1/* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19#include <linux/kernel.h> 20#include <linux/mm.h> 21#include <linux/tty.h> 22#include <linux/tty_driver.h> 23#include <linux/console.h> 24#include <linux/init.h> 25#include <linux/jiffies.h> 26#include <linux/nmi.h> 27#include <linux/module.h> 28#include <linux/moduleparam.h> 29#include <linux/interrupt.h> /* For in_interrupt() */ 30#include <linux/delay.h> 31#include <linux/smp.h> 32#include <linux/security.h> 33#include <linux/bootmem.h> 34#include <linux/memblock.h> 35#include <linux/syscalls.h> 36#include <linux/kexec.h> 37#include <linux/kdb.h> 38#include <linux/ratelimit.h> 39#include <linux/kmsg_dump.h> 40#include <linux/syslog.h> 41#include <linux/cpu.h> 42#include <linux/notifier.h> 43#include <linux/rculist.h> 44#include <linux/poll.h> 45#include <linux/irq_work.h> 46#include <linux/utsname.h> 47#include <linux/ctype.h> 48#include <linux/uio.h> 49 50#include <asm/uaccess.h> 51 52#define CREATE_TRACE_POINTS 53#include <trace/events/printk.h> 54 55#include "console_cmdline.h" 56#include "braille.h" 57 58int console_printk[4] = { 59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 63}; 64 65/* 66 * Low level drivers may need that to know if they can schedule in 67 * their unblank() callback or not. So let's export it. 68 */ 69int oops_in_progress; 70EXPORT_SYMBOL(oops_in_progress); 71 72/* 73 * console_sem protects the console_drivers list, and also 74 * provides serialisation for access to the entire console 75 * driver system. 76 */ 77static DEFINE_SEMAPHORE(console_sem); 78struct console *console_drivers; 79EXPORT_SYMBOL_GPL(console_drivers); 80 81#ifdef CONFIG_LOCKDEP 82static struct lockdep_map console_lock_dep_map = { 83 .name = "console_lock" 84}; 85#endif 86 87/* 88 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 89 * macros instead of functions so that _RET_IP_ contains useful information. 90 */ 91#define down_console_sem() do { \ 92 down(&console_sem);\ 93 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 94} while (0) 95 96static int __down_trylock_console_sem(unsigned long ip) 97{ 98 if (down_trylock(&console_sem)) 99 return 1; 100 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 101 return 0; 102} 103#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 104 105#define up_console_sem() do { \ 106 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 107 up(&console_sem);\ 108} while (0) 109 110/* 111 * This is used for debugging the mess that is the VT code by 112 * keeping track if we have the console semaphore held. It's 113 * definitely not the perfect debug tool (we don't know if _WE_ 114 * hold it and are racing, but it helps tracking those weird code 115 * paths in the console code where we end up in places I want 116 * locked without the console sempahore held). 117 */ 118static int console_locked, console_suspended; 119 120/* 121 * If exclusive_console is non-NULL then only this console is to be printed to. 122 */ 123static struct console *exclusive_console; 124 125/* 126 * Array of consoles built from command line options (console=) 127 */ 128 129#define MAX_CMDLINECONSOLES 8 130 131static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 132 133static int selected_console = -1; 134static int preferred_console = -1; 135int console_set_on_cmdline; 136EXPORT_SYMBOL(console_set_on_cmdline); 137 138/* Flag: console code may call schedule() */ 139static int console_may_schedule; 140 141/* 142 * The printk log buffer consists of a chain of concatenated variable 143 * length records. Every record starts with a record header, containing 144 * the overall length of the record. 145 * 146 * The heads to the first and last entry in the buffer, as well as the 147 * sequence numbers of these entries are maintained when messages are 148 * stored. 149 * 150 * If the heads indicate available messages, the length in the header 151 * tells the start next message. A length == 0 for the next message 152 * indicates a wrap-around to the beginning of the buffer. 153 * 154 * Every record carries the monotonic timestamp in microseconds, as well as 155 * the standard userspace syslog level and syslog facility. The usual 156 * kernel messages use LOG_KERN; userspace-injected messages always carry 157 * a matching syslog facility, by default LOG_USER. The origin of every 158 * message can be reliably determined that way. 159 * 160 * The human readable log message directly follows the message header. The 161 * length of the message text is stored in the header, the stored message 162 * is not terminated. 163 * 164 * Optionally, a message can carry a dictionary of properties (key/value pairs), 165 * to provide userspace with a machine-readable message context. 166 * 167 * Examples for well-defined, commonly used property names are: 168 * DEVICE=b12:8 device identifier 169 * b12:8 block dev_t 170 * c127:3 char dev_t 171 * n8 netdev ifindex 172 * +sound:card0 subsystem:devname 173 * SUBSYSTEM=pci driver-core subsystem name 174 * 175 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 176 * follows directly after a '=' character. Every property is terminated by 177 * a '\0' character. The last property is not terminated. 178 * 179 * Example of a message structure: 180 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 181 * 0008 34 00 record is 52 bytes long 182 * 000a 0b 00 text is 11 bytes long 183 * 000c 1f 00 dictionary is 23 bytes long 184 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 185 * 0010 69 74 27 73 20 61 20 6c "it's a l" 186 * 69 6e 65 "ine" 187 * 001b 44 45 56 49 43 "DEVIC" 188 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 189 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 190 * 67 "g" 191 * 0032 00 00 00 padding to next message header 192 * 193 * The 'struct printk_log' buffer header must never be directly exported to 194 * userspace, it is a kernel-private implementation detail that might 195 * need to be changed in the future, when the requirements change. 196 * 197 * /dev/kmsg exports the structured data in the following line format: 198 * "level,sequnum,timestamp;<message text>\n" 199 * 200 * The optional key/value pairs are attached as continuation lines starting 201 * with a space character and terminated by a newline. All possible 202 * non-prinatable characters are escaped in the "\xff" notation. 203 * 204 * Users of the export format should ignore possible additional values 205 * separated by ',', and find the message after the ';' character. 206 */ 207 208enum log_flags { 209 LOG_NOCONS = 1, /* already flushed, do not print to console */ 210 LOG_NEWLINE = 2, /* text ended with a newline */ 211 LOG_PREFIX = 4, /* text started with a prefix */ 212 LOG_CONT = 8, /* text is a fragment of a continuation line */ 213}; 214 215struct printk_log { 216 u64 ts_nsec; /* timestamp in nanoseconds */ 217 u16 len; /* length of entire record */ 218 u16 text_len; /* length of text buffer */ 219 u16 dict_len; /* length of dictionary buffer */ 220 u8 facility; /* syslog facility */ 221 u8 flags:5; /* internal record flags */ 222 u8 level:3; /* syslog level */ 223}; 224 225/* 226 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 227 * within the scheduler's rq lock. It must be released before calling 228 * console_unlock() or anything else that might wake up a process. 229 */ 230static DEFINE_RAW_SPINLOCK(logbuf_lock); 231 232#ifdef CONFIG_PRINTK 233DECLARE_WAIT_QUEUE_HEAD(log_wait); 234/* the next printk record to read by syslog(READ) or /proc/kmsg */ 235static u64 syslog_seq; 236static u32 syslog_idx; 237static enum log_flags syslog_prev; 238static size_t syslog_partial; 239 240/* index and sequence number of the first record stored in the buffer */ 241static u64 log_first_seq; 242static u32 log_first_idx; 243 244/* index and sequence number of the next record to store in the buffer */ 245static u64 log_next_seq; 246static u32 log_next_idx; 247 248/* the next printk record to write to the console */ 249static u64 console_seq; 250static u32 console_idx; 251static enum log_flags console_prev; 252 253/* the next printk record to read after the last 'clear' command */ 254static u64 clear_seq; 255static u32 clear_idx; 256 257#define PREFIX_MAX 32 258#define LOG_LINE_MAX (1024 - PREFIX_MAX) 259 260/* record buffer */ 261#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 262#define LOG_ALIGN 4 263#else 264#define LOG_ALIGN __alignof__(struct printk_log) 265#endif 266#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 267static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 268static char *log_buf = __log_buf; 269static u32 log_buf_len = __LOG_BUF_LEN; 270 271/* Return log buffer address */ 272char *log_buf_addr_get(void) 273{ 274 return log_buf; 275} 276 277/* Return log buffer size */ 278u32 log_buf_len_get(void) 279{ 280 return log_buf_len; 281} 282 283/* human readable text of the record */ 284static char *log_text(const struct printk_log *msg) 285{ 286 return (char *)msg + sizeof(struct printk_log); 287} 288 289/* optional key/value pair dictionary attached to the record */ 290static char *log_dict(const struct printk_log *msg) 291{ 292 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 293} 294 295/* get record by index; idx must point to valid msg */ 296static struct printk_log *log_from_idx(u32 idx) 297{ 298 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 299 300 /* 301 * A length == 0 record is the end of buffer marker. Wrap around and 302 * read the message at the start of the buffer. 303 */ 304 if (!msg->len) 305 return (struct printk_log *)log_buf; 306 return msg; 307} 308 309/* get next record; idx must point to valid msg */ 310static u32 log_next(u32 idx) 311{ 312 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 313 314 /* length == 0 indicates the end of the buffer; wrap */ 315 /* 316 * A length == 0 record is the end of buffer marker. Wrap around and 317 * read the message at the start of the buffer as *this* one, and 318 * return the one after that. 319 */ 320 if (!msg->len) { 321 msg = (struct printk_log *)log_buf; 322 return msg->len; 323 } 324 return idx + msg->len; 325} 326 327/* 328 * Check whether there is enough free space for the given message. 329 * 330 * The same values of first_idx and next_idx mean that the buffer 331 * is either empty or full. 332 * 333 * If the buffer is empty, we must respect the position of the indexes. 334 * They cannot be reset to the beginning of the buffer. 335 */ 336static int logbuf_has_space(u32 msg_size, bool empty) 337{ 338 u32 free; 339 340 if (log_next_idx > log_first_idx || empty) 341 free = max(log_buf_len - log_next_idx, log_first_idx); 342 else 343 free = log_first_idx - log_next_idx; 344 345 /* 346 * We need space also for an empty header that signalizes wrapping 347 * of the buffer. 