1/*
2 * Kernel Debugger Architecture Independent Support Functions
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (c) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
10 * 03/02/13    added new 2.5 kallsyms <xavier.bru@bull.net>
11 */
12
13#include <stdarg.h>
14#include <linux/types.h>
15#include <linux/sched.h>
16#include <linux/mm.h>
17#include <linux/kallsyms.h>
18#include <linux/stddef.h>
19#include <linux/vmalloc.h>
20#include <linux/ptrace.h>
21#include <linux/module.h>
22#include <linux/highmem.h>
23#include <linux/hardirq.h>
24#include <linux/delay.h>
25#include <linux/uaccess.h>
26#include <linux/kdb.h>
27#include <linux/slab.h>
28#include "kdb_private.h"
29
30/*
31 * kdbgetsymval - Return the address of the given symbol.
32 *
33 * Parameters:
34 *	symname	Character string containing symbol name
35 *      symtab  Structure to receive results
36 * Returns:
37 *	0	Symbol not found, symtab zero filled
38 *	1	Symbol mapped to module/symbol/section, data in symtab
39 */
40int kdbgetsymval(const char *symname, kdb_symtab_t *symtab)
41{
42	if (KDB_DEBUG(AR))
43		kdb_printf("kdbgetsymval: symname=%s, symtab=%p\n", symname,
44			   symtab);
45	memset(symtab, 0, sizeof(*symtab));
46	symtab->sym_start = kallsyms_lookup_name(symname);
47	if (symtab->sym_start) {
48		if (KDB_DEBUG(AR))
49			kdb_printf("kdbgetsymval: returns 1, "
50				   "symtab->sym_start=0x%lx\n",
51				   symtab->sym_start);
52		return 1;
53	}
54	if (KDB_DEBUG(AR))
55		kdb_printf("kdbgetsymval: returns 0\n");
56	return 0;
57}
58EXPORT_SYMBOL(kdbgetsymval);
59
60static char *kdb_name_table[100];	/* arbitrary size */
61
62/*
63 * kdbnearsym -	Return the name of the symbol with the nearest address
64 *	less than 'addr'.
65 *
66 * Parameters:
67 *	addr	Address to check for symbol near
68 *	symtab  Structure to receive results
69 * Returns:
70 *	0	No sections contain this address, symtab zero filled
71 *	1	Address mapped to module/symbol/section, data in symtab
72 * Remarks:
73 *	2.6 kallsyms has a "feature" where it unpacks the name into a
74 *	string.  If that string is reused before the caller expects it
75 *	then the caller sees its string change without warning.  To
76 *	avoid cluttering up the main kdb code with lots of kdb_strdup,
77 *	tests and kfree calls, kdbnearsym maintains an LRU list of the
78 *	last few unique strings.  The list is sized large enough to
79 *	hold active strings, no kdb caller of kdbnearsym makes more
80 *	than ~20 later calls before using a saved value.
81 */
82int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab)
83{
84	int ret = 0;
85	unsigned long symbolsize = 0;
86	unsigned long offset = 0;
87#define knt1_size 128		/* must be >= kallsyms table size */
88	char *knt1 = NULL;
89
90	if (KDB_DEBUG(AR))
91		kdb_printf("kdbnearsym: addr=0x%lx, symtab=%p\n", addr, symtab);
92	memset(symtab, 0, sizeof(*symtab));
93
94	if (addr < 4096)
95		goto out;
96	knt1 = debug_kmalloc(knt1_size, GFP_ATOMIC);
97	if (!knt1) {
98		kdb_printf("kdbnearsym: addr=0x%lx cannot kmalloc knt1\n",
99			   addr);
100		goto out;
101	}
102	symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset,
103				(char **)(&symtab->mod_name), knt1);
104	if (offset > 8*1024*1024) {
105		symtab->sym_name = NULL;
106		addr = offset = symbolsize = 0;
107	}
108	symtab->sym_start = addr - offset;
109	symtab->sym_end = symtab->sym_start + symbolsize;
110	ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0';
111
112	if (ret) {
113		int i;
114		/* Another 2.6 kallsyms "feature".  Sometimes the sym_name is
115		 * set but the buffer passed into kallsyms_lookup is not used,
116		 * so it contains garbage.  The caller has to work out which
117		 * buffer needs to be saved.
