1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 *  Copyright (C) 2006 Esben Nielsen
10 *
11 *  See Documentation/locking/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/export.h>
15#include <linux/sched.h>
16#include <linux/sched/rt.h>
17#include <linux/sched/deadline.h>
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
22/*
23 * lock->owner state tracking:
24 *
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
27 *
28 * owner	bit0
29 * NULL		0	lock is free (fast acquire possible)
30 * NULL		1	lock is free and has waiters and the top waiter
31 *				is going to take the lock*
32 * taskpointer	0	lock is held (fast release possible)
33 * taskpointer	1	lock is held and has waiters**
34 *
35 * The fast atomic compare exchange based acquire and release is only
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
42 *
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
47 */
48
49static void
50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51{
52	unsigned long val = (unsigned long)owner;
53
54	if (rt_mutex_has_waiters(lock))
55		val |= RT_MUTEX_HAS_WAITERS;
56
57	lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62	lock->owner = (struct task_struct *)
63			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68	if (!rt_mutex_has_waiters(lock))
69		clear_rt_mutex_waiters(lock);
70}
71
72/*
73 * We can speed up the acquire/release, if the architecture
74 * supports cmpxchg and if there's no debugging state to be set up
75 */
76#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77# define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
78static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79{
80	unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82	do {
83		owner = *p;
84	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85}
86
87/*
88 * Safe fastpath aware unlock:
89 * 1) Clear the waiters bit
90 * 2) Drop lock->wait_lock
91 * 3) Try to unlock the lock with cmpxchg
92 */
93static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94	__releases(lock->wait_lock)
95{
96	struct task_struct *owner = rt_mutex_owner(lock);
97
98	clear_rt_mutex_waiters(lock);
99	raw_spin_unlock(&lock->wait_lock);
100	/*
101	 * If a new waiter comes in between the unlock and the cmpxchg
102	 * we have two situations:
103	 *
104	 * unlock(wait_lock);
105	 *					lock(wait_lock);
106	 * cmpxchg(p, owner, 0) == owner
107	 *					mark_rt_mutex_waiters(lock);
108	 *					acquire(lock);
109	 * or:
110	 *
111	 * unlock(wait_lock);
112	 *					lock(wait_lock);
113	 *					mark_rt_mutex_waiters(lock);
114	 *
115	 * cmpxchg(p, owner, 0) != owner
116	 *					enqueue_waiter();
117	 *					unlock(wait_lock);
118	 * lock(wait_lock);
119	 * wake waiter();
120	 * unlock(wait_lock);
121	 *					lock(wait_lock);
122	 *					acquire(lock);
123	 */
124	return rt_mutex_cmpxchg(lock, owner, NULL);
125}
126
127#else
128# define rt_mutex_cmpxchg(l,c,n)	(0)
129static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130{
131	lock->owner = (struct task_struct *)
132			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133}
134
135/*
136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 */
138static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139	__releases(lock->wait_lock)
140{
141	lock->owner = NULL;
142	raw_spin_unlock(&lock->wait_lock);
143	return true;
144}
145#endif
146
147static inline int
148rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149		     struct rt_mutex_waiter *right)
150{
151	if (left->prio < right->prio)
152		return 1;
153
154	/*
155	 * If both waiters have dl_prio(), we check the deadlines of the
156	 * associated tasks.
157	 * If left waiter has a dl_prio(), and we didn't return 1 above,
158	 * then right waiter has a dl_prio() too.
159	 */
160	if (dl_prio(left->prio))
161		return (left->task->dl.deadline < right->task->dl.deadline);
162
163	return 0;
164}
165
166static void
167rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168{
169	struct rb_node **link = &lock->waiters.rb_node;
170	struct rb_node *parent = NULL;
171	struct rt_mutex_waiter *entry;
172	int leftmost = 1;
173
174	while (*link) {
175		parent = *link;
176		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177		if (rt_mutex_waiter_less(waiter, entry)) {
178			link = &parent->rb_left;
179		} else {
180			link = &parent->rb_right;
181			leftmost = 0;
182		}
183	}
184
185	if (leftmost)
186		lock->waiters_leftmost = &waiter->tree_entry;
187
188	rb_link_node(&waiter->tree_entry, parent, link);
189	rb_insert_color(&waiter->tree_entry, &lock->waiters);
190}
191
192static void
193rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194{
195	if (RB_EMPTY_NODE(&waiter->tree_entry))
196		return;
197
198	if (lock->waiters_leftmost == &waiter->tree_entry)
199		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201	rb_erase(&waiter->tree_entry, &lock->waiters);
202	RB_CLEAR_NODE(&waiter->tree_entry);
203}
204
205static void
206rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207{
208	struct rb_node **link = &task->pi_waiters.rb_node;
209	struct rb_node *parent = NULL;
210	struct rt_mutex_waiter *entry;
211	int leftmost = 1;
212
213	while (*link) {
214		parent = *link;
215		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216		if (rt_mutex_waiter_less(waiter, entry)) {
217			link = &parent->rb_left;
218		} else {
219			link = &parent->rb_right;
220			leftmost = 0;
221		}
222	}
223
224	if (leftmost)
225		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227	rb_link_node(&waiter->pi_tree_entry, parent, link);
228	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229}
230
231static void
232rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233{
234	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235		return;
236
237	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241	RB_CLEAR_NODE(&waiter->pi_tree_entry);
242}
243
244/*
245 * Calculate task priority from the waiter tree priority
246 *
247 * Return task->normal_prio when the waiter tree is empty or when
248 * the waiter is not allowed to do priority boosting
249 */
250int rt_mutex_getprio(struct task_struct *task)
251{
252	if (likely(!task_has_pi_waiters(task)))
253		return task->normal_prio;
254
255	return min(task_top_pi_waiter(task)->prio,
256		   task->normal_prio);
257}
258
259struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260{
261	if (likely(!task_has_pi_waiters(task)))
262		return NULL;
263
264	return task_top_pi_waiter(task)->task;
265}
266
267/*
268 * Called by sched_setscheduler() to get the priority which will be
269 * effective after the change.