348 */ 349 return free >= msg_size + sizeof(struct printk_log); 350} 351 352static int log_make_free_space(u32 msg_size) 353{ 354 while (log_first_seq < log_next_seq) { 355 if (logbuf_has_space(msg_size, false)) 356 return 0; 357 /* drop old messages until we have enough contiguous space */ 358 log_first_idx = log_next(log_first_idx); 359 log_first_seq++; 360 } 361 362 /* sequence numbers are equal, so the log buffer is empty */ 363 if (logbuf_has_space(msg_size, true)) 364 return 0; 365 366 return -ENOMEM; 367} 368 369/* compute the message size including the padding bytes */ 370static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 371{ 372 u32 size; 373 374 size = sizeof(struct printk_log) + text_len + dict_len; 375 *pad_len = (-size) & (LOG_ALIGN - 1); 376 size += *pad_len; 377 378 return size; 379} 380 381/* 382 * Define how much of the log buffer we could take at maximum. The value 383 * must be greater than two. Note that only half of the buffer is available 384 * when the index points to the middle. 385 */ 386#define MAX_LOG_TAKE_PART 4 387static const char trunc_msg[] = "<truncated>"; 388 389static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 390 u16 *dict_len, u32 *pad_len) 391{ 392 /* 393 * The message should not take the whole buffer. Otherwise, it might 394 * get removed too soon. 395 */ 396 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 397 if (*text_len > max_text_len) 398 *text_len = max_text_len; 399 /* enable the warning message */ 400 *trunc_msg_len = strlen(trunc_msg); 401 /* disable the "dict" completely */ 402 *dict_len = 0; 403 /* compute the size again, count also the warning message */ 404 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 405} 406 407/* insert record into the buffer, discard old ones, update heads */ 408static int log_store(int facility, int level, 409 enum log_flags flags, u64 ts_nsec, 410 const char *dict, u16 dict_len, 411 const char *text, u16 text_len) 412{ 413 struct printk_log *msg; 414 u32 size, pad_len; 415 u16 trunc_msg_len = 0; 416 417 /* number of '\0' padding bytes to next message */ 418 size = msg_used_size(text_len, dict_len, &pad_len); 419 420 if (log_make_free_space(size)) { 421 /* truncate the message if it is too long for empty buffer */ 422 size = truncate_msg(&text_len, &trunc_msg_len, 423 &dict_len, &pad_len); 424 /* survive when the log buffer is too small for trunc_msg */ 425 if (log_make_free_space(size)) 426 return 0; 427 } 428 429 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 430 /* 431 * This message + an additional empty header does not fit 432 * at the end of the buffer. Add an empty header with len == 0 433 * to signify a wrap around. 434 */ 435 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 436 log_next_idx = 0; 437 } 438 439 /* fill message */ 440 msg = (struct printk_log *)(log_buf + log_next_idx); 441 memcpy(log_text(msg), text, text_len); 442 msg->text_len = text_len; 443 if (trunc_msg_len) { 444 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 445 msg->text_len += trunc_msg_len; 446 } 447 memcpy(log_dict(msg), dict, dict_len); 448 msg->dict_len = dict_len; 449 msg->facility = facility; 450 msg->level = level & 7; 451 msg->flags = flags & 0x1f; 452 if (ts_nsec > 0) 453 msg->ts_nsec = ts_nsec; 454 else 455 msg->ts_nsec = local_clock(); 456 memset(log_dict(msg) + dict_len, 0, pad_len); 457 msg->len = size; 458 459 /* insert message */ 460 log_next_idx += msg->len; 461 log_next_seq++; 462 463 return msg->text_len; 464} 465 466int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 467 468static int syslog_action_restricted(int type) 469{ 470 if (dmesg_restrict) 471 return 1; 472 /* 473 * Unless restricted, we allow "read all" and "get buffer size" 474 * for everybody. 475 */ 476 return type != SYSLOG_ACTION_READ_ALL && 477 type != SYSLOG_ACTION_SIZE_BUFFER; 478} 479 480int check_syslog_permissions(int type, bool from_file) 481{ 482 /* 483 * If this is from /proc/kmsg and we've already opened it, then we've 484 * already done the capabilities checks at open time. 485 */ 486 if (from_file && type != SYSLOG_ACTION_OPEN) 487 goto ok; 488 489 if (syslog_action_restricted(type)) { 490 if (capable(CAP_SYSLOG)) 491 goto ok; 492 /* 493 * For historical reasons, accept CAP_SYS_ADMIN too, with 494 * a warning. 495 */ 496 if (capable(CAP_SYS_ADMIN)) { 497 pr_warn_once("%s (%d): Attempt to access syslog with " 498 "CAP_SYS_ADMIN but no CAP_SYSLOG " 499 "(deprecated).\n", 500 current->comm, task_pid_nr(current)); 501 goto ok; 502 } 503 return -EPERM; 504 } 505ok: 506 return security_syslog(type); 507} 508 509 510/* /dev/kmsg - userspace message inject/listen interface */ 511struct devkmsg_user { 512 u64 seq; 513 u32 idx; 514 enum log_flags prev; 515 struct mutex lock; 516 char buf[8192]; 517}; 518 519static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 520{ 521 char *buf, *line; 522 int i; 523 int level = default_message_loglevel; 524 int facility = 1; /* LOG_USER */ 525 size_t len = iov_iter_count(from); 526 ssize_t ret = len; 527 528 if (len > LOG_LINE_MAX) 529 return -EINVAL; 530 buf = kmalloc(len+1, GFP_KERNEL); 531 if (buf == NULL) 532 return -ENOMEM; 533 534 buf[len] = '\0'; 535 if (copy_from_iter(buf, len, from) != len) { 536 kfree(buf); 537 return -EFAULT; 538 } 539 540 /* 541 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 542 * the decimal value represents 32bit, the lower 3 bit are the log 543 * level, the rest are the log facility. 544 * 545 * If no prefix or no userspace facility is specified, we 546 * enforce LOG_USER, to be able to reliably distinguish 547 * kernel-generated messages from userspace-injected ones. 548 */ 549 line = buf; 550 if (line[0] == '<') { 551 char *endp = NULL; 552 553 i = simple_strtoul(line+1, &endp, 10); 554 if (endp && endp[0] == '>') { 555 level = i & 7; 556 if (i >> 3) 557 facility = i >> 3; 558 endp++; 559 len -= endp - line; 560 line = endp; 561 } 562 } 563 564 printk_emit(facility, level, NULL, 0, "%s", line); 565 kfree(buf); 566 return ret; 567} 568 569static ssize_t devkmsg_read(struct file *file, char __user *buf, 570 size_t count, loff_t *ppos) 571{ 572 struct devkmsg_user *user = file->private_data; 573 struct printk_log *msg; 574 u64 ts_usec; 575 size_t i; 576 char cont = '-'; 577 size_t len; 578 ssize_t ret; 579 580 if (!user) 581 return -EBADF; 582 583 ret = mutex_lock_interruptible(&user->lock); 584 if (ret) 585 return ret; 586 raw_spin_lock_irq(&logbuf_lock); 587 while (user->seq == log_next_seq) { 588 if (file->f_flags & O_NONBLOCK) { 589 ret = -EAGAIN; 590 raw_spin_unlock_irq(&logbuf_lock); 591 goto out; 592 } 593 594 raw_spin_unlock_irq(&logbuf_lock); 595 ret = wait_event_interruptible(log_wait, 596 user->seq != log_next_seq); 597 if (ret) 598 goto out; 599 raw_spin_lock_irq(&logbuf_lock); 600 } 601 602 if (user->seq < log_first_seq) { 603 /* our last seen message is gone, return error and reset */ 604 user->idx = log_first_idx; 605 user->seq = log_first_seq; 606 ret = -EPIPE; 607 raw_spin_unlock_irq(&logbuf_lock); 608 goto out; 609 } 610 611 msg = log_from_idx(user->idx); 612 ts_usec = msg->ts_nsec; 613 do_div(ts_usec, 1000); 614 615 /* 616 * If we couldn't merge continuation line fragments during the print, 617 * export the stored flags to allow an optional external merge of the 618 * records. Merging the records isn't always neccessarily correct, like 619 * when we hit a race during printing. In most cases though, it produces 620 * better readable output. 'c' in the record flags mark the first 621 * fragment of a line, '+' the following. 622 */ 623 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 624 cont = 'c'; 625 else if ((msg->flags & LOG_CONT) || 626 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 627 cont = '+'; 628 629 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 630 (msg->facility << 3) | msg->level, 631 user->seq, ts_usec, cont); 632 user->prev = msg->flags; 633 634 /* escape non-printable characters */ 635 for (i = 0; i < msg->text_len; i++) { 636 unsigned char c = log_text(msg)[i]; 637 638 if (c < ' ' || c >= 127 || c == '\\') 639 len += sprintf(user->buf + len, "\\x%02x", c); 640 else 641 user->buf[len++] = c; 642 } 643 user->buf[len++] = '\n'; 644 645 if (msg->dict_len) { 646 bool line = true; 647 648 for (i = 0; i < msg->dict_len; i++) { 649 unsigned char c = log_dict(msg)[i]; 650 651 if (line) { 652 user->buf[len++] = ' '; 653 line = false; 654 } 655 656 if (c == '\0') { 657 user->buf[len++] = '\n'; 658 line = true; 659 continue; 660 } 661 662 if (c < ' ' || c >= 127 || c == '\\') { 663 len += sprintf(user->buf + len, "\\x%02x", c); 664 continue; 665 } 666 667 user->buf[len++] = c; 668 } 669 user->buf[len++] = '\n'; 670 } 671 672 user->idx = log_next(user->idx); 673 user->seq++; 674 raw_spin_unlock_irq(&logbuf_lock); 675 676 if (len > count) { 677 ret = -EINVAL; 678 goto out; 679 } 680 681 if (copy_to_user(buf, user->buf, len)) { 682 ret = -EFAULT; 683 goto out; 684 } 685 ret = len; 686out: 687 mutex_unlock(&user->lock); 688 return ret; 689} 690 691static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 692{ 693 struct devkmsg_user *user = file->private_data; 694 loff_t ret = 0; 695 696 if (!user) 697 return -EBADF; 698 if (offset) 699 return -ESPIPE; 700 701 raw_spin_lock_irq(&logbuf_lock); 702 switch (whence) { 703 case SEEK_SET: 704 /* the first record */ 705 user->idx = log_first_idx; 706 user->seq = log_first_seq; 707 break; 708 case SEEK_DATA: 709 /* 710 * The first record after the last SYSLOG_ACTION_CLEAR, 711 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 712 * changes no global state, and does not clear anything. 713 */ 714 user->idx = clear_idx; 715 user->seq = clear_seq; 716 break; 717 case SEEK_END: 718 /* after the last record */ 719 user->idx = log_next_idx; 720 user->seq = log_next_seq; 721 break; 722 default: 723 ret = -EINVAL; 724 } 725 raw_spin_unlock_irq(&logbuf_lock); 726 return ret; 727} 728 729static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 730{ 731 struct devkmsg_user *user = file->private_data; 732 int ret = 0; 733 734 if (!user) 735 return POLLERR|POLLNVAL; 736 737 poll_wait(file, &log_wait, wait); 738 739 raw_spin_lock_irq(&logbuf_lock); 740 if (user->seq < log_next_seq) { 741 /* return error when data has vanished underneath us */ 742 if (user->seq < log_first_seq) 743 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 744 else 745 ret = POLLIN|POLLRDNORM; 746 } 747 raw_spin_unlock_irq(&logbuf_lock); 748 749 return ret; 750} 751 752static int devkmsg_open(struct inode *inode, struct file *file) 753{ 754 struct devkmsg_user *user; 755 int err; 756 757 /* write-only does not need any file context */ 758 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 759 return 0; 760 761 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 762 SYSLOG_FROM_READER); 763 if (err) 764 return err; 765 766 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 767 if (!user) 768 return -ENOMEM; 769 770 mutex_init(&user->lock); 771 772 raw_spin_lock_irq(&logbuf_lock); 773 user->idx = log_first_idx; 774 user->seq = log_first_seq; 775 raw_spin_unlock_irq(&logbuf_lock); 776 777 file->private_data = user; 778 return 0; 779} 780 781static int devkmsg_release(struct inode *inode, struct file *file) 782{ 783 struct devkmsg_user *user = file->private_data; 784 785 if (!user) 786 return 0; 787 788 mutex_destroy(&user->lock); 789 kfree(user); 790 return 0; 791} 792 793const struct file_operations kmsg_fops = { 794 .open = devkmsg_open, 795 .read = devkmsg_read, 796 .write_iter = devkmsg_write, 797 .llseek = devkmsg_llseek, 798 .poll = devkmsg_poll, 799 .release = devkmsg_release, 800}; 801 802#ifdef CONFIG_KEXEC 803/* 804 * This appends the listed symbols to /proc/vmcore 805 * 806 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 807 * obtain access to symbols that are otherwise very difficult to locate. These 808 * symbols are specifically used so that utilities can access and extract the 809 * dmesg log from a vmcore file after a crash. 