1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 *	Jay Schulist <jschlst@samba.org>
12 *	Alexei Starovoitov <ast@plumgrid.com>
13 *	Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23
24#include <linux/filter.h>
25#include <linux/skbuff.h>
26#include <linux/vmalloc.h>
27#include <linux/random.h>
28#include <linux/moduleloader.h>
29#include <asm/unaligned.h>
30#include <linux/bpf.h>
31
32/* Registers */
33#define BPF_R0	regs[BPF_REG_0]
34#define BPF_R1	regs[BPF_REG_1]
35#define BPF_R2	regs[BPF_REG_2]
36#define BPF_R3	regs[BPF_REG_3]
37#define BPF_R4	regs[BPF_REG_4]
38#define BPF_R5	regs[BPF_REG_5]
39#define BPF_R6	regs[BPF_REG_6]
40#define BPF_R7	regs[BPF_REG_7]
41#define BPF_R8	regs[BPF_REG_8]
42#define BPF_R9	regs[BPF_REG_9]
43#define BPF_R10	regs[BPF_REG_10]
44
45/* Named registers */
46#define DST	regs[insn->dst_reg]
47#define SRC	regs[insn->src_reg]
48#define FP	regs[BPF_REG_FP]
49#define ARG1	regs[BPF_REG_ARG1]
50#define CTX	regs[BPF_REG_CTX]
51#define IMM	insn->imm
52
53/* No hurry in this branch
54 *
55 * Exported for the bpf jit load helper.
56 */
57void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
58{
59	u8 *ptr = NULL;
60
61	if (k >= SKF_NET_OFF)
62		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
63	else if (k >= SKF_LL_OFF)
64		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
65	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
66		return ptr;
67
68	return NULL;
69}
70
71struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
72{
73	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
74			  gfp_extra_flags;
75	struct bpf_prog_aux *aux;
76	struct bpf_prog *fp;
77
78	size = round_up(size, PAGE_SIZE);
79	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
80	if (fp == NULL)
81		return NULL;
82
83	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
84	if (aux == NULL) {
85		vfree(fp);
86		return NULL;
87	}
88
89	fp->pages = size / PAGE_SIZE;
90	fp->aux = aux;
91
92	return fp;
93}
94EXPORT_SYMBOL_GPL(bpf_prog_alloc);
95
96struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
97				  gfp_t gfp_extra_flags)
98{
99	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
100			  gfp_extra_flags;
101	struct bpf_prog *fp;
102
103	BUG_ON(fp_old == NULL);
104
105	size = round_up(size, PAGE_SIZE);
106	if (size <= fp_old->pages * PAGE_SIZE)
107		return fp_old;
108
109	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
110	if (fp != NULL) {
111		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
112		fp->pages = size / PAGE_SIZE;
113
114		/* We keep fp->aux from fp_old around in the new
115		 * reallocated structure.
116		 */
117		fp_old->aux = NULL;
118		__bpf_prog_free(fp_old);
119	}
120
121	return fp;
122}
123EXPORT_SYMBOL_GPL(bpf_prog_realloc);
124
125void __bpf_prog_free(struct bpf_prog *fp)
126{
127	kfree(fp->aux);
128	vfree(fp);
129}
130EXPORT_SYMBOL_GPL(__bpf_prog_free);
131
132#ifdef CONFIG_BPF_JIT
133struct bpf_binary_header *
134bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
135		     unsigned int alignment,
136		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
137{
138	struct bpf_binary_header *hdr;
139	unsigned int size, hole, start;
140
141	/* Most of BPF filters are really small, but if some of them
142	 * fill a page, allow at least 128 extra bytes to insert a
143	 * random section of illegal instructions.
144	 */
145	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
146	hdr = module_alloc(size);
147	if (hdr == NULL)
148		return NULL;
149
150	/* Fill space with illegal/arch-dep instructions. */
151	bpf_fill_ill_insns(hdr, size);
152
153	hdr->pages = size / PAGE_SIZE;
154	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
155		     PAGE_SIZE - sizeof(*hdr));
156	start = (prandom_u32() % hole) & ~(alignment - 1);
157
158	/* Leave a random number of instructions before BPF code. */
159	*image_ptr = &hdr->image[start];
160
161	return hdr;
162}
163
164void bpf_jit_binary_free(struct bpf_binary_header *hdr)
165{
166	module_memfree(hdr);
167}
168#endif /* CONFIG_BPF_JIT */
169
170/* Base function for offset calculation. Needs to go into .text section,
171 * therefore keeping it non-static as well; will also be used by JITs
172 * anyway later on, so do not let the compiler omit it.