118		 *
119		 * What was Rusty smoking when he wrote that code?
120		 */
121		if (symtab->sym_name != knt1) {
122			strncpy(knt1, symtab->sym_name, knt1_size);
123			knt1[knt1_size-1] = '\0';
124		}
125		for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) {
126			if (kdb_name_table[i] &&
127			    strcmp(kdb_name_table[i], knt1) == 0)
128				break;
129		}
130		if (i >= ARRAY_SIZE(kdb_name_table)) {
131			debug_kfree(kdb_name_table[0]);
132			memcpy(kdb_name_table, kdb_name_table+1,
133			       sizeof(kdb_name_table[0]) *
134			       (ARRAY_SIZE(kdb_name_table)-1));
135		} else {
136			debug_kfree(knt1);
137			knt1 = kdb_name_table[i];
138			memcpy(kdb_name_table+i, kdb_name_table+i+1,
139			       sizeof(kdb_name_table[0]) *
140			       (ARRAY_SIZE(kdb_name_table)-i-1));
141		}
142		i = ARRAY_SIZE(kdb_name_table) - 1;
143		kdb_name_table[i] = knt1;
144		symtab->sym_name = kdb_name_table[i];
145		knt1 = NULL;
146	}
147
148	if (symtab->mod_name == NULL)
149		symtab->mod_name = "kernel";
150	if (KDB_DEBUG(AR))
151		kdb_printf("kdbnearsym: returns %d symtab->sym_start=0x%lx, "
152		   "symtab->mod_name=%p, symtab->sym_name=%p (%s)\n", ret,
153		   symtab->sym_start, symtab->mod_name, symtab->sym_name,
154		   symtab->sym_name);
155
156out:
157	debug_kfree(knt1);
158	return ret;
159}
160
161void kdbnearsym_cleanup(void)
162{
163	int i;
164	for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) {
165		if (kdb_name_table[i]) {
166			debug_kfree(kdb_name_table[i]);
167			kdb_name_table[i] = NULL;
168		}
169	}
170}
171
172static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1];
173
174/*
175 * kallsyms_symbol_complete
176 *
177 * Parameters:
178 *	prefix_name	prefix of a symbol name to lookup
179 *	max_len		maximum length that can be returned
180 * Returns:
181 *	Number of symbols which match the given prefix.
182 * Notes:
183 *	prefix_name is changed to contain the longest unique prefix that
184 *	starts with this prefix (tab completion).
185 */
186int kallsyms_symbol_complete(char *prefix_name, int max_len)
187{
188	loff_t pos = 0;
189	int prefix_len = strlen(prefix_name), prev_len = 0;
190	int i, number = 0;
191	const char *name;
192
193	while ((name = kdb_walk_kallsyms(&pos))) {
194		if (strncmp(name, prefix_name, prefix_len) == 0) {
195			strcpy(ks_namebuf, name);
196			/* Work out the longest name that matches the prefix */
197			if (++number == 1) {
198				prev_len = min_t(int, max_len-1,
199						 strlen(ks_namebuf));
200				memcpy(ks_namebuf_prev, ks_namebuf, prev_len);
201				ks_namebuf_prev[prev_len] = '\0';
202				continue;
203			}
204			for (i = 0; i < prev_len; i++) {
205				if (ks_namebuf[i] != ks_namebuf_prev[i]) {
206					prev_len = i;
207					ks_namebuf_prev[i] = '\0';
208					break;
209				}
210			}
211		}
212	}
213	if (prev_len > prefix_len)
214		memcpy(prefix_name, ks_namebuf_prev, prev_len+1);
215	return number;
216}
217
218/*
219 * kallsyms_symbol_next
220 *
221 * Parameters:
222 *	prefix_name	prefix of a symbol name to lookup
223 *	flag	0 means search from the head, 1 means continue search.