270 */
271int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
272{
273	if (!task_has_pi_waiters(task))
274		return newprio;
275
276	if (task_top_pi_waiter(task)->task->prio <= newprio)
277		return task_top_pi_waiter(task)->task->prio;
278	return newprio;
279}
280
281/*
282 * Adjust the priority of a task, after its pi_waiters got modified.
283 *
284 * This can be both boosting and unboosting. task->pi_lock must be held.
285 */
286static void __rt_mutex_adjust_prio(struct task_struct *task)
287{
288	int prio = rt_mutex_getprio(task);
289
290	if (task->prio != prio || dl_prio(prio))
291		rt_mutex_setprio(task, prio);
292}
293
294/*
295 * Adjust task priority (undo boosting). Called from the exit path of
296 * rt_mutex_slowunlock() and rt_mutex_slowlock().
297 *
298 * (Note: We do this outside of the protection of lock->wait_lock to
299 * allow the lock to be taken while or before we readjust the priority
300 * of task. We do not use the spin_xx_mutex() variants here as we are
301 * outside of the debug path.)
302 */
303static void rt_mutex_adjust_prio(struct task_struct *task)
304{
305	unsigned long flags;
306
307	raw_spin_lock_irqsave(&task->pi_lock, flags);
308	__rt_mutex_adjust_prio(task);
309	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
310}
311
312/*
313 * Deadlock detection is conditional:
314 *
315 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
316 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
317 *
318 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
319 * conducted independent of the detect argument.
320 *
321 * If the waiter argument is NULL this indicates the deboost path and
322 * deadlock detection is disabled independent of the detect argument
323 * and the config settings.
324 */
325static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
326					  enum rtmutex_chainwalk chwalk)
327{
328	/*
329	 * This is just a wrapper function for the following call,
330	 * because debug_rt_mutex_detect_deadlock() smells like a magic
331	 * debug feature and I wanted to keep the cond function in the
332	 * main source file along with the comments instead of having
333	 * two of the same in the headers.
334	 */
335	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
336}
337
338/*
339 * Max number of times we'll walk the boosting chain:
340 */
341int max_lock_depth = 1024;
342
343static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
344{
345	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
346}
347
348/*
349 * Adjust the priority chain. Also used for deadlock detection.
350 * Decreases task's usage by one - may thus free the task.
351 *
352 * @task:	the task owning the mutex (owner) for which a chain walk is
353 *		probably needed
354 * @chwalk:	do we have to carry out deadlock detection?
355 * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
356 *		things for a task that has just got its priority adjusted, and
357 *		is waiting on a mutex)
358 * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
359 *		we dropped its pi_lock. Is never dereferenced, only used for
360 *		comparison to detect lock chain changes.
361 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
362 *		its priority to the mutex owner (can be NULL in the case
363 *		depicted above or if the top waiter is gone away and we are
364 *		actually deboosting the owner)
365 * @top_task:	the current top waiter
366 *
367 * Returns 0 or -EDEADLK.
368 *
369 * Chain walk basics and protection scope
370 *
371 * [R] refcount on task
372 * [P] task->pi_lock held
373 * [L] rtmutex->wait_lock held
374 *
375 * Step	Description				Protected by
376 *	function arguments:
377 *	@task					[R]
378 *	@orig_lock if != NULL			@top_task is blocked on it
379 *	@next_lock				Unprotected. Cannot be
380 *						dereferenced. Only used for
381 *						comparison.
382 *	@orig_waiter if != NULL			@top_task is blocked on it
383 *	@top_task				current, or in case of proxy
384 *						locking protected by calling
385 *						code
386 *	again:
387 *	  loop_sanity_check();
388 *	retry:
389 * [1]	  lock(task->pi_lock);			[R] acquire [P]
390 * [2]	  waiter = task->pi_blocked_on;		[P]
391 * [3]	  check_exit_conditions_1();		[P]
392 * [4]	  lock = waiter->lock;			[P]
393 * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
394 *	    unlock(task->pi_lock);		release [P]
395 *	    goto retry;
396 *	  }
397 * [6]	  check_exit_conditions_2();		[P] + [L]
398 * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
399 * [8]	  unlock(task->pi_lock);		release [P]
400 *	  put_task_struct(task);		release [R]
401 * [9]	  check_exit_conditions_3();		[L]
402 * [10]	  task = owner(lock);			[L]
403 *	  get_task_struct(task);		[L] acquire [R]
404 *	  lock(task->pi_lock);			[L] acquire [P]
405 * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
406 * [12]	  check_exit_conditions_4();		[P] + [L]
407 * [13]	  unlock(task->pi_lock);		release [P]
408 *	  unlock(lock->wait_lock);		release [L]
409 *	  goto again;
410 */
411static int rt_mutex_adjust_prio_chain(struct task_struct *task,
412				      enum rtmutex_chainwalk chwalk,
413				      struct rt_mutex *orig_lock,
414				      struct rt_mutex *next_lock,
415				      struct rt_mutex_waiter *orig_waiter,
416				      struct task_struct *top_task)
417{
418	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
419	struct rt_mutex_waiter *prerequeue_top_waiter;
420	int ret = 0, depth = 0;
421	struct rt_mutex *lock;
422	bool detect_deadlock;
423	unsigned long flags;
424	bool requeue = true;
425
426	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
427
428	/*
429	 * The (de)boosting is a step by step approach with a lot of
430	 * pitfalls. We want this to be preemptible and we want hold a
431	 * maximum of two locks per step. So we have to check
432	 * carefully whether things change under us.
433	 */
434 again:
435	/*
436	 * We limit the lock chain length for each invocation.
437	 */
438	if (++depth > max_lock_depth) {
439		static int prev_max;
440
441		/*
442		 * Print this only once. If the admin changes the limit,
443		 * print a new message when reaching the limit again.
444		 */
445		if (prev_max != max_lock_depth) {
446			prev_max = max_lock_depth;
447			printk(KERN_WARNING "Maximum lock depth %d reached "
448			       "task: %s (%d)\n", max_lock_depth,
449			       top_task->comm, task_pid_nr(top_task));
450		}
451		put_task_struct(task);
452
453		return -EDEADLK;
454	}
455
456	/*
457	 * We are fully preemptible here and only hold the refcount on
458	 * @task. So everything can have changed under us since the
459	 * caller or our own code below (goto retry/again) dropped all
460	 * locks.
