1/*
2 *  Fast Userspace Mutexes (which I call "Futexes!").
3 *  (C) Rusty Russell, IBM 2002
4 *
5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
9 *  (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 *  Robust futex support started by Ingo Molnar
12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 *  PRIVATE futexes by Eric Dumazet
20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 *  Copyright (C) IBM Corporation, 2009
24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 *  enough at me, Linus for the original (flawed) idea, Matthew
28 *  Kirkwood for proof-of-concept implementation.
29 *
30 *  "The futexes are also cursed."
31 *  "But they come in a choice of three flavours!"
32 *
33 *  This program is free software; you can redistribute it and/or modify
34 *  it under the terms of the GNU General Public License as published by
35 *  the Free Software Foundation; either version 2 of the License, or
36 *  (at your option) any later version.
37 *
38 *  This program is distributed in the hope that it will be useful,
39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41 *  GNU General Public License for more details.
42 *
43 *  You should have received a copy of the GNU General Public License
44 *  along with this program; if not, write to the Free Software
45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
57#include <linux/signal.h>
58#include <linux/export.h>
59#include <linux/magic.h>
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62#include <linux/ptrace.h>
63#include <linux/sched/rt.h>
64#include <linux/hugetlb.h>
65#include <linux/freezer.h>
66#include <linux/bootmem.h>
67
68#include <asm/futex.h>
69
70#include "locking/rtmutex_common.h"
71
72/*
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
84 *
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
89 *
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
95 *
96 * CPU 0                               CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 *   futex_wait(futex, val);
100 *   uval = *futex;
101 *                                     *futex = newval;
102 *                                     sys_futex(WAKE, futex);
103 *                                       futex_wake(futex);
104 *                                       if (queue_empty())
105 *                                         return;
106 *   if (uval == val)
107 *      lock(hash_bucket(futex));
108 *      queue();
109 *     unlock(hash_bucket(futex));
110 *     schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
115 *
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0                                 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 *   futex_wait(futex, val);
124 *
125 *   waiters++; (a)
126 *   mb(); (A) <-- paired with -.
127 *                              |
128 *   lock(hash_bucket(futex));  |
129 *                              |
130 *   uval = *futex;             |
131 *                              |        *futex = newval;
132 *                              |        sys_futex(WAKE, futex);
133 *                              |          futex_wake(futex);
134 *                              |
135 *                              `------->  mb(); (B)
136 *   if (uval == val)
137 *     queue();
138 *     unlock(hash_bucket(futex));
139 *     schedule();                         if (waiters)
140 *                                           lock(hash_bucket(futex));
141 *   else                                    wake_waiters(futex);
142 *     waiters--; (b)                        unlock(hash_bucket(futex));
143 *
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers for both
147 * shared and private futexes in get_futex_key_refs().
148 *
149 * This yields the following case (where X:=waiters, Y:=futex):
150 *
151 *	X = Y = 0
152 *
153 *	w[X]=1		w[Y]=1
154 *	MB		MB
155 *	r[Y]=y		r[X]=x
156 *
157 * Which guarantees that x==0 && y==0 is impossible; which translates back into
158 * the guarantee that we cannot both miss the futex variable change and the
159 * enqueue.
160 *
161 * Note that a new waiter is accounted for in (a) even when it is possible that
162 * the wait call can return error, in which case we backtrack from it in (b).
163 * Refer to the comment in queue_lock().
164 *
165 * Similarly, in order to account for waiters being requeued on another
166 * address we always increment the waiters for the destination bucket before
167 * acquiring the lock. It then decrements them again  after releasing it -
168 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
169 * will do the additional required waiter count housekeeping. This is done for
170 * double_lock_hb() and double_unlock_hb(), respectively.
171 */
172
173#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
174int __read_mostly futex_cmpxchg_enabled;
175#endif
176
177/*
178 * Futex flags used to encode options to functions and preserve them across
179 * restarts.
180 */
181#define FLAGS_SHARED		0x01
182#define FLAGS_CLOCKRT		0x02
183#define FLAGS_HAS_TIMEOUT	0x04
184
185/*
186 * Priority Inheritance state:
187 */
188struct futex_pi_state {
189	/*
190	 * list of 'owned' pi_state instances - these have to be
191	 * cleaned up in do_exit() if the task exits prematurely:
192	 */
193	struct list_head list;
194
195	/*
196	 * The PI object:
197	 */
198	struct rt_mutex pi_mutex;
199
200	struct task_struct *owner;
201	atomic_t refcount;
202
203	union futex_key key;
204};
205
206/**
207 * struct futex_q - The hashed futex queue entry, one per waiting task
208 * @list:		priority-sorted list of tasks waiting on this futex
209 * @task:		the task waiting on the futex
210 * @lock_ptr:		the hash bucket lock
211 * @key:		the key the futex is hashed on
212 * @pi_state:		optional priority inheritance state
213 * @rt_waiter:		rt_waiter storage for use with requeue_pi
214 * @requeue_pi_key:	the requeue_pi target futex key
215 * @bitset:		bitset for the optional bitmasked wakeup
216 *
217 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
218 * we can wake only the relevant ones (hashed queues may be shared).
219 *
220 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
221 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
222 * The order of wakeup is always to make the first condition true, then
223 * the second.
224 *
225 * PI futexes are typically woken before they are removed from the hash list via
226 * the rt_mutex code. See unqueue_me_pi().
227 */
228struct futex_q {
229	struct plist_node list;
230
231	struct task_struct *task;
232	spinlock_t *lock_ptr;
233	union futex_key key;
234	struct futex_pi_state *pi_state;
235	struct rt_mutex_waiter *rt_waiter;
236	union futex_key *requeue_pi_key;
237	u32 bitset;
238};
239
240static const struct futex_q futex_q_init = {
241	/* list gets initialized in queue_me()*/
242	.key = FUTEX_KEY_INIT,
243	.bitset = FUTEX_BITSET_MATCH_ANY
244};
245
246/*
247 * Hash buckets are shared by all the futex_keys that hash to the same
248 * location.  Each key may have multiple futex_q structures, one for each task
249 * waiting on a futex.
250 */
251struct futex_hash_bucket {
252	atomic_t waiters;
253	spinlock_t lock;
254	struct plist_head chain;
255} ____cacheline_aligned_in_smp;
256
257static unsigned long __read_mostly futex_hashsize;
258
259static struct futex_hash_bucket *futex_queues;
260
261static inline void futex_get_mm(union futex_key *key)
262{
263	atomic_inc(&key->private.mm->mm_count);
264	/*
265	 * Ensure futex_get_mm() implies a full barrier such that
266	 * get_futex_key() implies a full barrier. This is relied upon
267	 * as full barrier (B), see the ordering comment above.
268	 */
269	smp_mb__after_atomic();
270}
271
272/*
273 * Reflects a new waiter being added to the waitqueue.
274 */
275static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
276{
277#ifdef CONFIG_SMP
278	atomic_inc(&hb->waiters);
279	/*
280	 * Full barrier (A), see the ordering comment above.
281	 */
282	smp_mb__after_atomic();
283#endif
284}
285
286/*
287 * Reflects a waiter being removed from the waitqueue by wakeup
288 * paths.
289 */
290static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
291{
292#ifdef CONFIG_SMP
293	atomic_dec(&hb->waiters);
294#endif
295}
296
297static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
298{
299#ifdef CONFIG_SMP
300	return atomic_read(&hb->waiters);
301#else
302	return 1;
303#endif
304}
305
306/*
307 * We hash on the keys returned from get_futex_key (see below).
308 */
309static struct futex_hash_bucket *hash_futex(union futex_key *key)
310{
311	u32 hash = jhash2((u32*)&key->both.word,
312			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
313			  key->both.offset);
314	return &futex_queues[hash & (futex_hashsize - 1)];
315}
316
317/*
318 * Return 1 if two futex_keys are equal, 0 otherwise.
319 */
320static inline int match_futex(union futex_key *key1, union futex_key *key2)
321{
322	return (key1 && key2
323		&& key1->both.word == key2->both.word
324		&& key1->both.ptr == key2->both.ptr
325		&& key1->both.offset == key2->both.offset);
326}
327
328/*
329 * Take a reference to the resource addressed by a key.
330 * Can be called while holding spinlocks.
331 *
332 */
333static void get_futex_key_refs(union futex_key *key)
334{
335	if (!key->both.ptr)
336		return;
337
338	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
339	case FUT_OFF_INODE:
340		ihold(key->shared.inode); /* implies MB (B) */
341		break;
342	case FUT_OFF_MMSHARED:
343		futex_get_mm(key); /* implies MB (B) */
344		break;
345	default:
346		/*
347		 * Private futexes do not hold reference on an inode or
348		 * mm, therefore the only purpose of calling get_futex_key_refs
349		 * is because we need the barrier for the lockless waiter check.
350		 */
351		smp_mb(); /* explicit MB (B) */
352	}
353}
354
355/*
356 * Drop a reference to the resource addressed by a key.
357 * The hash bucket spinlock must not be held. This is
358 * a no-op for private futexes, see comment in the get
359 * counterpart.
360 */
361static void drop_futex_key_refs(union futex_key *key)
362{
363	if (!key->both.ptr) {
364		/* If we're here then we tried to put a key we failed to get */
365		WARN_ON_ONCE(1);
366		return;
367	}
368
369	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
370	case FUT_OFF_INODE:
371		iput(key->shared.inode);
372		break;
373	case FUT_OFF_MMSHARED:
374		mmdrop(key->private.mm);
375		break;
376	}
377}
378
379/**
380 * get_futex_key() - Get parameters which are the keys for a futex
381 * @uaddr:	virtual address of the futex
382 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
383 * @key:	address where result is stored.
384 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
385 *              VERIFY_WRITE)
386 *
387 * Return: a negative error code or 0
388 *
389 * The key words are stored in *key on success.
390 *
391 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
392 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
393 * We can usually work out the index without swapping in the page.
394 *
395 * lock_page() might sleep, the caller should not hold a spinlock.
396 */
397static int
398get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
399{
400	unsigned long address = (unsigned long)uaddr;
401	struct mm_struct *mm = current->mm;
402	struct page *page, *page_head;
403	int err, ro = 0;
404
405	/*
406	 * The futex address must be "naturally" aligned.
407	 */
408	key->both.offset = address % PAGE_SIZE;
409	if (unlikely((address % sizeof(u32)) != 0))
410		return -EINVAL;
411	address -= key->both.offset;
412
413	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
414		return -EFAULT;
415
416	/*
417	 * PROCESS_PRIVATE futexes are fast.
418	 * As the mm cannot disappear under us and the 'key' only needs
419	 * virtual address, we dont even have to find the underlying vma.
420	 * Note : We do have to check 'uaddr' is a valid user address,
421	 *        but access_ok() should be faster than find_vma()
422	 */
423	if (!fshared) {
424		key->private.mm = mm;
425		key->private.address = address;
426		get_futex_key_refs(key);  /* implies MB (B) */
427		return 0;
428	}
429
430again:
431	err = get_user_pages_fast(address, 1, 1, &page);
432	/*
433	 * If write access is not required (eg. FUTEX_WAIT), try
434	 * and get read-only access.
