1/*
2 * linux/percpu-defs.h - basic definitions for percpu areas
3 *
4 * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
5 *
6 * This file is separate from linux/percpu.h to avoid cyclic inclusion
7 * dependency from arch header files.  Only to be included from
8 * asm/percpu.h.
9 *
10 * This file includes macros necessary to declare percpu sections and
11 * variables, and definitions of percpu accessors and operations.  It
12 * should provide enough percpu features to arch header files even when
13 * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
14 */
15
16#ifndef _LINUX_PERCPU_DEFS_H
17#define _LINUX_PERCPU_DEFS_H
18
19#ifdef CONFIG_SMP
20
21#ifdef MODULE
22#define PER_CPU_SHARED_ALIGNED_SECTION ""
23#define PER_CPU_ALIGNED_SECTION ""
24#else
25#define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
26#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
27#endif
28#define PER_CPU_FIRST_SECTION "..first"
29
30#else
31
32#define PER_CPU_SHARED_ALIGNED_SECTION ""
33#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
34#define PER_CPU_FIRST_SECTION ""
35
36#endif
37
38/*
39 * Base implementations of per-CPU variable declarations and definitions, where
40 * the section in which the variable is to be placed is provided by the
41 * 'sec' argument.  This may be used to affect the parameters governing the
42 * variable's storage.
43 *
44 * NOTE!  The sections for the DECLARE and for the DEFINE must match, lest
45 * linkage errors occur due the compiler generating the wrong code to access
46 * that section.
47 */
48#define __PCPU_ATTRS(sec)						\
49	__percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))	\
50	PER_CPU_ATTRIBUTES
51
52#define __PCPU_DUMMY_ATTRS						\
53	__attribute__((section(".discard"), unused))
54
55/*
56 * s390 and alpha modules require percpu variables to be defined as
57 * weak to force the compiler to generate GOT based external
58 * references for them.  This is necessary because percpu sections
59 * will be located outside of the usually addressable area.
60 *
61 * This definition puts the following two extra restrictions when
62 * defining percpu variables.
63 *
64 * 1. The symbol must be globally unique, even the static ones.
65 * 2. Static percpu variables cannot be defined inside a function.
66 *
67 * Archs which need weak percpu definitions should define
68 * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
69 *
70 * To ensure that the generic code observes the above two
71 * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
72 * definition is used for all cases.
73 */
74#if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
75/*
76 * __pcpu_scope_* dummy variable is used to enforce scope.  It
77 * receives the static modifier when it's used in front of
78 * DEFINE_PER_CPU() and will trigger build failure if
79 * DECLARE_PER_CPU() is used for the same variable.
80 *
81 * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
82 * such that hidden weak symbol collision, which will cause unrelated
83 * variables to share the same address, can be detected during build.
84 */
85#define DECLARE_PER_CPU_SECTION(type, name, sec)			\
86	extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name;		\
87	extern __PCPU_ATTRS(sec) __typeof__(type) name
88
89#define DEFINE_PER_CPU_SECTION(type, name, sec)				\
90	__PCPU_DUMMY_ATTRS char __pcpu_scope_##name;			\
91	extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name;		\
92	__PCPU_DUMMY_ATTRS char __pcpu_unique_##name;			\
93	extern __PCPU_ATTRS(sec) __typeof__(type) name;			\
94	__PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES __weak			\
95	__typeof__(type) name
96#else
97/*
98 * Normal declaration and definition macros.
99 */
100#define DECLARE_PER_CPU_SECTION(type, name, sec)			\
101	extern __PCPU_ATTRS(sec) __typeof__(type) name
102
103#define DEFINE_PER_CPU_SECTION(type, name, sec)				\
104	__PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES			\
105	__typeof__(type) name
106#endif
107
108/*
109 * Variant on the per-CPU variable declaration/definition theme used for
110 * ordinary per-CPU variables.
111 */
112#define DECLARE_PER_CPU(type, name)					\
113	DECLARE_PER_CPU_SECTION(type, name, "")
114
115#define DEFINE_PER_CPU(type, name)					\
116	DEFINE_PER_CPU_SECTION(type, name, "")
117
118/*
119 * Declaration/definition used for per-CPU variables that must come first in
120 * the set of variables.
121 */
122#define DECLARE_PER_CPU_FIRST(type, name)				\
123	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
124
125#define DEFINE_PER_CPU_FIRST(type, name)				\
126	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
127
128/*
129 * Declaration/definition used for per-CPU variables that must be cacheline
130 * aligned under SMP conditions so that, whilst a particular instance of the
131 * data corresponds to a particular CPU, inefficiencies due to direct access by
132 * other CPUs are reduced by preventing the data from unnecessarily spanning
133 * cachelines.