461	 */
462 retry:
463	/*
464	 * [1] Task cannot go away as we did a get_task() before !
465	 */
466	raw_spin_lock_irqsave(&task->pi_lock, flags);
467
468	/*
469	 * [2] Get the waiter on which @task is blocked on.
470	 */
471	waiter = task->pi_blocked_on;
472
473	/*
474	 * [3] check_exit_conditions_1() protected by task->pi_lock.
475	 */
476
477	/*
478	 * Check whether the end of the boosting chain has been
479	 * reached or the state of the chain has changed while we
480	 * dropped the locks.
481	 */
482	if (!waiter)
483		goto out_unlock_pi;
484
485	/*
486	 * Check the orig_waiter state. After we dropped the locks,
487	 * the previous owner of the lock might have released the lock.
488	 */
489	if (orig_waiter && !rt_mutex_owner(orig_lock))
490		goto out_unlock_pi;
491
492	/*
493	 * We dropped all locks after taking a refcount on @task, so
494	 * the task might have moved on in the lock chain or even left
495	 * the chain completely and blocks now on an unrelated lock or
496	 * on @orig_lock.
497	 *
498	 * We stored the lock on which @task was blocked in @next_lock,
499	 * so we can detect the chain change.
500	 */
501	if (next_lock != waiter->lock)
502		goto out_unlock_pi;
503
504	/*
505	 * Drop out, when the task has no waiters. Note,
506	 * top_waiter can be NULL, when we are in the deboosting
507	 * mode!
508	 */
509	if (top_waiter) {
510		if (!task_has_pi_waiters(task))
511			goto out_unlock_pi;
512		/*
513		 * If deadlock detection is off, we stop here if we
514		 * are not the top pi waiter of the task. If deadlock
515		 * detection is enabled we continue, but stop the
516		 * requeueing in the chain walk.
517		 */
518		if (top_waiter != task_top_pi_waiter(task)) {
519			if (!detect_deadlock)
520				goto out_unlock_pi;
521			else
522				requeue = false;
523		}
524	}
525
526	/*
527	 * If the waiter priority is the same as the task priority
528	 * then there is no further priority adjustment necessary.  If
529	 * deadlock detection is off, we stop the chain walk. If its
530	 * enabled we continue, but stop the requeueing in the chain
531	 * walk.
532	 */
533	if (waiter->prio == task->prio) {
534		if (!detect_deadlock)
535			goto out_unlock_pi;
536		else
537			requeue = false;
538	}
539
540	/*
541	 * [4] Get the next lock
542	 */
543	lock = waiter->lock;
544	/*
545	 * [5] We need to trylock here as we are holding task->pi_lock,
546	 * which is the reverse lock order versus the other rtmutex
547	 * operations.
548	 */
549	if (!raw_spin_trylock(&lock->wait_lock)) {
550		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
551		cpu_relax();
552		goto retry;
553	}
554
555	/*
556	 * [6] check_exit_conditions_2() protected by task->pi_lock and
557	 * lock->wait_lock.
558	 *
559	 * Deadlock detection. If the lock is the same as the original
560	 * lock which caused us to walk the lock chain or if the
561	 * current lock is owned by the task which initiated the chain
562	 * walk, we detected a deadlock.
563	 */
564	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
565		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
566		raw_spin_unlock(&lock->wait_lock);
567		ret = -EDEADLK;
568		goto out_unlock_pi;
569	}
570
571	/*
572	 * If we just follow the lock chain for deadlock detection, no
573	 * need to do all the requeue operations. To avoid a truckload
574	 * of conditionals around the various places below, just do the
575	 * minimum chain walk checks.
576	 */
577	if (!requeue) {
578		/*
579		 * No requeue[7] here. Just release @task [8]
580		 */
581		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
582		put_task_struct(task);
583
584		/*
585		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
586		 * If there is no owner of the lock, end of chain.
587		 */
588		if (!rt_mutex_owner(lock)) {
589			raw_spin_unlock(&lock->wait_lock);
590			return 0;
591		}
592
593		/* [10] Grab the next task, i.e. owner of @lock */
594		task = rt_mutex_owner(lock);
595		get_task_struct(task);
596		raw_spin_lock_irqsave(&task->pi_lock, flags);
597
598		/*
599		 * No requeue [11] here. We just do deadlock detection.
600		 *
601		 * [12] Store whether owner is blocked
602		 * itself. Decision is made after dropping the locks
603		 */
604		next_lock = task_blocked_on_lock(task);
605		/*
606		 * Get the top waiter for the next iteration
607		 */
608		top_waiter = rt_mutex_top_waiter(lock);
609
610		/* [13] Drop locks */
611		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
612		raw_spin_unlock(&lock->wait_lock);
613
614		/* If owner is not blocked, end of chain. */
615		if (!next_lock)
616			goto out_put_task;
617		goto again;
618	}
619
620	/*
621	 * Store the current top waiter before doing the requeue
622	 * operation on @lock. We need it for the boost/deboost
623	 * decision below.
624	 */
625	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
626
627	/* [7] Requeue the waiter in the lock waiter list. */
628	rt_mutex_dequeue(lock, waiter);
629	waiter->prio = task->prio;
630	rt_mutex_enqueue(lock, waiter);
631
632	/* [8] Release the task */
633	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
634	put_task_struct(task);
635
636	/*
637	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
638	 *
639	 * We must abort the chain walk if there is no lock owner even
640	 * in the dead lock detection case, as we have nothing to
641	 * follow here. This is the end of the chain we are walking.
642	 */
643	if (!rt_mutex_owner(lock)) {
644		/*
645		 * If the requeue [7] above changed the top waiter,
646		 * then we need to wake the new top waiter up to try
647		 * to get the lock.
