1/*
2 * kernel/locking/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 *    from the -rt tree, where it was originally implemented for rtmutexes
15 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 *    and Sven Dietrich.
17 *
18 * Also see Documentation/locking/mutex-design.txt.
19 */
20#include <linux/mutex.h>
21#include <linux/ww_mutex.h>
22#include <linux/sched.h>
23#include <linux/sched/rt.h>
24#include <linux/export.h>
25#include <linux/spinlock.h>
26#include <linux/interrupt.h>
27#include <linux/debug_locks.h>
28#include <linux/osq_lock.h>
29
30/*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34#ifdef CONFIG_DEBUG_MUTEXES
35# include "mutex-debug.h"
36# include <asm-generic/mutex-null.h>
37/*
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
41 */
42# undef __mutex_slowpath_needs_to_unlock
43# define  __mutex_slowpath_needs_to_unlock()	0
44#else
45# include "mutex.h"
46# include <asm/mutex.h>
47#endif
48
49void
50__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51{
52	atomic_set(&lock->count, 1);
53	spin_lock_init(&lock->wait_lock);
54	INIT_LIST_HEAD(&lock->wait_list);
55	mutex_clear_owner(lock);
56#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57	osq_lock_init(&lock->osq);
58#endif
59
60	debug_mutex_init(lock, name, key);
61}
62
63EXPORT_SYMBOL(__mutex_init);
64
65#ifndef CONFIG_DEBUG_LOCK_ALLOC
66/*
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
71 */
72__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73
74/**
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 *   checks that will enforce the restrictions and will also do
91 *   deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
95void __sched mutex_lock(struct mutex *lock)
96{
97	might_sleep();
98	/*
99	 * The locking fastpath is the 1->0 transition from
100	 * 'unlocked' into 'locked' state.
101	 */
102	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103	mutex_set_owner(lock);
104}
105
106EXPORT_SYMBOL(mutex_lock);
107#endif
108
109static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110						   struct ww_acquire_ctx *ww_ctx)
111{
112#ifdef CONFIG_DEBUG_MUTEXES
113	/*
114	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115	 * but released with a normal mutex_unlock in this call.
116	 *
117	 * This should never happen, always use ww_mutex_unlock.
118	 */
119	DEBUG_LOCKS_WARN_ON(ww->ctx);
120
121	/*
122	 * Not quite done after calling ww_acquire_done() ?
123	 */
124	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125
126	if (ww_ctx->contending_lock) {
127		/*
128		 * After -EDEADLK you tried to
129		 * acquire a different ww_mutex? Bad!
130		 */
131		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132
133		/*
134		 * You called ww_mutex_lock after receiving -EDEADLK,
135		 * but 'forgot' to unlock everything else first?
136		 */
137		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138		ww_ctx->contending_lock = NULL;
139	}
140
141	/*
142	 * Naughty, using a different class will lead to undefined behavior!
143	 */
144	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145#endif
146	ww_ctx->acquired++;
147}
148
149/*
150 * After acquiring lock with fastpath or when we lost out in contested
151 * slowpath, set ctx and wake up any waiters so they can recheck.
152 *
153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154 * as the fastpath and opportunistic spinning are disabled in that case.
155 */
156static __always_inline void
157ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158			       struct ww_acquire_ctx *ctx)
159{
160	unsigned long flags;
161	struct mutex_waiter *cur;
162
163	ww_mutex_lock_acquired(lock, ctx);
164
165	lock->ctx = ctx;
166
167	/*
168	 * The lock->ctx update should be visible on all cores before
169	 * the atomic read is done, otherwise contended waiters might be
170	 * missed. The contended waiters will either see ww_ctx == NULL
171	 * and keep spinning, or it will acquire wait_lock, add itself
172	 * to waiter list and sleep.
173	 */
174	smp_mb(); /* ^^^ */
175
176	/*
177	 * Check if lock is contended, if not there is nobody to wake up
178	 */
179	if (likely(atomic_read(&lock->base.count) == 0))
180		return;
181
182	/*
183	 * Uh oh, we raced in fastpath, wake up everyone in this case,
184	 * so they can see the new lock->ctx.
185	 */
186	spin_lock_mutex(&lock->base.wait_lock, flags);
187	list_for_each_entry(cur, &lock->base.wait_list, list) {
188		debug_mutex_wake_waiter(&lock->base, cur);
189		wake_up_process(cur->task);
190	}
191	spin_unlock_mutex(&lock->base.wait_lock, flags);
192}
193
194/*
195 * After acquiring lock in the slowpath set ctx and wake up any
196 * waiters so they can recheck.