435	 */
436	if (err == -EFAULT && rw == VERIFY_READ) {
437		err = get_user_pages_fast(address, 1, 0, &page);
438		ro = 1;
439	}
440	if (err < 0)
441		return err;
442	else
443		err = 0;
444
445#ifdef CONFIG_TRANSPARENT_HUGEPAGE
446	page_head = page;
447	if (unlikely(PageTail(page))) {
448		put_page(page);
449		/* serialize against __split_huge_page_splitting() */
450		local_irq_disable();
451		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
452			page_head = compound_head(page);
453			/*
454			 * page_head is valid pointer but we must pin
455			 * it before taking the PG_lock and/or
456			 * PG_compound_lock. The moment we re-enable
457			 * irqs __split_huge_page_splitting() can
458			 * return and the head page can be freed from
459			 * under us. We can't take the PG_lock and/or
460			 * PG_compound_lock on a page that could be
461			 * freed from under us.
462			 */
463			if (page != page_head) {
464				get_page(page_head);
465				put_page(page);
466			}
467			local_irq_enable();
468		} else {
469			local_irq_enable();
470			goto again;
471		}
472	}
473#else
474	page_head = compound_head(page);
475	if (page != page_head) {
476		get_page(page_head);
477		put_page(page);
478	}
479#endif
480
481	lock_page(page_head);
482
483	/*
484	 * If page_head->mapping is NULL, then it cannot be a PageAnon
485	 * page; but it might be the ZERO_PAGE or in the gate area or
486	 * in a special mapping (all cases which we are happy to fail);
487	 * or it may have been a good file page when get_user_pages_fast
488	 * found it, but truncated or holepunched or subjected to
489	 * invalidate_complete_page2 before we got the page lock (also
490	 * cases which we are happy to fail).  And we hold a reference,
491	 * so refcount care in invalidate_complete_page's remove_mapping
492	 * prevents drop_caches from setting mapping to NULL beneath us.
493	 *
494	 * The case we do have to guard against is when memory pressure made
495	 * shmem_writepage move it from filecache to swapcache beneath us:
496	 * an unlikely race, but we do need to retry for page_head->mapping.
497	 */
498	if (!page_head->mapping) {
499		int shmem_swizzled = PageSwapCache(page_head);
500		unlock_page(page_head);
501		put_page(page_head);
502		if (shmem_swizzled)
503			goto again;
504		return -EFAULT;
505	}
506
507	/*
508	 * Private mappings are handled in a simple way.
509	 *
510	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
511	 * it's a read-only handle, it's expected that futexes attach to
512	 * the object not the particular process.
513	 */
514	if (PageAnon(page_head)) {
515		/*
516		 * A RO anonymous page will never change and thus doesn't make
517		 * sense for futex operations.
518		 */
519		if (ro) {
520			err = -EFAULT;
521			goto out;
522		}
523
524		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
525		key->private.mm = mm;
526		key->private.address = address;
527	} else {
528		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
529		key->shared.inode = page_head->mapping->host;
530		key->shared.pgoff = basepage_index(page);
531	}
532
533	get_futex_key_refs(key); /* implies MB (B) */
534
535out:
536	unlock_page(page_head);
537	put_page(page_head);
538	return err;
539}
540
541static inline void put_futex_key(union futex_key *key)
542{
543	drop_futex_key_refs(key);
544}
545
546/**
547 * fault_in_user_writeable() - Fault in user address and verify RW access
548 * @uaddr:	pointer to faulting user space address
549 *
550 * Slow path to fixup the fault we just took in the atomic write
551 * access to @uaddr.
552 *
553 * We have no generic implementation of a non-destructive write to the
554 * user address. We know that we faulted in the atomic pagefault
555 * disabled section so we can as well avoid the #PF overhead by
556 * calling get_user_pages() right away.
557 */
558static int fault_in_user_writeable(u32 __user *uaddr)
559{
560	struct mm_struct *mm = current->mm;
561	int ret;
562
563	down_read(&mm->mmap_sem);
564	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
565			       FAULT_FLAG_WRITE);
566	up_read(&mm->mmap_sem);
567
568	return ret < 0 ? ret : 0;
569}
570
571/**
572 * futex_top_waiter() - Return the highest priority waiter on a futex
573 * @hb:		the hash bucket the futex_q's reside in
574 * @key:	the futex key (to distinguish it from other futex futex_q's)
575 *
576 * Must be called with the hb lock held.
577 */
578static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
579					union futex_key *key)
580{
581	struct futex_q *this;
582
583	plist_for_each_entry(this, &hb->chain, list) {
584		if (match_futex(&this->key, key))
585			return this;
586	}
587	return NULL;
588}
589
590static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
591				      u32 uval, u32 newval)
592{
593	int ret;
594
595	pagefault_disable();
596	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
597	pagefault_enable();
598
599	return ret;
600}
601
602static int get_futex_value_locked(u32 *dest, u32 __user *from)
603{
604	int ret;
605
606	pagefault_disable();
607	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
608	pagefault_enable();
609
610	return ret ? -EFAULT : 0;
611}
612
613
614/*
615 * PI code:
616 */
617static int refill_pi_state_cache(void)
618{
619	struct futex_pi_state *pi_state;
620
621	if (likely(current->pi_state_cache))
622		return 0;
623
624	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
625
626	if (!pi_state)
627		return -ENOMEM;
628
629	INIT_LIST_HEAD(&pi_state->list);
630	/* pi_mutex gets initialized later */
631	pi_state->owner = NULL;
632	atomic_set(&pi_state->refcount, 1);
633	pi_state->key = FUTEX_KEY_INIT;
634
635	current->pi_state_cache = pi_state;
636
637	return 0;
638}
639
640static struct futex_pi_state * alloc_pi_state(void)
641{
642	struct futex_pi_state *pi_state = current->pi_state_cache;
643
644	WARN_ON(!pi_state);
645	current->pi_state_cache = NULL;
646
647	return pi_state;
648}
649
650/*
651 * Must be called with the hb lock held.
652 */
653static void free_pi_state(struct futex_pi_state *pi_state)
654{
655	if (!pi_state)
656		return;
657
658	if (!atomic_dec_and_test(&pi_state->refcount))
659		return;
660
661	/*
662	 * If pi_state->owner is NULL, the owner is most probably dying
663	 * and has cleaned up the pi_state already
664	 */
665	if (pi_state->owner) {
666		raw_spin_lock_irq(&pi_state->owner->pi_lock);
667		list_del_init(&pi_state->list);
668		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
669
670		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
671	}
672
673	if (current->pi_state_cache)
674		kfree(pi_state);
675	else {
676		/*
677		 * pi_state->list is already empty.
678		 * clear pi_state->owner.
679		 * refcount is at 0 - put it back to 1.
680		 */
681		pi_state->owner = NULL;
682		atomic_set(&pi_state->refcount, 1);
683		current->pi_state_cache = pi_state;
684	}
685}
686
687/*
688 * Look up the task based on what TID userspace gave us.
689 * We dont trust it.
690 */
691static struct task_struct * futex_find_get_task(pid_t pid)
692{
693	struct task_struct *p;
694
695	rcu_read_lock();
696	p = find_task_by_vpid(pid);
697	if (p)
698		get_task_struct(p);
699
700	rcu_read_unlock();
701
702	return p;
703}
704
705/*
706 * This task is holding PI mutexes at exit time => bad.
707 * Kernel cleans up PI-state, but userspace is likely hosed.
708 * (Robust-futex cleanup is separate and might save the day for userspace.)
709 */
710void exit_pi_state_list(struct task_struct *curr)
711{
712	struct list_head *next, *head = &curr->pi_state_list;
713	struct futex_pi_state *pi_state;
714	struct futex_hash_bucket *hb;
715	union futex_key key = FUTEX_KEY_INIT;
716
717	if (!futex_cmpxchg_enabled)
718		return;
719	/*
720	 * We are a ZOMBIE and nobody can enqueue itself on
721	 * pi_state_list anymore, but we have to be careful
722	 * versus waiters unqueueing themselves:
723	 */
724	raw_spin_lock_irq(&curr->pi_lock);
725	while (!list_empty(head)) {
726
727		next = head->next;
728		pi_state = list_entry(next, struct futex_pi_state, list);
729		key = pi_state->key;
730		hb = hash_futex(&key);
731		raw_spin_unlock_irq(&curr->pi_lock);
732
733		spin_lock(&hb->lock);
734
735		raw_spin_lock_irq(&curr->pi_lock);
736		/*
737		 * We dropped the pi-lock, so re-check whether this
738		 * task still owns the PI-state:
739		 */
740		if (head->next != next) {
741			spin_unlock(&hb->lock);
742			continue;
743		}
744
745		WARN_ON(pi_state->owner != curr);
746		WARN_ON(list_empty(&pi_state->list));
747		list_del_init(&pi_state->list);
748		pi_state->owner = NULL;
749		raw_spin_unlock_irq(&curr->pi_lock);
750
751		rt_mutex_unlock(&pi_state->pi_mutex);
752
753		spin_unlock(&hb->lock);
754
755		raw_spin_lock_irq(&curr->pi_lock);
756	}
757	raw_spin_unlock_irq(&curr->pi_lock);
758}
759
760/*
761 * We need to check the following states:
762 *
763 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
764 *
765 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
766 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
767 *
768 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
769 *
770 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
771 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
772 *
773 * [6]  Found  | Found    | task      | 0         | 1      | Valid
774 *
775 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
776 *
777 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
778 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
779 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
780 *
781 * [1]	Indicates that the kernel can acquire the futex atomically. We
782 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
783 *
784 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
785 *      thread is found then it indicates that the owner TID has died.
786 *
787 * [3]	Invalid. The waiter is queued on a non PI futex
788 *
789 * [4]	Valid state after exit_robust_list(), which sets the user space
790 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
791 *
792 * [5]	The user space value got manipulated between exit_robust_list()
793 *	and exit_pi_state_list()
794 *
795 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
796 *	the pi_state but cannot access the user space value.
797 *
798 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
799 *
800 * [8]	Owner and user space value match
801 *
802 * [9]	There is no transient state which sets the user space TID to 0
803 *	except exit_robust_list(), but this is indicated by the
804 *	FUTEX_OWNER_DIED bit. See [4]
805 *
806 * [10] There is no transient state which leaves owner and user space
807 *	TID out of sync.
808 */
809
810/*
811 * Validate that the existing waiter has a pi_state and sanity check
812 * the pi_state against the user space value. If correct, attach to
813 * it.
814 */
815static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
816			      struct futex_pi_state **ps)
817{
818	pid_t pid = uval & FUTEX_TID_MASK;
819
820	/*
821	 * Userspace might have messed up non-PI and PI futexes [3]
822	 */
823	if (unlikely(!pi_state))
824		return -EINVAL;
825
826	WARN_ON(!atomic_read(&pi_state->refcount));
827
828	/*
829	 * Handle the owner died case:
830	 */
831	if (uval & FUTEX_OWNER_DIED) {
832		/*
833		 * exit_pi_state_list sets owner to NULL and wakes the
834		 * topmost waiter. The task which acquires the
835		 * pi_state->rt_mutex will fixup owner.
