1#include "audit.h"
2#include <linux/fsnotify_backend.h>
3#include <linux/namei.h>
4#include <linux/mount.h>
5#include <linux/kthread.h>
6#include <linux/slab.h>
7
8struct audit_tree;
9struct audit_chunk;
10
11struct audit_tree {
12	atomic_t count;
13	int goner;
14	struct audit_chunk *root;
15	struct list_head chunks;
16	struct list_head rules;
17	struct list_head list;
18	struct list_head same_root;
19	struct rcu_head head;
20	char pathname[];
21};
22
23struct audit_chunk {
24	struct list_head hash;
25	struct fsnotify_mark mark;
26	struct list_head trees;		/* with root here */
27	int dead;
28	int count;
29	atomic_long_t refs;
30	struct rcu_head head;
31	struct node {
32		struct list_head list;
33		struct audit_tree *owner;
34		unsigned index;		/* index; upper bit indicates 'will prune' */
35	} owners[];
36};
37
38static LIST_HEAD(tree_list);
39static LIST_HEAD(prune_list);
40static struct task_struct *prune_thread;
41
42/*
43 * One struct chunk is attached to each inode of interest.
44 * We replace struct chunk on tagging/untagging.
45 * Rules have pointer to struct audit_tree.
46 * Rules have struct list_head rlist forming a list of rules over
47 * the same tree.
48 * References to struct chunk are collected at audit_inode{,_child}()
49 * time and used in AUDIT_TREE rule matching.
50 * These references are dropped at the same time we are calling
51 * audit_free_names(), etc.
52 *
53 * Cyclic lists galore:
54 * tree.chunks anchors chunk.owners[].list			hash_lock
55 * tree.rules anchors rule.rlist				audit_filter_mutex
56 * chunk.trees anchors tree.same_root				hash_lock
57 * chunk.hash is a hash with middle bits of watch.inode as
58 * a hash function.						RCU, hash_lock
59 *
60 * tree is refcounted; one reference for "some rules on rules_list refer to
61 * it", one for each chunk with pointer to it.
62 *
63 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64 * of watch contributes 1 to .refs).
65 *
66 * node.index allows to get from node.list to containing chunk.
67 * MSB of that sucker is stolen to mark taggings that we might have to
68 * revert - several operations have very unpleasant cleanup logics and
69 * that makes a difference.  Some.
70 */
71
72static struct fsnotify_group *audit_tree_group;
73
74static struct audit_tree *alloc_tree(const char *s)
75{
76	struct audit_tree *tree;
77
78	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
79	if (tree) {
80		atomic_set(&tree->count, 1);
81		tree->goner = 0;
82		INIT_LIST_HEAD(&tree->chunks);
83		INIT_LIST_HEAD(&tree->rules);
84		INIT_LIST_HEAD(&tree->list);
85		INIT_LIST_HEAD(&tree->same_root);
86		tree->root = NULL;
87		strcpy(tree->pathname, s);
88	}
89	return tree;
90}
91
92static inline void get_tree(struct audit_tree *tree)
93{
94	atomic_inc(&tree->count);
95}
96
97static inline void put_tree(struct audit_tree *tree)
98{
99	if (atomic_dec_and_test(&tree->count))
100		kfree_rcu(tree, head);
101}
102
103/* to avoid bringing the entire thing in audit.h */
104const char *audit_tree_path(struct audit_tree *tree)
105{
106	return tree->pathname;
107}
108
109static void free_chunk(struct audit_chunk *chunk)
110{
111	int i;
112
113	for (i = 0; i < chunk->count; i++) {
114		if (chunk->owners[i].owner)
115			put_tree(chunk->owners[i].owner);
116	}
117	kfree(chunk);
118}
119
120void audit_put_chunk(struct audit_chunk *chunk)
121{
122	if (atomic_long_dec_and_test(&chunk->refs))
123		free_chunk(chunk);
124}
125
126static void __put_chunk(struct rcu_head *rcu)
127{