173 */
174noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
175{
176	return 0;
177}
178
179/**
180 *	__bpf_prog_run - run eBPF program on a given context
181 *	@ctx: is the data we are operating on
182 *	@insn: is the array of eBPF instructions
183 *
184 * Decode and execute eBPF instructions.
185 */
186static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
187{
188	u64 stack[MAX_BPF_STACK / sizeof(u64)];
189	u64 regs[MAX_BPF_REG], tmp;
190	static const void *jumptable[256] = {
191		[0 ... 255] = &&default_label,
192		/* Now overwrite non-defaults ... */
193		/* 32 bit ALU operations */
194		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
195		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
196		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
197		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
198		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
199		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
200		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
201		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
202		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
203		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
204		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
205		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
206		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
207		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
208		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
209		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
210		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
211		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
212		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
213		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
214		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
215		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
216		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
217		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
218		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
219		/* 64 bit ALU operations */
220		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
221		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
222		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
223		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
224		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
225		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
226		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
227		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
228		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
229		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
230		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
231		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
232		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
233		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
234		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
235		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
236		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
237		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
238		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
239		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
240		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
241		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
242		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
243		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
244		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
245		/* Call instruction */
246		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
247		/* Jumps */
248		[BPF_JMP | BPF_JA] = &&JMP_JA,
249		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
250		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
251		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
252		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
253		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
254		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
255		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
256		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
257		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
258		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
259		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
260		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
261		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
262		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
263		/* Program return */
264		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
265		/* Store instructions */
266		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
267		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
268		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
269		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
270		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
271		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
272		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
273		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
274		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
275		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
276		/* Load instructions */
277		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
278		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
279		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
280		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
281		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
282		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
283		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
284		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
285		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