224 * Returns:
225 *	1 if a symbol matches the given prefix.
226 *	0 if no string found
227 */
228int kallsyms_symbol_next(char *prefix_name, int flag)
229{
230	int prefix_len = strlen(prefix_name);
231	static loff_t pos;
232	const char *name;
233
234	if (!flag)
235		pos = 0;
236
237	while ((name = kdb_walk_kallsyms(&pos))) {
238		if (strncmp(name, prefix_name, prefix_len) == 0) {
239			strncpy(prefix_name, name, strlen(name)+1);
240			return 1;
241		}
242	}
243	return 0;
244}
245
246/*
247 * kdb_symbol_print - Standard method for printing a symbol name and offset.
248 * Inputs:
249 *	addr	Address to be printed.
250 *	symtab	Address of symbol data, if NULL this routine does its
251 *		own lookup.
252 *	punc	Punctuation for string, bit field.
253 * Remarks:
254 *	The string and its punctuation is only printed if the address
255 *	is inside the kernel, except that the value is always printed
256 *	when requested.
257 */
258void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p,
259		      unsigned int punc)
260{
261	kdb_symtab_t symtab, *symtab_p2;
262	if (symtab_p) {
263		symtab_p2 = (kdb_symtab_t *)symtab_p;
264	} else {
265		symtab_p2 = &symtab;
266		kdbnearsym(addr, symtab_p2);
267	}
268	if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE)))
269		return;
270	if (punc & KDB_SP_SPACEB)
271		kdb_printf(" ");
272	if (punc & KDB_SP_VALUE)
273		kdb_printf(kdb_machreg_fmt0, addr);
274	if (symtab_p2->sym_name) {
275		if (punc & KDB_SP_VALUE)
276			kdb_printf(" ");
277		if (punc & KDB_SP_PAREN)
278			kdb_printf("(");
279		if (strcmp(symtab_p2->mod_name, "kernel"))
280			kdb_printf("[%s]", symtab_p2->mod_name);
281		kdb_printf("%s", symtab_p2->sym_name);
282		if (addr != symtab_p2->sym_start)
283			kdb_printf("+0x%lx", addr - symtab_p2->sym_start);
284		if (punc & KDB_SP_SYMSIZE)
285			kdb_printf("/0x%lx",
286				   symtab_p2->sym_end - symtab_p2->sym_start);
287		if (punc & KDB_SP_PAREN)
288			kdb_printf(")");
289	}
290	if (punc & KDB_SP_SPACEA)
291		kdb_printf(" ");
292	if (punc & KDB_SP_NEWLINE)
293		kdb_printf("\n");
294}
295
296/*
297 * kdb_strdup - kdb equivalent of strdup, for disasm code.
298 * Inputs:
299 *	str	The string to duplicate.
300 *	type	Flags to kmalloc for the new string.
301 * Returns:
302 *	Address of the new string, NULL if storage could not be allocated.
303 * Remarks:
304 *	This is not in lib/string.c because it uses kmalloc which is not
305 *	available when string.o is used in boot loaders.
306 */
307char *kdb_strdup(const char *str, gfp_t type)
308{
309	int n = strlen(str)+1;
310	char *s = kmalloc(n, type);
311	if (!s)
312		return NULL;
313	return strcpy(s, str);
314}
315
316/*
317 * kdb_getarea_size - Read an area of data.  The kdb equivalent of
318 *	copy_from_user, with kdb messages for invalid addresses.
319 * Inputs:
320 *	res	Pointer to the area to receive the result.
321 *	addr	Address of the area to copy.
322 *	size	Size of the area.
323 * Returns:
324 *	0 for success, < 0 for error.
325 */
326int kdb_getarea_size(void *res, unsigned long addr, size_t size)
327{
328	int ret = probe_kernel_read((char *)res, (char *)addr, size);
329	if (ret) {
330		if (!KDB_STATE(SUPPRESS)) {
331			kdb_printf("kdb_getarea: Bad address 0x%lx\n", addr);
332			KDB_STATE_SET(SUPPRESS);
333		}
334		ret = KDB_BADADDR;
335	} else {
336		KDB_STATE_CLEAR(SUPPRESS);
337	}
338	return ret;
339}
340
341/*
342 * kdb_putarea_size - Write an area of data.  The kdb equivalent of
343 *	copy_to_user, with kdb messages for invalid addresses.
