint);
707	}
708
709	write_lock(&resource_lock);
710	err = find_resource(root, new, size, &constraint);
711	if (err >= 0 && __request_resource(root, new))
712		err = -EBUSY;
713	write_unlock(&resource_lock);
714	return err;
715}
716
717EXPORT_SYMBOL(allocate_resource);
718
719/**
720 * lookup_resource - find an existing resource by a resource start address
721 * @root: root resource descriptor
722 * @start: resource start address
723 *
724 * Returns a pointer to the resource if found, NULL otherwise
725 */
726struct resource *lookup_resource(struct resource *root, resource_size_t start)
727{
728	struct resource *res;
729
730	read_lock(&resource_lock);
731	for (res = root->child; res; res = res->sibling) {
732		if (res->start == start)
733			break;
734	}
735	read_unlock(&resource_lock);
736
737	return res;
738}
739
740/*
741 * Insert a resource into the resource tree. If successful, return NULL,
742 * otherwise return the conflicting resource (compare to __request_resource())
743 */
744static struct resource * __insert_resource(struct resource *parent, struct resource *new)
745{
746	struct resource *first, *next;
747
748	for (;; parent = first) {
749		first = __request_resource(parent, new);
750		if (!first)
751			return first;
752
753		if (first == parent)
754			return first;
755		if (WARN_ON(first == new))	/* duplicated insertion */
756			return first;
757
758		if ((first->start > new->start) || (first->end < new->end))
759			break;
760		if ((first->start == new->start) && (first->end == new->end))
761			break;
762	}
763
764	for (next = first; ; next = next->sibling) {
765		/* Partial overlap? Bad, and unfixable */
766		if (next->start < new->start || next->end > new->end)
767			return next;
768		if (!next->sibling)
769			break;
770		if (next->sibling->start > new->end)
771			break;
772	}
773
774	new->parent = parent;
775	new->sibling = next->sibling;
776	new->child = first;
777
778	next->sibling = NULL;
779	for (next = first; next; next = next->sibling)
780		next->parent = new;
781
782	if (parent->child == first) {
783		parent->child = new;
784	} else {
785		next = parent->child;
786		while (next->sibling != first)
787			next = next->sibling;
788		next->sibling = new;
789	}
790	return NULL;
791}
792
793/**
794 * insert_resource_conflict - Inserts resource in the resource tree
795 * @parent: parent of the new resource
796 * @new: new resource to insert
797 *
798 * Returns 0 on success, conflict resource if the resource can't be inserted.
799 *
800 * This function is equivalent to request_resource_conflict when no conflict
801 * happens. If a conflict happens, and the conflicting resources
802 * entirely fit within the range of the new resource, then the new
803 * resource is inserted and the conflicting resources become children of
804 * the new resource.
805 */
806struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
807{
808	struct resource *conflict;
809
810	write_lock(&resource_lock);
811	conflict = __insert_resource(parent, new);
812	write_unlock(&resource_lock);
813	return conflict;
814}
815
816/**
817 * insert_resource - Inserts a resource in the resource tree
818 * @parent: parent of the new resource
819 * @new: new resource to insert
820 *
821 * Returns 0 on success, -EBUSY if the resource can't be inserted.
822 */
823int insert_resource(struct resource *parent, struct resource *new)
824{
825	struct resource *conflict;
826
827	conflict = insert_resource_conflict(parent, new);
828	return conflict ? -EBUSY : 0;
829}
830
831/**
832 * insert_resource_expand_to_fit - Insert a resource into the resource tree
833 * @root: root resource descriptor
834 * @new: new resource to insert
835 *
836 * Insert a resource into the resource tree, possibly expanding it in order
837 * to make it encompass any conflicting resources.