134 *
135 * An example of this would be statistical data, where each CPU's set of data
136 * is updated by that CPU alone, but the data from across all CPUs is collated
137 * by a CPU processing a read from a proc file.
138 */
139#define DECLARE_PER_CPU_SHARED_ALIGNED(type, name)			\
140	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
141	____cacheline_aligned_in_smp
142
143#define DEFINE_PER_CPU_SHARED_ALIGNED(type, name)			\
144	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
145	____cacheline_aligned_in_smp
146
147#define DECLARE_PER_CPU_ALIGNED(type, name)				\
148	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
149	____cacheline_aligned
150
151#define DEFINE_PER_CPU_ALIGNED(type, name)				\
152	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
153	____cacheline_aligned
154
155/*
156 * Declaration/definition used for per-CPU variables that must be page aligned.
157 */
158#define DECLARE_PER_CPU_PAGE_ALIGNED(type, name)			\
159	DECLARE_PER_CPU_SECTION(type, name, "..page_aligned")		\
160	__aligned(PAGE_SIZE)
161
162#define DEFINE_PER_CPU_PAGE_ALIGNED(type, name)				\
163	DEFINE_PER_CPU_SECTION(type, name, "..page_aligned")		\
164	__aligned(PAGE_SIZE)
165
166/*
167 * Declaration/definition used for per-CPU variables that must be read mostly.
168 */
169#define DECLARE_PER_CPU_READ_MOSTLY(type, name)			\
170	DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
171
172#define DEFINE_PER_CPU_READ_MOSTLY(type, name)				\
173	DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
174
175/*
176 * Intermodule exports for per-CPU variables.  sparse forgets about
177 * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
178 * noop if __CHECKER__.
179 */
180#ifndef __CHECKER__
181#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
182#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
183#else
184#define EXPORT_PER_CPU_SYMBOL(var)
185#define EXPORT_PER_CPU_SYMBOL_GPL(var)
186#endif
187
188/*
189 * Accessors and operations.
190 */
191#ifndef __ASSEMBLY__
192
193/*
194 * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
195 * @ptr and is invoked once before a percpu area is accessed by all
196 * accessors and operations.  This is performed in the generic part of
197 * percpu and arch overrides don't need to worry about it; however, if an
198 * arch wants to implement an arch-specific percpu accessor or operation,
199 * it may use __verify_pcpu_ptr() to verify the parameters.
200 *
201 * + 0 is required in order to convert the pointer type from a
202 * potential array type to a pointer to a single item of the array.
203 */
204#define __verify_pcpu_ptr(ptr)						\
205do {									\
206	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
207	(void)__vpp_verify;						\
208} while (0)
209
210#ifdef CONFIG_SMP
211
212/*
213 * Add an offset to a pointer but keep the pointer as-is.  Use RELOC_HIDE()
214 * to prevent the compiler from making incorrect assumptions about the
215 * pointer value.  The weird cast keeps both GCC and sparse happy.
216 */
217#define SHIFT_PERCPU_PTR(__p, __offset)					\
218	RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
219
220#define per_cpu_ptr(ptr, cpu)						\
221({									\
222	__verify_pcpu_ptr(ptr);						\
223	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)));			\
224})
225
226#define raw_cpu_ptr(ptr)						\
227({									\
228	__verify_pcpu_ptr(ptr);						\
229	arch_raw_cpu_ptr(ptr);						\
230})
231
232#ifdef CONFIG_DEBUG_PREEMPT
233#define this_cpu_ptr(ptr)						\
234({									\
235	__verify_pcpu_ptr(ptr);						\
236	SHIFT_PERCPU_PTR(ptr, my_cpu_offset);				\
237})
238#else
239#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
240#endif
241
242#else	/* CONFIG_SMP */
243
244#define VERIFY_PERCPU_PTR(__p)						\
245({									\
246	__verify_pcpu_ptr(__p);						\
247	(typeof(*(__p)) __kernel __force *)(__p);			\
248})
249
250#define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
251#define raw_cpu_ptr(ptr)	per_cpu_ptr(ptr, 0)
252#define this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)
253
254#endif	/* CONFIG_SMP */
255
256#define per_cpu(var, cpu)	(*per_cpu_ptr(&(var), cpu))
257
258/*
259 * Must be an lvalue. Since @var must be a simple identifier,
260 * we force a syntax error here if it isn't.
261 */
262#define get_cpu_var(var)						\
263(*({									\
264	preempt_disable();						\
265	this_cpu_ptr(&var);						\
266}))
267
268/*
269 * The weird & is necessary because sparse considers (void)(var) to be
270 * a direct dereference of percpu variable (var).