344 * Inputs:
345 *	addr	Address of the area to write to.
346 *	res	Pointer to the area holding the data.
347 *	size	Size of the area.
348 * Returns:
349 *	0 for success, < 0 for error.
350 */
351int kdb_putarea_size(unsigned long addr, void *res, size_t size)
352{
353	int ret = probe_kernel_read((char *)addr, (char *)res, size);
354	if (ret) {
355		if (!KDB_STATE(SUPPRESS)) {
356			kdb_printf("kdb_putarea: Bad address 0x%lx\n", addr);
357			KDB_STATE_SET(SUPPRESS);
358		}
359		ret = KDB_BADADDR;
360	} else {
361		KDB_STATE_CLEAR(SUPPRESS);
362	}
363	return ret;
364}
365
366/*
367 * kdb_getphys - Read data from a physical address. Validate the
368 * 	address is in range, use kmap_atomic() to get data
369 * 	similar to kdb_getarea() - but for phys addresses
370 * Inputs:
371 * 	res	Pointer to the word to receive the result
372 * 	addr	Physical address of the area to copy
373 * 	size	Size of the area
374 * Returns:
375 *	0 for success, < 0 for error.
376 */
377static int kdb_getphys(void *res, unsigned long addr, size_t size)
378{
379	unsigned long pfn;
380	void *vaddr;
381	struct page *page;
382
383	pfn = (addr >> PAGE_SHIFT);
384	if (!pfn_valid(pfn))
385		return 1;
386	page = pfn_to_page(pfn);
387	vaddr = kmap_atomic(page);
388	memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size);
389	kunmap_atomic(vaddr);
390
391	return 0;
392}
393
394/*
395 * kdb_getphysword
396 * Inputs:
397 *	word	Pointer to the word to receive the result.
398 *	addr	Address of the area to copy.
399 *	size	Size of the area.
400 * Returns:
401 *	0 for success, < 0 for error.
402 */
403int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size)
404{
405	int diag;
406	__u8  w1;
407	__u16 w2;
408	__u32 w4;
409	__u64 w8;
410	*word = 0;	/* Default value if addr or size is invalid */
411
412	switch (size) {
413	case 1:
414		diag = kdb_getphys(&w1, addr, sizeof(w1));
415		if (!diag)
416			*word = w1;
417		break;
418	case 2:
419		diag = kdb_getphys(&w2, addr, sizeof(w2));
420		if (!diag)
421			*word = w2;
422		break;
423	case 4:
424		diag = kdb_getphys(&w4, addr, sizeof(w4));
425		if (!diag)
426			*word = w4;
427		break;
428	case 8:
429		if (size <= sizeof(*word)) {
430			diag = kdb_getphys(&w8, addr, sizeof(w8));
431			if (!diag)
432				*word = w8;
433			break;
434		}
435		/* drop through */
436	default:
437		diag = KDB_BADWIDTH;
438		kdb_printf("kdb_getphysword: bad width %ld\n", (long) size);
439	}
440	return diag;
441}
442
443/*
444 * kdb_getword - Read a binary value.  Unlike kdb_getarea, this treats
445 *	data as numbers.
446 * Inputs:
447 *	word	Pointer to the word to receive the result.
448 *	addr	Address of the area to copy.
449 *	size	Size of the area.
450 * Returns:
451 *	0 for success, < 0 for error.