128	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129	audit_put_chunk(chunk);
130}
131
132static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133{
134	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135	call_rcu(&chunk->head, __put_chunk);
136}
137
138static struct audit_chunk *alloc_chunk(int count)
139{
140	struct audit_chunk *chunk;
141	size_t size;
142	int i;
143
144	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145	chunk = kzalloc(size, GFP_KERNEL);
146	if (!chunk)
147		return NULL;
148
149	INIT_LIST_HEAD(&chunk->hash);
150	INIT_LIST_HEAD(&chunk->trees);
151	chunk->count = count;
152	atomic_long_set(&chunk->refs, 1);
153	for (i = 0; i < count; i++) {
154		INIT_LIST_HEAD(&chunk->owners[i].list);
155		chunk->owners[i].index = i;
156	}
157	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158	chunk->mark.mask = FS_IN_IGNORED;
159	return chunk;
160}
161
162enum {HASH_SIZE = 128};
163static struct list_head chunk_hash_heads[HASH_SIZE];
164static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
165
166static inline struct list_head *chunk_hash(const struct inode *inode)
167{
168	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
169	return chunk_hash_heads + n % HASH_SIZE;
170}
171
172/* hash_lock & entry->lock is held by caller */
173static void insert_hash(struct audit_chunk *chunk)
174{
175	struct fsnotify_mark *entry = &chunk->mark;
176	struct list_head *list;
177
178	if (!entry->inode)
179		return;
180	list = chunk_hash(entry->inode);
181	list_add_rcu(&chunk->hash, list);
182}
183
184/* called under rcu_read_lock */
185struct audit_chunk *audit_tree_lookup(const struct inode *inode)
186{
187	struct list_head *list = chunk_hash(inode);
188	struct audit_chunk *p;
189
190	list_for_each_entry_rcu(p, list, hash) {
191		/* mark.inode may have gone NULL, but who cares? */
192		if (p->mark.inode == inode) {
193			atomic_long_inc(&p->refs);
194			return p;
195		}
196	}
197	return NULL;
198}
199
200int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
201{
202	int n;
203	for (n = 0; n < chunk->count; n++)
204		if (chunk->owners[n].owner == tree)
205			return 1;
206	return 0;
207}
208
209/* tagging and untagging inodes with trees */
210
211static struct audit_chunk *find_chunk(struct node *p)
212{
213	int index = p->index & ~(1U<<31);
214	p -= index;
215	return container_of(p, struct audit_chunk, owners[0]);
216}
217
218static void untag_chunk(struct node *p)
219{
220	struct audit_chunk *chunk = find_chunk(p);
221	struct fsnotify_mark *entry = &chunk->mark;
222	struct audit_chunk *new = NULL;
223	struct audit_tree *owner;
224	int size = chunk->count - 1;
225	int i, j;
226
227	fsnotify_get_mark(entry);
228
229	spin_unlock(&hash_lock);
230
231	if (size)
232		new = alloc_chunk(size);
233
234	spin_lock(&entry->lock);
235	if (chunk->dead || !entry->inode) {
236		spin_unlock(&entry->lock);
237		if (new)
238			free_chunk(new);
239		goto out;
240	}
241
242	owner = p->owner;
243
244	if (!size) {
245		chunk->dead = 1;
246		spin_lock(&hash_lock);
247		list_del_init(&chunk->trees);
248		if (owner->root == chunk)
249			owner->root = NULL;
250		list_del_init(&p->list);
251		list_del_rcu(&chunk->hash);
252		spin_unlock(&hash_lock);
253		spin_unlock(&entry->lock);
254		fsnotify_destroy_mark(entry, audit_tree_group);
255		goto out;
256	}
257
258	if (!new)
259		goto Fallback;
260
261	fsnotify_duplicate_mark(&new->mark, entry);
262	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.inode, NULL, 1)) {
263		fsnotify_put_mark(&new->mark);
264		goto Fallback;
265	}
266