648		 */
649		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
650			wake_up_process(rt_mutex_top_waiter(lock)->task);
651		raw_spin_unlock(&lock->wait_lock);
652		return 0;
653	}
654
655	/* [10] Grab the next task, i.e. the owner of @lock */
656	task = rt_mutex_owner(lock);
657	get_task_struct(task);
658	raw_spin_lock_irqsave(&task->pi_lock, flags);
659
660	/* [11] requeue the pi waiters if necessary */
661	if (waiter == rt_mutex_top_waiter(lock)) {
662		/*
663		 * The waiter became the new top (highest priority)
664		 * waiter on the lock. Replace the previous top waiter
665		 * in the owner tasks pi waiters list with this waiter
666		 * and adjust the priority of the owner.
667		 */
668		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
669		rt_mutex_enqueue_pi(task, waiter);
670		__rt_mutex_adjust_prio(task);
671
672	} else if (prerequeue_top_waiter == waiter) {
673		/*
674		 * The waiter was the top waiter on the lock, but is
675		 * no longer the top prority waiter. Replace waiter in
676		 * the owner tasks pi waiters list with the new top
677		 * (highest priority) waiter and adjust the priority
678		 * of the owner.
679		 * The new top waiter is stored in @waiter so that
680		 * @waiter == @top_waiter evaluates to true below and
681		 * we continue to deboost the rest of the chain.
682		 */
683		rt_mutex_dequeue_pi(task, waiter);
684		waiter = rt_mutex_top_waiter(lock);
685		rt_mutex_enqueue_pi(task, waiter);
686		__rt_mutex_adjust_prio(task);
687	} else {
688		/*
689		 * Nothing changed. No need to do any priority
690		 * adjustment.
691		 */
692	}
693
694	/*
695	 * [12] check_exit_conditions_4() protected by task->pi_lock
696	 * and lock->wait_lock. The actual decisions are made after we
697	 * dropped the locks.
698	 *
699	 * Check whether the task which owns the current lock is pi
700	 * blocked itself. If yes we store a pointer to the lock for
701	 * the lock chain change detection above. After we dropped
702	 * task->pi_lock next_lock cannot be dereferenced anymore.
703	 */
704	next_lock = task_blocked_on_lock(task);
705	/*
706	 * Store the top waiter of @lock for the end of chain walk
707	 * decision below.
708	 */
709	top_waiter = rt_mutex_top_waiter(lock);
710
711	/* [13] Drop the locks */
712	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
713	raw_spin_unlock(&lock->wait_lock);
714
715	/*
716	 * Make the actual exit decisions [12], based on the stored
717	 * values.
718	 *
719	 * We reached the end of the lock chain. Stop right here. No
720	 * point to go back just to figure that out.
721	 */
722	if (!next_lock)
723		goto out_put_task;
724
725	/*
726	 * If the current waiter is not the top waiter on the lock,
727	 * then we can stop the chain walk here if we are not in full
728	 * deadlock detection mode.
729	 */
730	if (!detect_deadlock && waiter != top_waiter)
731		goto out_put_task;
732
733	goto again;
734
735 out_unlock_pi:
736	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
737 out_put_task:
738	put_task_struct(task);
739
740	return ret;
741}
742
743/*
744 * Try to take an rt-mutex
745 *
746 * Must be called with lock->wait_lock held.
747 *
748 * @lock:   The lock to be acquired.
749 * @task:   The task which wants to acquire the lock
750 * @waiter: The waiter that is queued to the lock's wait list if the
751 *	    callsite called task_blocked_on_lock(), otherwise NULL
752 */
753static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
754				struct rt_mutex_waiter *waiter)
755{
756	unsigned long flags;
757
758	/*
759	 * Before testing whether we can acquire @lock, we set the
760	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
761	 * other tasks which try to modify @lock into the slow path
762	 * and they serialize on @lock->wait_lock.
763	 *
764	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
765	 * as explained at the top of this file if and only if:
766	 *
767	 * - There is a lock owner. The caller must fixup the
768	 *   transient state if it does a trylock or leaves the lock
769	 *   function due to a signal or timeout.
770	 *
771	 * - @task acquires the lock and there are no other
772	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
773	 *   the end of this function.
774	 */
775	mark_rt_mutex_waiters(lock);
776
777	/*
778	 * If @lock has an owner, give up.
779	 */
780	if (rt_mutex_owner(lock))
781		return 0;
782
783	/*
784	 * If @waiter != NULL, @task has already enqueued the waiter
785	 * into @lock waiter list. If @waiter == NULL then this is a
786	 * trylock attempt.
787	 */
788	if (waiter) {
789		/*
790		 * If waiter is not the highest priority waiter of
791		 * @lock, give up.
792		 */
793		if (waiter != rt_mutex_top_waiter(lock))
794			return 0;
795
796		/*
797		 * We can acquire the lock. Remove the waiter from the
798		 * lock waiters list.
799		 */
800		rt_mutex_dequeue(lock, waiter);
801
802	} else {
803		/*
804		 * If the lock has waiters already we check whether @task is
805		 * eligible to take over the lock.
806		 *
807		 * If there are no other waiters, @task can acquire
808		 * the lock.  @task->pi_blocked_on is NULL, so it does
809		 * not need to be dequeued.
810		 */
811		if (rt_mutex_has_waiters(lock)) {
812			/*
813			 * If @task->prio is greater than or equal to
814			 * the top waiter priority (kernel view),
815			 * @task lost.
816			 */
817			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
818				return 0;
819
820			/*
821			 * The current top waiter stays enqueued. We
822			 * don't have to change anything in the lock
823			 * waiters order.
824			 */
825		} else {
826			/*
827			 * No waiters. Take the lock without the
828			 * pi_lock dance.@task->pi_blocked_on is NULL
829			 * and we have no waiters to enqueue in @task
830			 * pi waiters list.
831			 */
832			goto takeit;
833		}
834	}
835
836	/*
837	 * Clear @task->pi_blocked_on. Requires protection by
838	 * @task->pi_lock. Redundant operation for the @waiter == NULL
839	 * case, but conditionals are more expensive than a redundant
840	 * store.