452 */
453int kdb_getword(unsigned long *word, unsigned long addr, size_t size)
454{
455	int diag;
456	__u8  w1;
457	__u16 w2;
458	__u32 w4;
459	__u64 w8;
460	*word = 0;	/* Default value if addr or size is invalid */
461	switch (size) {
462	case 1:
463		diag = kdb_getarea(w1, addr);
464		if (!diag)
465			*word = w1;
466		break;
467	case 2:
468		diag = kdb_getarea(w2, addr);
469		if (!diag)
470			*word = w2;
471		break;
472	case 4:
473		diag = kdb_getarea(w4, addr);
474		if (!diag)
475			*word = w4;
476		break;
477	case 8:
478		if (size <= sizeof(*word)) {
479			diag = kdb_getarea(w8, addr);
480			if (!diag)
481				*word = w8;
482			break;
483		}
484		/* drop through */
485	default:
486		diag = KDB_BADWIDTH;
487		kdb_printf("kdb_getword: bad width %ld\n", (long) size);
488	}
489	return diag;
490}
491
492/*
493 * kdb_putword - Write a binary value.  Unlike kdb_putarea, this
494 *	treats data as numbers.
495 * Inputs:
496 *	addr	Address of the area to write to..
497 *	word	The value to set.
498 *	size	Size of the area.
499 * Returns:
500 *	0 for success, < 0 for error.
501 */
502int kdb_putword(unsigned long addr, unsigned long word, size_t size)
503{
504	int diag;
505	__u8  w1;
506	__u16 w2;
507	__u32 w4;
508	__u64 w8;
509	switch (size) {
510	case 1:
511		w1 = word;
512		diag = kdb_putarea(addr, w1);
513		break;
514	case 2:
515		w2 = word;
516		diag = kdb_putarea(addr, w2);
517		break;
518	case 4:
519		w4 = word;
520		diag = kdb_putarea(addr, w4);
521		break;
522	case 8:
523		if (size <= sizeof(word)) {
524			w8 = word;
525			diag = kdb_putarea(addr, w8);
526			break;
527		}
528		/* drop through */
529	default:
530		diag = KDB_BADWIDTH;
531		kdb_printf("kdb_putword: bad width %ld\n", (long) size);
532	}
533	return diag;
534}
535
536/*
537 * kdb_task_state_string - Convert a string containing any of the
538 *	letters DRSTCZEUIMA to a mask for the process state field and
539 *	return the value.  If no argument is supplied, return the mask
540 *	that corresponds to environment variable PS, DRSTCZEU by
541 *	default.
542 * Inputs:
543 *	s	String to convert
544 * Returns:
545 *	Mask for process state.
546 * Notes:
547 *	The mask folds data from several sources into a single long value, so
548 *	be careful not to overlap the bits.  TASK_* bits are in the LSB,
549 *	special cases like UNRUNNABLE are in the MSB.  As of 2.6.10-rc1 there
550 *	is no overlap between TASK_* and EXIT_* but that may not always be
551 *	true, so EXIT_* bits are shifted left 16 bits before being stored in
552 *	the mask.
553 */
554
555/* unrunnable is < 0 */
556#define UNRUNNABLE	(1UL << (8*sizeof(unsigned long) - 1))
557#define RUNNING		(1UL << (8*sizeof(unsigned long) - 2))
558#define IDLE		(1UL << (8*sizeof(unsigned long) - 3))
559#define DAEMON		(1UL << (8*sizeof(unsigned long) - 4))
560
561unsigned long kdb_task_state_string(const char *s)
562{
563	long res = 0;
564	if (!s) {
565		s = kdbgetenv("PS");
566		if (!s)
567			s = "DRSTCZEU";	/* default value for ps */
568	}
569	while (*s) {
570		switch (*s) {
571		case 'D':
572			res |= TASK_UNINTERRUPTIBLE;
573			break;
574		case 'R':
575			res |= RUNNING;
576			break;
577		case 'S':
578			res |= TASK_INTERRUPTIBLE;
579			break;
580		case 'T':
581			res |= TASK_STOPPED;
582			break;
583		case 'C':
584			res |= TASK_TRACED;
585			break;
586		case 'Z':
587			res |= EXIT_ZOMBIE << 16;
588			break;
589		case 'E':
590			res |= EXIT_DEAD << 16;
591			break;
592		case 'U':
593			res |= UNRUNNABLE;
594			break;
595		case 'I':
596			res |= IDLE;
597			break;
598		case 'M':
599			res |= DAEMON;
600			break;
601		case 'A':
602			res = ~0UL;
603			break;
604		default:
605			  kdb_printf("%s: unknown flag '%c' ignored\n",
606				     __func__, *s);
607			  break;
608		}
609		++s;
610	}
611	return res;
612}
613
614/*
615 * kdb_task_state_char - Return the character that represents the task state.