267	chunk->dead = 1;
268	spin_lock(&hash_lock);
269	list_replace_init(&chunk->trees, &new->trees);
270	if (owner->root == chunk) {
271		list_del_init(&owner->same_root);
272		owner->root = NULL;
273	}
274
275	for (i = j = 0; j <= size; i++, j++) {
276		struct audit_tree *s;
277		if (&chunk->owners[j] == p) {
278			list_del_init(&p->list);
279			i--;
280			continue;
281		}
282		s = chunk->owners[j].owner;
283		new->owners[i].owner = s;
284		new->owners[i].index = chunk->owners[j].index - j + i;
285		if (!s) /* result of earlier fallback */
286			continue;
287		get_tree(s);
288		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
289	}
290
291	list_replace_rcu(&chunk->hash, &new->hash);
292	list_for_each_entry(owner, &new->trees, same_root)
293		owner->root = new;
294	spin_unlock(&hash_lock);
295	spin_unlock(&entry->lock);
296	fsnotify_destroy_mark(entry, audit_tree_group);
297	fsnotify_put_mark(&new->mark);	/* drop initial reference */
298	goto out;
299
300Fallback:
301	// do the best we can
302	spin_lock(&hash_lock);
303	if (owner->root == chunk) {
304		list_del_init(&owner->same_root);
305		owner->root = NULL;
306	}
307	list_del_init(&p->list);
308	p->owner = NULL;
309	put_tree(owner);
310	spin_unlock(&hash_lock);
311	spin_unlock(&entry->lock);
312out:
313	fsnotify_put_mark(entry);
314	spin_lock(&hash_lock);
315}
316
317static int create_chunk(struct inode *inode, struct audit_tree *tree)
318{
319	struct fsnotify_mark *entry;
320	struct audit_chunk *chunk = alloc_chunk(1);
321	if (!chunk)
322		return -ENOMEM;
323
324	entry = &chunk->mark;
325	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
326		fsnotify_put_mark(entry);
327		return -ENOSPC;
328	}
329
330	spin_lock(&entry->lock);
331	spin_lock(&hash_lock);
332	if (tree->goner) {
333		spin_unlock(&hash_lock);
334		chunk->dead = 1;
335		spin_unlock(&entry->lock);
336		fsnotify_destroy_mark(entry, audit_tree_group);
337		fsnotify_put_mark(entry);
338		return 0;
339	}
340	chunk->owners[0].index = (1U << 31);
341	chunk->owners[0].owner = tree;
342	get_tree(tree);
343	list_add(&chunk->owners[0].list, &tree->chunks);
344	if (!tree->root) {
345		tree->root = chunk;
346		list_add(&tree->same_root, &chunk->trees);
347	}
348	insert_hash(chunk);
349	spin_unlock(&hash_lock);
350	spin_unlock(&entry->lock);
351	fsnotify_put_mark(entry);	/* drop initial reference */
352	return 0;
353}
354
355/* the first tagged inode becomes root of tree */
356static int tag_chunk(struct inode *inode, struct audit_tree *tree)
357{
358	struct fsnotify_mark *old_entry, *chunk_entry;
359	struct audit_tree *owner;
360	struct audit_chunk *chunk, *old;
361	struct node *p;
362	int n;
363
364	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
365	if (!old_entry)
366		return create_chunk(inode, tree);
367
368	old = container_of(old_entry, struct audit_chunk, mark);
369
370	/* are we already there? */
371	spin_lock(&hash_lock);
372	for (n = 0; n < old->count; n++) {
373		if (old->owners[n].owner == tree) {
374			spin_unlock(&hash_lock);
375			fsnotify_put_mark(old_entry);
376			return 0;
377		}
378	}
379	spin_unlock(&hash_lock);
380
381	chunk = alloc_chunk(old->count + 1);
382	if (!chunk) {
383		fsnotify_put_mark(old_entry);
384		return -ENOMEM;
385	}
386
387	chunk_entry = &chunk->mark;
388
389	spin_lock(&old_entry->lock);
390	if (!old_entry->inode) {
391		/* old_entry is being shot, lets just lie */
392		spin_unlock(&old_entry->lock);
393		fsnotify_put_mark(old_entry);
394		free_chunk(chunk);
395		return -ENOENT;
396	}
397
