1/*
2 *  linux/kernel/printk.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not.  Added option to suppress kernel printk's
9 * to the console.  Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 *     manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 *	01Mar01 Andrew Morton
17 */
18
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/tty.h>
22#include <linux/tty_driver.h>
23#include <linux/console.h>
24#include <linux/init.h>
25#include <linux/jiffies.h>
26#include <linux/nmi.h>
27#include <linux/module.h>
28#include <linux/moduleparam.h>
29#include <linux/interrupt.h>			/* For in_interrupt() */
30#include <linux/delay.h>
31#include <linux/smp.h>
32#include <linux/security.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/syscalls.h>
36#include <linux/kexec.h>
37#include <linux/kdb.h>
38#include <linux/ratelimit.h>
39#include <linux/kmsg_dump.h>
40#include <linux/syslog.h>
41#include <linux/cpu.h>
42#include <linux/notifier.h>
43#include <linux/rculist.h>
44#include <linux/poll.h>
45#include <linux/irq_work.h>
46#include <linux/utsname.h>
47#include <linux/ctype.h>
48#include <linux/uio.h>
49
50#include <asm/uaccess.h>
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/printk.h>
54
55#include "console_cmdline.h"
56#include "braille.h"
57
58int console_printk[4] = {
59	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63};
64
65/*
66 * Low level drivers may need that to know if they can schedule in
67 * their unblank() callback or not. So let's export it.
68 */
69int oops_in_progress;
70EXPORT_SYMBOL(oops_in_progress);
71
72/*
73 * console_sem protects the console_drivers list, and also
74 * provides serialisation for access to the entire console
75 * driver system.
76 */
77static DEFINE_SEMAPHORE(console_sem);
78struct console *console_drivers;
79EXPORT_SYMBOL_GPL(console_drivers);
80
81#ifdef CONFIG_LOCKDEP
82static struct lockdep_map console_lock_dep_map = {
83	.name = "console_lock"
84};
85#endif
86
87/*
88 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
89 * macros instead of functions so that _RET_IP_ contains useful information.
90 */
91#define down_console_sem() do { \
92	down(&console_sem);\
93	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
94} while (0)
95
96static int __down_trylock_console_sem(unsigned long ip)
97{
98	if (down_trylock(&console_sem))
99		return 1;
100	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
101	return 0;
102}
103#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
104
105#define up_console_sem() do { \
106	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
107	up(&console_sem);\
108} while (0)
109
110/*
111 * This is used for debugging the mess that is the VT code by
112 * keeping track if we have the console semaphore held. It's
113 * definitely not the perfect debug tool (we don't know if _WE_
114 * hold it and are racing, but it helps tracking those weird code
115 * paths in the console code where we end up in places I want
116 * locked without the console sempahore held).
117 */
118static int console_locked, console_suspended;
119
120/*
121 * If exclusive_console is non-NULL then only this console is to be printed to.
122 */
123static struct console *exclusive_console;
124
125/*
126 *	Array of consoles built from command line options (console=)
127 */
128
129#define MAX_CMDLINECONSOLES 8
130
131static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
132
133static int selected_console = -1;
134static int preferred_console = -1;
135int console_set_on_cmdline;
136EXPORT_SYMBOL(console_set_on_cmdline);
137
138/* Flag: console code may call schedule() */
139static int console_may_schedule;
140
141/*
142 * The printk log buffer consists of a chain of concatenated variable
143 * length records. Every record starts with a record header, containing
144 * the overall length of the record.
145 *
146 * The heads to the first and last entry in the buffer, as well as the
147 * sequence numbers of these entries are maintained when messages are
148 * stored.
149 *
150 * If the heads indicate available messages, the length in the header
151 * tells the start next message. A length == 0 for the next message
152 * indicates a wrap-around to the beginning of the buffer.
153 *
154 * Every record carries the monotonic timestamp in microseconds, as well as
155 * the standard userspace syslog level and syslog facility. The usual
156 * kernel messages use LOG_KERN; userspace-injected messages always carry
157 * a matching syslog facility, by default LOG_USER. The origin of every
158 * message can be reliably determined that way.
159 *
160 * The human readable log message directly follows the message header. The
161 * length of the message text is stored in the header, the stored message
162 * is not terminated.
163 *
164 * Optionally, a message can carry a dictionary of properties (key/value pairs),
165 * to provide userspace with a machine-readable message context.
166 *
167 * Examples for well-defined, commonly used property names are:
168 *   DEVICE=b12:8               device identifier
169 *                                b12:8         block dev_t
170 *                                c127:3        char dev_t
171 *                                n8            netdev ifindex
172 *                                +sound:card0  subsystem:devname
173 *   SUBSYSTEM=pci              driver-core subsystem name
174 *
175 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
176 * follows directly after a '=' character. Every property is terminated by
177 * a '\0' character. The last property is not terminated.
178 *
179 * Example of a message structure:
180 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
181 *   0008  34 00                        record is 52 bytes long
182 *   000a        0b 00                  text is 11 bytes long
183 *   000c              1f 00            dictionary is 23 bytes long
184 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
185 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
186 *         69 6e 65                     "ine"
187 *   001b           44 45 56 49 43      "DEVIC"
188 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
189 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
190 *         67                           "g"
191 *   0032     00 00 00                  padding to next message header
192 *
193 * The 'struct printk_log' buffer header must never be directly exported to
194 * userspace, it is a kernel-private implementation detail that might
195 * need to be changed in the future, when the requirements change.
196 *
197 * /dev/kmsg exports the structured data in the following line format:
198 *   "level,sequnum,timestamp;<message text>\n"
199 *
200 * The optional key/value pairs are attached as continuation lines starting
201 * with a space character and terminated by a newline. All possible
202 * non-prinatable characters are escaped in the "\xff" notation.
203 *
204 * Users of the export format should ignore possible additional values
205 * separated by ',', and find the message after the ';' character.
206 */
207
208enum log_flags {
209	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
210	LOG_NEWLINE	= 2,	/* text ended with a newline */
211	LOG_PREFIX	= 4,	/* text started with a prefix */
212	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
213};
214
215struct printk_log {
216	u64 ts_nsec;		/* timestamp in nanoseconds */
217	u16 len;		/* length of entire record */
218	u16 text_len;		/* length of text buffer */
219	u16 dict_len;		/* length of dictionary buffer */
220	u8 facility;		/* syslog facility */
221	u8 flags:5;		/* internal record flags */
222	u8 level:3;		/* syslog level */
223};
224
225/*
226 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
227 * within the scheduler's rq lock. It must be released before calling
228 * console_unlock() or anything else that might wake up a process.
229 */
230static DEFINE_RAW_SPINLOCK(logbuf_lock);
231
232#ifdef CONFIG_PRINTK
233DECLARE_WAIT_QUEUE_HEAD(log_wait);
234/* the next printk record to read by syslog(READ) or /proc/kmsg */
235static u64 syslog_seq;
236static u32 syslog_idx;
237static enum log_flags syslog_prev;
238static size_t syslog_partial;
239
240/* index and sequence number of the first record stored in the buffer */
241static u64 log_first_seq;
242static u32 log_first_idx;
243
244/* index and sequence number of the next record to store in the buffer */
245static u64 log_next_seq;
246static u32 log_next_idx;
247
248/* the next printk record to write to the console */
249static u64 console_seq;
250static u32 console_idx;
251static enum log_flags console_prev;
252
253/* the next printk record to read after the last 'clear' command */
254static u64 clear_seq;
255static u32 clear_idx;
256
257#define PREFIX_MAX		32
258#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
259
260/* record buffer */
261#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
262#define LOG_ALIGN 4
263#else
264#define LOG_ALIGN __alignof__(struct printk_log)
265#endif
266#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
267static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
268static char *log_buf = __log_buf;
269static u32 log_buf_len = __LOG_BUF_LEN;
270
271/* Return log buffer address */
272char *log_buf_addr_get(void)
273{
274	return log_buf;
275}
276
277/* Return log buffer size */
278u32 log_buf_len_get(void)
279{
280	return log_buf_len;
281}
282
283/* human readable text of the record */
284static char *log_text(const struct printk_log *msg)
285{
286	return (char *)msg + sizeof(struct printk_log);
287}
288
289/* optional key/value pair dictionary attached to the record */
290static char *log_dict(const struct printk_log *msg)
291{
292	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
293}
294
295/* get record by index; idx must point to valid msg */
296static struct printk_log *log_from_idx(u32 idx)
297{
298	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
299
300	/*
301	 * A length == 0 record is the end of buffer marker. Wrap around and
302	 * read the message at the start of the buffer.
303	 */
304	if (!msg->len)
305		return (struct printk_log *)log_buf;
306	return msg;
307}
308
309/* get next record; idx must point to valid msg */
310static u32 log_next(u32 idx)
311{
312	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
313
314	/* length == 0 indicates the end of the buffer; wrap */
315	/*
316	 * A length == 0 record is the end of buffer marker. Wrap around and
317	 * read the message at the start of the buffer as *this* one, and
318	 * return the one after that.
319	 */
320	if (!msg->len) {
321		msg = (struct printk_log *)log_buf;
322		return msg->len;
323	}
324	return idx + msg->len;
325}
326
327/*
328 * Check whether there is enough free space for the given message.
329 *
330 * The same values of first_idx and next_idx mean that the buffer
331 * is either empty or full.
332 *
333 * If the buffer is empty, we must respect the position of the indexes.
334 * They cannot be reset to the beginning of the buffer.
335 */
336static int logbuf_has_space(u32 msg_size, bool empty)
337{
338	u32 free;
339
340	if (log_next_idx > log_first_idx || empty)
341		free = max(log_buf_len - log_next_idx, log_first_idx);
342	else
343		free = log_first_idx - log_next_idx;
344
345	/*
346	 * We need space also for an empty header that signalizes wrapping
347	 * of the buffer.
348	 */
349	return free >= msg_size + sizeof(struct printk_log);
350}
351
352static int log_make_free_space(u32 msg_size)
353{
354	while (log_first_seq < log_next_seq) {
355		if (logbuf_has_space(msg_size, false))
356			return 0;
357		/* drop old messages until we have enough contiguous space */
358		log_first_idx = log_next(log_first_idx);
359		log_first_seq++;
360	}
361
362	/* sequence numbers are equal, so the log buffer is empty */
363	if (logbuf_has_space(msg_size, true))
364		return 0;
365
366	return -ENOMEM;
367}
368
369/* compute the message size including the padding bytes */
370static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
371{
372	u32 size;
373
374	size = sizeof(struct printk_log) + text_len + dict_len;
375	*pad_len = (-size) & (LOG_ALIGN - 1);
376	size += *pad_len;
377
378	return size;
379}
380
381/*
382 * Define how much of the log buffer we could take at maximum. The value
383 * must be greater than two. Note that only half of the buffer is available
384 * when the index points to the middle.
385 */
386#define MAX_LOG_TAKE_PART 4
387static const char trunc_msg[] = "<truncated>";
388
389static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
390			u16 *dict_len, u32 *pad_len)
391{
392	/*
393	 * The message should not take the whole buffer. Otherwise, it might
394	 * get removed too soon.