197 *
198 * Callers must hold the mutex wait_lock.
199 */
200static __always_inline void
201ww_mutex_set_context_slowpath(struct ww_mutex *lock,
202			      struct ww_acquire_ctx *ctx)
203{
204	struct mutex_waiter *cur;
205
206	ww_mutex_lock_acquired(lock, ctx);
207	lock->ctx = ctx;
208
209	/*
210	 * Give any possible sleeping processes the chance to wake up,
211	 * so they can recheck if they have to back off.
212	 */
213	list_for_each_entry(cur, &lock->base.wait_list, list) {
214		debug_mutex_wake_waiter(&lock->base, cur);
215		wake_up_process(cur->task);
216	}
217}
218
219#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
220/*
221 * Look out! "owner" is an entirely speculative pointer
222 * access and not reliable.
223 */
224static noinline
225bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
226{
227	bool ret = true;
228
229	rcu_read_lock();
230	while (lock->owner == owner) {
231		/*
232		 * Ensure we emit the owner->on_cpu, dereference _after_
233		 * checking lock->owner still matches owner. If that fails,
234		 * owner might point to freed memory. If it still matches,
235		 * the rcu_read_lock() ensures the memory stays valid.
236		 */
237		barrier();
238
239		if (!owner->on_cpu || need_resched()) {
240			ret = false;
241			break;
242		}
243
244		cpu_relax_lowlatency();
245	}
246	rcu_read_unlock();
247
248	return ret;
249}
250
251/*
252 * Initial check for entering the mutex spinning loop
253 */
254static inline int mutex_can_spin_on_owner(struct mutex *lock)
255{
256	struct task_struct *owner;
257	int retval = 1;
258
259	if (need_resched())
260		return 0;
261
262	rcu_read_lock();
263	owner = READ_ONCE(lock->owner);
264	if (owner)
265		retval = owner->on_cpu;
266	rcu_read_unlock();
267	/*
268	 * if lock->owner is not set, the mutex owner may have just acquired
269	 * it and not set the owner yet or the mutex has been released.
270	 */
271	return retval;
272}
273
274/*
275 * Atomically try to take the lock when it is available
276 */
277static inline bool mutex_try_to_acquire(struct mutex *lock)
278{
279	return !mutex_is_locked(lock) &&
280		(atomic_cmpxchg(&lock->count, 1, 0) == 1);
281}
282
283/*
284 * Optimistic spinning.
285 *
286 * We try to spin for acquisition when we find that the lock owner
287 * is currently running on a (different) CPU and while we don't
288 * need to reschedule. The rationale is that if the lock owner is
289 * running, it is likely to release the lock soon.
290 *
291 * Since this needs the lock owner, and this mutex implementation
292 * doesn't track the owner atomically in the lock field, we need to
293 * track it non-atomically.
294 *
295 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
296 * to serialize everything.
297 *
298 * The mutex spinners are queued up using MCS lock so that only one
299 * spinner can compete for the mutex. However, if mutex spinning isn't
300 * going to happen, there is no point in going through the lock/unlock
301 * overhead.
302 *
303 * Returns true when the lock was taken, otherwise false, indicating
304 * that we need to jump to the slowpath and sleep.
305 */
306static bool mutex_optimistic_spin(struct mutex *lock,
307				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
308{
309	struct task_struct *task = current;
310
311	if (!mutex_can_spin_on_owner(lock))
312		goto done;
313
314	/*
315	 * In order to avoid a stampede of mutex spinners trying to
316	 * acquire the mutex all at once, the spinners need to take a
317	 * MCS (queued) lock first before spinning on the owner field.
318	 */
319	if (!osq_lock(&lock->osq))
320		goto done;
321
322	while (true) {
323		struct task_struct *owner;
324
325		if (use_ww_ctx && ww_ctx->acquired > 0) {
326			struct ww_mutex *ww;
327
328			ww = container_of(lock, struct ww_mutex, base);
329			/*
330			 * If ww->ctx is set the contents are undefined, only
331			 * by acquiring wait_lock there is a guarantee that
332			 * they are not invalid when reading.
333			 *
334			 * As such, when deadlock detection needs to be
335			 * performed the optimistic spinning cannot be done.
336			 */
337			if (READ_ONCE(ww->ctx))
338				break;
339		}
340
341		/*
342		 * If there's an owner, wait for it to either
343		 * release the lock or go to sleep.