810 */ 811void log_buf_kexec_setup(void) 812{ 813 VMCOREINFO_SYMBOL(log_buf); 814 VMCOREINFO_SYMBOL(log_buf_len); 815 VMCOREINFO_SYMBOL(log_first_idx); 816 VMCOREINFO_SYMBOL(log_next_idx); 817 /* 818 * Export struct printk_log size and field offsets. User space tools can 819 * parse it and detect any changes to structure down the line. 820 */ 821 VMCOREINFO_STRUCT_SIZE(printk_log); 822 VMCOREINFO_OFFSET(printk_log, ts_nsec); 823 VMCOREINFO_OFFSET(printk_log, len); 824 VMCOREINFO_OFFSET(printk_log, text_len); 825 VMCOREINFO_OFFSET(printk_log, dict_len); 826} 827#endif 828 829/* requested log_buf_len from kernel cmdline */ 830static unsigned long __initdata new_log_buf_len; 831 832/* we practice scaling the ring buffer by powers of 2 */ 833static void __init log_buf_len_update(unsigned size) 834{ 835 if (size) 836 size = roundup_pow_of_two(size); 837 if (size > log_buf_len) 838 new_log_buf_len = size; 839} 840 841/* save requested log_buf_len since it's too early to process it */ 842static int __init log_buf_len_setup(char *str) 843{ 844 unsigned size = memparse(str, &str); 845 846 log_buf_len_update(size); 847 848 return 0; 849} 850early_param("log_buf_len", log_buf_len_setup); 851 852#ifdef CONFIG_SMP 853#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 854 855static void __init log_buf_add_cpu(void) 856{ 857 unsigned int cpu_extra; 858 859 /* 860 * archs should set up cpu_possible_bits properly with 861 * set_cpu_possible() after setup_arch() but just in 862 * case lets ensure this is valid. 863 */ 864 if (num_possible_cpus() == 1) 865 return; 866 867 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 868 869 /* by default this will only continue through for large > 64 CPUs */ 870 if (cpu_extra <= __LOG_BUF_LEN / 2) 871 return; 872 873 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 874 __LOG_CPU_MAX_BUF_LEN); 875 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 876 cpu_extra); 877 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 878 879 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 880} 881#else /* !CONFIG_SMP */ 882static inline void log_buf_add_cpu(void) {} 883#endif /* CONFIG_SMP */ 884 885void __init setup_log_buf(int early) 886{ 887 unsigned long flags; 888 char *new_log_buf; 889 int free; 890 891 if (log_buf != __log_buf) 892 return; 893 894 if (!early && !new_log_buf_len) 895 log_buf_add_cpu(); 896 897 if (!new_log_buf_len) 898 return; 899 900 if (early) { 901 new_log_buf = 902 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 903 } else { 904 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 905 LOG_ALIGN); 906 } 907 908 if (unlikely(!new_log_buf)) { 909 pr_err("log_buf_len: %ld bytes not available\n", 910 new_log_buf_len); 911 return; 912 } 913 914 raw_spin_lock_irqsave(&logbuf_lock, flags); 915 log_buf_len = new_log_buf_len; 916 log_buf = new_log_buf; 917 new_log_buf_len = 0; 918 free = __LOG_BUF_LEN - log_next_idx; 919 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 920 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 921 922 pr_info("log_buf_len: %d bytes\n", log_buf_len); 923 pr_info("early log buf free: %d(%d%%)\n", 924 free, (free * 100) / __LOG_BUF_LEN); 925} 926 927static bool __read_mostly ignore_loglevel; 928 929static int __init ignore_loglevel_setup(char *str) 930{ 931 ignore_loglevel = true; 932 pr_info("debug: ignoring loglevel setting.\n"); 933 934 return 0; 935} 936 937early_param("ignore_loglevel", ignore_loglevel_setup); 938module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 939MODULE_PARM_DESC(ignore_loglevel, 940 "ignore loglevel setting (prints all kernel messages to the console)"); 941 942#ifdef CONFIG_BOOT_PRINTK_DELAY 943 944static int boot_delay; /* msecs delay after each printk during bootup */ 945static unsigned long long loops_per_msec; /* based on boot_delay */ 946 947static int __init boot_delay_setup(char *str) 948{ 949 unsigned long lpj; 950 951 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 952 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 953 954 get_option(&str, &boot_delay); 955 if (boot_delay > 10 * 1000) 956 boot_delay = 0; 957 958 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 959 "HZ: %d, loops_per_msec: %llu\n", 960 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 961 return 0; 962} 963early_param("boot_delay", boot_delay_setup); 964 965static void boot_delay_msec(int level) 966{ 967 unsigned long long k; 968 unsigned long timeout; 969 970 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 971 || (level >= console_loglevel && !ignore_loglevel)) { 972 return; 973 } 974 975 k = (unsigned long long)loops_per_msec * boot_delay; 976 977 timeout = jiffies + msecs_to_jiffies(boot_delay); 978 while (k) { 979 k--; 980 cpu_relax(); 981 /* 982 * use (volatile) jiffies to prevent 983 * compiler reduction; loop termination via jiffies 984 * is secondary and may or may not happen. 985 */ 986 if (time_after(jiffies, timeout)) 987 break; 988 touch_nmi_watchdog(); 989 } 990} 991#else 992static inline void boot_delay_msec(int level) 993{ 994} 995#endif 996 997static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 998module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 999 1000static size_t print_time(u64 ts, char *buf) 1001{ 1002 unsigned long rem_nsec; 1003 1004 if (!printk_time) 1005 return 0; 1006 1007 rem_nsec = do_div(ts, 1000000000); 1008 1009 if (!buf) 1010 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1011 1012 return sprintf(buf, "[%5lu.%06lu] ", 1013 (unsigned long)ts, rem_nsec / 1000); 1014} 1015 1016static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1017{ 1018 size_t len = 0; 1019 unsigned int prefix = (msg->facility << 3) | msg->level; 1020 1021 if (syslog) { 1022 if (buf) { 1023 len += sprintf(buf, "<%u>", prefix); 1024 } else { 1025 len += 3; 1026 if (prefix > 999) 1027 len += 3; 1028 else if (prefix > 99) 1029 len += 2; 1030 else if (prefix > 9) 1031 len++; 1032 } 1033 } 1034 1035 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1036 return len; 1037} 1038 1039static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1040 bool syslog, char *buf, size_t size) 1041{ 1042 const char *text = log_text(msg); 1043 size_t text_size = msg->text_len; 1044 bool prefix = true; 1045 bool newline = true; 1046 size_t len = 0; 1047 1048 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1049 prefix = false; 1050 1051 if (msg->flags & LOG_CONT) { 1052 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1053 prefix = false; 1054 1055 if (!(msg->flags & LOG_NEWLINE)) 1056 newline = false; 1057 } 1058 1059 do { 1060 const char *next = memchr(text, '\n', text_size); 1061 size_t text_len; 1062 1063 if (next) { 1064 text_len = next - text; 1065 next++; 1066 text_size -= next - text; 1067 } else { 1068 text_len = text_size; 1069 } 1070 1071 if (buf) { 1072 if (print_prefix(msg, syslog, NULL) + 1073 text_len + 1 >= size - len) 1074 break; 1075 1076 if (prefix) 1077 len += print_prefix(msg, syslog, buf + len); 1078 memcpy(buf + len, text, text_len); 1079 len += text_len; 1080 if (next || newline) 1081 buf[len++] = '\n'; 1082 } else { 1083 /* SYSLOG_ACTION_* buffer size only calculation */ 1084 if (prefix) 1085 len += print_prefix(msg, syslog, NULL); 1086 len += text_len; 1087 if (next || newline) 1088 len++; 1089 } 1090 1091 prefix = true; 1092 text = next; 1093 } while (text); 1094 1095 return len; 1096} 1097 1098static int syslog_print(char __user *buf, int size) 1099{ 1100 char *text; 1101 struct printk_log *msg; 1102 int len = 0; 1103 1104 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1105 if (!text) 1106 return -ENOMEM; 1107 1108 while (size > 0) { 1109 size_t n; 1110 size_t skip; 1111 1112 raw_spin_lock_irq(&logbuf_lock); 1113 if (syslog_seq < log_first_seq) { 1114 /* messages are gone, move to first one */ 1115 syslog_seq = log_first_seq; 1116 syslog_idx = log_first_idx; 1117 syslog_prev = 0; 1118 syslog_partial = 0; 1119 } 1120 if (syslog_seq == log_next_seq) { 1121 raw_spin_unlock_irq(&logbuf_lock); 1122 break; 1123 } 1124 1125 skip = syslog_partial; 1126 msg = log_from_idx(syslog_idx); 1127 n = msg_print_text(msg, syslog_prev, true, text, 1128 LOG_LINE_MAX + PREFIX_MAX); 1129 if (n - syslog_partial <= size) { 1130 /* message fits into buffer, move forward */ 1131 syslog_idx = log_next(syslog_idx); 1132 syslog_seq++; 1133 syslog_prev = msg->flags; 1134 n -= syslog_partial; 1135 syslog_partial = 0; 1136 } else if (!len){ 1137 /* partial read(), remember position */ 1138 n = size; 1139 syslog_partial += n; 1140 } else 1141 n = 0; 1142 raw_spin_unlock_irq(&logbuf_lock); 1143 1144 if (!n) 1145 break; 1146 1147 if (copy_to_user(buf, text + skip, n)) { 1148 if (!len) 1149 len = -EFAULT; 1150 break; 1151 } 1152 1153 len += n; 1154 size -= n; 1155 buf += n; 1156 } 1157 1158 kfree(text); 1159 return len; 1160} 1161 1162static int syslog_print_all(char __user *buf, int size, bool clear) 1163{ 1164 char *text; 1165 int len = 0; 1166 1167 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1168 if (!text) 1169 return -ENOMEM; 1170 1171 raw_spin_lock_irq(&logbuf_lock); 1172 if (buf) { 1173 u64 next_seq; 1174 u64 seq; 1175 u32 idx; 1176 enum log_flags prev; 1177 1178 if (clear_seq < log_first_seq) { 1179 /* messages are gone, move to first available one */ 1180 clear_seq = log_first_seq; 1181 clear_idx = log_first_idx; 1182 } 1183 1184 /* 1185 * Find first record that fits, including all following records, 1186 * into the user-provided buffer for this dump. 1187 */ 1188 seq = clear_seq; 1189 idx = clear_idx; 1190 prev = 0; 1191 while (seq < log_next_seq) { 1192 struct printk_log *msg = log_from_idx(idx); 1193 1194 len += msg_print_text(msg, prev, true, NULL, 0); 1195 prev = msg->flags; 1196 idx = log_next(idx); 1197 seq++; 1198 } 1199 1200 /* move first