395	 */
396	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
397	if (*text_len > max_text_len)
398		*text_len = max_text_len;
399	/* enable the warning message */
400	*trunc_msg_len = strlen(trunc_msg);
401	/* disable the "dict" completely */
402	*dict_len = 0;
403	/* compute the size again, count also the warning message */
404	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
405}
406
407/* insert record into the buffer, discard old ones, update heads */
408static int log_store(int facility, int level,
409		     enum log_flags flags, u64 ts_nsec,
410		     const char *dict, u16 dict_len,
411		     const char *text, u16 text_len)
412{
413	struct printk_log *msg;
414	u32 size, pad_len;
415	u16 trunc_msg_len = 0;
416
417	/* number of '\0' padding bytes to next message */
418	size = msg_used_size(text_len, dict_len, &pad_len);
419
420	if (log_make_free_space(size)) {
421		/* truncate the message if it is too long for empty buffer */
422		size = truncate_msg(&text_len, &trunc_msg_len,
423				    &dict_len, &pad_len);
424		/* survive when the log buffer is too small for trunc_msg */
425		if (log_make_free_space(size))
426			return 0;
427	}
428
429	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
430		/*
431		 * This message + an additional empty header does not fit
432		 * at the end of the buffer. Add an empty header with len == 0
433		 * to signify a wrap around.
434		 */
435		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
436		log_next_idx = 0;
437	}
438
439	/* fill message */
440	msg = (struct printk_log *)(log_buf + log_next_idx);
441	memcpy(log_text(msg), text, text_len);
442	msg->text_len = text_len;
443	if (trunc_msg_len) {
444		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
445		msg->text_len += trunc_msg_len;
446	}
447	memcpy(log_dict(msg), dict, dict_len);
448	msg->dict_len = dict_len;
449	msg->facility = facility;
450	msg->level = level & 7;
451	msg->flags = flags & 0x1f;
452	if (ts_nsec > 0)
453		msg->ts_nsec = ts_nsec;
454	else
455		msg->ts_nsec = local_clock();
456	memset(log_dict(msg) + dict_len, 0, pad_len);
457	msg->len = size;
458
459	/* insert message */
460	log_next_idx += msg->len;
461	log_next_seq++;
462
463	return msg->text_len;
464}
465
466int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
467
468static int syslog_action_restricted(int type)
469{
470	if (dmesg_restrict)
471		return 1;
472	/*
473	 * Unless restricted, we allow "read all" and "get buffer size"
474	 * for everybody.
475	 */
476	return type != SYSLOG_ACTION_READ_ALL &&
477	       type != SYSLOG_ACTION_SIZE_BUFFER;
478}
479
480int check_syslog_permissions(int type, bool from_file)
481{
482	/*
483	 * If this is from /proc/kmsg and we've already opened it, then we've
484	 * already done the capabilities checks at open time.
485	 */
486	if (from_file && type != SYSLOG_ACTION_OPEN)
487		goto ok;
488
489	if (syslog_action_restricted(type)) {
490		if (capable(CAP_SYSLOG))
491			goto ok;
492		/*
493		 * For historical reasons, accept CAP_SYS_ADMIN too, with
494		 * a warning.
495		 */
496		if (capable(CAP_SYS_ADMIN)) {
497			pr_warn_once("%s (%d): Attempt to access syslog with "
498				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
499				     "(deprecated).\n",
500				 current->comm, task_pid_nr(current));
501			goto ok;
502		}
503		return -EPERM;
504	}
505ok:
506	return security_syslog(type);
507}
508
509
510/* /dev/kmsg - userspace message inject/listen interface */
511struct devkmsg_user {
512	u64 seq;
513	u32 idx;
514	enum log_flags prev;
515	struct mutex lock;
516	char buf[8192];
517};
518
519static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
520{
521	char *buf, *line;
522	int i;
523	int level = default_message_loglevel;
524	int facility = 1;	/* LOG_USER */
525	size_t len = iov_iter_count(from);
526	ssize_t ret = len;
527
528	if (len > LOG_LINE_MAX)
529		return -EINVAL;
530	buf = kmalloc(len+1, GFP_KERNEL);
531	if (buf == NULL)
532		return -ENOMEM;
533
534	buf[len] = '\0';
535	if (copy_from_iter(buf, len, from) != len) {
536		kfree(buf);
537		return -EFAULT;
538	}
539
540	/*
541	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
542	 * the decimal value represents 32bit, the lower 3 bit are the log
543	 * level, the rest are the log facility.
544	 *
545	 * If no prefix or no userspace facility is specified, we
546	 * enforce LOG_USER, to be able to reliably distinguish
547	 * kernel-generated messages from userspace-injected ones.
548	 */
549	line = buf;
550	if (line[0] == '<') {
551		char *endp = NULL;
552
553		i = simple_strtoul(line+1, &endp, 10);
554		if (endp && endp[0] == '>') {
555			level = i & 7;
556			if (i >> 3)
557				facility = i >> 3;
558			endp++;
559			len -= endp - line;
560			line = endp;
561		}
562	}
563
564	printk_emit(facility, level, NULL, 0, "%s", line);
565	kfree(buf);
566	return ret;
567}
568
569static ssize_t devkmsg_read(struct file *file, char __user *buf,
570			    size_t count, loff_t *ppos)
571{
572	struct devkmsg_user *user = file->private_data;
573	struct printk_log *msg;
574	u64 ts_usec;
575	size_t i;
576	char cont = '-';
577	size_t len;
578	ssize_t ret;
579
580	if (!user)
581		return -EBADF;
582
583	ret = mutex_lock_interruptible(&user->lock);
584	if (ret)
585		return ret;
586	raw_spin_lock_irq(&logbuf_lock);
587	while (user->seq == log_next_seq) {
588		if (file->f_flags & O_NONBLOCK) {
589			ret = -EAGAIN;
590			raw_spin_unlock_irq(&logbuf_lock);
591			goto out;
592		}
593
594		raw_spin_unlock_irq(&logbuf_lock);
595		ret = wait_event_interruptible(log_wait,
596					       user->seq != log_next_seq);
597		if (ret)
598			goto out;
599		raw_spin_lock_irq(&logbuf_lock);
600	}
601
602	if (user->seq < log_first_seq) {
603		/* our last seen message is gone, return error and reset */
604		user->idx = log_first_idx;
605		user->seq = log_first_seq;
606		ret = -EPIPE;
607		raw_spin_unlock_irq(&logbuf_lock);
608		goto out;
609	}
610
611	msg = log_from_idx(user->idx);
612	ts_usec = msg->ts_nsec;
613	do_div(ts_usec, 1000);
614
615	/*
616	 * If we couldn't merge continuation line fragments during the print,
617	 * export the stored flags to allow an optional external merge of the
618	 * records. Merging the records isn't always neccessarily correct, like
619	 * when we hit a race during printing. In most cases though, it produces
620	 * better readable output. 'c' in the record flags mark the first
621	 * fragment of a line, '+' the following.
622	 */
623	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
624		cont = 'c';
625	else if ((msg->flags & LOG_CONT) ||
626		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
627		cont = '+';
628
629	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
630		      (msg->facility << 3) | msg->level,
631		      user->seq, ts_usec, cont);
632	user->prev = msg->flags;
633
634	/* escape non-printable characters */
635	for (i = 0; i < msg->text_len; i++) {
636		unsigned char c = log_text(msg)[i];
637
638		if (c < ' ' || c >= 127 || c == '\\')
639			len += sprintf(user->buf + len, "\\x%02x", c);
640		else
641			user->buf[len++] = c;
642	}
643	user->buf[len++] = '\n';
644
645	if (msg->dict_len) {
646		bool line = true;
647
648		for (i = 0; i < msg->dict_len; i++) {
649			unsigned char c = log_dict(msg)[i];
650
651			if (line) {
652				user->buf[len++] = ' ';
653				line = false;
654			}
655
656			if (c == '\0') {
657				user->buf[len++] = '\n';
658				line = true;
659				continue;
660			}
661
662			if (c < ' ' || c >= 127 || c == '\\') {
663				len += sprintf(user->buf + len, "\\x%02x", c);
664				continue;
665			}
666
667			user->buf[len++] = c;
668		}
669		user->buf[len++] = '\n';
670	}
671
672	user->idx = log_next(user->idx);
673	user->seq++;
674	raw_spin_unlock_irq(&logbuf_lock);
675
676	if (len > count) {
677		ret = -EINVAL;
678		goto out;
679	}
680
681	if (copy_to_user(buf, user->buf, len)) {
682		ret = -EFAULT;
683		goto out;
684	}
685	ret = len;
686out:
687	mutex_unlock(&user->lock);
688	return ret;
689}
690
691static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
692{
693	struct devkmsg_user *user = file->private_data;
694	loff_t ret = 0;
695
696	if (!user)
697		return -EBADF;
698	if (offset)
699		return -ESPIPE;
700
701	raw_spin_lock_irq(&logbuf_lock);
702	switch (whence) {
703	case SEEK_SET:
704		/* the first record */
705		user->idx = log_first_idx;
706		user->seq = log_first_seq;
707		break;
708	case SEEK_DATA:
709		/*
710		 * The first record after the last SYSLOG_ACTION_CLEAR,
711		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
712		 * changes no global state, and does not clear anything.
713		 */
714		user->idx = clear_idx;
715		user->seq = clear_seq;
716		break;
717	case SEEK_END:
718		/* after the last record */
719		user->idx = log_next_idx;
720		user->seq = log_next_seq;
721		break;
722	default:
723		ret = -EINVAL;
724	}
725	raw_spin_unlock_irq(&logbuf_lock);
726	return ret;
727}
728
729static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
730{
731	struct devkmsg_user *user = file->private_data;
732	int ret = 0;
733
734	if (!user)
735		return POLLERR|POLLNVAL;
736
737	poll_wait(file, &log_wait, wait);
738
739	raw_spin_lock_irq(&logbuf_lock);
740	if (user->seq < log_next_seq) {
741		/* return error when data has vanished underneath us */
742		if (user->seq < log_first_seq)
743			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
744		else
745			ret = POLLIN|POLLRDNORM;
746	}
747	raw_spin_unlock_irq(&logbuf_lock);
748
749	return ret;
750}
751
752static int devkmsg_open(struct inode *inode, struct file *file)
753{
754	struct devkmsg_user *user;
755	int err;
756
757	/* write-only does not need any file context */
758	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
759		return 0;
760
761	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
762				       SYSLOG_FROM_READER);
763	if (err)
764		return err;
765
766	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
767	if (!user)
768		return -ENOMEM;
769
770	mutex_init(&user->lock);
771
772	raw_spin_lock_irq(&logbuf_lock);
773	user->idx = log_first_idx;
774	user->seq = log_first_seq;
775	raw_spin_unlock_irq(&logbuf_lock);
776
777	file->private_data = user;
778	return 0;
779}
780
781static int devkmsg_release(struct inode *inode, struct file *file)
782{
783	struct devkmsg_user *user = file->private_data;
784
785	if (!user)
786		return 0;
787
788	mutex_destroy(&user->lock);
789	kfree(user);
790	return 0;
791}
792
793const struct file_operations kmsg_fops = {
794	.open = devkmsg_open,
795	.read = devkmsg_read,
796	.write_iter = devkmsg_write,
797	.llseek = devkmsg_llseek,
798	.poll = devkmsg_poll,
799	.release = devkmsg_release,
800};
801
802#ifdef CONFIG_KEXEC
803/*
804 * This appends the listed symbols to /proc/vmcore
805 *
806 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
807 * obtain access to symbols that are otherwise very difficult to locate.  These
808 * symbols are specifically used so that utilities can access and extract the
809 * dmesg log from a vmcore file after a crash.