344		 */
345		owner = READ_ONCE(lock->owner);
346		if (owner && !mutex_spin_on_owner(lock, owner))
347			break;
348
349		/* Try to acquire the mutex if it is unlocked. */
350		if (mutex_try_to_acquire(lock)) {
351			lock_acquired(&lock->dep_map, ip);
352
353			if (use_ww_ctx) {
354				struct ww_mutex *ww;
355				ww = container_of(lock, struct ww_mutex, base);
356
357				ww_mutex_set_context_fastpath(ww, ww_ctx);
358			}
359
360			mutex_set_owner(lock);
361			osq_unlock(&lock->osq);
362			return true;
363		}
364
365		/*
366		 * When there's no owner, we might have preempted between the
367		 * owner acquiring the lock and setting the owner field. If
368		 * we're an RT task that will live-lock because we won't let
369		 * the owner complete.
370		 */
371		if (!owner && (need_resched() || rt_task(task)))
372			break;
373
374		/*
375		 * The cpu_relax() call is a compiler barrier which forces
376		 * everything in this loop to be re-loaded. We don't need
377		 * memory barriers as we'll eventually observe the right
378		 * values at the cost of a few extra spins.
379		 */
380		cpu_relax_lowlatency();
381	}
382
383	osq_unlock(&lock->osq);
384done:
385	/*
386	 * If we fell out of the spin path because of need_resched(),
387	 * reschedule now, before we try-lock the mutex. This avoids getting
388	 * scheduled out right after we obtained the mutex.
389	 */
390	if (need_resched()) {
391		/*
392		 * We _should_ have TASK_RUNNING here, but just in case
393		 * we do not, make it so, otherwise we might get stuck.
394		 */
395		__set_current_state(TASK_RUNNING);
396		schedule_preempt_disabled();
397	}
398
399	return false;
400}
401#else
402static bool mutex_optimistic_spin(struct mutex *lock,
403				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
404{
405	return false;
406}
407#endif
408
409__visible __used noinline
410void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
411
412/**
413 * mutex_unlock - release the mutex
414 * @lock: the mutex to be released
415 *
416 * Unlock a mutex that has been locked by this task previously.
417 *
418 * This function must not be used in interrupt context. Unlocking
419 * of a not locked mutex is not allowed.
420 *
421 * This function is similar to (but not equivalent to) up().
422 */
423void __sched mutex_unlock(struct mutex *lock)
424{
425	/*
426	 * The unlocking fastpath is the 0->1 transition from 'locked'
427	 * into 'unlocked' state:
428	 */
429#ifndef CONFIG_DEBUG_MUTEXES
430	/*
431	 * When debugging is enabled we must not clear the owner before time,
432	 * the slow path will always be taken, and that clears the owner field
433	 * after verifying that it was indeed current.
434	 */
435	mutex_clear_owner(lock);
436#endif
437	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
438}
439
440EXPORT_SYMBOL(mutex_unlock);
441
442/**
443 * ww_mutex_unlock - release the w/w mutex
444 * @lock: the mutex to be released
445 *
446 * Unlock a mutex that has been locked by this task previously with any of the
447 * ww_mutex_lock* functions (with or without an acquire context). It is
448 * forbidden to release the locks after releasing the acquire context.
449 *
450 * This function must not be used in interrupt context. Unlocking
451 * of a unlocked mutex is not allowed.
452 */
453void __sched ww_mutex_unlock(struct ww_mutex *lock)
454{
455	/*
456	 * The unlocking fastpath is the 0->1 transition from 'locked'
457	 * into 'unlocked' state:
458	 */
459	if (lock->ctx) {
460#ifdef CONFIG_DEBUG_MUTEXES
461		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
462#endif
463		if (lock->ctx->acquired > 0)
464			lock->ctx->acquired--;
465		lock->ctx = NULL;
466	}
467
468#ifndef CONFIG_DEBUG_MUTEXES
469	/*
470	 * When debugging is enabled we must not clear the owner before time,
471	 * the slow path will always be taken, and that clears the owner field
472	 * after verifying that it was indeed current.