836		 */
837		if (!pi_state->owner) {
838			/*
839			 * No pi state owner, but the user space TID
840			 * is not 0. Inconsistent state. [5]
841			 */
842			if (pid)
843				return -EINVAL;
844			/*
845			 * Take a ref on the state and return success. [4]
846			 */
847			goto out_state;
848		}
849
850		/*
851		 * If TID is 0, then either the dying owner has not
852		 * yet executed exit_pi_state_list() or some waiter
853		 * acquired the rtmutex in the pi state, but did not
854		 * yet fixup the TID in user space.
855		 *
856		 * Take a ref on the state and return success. [6]
857		 */
858		if (!pid)
859			goto out_state;
860	} else {
861		/*
862		 * If the owner died bit is not set, then the pi_state
863		 * must have an owner. [7]
864		 */
865		if (!pi_state->owner)
866			return -EINVAL;
867	}
868
869	/*
870	 * Bail out if user space manipulated the futex value. If pi
871	 * state exists then the owner TID must be the same as the
872	 * user space TID. [9/10]
873	 */
874	if (pid != task_pid_vnr(pi_state->owner))
875		return -EINVAL;
876out_state:
877	atomic_inc(&pi_state->refcount);
878	*ps = pi_state;
879	return 0;
880}
881
882/*
883 * Lookup the task for the TID provided from user space and attach to
884 * it after doing proper sanity checks.
885 */
886static int attach_to_pi_owner(u32 uval, union futex_key *key,
887			      struct futex_pi_state **ps)
888{
889	pid_t pid = uval & FUTEX_TID_MASK;
890	struct futex_pi_state *pi_state;
891	struct task_struct *p;
892
893	/*
894	 * We are the first waiter - try to look up the real owner and attach
895	 * the new pi_state to it, but bail out when TID = 0 [1]
896	 */
897	if (!pid)
898		return -ESRCH;
899	p = futex_find_get_task(pid);
900	if (!p)
901		return -ESRCH;
902
903	if (unlikely(p->flags & PF_KTHREAD)) {
904		put_task_struct(p);
905		return -EPERM;
906	}
907
908	/*
909	 * We need to look at the task state flags to figure out,
910	 * whether the task is exiting. To protect against the do_exit
911	 * change of the task flags, we do this protected by
912	 * p->pi_lock:
913	 */
914	raw_spin_lock_irq(&p->pi_lock);
915	if (unlikely(p->flags & PF_EXITING)) {
916		/*
917		 * The task is on the way out. When PF_EXITPIDONE is
918		 * set, we know that the task has finished the
919		 * cleanup:
920		 */
921		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
922
923		raw_spin_unlock_irq(&p->pi_lock);
924		put_task_struct(p);
925		return ret;
926	}
927
928	/*
929	 * No existing pi state. First waiter. [2]
930	 */
931	pi_state = alloc_pi_state();
932
933	/*
934	 * Initialize the pi_mutex in locked state and make @p
935	 * the owner of it:
936	 */
937	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
938
939	/* Store the key for possible exit cleanups: */
940	pi_state->key = *key;
941
942	WARN_ON(!list_empty(&pi_state->list));
943	list_add(&pi_state->list, &p->pi_state_list);
944	pi_state->owner = p;
945	raw_spin_unlock_irq(&p->pi_lock);
946
947	put_task_struct(p);
948
949	*ps = pi_state;
950
951	return 0;
952}
953
954static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
955			   union futex_key *key, struct futex_pi_state **ps)
956{
957	struct futex_q *match = futex_top_waiter(hb, key);
958
959	/*
960	 * If there is a waiter on that futex, validate it and
961	 * attach to the pi_state when the validation succeeds.
962	 */
963	if (match)
964		return attach_to_pi_state(uval, match->pi_state, ps);
965
966	/*
967	 * We are the first waiter - try to look up the owner based on
968	 * @uval and attach to it.
969	 */
970	return attach_to_pi_owner(uval, key, ps);
971}
972
973static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
974{
975	u32 uninitialized_var(curval);
976
977	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
978		return -EFAULT;
979
980	/*If user space value changed, let the caller retry */
981	return curval != uval ? -EAGAIN : 0;
982}
983
984/**
985 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
986 * @uaddr:		the pi futex user address
987 * @hb:			the pi futex hash bucket
988 * @key:		the futex key associated with uaddr and hb
989 * @ps:			the pi_state pointer where we store the result of the
990 *			lookup
991 * @task:		the task to perform the atomic lock work for.  This will
992 *			be "current" except in the case of requeue pi.
993 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
994 *
995 * Return:
996 *  0 - ready to wait;
997 *  1 - acquired the lock;
998 * <0 - error
999 *
1000 * The hb->lock and futex_key refs shall be held by the caller.
1001 */
1002static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1003				union futex_key *key,
1004				struct futex_pi_state **ps,
1005				struct task_struct *task, int set_waiters)
1006{
1007	u32 uval, newval, vpid = task_pid_vnr(task);
1008	struct futex_q *match;
1009	int ret;
1010
1011	/*
1012	 * Read the user space value first so we can validate a few
1013	 * things before proceeding further.
1014	 */
1015	if (get_futex_value_locked(&uval, uaddr))
1016		return -EFAULT;
1017
1018	/*
1019	 * Detect deadlocks.
1020	 */
1021	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1022		return -EDEADLK;
1023
1024	/*
1025	 * Lookup existing state first. If it exists, try to attach to
1026	 * its pi_state.
1027	 */
1028	match = futex_top_waiter(hb, key);
1029	if (match)
1030		return attach_to_pi_state(uval, match->pi_state, ps);
1031
1032	/*
1033	 * No waiter and user TID is 0. We are here because the
1034	 * waiters or the owner died bit is set or called from
1035	 * requeue_cmp_pi or for whatever reason something took the
1036	 * syscall.
1037	 */
1038	if (!(uval & FUTEX_TID_MASK)) {
1039		/*
1040		 * We take over the futex. No other waiters and the user space
1041		 * TID is 0. We preserve the owner died bit.
1042		 */
1043		newval = uval & FUTEX_OWNER_DIED;
1044		newval |= vpid;
1045
1046		/* The futex requeue_pi code can enforce the waiters bit */
1047		if (set_waiters)
1048			newval |= FUTEX_WAITERS;
1049
1050		ret = lock_pi_update_atomic(uaddr, uval, newval);
1051		/* If the take over worked, return 1 */
1052		return ret < 0 ? ret : 1;
1053	}
1054
1055	/*
1056	 * First waiter. Set the waiters bit before attaching ourself to
1057	 * the owner. If owner tries to unlock, it will be forced into
1058	 * the kernel and blocked on hb->lock.
1059	 */
1060	newval = uval | FUTEX_WAITERS;
1061	ret = lock_pi_update_atomic(uaddr, uval, newval);
1062	if (ret)
1063		return ret;
1064	/*
1065	 * If the update of the user space value succeeded, we try to
1066	 * attach to the owner. If that fails, no harm done, we only
1067	 * set the FUTEX_WAITERS bit in the user space variable.
1068	 */
1069	return attach_to_pi_owner(uval, key, ps);
1070}
1071
1072/**
1073 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1074 * @q:	The futex_q to unqueue
1075 *
1076 * The q->lock_ptr must not be NULL and must be held by the caller.
1077 */
1078static void __unqueue_futex(struct futex_q *q)
1079{
1080	struct futex_hash_bucket *hb;
1081
1082	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1083	    || WARN_ON(plist_node_empty(&q->list)))
1084		return;
1085
1086	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1087	plist_del(&q->list, &hb->chain);
1088	hb_waiters_dec(hb);
1089}
1090
1091/*
1092 * The hash bucket lock must be held when this is called.
1093 * Afterwards, the futex_q must not be accessed.
1094 */
1095static void wake_futex(struct futex_q *q)
1096{
1097	struct task_struct *p = q->task;
1098
1099	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1100		return;
1101
1102	/*
1103	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1104	 * a non-futex wake up happens on another CPU then the task
1105	 * might exit and p would dereference a non-existing task
1106	 * struct. Prevent this by holding a reference on p across the
1107	 * wake up.
1108	 */
1109	get_task_struct(p);
1110
1111	__unqueue_futex(q);
1112	/*
1113	 * The waiting task can free the futex_q as soon as
1114	 * q->lock_ptr = NULL is written, without taking any locks. A
1115	 * memory barrier is required here to prevent the following
1116	 * store to lock_ptr from getting ahead of the plist_del.
1117	 */
1118	smp_wmb();
1119	q->lock_ptr = NULL;
1120
1121	wake_up_state(p, TASK_NORMAL);
1122	put_task_struct(p);
1123}
1124
1125static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1126{
1127	struct task_struct *new_owner;
1128	struct futex_pi_state *pi_state = this->pi_state;
1129	u32 uninitialized_var(curval), newval;
1130	int ret = 0;
1131
1132	if (!pi_state)
1133		return -EINVAL;
1134
1135	/*
1136	 * If current does not own the pi_state then the futex is
1137	 * inconsistent and user space fiddled with the futex value.
1138	 */
1139	if (pi_state->owner != current)
1140		return -EINVAL;
1141
1142	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1143	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1144
1145	/*
1146	 * It is possible that the next waiter (the one that brought
1147	 * this owner to the kernel) timed out and is no longer
1148	 * waiting on the lock.
1149	 */
1150	if (!new_owner)
1151		new_owner = this->task;
1152
1153	/*
1154	 * We pass it to the next owner. The WAITERS bit is always
1155	 * kept enabled while there is PI state around. We cleanup the
1156	 * owner died bit, because we are the owner.
1157	 */
1158	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1159
1160	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1161		ret = -EFAULT;
1162	} else if (curval != uval) {
1163		/*
1164		 * If a unconditional UNLOCK_PI operation (user space did not
1165		 * try the TID->0 transition) raced with a waiter setting the
1166		 * FUTEX_WAITERS flag between get_user() and locking the hash
1167		 * bucket lock, retry the operation.
1168		 */
1169		if ((FUTEX_TID_MASK & curval) == uval)
1170			ret = -EAGAIN;
1171		else
1172			ret = -EINVAL;
1173	}
1174	if (ret) {
1175		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1176		return ret;
1177	}
1178
1179	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1180	WARN_ON(list_empty(&pi_state->list));
1181	list_del_init(&pi_state->list);
1182	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1183
1184	raw_spin_lock_irq(&new_owner->pi_lock);
1185	WARN_ON(!list_empty(&pi_state->list));
1186	list_add(&pi_state->list, &new_owner->pi_state_list);
1187	pi_state->owner = new_owner;
1188	raw_spin_unlock_irq(&new_owner->pi_lock);
1189
1190	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1191	rt_mutex_unlock(&pi_state->pi_mutex);
1192
1193	return 0;
1194}
1195
1196/*
1197 * Express the locking dependencies for lockdep:
1198 */
1199static inline void
1200double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1201{
1202	if (hb1 <= hb2) {
1203		spin_lock(&hb1->lock);
1204		if (hb1 < hb2)
1205			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1206	} else { /* hb1 > hb2 */
1207		spin_lock(&hb2->lock);
1208		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1209	}
1210}
1211
1212static inline void
1213double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1214{
1215	spin_unlock(&hb1->lock);
1216	if (hb1 != hb2)
1217		spin_unlock(&hb2->lock);
1218}
1219
1220/*
1221 * Wake up waiters matching bitset queued on this futex (uaddr).