841	 */
842	raw_spin_lock_irqsave(&task->pi_lock, flags);
843	task->pi_blocked_on = NULL;
844	/*
845	 * Finish the lock acquisition. @task is the new owner. If
846	 * other waiters exist we have to insert the highest priority
847	 * waiter into @task->pi_waiters list.
848	 */
849	if (rt_mutex_has_waiters(lock))
850		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
851	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
852
853takeit:
854	/* We got the lock. */
855	debug_rt_mutex_lock(lock);
856
857	/*
858	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
859	 * are still waiters or clears it.
860	 */
861	rt_mutex_set_owner(lock, task);
862
863	rt_mutex_deadlock_account_lock(lock, task);
864
865	return 1;
866}
867
868/*
869 * Task blocks on lock.
870 *
871 * Prepare waiter and propagate pi chain
872 *
873 * This must be called with lock->wait_lock held.
874 */
875static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
876				   struct rt_mutex_waiter *waiter,
877				   struct task_struct *task,
878				   enum rtmutex_chainwalk chwalk)
879{
880	struct task_struct *owner = rt_mutex_owner(lock);
881	struct rt_mutex_waiter *top_waiter = waiter;
882	struct rt_mutex *next_lock;
883	int chain_walk = 0, res;
884	unsigned long flags;
885
886	/*
887	 * Early deadlock detection. We really don't want the task to
888	 * enqueue on itself just to untangle the mess later. It's not
889	 * only an optimization. We drop the locks, so another waiter
890	 * can come in before the chain walk detects the deadlock. So
891	 * the other will detect the deadlock and return -EDEADLOCK,
892	 * which is wrong, as the other waiter is not in a deadlock
893	 * situation.
894	 */
895	if (owner == task)
896		return -EDEADLK;
897
898	raw_spin_lock_irqsave(&task->pi_lock, flags);
899	__rt_mutex_adjust_prio(task);
900	waiter->task = task;
901	waiter->lock = lock;
902	waiter->prio = task->prio;
903
904	/* Get the top priority waiter on the lock */
905	if (rt_mutex_has_waiters(lock))
906		top_waiter = rt_mutex_top_waiter(lock);
907	rt_mutex_enqueue(lock, waiter);
908
909	task->pi_blocked_on = waiter;
910
911	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
912
913	if (!owner)
914		return 0;
915
916	raw_spin_lock_irqsave(&owner->pi_lock, flags);
917	if (waiter == rt_mutex_top_waiter(lock)) {
918		rt_mutex_dequeue_pi(owner, top_waiter);
919		rt_mutex_enqueue_pi(owner, waiter);
920
921		__rt_mutex_adjust_prio(owner);
922		if (owner->pi_blocked_on)
923			chain_walk = 1;
924	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
925		chain_walk = 1;
926	}
927
928	/* Store the lock on which owner is blocked or NULL */
929	next_lock = task_blocked_on_lock(owner);
930
931	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
932	/*
933	 * Even if full deadlock detection is on, if the owner is not
934	 * blocked itself, we can avoid finding this out in the chain
935	 * walk.
936	 */
937	if (!chain_walk || !next_lock)
938		return 0;
939
940	/*
941	 * The owner can't disappear while holding a lock,
942	 * so the owner struct is protected by wait_lock.
943	 * Gets dropped in rt_mutex_adjust_prio_chain()!
944	 */
945	get_task_struct(owner);
946
947	raw_spin_unlock(&lock->wait_lock);
948
949	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
950					 next_lock, waiter, task);
951
952	raw_spin_lock(&lock->wait_lock);
953
954	return res;
955}
956
957/*
958 * Wake up the next waiter on the lock.
959 *
960 * Remove the top waiter from the current tasks pi waiter list and
961 * wake it up.
962 *
963 * Called with lock->wait_lock held.
964 */
965static void wakeup_next_waiter(struct rt_mutex *lock)
966{
967	struct rt_mutex_waiter *waiter;
968	unsigned long flags;
969
970	raw_spin_lock_irqsave(&current->pi_lock, flags);
971
972	waiter = rt_mutex_top_waiter(lock);
973
974	/*
975	 * Remove it from current->pi_waiters. We do not adjust a
976	 * possible priority boost right now. We execute wakeup in the
977	 * boosted mode and go back to normal after releasing
978	 * lock->wait_lock.
979	 */
980	rt_mutex_dequeue_pi(current, waiter);
981
982	/*
983	 * As we are waking up the top waiter, and the waiter stays
984	 * queued on the lock until it gets the lock, this lock
985	 * obviously has waiters. Just set the bit here and this has
986	 * the added benefit of forcing all new tasks into the
987	 * slow path making sure no task of lower priority than
988	 * the top waiter can steal this lock.
989	 */
990	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
991
992	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
993
994	/*
995	 * It's safe to dereference waiter as it cannot go away as
996	 * long as we hold lock->wait_lock. The waiter task needs to
997	 * acquire it in order to dequeue the waiter.
998	 */
999	wake_up_process(waiter->task);
1000}
1001
1002/*
1003 * Remove a waiter from a lock and give up
1004 *
1005 * Must be called with lock->wait_lock held and
1006 * have just failed to try_to_take_rt_mutex().
1007 */
1008static void remove_waiter(struct rt_mutex *lock,
1009			  struct rt_mutex_waiter *waiter)
1010{
1011	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1012	struct task_struct *owner = rt_mutex_owner(lock);
1013	struct rt_mutex *next_lock;
1014	unsigned long flags;
1015
1016	raw_spin_lock_irqsave(&current->pi_lock, flags);
1017	rt_mutex_dequeue(lock, waiter);
1018	current->pi_blocked_on = NULL;
1019	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1020
1021	/*
1022	 * Only update priority if the waiter was the highest priority
1023	 * waiter of the lock and there is an owner to update.
1024	 */
1025	if (!owner || !is_top_waiter)
1026		return;
1027
1028	raw_spin_lock_irqsave(&owner->pi_lock, flags);
1029
1030	rt_mutex_dequeue_pi(owner, waiter);
1031
1032	if (rt_mutex_has_waiters(lock))
1033		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1034
1035	__rt_mutex_adjust_prio(owner);
1036
1037	/* Store the lock on which owner is blocked or NULL */
1038	next_lock = task_blocked_on_lock(owner);
1039
1040	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1041
1042	/*
1043	 * Don't walk the chain, if the owner task is not blocked
1044	 * itself.