398	fsnotify_duplicate_mark(chunk_entry, old_entry);
399	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->inode, NULL, 1)) {
400		spin_unlock(&old_entry->lock);
401		fsnotify_put_mark(chunk_entry);
402		fsnotify_put_mark(old_entry);
403		return -ENOSPC;
404	}
405
406	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
407	spin_lock(&chunk_entry->lock);
408	spin_lock(&hash_lock);
409
410	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
411	if (tree->goner) {
412		spin_unlock(&hash_lock);
413		chunk->dead = 1;
414		spin_unlock(&chunk_entry->lock);
415		spin_unlock(&old_entry->lock);
416
417		fsnotify_destroy_mark(chunk_entry, audit_tree_group);
418
419		fsnotify_put_mark(chunk_entry);
420		fsnotify_put_mark(old_entry);
421		return 0;
422	}
423	list_replace_init(&old->trees, &chunk->trees);
424	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
425		struct audit_tree *s = old->owners[n].owner;
426		p->owner = s;
427		p->index = old->owners[n].index;
428		if (!s) /* result of fallback in untag */
429			continue;
430		get_tree(s);
431		list_replace_init(&old->owners[n].list, &p->list);
432	}
433	p->index = (chunk->count - 1) | (1U<<31);
434	p->owner = tree;
435	get_tree(tree);
436	list_add(&p->list, &tree->chunks);
437	list_replace_rcu(&old->hash, &chunk->hash);
438	list_for_each_entry(owner, &chunk->trees, same_root)
439		owner->root = chunk;
440	old->dead = 1;
441	if (!tree->root) {
442		tree->root = chunk;
443		list_add(&tree->same_root, &chunk->trees);
444	}
445	spin_unlock(&hash_lock);
446	spin_unlock(&chunk_entry->lock);
447	spin_unlock(&old_entry->lock);
448	fsnotify_destroy_mark(old_entry, audit_tree_group);
449	fsnotify_put_mark(chunk_entry);	/* drop initial reference */
450	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
451	return 0;
452}
453
454static void audit_tree_log_remove_rule(struct audit_krule *rule)
455{
456	struct audit_buffer *ab;
457
458	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
459	if (unlikely(!ab))
460		return;
461	audit_log_format(ab, "op=");
462	audit_log_string(ab, "remove_rule");
463	audit_log_format(ab, " dir=");
464	audit_log_untrustedstring(ab, rule->tree->pathname);
465	audit_log_key(ab, rule->filterkey);
466	audit_log_format(ab, " list=%d res=1", rule->listnr);
467	audit_log_end(ab);
468}
469
470static void kill_rules(struct audit_tree *tree)
471{
472	struct audit_krule *rule, *next;
473	struct audit_entry *entry;
474
475	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
476		entry = container_of(rule, struct audit_entry, rule);
477
478		list_del_init(&rule->rlist);
479		if (rule->tree) {
480			/* not a half-baked one */
481			audit_tree_log_remove_rule(rule);
482			rule->tree = NULL;
483			list_del_rcu(&entry->list);
484			list_del(&entry->rule.list);
485			call_rcu(&entry->rcu, audit_free_rule_rcu);
486		}
487	}
488}
489
490/*
491 * finish killing struct audit_tree
492 */
493static void prune_one(struct audit_tree *victim)
494{
495	spin_lock(&hash_lock);
496	while (!list_empty(&victim->chunks)) {
497		struct node *p;
498
499		p = list_entry(victim->chunks.next, struct node, list);
500
501		untag_chunk(p);
502	}
503	spin_unlock(&hash_lock);
504	put_tree(victim);
505}
506
507/* trim the uncommitted chunks from tree */
508
509static void trim_marked(struct audit_tree *tree)
510{
511	struct list_head *p, *q;
512	spin_lock(&hash_lock);
513	if (tree->goner) {
514		spin_unlock(&hash_lock);
515		return;
516	}
517	/* reorder */
518	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