473	 */
474	mutex_clear_owner(&lock->base);
475#endif
476	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
477}
478EXPORT_SYMBOL(ww_mutex_unlock);
479
480static inline int __sched
481__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
482{
483	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
484	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
485
486	if (!hold_ctx)
487		return 0;
488
489	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
490	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
491#ifdef CONFIG_DEBUG_MUTEXES
492		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
493		ctx->contending_lock = ww;
494#endif
495		return -EDEADLK;
496	}
497
498	return 0;
499}
500
501/*
502 * Lock a mutex (possibly interruptible), slowpath:
503 */
504static __always_inline int __sched
505__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
506		    struct lockdep_map *nest_lock, unsigned long ip,
507		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
508{
509	struct task_struct *task = current;
510	struct mutex_waiter waiter;
511	unsigned long flags;
512	int ret;
513
514	if (use_ww_ctx) {
515		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
516		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
517			return -EALREADY;
518	}
519
520	preempt_disable();
521	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
522
523	if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
524		/* got the lock, yay! */
525		preempt_enable();
526		return 0;
527	}
528
529	spin_lock_mutex(&lock->wait_lock, flags);
530
531	/*
532	 * Once more, try to acquire the lock. Only try-lock the mutex if
533	 * it is unlocked to reduce unnecessary xchg() operations.
534	 */
535	if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
536		goto skip_wait;
537
538	debug_mutex_lock_common(lock, &waiter);
539	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
540
541	/* add waiting tasks to the end of the waitqueue (FIFO): */
542	list_add_tail(&waiter.list, &lock->wait_list);
543	waiter.task = task;
544
545	lock_contended(&lock->dep_map, ip);
546
547	for (;;) {
548		/*
549		 * Lets try to take the lock again - this is needed even if
550		 * we get here for the first time (shortly after failing to
551		 * acquire the lock), to make sure that we get a wakeup once
552		 * it's unlocked. Later on, if we sleep, this is the
553		 * operation that gives us the lock. We xchg it to -1, so
554		 * that when we release the lock, we properly wake up the
555		 * other waiters. We only attempt the xchg if the count is
556		 * non-negative in order to avoid unnecessary xchg operations:
557		 */
558		if (atomic_read(&lock->count) >= 0 &&
559		    (atomic_xchg(&lock->count, -1) == 1))
560			break;
561
562		/*
563		 * got a signal? (This code gets eliminated in the
564		 * TASK_UNINTERRUPTIBLE case.)
565		 */
566		if (unlikely(signal_pending_state(state, task))) {
567			ret = -EINTR;
568			goto err;
569		}
570
571		if (use_ww_ctx && ww_ctx->acquired > 0) {
572			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
573			if (ret)
574				goto err;
575		}
576
577		__set_task_state(task, state);
578
579		/* didn't get the lock, go to sleep: */
580		spin_unlock_mutex(&lock->wait_lock, flags);
581		schedule_preempt_disabled();
582		spin_lock_mutex(&lock->wait_lock, flags);
583	}
584	__set_task_state(task, TASK_RUNNING);
585
586	mutex_remove_waiter(lock, &waiter, current_thread_info());
587	/* set it to 0 if there are no waiters left: */
588	if (likely(list_empty(&lock->wait_list)))
589		atomic_set(&lock->count, 0);
590	debug_mutex_free_waiter(&waiter);
591
592skip_wait:
593	/* got the lock - cleanup and rejoice! */
594	lock_acquired(&lock->dep_map, ip);
595	mutex_set_owner(lock);
596
597	if (use_ww_ctx) {
598		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
599		ww_mutex_set_context_slowpath(ww, ww_ctx);
600	}
601
602	spin_unlock_mutex(&lock->wait_lock, flags);
603	preempt_enable();
604	return 0;
605
606err:
607	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
608	spin_unlock_mutex(&lock->wait_lock, flags);
609	debug_mutex_free_waiter(&waiter);
610	mutex_release(&lock->dep_map, 1, ip);
611	preempt_enable();
612	return ret;
613}
614
615#ifdef CONFIG_DEBUG_LOCK_ALLOC
616void __sched
617mutex_lock_nested(struct mutex *lock, unsigned int subclass)
618{
619	might_sleep();
620	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
621			    subclass, NULL, _RET_IP_, NULL, 0);
622}
623
624EXPORT_SYMBOL_GPL(mutex_lock_nested);
625
626void __sched