286		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
287		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
288	};
289	void *ptr;
290	int off;
291
292#define CONT	 ({ insn++; goto select_insn; })
293#define CONT_JMP ({ insn++; goto select_insn; })
294
295	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
296	ARG1 = (u64) (unsigned long) ctx;
297
298	/* Registers used in classic BPF programs need to be reset first. */
299	regs[BPF_REG_A] = 0;
300	regs[BPF_REG_X] = 0;
301
302select_insn:
303	goto *jumptable[insn->code];
304
305	/* ALU */
306#define ALU(OPCODE, OP)			\
307	ALU64_##OPCODE##_X:		\
308		DST = DST OP SRC;	\
309		CONT;			\
310	ALU_##OPCODE##_X:		\
311		DST = (u32) DST OP (u32) SRC;	\
312		CONT;			\
313	ALU64_##OPCODE##_K:		\
314		DST = DST OP IMM;		\
315		CONT;			\
316	ALU_##OPCODE##_K:		\
317		DST = (u32) DST OP (u32) IMM;	\
318		CONT;
319
320	ALU(ADD,  +)
321	ALU(SUB,  -)
322	ALU(AND,  &)
323	ALU(OR,   |)
324	ALU(LSH, <<)
325	ALU(RSH, >>)
326	ALU(XOR,  ^)
327	ALU(MUL,  *)
328#undef ALU
329	ALU_NEG:
330		DST = (u32) -DST;
331		CONT;
332	ALU64_NEG:
333		DST = -DST;
334		CONT;
335	ALU_MOV_X:
336		DST = (u32) SRC;
337		CONT;
338	ALU_MOV_K:
339		DST = (u32) IMM;
340		CONT;
341	ALU64_MOV_X:
342		DST = SRC;
343		CONT;
344	ALU64_MOV_K:
345		DST = IMM;
346		CONT;
347	LD_IMM_DW:
348		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
349		insn++;
350		CONT;
351	ALU64_ARSH_X:
352		(*(s64 *) &DST) >>= SRC;
353		CONT;
354	ALU64_ARSH_K:
355		(*(s64 *) &DST) >>= IMM;
356		CONT;
357	ALU64_MOD_X:
358		if (unlikely(SRC == 0))
359			return 0;
360		div64_u64_rem(DST, SRC, &tmp);
361		DST = tmp;
362		CONT;
363	ALU_MOD_X:
364		if (unlikely(SRC == 0))
365			return 0;
366		tmp = (u32) DST;
367		DST = do_div(tmp, (u32) SRC);
368		CONT;
369	ALU64_MOD_K:
370		div64_u64_rem(DST, IMM, &tmp);
371		DST = tmp;
372		CONT;
373	ALU_MOD_K:
374		tmp = (u32) DST;
375		DST = do_div(tmp, (u32) IMM);
376		CONT;
377	ALU64_DIV_X:
378		if (unlikely(SRC == 0))
379			return 0;
380		DST = div64_u64(DST, SRC);
381		CONT;
382	ALU_DIV_X:
383		if (unlikely(SRC == 0))
384			return 0;
385		tmp = (u32) DST;
386		do_div(tmp, (u32) SRC);
387		DST = (u32) tmp;
388		CONT;
389	ALU64_DIV_K:
390		DST = div64_u64(DST, IMM);
391		CONT;
392	ALU_DIV_K:
393		tmp = (u32) DST;
394		do_div(tmp, (u32) IMM);
395		DST = (u32) tmp;
396		CONT;
397	ALU_END_TO_BE:
398		switch (IMM) {
399		case 16:
400			DST = (__force u16) cpu_to_be16(DST);
401			break;
402		case 32:
403			DST = (__force u32) cpu_to_be32(DST);
404			break;
405		case 64:
406			DST = (__force u64) cpu_to_be64(DST);
407			break;
408		}
409		CONT;
410	ALU_END_TO_LE:
411		switch (IMM) {
412		case 16:
413			DST = (__force u16) cpu_to_le16(DST);
414			break;
415		case 32:
416			DST = (__force u32) cpu_to_le32(DST);
417			break;
418		case 64:
419			DST = (__force u64) cpu_to_le64(DST);
420			break;
421		}
422		CONT;
423
424	/* CALL */
425	JMP_CALL:
426		/* Function call scratches BPF_R1-BPF_R5 registers,
427		 * preserves BPF_R6-BPF_R9, and stores return value
428		 * into BPF_R0.
429		 */
430		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
431						       BPF_R4, BPF_R5);
432		CONT;
433
434	/* JMP */
435	JMP_JA:
436		insn += insn->off;
437		CONT;
438	JMP_JEQ_X:
439		if (DST == SRC) {
440			insn += insn->off;
441			CONT_JMP;
442		}
443		CONT;
444	JMP_JEQ_K:
445		if (DST == IMM) {
446			insn += insn->off;
447			CONT_JMP;
448		}
449		CONT;
450	JMP_JNE_X:
451		if (DST != SRC) {
452			insn += insn->off;
453			CONT_JMP;
454		}
455		CONT;
456	JMP_JNE_K:
457		if (DST != IMM) {
458			insn += insn->off;
459			CONT_JMP;
460		}
461		CONT;
462	JMP_JGT_X:
463		if (DST > SRC) {
464			insn += insn->off;
465			CONT_JMP;
466		}
467		CONT;
468	JMP_JGT_K:
469		if (DST > IMM) {
470			insn += insn->off;
471			CONT_JMP;
472		}
473		CONT;
474	JMP_JGE_X:
475		if (DST >= SRC) {
476			insn += insn->off;
477			CONT_JMP;
478		}
479		CONT;
480	JMP_JGE_K:
481		if (DST >= IMM) {
482			insn += insn->off;
483			CONT_JMP;
484		}
485		CONT;
486	JMP_JSGT_X:
487		if (((s64) DST) > ((s64) SRC)) {
488			insn += insn->off;
489			CONT_JMP;
490		}
491		CONT;
492	JMP_JSGT_K:
493		if (((s64) DST) > ((s64) IMM)) {
494			insn += insn->off;
495			CONT_JMP;
496		}
497		CONT;
498	JMP_JSGE_X:
499		if (((s64) DST) >= ((s64) SRC)) {
500			insn += insn->off;
501			CONT_JMP;
502		}
503		CONT;
504	JMP_JSGE_K:
505		if (((s64) DST) >= ((s64) IMM)) {
506			insn += insn->off;
507			CONT_JMP;
508		}
509		CONT;
510	JMP_JSET_X:
511		if (DST & SRC) {
512			insn += insn->off;
513			CONT_JMP;
514		}
515		CONT;
516	JMP_JSET_K:
517		if (DST & IMM) {
518			insn += insn->off;
519			CONT_JMP;
520		}
521		CONT;
522	JMP_EXIT:
523		return BPF_R0;
524
525	/* STX and ST and LDX*/
526#define LDST(SIZEOP, SIZE)						\
527	STX_MEM_##SIZEOP:						\
528		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
529		CONT;							\
530	ST_MEM_##SIZEOP:						\
531		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
532		CONT;							\
533	LDX_MEM_##SIZEOP:						\
534		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
535		CONT;
536
537	LDST(B,   u8)
538	LDST(H,  u16)
539	LDST(W,  u32)
540	LDST(DW, u64)
541#undef LDST
542	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
543		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
544			   (DST + insn->off));
545		CONT;
546	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
547		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
548			     (DST + insn->off));
549		CONT;
550	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
551		off = IMM;
552load_word:
553		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
554		 * only appearing in the programs where ctx ==
555		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
556		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
557		 * internal BPF verifier will check that BPF_R6 ==
558		 * ctx.