616 * Inputs:
617 *	p	struct task for the process
618 * Returns:
619 *	One character to represent the task state.
620 */
621char kdb_task_state_char (const struct task_struct *p)
622{
623	int cpu;
624	char state;
625	unsigned long tmp;
626
627	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
628		return 'E';
629
630	cpu = kdb_process_cpu(p);
631	state = (p->state == 0) ? 'R' :
632		(p->state < 0) ? 'U' :
633		(p->state & TASK_UNINTERRUPTIBLE) ? 'D' :
634		(p->state & TASK_STOPPED) ? 'T' :
635		(p->state & TASK_TRACED) ? 'C' :
636		(p->exit_state & EXIT_ZOMBIE) ? 'Z' :
637		(p->exit_state & EXIT_DEAD) ? 'E' :
638		(p->state & TASK_INTERRUPTIBLE) ? 'S' : '?';
639	if (is_idle_task(p)) {
640		/* Idle task.  Is it really idle, apart from the kdb
641		 * interrupt? */
642		if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) {
643			if (cpu != kdb_initial_cpu)
644				state = 'I';	/* idle task */
645		}
646	} else if (!p->mm && state == 'S') {
647		state = 'M';	/* sleeping system daemon */
648	}
649	return state;
650}
651
652/*
653 * kdb_task_state - Return true if a process has the desired state
654 *	given by the mask.
655 * Inputs:
656 *	p	struct task for the process
657 *	mask	mask from kdb_task_state_string to select processes
658 * Returns:
659 *	True if the process matches at least one criteria defined by the mask.
660 */
661unsigned long kdb_task_state(const struct task_struct *p, unsigned long mask)
662{
663	char state[] = { kdb_task_state_char(p), '\0' };
664	return (mask & kdb_task_state_string(state)) != 0;
665}
666
667/*
668 * kdb_print_nameval - Print a name and its value, converting the
669 *	value to a symbol lookup if possible.
670 * Inputs:
671 *	name	field name to print
672 *	val	value of field
673 */
674void kdb_print_nameval(const char *name, unsigned long val)
675{
676	kdb_symtab_t symtab;
677	kdb_printf("  %-11.11s ", name);
678	if (kdbnearsym(val, &symtab))
679		kdb_symbol_print(val, &symtab,
680				 KDB_SP_VALUE|KDB_SP_SYMSIZE|KDB_SP_NEWLINE);
681	else
682		kdb_printf("0x%lx\n", val);
683}
684
685/* Last ditch allocator for debugging, so we can still debug even when
686 * the GFP_ATOMIC pool has been exhausted.  The algorithms are tuned
687 * for space usage, not for speed.  One smallish memory pool, the free
688 * chain is always in ascending address order to allow coalescing,
689 * allocations are done in brute force best fit.
690 */
691
692struct debug_alloc_header {
693	u32 next;	/* offset of next header from start of pool */
694	u32 size;
695	void *caller;
696};
697
698/* The memory returned by this allocator must be aligned, which means
699 * so must the header size.  Do not assume that sizeof(struct
700 * debug_alloc_header) is a multiple of the alignment, explicitly
701 * calculate the overhead of this header, including the alignment.
702 * The rest of this code must not use sizeof() on any header or
703 * pointer to a header.