838 */
839void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
840{
841	if (new->parent)
842		return;
843
844	write_lock(&resource_lock);
845	for (;;) {
846		struct resource *conflict;
847
848		conflict = __insert_resource(root, new);
849		if (!conflict)
850			break;
851		if (conflict == root)
852			break;
853
854		/* Ok, expand resource to cover the conflict, then try again .. */
855		if (conflict->start < new->start)
856			new->start = conflict->start;
857		if (conflict->end > new->end)
858			new->end = conflict->end;
859
860		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
861	}
862	write_unlock(&resource_lock);
863}
864
865static int __adjust_resource(struct resource *res, resource_size_t start,
866				resource_size_t size)
867{
868	struct resource *tmp, *parent = res->parent;
869	resource_size_t end = start + size - 1;
870	int result = -EBUSY;
871
872	if (!parent)
873		goto skip;
874
875	if ((start < parent->start) || (end > parent->end))
876		goto out;
877
878	if (res->sibling && (res->sibling->start <= end))
879		goto out;
880
881	tmp = parent->child;
882	if (tmp != res) {
883		while (tmp->sibling != res)
884			tmp = tmp->sibling;
885		if (start <= tmp->end)
886			goto out;
887	}
888
889skip:
890	for (tmp = res->child; tmp; tmp = tmp->sibling)
891		if ((tmp->start < start) || (tmp->end > end))
892			goto out;
893
894	res->start = start;
895	res->end = end;
896	result = 0;
897
898 out:
899	return result;
900}
901
902/**
903 * adjust_resource - modify a resource's start and size
904 * @res: resource to modify
905 * @start: new start value
906 * @size: new size
907 *
908 * Given an existing resource, change its start and size to match the
909 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
910 * Existing children of the resource are assumed to be immutable.
911 */
912int adjust_resource(struct resource *res, resource_size_t start,
913			resource_size_t size)
914{
915	int result;
916
917	write_lock(&resource_lock);
918	result = __adjust_resource(res, start, size);
919	write_unlock(&resource_lock);
920	return result;
921}
922EXPORT_SYMBOL(adjust_resource);
923
924static void __init __reserve_region_with_split(struct resource *root,
925		resource_size_t start, resource_size_t end,
926		const char *name)
927{
928	struct resource *parent = root;
929	struct resource *conflict;
930	struct resource *res = alloc_resource(GFP_ATOMIC);
931	struct resource *next_res = NULL;
932
933	if (!res)
934		return;
935
936	res->name = name;
937	res->start = start;
938	res->end = end;
939	res->flags = IORESOURCE_BUSY;
940
941	while (1) {
942
943		conflict = __request_resource(parent, res);
944		if (!conflict) {
945			if (!next_res)
946				break;
947			res = next_res;
948			next_res = NULL;
949			continue;
950		}
951
952		/* conflict covered whole area */
953		if (conflict->start <= res->start &&
954				conflict->end >= res->end) {
955			free_resource(res);
956			WARN_ON(next_res);
957			break;
958		}
959
960		/* failed, split and try again */
961		if (conflict->start > res->start) {
962			end = res->end;
963			res->end = conflict->start - 1;
964			if (conflict->end < end) {
965				next_res = alloc_resource(GFP_ATOMIC);
966				if (!next_res) {
967					free_resource(res);
968					break;
969				}
970				next_res->name = name;
971				next_res->start = conflict->end + 1;
972				next_res->end = end;
973				next_res->flags = IORESOURCE_BUSY;
974			}
975		} else {
976			res->start = conflict->end + 1;
977		}
978	}
979
980}
981
982void __init reserve_region_with_split(struct resource *root,
983		resource_size_t start, resource_size_t end,
984		const char *name)
985{
986	int abort = 0;
987
988	write_lock(&resource_lock);
989	if (root->start > start || root->end < end) {
990		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
991		       (unsigned long long)start, (unsigned long long)end,
992		       root);
993		if (start > root->end || end < root->start)
994			abort = 1;
995		else {
996			if (end > root->end)
997				end = root->end;
998			if (start < root->start)
999				start = root->start;
1000			pr_err("fixing request to [0x%llx-0x%llx]\n",
1001			       (unsigned long long)start,
1002			       (unsigned long long)end);
1003		}
1004		dump_stack();
1005	}
1006	if (!abort)
1007		__reserve_region_with_split(root, start, end, name);
1008	write_unlock(&resource_lock);
1009}
1010
1011/**
1012 * resource_alignment - calculate resource's alignment
1013 * @res: resource pointer
1014 *
1015 * Returns alignment on success, 0 (invalid alignment) on failure.