271 */
272#define put_cpu_var(var)						\
273do {									\
274	(void)&(var);							\
275	preempt_enable();						\
276} while (0)
277
278#define get_cpu_ptr(var)						\
279({									\
280	preempt_disable();						\
281	this_cpu_ptr(var);						\
282})
283
284#define put_cpu_ptr(var)						\
285do {									\
286	(void)(var);							\
287	preempt_enable();						\
288} while (0)
289
290/*
291 * Branching function to split up a function into a set of functions that
292 * are called for different scalar sizes of the objects handled.
293 */
294
295extern void __bad_size_call_parameter(void);
296
297#ifdef CONFIG_DEBUG_PREEMPT
298extern void __this_cpu_preempt_check(const char *op);
299#else
300static inline void __this_cpu_preempt_check(const char *op) { }
301#endif
302
303#define __pcpu_size_call_return(stem, variable)				\
304({									\
305	typeof(variable) pscr_ret__;					\
306	__verify_pcpu_ptr(&(variable));					\
307	switch(sizeof(variable)) {					\
308	case 1: pscr_ret__ = stem##1(variable); break;			\
309	case 2: pscr_ret__ = stem##2(variable); break;			\
310	case 4: pscr_ret__ = stem##4(variable); break;			\
311	case 8: pscr_ret__ = stem##8(variable); break;			\
312	default:							\
313		__bad_size_call_parameter(); break;			\
314	}								\
315	pscr_ret__;							\
316})
317
318#define __pcpu_size_call_return2(stem, variable, ...)			\
319({									\
320	typeof(variable) pscr2_ret__;					\
321	__verify_pcpu_ptr(&(variable));					\
322	switch(sizeof(variable)) {					\
323	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
324	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
325	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
326	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
327	default:							\
328		__bad_size_call_parameter(); break;			\
329	}								\
330	pscr2_ret__;							\
331})
332
333/*
334 * Special handling for cmpxchg_double.  cmpxchg_double is passed two
335 * percpu variables.  The first has to be aligned to a double word
336 * boundary and the second has to follow directly thereafter.
337 * We enforce this on all architectures even if they don't support
338 * a double cmpxchg instruction, since it's a cheap requirement, and it
339 * avoids breaking the requirement for architectures with the instruction.
340 */
341#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\
342({									\
343	bool pdcrb_ret__;						\
344	__verify_pcpu_ptr(&(pcp1));					\
345	BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\
346	VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1)));	\
347	VM_BUG_ON((unsigned long)(&(pcp2)) !=				\
348		  (unsigned long)(&(pcp1)) + sizeof(pcp1));		\
349	switch(sizeof(pcp1)) {						\
350	case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\
351	case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\
352	case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\
353	case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\
354	default:							\
355		__bad_size_call_parameter(); break;			\
356	}								\
357	pdcrb_ret__;							\
358})
359
360#define __pcpu_size_call(stem, variable, ...)				\
361do {									\
362	__verify_pcpu_ptr(&(variable));					\
363	switch(sizeof(variable)) {					\
364		case 1: stem##1(variable, __VA_ARGS__);break;		\
365		case 2: stem##2(variable, __VA_ARGS__);break;		\
366		case 4: stem##4(variable, __VA_ARGS__);break;		\
367		case 8: stem##8(variable, __VA_ARGS__);break;		\
368		default: 						\
369			__bad_size_call_parameter();break;		\
370	}								\
371} while (0)
372
373/*
374 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
375 *
376 * Optimized manipulation for memory allocated through the per cpu
377 * allocator or for addresses of per cpu variables.
378 *
379 * These operation guarantee exclusivity of access for other operations
380 * on the *same* processor. The assumption is that per cpu data is only
381 * accessed by a single processor instance (the current one).
382 *
383 * The arch code can provide optimized implementation by defining macros
384 * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
385 * cpu atomic operations for 2 byte sized RMW actions. If arch code does
386 * not provide operations for a scalar size then the fallback in the
387 * generic code will be used.
388 *
389 * cmpxchg_double replaces two adjacent scalars at once.  The first two
390 * parameters are per cpu variables which have to be of the same size.  A
391 * truth value is returned to indicate success or failure (since a double
392 * register result is difficult to handle).  There is very limited hardware
393 * support for these operations, so only certain sizes may work.
394 */
395
396/*
397 * Operations for contexts where we do not want to do any checks for
398 * preemptions.  Unless strictly necessary, always use [__]this_cpu_*()
399 * instead.
400 *
401 * If there is no other protection through preempt disable and/or disabling
402 * interupts then one of these RMW operations can show unexpected behavior
403 * because the execution thread was rescheduled on another processor or an
404 * interrupt occurred and the same percpu variable was modified from the
405 * interrupt context.