810 */
811void log_buf_kexec_setup(void)
812{
813	VMCOREINFO_SYMBOL(log_buf);
814	VMCOREINFO_SYMBOL(log_buf_len);
815	VMCOREINFO_SYMBOL(log_first_idx);
816	VMCOREINFO_SYMBOL(log_next_idx);
817	/*
818	 * Export struct printk_log size and field offsets. User space tools can
819	 * parse it and detect any changes to structure down the line.
820	 */
821	VMCOREINFO_STRUCT_SIZE(printk_log);
822	VMCOREINFO_OFFSET(printk_log, ts_nsec);
823	VMCOREINFO_OFFSET(printk_log, len);
824	VMCOREINFO_OFFSET(printk_log, text_len);
825	VMCOREINFO_OFFSET(printk_log, dict_len);
826}
827#endif
828
829/* requested log_buf_len from kernel cmdline */
830static unsigned long __initdata new_log_buf_len;
831
832/* we practice scaling the ring buffer by powers of 2 */
833static void __init log_buf_len_update(unsigned size)
834{
835	if (size)
836		size = roundup_pow_of_two(size);
837	if (size > log_buf_len)
838		new_log_buf_len = size;
839}
840
841/* save requested log_buf_len since it's too early to process it */
842static int __init log_buf_len_setup(char *str)
843{
844	unsigned size = memparse(str, &str);
845
846	log_buf_len_update(size);
847
848	return 0;
849}
850early_param("log_buf_len", log_buf_len_setup);
851
852#ifdef CONFIG_SMP
853#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
854
855static void __init log_buf_add_cpu(void)
856{
857	unsigned int cpu_extra;
858
859	/*
860	 * archs should set up cpu_possible_bits properly with
861	 * set_cpu_possible() after setup_arch() but just in
862	 * case lets ensure this is valid.
863	 */
864	if (num_possible_cpus() == 1)
865		return;
866
867	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
868
869	/* by default this will only continue through for large > 64 CPUs */
870	if (cpu_extra <= __LOG_BUF_LEN / 2)
871		return;
872
873	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
874		__LOG_CPU_MAX_BUF_LEN);
875	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
876		cpu_extra);
877	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
878
879	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
880}
881#else /* !CONFIG_SMP */
882static inline void log_buf_add_cpu(void) {}
883#endif /* CONFIG_SMP */
884
885void __init setup_log_buf(int early)
886{
887	unsigned long flags;
888	char *new_log_buf;
889	int free;
890
891	if (log_buf != __log_buf)
892		return;
893
894	if (!early && !new_log_buf_len)
895		log_buf_add_cpu();
896
897	if (!new_log_buf_len)
898		return;
899
900	if (early) {
901		new_log_buf =
902			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
903	} else {
904		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
905							  LOG_ALIGN);
906	}
907
908	if (unlikely(!new_log_buf)) {
909		pr_err("log_buf_len: %ld bytes not available\n",
910			new_log_buf_len);
911		return;
912	}
913
914	raw_spin_lock_irqsave(&logbuf_lock, flags);
915	log_buf_len = new_log_buf_len;
916	log_buf = new_log_buf;
917	new_log_buf_len = 0;
918	free = __LOG_BUF_LEN - log_next_idx;
919	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
920	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
921
922	pr_info("log_buf_len: %d bytes\n", log_buf_len);
923	pr_info("early log buf free: %d(%d%%)\n",
924		free, (free * 100) / __LOG_BUF_LEN);
925}
926
927static bool __read_mostly ignore_loglevel;
928
929static int __init ignore_loglevel_setup(char *str)
930{
931	ignore_loglevel = true;
932	pr_info("debug: ignoring loglevel setting.\n");
933
934	return 0;
935}
936
937early_param("ignore_loglevel", ignore_loglevel_setup);
938module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
939MODULE_PARM_DESC(ignore_loglevel,
940		 "ignore loglevel setting (prints all kernel messages to the console)");
941
942#ifdef CONFIG_BOOT_PRINTK_DELAY
943
944static int boot_delay; /* msecs delay after each printk during bootup */
945static unsigned long long loops_per_msec;	/* based on boot_delay */
946
947static int __init boot_delay_setup(char *str)
948{
949	unsigned long lpj;
950
951	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
952	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
953
954	get_option(&str, &boot_delay);
955	if (boot_delay > 10 * 1000)
956		boot_delay = 0;
957
958	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
959		"HZ: %d, loops_per_msec: %llu\n",
960		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
961	return 0;
962}
963early_param("boot_delay", boot_delay_setup);
964
965static void boot_delay_msec(int level)
966{
967	unsigned long long k;
968	unsigned long timeout;
969
970	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
971		|| (level >= console_loglevel && !ignore_loglevel)) {
972		return;
973	}
974
975	k = (unsigned long long)loops_per_msec * boot_delay;
976
977	timeout = jiffies + msecs_to_jiffies(boot_delay);
978	while (k) {
979		k--;
980		cpu_relax();
981		/*
982		 * use (volatile) jiffies to prevent
983		 * compiler reduction; loop termination via jiffies
984		 * is secondary and may or may not happen.
985		 */
986		if (time_after(jiffies, timeout))
987			break;
988		touch_nmi_watchdog();
989	}
990}
991#else
992static inline void boot_delay_msec(int level)
993{
994}
995#endif
996
997static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
998module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
999
1000static size_t print_time(u64 ts, char *buf)
1001{
1002	unsigned long rem_nsec;
1003
1004	if (!printk_time)
1005		return 0;
1006
1007	rem_nsec = do_div(ts, 1000000000);
1008
1009	if (!buf)
1010		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1011
1012	return sprintf(buf, "[%5lu.%06lu] ",
1013		       (unsigned long)ts, rem_nsec / 1000);
1014}
1015
1016static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1017{
1018	size_t len = 0;
1019	unsigned int prefix = (msg->facility << 3) | msg->level;
1020
1021	if (syslog) {
1022		if (buf) {
1023			len += sprintf(buf, "<%u>", prefix);
1024		} else {
1025			len += 3;
1026			if (prefix > 999)
1027				len += 3;
1028			else if (prefix > 99)
1029				len += 2;
1030			else if (prefix > 9)
1031				len++;
1032		}
1033	}
1034
1035	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1036	return len;
1037}
1038
1039static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1040			     bool syslog, char *buf, size_t size)
1041{
1042	const char *text = log_text(msg);
1043	size_t text_size = msg->text_len;
1044	bool prefix = true;
1045	bool newline = true;
1046	size_t len = 0;
1047
1048	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1049		prefix = false;
1050
1051	if (msg->flags & LOG_CONT) {
1052		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1053			prefix = false;
1054
1055		if (!(msg->flags & LOG_NEWLINE))
1056			newline = false;
1057	}
1058
1059	do {
1060		const char *next = memchr(text, '\n', text_size);
1061		size_t text_len;
1062
1063		if (next) {
1064			text_len = next - text;
1065			next++;
1066			text_size -= next - text;
1067		} else {
1068			text_len = text_size;
1069		}
1070
1071		if (buf) {
1072			if (print_prefix(msg, syslog, NULL) +
1073			    text_len + 1 >= size - len)
1074				break;
1075
1076			if (prefix)
1077				len += print_prefix(msg, syslog, buf + len);
1078			memcpy(buf + len, text, text_len);
1079			len += text_len;
1080			if (next || newline)
1081				buf[len++] = '\n';
1082		} else {
1083			/* SYSLOG_ACTION_* buffer size only calculation */
1084			if (prefix)
1085				len += print_prefix(msg, syslog, NULL);
1086			len += text_len;
1087			if (next || newline)
1088				len++;
1089		}
1090
1091		prefix = true;
1092		text = next;
1093	} while (text);
1094
1095	return len;
1096}
1097
1098static int syslog_print(char __user *buf, int size)
1099{
1100	char *text;
1101	struct printk_log *msg;
1102	int len = 0;
1103
1104	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1105	if (!text)
1106		return -ENOMEM;
1107
1108	while (size > 0) {
1109		size_t n;
1110		size_t skip;
1111
1112		raw_spin_lock_irq(&logbuf_lock);
1113		if (syslog_seq < log_first_seq) {
1114			/* messages are gone, move to first one */
1115			syslog_seq = log_first_seq;
1116			syslog_idx = log_first_idx;
1117			syslog_prev = 0;
1118			syslog_partial = 0;
1119		}
1120		if (syslog_seq == log_next_seq) {
1121			raw_spin_unlock_irq(&logbuf_lock);
1122			break;
1123		}
1124
1125		skip = syslog_partial;
1126		msg = log_from_idx(syslog_idx);
1127		n = msg_print_text(msg, syslog_prev, true, text,
1128				   LOG_LINE_MAX + PREFIX_MAX);
1129		if (n - syslog_partial <= size) {
1130			/* message fits into buffer, move forward */
1131			syslog_idx = log_next(syslog_idx);
1132			syslog_seq++;
1133			syslog_prev = msg->flags;
1134			n -= syslog_partial;
1135			syslog_partial = 0;
1136		} else if (!len){
1137			/* partial read(), remember position */
1138			n = size;
1139			syslog_partial += n;
1140		} else
1141			n = 0;
1142		raw_spin_unlock_irq(&logbuf_lock);
1143
1144		if (!n)
1145			break;
1146
1147		if (copy_to_user(buf, text + skip, n)) {
1148			if (!len)
1149				len = -EFAULT;
1150			break;
1151		}
1152
1153		len += n;
1154		size -= n;
1155		buf += n;
1156	}
1157
1158	kfree(text);
1159	return len;
1160}
1161
1162static int syslog_print_all(char __user *buf, int size, bool clear)
1163{
1164	char *text;
1165	int len = 0;
1166
1167	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1168	if (!text)
1169		return -ENOMEM;
1170
1171	raw_spin_lock_irq(&logbuf_lock);
1172	if (buf) {
1173		u64 next_seq;
1174		u64 seq;
1175		u32 idx;
1176		enum log_flags prev;
1177
1178		if (clear_seq < log_first_seq) {
1179			/* messages are gone, move to first available one */
1180			clear_seq = log_first_seq;
1181			clear_idx = log_first_idx;
1182		}
1183
1184		/*
1185		 * Find first record that fits, including all following records,
1186		 * into the user-provided buffer for this dump.