1222 */
1223static int
1224futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1225{
1226	struct futex_hash_bucket *hb;
1227	struct futex_q *this, *next;
1228	union futex_key key = FUTEX_KEY_INIT;
1229	int ret;
1230
1231	if (!bitset)
1232		return -EINVAL;
1233
1234	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1235	if (unlikely(ret != 0))
1236		goto out;
1237
1238	hb = hash_futex(&key);
1239
1240	/* Make sure we really have tasks to wakeup */
1241	if (!hb_waiters_pending(hb))
1242		goto out_put_key;
1243
1244	spin_lock(&hb->lock);
1245
1246	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1247		if (match_futex (&this->key, &key)) {
1248			if (this->pi_state || this->rt_waiter) {
1249				ret = -EINVAL;
1250				break;
1251			}
1252
1253			/* Check if one of the bits is set in both bitsets */
1254			if (!(this->bitset & bitset))
1255				continue;
1256
1257			wake_futex(this);
1258			if (++ret >= nr_wake)
1259				break;
1260		}
1261	}
1262
1263	spin_unlock(&hb->lock);
1264out_put_key:
1265	put_futex_key(&key);
1266out:
1267	return ret;
1268}
1269
1270/*
1271 * Wake up all waiters hashed on the physical page that is mapped
1272 * to this virtual address:
1273 */
1274static int
1275futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1276	      int nr_wake, int nr_wake2, int op)
1277{
1278	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1279	struct futex_hash_bucket *hb1, *hb2;
1280	struct futex_q *this, *next;
1281	int ret, op_ret;
1282
1283retry:
1284	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1285	if (unlikely(ret != 0))
1286		goto out;
1287	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1288	if (unlikely(ret != 0))
1289		goto out_put_key1;
1290
1291	hb1 = hash_futex(&key1);
1292	hb2 = hash_futex(&key2);
1293
1294retry_private:
1295	double_lock_hb(hb1, hb2);
1296	op_ret = futex_atomic_op_inuser(op, uaddr2);
1297	if (unlikely(op_ret < 0)) {
1298
1299		double_unlock_hb(hb1, hb2);
1300
1301#ifndef CONFIG_MMU
1302		/*
1303		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1304		 * but we might get them from range checking
1305		 */
1306		ret = op_ret;
1307		goto out_put_keys;
1308#endif
1309
1310		if (unlikely(op_ret != -EFAULT)) {
1311			ret = op_ret;
1312			goto out_put_keys;
1313		}
1314
1315		ret = fault_in_user_writeable(uaddr2);
1316		if (ret)
1317			goto out_put_keys;
1318
1319		if (!(flags & FLAGS_SHARED))
1320			goto retry_private;
1321
1322		put_futex_key(&key2);
1323		put_futex_key(&key1);
1324		goto retry;
1325	}
1326
1327	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1328		if (match_futex (&this->key, &key1)) {
1329			if (this->pi_state || this->rt_waiter) {
1330				ret = -EINVAL;
1331				goto out_unlock;
1332			}
1333			wake_futex(this);
1334			if (++ret >= nr_wake)
1335				break;
1336		}
1337	}
1338
1339	if (op_ret > 0) {
1340		op_ret = 0;
1341		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1342			if (match_futex (&this->key, &key2)) {
1343				if (this->pi_state || this->rt_waiter) {
1344					ret = -EINVAL;
1345					goto out_unlock;
1346				}
1347				wake_futex(this);
1348				if (++op_ret >= nr_wake2)
1349					break;
1350			}
1351		}
1352		ret += op_ret;
1353	}
1354
1355out_unlock:
1356	double_unlock_hb(hb1, hb2);
1357out_put_keys:
1358	put_futex_key(&key2);
1359out_put_key1:
1360	put_futex_key(&key1);
1361out:
1362	return ret;
1363}
1364
1365/**
1366 * requeue_futex() - Requeue a futex_q from one hb to another
1367 * @q:		the futex_q to requeue
1368 * @hb1:	the source hash_bucket
1369 * @hb2:	the target hash_bucket
1370 * @key2:	the new key for the requeued futex_q
1371 */
1372static inline
1373void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1374		   struct futex_hash_bucket *hb2, union futex_key *key2)
1375{
1376
1377	/*
1378	 * If key1 and key2 hash to the same bucket, no need to
1379	 * requeue.
1380	 */
1381	if (likely(&hb1->chain != &hb2->chain)) {
1382		plist_del(&q->list, &hb1->chain);
1383		hb_waiters_dec(hb1);
1384		plist_add(&q->list, &hb2->chain);
1385		hb_waiters_inc(hb2);
1386		q->lock_ptr = &hb2->lock;
1387	}
1388	get_futex_key_refs(key2);
1389	q->key = *key2;
1390}
1391
1392/**
1393 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1394 * @q:		the futex_q
1395 * @key:	the key of the requeue target futex
1396 * @hb:		the hash_bucket of the requeue target futex
1397 *
1398 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1399 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1400 * to the requeue target futex so the waiter can detect the wakeup on the right
1401 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1402 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1403 * to protect access to the pi_state to fixup the owner later.  Must be called
1404 * with both q->lock_ptr and hb->lock held.
1405 */
1406static inline
1407void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1408			   struct futex_hash_bucket *hb)
1409{
1410	get_futex_key_refs(key);
1411	q->key = *key;
1412
1413	__unqueue_futex(q);
1414
1415	WARN_ON(!q->rt_waiter);
1416	q->rt_waiter = NULL;
1417
1418	q->lock_ptr = &hb->lock;
1419
1420	wake_up_state(q->task, TASK_NORMAL);
1421}
1422
1423/**
1424 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1425 * @pifutex:		the user address of the to futex
1426 * @hb1:		the from futex hash bucket, must be locked by the caller
1427 * @hb2:		the to futex hash bucket, must be locked by the caller
1428 * @key1:		the from futex key
1429 * @key2:		the to futex key
1430 * @ps:			address to store the pi_state pointer
1431 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1432 *
1433 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1434 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1435 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1436 * hb1 and hb2 must be held by the caller.
1437 *
1438 * Return:
1439 *  0 - failed to acquire the lock atomically;
1440 * >0 - acquired the lock, return value is vpid of the top_waiter
1441 * <0 - error
1442 */
1443static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1444				 struct futex_hash_bucket *hb1,
1445				 struct futex_hash_bucket *hb2,
1446				 union futex_key *key1, union futex_key *key2,
1447				 struct futex_pi_state **ps, int set_waiters)
1448{
1449	struct futex_q *top_waiter = NULL;
1450	u32 curval;
1451	int ret, vpid;
1452
1453	if (get_futex_value_locked(&curval, pifutex))
1454		return -EFAULT;
1455
1456	/*
1457	 * Find the top_waiter and determine if there are additional waiters.
1458	 * If the caller intends to requeue more than 1 waiter to pifutex,
1459	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1460	 * as we have means to handle the possible fault.  If not, don't set
1461	 * the bit unecessarily as it will force the subsequent unlock to enter
1462	 * the kernel.
1463	 */
1464	top_waiter = futex_top_waiter(hb1, key1);
1465
1466	/* There are no waiters, nothing for us to do. */
1467	if (!top_waiter)
1468		return 0;
1469
1470	/* Ensure we requeue to the expected futex. */
1471	if (!match_futex(top_waiter->requeue_pi_key, key2))
1472		return -EINVAL;
1473
1474	/*
1475	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1476	 * the contended case or if set_waiters is 1.  The pi_state is returned
1477	 * in ps in contended cases.
1478	 */
1479	vpid = task_pid_vnr(top_waiter->task);
1480	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1481				   set_waiters);
1482	if (ret == 1) {
1483		requeue_pi_wake_futex(top_waiter, key2, hb2);
1484		return vpid;
1485	}
1486	return ret;
1487}
1488
1489/**
1490 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1491 * @uaddr1:	source futex user address
1492 * @flags:	futex flags (FLAGS_SHARED, etc.)
1493 * @uaddr2:	target futex user address
1494 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1495 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1496 * @cmpval:	@uaddr1 expected value (or %NULL)
1497 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1498 *		pi futex (pi to pi requeue is not supported)
1499 *
1500 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1501 * uaddr2 atomically on behalf of the top waiter.
1502 *
1503 * Return:
1504 * >=0 - on success, the number of tasks requeued or woken;
1505 *  <0 - on error
1506 */
1507static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1508			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1509			 u32 *cmpval, int requeue_pi)
1510{
1511	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1512	int drop_count = 0, task_count = 0, ret;
1513	struct futex_pi_state *pi_state = NULL;
1514	struct futex_hash_bucket *hb1, *hb2;
1515	struct futex_q *this, *next;
1516
1517	if (requeue_pi) {
1518		/*
1519		 * Requeue PI only works on two distinct uaddrs. This
1520		 * check is only valid for private futexes. See below.
1521		 */
1522		if (uaddr1 == uaddr2)
1523			return -EINVAL;
1524
1525		/*
1526		 * requeue_pi requires a pi_state, try to allocate it now
1527		 * without any locks in case it fails.
1528		 */
1529		if (refill_pi_state_cache())
1530			return -ENOMEM;
1531		/*
1532		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1533		 * + nr_requeue, since it acquires the rt_mutex prior to
1534		 * returning to userspace, so as to not leave the rt_mutex with
1535		 * waiters and no owner.  However, second and third wake-ups
1536		 * cannot be predicted as they involve race conditions with the
1537		 * first wake and a fault while looking up the pi_state.  Both
1538		 * pthread_cond_signal() and pthread_cond_broadcast() should
1539		 * use nr_wake=1.
1540		 */
1541		if (nr_wake != 1)
1542			return -EINVAL;
1543	}
1544
1545retry:
1546	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1547	if (unlikely(ret != 0))
1548		goto out;
1549	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1550			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1551	if (unlikely(ret != 0))
1552		goto out_put_key1;
1553
1554	/*
1555	 * The check above which compares uaddrs is not sufficient for
1556	 * shared futexes. We need to compare the keys:
1557	 */
1558	if (requeue_pi && match_futex(&key1, &key2)) {
1559		ret = -EINVAL;
1560		goto out_put_keys;
1561	}
1562
1563	hb1 = hash_futex(&key1);
1564	hb2 = hash_futex(&key2);
1565
1566retry_private:
1567	hb_waiters_inc(hb2);
1568	double_lock_hb(hb1, hb2);
1569
1570	if (likely(cmpval != NULL)) {
1571		u32 curval;
1572
1573		ret = get_futex_value_locked(&curval, uaddr1);
1574
1575		if (unlikely(ret)) {
1576			double_unlock_hb(hb1, hb2);
1577			hb_waiters_dec(hb2);
1578
1579			ret = get_user(curval, uaddr1);
1580			if (ret)
1581				goto out_put_keys;
1582
1583			if (!(flags & FLAGS_SHARED))
1584				goto retry_private;
1585
1586			put_futex_key(&key2);
1587			put_futex_key(&key1);
1588			goto retry;
1589		}
1590		if (curval != *cmpval) {
1591			ret = -EAGAIN;
1592			goto out_unlock;
1593		}
1594	}
1595
1596	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1597		/*
1598		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1599		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1600		 * bit.  We force this here where we are able to easily handle
1601		 * faults rather in the requeue loop below.