record forward until length fits into the buffer */ 1201 seq = clear_seq; 1202 idx = clear_idx; 1203 prev = 0; 1204 while (len > size && seq < log_next_seq) { 1205 struct printk_log *msg = log_from_idx(idx); 1206 1207 len -= msg_print_text(msg, prev, true, NULL, 0); 1208 prev = msg->flags; 1209 idx = log_next(idx); 1210 seq++; 1211 } 1212 1213 /* last message fitting into this dump */ 1214 next_seq = log_next_seq; 1215 1216 len = 0; 1217 while (len >= 0 && seq < next_seq) { 1218 struct printk_log *msg = log_from_idx(idx); 1219 int textlen; 1220 1221 textlen = msg_print_text(msg, prev, true, text, 1222 LOG_LINE_MAX + PREFIX_MAX); 1223 if (textlen < 0) { 1224 len = textlen; 1225 break; 1226 } 1227 idx = log_next(idx); 1228 seq++; 1229 prev = msg->flags; 1230 1231 raw_spin_unlock_irq(&logbuf_lock); 1232 if (copy_to_user(buf + len, text, textlen)) 1233 len = -EFAULT; 1234 else 1235 len += textlen; 1236 raw_spin_lock_irq(&logbuf_lock); 1237 1238 if (seq < log_first_seq) { 1239 /* messages are gone, move to next one */ 1240 seq = log_first_seq; 1241 idx = log_first_idx; 1242 prev = 0; 1243 } 1244 } 1245 } 1246 1247 if (clear) { 1248 clear_seq = log_next_seq; 1249 clear_idx = log_next_idx; 1250 } 1251 raw_spin_unlock_irq(&logbuf_lock); 1252 1253 kfree(text); 1254 return len; 1255} 1256 1257int do_syslog(int type, char __user *buf, int len, bool from_file) 1258{ 1259 bool clear = false; 1260 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1261 int error; 1262 1263 error = check_syslog_permissions(type, from_file); 1264 if (error) 1265 goto out; 1266 1267 switch (type) { 1268 case SYSLOG_ACTION_CLOSE: /* Close log */ 1269 break; 1270 case SYSLOG_ACTION_OPEN: /* Open log */ 1271 break; 1272 case SYSLOG_ACTION_READ: /* Read from log */ 1273 error = -EINVAL; 1274 if (!buf || len < 0) 1275 goto out; 1276 error = 0; 1277 if (!len) 1278 goto out; 1279 if (!access_ok(VERIFY_WRITE, buf, len)) { 1280 error = -EFAULT; 1281 goto out; 1282 } 1283 error = wait_event_interruptible(log_wait, 1284 syslog_seq != log_next_seq); 1285 if (error) 1286 goto out; 1287 error = syslog_print(buf, len); 1288 break; 1289 /* Read/clear last kernel messages */ 1290 case SYSLOG_ACTION_READ_CLEAR: 1291 clear = true; 1292 /* FALL THRU */ 1293 /* Read last kernel messages */ 1294 case SYSLOG_ACTION_READ_ALL: 1295 error = -EINVAL; 1296 if (!buf || len < 0) 1297 goto out; 1298 error = 0; 1299 if (!len) 1300 goto out; 1301 if (!access_ok(VERIFY_WRITE, buf, len)) { 1302 error = -EFAULT; 1303 goto out; 1304 } 1305 error = syslog_print_all(buf, len, clear); 1306 break; 1307 /* Clear ring buffer */ 1308 case SYSLOG_ACTION_CLEAR: 1309 syslog_print_all(NULL, 0, true); 1310 break; 1311 /* Disable logging to console */ 1312 case SYSLOG_ACTION_CONSOLE_OFF: 1313 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1314 saved_console_loglevel = console_loglevel; 1315 console_loglevel = minimum_console_loglevel; 1316 break; 1317 /* Enable logging to console */ 1318 case SYSLOG_ACTION_CONSOLE_ON: 1319 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1320 console_loglevel = saved_console_loglevel; 1321 saved_console_loglevel = LOGLEVEL_DEFAULT; 1322 } 1323 break; 1324 /* Set level of messages printed to console */ 1325 case SYSLOG_ACTION_CONSOLE_LEVEL: 1326 error = -EINVAL; 1327 if (len < 1 || len > 8) 1328 goto out; 1329 if (len < minimum_console_loglevel) 1330 len = minimum_console_loglevel; 1331 console_loglevel = len; 1332 /* Implicitly re-enable logging to console */ 1333 saved_console_loglevel = LOGLEVEL_DEFAULT; 1334 error = 0; 1335 break; 1336 /* Number of chars in the log buffer */ 1337 case SYSLOG_ACTION_SIZE_UNREAD: 1338 raw_spin_lock_irq(&logbuf_lock); 1339 if (syslog_seq < log_first_seq) { 1340 /* messages are gone, move to first one */ 1341 syslog_seq = log_first_seq; 1342 syslog_idx = log_first_idx; 1343 syslog_prev = 0; 1344 syslog_partial = 0; 1345 } 1346 if (from_file) { 1347 /* 1348 * Short-cut for poll(/"proc/kmsg") which simply checks 1349 * for pending data, not the size; return the count of 1350 * records, not the length. 1351 */ 1352 error = log_next_seq - syslog_seq; 1353 } else { 1354 u64 seq = syslog_seq; 1355 u32 idx = syslog_idx; 1356 enum log_flags prev = syslog_prev; 1357 1358 error = 0; 1359 while (seq < log_next_seq) { 1360 struct printk_log *msg = log_from_idx(idx); 1361 1362 error += msg_print_text(msg, prev, true, NULL, 0); 1363 idx = log_next(idx); 1364 seq++; 1365 prev = msg->flags; 1366 } 1367 error -= syslog_partial; 1368 } 1369 raw_spin_unlock_irq(&logbuf_lock); 1370 break; 1371 /* Size of the log buffer */ 1372 case SYSLOG_ACTION_SIZE_BUFFER: 1373 error = log_buf_len; 1374 break; 1375 default: 1376 error = -EINVAL; 1377 break; 1378 } 1379out: 1380 return error; 1381} 1382 1383SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1384{ 1385 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1386} 1387 1388/* 1389 * Call the console drivers, asking them to write out 1390 * log_buf[start] to log_buf[end - 1]. 1391 * The console_lock must be held. 1392 */ 1393static void call_console_drivers(int level, const char *text, size_t len) 1394{ 1395 struct console *con; 1396 1397 trace_console(text, len); 1398 1399 if (level >= console_loglevel && !ignore_loglevel) 1400 return; 1401 if (!console_drivers) 1402 return; 1403 1404 for_each_console(con) { 1405 if (exclusive_console && con != exclusive_console) 1406 continue; 1407 if (!(con->flags & CON_ENABLED)) 1408 continue; 1409 if (!con->write) 1410 continue; 1411 if (!cpu_online(smp_processor_id()) && 1412 !(con->flags & CON_ANYTIME)) 1413 continue; 1414 con->write(con, text, len); 1415 } 1416} 1417 1418/* 1419 * Zap console related locks when oopsing. 1420 * To leave time for slow consoles to print a full oops, 1421 * only zap at most once every 30 seconds. 1422 */ 1423static void zap_locks(void) 1424{ 1425 static unsigned long oops_timestamp; 1426 1427 if (time_after_eq(jiffies, oops_timestamp) && 1428 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1429 return; 1430 1431 oops_timestamp = jiffies; 1432 1433 debug_locks_off(); 1434 /* If a crash is occurring, make sure we can't deadlock */ 1435 raw_spin_lock_init(&logbuf_lock); 1436 /* And make sure that we print immediately */ 1437 sema_init(&console_sem, 1); 1438} 1439 1440/* 1441 * Check if we have any console that is capable of printing while cpu is 1442 * booting or shutting down. Requires console_sem. 1443 */ 1444static int have_callable_console(void) 1445{ 1446 struct console *con; 1447 1448 for_each_console(con) 1449 if (con->flags & CON_ANYTIME) 1450 return 1; 1451 1452 return 0; 1453} 1454 1455/* 1456 * Can we actually use the console at this time on this cpu? 1457 * 1458 * Console drivers may assume that per-cpu resources have been allocated. So 1459 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1460 * call them until this CPU is officially up. 1461 */ 1462static inline int can_use_console(unsigned int cpu) 1463{ 1464 return cpu_online(cpu) || have_callable_console(); 1465} 1466 1467/* 1468 * Try to get console ownership to actually show the kernel 1469 * messages from a 'printk'. Return true (and with the 1470 * console_lock held, and 'console_locked' set) if it 1471 * is successful, false otherwise. 1472 */ 1473static int console_trylock_for_printk(void) 1474{ 1475 unsigned int cpu = smp_processor_id(); 1476 1477 if (!console_trylock()) 1478 return 0; 1479 /* 1480 * If we can't use the console, we need to release the console 1481 * semaphore by hand to avoid flushing the buffer. We need to hold the 1482 * console semaphore in order to do this test safely. 1483 */ 1484 if (!can_use_console(cpu)) { 1485 console_locked = 0; 1486 up_console_sem(); 1487 return 0; 1488 } 1489 return 1; 1490} 1491 1492int printk_delay_msec __read_mostly; 1493 1494static inline void printk_delay(void) 1495{ 1496 if (unlikely(printk_delay_msec)) { 1497 int m = printk_delay_msec; 1498 1499 while (m--) { 1500 mdelay(1); 1501 touch_nmi_watchdog(); 1502 } 1503 } 1504} 1505 1506/* 1507 * Continuation lines are buffered, and not committed to the record buffer 1508 * until the line is complete, or a race forces it. The line fragments 1509 * though, are printed immediately to the consoles to ensure everything has 1510 * reached the console in case of a kernel crash. 1511 */ 1512static struct cont { 1513 char buf[LOG_LINE_MAX]; 1514 size_t len; /* length == 0 means unused buffer */ 1515 size_t cons; /* bytes written to console */ 1516 struct task_struct *owner; /* task of first print*/ 1517 u64 ts_nsec; /* time of first print */ 1518 u8 level; /* log level of first message */ 1519 u8 facility; /* log facility of first message */ 1520 enum log_flags flags; /* prefix, newline flags */ 1521 bool flushed:1; /* buffer sealed and committed */ 1522} cont; 1523 1524static void cont_flush(enum log_flags flags) 1525{ 1526 if (cont.flushed) 1527 return; 1528 if (cont.len == 0) 1529 return; 1530 1531 if (cont.cons) { 1532 /* 1533 * If a fragment of this line was directly flushed to the 1534 * console; wait for the console to pick up the rest of the 1535 * line. LOG_NOCONS suppresses a duplicated output. 1536 */ 1537 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1538 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1539 cont.flags = flags; 1540 cont.flushed = true; 1541 } else { 1542 /* 1543 * If no fragment of this line ever reached the console, 1544 * just submit it to the store and free the buffer. 1545 */ 1546 log_store(cont.facility, cont.level, flags, 0, 1547 NULL, 0, cont.buf, cont.len); 1548 cont.len = 0; 1549 } 1550} 1551 1552static bool cont_add(int facility, int level, const char *text, size_t len) 1553{ 1554 if (cont.len && cont.flushed) 1555 return false; 1556 1557 if (cont.len + len > sizeof(cont.buf)) { 1558 /* the line gets too long, split it up in separate records */ 1559 cont_flush(LOG_CONT); 1560 return false; 1561 } 1562 1563 if (!cont.len) { 1564 cont.facility = facility; 1565 cont.level = level; 1566 cont.owner = current; 1567 cont.ts_nsec = local_clock(); 1568 cont.flags = 0; 1569 cont.cons = 0; 1570 cont.flushed = false; 1571 } 1572 1573 memcpy(cont.buf + cont.len, text, len); 1574 cont.len += len; 1575 1576 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1577 cont_flush(LOG_CONT); 1578 1579 return true; 1580} 1581 1582static size_t cont_print_text(char *text, size_t size) 1583{ 1584 size_t textlen = 0; 1585 size_t len; 1586 1587 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1588 textlen += print_time(cont.ts_nsec, text); 1589 size -= textlen; 1590 } 1591 1592 len = cont.len - cont.cons; 1593 if (len > 0) { 1594 if (len+1 > size) 1595 len = size-1; 1596 memcpy(text + textlen, cont.buf + cont.cons, len); 1597 textlen += len; 1598 cont.cons = cont.len; 1599 } 1600 1601 if (cont.flushed) { 1602 if (cont.flags & LOG_NEWLINE) 1603 text[textlen++] = '\n'; 1604 /* got everything, release buffer */ 1605 cont.len = 0; 1606 } 1607 return textlen; 1608} 1609 1610asmlinkage int vprintk_emit(int facility, int level, 1611 const char *dict, size_t dictlen, 1612 const char *fmt, va_list args) 1613{ 1614 static int recursion_bug; 1615 static char textbuf[LOG_LINE_MAX]; 1616 char *text = textbuf; 1617 size_t text_len = 0; 1618 enum log_flags lflags = 0; 1619 unsigned long flags; 1620 int this_cpu; 1621 int printed_len = 0; 1622 bool in_sched = false; 1623 /* cpu currently holding logbuf_lock in this function */ 1624 static unsigned int logbuf_cpu = UINT_MAX; 1625 1626 if (level == LOGLEVEL_SCHED) { 1627 level = LOGLEVEL_DEFAULT; 1628 in_sched = true; 1629 } 1630 1631 boot_delay_msec(level); 1632 printk_delay(); 1633 1634 /* This stops the holder of console_sem just where we want him */ 1635 local_irq_save(flags); 1636 this_cpu = smp_processor_id(); 1637 1638 /* 1639 * Ouch, printk recursed into itself! 