1187		 */
1188		seq = clear_seq;
1189		idx = clear_idx;
1190		prev = 0;
1191		while (seq < log_next_seq) {
1192			struct printk_log *msg = log_from_idx(idx);
1193
1194			len += msg_print_text(msg, prev, true, NULL, 0);
1195			prev = msg->flags;
1196			idx = log_next(idx);
1197			seq++;
1198		}
1199
1200		/* move first record forward until length fits into the buffer */
1201		seq = clear_seq;
1202		idx = clear_idx;
1203		prev = 0;
1204		while (len > size && seq < log_next_seq) {
1205			struct printk_log *msg = log_from_idx(idx);
1206
1207			len -= msg_print_text(msg, prev, true, NULL, 0);
1208			prev = msg->flags;
1209			idx = log_next(idx);
1210			seq++;
1211		}
1212
1213		/* last message fitting into this dump */
1214		next_seq = log_next_seq;
1215
1216		len = 0;
1217		while (len >= 0 && seq < next_seq) {
1218			struct printk_log *msg = log_from_idx(idx);
1219			int textlen;
1220
1221			textlen = msg_print_text(msg, prev, true, text,
1222						 LOG_LINE_MAX + PREFIX_MAX);
1223			if (textlen < 0) {
1224				len = textlen;
1225				break;
1226			}
1227			idx = log_next(idx);
1228			seq++;
1229			prev = msg->flags;
1230
1231			raw_spin_unlock_irq(&logbuf_lock);
1232			if (copy_to_user(buf + len, text, textlen))
1233				len = -EFAULT;
1234			else
1235				len += textlen;
1236			raw_spin_lock_irq(&logbuf_lock);
1237
1238			if (seq < log_first_seq) {
1239				/* messages are gone, move to next one */
1240				seq = log_first_seq;
1241				idx = log_first_idx;
1242				prev = 0;
1243			}
1244		}
1245	}
1246
1247	if (clear) {
1248		clear_seq = log_next_seq;
1249		clear_idx = log_next_idx;
1250	}
1251	raw_spin_unlock_irq(&logbuf_lock);
1252
1253	kfree(text);
1254	return len;
1255}
1256
1257int do_syslog(int type, char __user *buf, int len, bool from_file)
1258{
1259	bool clear = false;
1260	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1261	int error;
1262
1263	error = check_syslog_permissions(type, from_file);
1264	if (error)
1265		goto out;
1266
1267	switch (type) {
1268	case SYSLOG_ACTION_CLOSE:	/* Close log */
1269		break;
1270	case SYSLOG_ACTION_OPEN:	/* Open log */
1271		break;
1272	case SYSLOG_ACTION_READ:	/* Read from log */
1273		error = -EINVAL;
1274		if (!buf || len < 0)
1275			goto out;
1276		error = 0;
1277		if (!len)
1278			goto out;
1279		if (!access_ok(VERIFY_WRITE, buf, len)) {
1280			error = -EFAULT;
1281			goto out;
1282		}
1283		error = wait_event_interruptible(log_wait,
1284						 syslog_seq != log_next_seq);
1285		if (error)
1286			goto out;
1287		error = syslog_print(buf, len);
1288		break;
1289	/* Read/clear last kernel messages */
1290	case SYSLOG_ACTION_READ_CLEAR:
1291		clear = true;
1292		/* FALL THRU */
1293	/* Read last kernel messages */
1294	case SYSLOG_ACTION_READ_ALL:
1295		error = -EINVAL;
1296		if (!buf || len < 0)
1297			goto out;
1298		error = 0;
1299		if (!len)
1300			goto out;
1301		if (!access_ok(VERIFY_WRITE, buf, len)) {
1302			error = -EFAULT;
1303			goto out;
1304		}
1305		error = syslog_print_all(buf, len, clear);
1306		break;
1307	/* Clear ring buffer */
1308	case SYSLOG_ACTION_CLEAR:
1309		syslog_print_all(NULL, 0, true);
1310		break;
1311	/* Disable logging to console */
1312	case SYSLOG_ACTION_CONSOLE_OFF:
1313		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1314			saved_console_loglevel = console_loglevel;
1315		console_loglevel = minimum_console_loglevel;
1316		break;
1317	/* Enable logging to console */
1318	case SYSLOG_ACTION_CONSOLE_ON:
1319		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1320			console_loglevel = saved_console_loglevel;
1321			saved_console_loglevel = LOGLEVEL_DEFAULT;
1322		}
1323		break;
1324	/* Set level of messages printed to console */
1325	case SYSLOG_ACTION_CONSOLE_LEVEL:
1326		error = -EINVAL;
1327		if (len < 1 || len > 8)
1328			goto out;
1329		if (len < minimum_console_loglevel)
1330			len = minimum_console_loglevel;
1331		console_loglevel = len;
1332		/* Implicitly re-enable logging to console */
1333		saved_console_loglevel = LOGLEVEL_DEFAULT;
1334		error = 0;
1335		break;
1336	/* Number of chars in the log buffer */
1337	case SYSLOG_ACTION_SIZE_UNREAD:
1338		raw_spin_lock_irq(&logbuf_lock);
1339		if (syslog_seq < log_first_seq) {
1340			/* messages are gone, move to first one */
1341			syslog_seq = log_first_seq;
1342			syslog_idx = log_first_idx;
1343			syslog_prev = 0;
1344			syslog_partial = 0;
1345		}
1346		if (from_file) {
1347			/*
1348			 * Short-cut for poll(/"proc/kmsg") which simply checks
1349			 * for pending data, not the size; return the count of
1350			 * records, not the length.
1351			 */
1352			error = log_next_seq - syslog_seq;
1353		} else {
1354			u64 seq = syslog_seq;
1355			u32 idx = syslog_idx;
1356			enum log_flags prev = syslog_prev;
1357
1358			error = 0;
1359			while (seq < log_next_seq) {
1360				struct printk_log *msg = log_from_idx(idx);
1361
1362				error += msg_print_text(msg, prev, true, NULL, 0);
1363				idx = log_next(idx);
1364				seq++;
1365				prev = msg->flags;
1366			}
1367			error -= syslog_partial;
1368		}
1369		raw_spin_unlock_irq(&logbuf_lock);
1370		break;
1371	/* Size of the log buffer */
1372	case SYSLOG_ACTION_SIZE_BUFFER:
1373		error = log_buf_len;
1374		break;
1375	default:
1376		error = -EINVAL;
1377		break;
1378	}
1379out:
1380	return error;
1381}
1382
1383SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1384{
1385	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1386}
1387
1388/*
1389 * Call the console drivers, asking them to write out
1390 * log_buf[start] to log_buf[end - 1].
1391 * The console_lock must be held.
1392 */
1393static void call_console_drivers(int level, const char *text, size_t len)
1394{
1395	struct console *con;
1396
1397	trace_console(text, len);
1398
1399	if (level >= console_loglevel && !ignore_loglevel)
1400		return;
1401	if (!console_drivers)
1402		return;
1403
1404	for_each_console(con) {
1405		if (exclusive_console && con != exclusive_console)
1406			continue;
1407		if (!(con->flags & CON_ENABLED))
1408			continue;
1409		if (!con->write)
1410			continue;
1411		if (!cpu_online(smp_processor_id()) &&
1412		    !(con->flags & CON_ANYTIME))
1413			continue;
1414		con->write(con, text, len);
1415	}
1416}
1417
1418/*
1419 * Zap console related locks when oopsing.
1420 * To leave time for slow consoles to print a full oops,
1421 * only zap at most once every 30 seconds.
1422 */
1423static void zap_locks(void)
1424{
1425	static unsigned long oops_timestamp;
1426
1427	if (time_after_eq(jiffies, oops_timestamp) &&
1428	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1429		return;
1430
1431	oops_timestamp = jiffies;
1432
1433	debug_locks_off();
1434	/* If a crash is occurring, make sure we can't deadlock */
1435	raw_spin_lock_init(&logbuf_lock);
1436	/* And make sure that we print immediately */
1437	sema_init(&console_sem, 1);
1438}
1439
1440/*
1441 * Check if we have any console that is capable of printing while cpu is
1442 * booting or shutting down. Requires console_sem.
1443 */
1444static int have_callable_console(void)
1445{
1446	struct console *con;
1447
1448	for_each_console(con)
1449		if (con->flags & CON_ANYTIME)
1450			return 1;
1451
1452	return 0;
1453}
1454
1455/*
1456 * Can we actually use the console at this time on this cpu?
1457 *
1458 * Console drivers may assume that per-cpu resources have been allocated. So
1459 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1460 * call them until this CPU is officially up.
1461 */
1462static inline int can_use_console(unsigned int cpu)
1463{
1464	return cpu_online(cpu) || have_callable_console();
1465}
1466
1467/*
1468 * Try to get console ownership to actually show the kernel
1469 * messages from a 'printk'. Return true (and with the
1470 * console_lock held, and 'console_locked' set) if it
1471 * is successful, false otherwise.
1472 */
1473static int console_trylock_for_printk(void)
1474{
1475	unsigned int cpu = smp_processor_id();
1476
1477	if (!console_trylock())
1478		return 0;
1479	/*
1480	 * If we can't use the console, we need to release the console
1481	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1482	 * console semaphore in order to do this test safely.
1483	 */
1484	if (!can_use_console(cpu)) {
1485		console_locked = 0;
1486		up_console_sem();
1487		return 0;
1488	}
1489	return 1;
1490}
1491
1492int printk_delay_msec __read_mostly;
1493
1494static inline void printk_delay(void)
1495{
1496	if (unlikely(printk_delay_msec)) {
1497		int m = printk_delay_msec;
1498
1499		while (m--) {
1500			mdelay(1);
1501			touch_nmi_watchdog();
1502		}
1503	}
1504}
1505
1506/*
1507 * Continuation lines are buffered, and not committed to the record buffer
1508 * until the line is complete, or a race forces it. The line fragments
1509 * though, are printed immediately to the consoles to ensure everything has
1510 * reached the console in case of a kernel crash.
1511 */
1512static struct cont {
1513	char buf[LOG_LINE_MAX];
1514	size_t len;			/* length == 0 means unused buffer */
1515	size_t cons;			/* bytes written to console */
1516	struct task_struct *owner;	/* task of first print*/
1517	u64 ts_nsec;			/* time of first print */
1518	u8 level;			/* log level of first message */
1519	u8 facility;			/* log facility of first message */
1520	enum log_flags flags;		/* prefix, newline flags */
1521	bool flushed:1;			/* buffer sealed and committed */
1522} cont;
1523
1524static void cont_flush(enum log_flags flags)
1525{
1526	if (cont.flushed)
1527		return;
1528	if (cont.len == 0)
1529		return;
1530
1531	if (cont.cons) {
1532		/*
1533		 * If a fragment of this line was directly flushed to the
1534		 * console; wait for the console to pick up the rest of the
1535		 * line. LOG_NOCONS suppresses a duplicated output.
1536		 */
1537		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1538			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1539		cont.flags = flags;
1540		cont.flushed = true;
1541	} else {
1542		/*
1543		 * If no fragment of this line ever reached the console,
1544		 * just submit it to the store and free the buffer.
1545		 */
1546		log_store(cont.facility, cont.level, flags, 0,
1547			  NULL, 0, cont.buf, cont.len);
1548		cont.len = 0;
1549	}
1550}
1551
1552static bool cont_add(int facility, int level, const char *text, size_t len)
1553{
1554	if (cont.len && cont.flushed)
1555		return false;
1556
1557	if (cont.len + len > sizeof(cont.buf)) {
1558		/* the line gets too long, split it up in separate records */
1559		cont_flush(LOG_CONT);
1560		return false;
1561	}
1562
1563	if (!cont.len) {
1564		cont.facility = facility;
1565		cont.level = level;
1566		cont.owner = current;
1567		cont.ts_nsec = local_clock();
1568		cont.flags = 0;
1569		cont.cons = 0;
1570		cont.flushed = false;
1571	}
1572
1573	memcpy(cont.buf + cont.len, text, len);
1574	cont.len += len;
1575
1576	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1577		cont_flush(LOG_CONT);
1578
1579	return true;
1580}
1581
1582static size_t cont_print_text(char *text, size_t size)
1583{
1584	size_t textlen = 0;
1585	size_t len;
1586
1587	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1588		textlen += print_time(cont.ts_nsec, text);
1589		size -= textlen;
1590	}
1591
1592	len = cont.len - cont.cons;
1593	if (len > 0) {
1594		if (len+1 > size)
1595			len = size-1;
1596		memcpy(text + textlen, cont.buf + cont.cons, len);
1597		textlen += len;
1598		cont.cons = cont.len;
1599	}
1600
1601	if (cont.flushed) {
1602		if (cont.flags & LOG_NEWLINE)
1603			text[textlen++] = '\n';
1604		/* got everything, release buffer */
1605		cont.len = 0;
1606	}
1607	return textlen;
1608}
1609
1610asmlinkage int vprintk_emit(int facility, int level,
1611			    const char *dict, size_t dictlen,
1612			    const char *fmt, va_list args)
1613{
1614	static int recursion_bug;
1615	static char textbuf[LOG_LINE_MAX];
1616	char *text = textbuf;
1617	size_t text_len = 0;
1618	enum log_flags lflags = 0;
1619	unsigned long flags;
1620	int this_cpu;
1621	int printed_len = 0;
1622	bool in_sched = false;
1623	/* cpu currently holding logbuf_lock in this function */
1624	static unsigned int logbuf_cpu = UINT_MAX;
1625
1626	if (level == LOGLEVEL_SCHED) {
1627		level = LOGLEVEL_DEFAULT;
1628		in_sched = true;
1629	}
1630
1631	boot_delay_msec(level);
1632	printk_delay();
1633
1634	/* This stops the holder of console_sem just where we want him */
1635	local_irq_save(flags);
1636	this_cpu = smp_processor_id();
1637
1638	/*
1639	 * Ouch, printk recursed into itself!