704 */
705#define dah_align 8
706#define dah_overhead ALIGN(sizeof(struct debug_alloc_header), dah_align)
707
708static u64 debug_alloc_pool_aligned[256*1024/dah_align];	/* 256K pool */
709static char *debug_alloc_pool = (char *)debug_alloc_pool_aligned;
710static u32 dah_first, dah_first_call = 1, dah_used, dah_used_max;
711
712/* Locking is awkward.  The debug code is called from all contexts,
713 * including non maskable interrupts.  A normal spinlock is not safe
714 * in NMI context.  Try to get the debug allocator lock, if it cannot
715 * be obtained after a second then give up.  If the lock could not be
716 * previously obtained on this cpu then only try once.
717 *
718 * sparse has no annotation for "this function _sometimes_ acquires a
719 * lock", so fudge the acquire/release notation.
720 */
721static DEFINE_SPINLOCK(dap_lock);
722static int get_dap_lock(void)
723	__acquires(dap_lock)
724{
725	static int dap_locked = -1;
726	int count;
727	if (dap_locked == smp_processor_id())
728		count = 1;
729	else
730		count = 1000;
731	while (1) {
732		if (spin_trylock(&dap_lock)) {
733			dap_locked = -1;
734			return 1;
735		}
736		if (!count--)
737			break;
738		udelay(1000);
739	}
740	dap_locked = smp_processor_id();
741	__acquire(dap_lock);
742	return 0;
743}
744
745void *debug_kmalloc(size_t size, gfp_t flags)
746{
747	unsigned int rem, h_offset;
748	struct debug_alloc_header *best, *bestprev, *prev, *h;
749	void *p = NULL;
750	if (!get_dap_lock()) {
751		__release(dap_lock);	/* we never actually got it */
752		return NULL;
753	}
754	h = (struct debug_alloc_header *)(debug_alloc_pool + dah_first);
755	if (dah_first_call) {
756		h->size = sizeof(debug_alloc_pool_aligned) - dah_overhead;
757		dah_first_call = 0;
758	}
759	size = ALIGN(size, dah_align);
760	prev = best = bestprev = NULL;
761	while (1) {
762		if (h->size >= size && (!best || h->size < best->size)) {
763			best = h;
764			bestprev = prev;
765			if (h->size == size)
766				break;
767		}
768		if (!h->next)
769			break;
770		prev = h;
771		h = (struct debug_alloc_header *)(debug_alloc_pool + h->next);
772	}
773	if (!best)
774		goto out;
775	rem = best->size - size;
776	/* The pool must always contain at least one header */
777	if (best->next == 0 && bestprev == NULL && rem < dah_overhead)
778		goto out;
779	if (rem >= dah_overhead) {
780		best->size = size;
781		h_offset = ((char *)best - debug_alloc_pool) +
782			   dah_overhead + best->size;
783		h = (struct debug_alloc_header *)(debug_alloc_pool + h_offset);
784		h->size = rem - dah_overhead;
785		h->next = best->next;
786	} else
787		h_offset = best->next;
788	best->caller = __builtin_return_address(0);
789	dah_used += best->size;
790	dah_used_max = max(dah_used, dah_used_max);
791	if (bestprev)
792		bestprev->next = h_offset;
793	else
794		dah_first = h_offset;
795	p = (char *)best + dah_overhead;
796	memset(p, POISON_INUSE, best->size - 1);
797	*((char *)p + best->size - 1) = POISON_END;
798out:
799	spin_unlock(&dap_lock);
800	return p;
801}
802
803void debug_kfree(void *p)
804{
805	struct debug_alloc_header *h;
806	unsigned int h_offset;
807	if (!p)
808		return;
809	if ((char *)p < debug_alloc_pool ||
810	    (char *)p >= debug_alloc_pool + sizeof(debug_alloc_pool_aligned)) {
811		kfree(p);
812		return;
813	}
814	if (!get_dap_lock()) {
815		__release(dap_lock);	/* we never actually got it */
816		return;		/* memory leak, cannot be helped */
817	}
818	h = (struct debug_alloc_header *)((char *)p - dah_overhead);
819	memset(p, POISON_FREE, h->size - 1);