1602		 */
1603		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1604						 &key2, &pi_state, nr_requeue);
1605
1606		/*
1607		 * At this point the top_waiter has either taken uaddr2 or is
1608		 * waiting on it.  If the former, then the pi_state will not
1609		 * exist yet, look it up one more time to ensure we have a
1610		 * reference to it. If the lock was taken, ret contains the
1611		 * vpid of the top waiter task.
1612		 */
1613		if (ret > 0) {
1614			WARN_ON(pi_state);
1615			drop_count++;
1616			task_count++;
1617			/*
1618			 * If we acquired the lock, then the user
1619			 * space value of uaddr2 should be vpid. It
1620			 * cannot be changed by the top waiter as it
1621			 * is blocked on hb2 lock if it tries to do
1622			 * so. If something fiddled with it behind our
1623			 * back the pi state lookup might unearth
1624			 * it. So we rather use the known value than
1625			 * rereading and handing potential crap to
1626			 * lookup_pi_state.
1627			 */
1628			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1629		}
1630
1631		switch (ret) {
1632		case 0:
1633			break;
1634		case -EFAULT:
1635			free_pi_state(pi_state);
1636			pi_state = NULL;
1637			double_unlock_hb(hb1, hb2);
1638			hb_waiters_dec(hb2);
1639			put_futex_key(&key2);
1640			put_futex_key(&key1);
1641			ret = fault_in_user_writeable(uaddr2);
1642			if (!ret)
1643				goto retry;
1644			goto out;
1645		case -EAGAIN:
1646			/*
1647			 * Two reasons for this:
1648			 * - Owner is exiting and we just wait for the
1649			 *   exit to complete.
1650			 * - The user space value changed.
1651			 */
1652			free_pi_state(pi_state);
1653			pi_state = NULL;
1654			double_unlock_hb(hb1, hb2);
1655			hb_waiters_dec(hb2);
1656			put_futex_key(&key2);
1657			put_futex_key(&key1);
1658			cond_resched();
1659			goto retry;
1660		default:
1661			goto out_unlock;
1662		}
1663	}
1664
1665	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1666		if (task_count - nr_wake >= nr_requeue)
1667			break;
1668
1669		if (!match_futex(&this->key, &key1))
1670			continue;
1671
1672		/*
1673		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1674		 * be paired with each other and no other futex ops.
1675		 *
1676		 * We should never be requeueing a futex_q with a pi_state,
1677		 * which is awaiting a futex_unlock_pi().
1678		 */
1679		if ((requeue_pi && !this->rt_waiter) ||
1680		    (!requeue_pi && this->rt_waiter) ||
1681		    this->pi_state) {
1682			ret = -EINVAL;
1683			break;
1684		}
1685
1686		/*
1687		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1688		 * lock, we already woke the top_waiter.  If not, it will be
1689		 * woken by futex_unlock_pi().
1690		 */
1691		if (++task_count <= nr_wake && !requeue_pi) {
1692			wake_futex(this);
1693			continue;
1694		}
1695
1696		/* Ensure we requeue to the expected futex for requeue_pi. */
1697		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1698			ret = -EINVAL;
1699			break;
1700		}
1701
1702		/*
1703		 * Requeue nr_requeue waiters and possibly one more in the case
1704		 * of requeue_pi if we couldn't acquire the lock atomically.
1705		 */
1706		if (requeue_pi) {
1707			/* Prepare the waiter to take the rt_mutex. */
1708			atomic_inc(&pi_state->refcount);
1709			this->pi_state = pi_state;
1710			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1711							this->rt_waiter,
1712							this->task);
1713			if (ret == 1) {
1714				/* We got the lock. */
1715				requeue_pi_wake_futex(this, &key2, hb2);
1716				drop_count++;
1717				continue;
1718			} else if (ret) {
1719				/* -EDEADLK */
1720				this->pi_state = NULL;
1721				free_pi_state(pi_state);
1722				goto out_unlock;
1723			}
1724		}
1725		requeue_futex(this, hb1, hb2, &key2);
1726		drop_count++;
1727	}
1728
1729out_unlock:
1730	free_pi_state(pi_state);
1731	double_unlock_hb(hb1, hb2);
1732	hb_waiters_dec(hb2);
1733
1734	/*
1735	 * drop_futex_key_refs() must be called outside the spinlocks. During
1736	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1737	 * one at key2 and updated their key pointer.  We no longer need to
1738	 * hold the references to key1.
1739	 */
1740	while (--drop_count >= 0)
1741		drop_futex_key_refs(&key1);
1742
1743out_put_keys:
1744	put_futex_key(&key2);
1745out_put_key1:
1746	put_futex_key(&key1);
1747out:
1748	return ret ? ret : task_count;
1749}
1750
1751/* The key must be already stored in q->key. */
1752static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1753	__acquires(&hb->lock)
1754{
1755	struct futex_hash_bucket *hb;
1756
1757	hb = hash_futex(&q->key);
1758
1759	/*
1760	 * Increment the counter before taking the lock so that
1761	 * a potential waker won't miss a to-be-slept task that is
1762	 * waiting for the spinlock. This is safe as all queue_lock()
1763	 * users end up calling queue_me(). Similarly, for housekeeping,
1764	 * decrement the counter at queue_unlock() when some error has
1765	 * occurred and we don't end up adding the task to the list.
1766	 */
1767	hb_waiters_inc(hb);
1768
1769	q->lock_ptr = &hb->lock;
1770
1771	spin_lock(&hb->lock); /* implies MB (A) */
1772	return hb;
1773}
1774
1775static inline void
1776queue_unlock(struct futex_hash_bucket *hb)
1777	__releases(&hb->lock)
1778{
1779	spin_unlock(&hb->lock);
1780	hb_waiters_dec(hb);
1781}
1782
1783/**
1784 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1785 * @q:	The futex_q to enqueue
1786 * @hb:	The destination hash bucket
1787 *
1788 * The hb->lock must be held by the caller, and is released here. A call to
1789 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1790 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1791 * or nothing if the unqueue is done as part of the wake process and the unqueue
1792 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1793 * an example).
1794 */
1795static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1796	__releases(&hb->lock)
1797{
1798	int prio;
1799
1800	/*
1801	 * The priority used to register this element is
1802	 * - either the real thread-priority for the real-time threads
1803	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1804	 * - or MAX_RT_PRIO for non-RT threads.
1805	 * Thus, all RT-threads are woken first in priority order, and
1806	 * the others are woken last, in FIFO order.
1807	 */
1808	prio = min(current->normal_prio, MAX_RT_PRIO);
1809
1810	plist_node_init(&q->list, prio);
1811	plist_add(&q->list, &hb->chain);
1812	q->task = current;
1813	spin_unlock(&hb->lock);
1814}
1815
1816/**
1817 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1818 * @q:	The futex_q to unqueue
1819 *
1820 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1821 * be paired with exactly one earlier call to queue_me().
1822 *
1823 * Return:
1824 *   1 - if the futex_q was still queued (and we removed unqueued it);
1825 *   0 - if the futex_q was already removed by the waking thread
1826 */
1827static int unqueue_me(struct futex_q *q)
1828{
1829	spinlock_t *lock_ptr;
1830	int ret = 0;
1831
1832	/* In the common case we don't take the spinlock, which is nice. */
1833retry:
1834	lock_ptr = q->lock_ptr;
1835	barrier();
1836	if (lock_ptr != NULL) {
1837		spin_lock(lock_ptr);
1838		/*
1839		 * q->lock_ptr can change between reading it and
1840		 * spin_lock(), causing us to take the wrong lock.  This
1841		 * corrects the race condition.
1842		 *
1843		 * Reasoning goes like this: if we have the wrong lock,
1844		 * q->lock_ptr must have changed (maybe several times)
1845		 * between reading it and the spin_lock().  It can
1846		 * change again after the spin_lock() but only if it was
1847		 * already changed before the spin_lock().  It cannot,
1848		 * however, change back to the original value.  Therefore
1849		 * we can detect whether we acquired the correct lock.
1850		 */
1851		if (unlikely(lock_ptr != q->lock_ptr)) {
1852			spin_unlock(lock_ptr);
1853			goto retry;
1854		}
1855		__unqueue_futex(q);
1856
1857		BUG_ON(q->pi_state);
1858
1859		spin_unlock(lock_ptr);
1860		ret = 1;
1861	}
1862
1863	drop_futex_key_refs(&q->key);
1864	return ret;
1865}
1866
1867/*
1868 * PI futexes can not be requeued and must remove themself from the
1869 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1870 * and dropped here.
1871 */
1872static void unqueue_me_pi(struct futex_q *q)
1873	__releases(q->lock_ptr)
1874{
1875	__unqueue_futex(q);
1876
1877	BUG_ON(!q->pi_state);
1878	free_pi_state(q->pi_state);
1879	q->pi_state = NULL;
1880
1881	spin_unlock(q->lock_ptr);
1882}
1883
1884/*
1885 * Fixup the pi_state owner with the new owner.
1886 *
1887 * Must be called with hash bucket lock held and mm->sem held for non
1888 * private futexes.
1889 */
1890static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1891				struct task_struct *newowner)
1892{
1893	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1894	struct futex_pi_state *pi_state = q->pi_state;
1895	struct task_struct *oldowner = pi_state->owner;
1896	u32 uval, uninitialized_var(curval), newval;
1897	int ret;
1898
1899	/* Owner died? */
1900	if (!pi_state->owner)
1901		newtid |= FUTEX_OWNER_DIED;
1902
1903	/*
1904	 * We are here either because we stole the rtmutex from the
1905	 * previous highest priority waiter or we are the highest priority
1906	 * waiter but failed to get the rtmutex the first time.
1907	 * We have to replace the newowner TID in the user space variable.
1908	 * This must be atomic as we have to preserve the owner died bit here.
1909	 *
1910	 * Note: We write the user space value _before_ changing the pi_state
1911	 * because we can fault here. Imagine swapped out pages or a fork
1912	 * that marked all the anonymous memory readonly for cow.
1913	 *
1914	 * Modifying pi_state _before_ the user space value would
1915	 * leave the pi_state in an inconsistent state when we fault
1916	 * here, because we need to drop the hash bucket lock to
1917	 * handle the fault. This might be observed in the PID check
1918	 * in lookup_pi_state.
1919	 */
1920retry:
1921	if (get_futex_value_locked(&uval, uaddr))
1922		goto handle_fault;
1923
1924	while (1) {
1925		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1926
1927		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1928			goto handle_fault;
1929		if (curval == uval)
1930			break;
1931		uval = curval;
1932	}
1933
1934	/*
1935	 * We fixed up user space. Now we need to fix the pi_state
1936	 * itself.
1937	 */
1938	if (pi_state->owner != NULL) {
1939		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1940		WARN_ON(list_empty(&pi_state->list));
1941		list_del_init(&pi_state->list);
1942		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1943	}
1944
1945	pi_state->owner = newowner;
1946
1947	raw_spin_lock_irq(&newowner->pi_lock);
1948	WARN_ON(!list_empty(&pi_state->list));
1949	list_add(&pi_state->list, &newowner->pi_state_list);
1950	raw_spin_unlock_irq(&newowner->pi_lock);
1951	return 0;
1952
1953	/*
1954	 * To handle the page fault we need to drop the hash bucket
1955	 * lock here. That gives the other task (either the highest priority
1956	 * waiter itself or the task which stole the rtmutex) the
1957	 * chance to try the fixup of the pi_state. So once we are
1958	 * back from handling the fault we need to check the pi_state
1959	 * after reacquiring the hash bucket lock and before trying to
1960	 * do another fixup. When the fixup has been done already we
1961	 * simply return.