1640	 */
1641	if (unlikely(logbuf_cpu == this_cpu)) {
1642		/*
1643		 * If a crash is occurring during printk() on this CPU,
1644		 * then try to get the crash message out but make sure
1645		 * we can't deadlock. Otherwise just return to avoid the
1646		 * recursion and return - but flag the recursion so that
1647		 * it can be printed at the next appropriate moment:
1648		 */
1649		if (!oops_in_progress && !lockdep_recursing(current)) {
1650			recursion_bug = 1;
1651			local_irq_restore(flags);
1652			return 0;
1653		}
1654		zap_locks();
1655	}
1656
1657	lockdep_off();
1658	raw_spin_lock(&logbuf_lock);
1659	logbuf_cpu = this_cpu;
1660
1661	if (unlikely(recursion_bug)) {
1662		static const char recursion_msg[] =
1663			"BUG: recent printk recursion!";
1664
1665		recursion_bug = 0;
1666		/* emit KERN_CRIT message */
1667		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1668					 NULL, 0, recursion_msg,
1669					 strlen(recursion_msg));
1670	}
1671
1672	/*
1673	 * The printf needs to come first; we need the syslog
1674	 * prefix which might be passed-in as a parameter.
1675	 */
1676	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1677
1678	/* mark and strip a trailing newline */
1679	if (text_len && text[text_len-1] == '\n') {
1680		text_len--;
1681		lflags |= LOG_NEWLINE;
1682	}
1683
1684	/* strip kernel syslog prefix and extract log level or control flags */
1685	if (facility == 0) {
1686		int kern_level = printk_get_level(text);
1687
1688		if (kern_level) {
1689			const char *end_of_header = printk_skip_level(text);
1690			switch (kern_level) {
1691			case '0' ... '7':
1692				if (level == LOGLEVEL_DEFAULT)
1693					level = kern_level - '0';
1694				/* fallthrough */
1695			case 'd':	/* KERN_DEFAULT */
1696				lflags |= LOG_PREFIX;
1697			}
1698			/*
1699			 * No need to check length here because vscnprintf
1700			 * put '\0' at the end of the string. Only valid and
1701			 * newly printed level is detected.
1702			 */
1703			text_len -= end_of_header - text;
1704			text = (char *)end_of_header;
1705		}
1706	}
1707
1708	if (level == LOGLEVEL_DEFAULT)
1709		level = default_message_loglevel;
1710
1711	if (dict)
1712		lflags |= LOG_PREFIX|LOG_NEWLINE;
1713
1714	if (!(lflags & LOG_NEWLINE)) {
1715		/*
1716		 * Flush the conflicting buffer. An earlier newline was missing,
1717		 * or another task also prints continuation lines.
1718		 */
1719		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1720			cont_flush(LOG_NEWLINE);
1721
1722		/* buffer line if possible, otherwise store it right away */
1723		if (cont_add(facility, level, text, text_len))
1724			printed_len += text_len;
1725		else
1726			printed_len += log_store(facility, level,
1727						 lflags | LOG_CONT, 0,
1728						 dict, dictlen, text, text_len);
1729	} else {
1730		bool stored = false;
1731
1732		/*
1733		 * If an earlier newline was missing and it was the same task,
1734		 * either merge it with the current buffer and flush, or if
1735		 * there was a race with interrupts (prefix == true) then just
1736		 * flush it out and store this line separately.
1737		 * If the preceding printk was from a different task and missed
1738		 * a newline, flush and append the newline.
1739		 */
1740		if (cont.len) {
1741			if (cont.owner == current && !(lflags & LOG_PREFIX))
1742				stored = cont_add(facility, level, text,
1743						  text_len);
1744			cont_flush(LOG_NEWLINE);
1745		}
1746
1747		if (stored)
1748			printed_len += text_len;
1749		else
1750			printed_len += log_store(facility, level, lflags, 0,
1751						 dict, dictlen, text, text_len);
1752	}
1753
1754	logbuf_cpu = UINT_MAX;
1755	raw_spin_unlock(&logbuf_lock);
1756	lockdep_on();
1757	local_irq_restore(flags);
1758
1759	/* If called from the scheduler, we can not call up(). */
1760	if (!in_sched) {
1761		lockdep_off();
1762		/*
1763		 * Disable preemption to avoid being preempted while holding
1764		 * console_sem which would prevent anyone from printing to
1765		 * console
1766		 */
1767		preempt_disable();
1768
1769		/*
1770		 * Try to acquire and then immediately release the console
1771		 * semaphore.  The release will print out buffers and wake up
1772		 * /dev/kmsg and syslog() users.
1773		 */
1774		if (console_trylock_for_printk())
1775			console_unlock();
1776		preempt_enable();
1777		lockdep_on();
1778	}
1779
1780	return printed_len;
1781}
1782EXPORT_SYMBOL(vprintk_emit);
1783
1784asmlinkage int vprintk(const char *fmt, va_list args)
1785{
1786	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1787}
1788EXPORT_SYMBOL(vprintk);
1789
1790asmlinkage int printk_emit(int facility, int level,
1791			   const char *dict, size_t dictlen,
1792			   const char *fmt, ...)
1793{
1794	va_list args;
1795	int r;
1796
1797	va_start(args, fmt);
1798	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1799	va_end(args);
1800
1801	return r;
1802}
1803EXPORT_SYMBOL(printk_emit);
1804
1805int vprintk_default(const char *fmt, va_list args)
1806{
1807	int r;
1808
1809#ifdef CONFIG_KGDB_KDB
1810	if (unlikely(kdb_trap_printk)) {
1811		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1812		return r;
1813	}
1814#endif
1815	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1816
1817	return r;
1818}
1819EXPORT_SYMBOL_GPL(vprintk_default);
1820
1821/*
1822 * This allows printk to be diverted to another function per cpu.
1823 * This is useful for calling printk functions from within NMI
1824 * without worrying about race conditions that can lock up the
1825 * box.
1826 */
1827DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1828
1829/**
1830 * printk - print a kernel message
1831 * @fmt: format string
1832 *
1833 * This is printk(). It can be called from any context. We want it to work.
1834 *
1835 * We try to grab the console_lock. If we succeed, it's easy - we log the
1836 * output and call the console drivers.  If we fail to get the semaphore, we
1837 * place the output into the log buffer and return. The current holder of
1838 * the console_sem will notice the new output in console_unlock(); and will
1839 * send it to the consoles before releasing the lock.
1840 *
1841 * One effect of this deferred printing is that code which calls printk() and
1842 * then changes console_loglevel may break. This is because console_loglevel
1843 * is inspected when the actual printing occurs.
1844 *
1845 * See also:
1846 * printf(3)
1847 *
1848 * See the vsnprintf() documentation for format string extensions over C99.
1849 */
1850asmlinkage __visible int printk(const char *fmt, ...)
1851{
1852	printk_func_t vprintk_func;
1853	va_list args;
1854	int r;
1855
1856	va_start(args, fmt);
1857
1858	/*
1859	 * If a caller overrides the per_cpu printk_func, then it needs
1860	 * to disable preemption when calling printk(). Otherwise
1861	 * the printk_func should be set to the default. No need to
1862	 * disable preemption here.
1863	 */
1864	vprintk_func = this_cpu_read(printk_func);
1865	r = vprintk_func(fmt, args);
1866
1867	va_end(args);
1868
1869	return r;
1870}
1871EXPORT_SYMBOL(printk);
1872
1873#else /* CONFIG_PRINTK */
1874
1875#define LOG_LINE_MAX		0
1876#define PREFIX_MAX		0
1877
1878static u64 syslog_seq;
1879static u32 syslog_idx;
1880static u64 console_seq;
1881static u32 console_idx;
1882static enum log_flags syslog_prev;
1883static u64 log_first_seq;
1884static u32 log_first_idx;
1885static u64 log_next_seq;
1886static enum log_flags console_prev;
1887static struct cont {
1888	size_t len;
1889	size_t cons;
1890	u8 level;
1891	bool flushed:1;
1892} cont;
1893static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1894static u32 log_next(u32 idx) { return 0; }
1895static void call_console_drivers(int level, const char *text, size_t len) {}
1896static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1897			     bool syslog, char *buf, size_t size) { return 0; }
1898static size_t cont_print_text(char *text, size_t size) { return 0; }
1899
1900/* Still needs to be defined for users */
1901DEFINE_PER_CPU(printk_func_t, printk_func);
1902
1903#endif /* CONFIG_PRINTK */
1904
1905#ifdef CONFIG_EARLY_PRINTK
1906struct console *early_console;
1907
1908asmlinkage __visible void early_printk(const char *fmt, ...)
1909{
1910	va_list ap;
1911	char buf[512];
1912	int n;
1913
1914	if (!early_console)
1915		return;
1916
1917	va_start(ap, fmt);
1918	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1919	va_end(ap);
1920
1921	early_console->write(early_console, buf, n);
1922}
1923#endif
1924
1925static int __add_preferred_console(char *name, int idx, char *options,
1926				   char *brl_options)
1927{
1928	struct console_cmdline *c;
1929	int i;
1930
1931	/*
1932	 *	See if this tty is not yet registered, and
1933	 *	if we have a slot free.
1934	 */
1935	for (i = 0, c = console_cmdline;
1936	     i < MAX_CMDLINECONSOLES && c->name[0];
1937	     i++, c++) {
1938		if (strcmp(c->name, name) == 0 && c->index == idx) {
1939			if (!brl_options)
1940				selected_console = i;
1941			return 0;
1942		}
1943	}
1944	if (i == MAX_CMDLINECONSOLES)
1945		return -E2BIG;
1946	if (!brl_options)
1947		selected_console = i;
1948	strlcpy(c->name, name, sizeof(c->name));
1949	c->options = options;
1950	braille_set_options(c, brl_options);
1951
1952	c->index = idx;
1953	return 0;
1954}
1955/*
1956 * Set up a console.  Called via do_early_param() in init/main.c
1957 * for each "console=" parameter in the boot command line.
1958 */
1959static int __init console_setup(char *str)
1960{
1961	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1962	char *s, *options, *brl_options = NULL;
1963	int idx;
1964
1965	if (_braille_console_setup(&str, &brl_options))
1966		return 1;
1967
1968	/*
1969	 * Decode str into name, index, options.