1016 */
1017resource_size_t resource_alignment(struct resource *res)
1018{
1019	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1020	case IORESOURCE_SIZEALIGN:
1021		return resource_size(res);
1022	case IORESOURCE_STARTALIGN:
1023		return res->start;
1024	default:
1025		return 0;
1026	}
1027}
1028
1029/*
1030 * This is compatibility stuff for IO resources.
1031 *
1032 * Note how this, unlike the above, knows about
1033 * the IO flag meanings (busy etc).
1034 *
1035 * request_region creates a new busy region.
1036 *
1037 * release_region releases a matching busy region.
1038 */
1039
1040static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1041
1042/**
1043 * __request_region - create a new busy resource region
1044 * @parent: parent resource descriptor
1045 * @start: resource start address
1046 * @n: resource region size
1047 * @name: reserving caller's ID string
1048 * @flags: IO resource flags
1049 */
1050struct resource * __request_region(struct resource *parent,
1051				   resource_size_t start, resource_size_t n,
1052				   const char *name, int flags)
1053{
1054	DECLARE_WAITQUEUE(wait, current);
1055	struct resource *res = alloc_resource(GFP_KERNEL);
1056
1057	if (!res)
1058		return NULL;
1059
1060	res->name = name;
1061	res->start = start;
1062	res->end = start + n - 1;
1063	res->flags = resource_type(parent);
1064	res->flags |= IORESOURCE_BUSY | flags;
1065
1066	write_lock(&resource_lock);
1067
1068	for (;;) {
1069		struct resource *conflict;
1070
1071		conflict = __request_resource(parent, res);
1072		if (!conflict)
1073			break;
1074		if (conflict != parent) {
1075			if (!(conflict->flags & IORESOURCE_BUSY)) {
1076				parent = conflict;
1077				continue;
1078			}
1079		}
1080		if (conflict->flags & flags & IORESOURCE_MUXED) {
1081			add_wait_queue(&muxed_resource_wait, &wait);
1082			write_unlock(&resource_lock);
1083			set_current_state(TASK_UNINTERRUPTIBLE);
1084			schedule();
1085			remove_wait_queue(&muxed_resource_wait, &wait);
1086			write_lock(&resource_lock);
1087			continue;
1088		}
1089		/* Uhhuh, that didn't work out.. */
1090		free_resource(res);
1091		res = NULL;
1092		break;
1093	}
1094	write_unlock(&resource_lock);
1095	return res;
1096}
1097EXPORT_SYMBOL(__request_region);
1098
1099/**
1100 * __release_region - release a previously reserved resource region
1101 * @parent: parent resource descriptor
1102 * @start: resource start address
1103 * @n: resource region size
1104 *
1105 * The described resource region must match a currently busy region.
1106 */
1107void __release_region(struct resource *parent, resource_size_t start,
1108			resource_size_t n)
1109{
1110	struct resource **p;
1111	resource_size_t end;
1112
1113	p = &parent->child;
1114	end = start + n - 1;
1115
1116	write_lock(&resource_lock);
1117
1118	for (;;) {
1119		struct resource *res = *p;
1120
1121		if (!res)
1122			break;
1123		if (res->start <= start && res->end >= end) {
1124			if (!(res->flags & IORESOURCE_BUSY)) {
1125				p = &res->child;
1126				continue;
1127			}
1128			if (res->start != start || res->end != end)
1129				break;
1130			*p = res->sibling;
1131			write_unlock(&resource_lock);
1132			if (res->flags & IORESOURCE_MUXED)
1133				wake_up(&muxed_resource_wait);
1134			free_resource(res);
1135			return;
1136		}
1137		p = &res->sibling;
1138	}
1139
1140	write_unlock(&resource_lock);
1141
1142	printk(KERN_WARNING "Trying to free nonexistent resource "
1143		"<%016llx-%016llx>\n", (unsigned long long)start,
1144		(unsigned long long)end);
1145}
1146EXPORT_SYMBOL(__release_region);
1147
1148#ifdef CONFIG_MEMORY_HOTREMOVE
1149/**
1150 * release_mem_region_adjustable - release a previously reserved memory region
1151 * @parent: parent resource descriptor
1152 * @start: resource start address
1153 * @size: resource region size
1154 *
1155 * This interface is intended for memory hot-delete.  The requested region
1156 * is released from a currently busy memory resource.  The requested region
1157 * must either match exactly or fit into a single busy resource entry.  In
1158 * the latter case, the remaining resource is adjusted accordingly.