820	*((char *)p + h->size - 1) = POISON_END;
821	h->caller = NULL;
822	dah_used -= h->size;
823	h_offset = (char *)h - debug_alloc_pool;
824	if (h_offset < dah_first) {
825		h->next = dah_first;
826		dah_first = h_offset;
827	} else {
828		struct debug_alloc_header *prev;
829		unsigned int prev_offset;
830		prev = (struct debug_alloc_header *)(debug_alloc_pool +
831						     dah_first);
832		while (1) {
833			if (!prev->next || prev->next > h_offset)
834				break;
835			prev = (struct debug_alloc_header *)
836				(debug_alloc_pool + prev->next);
837		}
838		prev_offset = (char *)prev - debug_alloc_pool;
839		if (prev_offset + dah_overhead + prev->size == h_offset) {
840			prev->size += dah_overhead + h->size;
841			memset(h, POISON_FREE, dah_overhead - 1);
842			*((char *)h + dah_overhead - 1) = POISON_END;
843			h = prev;
844			h_offset = prev_offset;
845		} else {
846			h->next = prev->next;
847			prev->next = h_offset;
848		}
849	}
850	if (h_offset + dah_overhead + h->size == h->next) {
851		struct debug_alloc_header *next;
852		next = (struct debug_alloc_header *)
853			(debug_alloc_pool + h->next);
854		h->size += dah_overhead + next->size;
855		h->next = next->next;
856		memset(next, POISON_FREE, dah_overhead - 1);
857		*((char *)next + dah_overhead - 1) = POISON_END;
858	}
859	spin_unlock(&dap_lock);
860}
861
862void debug_kusage(void)
863{
864	struct debug_alloc_header *h_free, *h_used;
865#ifdef	CONFIG_IA64
866	/* FIXME: using dah for ia64 unwind always results in a memory leak.
867	 * Fix that memory leak first, then set debug_kusage_one_time = 1 for
868	 * all architectures.
869	 */
870	static int debug_kusage_one_time;
871#else
872	static int debug_kusage_one_time = 1;
873#endif
874	if (!get_dap_lock()) {
875		__release(dap_lock);	/* we never actually got it */
876		return;
877	}
878	h_free = (struct debug_alloc_header *)(debug_alloc_pool + dah_first);
879	if (dah_first == 0 &&
880	    (h_free->size == sizeof(debug_alloc_pool_aligned) - dah_overhead ||
881	     dah_first_call))
882		goto out;
883	if (!debug_kusage_one_time)
884		goto out;
885	debug_kusage_one_time = 0;
886	kdb_printf("%s: debug_kmalloc memory leak dah_first %d\n",
887		   __func__, dah_first);
888	if (dah_first) {
889		h_used = (struct debug_alloc_header *)debug_alloc_pool;
890		kdb_printf("%s: h_used %p size %d\n", __func__, h_used,
891			   h_used->size);
892	}
893	do {
894		h_used = (struct debug_alloc_header *)
895			  ((char *)h_free + dah_overhead + h_free->size);
896		kdb_printf("%s: h_used %p size %d caller %p\n",
897			   __func__, h_used, h_used->size, h_used->caller);
898		h_free = (struct debug_alloc_header *)
899			  (debug_alloc_pool + h_free->next);
900	} while (h_free->next);
901	h_used = (struct debug_alloc_header *)
902		  ((char *)h_free + dah_overhead + h_free->size);
903	if ((char *)h_used - debug_alloc_pool !=
904	    sizeof(debug_alloc_pool_aligned))
905		kdb_printf("%s: h_used %p size %d caller %p\n",
906			   __func__, h_used, h_used->size, h_used->caller);
907out:
908	spin_unlock(&dap_lock);
909}
910
911/* Maintain a small stack of kdb_flags to allow recursion without disturbing
912 * the global kdb state.
913 */
914
915static int kdb_flags_stack[4], kdb_flags_index;
916
917void kdb_save_flags(void)
918{
919	BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack));
920	kdb_flags_stack[kdb_flags_index++] = kdb_flags;
921}
922
923void kdb_restore_flags(void)
924{
925	BUG_ON(kdb_flags_index <= 0);
926	kdb_flags = kdb_flags_stack[--kdb_flags_index];
927}
928