1970	 */
1971	if (str[0] >= '0' && str[0] <= '9') {
1972		strcpy(buf, "ttyS");
1973		strncpy(buf + 4, str, sizeof(buf) - 5);
1974	} else {
1975		strncpy(buf, str, sizeof(buf) - 1);
1976	}
1977	buf[sizeof(buf) - 1] = 0;
1978	options = strchr(str, ',');
1979	if (options)
1980		*(options++) = 0;
1981#ifdef __sparc__
1982	if (!strcmp(str, "ttya"))
1983		strcpy(buf, "ttyS0");
1984	if (!strcmp(str, "ttyb"))
1985		strcpy(buf, "ttyS1");
1986#endif
1987	for (s = buf; *s; s++)
1988		if (isdigit(*s) || *s == ',')
1989			break;
1990	idx = simple_strtoul(s, NULL, 10);
1991	*s = 0;
1992
1993	__add_preferred_console(buf, idx, options, brl_options);
1994	console_set_on_cmdline = 1;
1995	return 1;
1996}
1997__setup("console=", console_setup);
1998
1999/**
2000 * add_preferred_console - add a device to the list of preferred consoles.
2001 * @name: device name
2002 * @idx: device index
2003 * @options: options for this console
2004 *
2005 * The last preferred console added will be used for kernel messages
2006 * and stdin/out/err for init.  Normally this is used by console_setup
2007 * above to handle user-supplied console arguments; however it can also
2008 * be used by arch-specific code either to override the user or more
2009 * commonly to provide a default console (ie from PROM variables) when
2010 * the user has not supplied one.
2011 */
2012int add_preferred_console(char *name, int idx, char *options)
2013{
2014	return __add_preferred_console(name, idx, options, NULL);
2015}
2016
2017bool console_suspend_enabled = true;
2018EXPORT_SYMBOL(console_suspend_enabled);
2019
2020static int __init console_suspend_disable(char *str)
2021{
2022	console_suspend_enabled = false;
2023	return 1;
2024}
2025__setup("no_console_suspend", console_suspend_disable);
2026module_param_named(console_suspend, console_suspend_enabled,
2027		bool, S_IRUGO | S_IWUSR);
2028MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2029	" and hibernate operations");
2030
2031/**
2032 * suspend_console - suspend the console subsystem
2033 *
2034 * This disables printk() while we go into suspend states
2035 */
2036void suspend_console(void)
2037{
2038	if (!console_suspend_enabled)
2039		return;
2040	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2041	console_lock();
2042	console_suspended = 1;
2043	up_console_sem();
2044}
2045
2046void resume_console(void)
2047{
2048	if (!console_suspend_enabled)
2049		return;
2050	down_console_sem();
2051	console_suspended = 0;
2052	console_unlock();
2053}
2054
2055/**
2056 * console_cpu_notify - print deferred console messages after CPU hotplug
2057 * @self: notifier struct
2058 * @action: CPU hotplug event
2059 * @hcpu: unused
2060 *
2061 * If printk() is called from a CPU that is not online yet, the messages
2062 * will be spooled but will not show up on the console.  This function is
2063 * called when a new CPU comes online (or fails to come up), and ensures
2064 * that any such output gets printed.
2065 */
2066static int console_cpu_notify(struct notifier_block *self,
2067	unsigned long action, void *hcpu)
2068{
2069	switch (action) {
2070	case CPU_ONLINE:
2071	case CPU_DEAD:
2072	case CPU_DOWN_FAILED:
2073	case CPU_UP_CANCELED:
2074		console_lock();
2075		console_unlock();
2076	}
2077	return NOTIFY_OK;
2078}
2079
2080/**
2081 * console_lock - lock the console system for exclusive use.
2082 *
2083 * Acquires a lock which guarantees that the caller has
2084 * exclusive access to the console system and the console_drivers list.
2085 *
2086 * Can sleep, returns nothing.
2087 */
2088void console_lock(void)
2089{
2090	might_sleep();
2091
2092	down_console_sem();
2093	if (console_suspended)
2094		return;
2095	console_locked = 1;
2096	console_may_schedule = 1;
2097}
2098EXPORT_SYMBOL(console_lock);
2099
2100/**
2101 * console_trylock - try to lock the console system for exclusive use.
2102 *
2103 * Try to acquire a lock which guarantees that the caller has exclusive
2104 * access to the console system and the console_drivers list.
2105 *
2106 * returns 1 on success, and 0 on failure to acquire the lock.
2107 */
2108int console_trylock(void)
2109{
2110	if (down_trylock_console_sem())
2111		return 0;
2112	if (console_suspended) {
2113		up_console_sem();
2114		return 0;
2115	}
2116	console_locked = 1;
2117	console_may_schedule = 0;
2118	return 1;
2119}
2120EXPORT_SYMBOL(console_trylock);
2121
2122int is_console_locked(void)
2123{
2124	return console_locked;
2125}
2126
2127static void console_cont_flush(char *text, size_t size)
2128{
2129	unsigned long flags;
2130	size_t len;
2131
2132	raw_spin_lock_irqsave(&logbuf_lock, flags);
2133
2134	if (!cont.len)
2135		goto out;
2136
2137	/*
2138	 * We still queue earlier records, likely because the console was
2139	 * busy. The earlier ones need to be printed before this one, we
2140	 * did not flush any fragment so far, so just let it queue up.
2141	 */
2142	if (console_seq < log_next_seq && !cont.cons)
2143		goto out;
2144
2145	len = cont_print_text(text, size);
2146	raw_spin_unlock(&logbuf_lock);
2147	stop_critical_timings();
2148	call_console_drivers(cont.level, text, len);
2149	start_critical_timings();
2150	local_irq_restore(flags);
2151	return;
2152out:
2153	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2154}
2155
2156/**
2157 * console_unlock - unlock the console system
2158 *
2159 * Releases the console_lock which the caller holds on the console system
2160 * and the console driver list.
2161 *
2162 * While the console_lock was held, console output may have been buffered
2163 * by printk().  If this is the case, console_unlock(); emits
2164 * the output prior to releasing the lock.
2165 *
2166 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2167 *
2168 * console_unlock(); may be called from any context.
2169 */
2170void console_unlock(void)
2171{
2172	static char text[LOG_LINE_MAX + PREFIX_MAX];
2173	static u64 seen_seq;
2174	unsigned long flags;
2175	bool wake_klogd = false;
2176	bool do_cond_resched, retry;
2177
2178	if (console_suspended) {
2179		up_console_sem();
2180		return;
2181	}
2182
2183	/*
2184	 * Console drivers are called under logbuf_lock, so
2185	 * @console_may_schedule should be cleared before; however, we may
2186	 * end up dumping a lot of lines, for example, if called from
2187	 * console registration path, and should invoke cond_resched()
2188	 * between lines if allowable.  Not doing so can cause a very long
2189	 * scheduling stall on a slow console leading to RCU stall and
2190	 * softlockup warnings which exacerbate the issue with more
2191	 * messages practically incapacitating the system.
2192	 */
2193	do_cond_resched = console_may_schedule;
2194	console_may_schedule = 0;
2195
2196	/* flush buffered message fragment immediately to console */
2197	console_cont_flush(text, sizeof(text));
2198again:
2199	for (;;) {
2200		struct printk_log *msg;
2201		size_t len;
2202		int level;
2203
2204		raw_spin_lock_irqsave(&logbuf_lock, flags);
2205		if (seen_seq != log_next_seq) {
2206			wake_klogd = true;
2207			seen_seq = log_next_seq;
2208		}
2209
2210		if (console_seq < log_first_seq) {
2211			len = sprintf(text, "** %u printk messages dropped ** ",
2212				      (unsigned)(log_first_seq - console_seq));
2213
2214			/* messages are gone, move to first one */
2215			console_seq = log_first_seq;
2216			console_idx = log_first_idx;
2217			console_prev = 0;
2218		} else {
2219			len = 0;
2220		}
2221skip:
2222		if (console_seq == log_next_seq)
2223			break;
2224
2225		msg = log_from_idx(console_idx);
2226		if (msg->flags & LOG_NOCONS) {
2227			/*
2228			 * Skip record we have buffered and already printed
2229			 * directly to the console when we received it.
2230			 */
2231			console_idx = log_next(console_idx);
2232			console_seq++;
2233			/*
2234			 * We will get here again when we register a new
2235			 * CON_PRINTBUFFER console. Clear the flag so we
2236			 * will properly dump everything later.
2237			 */
2238			msg->flags &= ~LOG_NOCONS;
2239			console_prev = msg->flags;
2240			goto skip;
2241		}
2242
2243		level = msg->level;
2244		len += msg_print_text(msg, console_prev, false,
2245				      text + len, sizeof(text) - len);
2246		console_idx = log_next(console_idx);
2247		console_seq++;
2248		console_prev = msg->flags;
2249		raw_spin_unlock(&logbuf_lock);
2250
2251		stop_critical_timings();	/* don't trace print latency */
2252		call_console_drivers(level, text, len);
2253		start_critical_timings();
2254		local_irq_restore(flags);
2255
2256		if (do_cond_resched)
2257			cond_resched();
2258	}
2259	console_locked = 0;
2260
2261	/* Release the exclusive_console once it is used */
2262	if (unlikely(exclusive_console))
2263		exclusive_console = NULL;
2264
2265	raw_spin_unlock(&logbuf_lock);
2266
2267	up_console_sem();
2268
2269	/*
2270	 * Someone could have filled up the buffer again, so re-check if there's
2271	 * something to flush. In case we cannot trylock the console_sem again,
2272	 * there's a new owner and the console_unlock() from them will do the
2273	 * flush, no worries.
2274	 */
2275	raw_spin_lock(&logbuf_lock);
2276	retry = console_seq != log_next_seq;
2277	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2278
2279	if (retry && console_trylock())
2280		goto again;
2281
2282	if (wake_klogd)
2283		wake_up_klogd();
2284}
2285EXPORT_SYMBOL(console_unlock);
2286
2287/**
2288 * console_conditional_schedule - yield the CPU if required
2289 *
2290 * If the console code is currently allowed to sleep, and
2291 * if this CPU should yield the CPU to another task, do
2292 * so here.
2293 *
2294 * Must be called within console_lock();.
2295 */
2296void __sched console_conditional_schedule(void)
2297{
2298	if (console_may_schedule)
2299		cond_resched();
2300}
2301EXPORT_SYMBOL(console_conditional_schedule);
2302
2303void console_unblank(void)
2304{
2305	struct console *c;
2306
2307	/*
2308	 * console_unblank can no longer be called in interrupt context unless
2309	 * oops_in_progress is set to 1..
2310	 */
2311	if (oops_in_progress) {
2312		if (down_trylock_console_sem() != 0)
2313			return;
2314	} else
2315		console_lock();
2316
2317	console_locked = 1;
2318	console_may_schedule = 0;
2319	for_each_console(c)
2320		if ((c->flags & CON_ENABLED) && c->unblank)
2321			c->unblank();
2322	console_unlock();
2323}
2324
2325/**
2326 * console_flush_on_panic - flush console content on panic
2327 *
2328 * Immediately output all pending messages no matter what.
2329 */
2330void console_flush_on_panic(void)
2331{
2332	/*
2333	 * If someone else is holding the console lock, trylock will fail
2334	 * and may_schedule may be set.  Ignore and proceed to unlock so
2335	 * that messages are flushed out.  As this can be called from any
2336	 * context and we don't want to get preempted while flushing,
2337	 * ensure may_schedule is cleared.