1159 * Existing children of the busy memory resource must be immutable in the
1160 * request.
1161 *
1162 * Note:
1163 * - Additional release conditions, such as overlapping region, can be
1164 *   supported after they are confirmed as valid cases.
1165 * - When a busy memory resource gets split into two entries, the code
1166 *   assumes that all children remain in the lower address entry for
1167 *   simplicity.  Enhance this logic when necessary.
1168 */
1169int release_mem_region_adjustable(struct resource *parent,
1170			resource_size_t start, resource_size_t size)
1171{
1172	struct resource **p;
1173	struct resource *res;
1174	struct resource *new_res;
1175	resource_size_t end;
1176	int ret = -EINVAL;
1177
1178	end = start + size - 1;
1179	if ((start < parent->start) || (end > parent->end))
1180		return ret;
1181
1182	/* The alloc_resource() result gets checked later */
1183	new_res = alloc_resource(GFP_KERNEL);
1184
1185	p = &parent->child;
1186	write_lock(&resource_lock);
1187
1188	while ((res = *p)) {
1189		if (res->start >= end)
1190			break;
1191
1192		/* look for the next resource if it does not fit into */
1193		if (res->start > start || res->end < end) {
1194			p = &res->sibling;
1195			continue;
1196		}
1197
1198		if (!(res->flags & IORESOURCE_MEM))
1199			break;
1200
1201		if (!(res->flags & IORESOURCE_BUSY)) {
1202			p = &res->child;
1203			continue;
1204		}
1205
1206		/* found the target resource; let's adjust accordingly */
1207		if (res->start == start && res->end == end) {
1208			/* free the whole entry */
1209			*p = res->sibling;
1210			free_resource(res);
1211			ret = 0;
1212		} else if (res->start == start && res->end != end) {
1213			/* adjust the start */
1214			ret = __adjust_resource(res, end + 1,
1215						res->end - end);
1216		} else if (res->start != start && res->end == end) {
1217			/* adjust the end */
1218			ret = __adjust_resource(res, res->start,
1219						start - res->start);
1220		} else {
1221			/* split into two entries */
1222			if (!new_res) {
1223				ret = -ENOMEM;
1224				break;
1225			}
1226			new_res->name = res->name;
1227			new_res->start = end + 1;
1228			new_res->end = res->end;
1229			new_res->flags = res->flags;
1230			new_res->parent = res->parent;
1231			new_res->sibling = res->sibling;
1232			new_res->child = NULL;
1233
1234			ret = __adjust_resource(res, res->start,
1235						start - res->start);
1236			if (ret)
1237				break;
1238			res->sibling = new_res;
1239			new_res = NULL;
1240		}
1241
1242		break;
1243	}
1244
1245	write_unlock(&resource_lock);
1246	free_resource(new_res);
1247	return ret;
1248}
1249#endif	/* CONFIG_MEMORY_HOTREMOVE */
1250
1251/*
1252 * Managed region resource
1253 */
1254static void devm_resource_release(struct device *dev, void *ptr)
1255{
1256	struct resource **r = ptr;
1257
1258	release_resource(*r);
1259}
1260
1261/**
1262 * devm_request_resource() - request and reserve an I/O or memory resource
1263 * @dev: device for which to request the resource
1264 * @root: root of the resource tree from which to request the resource
1265 * @new: descriptor of the resource to request
1266 *
1267 * This is a device-managed version of request_resource(). There is usually
1268 * no need to release resources requested by this function explicitly since
1269 * that will be taken care of when the device is unbound from its driver.