1962	 */
1963handle_fault:
1964	spin_unlock(q->lock_ptr);
1965
1966	ret = fault_in_user_writeable(uaddr);
1967
1968	spin_lock(q->lock_ptr);
1969
1970	/*
1971	 * Check if someone else fixed it for us:
1972	 */
1973	if (pi_state->owner != oldowner)
1974		return 0;
1975
1976	if (ret)
1977		return ret;
1978
1979	goto retry;
1980}
1981
1982static long futex_wait_restart(struct restart_block *restart);
1983
1984/**
1985 * fixup_owner() - Post lock pi_state and corner case management
1986 * @uaddr:	user address of the futex
1987 * @q:		futex_q (contains pi_state and access to the rt_mutex)
1988 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1989 *
1990 * After attempting to lock an rt_mutex, this function is called to cleanup
1991 * the pi_state owner as well as handle race conditions that may allow us to
1992 * acquire the lock. Must be called with the hb lock held.
1993 *
1994 * Return:
1995 *  1 - success, lock taken;
1996 *  0 - success, lock not taken;
1997 * <0 - on error (-EFAULT)
1998 */
1999static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2000{
2001	struct task_struct *owner;
2002	int ret = 0;
2003
2004	if (locked) {
2005		/*
2006		 * Got the lock. We might not be the anticipated owner if we
2007		 * did a lock-steal - fix up the PI-state in that case:
2008		 */
2009		if (q->pi_state->owner != current)
2010			ret = fixup_pi_state_owner(uaddr, q, current);
2011		goto out;
2012	}
2013
2014	/*
2015	 * Catch the rare case, where the lock was released when we were on the
2016	 * way back before we locked the hash bucket.
2017	 */
2018	if (q->pi_state->owner == current) {
2019		/*
2020		 * Try to get the rt_mutex now. This might fail as some other
2021		 * task acquired the rt_mutex after we removed ourself from the
2022		 * rt_mutex waiters list.
2023		 */
2024		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2025			locked = 1;
2026			goto out;
2027		}
2028
2029		/*
2030		 * pi_state is incorrect, some other task did a lock steal and
2031		 * we returned due to timeout or signal without taking the
2032		 * rt_mutex. Too late.
2033		 */
2034		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2035		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2036		if (!owner)
2037			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2038		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2039		ret = fixup_pi_state_owner(uaddr, q, owner);
2040		goto out;
2041	}
2042
2043	/*
2044	 * Paranoia check. If we did not take the lock, then we should not be
2045	 * the owner of the rt_mutex.
2046	 */
2047	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2048		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2049				"pi-state %p\n", ret,
2050				q->pi_state->pi_mutex.owner,
2051				q->pi_state->owner);
2052
2053out:
2054	return ret ? ret : locked;
2055}
2056
2057/**
2058 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2059 * @hb:		the futex hash bucket, must be locked by the caller
2060 * @q:		the futex_q to queue up on
2061 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2062 */
2063static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2064				struct hrtimer_sleeper *timeout)
2065{
2066	/*
2067	 * The task state is guaranteed to be set before another task can
2068	 * wake it. set_current_state() is implemented using set_mb() and
2069	 * queue_me() calls spin_unlock() upon completion, both serializing
2070	 * access to the hash list and forcing another memory barrier.
2071	 */
2072	set_current_state(TASK_INTERRUPTIBLE);
2073	queue_me(q, hb);
2074
2075	/* Arm the timer */
2076	if (timeout) {
2077		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2078		if (!hrtimer_active(&timeout->timer))
2079			timeout->task = NULL;
2080	}
2081
2082	/*
2083	 * If we have been removed from the hash list, then another task
2084	 * has tried to wake us, and we can skip the call to schedule().
2085	 */
2086	if (likely(!plist_node_empty(&q->list))) {
2087		/*
2088		 * If the timer has already expired, current will already be
2089		 * flagged for rescheduling. Only call schedule if there
2090		 * is no timeout, or if it has yet to expire.
2091		 */
2092		if (!timeout || timeout->task)
2093			freezable_schedule();
2094	}
2095	__set_current_state(TASK_RUNNING);
2096}
2097
2098/**
2099 * futex_wait_setup() - Prepare to wait on a futex
2100 * @uaddr:	the futex userspace address
2101 * @val:	the expected value
2102 * @flags:	futex flags (FLAGS_SHARED, etc.)
2103 * @q:		the associated futex_q
2104 * @hb:		storage for hash_bucket pointer to be returned to caller
2105 *
2106 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2107 * compare it with the expected value.  Handle atomic faults internally.
2108 * Return with the hb lock held and a q.key reference on success, and unlocked
2109 * with no q.key reference on failure.
2110 *
2111 * Return:
2112 *  0 - uaddr contains val and hb has been locked;
2113 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2114 */
2115static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2116			   struct futex_q *q, struct futex_hash_bucket **hb)
2117{
2118	u32 uval;
2119	int ret;
2120
2121	/*
2122	 * Access the page AFTER the hash-bucket is locked.
2123	 * Order is important:
2124	 *
2125	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2126	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2127	 *
2128	 * The basic logical guarantee of a futex is that it blocks ONLY
2129	 * if cond(var) is known to be true at the time of blocking, for
2130	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2131	 * would open a race condition where we could block indefinitely with
2132	 * cond(var) false, which would violate the guarantee.
2133	 *
2134	 * On the other hand, we insert q and release the hash-bucket only
2135	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2136	 * absorb a wakeup if *uaddr does not match the desired values
2137	 * while the syscall executes.
2138	 */
2139retry:
2140	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2141	if (unlikely(ret != 0))
2142		return ret;
2143
2144retry_private:
2145	*hb = queue_lock(q);
2146
2147	ret = get_futex_value_locked(&uval, uaddr);
2148
2149	if (ret) {
2150		queue_unlock(*hb);
2151
2152		ret = get_user(uval, uaddr);
2153		if (ret)
2154			goto out;
2155
2156		if (!(flags & FLAGS_SHARED))
2157			goto retry_private;
2158
2159		put_futex_key(&q->key);
2160		goto retry;
2161	}
2162
2163	if (uval != val) {
2164		queue_unlock(*hb);
2165		ret = -EWOULDBLOCK;
2166	}
2167
2168out:
2169	if (ret)
2170		put_futex_key(&q->key);
2171	return ret;
2172}
2173
2174static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2175		      ktime_t *abs_time, u32 bitset)
2176{
2177	struct hrtimer_sleeper timeout, *to = NULL;
2178	struct restart_block *restart;
2179	struct futex_hash_bucket *hb;
2180	struct futex_q q = futex_q_init;
2181	int ret;
2182
2183	if (!bitset)
2184		return -EINVAL;
2185	q.bitset = bitset;
2186
2187	if (abs_time) {
2188		to = &timeout;
2189
2190		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2191				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2192				      HRTIMER_MODE_ABS);
2193		hrtimer_init_sleeper(to, current);
2194		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2195					     current->timer_slack_ns);
2196	}
2197
2198retry:
2199	/*
2200	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2201	 * q.key refs.
2202	 */
2203	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2204	if (ret)
2205		goto out;
2206
2207	/* queue_me and wait for wakeup, timeout, or a signal. */
2208	futex_wait_queue_me(hb, &q, to);
2209
2210	/* If we were woken (and unqueued), we succeeded, whatever. */
2211	ret = 0;
2212	/* unqueue_me() drops q.key ref */
2213	if (!unqueue_me(&q))
2214		goto out;
2215	ret = -ETIMEDOUT;
2216	if (to && !to->task)
2217		goto out;
2218
2219	/*
2220	 * We expect signal_pending(current), but we might be the
2221	 * victim of a spurious wakeup as well.
2222	 */
2223	if (!signal_pending(current))
2224		goto retry;
2225
2226	ret = -ERESTARTSYS;
2227	if (!abs_time)
2228		goto out;
2229
2230	restart = &current->restart_block;
2231	restart->fn = futex_wait_restart;
2232	restart->futex.uaddr = uaddr;
2233	restart->futex.val = val;
2234	restart->futex.time = abs_time->tv64;
2235	restart->futex.bitset = bitset;
2236	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2237
2238	ret = -ERESTART_RESTARTBLOCK;
2239
2240out:
2241	if (to) {
2242		hrtimer_cancel(&to->timer);
2243		destroy_hrtimer_on_stack(&to->timer);
2244	}
2245	return ret;
2246}
2247
2248
2249static long futex_wait_restart(struct restart_block *restart)
2250{
2251	u32 __user *uaddr = restart->futex.uaddr;
2252	ktime_t t, *tp = NULL;
2253
2254	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2255		t.tv64 = restart->futex.time;
2256		tp = &t;
2257	}
2258	restart->fn = do_no_restart_syscall;
2259
2260	return (long)futex_wait(uaddr, restart->futex.flags,
2261				restart->futex.val, tp, restart->futex.bitset);
2262}
2263
2264
2265/*
2266 * Userspace tried a 0 -> TID atomic transition of the futex value
2267 * and failed. The kernel side here does the whole locking operation:
2268 * if there are waiters then it will block, it does PI, etc. (Due to
2269 * races the kernel might see a 0 value of the futex too.)
2270 */
2271static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2272			 ktime_t *time, int trylock)
2273{
2274	struct hrtimer_sleeper timeout, *to = NULL;
2275	struct futex_hash_bucket *hb;
2276	struct futex_q q = futex_q_init;
2277	int res, ret;
2278
2279	if (refill_pi_state_cache())
2280		return -ENOMEM;
2281
2282	if (time) {
2283		to = &timeout;
2284		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2285				      HRTIMER_MODE_ABS);
2286		hrtimer_init_sleeper(to, current);
2287		hrtimer_set_expires(&to->timer, *time);
2288	}
2289
2290retry:
2291	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2292	if (unlikely(ret != 0))
2293		goto out;
2294
2295retry_private:
2296	hb = queue_lock(&q);
2297
2298	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2299	if (unlikely(ret)) {
2300		switch (ret) {
2301		case 1:
2302			/* We got the lock. */
2303			ret = 0;
2304			goto out_unlock_put_key;
2305		case -EFAULT:
2306			goto uaddr_faulted;
2307		case -EAGAIN:
2308			/*
2309			 * Two reasons for this:
2310			 * - Task is exiting and we just wait for the
2311			 *   exit to complete.
2312			 * - The user space value changed.
2313			 */
2314			queue_unlock(hb);
2315			put_futex_key(&q.key);
2316			cond_resched();
2317			goto retry;
2318		default:
2319			goto out_unlock_put_key;
2320		}
2321	}
2322
2323	/*
2324	 * Only actually queue now that the atomic ops are done:
2325	 */
2326	queue_me(&q, hb);
2327
2328	WARN_ON(!q.pi_state);
2329	/*
2330	 * Block on the PI mutex:
2331	 */
2332	if (!trylock) {
2333		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2334	} else {
2335		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2336		/* Fixup the trylock return value: */
2337		ret = ret ? 0 : -EWOULDBLOCK;
2338	}
2339
2340	spin_lock(q.lock_ptr);
2341	/*
2342	 * Fixup the pi_state owner and possibly acquire the lock if we
2343	 * haven't already.