2338	 */
2339	console_trylock();
2340	console_may_schedule = 0;
2341	console_unlock();
2342}
2343
2344/*
2345 * Return the console tty driver structure and its associated index
2346 */
2347struct tty_driver *console_device(int *index)
2348{
2349	struct console *c;
2350	struct tty_driver *driver = NULL;
2351
2352	console_lock();
2353	for_each_console(c) {
2354		if (!c->device)
2355			continue;
2356		driver = c->device(c, index);
2357		if (driver)
2358			break;
2359	}
2360	console_unlock();
2361	return driver;
2362}
2363
2364/*
2365 * Prevent further output on the passed console device so that (for example)
2366 * serial drivers can disable console output before suspending a port, and can
2367 * re-enable output afterwards.
2368 */
2369void console_stop(struct console *console)
2370{
2371	console_lock();
2372	console->flags &= ~CON_ENABLED;
2373	console_unlock();
2374}
2375EXPORT_SYMBOL(console_stop);
2376
2377void console_start(struct console *console)
2378{
2379	console_lock();
2380	console->flags |= CON_ENABLED;
2381	console_unlock();
2382}
2383EXPORT_SYMBOL(console_start);
2384
2385static int __read_mostly keep_bootcon;
2386
2387static int __init keep_bootcon_setup(char *str)
2388{
2389	keep_bootcon = 1;
2390	pr_info("debug: skip boot console de-registration.\n");
2391
2392	return 0;
2393}
2394
2395early_param("keep_bootcon", keep_bootcon_setup);
2396
2397/*
2398 * The console driver calls this routine during kernel initialization
2399 * to register the console printing procedure with printk() and to
2400 * print any messages that were printed by the kernel before the
2401 * console driver was initialized.
2402 *
2403 * This can happen pretty early during the boot process (because of
2404 * early_printk) - sometimes before setup_arch() completes - be careful
2405 * of what kernel features are used - they may not be initialised yet.
2406 *
2407 * There are two types of consoles - bootconsoles (early_printk) and
2408 * "real" consoles (everything which is not a bootconsole) which are
2409 * handled differently.
2410 *  - Any number of bootconsoles can be registered at any time.
2411 *  - As soon as a "real" console is registered, all bootconsoles
2412 *    will be unregistered automatically.
2413 *  - Once a "real" console is registered, any attempt to register a
2414 *    bootconsoles will be rejected
2415 */
2416void register_console(struct console *newcon)
2417{
2418	int i;
2419	unsigned long flags;
2420	struct console *bcon = NULL;
2421	struct console_cmdline *c;
2422
2423	if (console_drivers)
2424		for_each_console(bcon)
2425			if (WARN(bcon == newcon,
2426					"console '%s%d' already registered\n",
2427					bcon->name, bcon->index))
2428				return;
2429
2430	/*
2431	 * before we register a new CON_BOOT console, make sure we don't
2432	 * already have a valid console
2433	 */
2434	if (console_drivers && newcon->flags & CON_BOOT) {
2435		/* find the last or real console */
2436		for_each_console(bcon) {
2437			if (!(bcon->flags & CON_BOOT)) {
2438				pr_info("Too late to register bootconsole %s%d\n",
2439					newcon->name, newcon->index);
2440				return;
2441			}
2442		}
2443	}
2444
2445	if (console_drivers && console_drivers->flags & CON_BOOT)
2446		bcon = console_drivers;
2447
2448	if (preferred_console < 0 || bcon || !console_drivers)
2449		preferred_console = selected_console;
2450
2451	/*
2452	 *	See if we want to use this console driver. If we
2453	 *	didn't select a console we take the first one
2454	 *	that registers here.
2455	 */
2456	if (preferred_console < 0) {
2457		if (newcon->index < 0)
2458			newcon->index = 0;
2459		if (newcon->setup == NULL ||
2460		    newcon->setup(newcon, NULL) == 0) {
2461			newcon->flags |= CON_ENABLED;
2462			if (newcon->device) {
2463				newcon->flags |= CON_CONSDEV;
2464				preferred_console = 0;
2465			}
2466		}
2467	}
2468
2469	/*
2470	 *	See if this console matches one we selected on
2471	 *	the command line.
2472	 */
2473	for (i = 0, c = console_cmdline;
2474	     i < MAX_CMDLINECONSOLES && c->name[0];
2475	     i++, c++) {
2476		if (!newcon->match ||
2477		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2478			/* default matching */
2479			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2480			if (strcmp(c->name, newcon->name) != 0)
2481				continue;
2482			if (newcon->index >= 0 &&
2483			    newcon->index != c->index)
2484				continue;
2485			if (newcon->index < 0)
2486				newcon->index = c->index;
2487
2488			if (_braille_register_console(newcon, c))
2489				return;
2490
2491			if (newcon->setup &&
2492			    newcon->setup(newcon, c->options) != 0)
2493				break;
2494		}
2495
2496		newcon->flags |= CON_ENABLED;
2497		if (i == selected_console) {
2498			newcon->flags |= CON_CONSDEV;
2499			preferred_console = selected_console;
2500		}
2501		break;
2502	}
2503
2504	if (!(newcon->flags & CON_ENABLED))
2505		return;
2506
2507	/*
2508	 * If we have a bootconsole, and are switching to a real console,
2509	 * don't print everything out again, since when the boot console, and
2510	 * the real console are the same physical device, it's annoying to
2511	 * see the beginning boot messages twice
2512	 */
2513	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2514		newcon->flags &= ~CON_PRINTBUFFER;
2515
2516	/*
2517	 *	Put this console in the list - keep the
2518	 *	preferred driver at the head of the list.
2519	 */
2520	console_lock();
2521	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2522		newcon->next = console_drivers;
2523		console_drivers = newcon;
2524		if (newcon->next)
2525			newcon->next->flags &= ~CON_CONSDEV;
2526	} else {
2527		newcon->next = console_drivers->next;
2528		console_drivers->next = newcon;
2529	}
2530	if (newcon->flags & CON_PRINTBUFFER) {
2531		/*
2532		 * console_unlock(); will print out the buffered messages
2533		 * for us.
2534		 */
2535		raw_spin_lock_irqsave(&logbuf_lock, flags);
2536		console_seq = syslog_seq;
2537		console_idx = syslog_idx;
2538		console_prev = syslog_prev;
2539		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2540		/*
2541		 * We're about to replay the log buffer.  Only do this to the
2542		 * just-registered console to avoid excessive message spam to
2543		 * the already-registered consoles.
2544		 */
2545		exclusive_console = newcon;
2546	}
2547	console_unlock();
2548	console_sysfs_notify();
2549
2550	/*
2551	 * By unregistering the bootconsoles after we enable the real console
2552	 * we get the "console xxx enabled" message on all the consoles -
2553	 * boot consoles, real consoles, etc - this is to ensure that end
2554	 * users know there might be something in the kernel's log buffer that
2555	 * went to the bootconsole (that they do not see on the real console)
2556	 */
2557	pr_info("%sconsole [%s%d] enabled\n",
2558		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2559		newcon->name, newcon->index);
2560	if (bcon &&
2561	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2562	    !keep_bootcon) {
2563		/* We need to iterate through all boot consoles, to make
2564		 * sure we print everything out, before we unregister them.
2565		 */
2566		for_each_console(bcon)
2567			if (bcon->flags & CON_BOOT)
2568				unregister_console(bcon);
2569	}
2570}
2571EXPORT_SYMBOL(register_console);
2572
2573int unregister_console(struct console *console)
2574{
2575        struct console *a, *b;
2576	int res;
2577
2578	pr_info("%sconsole [%s%d] disabled\n",
2579		(console->flags & CON_BOOT) ? "boot" : "" ,
2580		console->name, console->index);
2581
2582	res = _braille_unregister_console(console);
2583	if (res)
2584		return res;
2585
2586	res = 1;
2587	console_lock();
2588	if (console_drivers == console) {
2589		console_drivers=console->next;
2590		res = 0;
2591	} else if (console_drivers) {
2592		for (a=console_drivers->next, b=console_drivers ;
2593		     a; b=a, a=b->next) {
2594			if (a == console) {
2595				b->next = a->next;
2596				res = 0;
2597				break;
2598			}
2599		}
2600	}
2601
2602	/*
2603	 * If this isn't the last console and it has CON_CONSDEV set, we
2604	 * need to set it on the next preferred console.
2605	 */
2606	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2607		console_drivers->flags |= CON_CONSDEV;
2608
2609	console->flags &= ~CON_ENABLED;
2610	console_unlock();
2611	console_sysfs_notify();
2612	return res;
2613}
2614EXPORT_SYMBOL(unregister_console);
2615
2616static int __init printk_late_init(void)
2617{
2618	struct console *con;
2619
2620	for_each_console(con) {
2621		if (!keep_bootcon && con->flags & CON_BOOT) {
2622			unregister_console(con);
2623		}
2624	}
2625	hotcpu_notifier(console_cpu_notify, 0);
2626	return 0;
2627}
2628late_initcall(printk_late_init);
2629
2630#if defined CONFIG_PRINTK
2631/*
2632 * Delayed printk version, for scheduler-internal messages:
2633 */
2634#define PRINTK_PENDING_WAKEUP	0x01
2635#define PRINTK_PENDING_OUTPUT	0x02
2636
2637static DEFINE_PER_CPU(int, printk_pending);
2638
2639static void wake_up_klogd_work_func(struct irq_work *irq_work)
2640{
2641	int pending = __this_cpu_xchg(printk_pending, 0);
2642
2643	if (pending & PRINTK_PENDING_OUTPUT) {
2644		/* If trylock fails, someone else is doing the printing */
2645		if (console_trylock())
2646			console_unlock();
2647	}
2648
2649	if (pending & PRINTK_PENDING_WAKEUP)
2650		wake_up_interruptible(&log_wait);
2651}
2652
2653static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2654	.func = wake_up_klogd_work_func,
2655	.flags = IRQ_WORK_LAZY,
2656};
2657
2658void wake_up_klogd(void)
2659{
2660	preempt_disable();
2661	if (waitqueue_active(&log_wait)) {
2662		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2663		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2664	}
2665	preempt_enable();
2666}
2667
2668int printk_deferred(const char *fmt, ...)
2669{
2670	va_list args;
2671	int r;
2672
2673	preempt_disable();
2674	va_start(args, fmt);
2675	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2676	va_end(args);
2677
2678	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2679	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2680	preempt_enable();
2681
2682	return r;
2683}
2684
2685/*
2686 * printk rate limiting, lifted from the networking subsystem.
2687 *
2688 * This enforces a rate limit: not more than 10 kernel messages
2689 * every 5s to make a denial-of-service attack impossible.
2690 */
2691DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2692
2693int __printk_ratelimit(const char *func)
2694{
2695	return ___ratelimit(&printk_ratelimit_state, func);
2696}
2697EXPORT_SYMBOL(__printk_ratelimit);
2698
2699/**
2700 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2701 * @caller_jiffies: pointer to caller's state
2702 * @interval_msecs: minimum interval between prints
2703 *
2704 * printk_timed_ratelimit() returns true if more than @interval_msecs
2705 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2706 * returned true.
2707 */
2708bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2709			unsigned int interval_msecs)
2710{
2711	unsigned long elapsed = jiffies - *caller_jiffies;
2712
2713	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2714		return false;
2715
2716	*caller_jiffies = jiffies;
2717	return true;
2718}
2719EXPORT_SYMBOL(printk_timed_ratelimit);
2720
2721static DEFINE_SPINLOCK(dump_list_lock);
2722static LIST_HEAD(dump_list);
2723
2724/**
2725 * kmsg_dump_register - register a kernel log dumper.