1270 * If for some reason the resource needs to be released explicitly, because
1271 * of ordering issues for example, drivers must call devm_release_resource()
1272 * rather than the regular release_resource().
1273 *
1274 * When a conflict is detected between any existing resources and the newly
1275 * requested resource, an error message will be printed.
1276 *
1277 * Returns 0 on success or a negative error code on failure.
1278 */
1279int devm_request_resource(struct device *dev, struct resource *root,
1280			  struct resource *new)
1281{
1282	struct resource *conflict, **ptr;
1283
1284	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1285	if (!ptr)
1286		return -ENOMEM;
1287
1288	*ptr = new;
1289
1290	conflict = request_resource_conflict(root, new);
1291	if (conflict) {
1292		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1293			new, conflict->name, conflict);
1294		devres_free(ptr);
1295		return -EBUSY;
1296	}
1297
1298	devres_add(dev, ptr);
1299	return 0;
1300}
1301EXPORT_SYMBOL(devm_request_resource);
1302
1303static int devm_resource_match(struct device *dev, void *res, void *data)
1304{
1305	struct resource **ptr = res;
1306
1307	return *ptr == data;
1308}
1309
1310/**
1311 * devm_release_resource() - release a previously requested resource
1312 * @dev: device for which to release the resource
1313 * @new: descriptor of the resource to release
1314 *
1315 * Releases a resource previously requested using devm_request_resource().
1316 */
1317void devm_release_resource(struct device *dev, struct resource *new)
1318{
1319	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1320			       new));
1321}
1322EXPORT_SYMBOL(devm_release_resource);
1323
1324struct region_devres {
1325	struct resource *parent;
1326	resource_size_t start;
1327	resource_size_t n;
1328};
1329
1330static void devm_region_release(struct device *dev, void *res)
1331{
1332	struct region_devres *this = res;
1333
1334	__release_region(this->parent, this->start, this->n);
1335}
1336
1337static int devm_region_match(struct device *dev, void *res, void *match_data)
1338{
1339	struct region_devres *this = res, *match = match_data;
1340
1341	return this->parent == match->parent &&
1342		this->start == match->start && this->n == match->n;
1343}
1344
1345struct resource * __devm_request_region(struct device *dev,
1346				struct resource *parent, resource_size_t start,
1347				resource_size_t n, const char *name)
1348{
1349	struct region_devres *dr = NULL;
1350	struct resource *res;
1351
1352	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1353			  GFP_KERNEL);
1354	if (!dr)
1355		return NULL;
1356
1357	dr->parent = parent;
1358	dr->start = start;
1359	dr->n = n;
1360
1361	res = __request_region(parent, start, n, name, 0);
1362	if (res)
1363		devres_add(dev, dr);
1364	else
1365		devres_free(dr);
1366
1367	return res;
1368}
1369EXPORT_SYMBOL(__devm_request_region);
1370
1371void __devm_release_region(struct device *dev, struct resource *parent,
1372			   resource_size_t start, resource_size_t n)
1373{
1374	struct region_devres match_data = { parent, start, n };
1375
1376	__release_region(parent, start, n);
1377	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1378			       &match_data));
1379}
1380EXPORT_SYMBOL(__devm_release_region);
1381
1382/*
1383 * Called from init/main.c to reserve IO ports.