2344	 */
2345	res = fixup_owner(uaddr, &q, !ret);
2346	/*
2347	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2348	 * the lock, clear our -ETIMEDOUT or -EINTR.
2349	 */
2350	if (res)
2351		ret = (res < 0) ? res : 0;
2352
2353	/*
2354	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2355	 * it and return the fault to userspace.
2356	 */
2357	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2358		rt_mutex_unlock(&q.pi_state->pi_mutex);
2359
2360	/* Unqueue and drop the lock */
2361	unqueue_me_pi(&q);
2362
2363	goto out_put_key;
2364
2365out_unlock_put_key:
2366	queue_unlock(hb);
2367
2368out_put_key:
2369	put_futex_key(&q.key);
2370out:
2371	if (to)
2372		destroy_hrtimer_on_stack(&to->timer);
2373	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2374
2375uaddr_faulted:
2376	queue_unlock(hb);
2377
2378	ret = fault_in_user_writeable(uaddr);
2379	if (ret)
2380		goto out_put_key;
2381
2382	if (!(flags & FLAGS_SHARED))
2383		goto retry_private;
2384
2385	put_futex_key(&q.key);
2386	goto retry;
2387}
2388
2389/*
2390 * Userspace attempted a TID -> 0 atomic transition, and failed.
2391 * This is the in-kernel slowpath: we look up the PI state (if any),
2392 * and do the rt-mutex unlock.
2393 */
2394static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2395{
2396	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2397	union futex_key key = FUTEX_KEY_INIT;
2398	struct futex_hash_bucket *hb;
2399	struct futex_q *match;
2400	int ret;
2401
2402retry:
2403	if (get_user(uval, uaddr))
2404		return -EFAULT;
2405	/*
2406	 * We release only a lock we actually own:
2407	 */
2408	if ((uval & FUTEX_TID_MASK) != vpid)
2409		return -EPERM;
2410
2411	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2412	if (ret)
2413		return ret;
2414
2415	hb = hash_futex(&key);
2416	spin_lock(&hb->lock);
2417
2418	/*
2419	 * Check waiters first. We do not trust user space values at
2420	 * all and we at least want to know if user space fiddled
2421	 * with the futex value instead of blindly unlocking.
2422	 */
2423	match = futex_top_waiter(hb, &key);
2424	if (match) {
2425		ret = wake_futex_pi(uaddr, uval, match);
2426		/*
2427		 * The atomic access to the futex value generated a
2428		 * pagefault, so retry the user-access and the wakeup:
2429		 */
2430		if (ret == -EFAULT)
2431			goto pi_faulted;
2432		/*
2433		 * A unconditional UNLOCK_PI op raced against a waiter
2434		 * setting the FUTEX_WAITERS bit. Try again.
2435		 */
2436		if (ret == -EAGAIN) {
2437			spin_unlock(&hb->lock);
2438			put_futex_key(&key);
2439			goto retry;
2440		}
2441		goto out_unlock;
2442	}
2443
2444	/*
2445	 * We have no kernel internal state, i.e. no waiters in the
2446	 * kernel. Waiters which are about to queue themselves are stuck
2447	 * on hb->lock. So we can safely ignore them. We do neither
2448	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2449	 * owner.
2450	 */
2451	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2452		goto pi_faulted;
2453
2454	/*
2455	 * If uval has changed, let user space handle it.
2456	 */
2457	ret = (curval == uval) ? 0 : -EAGAIN;
2458
2459out_unlock:
2460	spin_unlock(&hb->lock);
2461	put_futex_key(&key);
2462	return ret;
2463
2464pi_faulted:
2465	spin_unlock(&hb->lock);
2466	put_futex_key(&key);
2467
2468	ret = fault_in_user_writeable(uaddr);
2469	if (!ret)
2470		goto retry;
2471
2472	return ret;
2473}
2474
2475/**
2476 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2477 * @hb:		the hash_bucket futex_q was original enqueued on
2478 * @q:		the futex_q woken while waiting to be requeued
2479 * @key2:	the futex_key of the requeue target futex
2480 * @timeout:	the timeout associated with the wait (NULL if none)
2481 *
2482 * Detect if the task was woken on the initial futex as opposed to the requeue
2483 * target futex.  If so, determine if it was a timeout or a signal that caused
2484 * the wakeup and return the appropriate error code to the caller.  Must be
2485 * called with the hb lock held.
2486 *
2487 * Return:
2488 *  0 = no early wakeup detected;
2489 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2490 */
2491static inline
2492int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2493				   struct futex_q *q, union futex_key *key2,
2494				   struct hrtimer_sleeper *timeout)
2495{
2496	int ret = 0;
2497
2498	/*
2499	 * With the hb lock held, we avoid races while we process the wakeup.
2500	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2501	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2502	 * It can't be requeued from uaddr2 to something else since we don't
2503	 * support a PI aware source futex for requeue.
2504	 */
2505	if (!match_futex(&q->key, key2)) {
2506		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2507		/*
2508		 * We were woken prior to requeue by a timeout or a signal.
2509		 * Unqueue the futex_q and determine which it was.
2510		 */
2511		plist_del(&q->list, &hb->chain);
2512		hb_waiters_dec(hb);
2513
2514		/* Handle spurious wakeups gracefully */
2515		ret = -EWOULDBLOCK;
2516		if (timeout && !timeout->task)
2517			ret = -ETIMEDOUT;
2518		else if (signal_pending(current))
2519			ret = -ERESTARTNOINTR;
2520	}
2521	return ret;
2522}
2523
2524/**
2525 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2526 * @uaddr:	the futex we initially wait on (non-pi)
2527 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2528 * 		the same type, no requeueing from private to shared, etc.
2529 * @val:	the expected value of uaddr
2530 * @abs_time:	absolute timeout
2531 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2532 * @uaddr2:	the pi futex we will take prior to returning to user-space
2533 *
2534 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2535 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2536 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2537 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2538 * without one, the pi logic would not know which task to boost/deboost, if
2539 * there was a need to.
2540 *
2541 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2542 * via the following--
2543 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2544 * 2) wakeup on uaddr2 after a requeue
2545 * 3) signal
2546 * 4) timeout
2547 *
2548 * If 3, cleanup and return -ERESTARTNOINTR.
2549 *
2550 * If 2, we may then block on trying to take the rt_mutex and return via:
2551 * 5) successful lock
2552 * 6) signal
2553 * 7) timeout
2554 * 8) other lock acquisition failure
2555 *
2556 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2557 *
2558 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2559 *
2560 * Return:
2561 *  0 - On success;
2562 * <0 - On error
2563 */
2564static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2565				 u32 val, ktime_t *abs_time, u32 bitset,
2566				 u32 __user *uaddr2)
2567{
2568	struct hrtimer_sleeper timeout, *to = NULL;
2569	struct rt_mutex_waiter rt_waiter;
2570	struct rt_mutex *pi_mutex = NULL;
2571	struct futex_hash_bucket *hb;
2572	union futex_key key2 = FUTEX_KEY_INIT;
2573	struct futex_q q = futex_q_init;
2574	int res, ret;
2575
2576	if (uaddr == uaddr2)
2577		return -EINVAL;
2578
2579	if (!bitset)
2580		return -EINVAL;
2581
2582	if (abs_time) {
2583		to = &timeout;
2584		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2585				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2586				      HRTIMER_MODE_ABS);
2587		hrtimer_init_sleeper(to, current);
2588		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2589					     current->timer_slack_ns);
2590	}
2591
2592	/*
2593	 * The waiter is allocated on our stack, manipulated by the requeue
2594	 * code while we sleep on uaddr.
2595	 */
2596	debug_rt_mutex_init_waiter(&rt_waiter);
2597	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2598	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2599	rt_waiter.task = NULL;
2600
2601	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2602	if (unlikely(ret != 0))
2603		goto out;
2604
2605	q.bitset = bitset;
2606	q.rt_waiter = &rt_waiter;
2607	q.requeue_pi_key = &key2;
2608
2609	/*
2610	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2611	 * count.
2612	 */
2613	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2614	if (ret)
2615		goto out_key2;
2616
2617	/*
2618	 * The check above which compares uaddrs is not sufficient for
2619	 * shared futexes. We need to compare the keys:
2620	 */
2621	if (match_futex(&q.key, &key2)) {
2622		queue_unlock(hb);
2623		ret = -EINVAL;
2624		goto out_put_keys;
2625	}
2626
2627	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2628	futex_wait_queue_me(hb, &q, to);
2629
2630	spin_lock(&hb->lock);
2631	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2632	spin_unlock(&hb->lock);
2633	if (ret)
2634		goto out_put_keys;
2635
2636	/*
2637	 * In order for us to be here, we know our q.key == key2, and since
2638	 * we took the hb->lock above, we also know that futex_requeue() has
2639	 * completed and we no longer have to concern ourselves with a wakeup
2640	 * race with the atomic proxy lock acquisition by the requeue code. The
2641	 * futex_requeue dropped our key1 reference and incremented our key2
2642	 * reference count.
2643	 */
2644
2645	/* Check if the requeue code acquired the second futex for us. */
2646	if (!q.rt_waiter) {
2647		/*
2648		 * Got the lock. We might not be the anticipated owner if we
2649		 * did a lock-steal - fix up the PI-state in that case.
2650		 */
2651		if (q.pi_state && (q.pi_state->owner != current)) {
2652			spin_lock(q.lock_ptr);
2653			ret = fixup_pi_state_owner(uaddr2, &q, current);
2654			/*
2655			 * Drop the reference to the pi state which
2656			 * the requeue_pi() code acquired for us.
2657			 */
2658			free_pi_state(q.pi_state);
2659			spin_unlock(q.lock_ptr);
2660		}
2661	} else {
2662		/*
2663		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2664		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2665		 * the pi_state.
2666		 */
2667		WARN_ON(!q.pi_state);
2668		pi_mutex = &q.pi_state->pi_mutex;
2669		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2670		debug_rt_mutex_free_waiter(&rt_waiter);
2671
2672		spin_lock(q.lock_ptr);
2673		/*
2674		 * Fixup the pi_state owner and possibly acquire the lock if we
2675		 * haven't already.
2676		 */
2677		res = fixup_owner(uaddr2, &q, !ret);
2678		/*
2679		 * If fixup_owner() returned an error, proprogate that.  If it
2680		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2681		 */
2682		if (res)
2683			ret = (res < 0) ? res : 0;
2684
2685		/* Unqueue and drop the lock. */
2686		unqueue_me_pi(&q);
2687	}
2688
2689	/*
2690	 * If fixup_pi_state_owner() faulted and was unable to handle the
2691	 * fault, unlock the rt_mutex and return the fault to userspace.
2692	 */
2693	if (ret == -EFAULT) {
2694		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2695			rt_mutex_unlock(pi_mutex);
2696	} else if (ret == -EINTR) {
2697		/*
2698		 * We've already been requeued, but cannot restart by calling
2699		 * futex_lock_pi() directly. We could restart this syscall, but
2700		 * it would detect that the user space "val" changed and return
2701		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2702		 * -EWOULDBLOCK directly.