1045	 */
1046	if (!next_lock)
1047		return;
1048
1049	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1050	get_task_struct(owner);
1051
1052	raw_spin_unlock(&lock->wait_lock);
1053
1054	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1055				   next_lock, NULL, current);
1056
1057	raw_spin_lock(&lock->wait_lock);
1058}
1059
1060/*
1061 * Recheck the pi chain, in case we got a priority setting
1062 *
1063 * Called from sched_setscheduler
1064 */
1065void rt_mutex_adjust_pi(struct task_struct *task)
1066{
1067	struct rt_mutex_waiter *waiter;
1068	struct rt_mutex *next_lock;
1069	unsigned long flags;
1070
1071	raw_spin_lock_irqsave(&task->pi_lock, flags);
1072
1073	waiter = task->pi_blocked_on;
1074	if (!waiter || (waiter->prio == task->prio &&
1075			!dl_prio(task->prio))) {
1076		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1077		return;
1078	}
1079	next_lock = waiter->lock;
1080	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1081
1082	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1083	get_task_struct(task);
1084
1085	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1086				   next_lock, NULL, task);
1087}
1088
1089/**
1090 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1091 * @lock:		 the rt_mutex to take
1092 * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1093 * 			 or TASK_UNINTERRUPTIBLE)
1094 * @timeout:		 the pre-initialized and started timer, or NULL for none
1095 * @waiter:		 the pre-initialized rt_mutex_waiter
1096 *
1097 * lock->wait_lock must be held by the caller.
1098 */
1099static int __sched
1100__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1101		    struct hrtimer_sleeper *timeout,
1102		    struct rt_mutex_waiter *waiter)
1103{
1104	int ret = 0;
1105
1106	for (;;) {
1107		/* Try to acquire the lock: */
1108		if (try_to_take_rt_mutex(lock, current, waiter))
1109			break;
1110
1111		/*
1112		 * TASK_INTERRUPTIBLE checks for signals and
1113		 * timeout. Ignored otherwise.
1114		 */
1115		if (unlikely(state == TASK_INTERRUPTIBLE)) {
1116			/* Signal pending? */
1117			if (signal_pending(current))
1118				ret = -EINTR;
1119			if (timeout && !timeout->task)
1120				ret = -ETIMEDOUT;
1121			if (ret)
1122				break;
1123		}
1124
1125		raw_spin_unlock(&lock->wait_lock);
1126
1127		debug_rt_mutex_print_deadlock(waiter);
1128
1129		schedule_rt_mutex(lock);
1130
1131		raw_spin_lock(&lock->wait_lock);
1132		set_current_state(state);
1133	}
1134
1135	__set_current_state(TASK_RUNNING);
1136	return ret;
1137}
1138
1139static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1140				     struct rt_mutex_waiter *w)
1141{
1142	/*
1143	 * If the result is not -EDEADLOCK or the caller requested
1144	 * deadlock detection, nothing to do here.
1145	 */
1146	if (res != -EDEADLOCK || detect_deadlock)
1147		return;
1148
1149	/*
1150	 * Yell lowdly and stop the task right here.
1151	 */
1152	rt_mutex_print_deadlock(w);
1153	while (1) {
1154		set_current_state(TASK_INTERRUPTIBLE);
1155		schedule();
1156	}
1157}
1158
1159/*
1160 * Slow path lock function:
1161 */
1162static int __sched
1163rt_mutex_slowlock(struct rt_mutex *lock, int state,
1164		  struct hrtimer_sleeper *timeout,
1165		  enum rtmutex_chainwalk chwalk)
1166{
1167	struct rt_mutex_waiter waiter;
1168	int ret = 0;
1169
1170	debug_rt_mutex_init_waiter(&waiter);
1171	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1172	RB_CLEAR_NODE(&waiter.tree_entry);
1173
1174	raw_spin_lock(&lock->wait_lock);
1175
1176	/* Try to acquire the lock again: */
1177	if (try_to_take_rt_mutex(lock, current, NULL)) {
1178		raw_spin_unlock(&lock->wait_lock);
1179		return 0;
1180	}
1181
1182	set_current_state(state);
1183
1184	/* Setup the timer, when timeout != NULL */
1185	if (unlikely(timeout)) {
1186		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1187		if (!hrtimer_active(&timeout->timer))
1188			timeout->task = NULL;
1189	}
1190
1191	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1192
1193	if (likely(!ret))
1194		/* sleep on the mutex */
1195		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1196
1197	if (unlikely(ret)) {
1198		__set_current_state(TASK_RUNNING);
1199		if (rt_mutex_has_waiters(lock))
1200			remove_waiter(lock, &waiter);
1201		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1202	}
1203
1204	/*
1205	 * try_to_take_rt_mutex() sets the waiter bit
1206	 * unconditionally. We might have to fix that up.
1207	 */
1208	fixup_rt_mutex_waiters(lock);
1209
1210	raw_spin_unlock(&lock->wait_lock);
1211
1212	/* Remove pending timer: */
1213	if (unlikely(timeout))
1214		hrtimer_cancel(&timeout->timer);
1215
1216	debug_rt_mutex_free_waiter(&waiter);
1217
1218	return ret;
1219}
1220
1221/*
1222 * Slow path try-lock function:
1223 */
1224static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1225{
1226	int ret;
1227
1228	/*
1229	 * If the lock already has an owner we fail to get the lock.
1230	 * This can be done without taking the @lock->wait_lock as
1231	 * it is only being read, and this is a trylock anyway.
1232	 */
1233	if (rt_mutex_owner(lock))
1234		return 0;
1235
1236	/*
1237	 * The mutex has currently no owner. Lock the wait lock and
1238	 * try to acquire the lock.