1640 */ 1641 if (unlikely(logbuf_cpu == this_cpu)) { 1642 /* 1643 * If a crash is occurring during printk() on this CPU, 1644 * then try to get the crash message out but make sure 1645 * we can't deadlock. Otherwise just return to avoid the 1646 * recursion and return - but flag the recursion so that 1647 * it can be printed at the next appropriate moment: 1648 */ 1649 if (!oops_in_progress && !lockdep_recursing(current)) { 1650 recursion_bug = 1; 1651 local_irq_restore(flags); 1652 return 0; 1653 } 1654 zap_locks(); 1655 } 1656 1657 lockdep_off(); 1658 raw_spin_lock(&logbuf_lock); 1659 logbuf_cpu = this_cpu; 1660 1661 if (unlikely(recursion_bug)) { 1662 static const char recursion_msg[] = 1663 "BUG: recent printk recursion!"; 1664 1665 recursion_bug = 0; 1666 /* emit KERN_CRIT message */ 1667 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1668 NULL, 0, recursion_msg, 1669 strlen(recursion_msg)); 1670 } 1671 1672 /* 1673 * The printf needs to come first; we need the syslog 1674 * prefix which might be passed-in as a parameter. 1675 */ 1676 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1677 1678 /* mark and strip a trailing newline */ 1679 if (text_len && text[text_len-1] == '\n') { 1680 text_len--; 1681 lflags |= LOG_NEWLINE; 1682 } 1683 1684 /* strip kernel syslog prefix and extract log level or control flags */ 1685 if (facility == 0) { 1686 int kern_level = printk_get_level(text); 1687 1688 if (kern_level) { 1689 const char *end_of_header = printk_skip_level(text); 1690 switch (kern_level) { 1691 case '0' ... '7': 1692 if (level == LOGLEVEL_DEFAULT) 1693 level = kern_level - '0'; 1694 /* fallthrough */ 1695 case 'd': /* KERN_DEFAULT */ 1696 lflags |= LOG_PREFIX; 1697 } 1698 /* 1699 * No need to check length here because vscnprintf 1700 * put '\0' at the end of the string. Only valid and 1701 * newly printed level is detected. 1702 */ 1703 text_len -= end_of_header - text; 1704 text = (char *)end_of_header; 1705 } 1706 } 1707 1708 if (level == LOGLEVEL_DEFAULT) 1709 level = default_message_loglevel; 1710 1711 if (dict) 1712 lflags |= LOG_PREFIX|LOG_NEWLINE; 1713 1714 if (!(lflags & LOG_NEWLINE)) { 1715 /* 1716 * Flush the conflicting buffer. An earlier newline was missing, 1717 * or another task also prints continuation lines. 1718 */ 1719 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1720 cont_flush(LOG_NEWLINE); 1721 1722 /* buffer line if possible, otherwise store it right away */ 1723 if (cont_add(facility, level, text, text_len)) 1724 printed_len += text_len; 1725 else 1726 printed_len += log_store(facility, level, 1727 lflags | LOG_CONT, 0, 1728 dict, dictlen, text, text_len); 1729 } else { 1730 bool stored = false; 1731 1732 /* 1733 * If an earlier newline was missing and it was the same task, 1734 * either merge it with the current buffer and flush, or if 1735 * there was a race with interrupts (prefix == true) then just 1736 * flush it out and store this line separately. 1737 * If the preceding printk was from a different task and missed 1738 * a newline, flush and append the newline. 1739 */ 1740 if (cont.len) { 1741 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1742 stored = cont_add(facility, level, text, 1743 text_len); 1744 cont_flush(LOG_NEWLINE); 1745 } 1746 1747 if (stored) 1748 printed_len += text_len; 1749 else 1750 printed_len += log_store(facility, level, lflags, 0, 1751 dict, dictlen, text, text_len); 1752 } 1753 1754 logbuf_cpu = UINT_MAX; 1755 raw_spin_unlock(&logbuf_lock); 1756 lockdep_on(); 1757 local_irq_restore(flags); 1758 1759 /* If called from the scheduler, we can not call up(). */ 1760 if (!in_sched) { 1761 lockdep_off(); 1762 /* 1763 * Disable preemption to avoid being preempted while holding 1764 * console_sem which would prevent anyone from printing to 1765 * console 1766 */ 1767 preempt_disable(); 1768 1769 /* 1770 * Try to acquire and then immediately release the console 1771 * semaphore. The release will print out buffers and wake up 1772 * /dev/kmsg and syslog() users. 1773 */ 1774 if (console_trylock_for_printk()) 1775 console_unlock(); 1776 preempt_enable(); 1777 lockdep_on(); 1778 } 1779 1780 return printed_len; 1781} 1782EXPORT_SYMBOL(vprintk_emit); 1783 1784asmlinkage int vprintk(const char *fmt, va_list args) 1785{ 1786 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1787} 1788EXPORT_SYMBOL(vprintk); 1789 1790asmlinkage int printk_emit(int facility, int level, 1791 const char *dict, size_t dictlen, 1792 const char *fmt, ...) 1793{ 1794 va_list args; 1795 int r; 1796 1797 va_start(args, fmt); 1798 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1799 va_end(args); 1800 1801 return r; 1802} 1803EXPORT_SYMBOL(printk_emit); 1804 1805int vprintk_default(const char *fmt, va_list args) 1806{ 1807 int r; 1808 1809#ifdef CONFIG_KGDB_KDB 1810 if (unlikely(kdb_trap_printk)) { 1811 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1812 return r; 1813 } 1814#endif 1815 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1816 1817 return r; 1818} 1819EXPORT_SYMBOL_GPL(vprintk_default); 1820 1821/* 1822 * This allows printk to be diverted to another function per cpu. 1823 * This is useful for calling printk functions from within NMI 1824 * without worrying about race conditions that can lock up the 1825 * box. 1826 */ 1827DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default; 1828 1829/** 1830 * printk - print a kernel message 1831 * @fmt: format string 1832 * 1833 * This is printk(). It can be called from any context. We want it to work. 1834 * 1835 * We try to grab the console_lock. If we succeed, it's easy - we log the 1836 * output and call the console drivers. If we fail to get the semaphore, we 1837 * place the output into the log buffer and return. The current holder of 1838 * the console_sem will notice the new output in console_unlock(); and will 1839 * send it to the consoles before releasing the lock. 1840 * 1841 * One effect of this deferred printing is that code which calls printk() and 1842 * then changes console_loglevel may break. This is because console_loglevel 1843 * is inspected when the actual printing occurs. 1844 * 1845 * See also: 1846 * printf(3) 1847 * 1848 * See the vsnprintf() documentation for format string extensions over C99. 1849 */ 1850asmlinkage __visible int printk(const char *fmt, ...) 1851{ 1852 printk_func_t vprintk_func; 1853 va_list args; 1854 int r; 1855 1856 va_start(args, fmt); 1857 1858 /* 1859 * If a caller overrides the per_cpu printk_func, then it needs 1860 * to disable preemption when calling printk(). Otherwise 1861 * the printk_func should be set to the default. No need to 1862 * disable preemption here. 1863 */ 1864 vprintk_func = this_cpu_read(printk_func); 1865 r = vprintk_func(fmt, args); 1866 1867 va_end(args); 1868 1869 return r; 1870} 1871EXPORT_SYMBOL(printk); 1872 1873#else /* CONFIG_PRINTK */ 1874 1875#define LOG_LINE_MAX 0 1876#define PREFIX_MAX 0 1877 1878static u64 syslog_seq; 1879static u32 syslog_idx; 1880static u64 console_seq; 1881static u32 console_idx; 1882static enum log_flags syslog_prev; 1883static u64 log_first_seq; 1884static u32 log_first_idx; 1885static u64 log_next_seq; 1886static enum log_flags console_prev; 1887static struct cont { 1888 size_t len; 1889 size_t cons; 1890 u8 level; 1891 bool flushed:1; 1892} cont; 1893static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1894static u32 log_next(u32 idx) { return 0; } 1895static void call_console_drivers(int level, const char *text, size_t len) {} 1896static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1897 bool syslog, char *buf, size_t size) { return 0; } 1898static size_t cont_print_text(char *text, size_t size) { return 0; } 1899 1900/* Still needs to be defined for users */ 1901DEFINE_PER_CPU(printk_func_t, printk_func); 1902 1903#endif /* CONFIG_PRINTK */ 1904 1905#ifdef CONFIG_EARLY_PRINTK 1906struct console *early_console; 1907 1908asmlinkage __visible void early_printk(const char *fmt, ...) 1909{ 1910 va_list ap; 1911 char buf[512]; 1912 int n; 1913 1914 if (!early_console) 1915 return; 1916 1917 va_start(ap, fmt); 1918 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1919 va_end(ap); 1920 1921 early_console->write(early_console, buf, n); 1922} 1923#endif 1924 1925static int __add_preferred_console(char *name, int idx, char *options, 1926 char *brl_options) 1927{ 1928 struct console_cmdline *c; 1929 int i; 1930 1931 /* 1932 * See if this tty is not yet registered, and 1933 * if we have a slot free. 1934 */ 1935 for (i = 0, c = console_cmdline; 1936 i < MAX_CMDLINECONSOLES && c->name[0]; 1937 i++, c++) { 1938 if (strcmp(c->name, name) == 0 && c->index == idx) { 1939 if (!brl_options) 1940 selected_console = i; 1941 return 0; 1942 } 1943 } 1944 if (i == MAX_CMDLINECONSOLES) 1945 return -E2BIG; 1946 if (!brl_options) 1947 selected_console = i; 1948 strlcpy(c->name, name, sizeof(c->name)); 1949 c->options = options; 1950 braille_set_options(c, brl_options); 1951 1952 c->index = idx; 1953 return 0; 1954} 1955/* 1956 * Set up a console. Called via do_early_param() in init/main.c 1957 * for each "console=" parameter in the boot command line. 1958 */ 1959static int __init console_setup(char *str) 1960{ 1961 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1962 char *s, *options, *brl_options = NULL; 1963 int idx; 1964 1965 if (_braille_console_setup(&str, &brl_options)) 1966 return 1; 1967 1968 /* 1969 * Decode str into name, index, options. 1970 */ 1971 if (str[0] >= '0' && str[0] <= '9') { 1972 strcpy(buf, "ttyS"); 1973 strncpy(buf + 4, str, sizeof(buf) - 5); 1974 } else { 1975 strncpy(buf, str, sizeof(buf) - 1); 1976 } 1977 buf[sizeof(buf) - 1] = 0; 1978 options = strchr(str, ','); 1979 if (options) 1980 *(options++) = 0; 1981#ifdef __sparc__ 1982 if (!strcmp(str, "ttya")) 1983 strcpy(buf, "ttyS0"); 1984 if (!strcmp(str, "ttyb")) 1985 strcpy(buf, "ttyS1"); 1986#endif 1987 for (s = buf; *s; s++) 1988 if (isdigit(*s) || *s == ',') 1989 break; 1990 idx = simple_strtoul(s, NULL, 10); 1991 *s = 0; 1992 1993 __add_preferred_console(buf, idx, options, brl_options); 1994 console_set_on_cmdline = 1; 1995 return 1; 1996} 1997__setup("console=", console_setup); 1998 1999/** 2000 * add_preferred_console - add a device to the list of preferred consoles. 