406 */
407#define raw_cpu_read(pcp)		__pcpu_size_call_return(raw_cpu_read_, pcp)
408#define raw_cpu_write(pcp, val)		__pcpu_size_call(raw_cpu_write_, pcp, val)
409#define raw_cpu_add(pcp, val)		__pcpu_size_call(raw_cpu_add_, pcp, val)
410#define raw_cpu_and(pcp, val)		__pcpu_size_call(raw_cpu_and_, pcp, val)
411#define raw_cpu_or(pcp, val)		__pcpu_size_call(raw_cpu_or_, pcp, val)
412#define raw_cpu_add_return(pcp, val)	__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
413#define raw_cpu_xchg(pcp, nval)		__pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
414#define raw_cpu_cmpxchg(pcp, oval, nval) \
415	__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
416#define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
417	__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
418
419#define raw_cpu_sub(pcp, val)		raw_cpu_add(pcp, -(val))
420#define raw_cpu_inc(pcp)		raw_cpu_add(pcp, 1)
421#define raw_cpu_dec(pcp)		raw_cpu_sub(pcp, 1)
422#define raw_cpu_sub_return(pcp, val)	raw_cpu_add_return(pcp, -(typeof(pcp))(val))
423#define raw_cpu_inc_return(pcp)		raw_cpu_add_return(pcp, 1)
424#define raw_cpu_dec_return(pcp)		raw_cpu_add_return(pcp, -1)
425
426/*
427 * Operations for contexts that are safe from preemption/interrupts.  These
428 * operations verify that preemption is disabled.
429 */
430#define __this_cpu_read(pcp)						\
431({									\
432	__this_cpu_preempt_check("read");				\
433	raw_cpu_read(pcp);						\
434})
435
436#define __this_cpu_write(pcp, val)					\
437({									\
438	__this_cpu_preempt_check("write");				\
439	raw_cpu_write(pcp, val);					\
440})
441
442#define __this_cpu_add(pcp, val)					\
443({									\
444	__this_cpu_preempt_check("add");				\
445	raw_cpu_add(pcp, val);						\
446})
447
448#define __this_cpu_and(pcp, val)					\
449({									\
450	__this_cpu_preempt_check("and");				\
451	raw_cpu_and(pcp, val);						\
452})
453
454#define __this_cpu_or(pcp, val)						\
455({									\
456	__this_cpu_preempt_check("or");					\
457	raw_cpu_or(pcp, val);						\
458})
459
460#define __this_cpu_add_return(pcp, val)					\
461({									\
462	__this_cpu_preempt_check("add_return");				\
463	raw_cpu_add_return(pcp, val);					\
464})
465
466#define __this_cpu_xchg(pcp, nval)					\
467({									\
468	__this_cpu_preempt_check("xchg");				\
469	raw_cpu_xchg(pcp, nval);					\
470})
471
472#define __this_cpu_cmpxchg(pcp, oval, nval)				\
473({									\
474	__this_cpu_preempt_check("cmpxchg");				\
475	raw_cpu_cmpxchg(pcp, oval, nval);				\
476})
477
478#define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
479({	__this_cpu_preempt_check("cmpxchg_double");			\
480	raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2);	\
481})
482
483#define __this_cpu_sub(pcp, val)	__this_cpu_add(pcp, -(typeof(pcp))(val))
484#define __this_cpu_inc(pcp)		__this_cpu_add(pcp, 1)
485#define __this_cpu_dec(pcp)		__this_cpu_sub(pcp, 1)
486#define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(typeof(pcp))(val))
487#define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
488#define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
489
490/*
491 * Operations with implied preemption protection.  These operations can be
492 * used without worrying about preemption.  Note that interrupts may still
493 * occur while an operation is in progress and if the interrupt modifies
494 * the variable too then RMW actions may not be reliable.
495 */
496#define this_cpu_read(pcp)		__pcpu_size_call_return(this_cpu_read_, pcp)
497#define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, pcp, val)
498#define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, pcp, val)
499#define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, pcp, val)
500#define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, pcp, val)
501#define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
502#define this_cpu_xchg(pcp, nval)	__pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
503#define this_cpu_cmpxchg(pcp, oval, nval) \
504	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
505#define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
506	__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
507
508#define this_cpu_sub(pcp, val)		this_cpu_add(pcp, -(typeof(pcp))(val))
509#define this_cpu_inc(pcp)		this_cpu_add(pcp, 1)
510#define this_cpu_dec(pcp)		this_cpu_sub(pcp, 1)
511#define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(typeof(pcp))(val))
512#define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
513#define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)
514
515#endif /* __ASSEMBLY__ */
516#endif /* _LINUX_PERCPU_DEFS_H */
517