519		struct node *node = list_entry(p, struct node, list);
520		q = p->next;
521		if (node->index & (1U<<31)) {
522			list_del_init(p);
523			list_add(p, &tree->chunks);
524		}
525	}
526
527	while (!list_empty(&tree->chunks)) {
528		struct node *node;
529
530		node = list_entry(tree->chunks.next, struct node, list);
531
532		/* have we run out of marked? */
533		if (!(node->index & (1U<<31)))
534			break;
535
536		untag_chunk(node);
537	}
538	if (!tree->root && !tree->goner) {
539		tree->goner = 1;
540		spin_unlock(&hash_lock);
541		mutex_lock(&audit_filter_mutex);
542		kill_rules(tree);
543		list_del_init(&tree->list);
544		mutex_unlock(&audit_filter_mutex);
545		prune_one(tree);
546	} else {
547		spin_unlock(&hash_lock);
548	}
549}
550
551static void audit_schedule_prune(void);
552
553/* called with audit_filter_mutex */
554int audit_remove_tree_rule(struct audit_krule *rule)
555{
556	struct audit_tree *tree;
557	tree = rule->tree;
558	if (tree) {
559		spin_lock(&hash_lock);
560		list_del_init(&rule->rlist);
561		if (list_empty(&tree->rules) && !tree->goner) {
562			tree->root = NULL;
563			list_del_init(&tree->same_root);
564			tree->goner = 1;
565			list_move(&tree->list, &prune_list);
566			rule->tree = NULL;
567			spin_unlock(&hash_lock);
568			audit_schedule_prune();
569			return 1;
570		}
571		rule->tree = NULL;
572		spin_unlock(&hash_lock);
573		return 1;
574	}
575	return 0;
576}
577
578static int compare_root(struct vfsmount *mnt, void *arg)
579{
580	return d_backing_inode(mnt->mnt_root) == arg;
581}
582
583void audit_trim_trees(void)
584{
585	struct list_head cursor;
586
587	mutex_lock(&audit_filter_mutex);
588	list_add(&cursor, &tree_list);
589	while (cursor.next != &tree_list) {
590		struct audit_tree *tree;
591		struct path path;
592		struct vfsmount *root_mnt;
593		struct node *node;
594		int err;
595
596		tree = container_of(cursor.next, struct audit_tree, list);
597		get_tree(tree);
598		list_del(&cursor);
599		list_add(&cursor, &tree->list);
600		mutex_unlock(&audit_filter_mutex);
601
602		err = kern_path(tree->pathname, 0, &path);
603		if (err)
604			goto skip_it;
605
606		root_mnt = collect_mounts(&path);
607		path_put(&path);
608		if (IS_ERR(root_mnt))
609			goto skip_it;
610
611		spin_lock(&hash_lock);
612		list_for_each_entry(node, &tree->chunks, list) {
613			struct audit_chunk *chunk = find_chunk(node);
614			/* this could be NULL if the watch is dying else where... */
615			struct inode *inode = chunk->mark.inode;
616			node->index |= 1U<<31;
617			if (iterate_mounts(compare_root, inode, root_mnt))
618				node->index &= ~(1U<<31);
619		}
620		spin_unlock(&hash_lock);
621		trim_marked(tree);
622		drop_collected_mounts(root_mnt);
623skip_it:
624		put_tree(tree);
625		mutex_lock(&audit_filter_mutex);
626	}
627	list_del(&cursor);
628	mutex_unlock(&audit_filter_mutex);
629}
630
631int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
632{
633
634	if (pathname[0] != '/' ||
635	    rule->listnr != AUDIT_FILTER_EXIT ||
636	    op != Audit_equal ||
637	    rule->inode_f || rule->watch || rule->tree)
638		return -EINVAL;
639	rule->tree = alloc_tree(pathname);
640	if (!rule->tree)
641		return -ENOMEM;
642	return 0;
643}
644
645void audit_put_tree(struct audit_tree *tree)
646{
647	put_tree(tree);
648}
649
650static int tag_mount(struct vfsmount *mnt, void *arg)
651{
652	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
653}
654
655/*
656 * That gets run when evict_chunk() ends up needing to kill audit_tree.
657 * Runs from a separate thread.