2001 * @name: device name 2002 * @idx: device index 2003 * @options: options for this console 2004 * 2005 * The last preferred console added will be used for kernel messages 2006 * and stdin/out/err for init. Normally this is used by console_setup 2007 * above to handle user-supplied console arguments; however it can also 2008 * be used by arch-specific code either to override the user or more 2009 * commonly to provide a default console (ie from PROM variables) when 2010 * the user has not supplied one. 2011 */ 2012int add_preferred_console(char *name, int idx, char *options) 2013{ 2014 return __add_preferred_console(name, idx, options, NULL); 2015} 2016 2017bool console_suspend_enabled = true; 2018EXPORT_SYMBOL(console_suspend_enabled); 2019 2020static int __init console_suspend_disable(char *str) 2021{ 2022 console_suspend_enabled = false; 2023 return 1; 2024} 2025__setup("no_console_suspend", console_suspend_disable); 2026module_param_named(console_suspend, console_suspend_enabled, 2027 bool, S_IRUGO | S_IWUSR); 2028MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2029 " and hibernate operations"); 2030 2031/** 2032 * suspend_console - suspend the console subsystem 2033 * 2034 * This disables printk() while we go into suspend states 2035 */ 2036void suspend_console(void) 2037{ 2038 if (!console_suspend_enabled) 2039 return; 2040 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2041 console_lock(); 2042 console_suspended = 1; 2043 up_console_sem(); 2044} 2045 2046void resume_console(void) 2047{ 2048 if (!console_suspend_enabled) 2049 return; 2050 down_console_sem(); 2051 console_suspended = 0; 2052 console_unlock(); 2053} 2054 2055/** 2056 * console_cpu_notify - print deferred console messages after CPU hotplug 2057 * @self: notifier struct 2058 * @action: CPU hotplug event 2059 * @hcpu: unused 2060 * 2061 * If printk() is called from a CPU that is not online yet, the messages 2062 * will be spooled but will not show up on the console. This function is 2063 * called when a new CPU comes online (or fails to come up), and ensures 2064 * that any such output gets printed. 2065 */ 2066static int console_cpu_notify(struct notifier_block *self, 2067 unsigned long action, void *hcpu) 2068{ 2069 switch (action) { 2070 case CPU_ONLINE: 2071 case CPU_DEAD: 2072 case CPU_DOWN_FAILED: 2073 case CPU_UP_CANCELED: 2074 console_lock(); 2075 console_unlock(); 2076 } 2077 return NOTIFY_OK; 2078} 2079 2080/** 2081 * console_lock - lock the console system for exclusive use. 2082 * 2083 * Acquires a lock which guarantees that the caller has 2084 * exclusive access to the console system and the console_drivers list. 2085 * 2086 * Can sleep, returns nothing. 2087 */ 2088void console_lock(void) 2089{ 2090 might_sleep(); 2091 2092 down_console_sem(); 2093 if (console_suspended) 2094 return; 2095 console_locked = 1; 2096 console_may_schedule = 1; 2097} 2098EXPORT_SYMBOL(console_lock); 2099 2100/** 2101 * console_trylock - try to lock the console system for exclusive use. 2102 * 2103 * Try to acquire a lock which guarantees that the caller has exclusive 2104 * access to the console system and the console_drivers list. 2105 * 2106 * returns 1 on success, and 0 on failure to acquire the lock. 2107 */ 2108int console_trylock(void) 2109{ 2110 if (down_trylock_console_sem()) 2111 return 0; 2112 if (console_suspended) { 2113 up_console_sem(); 2114 return 0; 2115 } 2116 console_locked = 1; 2117 console_may_schedule = 0; 2118 return 1; 2119} 2120EXPORT_SYMBOL(console_trylock); 2121 2122int is_console_locked(void) 2123{ 2124 return console_locked; 2125} 2126 2127static void console_cont_flush(char *text, size_t size) 2128{ 2129 unsigned long flags; 2130 size_t len; 2131 2132 raw_spin_lock_irqsave(&logbuf_lock, flags); 2133 2134 if (!cont.len) 2135 goto out; 2136 2137 /* 2138 * We still queue earlier records, likely because the console was 2139 * busy. The earlier ones need to be printed before this one, we 2140 * did not flush any fragment so far, so just let it queue up. 2141 */ 2142 if (console_seq < log_next_seq && !cont.cons) 2143 goto out; 2144 2145 len = cont_print_text(text, size); 2146 raw_spin_unlock(&logbuf_lock); 2147 stop_critical_timings(); 2148 call_console_drivers(cont.level, text, len); 2149 start_critical_timings(); 2150 local_irq_restore(flags); 2151 return; 2152out: 2153 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2154} 2155 2156/** 2157 * console_unlock - unlock the console system 2158 * 2159 * Releases the console_lock which the caller holds on the console system 2160 * and the console driver list. 2161 * 2162 * While the console_lock was held, console output may have been buffered 2163 * by printk(). If this is the case, console_unlock(); emits 2164 * the output prior to releasing the lock. 2165 * 2166 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2167 * 2168 * console_unlock(); may be called from any context. 2169 */ 2170void console_unlock(void) 2171{ 2172 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2173 static u64 seen_seq; 2174 unsigned long flags; 2175 bool wake_klogd = false; 2176 bool do_cond_resched, retry; 2177 2178 if (console_suspended) { 2179 up_console_sem(); 2180 return; 2181 } 2182 2183 /* 2184 * Console drivers are called under logbuf_lock, so 2185 * @console_may_schedule should be cleared before; however, we may 2186 * end up dumping a lot of lines, for example, if called from 2187 * console registration path, and should invoke cond_resched() 2188 * between lines if allowable. Not doing so can cause a very long 2189 * scheduling stall on a slow console leading to RCU stall and 2190 * softlockup warnings which exacerbate the issue with more 2191 * messages practically incapacitating the system. 2192 */ 2193 do_cond_resched = console_may_schedule; 2194 console_may_schedule = 0; 2195 2196 /* flush buffered message fragment immediately to console */ 2197 console_cont_flush(text, sizeof(text)); 2198again: 2199 for (;;) { 2200 struct printk_log *msg; 2201 size_t len; 2202 int level; 2203 2204 raw_spin_lock_irqsave(&logbuf_lock, flags); 2205 if (seen_seq != log_next_seq) { 2206 wake_klogd = true; 2207 seen_seq = log_next_seq; 2208 } 2209 2210 if (console_seq < log_first_seq) { 2211 len = sprintf(text, "** %u printk messages dropped ** ", 2212 (unsigned)(log_first_seq - console_seq)); 2213 2214 /* messages are gone, move to first one */ 2215 console_seq = log_first_seq; 2216 console_idx = log_first_idx; 2217 console_prev = 0; 2218 } else { 2219 len = 0; 2220 } 2221skip: 2222 if (console_seq == log_next_seq) 2223 break; 2224 2225 msg = log_from_idx(console_idx); 2226 if (msg->flags & LOG_NOCONS) { 2227 /* 2228 * Skip record we have buffered and already printed 2229 * directly to the console when we received it. 2230 */ 2231 console_idx = log_next(console_idx); 2232 console_seq++; 2233 /* 2234 * We will get here again when we register a new 2235 * CON_PRINTBUFFER console. Clear the flag so we 2236 * will properly dump everything later. 2237 */ 2238 msg->flags &= ~LOG_NOCONS; 2239 console_prev = msg->flags; 2240 goto skip; 2241 } 2242 2243 level = msg->level; 2244 len += msg_print_text(msg, console_prev, false, 2245 text + len, sizeof(text) - len); 2246 console_idx = log_next(console_idx); 2247 console_seq++; 2248 console_prev = msg->flags; 2249 raw_spin_unlock(&logbuf_lock); 2250 2251 stop_critical_timings(); /* don't trace print latency */ 2252 call_console_drivers(level, text, len); 2253 start_critical_timings(); 2254 local_irq_restore(flags); 2255 2256 if (do_cond_resched) 2257 cond_resched(); 2258 } 2259 console_locked = 0; 2260 2261 /* Release the exclusive_console once it is used */ 2262 if (unlikely(exclusive_console)) 2263 exclusive_console = NULL; 2264 2265 raw_spin_unlock(&logbuf_lock); 2266 2267 up_console_sem(); 2268 2269 /* 2270 * Someone could have filled up the buffer again, so re-check if there's 2271 * something to flush. In case we cannot trylock the console_sem again, 2272 * there's a new owner and the console_unlock() from them will do the 2273 * flush, no worries. 2274 */ 2275 raw_spin_lock(&logbuf_lock); 2276 retry = console_seq != log_next_seq; 2277 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2278 2279 if (retry && console_trylock()) 2280 goto again; 2281 2282 if (wake_klogd) 2283 wake_up_klogd(); 2284} 2285EXPORT_SYMBOL(console_unlock); 2286 2287/** 2288 * console_conditional_schedule - yield the CPU if required 2289 * 2290 * If the console code is currently allowed to sleep, and 2291 * if this CPU should yield the CPU to another task, do 2292 * so here. 2293 * 2294 * Must be called within console_lock();. 2295 */ 2296void __sched console_conditional_schedule(void) 2297{ 2298 if (console_may_schedule) 2299 cond_resched(); 2300} 2301EXPORT_SYMBOL(console_conditional_schedule); 2302 2303void console_unblank(void) 2304{ 2305 struct console *c; 2306 2307 /* 2308 * console_unblank can no longer be called in interrupt context unless 2309 * oops_in_progress is set to 1.. 2310 */ 2311 if (oops_in_progress) { 2312 if (down_trylock_console_sem() != 0) 2313 return; 2314 } else 2315 console_lock(); 2316 2317 console_locked = 1; 2318 console_may_schedule = 0; 2319 for_each_console(c) 2320 if ((c->flags & CON_ENABLED) && c->unblank) 2321 c->unblank(); 2322 console_unlock(); 2323} 2324 2325/** 2326 * console_flush_on_panic - flush console content on panic 2327 * 2328 * Immediately output all pending messages no matter what. 2329 */ 2330void console_flush_on_panic(void) 2331{ 2332 /* 2333 * If someone else is holding the console lock, trylock will fail 2334 * and may_schedule may be set. Ignore and proceed to unlock so 2335 * that messages are flushed out. As this can be called from any 2336 * context and we don't want to get preempted while flushing, 2337 * ensure may_schedule is cleared. 2338 */ 2339 console_trylock(); 2340 console_may_schedule = 0; 2341 console_unlock(); 2342} 2343 2344/* 2345 * Return the console tty driver structure and its associated index 2346 */ 2347struct tty_driver *console_device(int *index) 2348{ 2349 struct console *c; 2350 struct tty_driver *driver = NULL; 2351 2352 console_lock(); 2353 for_each_console(c) { 2354 if (!c->device) 2355 continue; 2356 driver = c->device(c, index); 2357 if (driver) 2358 break; 2359 } 2360 console_unlock(); 2361 return driver; 2362} 2363 2364/* 2365 * Prevent further output on the passed console device so that (for example) 2366 * serial drivers can disable console output before suspending a port, and can 2367 * re-enable output afterwards. 