627_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
628{
629	might_sleep();
630	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
631			    0, nest, _RET_IP_, NULL, 0);
632}
633
634EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
635
636int __sched
637mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
638{
639	might_sleep();
640	return __mutex_lock_common(lock, TASK_KILLABLE,
641				   subclass, NULL, _RET_IP_, NULL, 0);
642}
643EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
644
645int __sched
646mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
647{
648	might_sleep();
649	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
650				   subclass, NULL, _RET_IP_, NULL, 0);
651}
652
653EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
654
655static inline int
656ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
657{
658#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
659	unsigned tmp;
660
661	if (ctx->deadlock_inject_countdown-- == 0) {
662		tmp = ctx->deadlock_inject_interval;
663		if (tmp > UINT_MAX/4)
664			tmp = UINT_MAX;
665		else
666			tmp = tmp*2 + tmp + tmp/2;
667
668		ctx->deadlock_inject_interval = tmp;
669		ctx->deadlock_inject_countdown = tmp;
670		ctx->contending_lock = lock;
671
672		ww_mutex_unlock(lock);
673
674		return -EDEADLK;
675	}
676#endif
677
678	return 0;
679}
680
681int __sched
682__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
683{
684	int ret;
685
686	might_sleep();
687	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
688				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
689	if (!ret && ctx->acquired > 1)
690		return ww_mutex_deadlock_injection(lock, ctx);
691
692	return ret;
693}
694EXPORT_SYMBOL_GPL(__ww_mutex_lock);
695
696int __sched
697__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
698{
699	int ret;
700
701	might_sleep();
702	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
703				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
704
705	if (!ret && ctx->acquired > 1)
706		return ww_mutex_deadlock_injection(lock, ctx);
707
708	return ret;
709}
710EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
711
712#endif
713
714/*
715 * Release the lock, slowpath:
716 */
717static inline void
718__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
719{
720	unsigned long flags;
721
722	/*
723	 * As a performance measurement, release the lock before doing other
724	 * wakeup related duties to follow. This allows other tasks to acquire
725	 * the lock sooner, while still handling cleanups in past unlock calls.
726	 * This can be done as we do not enforce strict equivalence between the
727	 * mutex counter and wait_list.
728	 *
729	 *
730	 * Some architectures leave the lock unlocked in the fastpath failure
731	 * case, others need to leave it locked. In the later case we have to
732	 * unlock it here - as the lock counter is currently 0 or negative.
733	 */
734	if (__mutex_slowpath_needs_to_unlock())
735		atomic_set(&lock->count, 1);
736
737	spin_lock_mutex(&lock->wait_lock, flags);
738	mutex_release(&lock->dep_map, nested, _RET_IP_);
739	debug_mutex_unlock(lock);
740
741	if (!list_empty(&lock->wait_list)) {
742		/* get the first entry from the wait-list: */
743		struct mutex_waiter *waiter =
744				list_entry(lock->wait_list.next,
745					   struct mutex_waiter, list);
746
747		debug_mutex_wake_waiter(lock, waiter);
748
749		wake_up_process(waiter->task);
750	}
751
752	spin_unlock_mutex(&lock->wait_lock, flags);
753}
754
755/*
756 * Release the lock, slowpath:
757 */
758__visible void
759__mutex_unlock_slowpath(atomic_t *lock_count)
760{
761	struct mutex *lock = container_of(lock_count, struct mutex, count);
762
763	__mutex_unlock_common_slowpath(lock, 1);
764}
765
766#ifndef CONFIG_DEBUG_LOCK_ALLOC
767/*
768 * Here come the less common (and hence less performance-critical) APIs:
769 * mutex_lock_interruptible() and mutex_trylock().
770 */
771static noinline int __sched
772__mutex_lock_killable_slowpath(struct mutex *lock);
773
774static noinline int __sched
775__mutex_lock_interruptible_slowpath(struct mutex *lock);
776
777/**
778 * mutex_lock_interruptible - acquire the mutex, interruptible
779 * @lock: the mutex to be acquired
780 *
781 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
782 * been acquired or sleep until the mutex becomes available. If a
783 * signal arrives while waiting for the lock then this function
784 * returns -EINTR.
785 *
786 * This function is similar to (but not equivalent to) down_interruptible().