559		 *
560		 * BPF_ABS and BPF_IND are wrappers of function calls,
561		 * so they scratch BPF_R1-BPF_R5 registers, preserve
562		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
563		 *
564		 * Implicit input:
565		 *   ctx == skb == BPF_R6 == CTX
566		 *
567		 * Explicit input:
568		 *   SRC == any register
569		 *   IMM == 32-bit immediate
570		 *
571		 * Output:
572		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
573		 */
574
575		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
576		if (likely(ptr != NULL)) {
577			BPF_R0 = get_unaligned_be32(ptr);
578			CONT;
579		}
580
581		return 0;
582	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
583		off = IMM;
584load_half:
585		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
586		if (likely(ptr != NULL)) {
587			BPF_R0 = get_unaligned_be16(ptr);
588			CONT;
589		}
590
591		return 0;
592	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
593		off = IMM;
594load_byte:
595		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
596		if (likely(ptr != NULL)) {
597			BPF_R0 = *(u8 *)ptr;
598			CONT;
599		}
600
601		return 0;
602	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
603		off = IMM + SRC;
604		goto load_word;
605	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
606		off = IMM + SRC;
607		goto load_half;
608	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
609		off = IMM + SRC;
610		goto load_byte;
611
612	default_label:
613		/* If we ever reach this, we have a bug somewhere. */
614		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
615		return 0;
616}
617
618void __weak bpf_int_jit_compile(struct bpf_prog *prog)
619{
620}
621
622/**
623 *	bpf_prog_select_runtime - select execution runtime for BPF program
624 *	@fp: bpf_prog populated with internal BPF program
625 *
626 * try to JIT internal BPF program, if JIT is not available select interpreter
627 * BPF program will be executed via BPF_PROG_RUN() macro
628 */
629void bpf_prog_select_runtime(struct bpf_prog *fp)
630{
631	fp->bpf_func = (void *) __bpf_prog_run;
632
633	/* Probe if internal BPF can be JITed */
634	bpf_int_jit_compile(fp);
635	/* Lock whole bpf_prog as read-only */
636	bpf_prog_lock_ro(fp);
637}
638EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
639
640static void bpf_prog_free_deferred(struct work_struct *work)
641{
642	struct bpf_prog_aux *aux;
643
644	aux = container_of(work, struct bpf_prog_aux, work);
645	bpf_jit_free(aux->prog);
646}
647
648/* Free internal BPF program */
649void bpf_prog_free(struct bpf_prog *fp)
650{
651	struct bpf_prog_aux *aux = fp->aux;
652
653	INIT_WORK(&aux->work, bpf_prog_free_deferred);
654	aux->prog = fp;
655	schedule_work(&aux->work);
656}
657EXPORT_SYMBOL_GPL(bpf_prog_free);
658
659/* Weak definitions of helper functions in case we don't have bpf syscall. */
660const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
661const struct bpf_func_proto bpf_map_update_elem_proto __weak;
662const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
663
664const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
665const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
666
667/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
668 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
669 */
670int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
671			 int len)
672{
673	return -EFAULT;
674}
675