2368 */ 2369void console_stop(struct console *console) 2370{ 2371 console_lock(); 2372 console->flags &= ~CON_ENABLED; 2373 console_unlock(); 2374} 2375EXPORT_SYMBOL(console_stop); 2376 2377void console_start(struct console *console) 2378{ 2379 console_lock(); 2380 console->flags |= CON_ENABLED; 2381 console_unlock(); 2382} 2383EXPORT_SYMBOL(console_start); 2384 2385static int __read_mostly keep_bootcon; 2386 2387static int __init keep_bootcon_setup(char *str) 2388{ 2389 keep_bootcon = 1; 2390 pr_info("debug: skip boot console de-registration.\n"); 2391 2392 return 0; 2393} 2394 2395early_param("keep_bootcon", keep_bootcon_setup); 2396 2397/* 2398 * The console driver calls this routine during kernel initialization 2399 * to register the console printing procedure with printk() and to 2400 * print any messages that were printed by the kernel before the 2401 * console driver was initialized. 2402 * 2403 * This can happen pretty early during the boot process (because of 2404 * early_printk) - sometimes before setup_arch() completes - be careful 2405 * of what kernel features are used - they may not be initialised yet. 2406 * 2407 * There are two types of consoles - bootconsoles (early_printk) and 2408 * "real" consoles (everything which is not a bootconsole) which are 2409 * handled differently. 2410 * - Any number of bootconsoles can be registered at any time. 2411 * - As soon as a "real" console is registered, all bootconsoles 2412 * will be unregistered automatically. 2413 * - Once a "real" console is registered, any attempt to register a 2414 * bootconsoles will be rejected 2415 */ 2416void register_console(struct console *newcon) 2417{ 2418 int i; 2419 unsigned long flags; 2420 struct console *bcon = NULL; 2421 struct console_cmdline *c; 2422 2423 if (console_drivers) 2424 for_each_console(bcon) 2425 if (WARN(bcon == newcon, 2426 "console '%s%d' already registered\n", 2427 bcon->name, bcon->index)) 2428 return; 2429 2430 /* 2431 * before we register a new CON_BOOT console, make sure we don't 2432 * already have a valid console 2433 */ 2434 if (console_drivers && newcon->flags & CON_BOOT) { 2435 /* find the last or real console */ 2436 for_each_console(bcon) { 2437 if (!(bcon->flags & CON_BOOT)) { 2438 pr_info("Too late to register bootconsole %s%d\n", 2439 newcon->name, newcon->index); 2440 return; 2441 } 2442 } 2443 } 2444 2445 if (console_drivers && console_drivers->flags & CON_BOOT) 2446 bcon = console_drivers; 2447 2448 if (preferred_console < 0 || bcon || !console_drivers) 2449 preferred_console = selected_console; 2450 2451 /* 2452 * See if we want to use this console driver. If we 2453 * didn't select a console we take the first one 2454 * that registers here. 2455 */ 2456 if (preferred_console < 0) { 2457 if (newcon->index < 0) 2458 newcon->index = 0; 2459 if (newcon->setup == NULL || 2460 newcon->setup(newcon, NULL) == 0) { 2461 newcon->flags |= CON_ENABLED; 2462 if (newcon->device) { 2463 newcon->flags |= CON_CONSDEV; 2464 preferred_console = 0; 2465 } 2466 } 2467 } 2468 2469 /* 2470 * See if this console matches one we selected on 2471 * the command line. 2472 */ 2473 for (i = 0, c = console_cmdline; 2474 i < MAX_CMDLINECONSOLES && c->name[0]; 2475 i++, c++) { 2476 if (!newcon->match || 2477 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2478 /* default matching */ 2479 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2480 if (strcmp(c->name, newcon->name) != 0) 2481 continue; 2482 if (newcon->index >= 0 && 2483 newcon->index != c->index) 2484 continue; 2485 if (newcon->index < 0) 2486 newcon->index = c->index; 2487 2488 if (_braille_register_console(newcon, c)) 2489 return; 2490 2491 if (newcon->setup && 2492 newcon->setup(newcon, c->options) != 0) 2493 break; 2494 } 2495 2496 newcon->flags |= CON_ENABLED; 2497 if (i == selected_console) { 2498 newcon->flags |= CON_CONSDEV; 2499 preferred_console = selected_console; 2500 } 2501 break; 2502 } 2503 2504 if (!(newcon->flags & CON_ENABLED)) 2505 return; 2506 2507 /* 2508 * If we have a bootconsole, and are switching to a real console, 2509 * don't print everything out again, since when the boot console, and 2510 * the real console are the same physical device, it's annoying to 2511 * see the beginning boot messages twice 2512 */ 2513 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2514 newcon->flags &= ~CON_PRINTBUFFER; 2515 2516 /* 2517 * Put this console in the list - keep the 2518 * preferred driver at the head of the list. 2519 */ 2520 console_lock(); 2521 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2522 newcon->next = console_drivers; 2523 console_drivers = newcon; 2524 if (newcon->next) 2525 newcon->next->flags &= ~CON_CONSDEV; 2526 } else { 2527 newcon->next = console_drivers->next; 2528 console_drivers->next = newcon; 2529 } 2530 if (newcon->flags & CON_PRINTBUFFER) { 2531 /* 2532 * console_unlock(); will print out the buffered messages 2533 * for us. 2534 */ 2535 raw_spin_lock_irqsave(&logbuf_lock, flags); 2536 console_seq = syslog_seq; 2537 console_idx = syslog_idx; 2538 console_prev = syslog_prev; 2539 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2540 /* 2541 * We're about to replay the log buffer. Only do this to the 2542 * just-registered console to avoid excessive message spam to 2543 * the already-registered consoles. 2544 */ 2545 exclusive_console = newcon; 2546 } 2547 console_unlock(); 2548 console_sysfs_notify(); 2549 2550 /* 2551 * By unregistering the bootconsoles after we enable the real console 2552 * we get the "console xxx enabled" message on all the consoles - 2553 * boot consoles, real consoles, etc - this is to ensure that end 2554 * users know there might be something in the kernel's log buffer that 2555 * went to the bootconsole (that they do not see on the real console) 2556 */ 2557 pr_info("%sconsole [%s%d] enabled\n", 2558 (newcon->flags & CON_BOOT) ? "boot" : "" , 2559 newcon->name, newcon->index); 2560 if (bcon && 2561 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2562 !keep_bootcon) { 2563 /* We need to iterate through all boot consoles, to make 2564 * sure we print everything out, before we unregister them. 2565 */ 2566 for_each_console(bcon) 2567 if (bcon->flags & CON_BOOT) 2568 unregister_console(bcon); 2569 } 2570} 2571EXPORT_SYMBOL(register_console); 2572 2573int unregister_console(struct console *console) 2574{ 2575 struct console *a, *b; 2576 int res; 2577 2578 pr_info("%sconsole [%s%d] disabled\n", 2579 (console->flags & CON_BOOT) ? "boot" : "" , 2580 console->name, console->index); 2581 2582 res = _braille_unregister_console(console); 2583 if (res) 2584 return res; 2585 2586 res = 1; 2587 console_lock(); 2588 if (console_drivers == console) { 2589 console_drivers=console->next; 2590 res = 0; 2591 } else if (console_drivers) { 2592 for (a=console_drivers->next, b=console_drivers ; 2593 a; b=a, a=b->next) { 2594 if (a == console) { 2595 b->next = a->next; 2596 res = 0; 2597 break; 2598 } 2599 } 2600 } 2601 2602 /* 2603 * If this isn't the last console and it has CON_CONSDEV set, we 2604 * need to set it on the next preferred console. 2605 */ 2606 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2607 console_drivers->flags |= CON_CONSDEV; 2608 2609 console->flags &= ~CON_ENABLED; 2610 console_unlock(); 2611 console_sysfs_notify(); 2612 return res; 2613} 2614EXPORT_SYMBOL(unregister_console); 2615 2616static int __init printk_late_init(void) 2617{ 2618 struct console *con; 2619 2620 for_each_console(con) { 2621 if (!keep_bootcon && con->flags & CON_BOOT) { 2622 unregister_console(con); 2623 } 2624 } 2625 hotcpu_notifier(console_cpu_notify, 0); 2626 return 0; 2627} 2628late_initcall(printk_late_init); 2629 2630#if defined CONFIG_PRINTK 2631/* 2632 * Delayed printk version, for scheduler-internal messages: 2633 */ 2634#define PRINTK_PENDING_WAKEUP 0x01 2635#define PRINTK_PENDING_OUTPUT 0x02 2636 2637static DEFINE_PER_CPU(int, printk_pending); 2638 2639static void wake_up_klogd_work_func(struct irq_work *irq_work) 2640{ 2641 int pending = __this_cpu_xchg(printk_pending, 0); 2642 2643 if (pending & PRINTK_PENDING_OUTPUT) { 2644 /* If trylock fails, someone else is doing the printing */ 2645 if (console_trylock()) 2646 console_unlock(); 2647 } 2648 2649 if (pending & PRINTK_PENDING_WAKEUP) 2650 wake_up_interruptible(&log_wait); 2651} 2652 2653static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2654 .func = wake_up_klogd_work_func, 2655 .flags = IRQ_WORK_LAZY, 2656}; 2657 2658void wake_up_klogd(void) 2659{ 2660 preempt_disable(); 2661 if (waitqueue_active(&log_wait)) { 2662 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2663 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2664 } 2665 preempt_enable(); 2666} 2667 2668int printk_deferred(const char *fmt, ...) 2669{ 2670 va_list args; 2671 int r; 2672 2673 preempt_disable(); 2674 va_start(args, fmt); 2675 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2676 va_end(args); 2677 2678 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2679 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2680 preempt_enable(); 2681 2682 return r; 2683} 2684 2685/* 2686 * printk rate limiting, lifted from the networking subsystem. 2687 * 2688 * This enforces a rate limit: not more than 10 kernel messages 2689 * every 5s to make a denial-of-service attack impossible. 2690 */ 2691DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2692 2693int __printk_ratelimit(const char *func) 2694{ 2695 return ___ratelimit(&printk_ratelimit_state, func); 2696} 2697EXPORT_SYMBOL(__printk_ratelimit); 2698 2699/** 2700 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2701 * @caller_jiffies: pointer to caller's state 2702 * @interval_msecs: minimum interval between prints 2703 * 2704 * printk_timed_ratelimit() returns true if more than @interval_msecs 2705 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2706 * returned true. 2707 */ 2708bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2709 unsigned int interval_msecs) 2710{ 2711 unsigned long elapsed = jiffies - *caller_jiffies; 2712 2713 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2714 return false; 2715 2716 *caller_jiffies = jiffies; 2717 return true; 2718} 2719EXPORT_SYMBOL(printk_timed_ratelimit); 2720 2721static DEFINE_SPINLOCK(dump_list_lock); 2722static LIST_HEAD(dump_list); 2723 2724/** 2725 * kmsg_dump_register - register a kernel log dumper. 