787 */
788int __sched mutex_lock_interruptible(struct mutex *lock)
789{
790	int ret;
791
792	might_sleep();
793	ret =  __mutex_fastpath_lock_retval(&lock->count);
794	if (likely(!ret)) {
795		mutex_set_owner(lock);
796		return 0;
797	} else
798		return __mutex_lock_interruptible_slowpath(lock);
799}
800
801EXPORT_SYMBOL(mutex_lock_interruptible);
802
803int __sched mutex_lock_killable(struct mutex *lock)
804{
805	int ret;
806
807	might_sleep();
808	ret = __mutex_fastpath_lock_retval(&lock->count);
809	if (likely(!ret)) {
810		mutex_set_owner(lock);
811		return 0;
812	} else
813		return __mutex_lock_killable_slowpath(lock);
814}
815EXPORT_SYMBOL(mutex_lock_killable);
816
817__visible void __sched
818__mutex_lock_slowpath(atomic_t *lock_count)
819{
820	struct mutex *lock = container_of(lock_count, struct mutex, count);
821
822	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
823			    NULL, _RET_IP_, NULL, 0);
824}
825
826static noinline int __sched
827__mutex_lock_killable_slowpath(struct mutex *lock)
828{
829	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
830				   NULL, _RET_IP_, NULL, 0);
831}
832
833static noinline int __sched
834__mutex_lock_interruptible_slowpath(struct mutex *lock)
835{
836	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
837				   NULL, _RET_IP_, NULL, 0);
838}
839
840static noinline int __sched
841__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
842{
843	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
844				   NULL, _RET_IP_, ctx, 1);
845}
846
847static noinline int __sched
848__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
849					    struct ww_acquire_ctx *ctx)
850{
851	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
852				   NULL, _RET_IP_, ctx, 1);
853}
854
855#endif
856
857/*
858 * Spinlock based trylock, we take the spinlock and check whether we
859 * can get the lock:
860 */
861static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
862{
863	struct mutex *lock = container_of(lock_count, struct mutex, count);
864	unsigned long flags;
865	int prev;
866
867	/* No need to trylock if the mutex is locked. */
868	if (mutex_is_locked(lock))
869		return 0;
870
871	spin_lock_mutex(&lock->wait_lock, flags);
872
873	prev = atomic_xchg(&lock->count, -1);
874	if (likely(prev == 1)) {
875		mutex_set_owner(lock);
876		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
877	}
878
879	/* Set it back to 0 if there are no waiters: */
880	if (likely(list_empty(&lock->wait_list)))
881		atomic_set(&lock->count, 0);
882
883	spin_unlock_mutex(&lock->wait_lock, flags);
884
885	return prev == 1;
886}
887
888/**
889 * mutex_trylock - try to acquire the mutex, without waiting
890 * @lock: the mutex to be acquired
891 *
892 * Try to acquire the mutex atomically. Returns 1 if the mutex
893 * has been acquired successfully, and 0 on contention.
894 *
895 * NOTE: this function follows the spin_trylock() convention, so
896 * it is negated from the down_trylock() return values! Be careful
897 * about this when converting semaphore users to mutexes.
898 *
899 * This function must not be used in interrupt context. The
900 * mutex must be released by the same task that acquired it.
901 */
902int __sched mutex_trylock(struct mutex *lock)
903{
904	int ret;
905
906	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
907	if (ret)
908		mutex_set_owner(lock);
909
910	return ret;
911}
912EXPORT_SYMBOL(mutex_trylock);
913
914#ifndef CONFIG_DEBUG_LOCK_ALLOC
915int __sched
916__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
917{
918	int ret;
919
920	might_sleep();
921
922	ret = __mutex_fastpath_lock_retval(&lock->base.count);
923
924	if (likely(!ret)) {
925		ww_mutex_set_context_fastpath(lock, ctx);
926		mutex_set_owner(&lock->base);
927	} else
928		ret = __ww_mutex_lock_slowpath(lock, ctx);
929	return ret;
930}
931EXPORT_SYMBOL(__ww_mutex_lock);
932
933int __sched
934__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
935{
936	int ret;
937
938	might_sleep();
939
940	ret = __mutex_fastpath_lock_retval(&lock->base.count);
941
942	if (likely(!ret)) {
943		ww_mutex_set_context_fastpath(lock, ctx);
944		mutex_set_owner(&lock->base);
945	} else
946		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
947	return ret;
948}
949EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
950
951#endif
952
953/**
954 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
955 * @cnt: the atomic which we are to dec
956 * @lock: the mutex to return holding if we dec to 0
957 *
958 * return true and hold lock if we dec to 0, return false otherwise
959 */
960int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
961{
962	/* dec if we can't possibly hit 0 */
963	if (atomic_add_unless(cnt, -1, 1))
964		return 0;
965	/* we might hit 0, so take the lock */
966	mutex_lock(lock);
967	if (!atomic_dec_and_test(cnt)) {
968		/* when we actually did the dec, we didn't hit 0 */
969		mutex_unlock(lock);
970		return 0;
971	}
972	/* we hit 0, and we hold the lock */
973	return 1;
974}
975EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
976