2726 * @dumper: pointer to the kmsg_dumper structure
2727 *
2728 * Adds a kernel log dumper to the system. The dump callback in the
2729 * structure will be called when the kernel oopses or panics and must be
2730 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2731 */
2732int kmsg_dump_register(struct kmsg_dumper *dumper)
2733{
2734	unsigned long flags;
2735	int err = -EBUSY;
2736
2737	/* The dump callback needs to be set */
2738	if (!dumper->dump)
2739		return -EINVAL;
2740
2741	spin_lock_irqsave(&dump_list_lock, flags);
2742	/* Don't allow registering multiple times */
2743	if (!dumper->registered) {
2744		dumper->registered = 1;
2745		list_add_tail_rcu(&dumper->list, &dump_list);
2746		err = 0;
2747	}
2748	spin_unlock_irqrestore(&dump_list_lock, flags);
2749
2750	return err;
2751}
2752EXPORT_SYMBOL_GPL(kmsg_dump_register);
2753
2754/**
2755 * kmsg_dump_unregister - unregister a kmsg dumper.
2756 * @dumper: pointer to the kmsg_dumper structure
2757 *
2758 * Removes a dump device from the system. Returns zero on success and
2759 * %-EINVAL otherwise.
2760 */
2761int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2762{
2763	unsigned long flags;
2764	int err = -EINVAL;
2765
2766	spin_lock_irqsave(&dump_list_lock, flags);
2767	if (dumper->registered) {
2768		dumper->registered = 0;
2769		list_del_rcu(&dumper->list);
2770		err = 0;
2771	}
2772	spin_unlock_irqrestore(&dump_list_lock, flags);
2773	synchronize_rcu();
2774
2775	return err;
2776}
2777EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2778
2779static bool always_kmsg_dump;
2780module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2781
2782/**
2783 * kmsg_dump - dump kernel log to kernel message dumpers.
2784 * @reason: the reason (oops, panic etc) for dumping
2785 *
2786 * Call each of the registered dumper's dump() callback, which can
2787 * retrieve the kmsg records with kmsg_dump_get_line() or
2788 * kmsg_dump_get_buffer().
2789 */
2790void kmsg_dump(enum kmsg_dump_reason reason)
2791{
2792	struct kmsg_dumper *dumper;
2793	unsigned long flags;
2794
2795	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2796		return;
2797
2798	rcu_read_lock();
2799	list_for_each_entry_rcu(dumper, &dump_list, list) {
2800		if (dumper->max_reason && reason > dumper->max_reason)
2801			continue;
2802
2803		/* initialize iterator with data about the stored records */
2804		dumper->active = true;
2805
2806		raw_spin_lock_irqsave(&logbuf_lock, flags);
2807		dumper->cur_seq = clear_seq;
2808		dumper->cur_idx = clear_idx;
2809		dumper->next_seq = log_next_seq;
2810		dumper->next_idx = log_next_idx;
2811		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2812
2813		/* invoke dumper which will iterate over records */
2814		dumper->dump(dumper, reason);
2815
2816		/* reset iterator */
2817		dumper->active = false;
2818	}
2819	rcu_read_unlock();
2820}
2821
2822/**
2823 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2824 * @dumper: registered kmsg dumper
2825 * @syslog: include the "<4>" prefixes
2826 * @line: buffer to copy the line to
2827 * @size: maximum size of the buffer
2828 * @len: length of line placed into buffer
2829 *
2830 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2831 * record, and copy one record into the provided buffer.
2832 *
2833 * Consecutive calls will return the next available record moving
2834 * towards the end of the buffer with the youngest messages.
2835 *
2836 * A return value of FALSE indicates that there are no more records to
2837 * read.
2838 *
2839 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2840 */
2841bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2842			       char *line, size_t size, size_t *len)
2843{
2844	struct printk_log *msg;
2845	size_t l = 0;
2846	bool ret = false;
2847
2848	if (!dumper->active)
2849		goto out;
2850
2851	if (dumper->cur_seq < log_first_seq) {
2852		/* messages are gone, move to first available one */
2853		dumper->cur_seq = log_first_seq;
2854		dumper->cur_idx = log_first_idx;
2855	}
2856
2857	/* last entry */
2858	if (dumper->cur_seq >= log_next_seq)
2859		goto out;
2860
2861	msg = log_from_idx(dumper->cur_idx);
2862	l = msg_print_text(msg, 0, syslog, line, size);
2863
2864	dumper->cur_idx = log_next(dumper->cur_idx);
2865	dumper->cur_seq++;
2866	ret = true;
2867out:
2868	if (len)
2869		*len = l;
2870	return ret;
2871}
2872
2873/**
2874 * kmsg_dump_get_line - retrieve one kmsg log line
2875 * @dumper: registered kmsg dumper
2876 * @syslog: include the "<4>" prefixes
2877 * @line: buffer to copy the line to
2878 * @size: maximum size of the buffer
2879 * @len: length of line placed into buffer
2880 *
2881 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2882 * record, and copy one record into the provided buffer.
2883 *
2884 * Consecutive calls will return the next available record moving
2885 * towards the end of the buffer with the youngest messages.
2886 *
2887 * A return value of FALSE indicates that there are no more records to
2888 * read.
2889 */
2890bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2891			char *line, size_t size, size_t *len)
2892{
2893	unsigned long flags;
2894	bool ret;
2895
2896	raw_spin_lock_irqsave(&logbuf_lock, flags);
2897	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2898	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2899
2900	return ret;
2901}
2902EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2903
2904/**
2905 * kmsg_dump_get_buffer - copy kmsg log lines
2906 * @dumper: registered kmsg dumper
2907 * @syslog: include the "<4>" prefixes
2908 * @buf: buffer to copy the line to
2909 * @size: maximum size of the buffer
2910 * @len: length of line placed into buffer
2911 *
2912 * Start at the end of the kmsg buffer and fill the provided buffer
2913 * with as many of the the *youngest* kmsg records that fit into it.
2914 * If the buffer is large enough, all available kmsg records will be
2915 * copied with a single call.
2916 *
2917 * Consecutive calls will fill the buffer with the next block of
2918 * available older records, not including the earlier retrieved ones.
2919 *
2920 * A return value of FALSE indicates that there are no more records to
2921 * read.
2922 */
2923bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2924			  char *buf, size_t size, size_t *len)
2925{
2926	unsigned long flags;
2927	u64 seq;
2928	u32 idx;
2929	u64 next_seq;
2930	u32 next_idx;
2931	enum log_flags prev;
2932	size_t l = 0;
2933	bool ret = false;
2934
2935	if (!dumper->active)
2936		goto out;
2937
2938	raw_spin_lock_irqsave(&logbuf_lock, flags);
2939	if (dumper->cur_seq < log_first_seq) {
2940		/* messages are gone, move to first available one */
2941		dumper->cur_seq = log_first_seq;
2942		dumper->cur_idx = log_first_idx;
2943	}
2944
2945	/* last entry */
2946	if (dumper->cur_seq >= dumper->next_seq) {
2947		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2948		goto out;
2949	}
2950
2951	/* calculate length of entire buffer */
2952	seq = dumper->cur_seq;
2953	idx = dumper->cur_idx;
2954	prev = 0;
2955	while (seq < dumper->next_seq) {
2956		struct printk_log *msg = log_from_idx(idx);
2957
2958		l += msg_print_text(msg, prev, true, NULL, 0);
2959		idx = log_next(idx);
2960		seq++;
2961		prev = msg->flags;
2962	}
2963
2964	/* move first record forward until length fits into the buffer */
2965	seq = dumper->cur_seq;
2966	idx = dumper->cur_idx;
2967	prev = 0;
2968	while (l > size && seq < dumper->next_seq) {
2969		struct printk_log *msg = log_from_idx(idx);
2970
2971		l -= msg_print_text(msg, prev, true, NULL, 0);
2972		idx = log_next(idx);
2973		seq++;
2974		prev = msg->flags;
2975	}
2976
2977	/* last message in next interation */
2978	next_seq = seq;
2979	next_idx = idx;
2980
2981	l = 0;
2982	while (seq < dumper->next_seq) {
2983		struct printk_log *msg = log_from_idx(idx);
2984
2985		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2986		idx = log_next(idx);
2987		seq++;
2988		prev = msg->flags;
2989	}
2990
2991	dumper->next_seq = next_seq;
2992	dumper->next_idx = next_idx;
2993	ret = true;
2994	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2995out:
2996	if (len)
2997		*len = l;
2998	return ret;
2999}
3000EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3001
3002/**
3003 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3004 * @dumper: registered kmsg dumper
3005 *
3006 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3007 * kmsg_dump_get_buffer() can be called again and used multiple
3008 * times within the same dumper.dump() callback.
3009 *
3010 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3011 */
3012void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3013{
3014	dumper->cur_seq = clear_seq;
3015	dumper->cur_idx = clear_idx;
3016	dumper->next_seq = log_next_seq;
3017	dumper->next_idx = log_next_idx;
3018}
3019
3020/**
3021 * kmsg_dump_rewind - reset the interator
3022 * @dumper: registered kmsg dumper
3023 *
3024 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3025 * kmsg_dump_get_buffer() can be called again and used multiple
3026 * times within the same dumper.dump() callback.
3027 */
3028void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3029{
3030	unsigned long flags;
3031
3032	raw_spin_lock_irqsave(&logbuf_lock, flags);
3033	kmsg_dump_rewind_nolock(dumper);
3034	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3035}
3036EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3037
3038static char dump_stack_arch_desc_str[128];
3039
3040/**
3041 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3042 * @fmt: printf-style format string
3043 * @...: arguments for the format string
3044 *
3045 * The configured string will be printed right after utsname during task
3046 * dumps.  Usually used to add arch-specific system identifiers.  If an
3047 * arch wants to make use of such an ID string, it should initialize this
3048 * as soon as possible during boot.
3049 */
3050void __init dump_stack_set_arch_desc(const char *fmt, ...)
3051{
3052	va_list args;
3053
3054	va_start(args, fmt);
3055	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3056		  fmt, args);
3057	va_end(args);
3058}
3059
3060/**
3061 * dump_stack_print_info - print generic debug info for dump_stack()
3062 * @log_lvl: log level
3063 *
3064 * Arch-specific dump_stack() implementations can use this function to
3065 * print out the same debug information as the generic dump_stack().
3066 */
3067void dump_stack_print_info(const char *log_lvl)
3068{
3069	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3070	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3071	       print_tainted(), init_utsname()->release,
3072	       (int)strcspn(init_utsname()->version, " "),
3073	       init_utsname()->version);
3074
3075	if (dump_stack_arch_desc_str[0] != '\0')
3076		printk("%sHardware name: %s\n",
3077		       log_lvl, dump_stack_arch_desc_str);
3078
3079	print_worker_info(log_lvl, current);
3080}
3081
3082/**
3083 * show_regs_print_info - print generic debug info for show_regs()
3084 * @log_lvl: log level
3085 *
3086 * show_regs() implementations can use this function to print out generic
3087 * debug information.
3088 */
3089void show_regs_print_info(const char *log_lvl)
3090{
3091	dump_stack_print_info(log_lvl);
3092
3093	printk("%stask: %p ti: %p task.ti: %p\n",
3094	       log_lvl, current, current_thread_info(),
3095	       task_thread_info(current));
3096}
3097
3098#endif
3099