1384 */
1385#define MAXRESERVE 4
1386static int __init reserve_setup(char *str)
1387{
1388	static int reserved;
1389	static struct resource reserve[MAXRESERVE];
1390
1391	for (;;) {
1392		unsigned int io_start, io_num;
1393		int x = reserved;
1394
1395		if (get_option (&str, &io_start) != 2)
1396			break;
1397		if (get_option (&str, &io_num)   == 0)
1398			break;
1399		if (x < MAXRESERVE) {
1400			struct resource *res = reserve + x;
1401			res->name = "reserved";
1402			res->start = io_start;
1403			res->end = io_start + io_num - 1;
1404			res->flags = IORESOURCE_BUSY;
1405			res->child = NULL;
1406			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1407				reserved = x+1;
1408		}
1409	}
1410	return 1;
1411}
1412
1413__setup("reserve=", reserve_setup);
1414
1415/*
1416 * Check if the requested addr and size spans more than any slot in the
1417 * iomem resource tree.
1418 */
1419int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1420{
1421	struct resource *p = &iomem_resource;
1422	int err = 0;
1423	loff_t l;
1424
1425	read_lock(&resource_lock);
1426	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1427		/*
1428		 * We can probably skip the resources without
1429		 * IORESOURCE_IO attribute?
1430		 */
1431		if (p->start >= addr + size)
1432			continue;
1433		if (p->end < addr)
1434			continue;
1435		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1436		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1437			continue;
1438		/*
1439		 * if a resource is "BUSY", it's not a hardware resource
1440		 * but a driver mapping of such a resource; we don't want
1441		 * to warn for those; some drivers legitimately map only
1442		 * partial hardware resources. (example: vesafb)
1443		 */
1444		if (p->flags & IORESOURCE_BUSY)
1445			continue;
1446
1447		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1448		       (unsigned long long)addr,
1449		       (unsigned long long)(addr + size - 1),
1450		       p->name, p);
1451		err = -1;
1452		break;
1453	}
1454	read_unlock(&resource_lock);
1455
1456	return err;
1457}
1458
1459#ifdef CONFIG_STRICT_DEVMEM
1460static int strict_iomem_checks = 1;
1461#else
1462static int strict_iomem_checks;
1463#endif
1464
1465/*
1466 * check if an address is reserved in the iomem resource tree
1467 * returns 1 if reserved, 0 if not reserved.
1468 */
1469int iomem_is_exclusive(u64 addr)
1470{
1471	struct resource *p = &iomem_resource;
1472	int err = 0;
1473	loff_t l;
1474	int size = PAGE_SIZE;
1475
1476	if (!strict_iomem_checks)
1477		return 0;
1478
1479	addr = addr & PAGE_MASK;
1480
1481	read_lock(&resource_lock);
1482	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1483		/*
1484		 * We can probably skip the resources without
1485		 * IORESOURCE_IO attribute?
1486		 */
1487		if (p->start >= addr + size)
1488			break;
1489		if (p->end < addr)
1490			continue;
1491		if (p->flags & IORESOURCE_BUSY &&
1492		     p->flags & IORESOURCE_EXCLUSIVE) {
1493			err = 1;
1494			break;
1495		}
1496	}
1497	read_unlock(&resource_lock);
1498
1499	return err;
1500}
1501
1502struct resource_entry *resource_list_create_entry(struct resource *res,
1503						  size_t extra_size)
1504{
1505	struct resource_entry *entry;
1506
1507	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1508	if (entry) {
1509		INIT_LIST_HEAD(&entry->node);
1510		entry->res = res ? res : &entry->__res;
1511	}
1512
1513	return entry;
1514}
1515EXPORT_SYMBOL(resource_list_create_entry);
1516
1517void resource_list_free(struct list_head *head)
1518{
1519	struct resource_entry *entry, *tmp;
1520
1521	list_for_each_entry_safe(entry, tmp, head, node)
1522		resource_list_destroy_entry(entry);
1523}
1524EXPORT_SYMBOL(resource_list_free);
1525
1526static int __init strict_iomem(char *str)
1527{
1528	if (strstr(str, "relaxed"))
1529		strict_iomem_checks = 0;
1530	if (strstr(str, "strict"))
1531		strict_iomem_checks = 1;
1532	return 1;
1533}
1534
1535__setup("iomem=", strict_iomem);
1536