658 */
659static int prune_tree_thread(void *unused)
660{
661	for (;;) {
662		set_current_state(TASK_INTERRUPTIBLE);
663		if (list_empty(&prune_list))
664			schedule();
665		__set_current_state(TASK_RUNNING);
666
667		mutex_lock(&audit_cmd_mutex);
668		mutex_lock(&audit_filter_mutex);
669
670		while (!list_empty(&prune_list)) {
671			struct audit_tree *victim;
672
673			victim = list_entry(prune_list.next,
674					struct audit_tree, list);
675			list_del_init(&victim->list);
676
677			mutex_unlock(&audit_filter_mutex);
678
679			prune_one(victim);
680
681			mutex_lock(&audit_filter_mutex);
682		}
683
684		mutex_unlock(&audit_filter_mutex);
685		mutex_unlock(&audit_cmd_mutex);
686	}
687	return 0;
688}
689
690static int audit_launch_prune(void)
691{
692	if (prune_thread)
693		return 0;
694	prune_thread = kthread_create(prune_tree_thread, NULL,
695				"audit_prune_tree");
696	if (IS_ERR(prune_thread)) {
697		pr_err("cannot start thread audit_prune_tree");
698		prune_thread = NULL;
699		return -ENOMEM;
700	} else {
701		wake_up_process(prune_thread);
702		return 0;
703	}
704}
705
706/* called with audit_filter_mutex */
707int audit_add_tree_rule(struct audit_krule *rule)
708{
709	struct audit_tree *seed = rule->tree, *tree;
710	struct path path;
711	struct vfsmount *mnt;
712	int err;
713
714	rule->tree = NULL;
715	list_for_each_entry(tree, &tree_list, list) {
716		if (!strcmp(seed->pathname, tree->pathname)) {
717			put_tree(seed);
718			rule->tree = tree;
719			list_add(&rule->rlist, &tree->rules);
720			return 0;
721		}
722	}
723	tree = seed;
724	list_add(&tree->list, &tree_list);
725	list_add(&rule->rlist, &tree->rules);
726	/* do not set rule->tree yet */
727	mutex_unlock(&audit_filter_mutex);
728
729	if (unlikely(!prune_thread)) {
730		err = audit_launch_prune();
731		if (err)
732			goto Err;
733	}
734
735	err = kern_path(tree->pathname, 0, &path);
736	if (err)
737		goto Err;
738	mnt = collect_mounts(&path);
739	path_put(&path);
740	if (IS_ERR(mnt)) {
741		err = PTR_ERR(mnt);
742		goto Err;
743	}
744
745	get_tree(tree);
746	err = iterate_mounts(tag_mount, tree, mnt);
747	drop_collected_mounts(mnt);
748
749	if (!err) {
750		struct node *node;
751		spin_lock(&hash_lock);
752		list_for_each_entry(node, &tree->chunks, list)
753			node->index &= ~(1U<<31);
754		spin_unlock(&hash_lock);
755	} else {
756		trim_marked(tree);
757		goto Err;
758	}
759
760	mutex_lock(&audit_filter_mutex);
761	if (list_empty(&rule->rlist)) {
762		put_tree(tree);
763		return -ENOENT;
764	}
765	rule->tree = tree;
766	put_tree(tree);
767
768	return 0;
769Err:
770	mutex_lock(&audit_filter_mutex);
771	list_del_init(&tree->list);
772	list_del_init(&tree->rules);
773	put_tree(tree);
774	return err;
775}
776
777int audit_tag_tree(char *old, char *new)
778{
779	struct list_head cursor, barrier;
780	int failed = 0;
781	struct path path1, path2;
782	struct vfsmount *tagged;
783	int err;
784
785	err = kern_path(new, 0, &path2);
786	if (err)
787		return err;
788	tagged = collect_mounts(&path2);
789	path_put(&path2);
790	if (IS_ERR(tagged))
791		return PTR_ERR(tagged);
792
793	err = kern_path(old, 0, &path1);
794	if (err) {
795		drop_collected_mounts(tagged);
796		return err;
797	}
798
799	mutex_lock(&audit_filter_mutex);
800	list_add(&barrier, &tree_list);
801	list_add(&cursor, &barrier);
802
803	while (cursor.next != &tree_list) {
804		struct audit_tree *tree;
805		int good_one = 0;
806
807		tree = container_of(cursor.next, struct audit_tree, list);
808		get_tree(tree);
809		list_del(&cursor);
810		list_add(&cursor, &tree->list);
811		mutex_unlock(&audit_filter_mutex);
812
813		err = kern_path(tree->pathname, 0, &path2);
814		if (!err) {
815			good_one = path_is_under(&path1, &path2);
816			path_put(&path2);
817		}
818
819		if (!good_one) {
820			put_tree(tree);
821			mutex_lock(&audit_filter_mutex);
822			continue;
823		}
824
825		failed = iterate_mounts(tag_mount, tree, tagged);
826		if (failed) {
827			put_tree(tree);
828			mutex_lock(&audit_filter_mutex);
829			break;
830		}
831
832		mutex_lock(&audit_filter_mutex);
833		spin_lock(&hash_lock);
834		if (!tree->goner) {
835			list_del(&tree->list);
836			list_add(&tree->list, &tree_list);
837		}
838		spin_unlock(&hash_lock);
839		put_tree(tree);
840	}
841
842	while (barrier.prev != &tree_list) {
843		struct audit_tree *tree;
844
845		tree = container_of(barrier.prev, struct audit_tree, list);
846		get_tree(tree);
847		list_del(&tree->list);
848		list_add(&tree->list, &barrier);
849		mutex_unlock(&audit_filter_mutex);
850
851		if (!failed) {
852			struct node *node;
853			spin_lock(&hash_lock);
854			list_for_each_entry(node, &tree->chunks, list)
855				node->index &= ~(1U<<31);
856			spin_unlock(&hash_lock);
857		} else {
858			trim_marked(tree);
859		}
860
861		put_tree(tree);
862		mutex_lock(&audit_filter_mutex);
863	}
864	list_del(&barrier);
865	list_del(&cursor);
866	mutex_unlock(&audit_filter_mutex);
867	path_put(&path1);
868	drop_collected_mounts(tagged);
869	return failed;
870}
871
872
873static void audit_schedule_prune(void)
874{
875	wake_up_process(prune_thread);
876}
877
878/*
879 * ... and that one is done if evict_chunk() decides to delay until the end
880 * of syscall.  Runs synchronously.