1239	 */
1240	raw_spin_lock(&lock->wait_lock);
1241
1242	ret = try_to_take_rt_mutex(lock, current, NULL);
1243
1244	/*
1245	 * try_to_take_rt_mutex() sets the lock waiters bit
1246	 * unconditionally. Clean this up.
1247	 */
1248	fixup_rt_mutex_waiters(lock);
1249
1250	raw_spin_unlock(&lock->wait_lock);
1251
1252	return ret;
1253}
1254
1255/*
1256 * Slow path to release a rt-mutex:
1257 */
1258static void __sched
1259rt_mutex_slowunlock(struct rt_mutex *lock)
1260{
1261	raw_spin_lock(&lock->wait_lock);
1262
1263	debug_rt_mutex_unlock(lock);
1264
1265	rt_mutex_deadlock_account_unlock(current);
1266
1267	/*
1268	 * We must be careful here if the fast path is enabled. If we
1269	 * have no waiters queued we cannot set owner to NULL here
1270	 * because of:
1271	 *
1272	 * foo->lock->owner = NULL;
1273	 *			rtmutex_lock(foo->lock);   <- fast path
1274	 *			free = atomic_dec_and_test(foo->refcnt);
1275	 *			rtmutex_unlock(foo->lock); <- fast path
1276	 *			if (free)
1277	 *				kfree(foo);
1278	 * raw_spin_unlock(foo->lock->wait_lock);
1279	 *
1280	 * So for the fastpath enabled kernel:
1281	 *
1282	 * Nothing can set the waiters bit as long as we hold
1283	 * lock->wait_lock. So we do the following sequence:
1284	 *
1285	 *	owner = rt_mutex_owner(lock);
1286	 *	clear_rt_mutex_waiters(lock);
1287	 *	raw_spin_unlock(&lock->wait_lock);
1288	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1289	 *		return;
1290	 *	goto retry;
1291	 *
1292	 * The fastpath disabled variant is simple as all access to
1293	 * lock->owner is serialized by lock->wait_lock:
1294	 *
1295	 *	lock->owner = NULL;
1296	 *	raw_spin_unlock(&lock->wait_lock);
1297	 */
1298	while (!rt_mutex_has_waiters(lock)) {
1299		/* Drops lock->wait_lock ! */
1300		if (unlock_rt_mutex_safe(lock) == true)
1301			return;
1302		/* Relock the rtmutex and try again */
1303		raw_spin_lock(&lock->wait_lock);
1304	}
1305
1306	/*
1307	 * The wakeup next waiter path does not suffer from the above
1308	 * race. See the comments there.
1309	 */
1310	wakeup_next_waiter(lock);
1311
1312	raw_spin_unlock(&lock->wait_lock);
1313
1314	/* Undo pi boosting if necessary: */
1315	rt_mutex_adjust_prio(current);
1316}
1317
1318/*
1319 * debug aware fast / slowpath lock,trylock,unlock
1320 *
1321 * The atomic acquire/release ops are compiled away, when either the
1322 * architecture does not support cmpxchg or when debugging is enabled.
1323 */
1324static inline int
1325rt_mutex_fastlock(struct rt_mutex *lock, int state,
1326		  int (*slowfn)(struct rt_mutex *lock, int state,
1327				struct hrtimer_sleeper *timeout,
1328				enum rtmutex_chainwalk chwalk))
1329{
1330	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1331		rt_mutex_deadlock_account_lock(lock, current);
1332		return 0;
1333	} else
1334		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1335}
1336
1337static inline int
1338rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1339			struct hrtimer_sleeper *timeout,
1340			enum rtmutex_chainwalk chwalk,
1341			int (*slowfn)(struct rt_mutex *lock, int state,
1342				      struct hrtimer_sleeper *timeout,
1343				      enum rtmutex_chainwalk chwalk))
1344{
1345	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1346	    likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1347		rt_mutex_deadlock_account_lock(lock, current);
1348		return 0;
1349	} else
1350		return slowfn(lock, state, timeout, chwalk);
1351}
1352
1353static inline int
1354rt_mutex_fasttrylock(struct rt_mutex *lock,
1355		     int (*slowfn)(struct rt_mutex *lock))
1356{
1357	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1358		rt_mutex_deadlock_account_lock(lock, current);
1359		return 1;
1360	}
1361	return slowfn(lock);
1362}
1363
1364static inline void
1365rt_mutex_fastunlock(struct rt_mutex *lock,
1366		    void (*slowfn)(struct rt_mutex *lock))
1367{
1368	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1369		rt_mutex_deadlock_account_unlock(current);
1370	else
1371		slowfn(lock);
1372}
1373
1374/**
1375 * rt_mutex_lock - lock a rt_mutex
1376 *
1377 * @lock: the rt_mutex to be locked
1378 */
1379void __sched rt_mutex_lock(struct rt_mutex *lock)
1380{
1381	might_sleep();
1382
1383	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1384}
1385EXPORT_SYMBOL_GPL(rt_mutex_lock);
1386
1387/**
1388 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1389 *
1390 * @lock:		the rt_mutex to be locked
1391 *
1392 * Returns:
1393 *  0		on success
1394 * -EINTR	when interrupted by a signal
1395 */
1396int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1397{
1398	might_sleep();
1399
1400	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1401}
1402EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1403
1404/*
1405 * Futex variant with full deadlock detection.