2726 * @dumper: pointer to the kmsg_dumper structure 2727 * 2728 * Adds a kernel log dumper to the system. The dump callback in the 2729 * structure will be called when the kernel oopses or panics and must be 2730 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2731 */ 2732int kmsg_dump_register(struct kmsg_dumper *dumper) 2733{ 2734 unsigned long flags; 2735 int err = -EBUSY; 2736 2737 /* The dump callback needs to be set */ 2738 if (!dumper->dump) 2739 return -EINVAL; 2740 2741 spin_lock_irqsave(&dump_list_lock, flags); 2742 /* Don't allow registering multiple times */ 2743 if (!dumper->registered) { 2744 dumper->registered = 1; 2745 list_add_tail_rcu(&dumper->list, &dump_list); 2746 err = 0; 2747 } 2748 spin_unlock_irqrestore(&dump_list_lock, flags); 2749 2750 return err; 2751} 2752EXPORT_SYMBOL_GPL(kmsg_dump_register); 2753 2754/** 2755 * kmsg_dump_unregister - unregister a kmsg dumper. 2756 * @dumper: pointer to the kmsg_dumper structure 2757 * 2758 * Removes a dump device from the system. Returns zero on success and 2759 * %-EINVAL otherwise. 2760 */ 2761int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2762{ 2763 unsigned long flags; 2764 int err = -EINVAL; 2765 2766 spin_lock_irqsave(&dump_list_lock, flags); 2767 if (dumper->registered) { 2768 dumper->registered = 0; 2769 list_del_rcu(&dumper->list); 2770 err = 0; 2771 } 2772 spin_unlock_irqrestore(&dump_list_lock, flags); 2773 synchronize_rcu(); 2774 2775 return err; 2776} 2777EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2778 2779static bool always_kmsg_dump; 2780module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2781 2782/** 2783 * kmsg_dump - dump kernel log to kernel message dumpers. 2784 * @reason: the reason (oops, panic etc) for dumping 2785 * 2786 * Call each of the registered dumper's dump() callback, which can 2787 * retrieve the kmsg records with kmsg_dump_get_line() or 2788 * kmsg_dump_get_buffer(). 2789 */ 2790void kmsg_dump(enum kmsg_dump_reason reason) 2791{ 2792 struct kmsg_dumper *dumper; 2793 unsigned long flags; 2794 2795 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2796 return; 2797 2798 rcu_read_lock(); 2799 list_for_each_entry_rcu(dumper, &dump_list, list) { 2800 if (dumper->max_reason && reason > dumper->max_reason) 2801 continue; 2802 2803 /* initialize iterator with data about the stored records */ 2804 dumper->active = true; 2805 2806 raw_spin_lock_irqsave(&logbuf_lock, flags); 2807 dumper->cur_seq = clear_seq; 2808 dumper->cur_idx = clear_idx; 2809 dumper->next_seq = log_next_seq; 2810 dumper->next_idx = log_next_idx; 2811 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2812 2813 /* invoke dumper which will iterate over records */ 2814 dumper->dump(dumper, reason); 2815 2816 /* reset iterator */ 2817 dumper->active = false; 2818 } 2819 rcu_read_unlock(); 2820} 2821 2822/** 2823 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2824 * @dumper: registered kmsg dumper 2825 * @syslog: include the "<4>" prefixes 2826 * @line: buffer to copy the line to 2827 * @size: maximum size of the buffer 2828 * @len: length of line placed into buffer 2829 * 2830 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2831 * record, and copy one record into the provided buffer. 2832 * 2833 * Consecutive calls will return the next available record moving 2834 * towards the end of the buffer with the youngest messages. 2835 * 2836 * A return value of FALSE indicates that there are no more records to 2837 * read. 2838 * 2839 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2840 */ 2841bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2842 char *line, size_t size, size_t *len) 2843{ 2844 struct printk_log *msg; 2845 size_t l = 0; 2846 bool ret = false; 2847 2848 if (!dumper->active) 2849 goto out; 2850 2851 if (dumper->cur_seq < log_first_seq) { 2852 /* messages are gone, move to first available one */ 2853 dumper->cur_seq = log_first_seq; 2854 dumper->cur_idx = log_first_idx; 2855 } 2856 2857 /* last entry */ 2858 if (dumper->cur_seq >= log_next_seq) 2859 goto out; 2860 2861 msg = log_from_idx(dumper->cur_idx); 2862 l = msg_print_text(msg, 0, syslog, line, size); 2863 2864 dumper->cur_idx = log_next(dumper->cur_idx); 2865 dumper->cur_seq++; 2866 ret = true; 2867out: 2868 if (len) 2869 *len = l; 2870 return ret; 2871} 2872 2873/** 2874 * kmsg_dump_get_line - retrieve one kmsg log line 2875 * @dumper: registered kmsg dumper 2876 * @syslog: include the "<4>" prefixes 2877 * @line: buffer to copy the line to 2878 * @size: maximum size of the buffer 2879 * @len: length of line placed into buffer 2880 * 2881 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2882 * record, and copy one record into the provided buffer. 2883 * 2884 * Consecutive calls will return the next available record moving 2885 * towards the end of the buffer with the youngest messages. 2886 * 2887 * A return value of FALSE indicates that there are no more records to 2888 * read. 2889 */ 2890bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2891 char *line, size_t size, size_t *len) 2892{ 2893 unsigned long flags; 2894 bool ret; 2895 2896 raw_spin_lock_irqsave(&logbuf_lock, flags); 2897 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2898 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2899 2900 return ret; 2901} 2902EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2903 2904/** 2905 * kmsg_dump_get_buffer - copy kmsg log lines 2906 * @dumper: registered kmsg dumper 2907 * @syslog: include the "<4>" prefixes 2908 * @buf: buffer to copy the line to 2909 * @size: maximum size of the buffer 2910 * @len: length of line placed into buffer 2911 * 2912 * Start at the end of the kmsg buffer and fill the provided buffer 2913 * with as many of the the *youngest* kmsg records that fit into it. 2914 * If the buffer is large enough, all available kmsg records will be 2915 * copied with a single call. 2916 * 2917 * Consecutive calls will fill the buffer with the next block of 2918 * available older records, not including the earlier retrieved ones. 2919 * 2920 * A return value of FALSE indicates that there are no more records to 2921 * read. 2922 */ 2923bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2924 char *buf, size_t size, size_t *len) 2925{ 2926 unsigned long flags; 2927 u64 seq; 2928 u32 idx; 2929 u64 next_seq; 2930 u32 next_idx; 2931 enum log_flags prev; 2932 size_t l = 0; 2933 bool ret = false; 2934 2935 if (!dumper->active) 2936 goto out; 2937 2938 raw_spin_lock_irqsave(&logbuf_lock, flags); 2939 if (dumper->cur_seq < log_first_seq) { 2940 /* messages are gone, move to first available one */ 2941 dumper->cur_seq = log_first_seq; 2942 dumper->cur_idx = log_first_idx; 2943 } 2944 2945 /* last entry */ 2946 if (dumper->cur_seq >= dumper->next_seq) { 2947 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2948 goto out; 2949 } 2950 2951 /* calculate length of entire buffer */ 2952 seq = dumper->cur_seq; 2953 idx = dumper->cur_idx; 2954 prev = 0; 2955 while (seq < dumper->next_seq) { 2956 struct printk_log *msg = log_from_idx(idx); 2957 2958 l += msg_print_text(msg, prev, true, NULL, 0); 2959 idx = log_next(idx); 2960 seq++; 2961 prev = msg->flags; 2962 } 2963 2964 /* move first record forward until length fits into the buffer */ 2965 seq = dumper->cur_seq; 2966 idx = dumper->cur_idx; 2967 prev = 0; 2968 while (l > size && seq < dumper->next_seq) { 2969 struct printk_log *msg = log_from_idx(idx); 2970 2971 l -= msg_print_text(msg, prev, true, NULL, 0); 2972 idx = log_next(idx); 2973 seq++; 2974 prev = msg->flags; 2975 } 2976 2977 /* last message in next interation */ 2978 next_seq = seq; 2979 next_idx = idx; 2980 2981 l = 0; 2982 while (seq < dumper->next_seq) { 2983 struct printk_log *msg = log_from_idx(idx); 2984 2985 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2986 idx = log_next(idx); 2987 seq++; 2988 prev = msg->flags; 2989 } 2990 2991 dumper->next_seq = next_seq; 2992 dumper->next_idx = next_idx; 2993 ret = true; 2994 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2995out: 2996 if (len) 2997 *len = l; 2998 return ret; 2999} 3000EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3001 3002/** 3003 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3004 * @dumper: registered kmsg dumper 3005 * 3006 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3007 * kmsg_dump_get_buffer() can be called again and used multiple 3008 * times within the same dumper.dump() callback. 3009 * 3010 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3011 */ 3012void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3013{ 3014 dumper->cur_seq = clear_seq; 3015 dumper->cur_idx = clear_idx; 3016 dumper->next_seq = log_next_seq; 3017 dumper->next_idx = log_next_idx; 3018} 3019 3020/** 3021 * kmsg_dump_rewind - reset the interator 3022 * @dumper: registered kmsg dumper 3023 * 3024 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3025 * kmsg_dump_get_buffer() can be called again and used multiple 3026 * times within the same dumper.dump() callback. 3027 */ 3028void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3029{ 3030 unsigned long flags; 3031 3032 raw_spin_lock_irqsave(&logbuf_lock, flags); 3033 kmsg_dump_rewind_nolock(dumper); 3034 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3035} 3036EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3037 3038static char dump_stack_arch_desc_str[128]; 3039 3040/** 3041 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3042 * @fmt: printf-style format string 3043 * @...: arguments for the format string 3044 * 3045 * The configured string will be printed right after utsname during task 3046 * dumps. Usually used to add arch-specific system identifiers. If an 3047 * arch wants to make use of such an ID string, it should initialize this 3048 * as soon as possible during boot. 3049 */ 3050void __init dump_stack_set_arch_desc(const char *fmt, ...) 3051{ 3052 va_list args; 3053 3054 va_start(args, fmt); 3055 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3056 fmt, args); 3057 va_end(args); 3058} 3059 3060/** 3061 * dump_stack_print_info - print generic debug info for dump_stack() 3062 * @log_lvl: log level 3063 * 3064 * Arch-specific dump_stack() implementations can use this function to 3065 * print out the same debug information as the generic dump_stack(). 3066 */ 3067void dump_stack_print_info(const char *log_lvl) 3068{ 3069 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3070 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3071 print_tainted(), init_utsname()->release, 3072 (int)strcspn(init_utsname()->version, " "), 3073 init_utsname()->version); 3074 3075 if (dump_stack_arch_desc_str[0] != '\0') 3076 printk("%sHardware name: %s\n", 3077 log_lvl, dump_stack_arch_desc_str); 3078 3079 print_worker_info(log_lvl, current); 3080} 3081 3082/** 3083 * show_regs_print_info - print generic debug info for show_regs() 3084 * @log_lvl: log level 3085 * 3086 * show_regs() implementations can use this function to print out generic 3087 * debug information. 3088 */ 3089void show_regs_print_info(const char *log_lvl) 3090{ 3091 dump_stack_print_info(log_lvl); 3092 3093 printk("%stask: %p ti: %p task.ti: %p\n", 3094 log_lvl, current, current_thread_info(), 3095 task_thread_info(current)); 3096} 3097 3098#endif 3099