2703		 */
2704		ret = -EWOULDBLOCK;
2705	}
2706
2707out_put_keys:
2708	put_futex_key(&q.key);
2709out_key2:
2710	put_futex_key(&key2);
2711
2712out:
2713	if (to) {
2714		hrtimer_cancel(&to->timer);
2715		destroy_hrtimer_on_stack(&to->timer);
2716	}
2717	return ret;
2718}
2719
2720/*
2721 * Support for robust futexes: the kernel cleans up held futexes at
2722 * thread exit time.
2723 *
2724 * Implementation: user-space maintains a per-thread list of locks it
2725 * is holding. Upon do_exit(), the kernel carefully walks this list,
2726 * and marks all locks that are owned by this thread with the
2727 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2728 * always manipulated with the lock held, so the list is private and
2729 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2730 * field, to allow the kernel to clean up if the thread dies after
2731 * acquiring the lock, but just before it could have added itself to
2732 * the list. There can only be one such pending lock.
2733 */
2734
2735/**
2736 * sys_set_robust_list() - Set the robust-futex list head of a task
2737 * @head:	pointer to the list-head
2738 * @len:	length of the list-head, as userspace expects
2739 */
2740SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2741		size_t, len)
2742{
2743	if (!futex_cmpxchg_enabled)
2744		return -ENOSYS;
2745	/*
2746	 * The kernel knows only one size for now:
2747	 */
2748	if (unlikely(len != sizeof(*head)))
2749		return -EINVAL;
2750
2751	current->robust_list = head;
2752
2753	return 0;
2754}
2755
2756/**
2757 * sys_get_robust_list() - Get the robust-futex list head of a task
2758 * @pid:	pid of the process [zero for current task]
2759 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2760 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2761 */
2762SYSCALL_DEFINE3(get_robust_list, int, pid,
2763		struct robust_list_head __user * __user *, head_ptr,
2764		size_t __user *, len_ptr)
2765{
2766	struct robust_list_head __user *head;
2767	unsigned long ret;
2768	struct task_struct *p;
2769
2770	if (!futex_cmpxchg_enabled)
2771		return -ENOSYS;
2772
2773	rcu_read_lock();
2774
2775	ret = -ESRCH;
2776	if (!pid)
2777		p = current;
2778	else {
2779		p = find_task_by_vpid(pid);
2780		if (!p)
2781			goto err_unlock;
2782	}
2783
2784	ret = -EPERM;
2785	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2786		goto err_unlock;
2787
2788	head = p->robust_list;
2789	rcu_read_unlock();
2790
2791	if (put_user(sizeof(*head), len_ptr))
2792		return -EFAULT;
2793	return put_user(head, head_ptr);
2794
2795err_unlock:
2796	rcu_read_unlock();
2797
2798	return ret;
2799}
2800
2801/*
2802 * Process a futex-list entry, check whether it's owned by the
2803 * dying task, and do notification if so:
2804 */
2805int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2806{
2807	u32 uval, uninitialized_var(nval), mval;
2808
2809retry:
2810	if (get_user(uval, uaddr))
2811		return -1;
2812
2813	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2814		/*
2815		 * Ok, this dying thread is truly holding a futex
2816		 * of interest. Set the OWNER_DIED bit atomically
2817		 * via cmpxchg, and if the value had FUTEX_WAITERS
2818		 * set, wake up a waiter (if any). (We have to do a
2819		 * futex_wake() even if OWNER_DIED is already set -
2820		 * to handle the rare but possible case of recursive
2821		 * thread-death.) The rest of the cleanup is done in
2822		 * userspace.
2823		 */
2824		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2825		/*
2826		 * We are not holding a lock here, but we want to have
2827		 * the pagefault_disable/enable() protection because
2828		 * we want to handle the fault gracefully. If the
2829		 * access fails we try to fault in the futex with R/W
2830		 * verification via get_user_pages. get_user() above
2831		 * does not guarantee R/W access. If that fails we
2832		 * give up and leave the futex locked.
2833		 */
2834		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2835			if (fault_in_user_writeable(uaddr))
2836				return -1;
2837			goto retry;
2838		}
2839		if (nval != uval)
2840			goto retry;
2841
2842		/*
2843		 * Wake robust non-PI futexes here. The wakeup of
2844		 * PI futexes happens in exit_pi_state():
2845		 */
2846		if (!pi && (uval & FUTEX_WAITERS))
2847			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2848	}
2849	return 0;
2850}
2851
2852/*
2853 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2854 */
2855static inline int fetch_robust_entry(struct robust_list __user **entry,
2856				     struct robust_list __user * __user *head,
2857				     unsigned int *pi)
2858{
2859	unsigned long uentry;
2860
2861	if (get_user(uentry, (unsigned long __user *)head))
2862		return -EFAULT;
2863
2864	*entry = (void __user *)(uentry & ~1UL);
2865	*pi = uentry & 1;
2866
2867	return 0;
2868}
2869
2870/*
2871 * Walk curr->robust_list (very carefully, it's a userspace list!)
2872 * and mark any locks found there dead, and notify any waiters.
2873 *
2874 * We silently return on any sign of list-walking problem.
2875 */
2876void exit_robust_list(struct task_struct *curr)
2877{
2878	struct robust_list_head __user *head = curr->robust_list;
2879	struct robust_list __user *entry, *next_entry, *pending;
2880	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2881	unsigned int uninitialized_var(next_pi);
2882	unsigned long futex_offset;
2883	int rc;
2884
2885	if (!futex_cmpxchg_enabled)
2886		return;
2887
2888	/*
2889	 * Fetch the list head (which was registered earlier, via
2890	 * sys_set_robust_list()):
2891	 */
2892	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2893		return;
2894	/*
2895	 * Fetch the relative futex offset:
2896	 */
2897	if (get_user(futex_offset, &head->futex_offset))
2898		return;
2899	/*
2900	 * Fetch any possibly pending lock-add first, and handle it
2901	 * if it exists:
2902	 */
2903	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2904		return;
2905
2906	next_entry = NULL;	/* avoid warning with gcc */
2907	while (entry != &head->list) {
2908		/*
2909		 * Fetch the next entry in the list before calling
2910		 * handle_futex_death:
2911		 */
2912		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2913		/*
2914		 * A pending lock might already be on the list, so
2915		 * don't process it twice:
2916		 */
2917		if (entry != pending)
2918			if (handle_futex_death((void __user *)entry + futex_offset,
2919						curr, pi))
2920				return;
2921		if (rc)
2922			return;
2923		entry = next_entry;
2924		pi = next_pi;
2925		/*
2926		 * Avoid excessively long or circular lists:
2927		 */
2928		if (!--limit)
2929			break;
2930
2931		cond_resched();
2932	}
2933
2934	if (pending)
2935		handle_futex_death((void __user *)pending + futex_offset,
2936				   curr, pip);
2937}
2938
2939long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2940		u32 __user *uaddr2, u32 val2, u32 val3)
2941{
2942	int cmd = op & FUTEX_CMD_MASK;
2943	unsigned int flags = 0;
2944
2945	if (!(op & FUTEX_PRIVATE_FLAG))
2946		flags |= FLAGS_SHARED;
2947
2948	if (op & FUTEX_CLOCK_REALTIME) {
2949		flags |= FLAGS_CLOCKRT;
2950		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2951			return -ENOSYS;
2952	}
2953
2954	switch (cmd) {
2955	case FUTEX_LOCK_PI:
2956	case FUTEX_UNLOCK_PI:
2957	case FUTEX_TRYLOCK_PI:
2958	case FUTEX_WAIT_REQUEUE_PI:
2959	case FUTEX_CMP_REQUEUE_PI:
2960		if (!futex_cmpxchg_enabled)
2961			return -ENOSYS;
2962	}
2963
2964	switch (cmd) {
2965	case FUTEX_WAIT:
2966		val3 = FUTEX_BITSET_MATCH_ANY;
2967	case FUTEX_WAIT_BITSET:
2968		return futex_wait(uaddr, flags, val, timeout, val3);
2969	case FUTEX_WAKE:
2970		val3 = FUTEX_BITSET_MATCH_ANY;
2971	case FUTEX_WAKE_BITSET:
2972		return futex_wake(uaddr, flags, val, val3);
2973	case FUTEX_REQUEUE:
2974		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2975	case FUTEX_CMP_REQUEUE:
2976		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2977	case FUTEX_WAKE_OP:
2978		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2979	case FUTEX_LOCK_PI:
2980		return futex_lock_pi(uaddr, flags, timeout, 0);
2981	case FUTEX_UNLOCK_PI:
2982		return futex_unlock_pi(uaddr, flags);
2983	case FUTEX_TRYLOCK_PI:
2984		return futex_lock_pi(uaddr, flags, NULL, 1);
2985	case FUTEX_WAIT_REQUEUE_PI:
2986		val3 = FUTEX_BITSET_MATCH_ANY;
2987		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2988					     uaddr2);
2989	case FUTEX_CMP_REQUEUE_PI:
2990		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2991	}
2992	return -ENOSYS;
2993}
2994
2995
2996SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2997		struct timespec __user *, utime, u32 __user *, uaddr2,
2998		u32, val3)
2999{
3000	struct timespec ts;
3001	ktime_t t, *tp = NULL;
3002	u32 val2 = 0;
3003	int cmd = op & FUTEX_CMD_MASK;
3004
3005	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3006		      cmd == FUTEX_WAIT_BITSET ||
3007		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3008		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3009			return -EFAULT;
3010		if (!timespec_valid(&ts))
3011			return -EINVAL;
3012
3013		t = timespec_to_ktime(ts);
3014		if (cmd == FUTEX_WAIT)
3015			t = ktime_add_safe(ktime_get(), t);
3016		tp = &t;
3017	}
3018	/*
3019	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3020	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3021	 */
3022	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3023	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3024		val2 = (u32) (unsigned long) utime;
3025
3026	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3027}
3028
3029static void __init futex_detect_cmpxchg(void)
3030{
3031#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3032	u32 curval;
3033
3034	/*
3035	 * This will fail and we want it. Some arch implementations do
3036	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3037	 * functionality. We want to know that before we call in any
3038	 * of the complex code paths. Also we want to prevent
3039	 * registration of robust lists in that case. NULL is
3040	 * guaranteed to fault and we get -EFAULT on functional
3041	 * implementation, the non-functional ones will return
3042	 * -ENOSYS.
3043	 */
3044	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3045		futex_cmpxchg_enabled = 1;
3046#endif
3047}
3048
3049static int __init futex_init(void)
3050{
3051	unsigned int futex_shift;
3052	unsigned long i;
3053
3054#if CONFIG_BASE_SMALL
3055	futex_hashsize = 16;
3056#else
3057	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3058#endif
3059
3060	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3061					       futex_hashsize, 0,
3062					       futex_hashsize < 256 ? HASH_SMALL : 0,
3063					       &futex_shift, NULL,
3064					       futex_hashsize, futex_hashsize);
3065	futex_hashsize = 1UL << futex_shift;
3066
3067	futex_detect_cmpxchg();
3068
3069	for (i = 0; i < futex_hashsize; i++) {
3070		atomic_set(&futex_queues[i].waiters, 0);
3071		plist_head_init(&futex_queues[i].chain);
3072		spin_lock_init(&futex_queues[i].lock);
3073	}
3074
3075	return 0;
3076}
3077__initcall(futex_init);
3078