881 */
882void audit_kill_trees(struct list_head *list)
883{
884	mutex_lock(&audit_cmd_mutex);
885	mutex_lock(&audit_filter_mutex);
886
887	while (!list_empty(list)) {
888		struct audit_tree *victim;
889
890		victim = list_entry(list->next, struct audit_tree, list);
891		kill_rules(victim);
892		list_del_init(&victim->list);
893
894		mutex_unlock(&audit_filter_mutex);
895
896		prune_one(victim);
897
898		mutex_lock(&audit_filter_mutex);
899	}
900
901	mutex_unlock(&audit_filter_mutex);
902	mutex_unlock(&audit_cmd_mutex);
903}
904
905/*
906 *  Here comes the stuff asynchronous to auditctl operations
907 */
908
909static void evict_chunk(struct audit_chunk *chunk)
910{
911	struct audit_tree *owner;
912	struct list_head *postponed = audit_killed_trees();
913	int need_prune = 0;
914	int n;
915
916	if (chunk->dead)
917		return;
918
919	chunk->dead = 1;
920	mutex_lock(&audit_filter_mutex);
921	spin_lock(&hash_lock);
922	while (!list_empty(&chunk->trees)) {
923		owner = list_entry(chunk->trees.next,
924				   struct audit_tree, same_root);
925		owner->goner = 1;
926		owner->root = NULL;
927		list_del_init(&owner->same_root);
928		spin_unlock(&hash_lock);
929		if (!postponed) {
930			kill_rules(owner);
931			list_move(&owner->list, &prune_list);
932			need_prune = 1;
933		} else {
934			list_move(&owner->list, postponed);
935		}
936		spin_lock(&hash_lock);
937	}
938	list_del_rcu(&chunk->hash);
939	for (n = 0; n < chunk->count; n++)
940		list_del_init(&chunk->owners[n].list);
941	spin_unlock(&hash_lock);
942	mutex_unlock(&audit_filter_mutex);
943	if (need_prune)
944		audit_schedule_prune();
945}
946
947static int audit_tree_handle_event(struct fsnotify_group *group,
948				   struct inode *to_tell,
949				   struct fsnotify_mark *inode_mark,
950				   struct fsnotify_mark *vfsmount_mark,
951				   u32 mask, void *data, int data_type,
952				   const unsigned char *file_name, u32 cookie)
953{
954	return 0;
955}
956
957static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
958{
959	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
960
961	evict_chunk(chunk);
962
963	/*
964	 * We are guaranteed to have at least one reference to the mark from
965	 * either the inode or the caller of fsnotify_destroy_mark().
966	 */
967	BUG_ON(atomic_read(&entry->refcnt) < 1);
968}
969
970static const struct fsnotify_ops audit_tree_ops = {
971	.handle_event = audit_tree_handle_event,
972	.freeing_mark = audit_tree_freeing_mark,
973};
974
975static int __init audit_tree_init(void)
976{
977	int i;
978
979	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
980	if (IS_ERR(audit_tree_group))
981		audit_panic("cannot initialize fsnotify group for rectree watches");
982
983	for (i = 0; i < HASH_SIZE; i++)
984		INIT_LIST_HEAD(&chunk_hash_heads[i]);
985
986	return 0;
987}
988__initcall(audit_tree_init);
989