1406 */
1407int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1408			      struct hrtimer_sleeper *timeout)
1409{
1410	might_sleep();
1411
1412	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1413				       RT_MUTEX_FULL_CHAINWALK,
1414				       rt_mutex_slowlock);
1415}
1416
1417/**
1418 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1419 *			the timeout structure is provided
1420 *			by the caller
1421 *
1422 * @lock:		the rt_mutex to be locked
1423 * @timeout:		timeout structure or NULL (no timeout)
1424 *
1425 * Returns:
1426 *  0		on success
1427 * -EINTR	when interrupted by a signal
1428 * -ETIMEDOUT	when the timeout expired
1429 */
1430int
1431rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1432{
1433	might_sleep();
1434
1435	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1436				       RT_MUTEX_MIN_CHAINWALK,
1437				       rt_mutex_slowlock);
1438}
1439EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1440
1441/**
1442 * rt_mutex_trylock - try to lock a rt_mutex
1443 *
1444 * @lock:	the rt_mutex to be locked
1445 *
1446 * Returns 1 on success and 0 on contention
1447 */
1448int __sched rt_mutex_trylock(struct rt_mutex *lock)
1449{
1450	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1451}
1452EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1453
1454/**
1455 * rt_mutex_unlock - unlock a rt_mutex
1456 *
1457 * @lock: the rt_mutex to be unlocked
1458 */
1459void __sched rt_mutex_unlock(struct rt_mutex *lock)
1460{
1461	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1462}
1463EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1464
1465/**
1466 * rt_mutex_destroy - mark a mutex unusable
1467 * @lock: the mutex to be destroyed
1468 *
1469 * This function marks the mutex uninitialized, and any subsequent
1470 * use of the mutex is forbidden. The mutex must not be locked when
1471 * this function is called.
1472 */
1473void rt_mutex_destroy(struct rt_mutex *lock)
1474{
1475	WARN_ON(rt_mutex_is_locked(lock));
1476#ifdef CONFIG_DEBUG_RT_MUTEXES
1477	lock->magic = NULL;
1478#endif
1479}
1480
1481EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1482
1483/**
1484 * __rt_mutex_init - initialize the rt lock
1485 *
1486 * @lock: the rt lock to be initialized
1487 *
1488 * Initialize the rt lock to unlocked state.
1489 *
1490 * Initializing of a locked rt lock is not allowed
1491 */
1492void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1493{
1494	lock->owner = NULL;
1495	raw_spin_lock_init(&lock->wait_lock);
1496	lock->waiters = RB_ROOT;
1497	lock->waiters_leftmost = NULL;
1498
1499	debug_rt_mutex_init(lock, name);
1500}
1501EXPORT_SYMBOL_GPL(__rt_mutex_init);
1502
1503/**
1504 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1505 *				proxy owner
1506 *
1507 * @lock: 	the rt_mutex to be locked
1508 * @proxy_owner:the task to set as owner
1509 *
1510 * No locking. Caller has to do serializing itself
1511 * Special API call for PI-futex support
1512 */
1513void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1514				struct task_struct *proxy_owner)
1515{
1516	__rt_mutex_init(lock, NULL);
1517	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1518	rt_mutex_set_owner(lock, proxy_owner);
1519	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1520}
1521
1522/**
1523 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1524 *
1525 * @lock: 	the rt_mutex to be locked
1526 *
1527 * No locking. Caller has to do serializing itself
1528 * Special API call for PI-futex support
1529 */
1530void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1531			   struct task_struct *proxy_owner)
1532{
1533	debug_rt_mutex_proxy_unlock(lock);
1534	rt_mutex_set_owner(lock, NULL);
1535	rt_mutex_deadlock_account_unlock(proxy_owner);
1536}
1537
1538/**
1539 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1540 * @lock:		the rt_mutex to take
1541 * @waiter:		the pre-initialized rt_mutex_waiter
1542 * @task:		the task to prepare
1543 *
1544 * Returns:
1545 *  0 - task blocked on lock
1546 *  1 - acquired the lock for task, caller should wake it up
1547 * <0 - error
1548 *
1549 * Special API call for FUTEX_REQUEUE_PI support.
1550 */
1551int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1552			      struct rt_mutex_waiter *waiter,
1553			      struct task_struct *task)
1554{
1555	int ret;
1556
1557	raw_spin_lock(&lock->wait_lock);
1558
1559	if (try_to_take_rt_mutex(lock, task, NULL)) {
1560		raw_spin_unlock(&lock->wait_lock);
1561		return 1;
1562	}
1563
1564	/* We enforce deadlock detection for futexes */
1565	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1566				      RT_MUTEX_FULL_CHAINWALK);
1567
1568	if (ret && !rt_mutex_owner(lock)) {
1569		/*
1570		 * Reset the return value. We might have
1571		 * returned with -EDEADLK and the owner
1572		 * released the lock while we were walking the
1573		 * pi chain.  Let the waiter sort it out.
1574		 */
1575		ret = 0;
1576	}
1577
1578	if (unlikely(ret))
1579		remove_waiter(lock, waiter);
1580
1581	raw_spin_unlock(&lock->wait_lock);
1582
1583	debug_rt_mutex_print_deadlock(waiter);
1584
1585	return ret;
1586}
1587
1588/**
1589 * rt_mutex_next_owner - return the next owner of the lock
1590 *
1591 * @lock: the rt lock query
1592 *
1593 * Returns the next owner of the lock or NULL
1594 *
1595 * Caller has to serialize against other accessors to the lock
1596 * itself.
1597 *
1598 * Special API call for PI-futex support
1599 */
1600struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1601{
1602	if (!rt_mutex_has_waiters(lock))
1603		return NULL;
1604
1605	return rt_mutex_top_waiter(lock)->task;
1606}
1607
1608/**
1609 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1610 * @lock:		the rt_mutex we were woken on
1611 * @to:			the timeout, null if none. hrtimer should already have
1612 *			been started.
1613 * @waiter:		the pre-initialized rt_mutex_waiter
1614 *
1615 * Complete the lock acquisition started our behalf by another thread.
1616 *
1617 * Returns:
1618 *  0 - success
1619 * <0 - error, one of -EINTR, -ETIMEDOUT
1620 *
1621 * Special API call for PI-futex requeue support
1622 */
1623int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1624			       struct hrtimer_sleeper *to,
1625			       struct rt_mutex_waiter *waiter)
1626{
1627	int ret;
1628
1629	raw_spin_lock(&lock->wait_lock);
1630
1631	set_current_state(TASK_INTERRUPTIBLE);
1632
1633	/* sleep on the mutex */
1634	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1635
1636	if (unlikely(ret))
1637		remove_waiter(lock, waiter);
1638
1639	/*
1640	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1641	 * have to fix that up.
1642	 */
1643	fixup_rt_mutex_waiters(lock);
1644
1645	raw_spin_unlock(&lock->wait_lock);
1646
1647	return ret;
1648}
1649