1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_sb.h"
24#include "xfs_mount.h"
25#include "xfs_inode.h"
26#include "xfs_error.h"
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_inode_item.h"
30#include "xfs_quota.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_bmap_util.h"
34#include "xfs_dquot_item.h"
35#include "xfs_dquot.h"
36
37#include <linux/kthread.h>
38#include <linux/freezer.h>
39
40STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
41				struct xfs_perag *pag, struct xfs_inode *ip);
42
43/*
44 * Allocate and initialise an xfs_inode.
45 */
46struct xfs_inode *
47xfs_inode_alloc(
48	struct xfs_mount	*mp,
49	xfs_ino_t		ino)
50{
51	struct xfs_inode	*ip;
52
53	/*
54	 * if this didn't occur in transactions, we could use
55	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56	 * code up to do this anyway.
57	 */
58	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59	if (!ip)
60		return NULL;
61	if (inode_init_always(mp->m_super, VFS_I(ip))) {
62		kmem_zone_free(xfs_inode_zone, ip);
63		return NULL;
64	}
65
66	XFS_STATS_INC(vn_active);
67	ASSERT(atomic_read(&ip->i_pincount) == 0);
68	ASSERT(!spin_is_locked(&ip->i_flags_lock));
69	ASSERT(!xfs_isiflocked(ip));
70	ASSERT(ip->i_ino == 0);
71
72	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
73
74	/* initialise the xfs inode */
75	ip->i_ino = ino;
76	ip->i_mount = mp;
77	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
78	ip->i_afp = NULL;
79	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
80	ip->i_flags = 0;
81	ip->i_delayed_blks = 0;
82	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
83
84	return ip;
85}
86
87STATIC void
88xfs_inode_free_callback(
89	struct rcu_head		*head)
90{
91	struct inode		*inode = container_of(head, struct inode, i_rcu);
92	struct xfs_inode	*ip = XFS_I(inode);
93
94	kmem_zone_free(xfs_inode_zone, ip);
95}
96
97void
98xfs_inode_free(
99	struct xfs_inode	*ip)
100{
101	switch (ip->i_d.di_mode & S_IFMT) {
102	case S_IFREG:
103	case S_IFDIR:
104	case S_IFLNK:
105		xfs_idestroy_fork(ip, XFS_DATA_FORK);
106		break;
107	}
108
109	if (ip->i_afp)
110		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
111
112	if (ip->i_itemp) {
113		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
114		xfs_inode_item_destroy(ip);
115		ip->i_itemp = NULL;
116	}
117
118	/*
119	 * Because we use RCU freeing we need to ensure the inode always
120	 * appears to be reclaimed with an invalid inode number when in the
121	 * free state. The ip->i_flags_lock provides the barrier against lookup
122	 * races.
123	 */
124	spin_lock(&ip->i_flags_lock);
125	ip->i_flags = XFS_IRECLAIM;
126	ip->i_ino = 0;
127	spin_unlock(&ip->i_flags_lock);
128
129	/* asserts to verify all state is correct here */
130	ASSERT(atomic_read(&ip->i_pincount) == 0);
131	ASSERT(!xfs_isiflocked(ip));
132	XFS_STATS_DEC(vn_active);
133
134	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
135}
136
137/*
138 * Check the validity of the inode we just found it the cache
139 */
140static int
141xfs_iget_cache_hit(
142	struct xfs_perag	*pag,
143	struct xfs_inode	*ip,
144	xfs_ino_t		ino,
145	int			flags,
146	int			lock_flags) __releases(RCU)
147{
148	struct inode		*inode = VFS_I(ip);
149	struct xfs_mount	*mp = ip->i_mount;
150	int			error;
151
152	/*
153	 * check for re-use of an inode within an RCU grace period due to the
154	 * radix tree nodes not being updated yet. We monitor for this by
155	 * setting the inode number to zero before freeing the inode structure.
156	 * If the inode has been reallocated and set up, then the inode number
157	 * will not match, so check for that, too.
158	 */
159	spin_lock(&ip->i_flags_lock);
160	if (ip->i_ino != ino) {
161		trace_xfs_iget_skip(ip);
162		XFS_STATS_INC(xs_ig_frecycle);
163		error = -EAGAIN;
164		goto out_error;
165	}
166
167
168	/*
169	 * If we are racing with another cache hit that is currently
170	 * instantiating this inode or currently recycling it out of
171	 * reclaimabe state, wait for the initialisation to complete
172	 * before continuing.
173	 *
174	 * XXX(hch): eventually we should do something equivalent to
175	 *	     wait_on_inode to wait for these flags to be cleared
176	 *	     instead of polling for it.
177	 */
178	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
179		trace_xfs_iget_skip(ip);
180		XFS_STATS_INC(xs_ig_frecycle);
181		error = -EAGAIN;
182		goto out_error;
183	}
184
185	/*
186	 * If lookup is racing with unlink return an error immediately.
187	 */
188	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
189		error = -ENOENT;
190		goto out_error;
191	}
192
193	/*
194	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
195	 * Need to carefully get it back into useable state.
196	 */
197	if (ip->i_flags & XFS_IRECLAIMABLE) {
198		trace_xfs_iget_reclaim(ip);
199
200		/*
201		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
202		 * from stomping over us while we recycle the inode.  We can't
203		 * clear the radix tree reclaimable tag yet as it requires
204		 * pag_ici_lock to be held exclusive.
205		 */
206		ip->i_flags |= XFS_IRECLAIM;
207
208		spin_unlock(&ip->i_flags_lock);
209		rcu_read_unlock();
210
211		error = inode_init_always(mp->m_super, inode);
212		if (error) {
213			/*
214			 * Re-initializing the inode failed, and we are in deep
215			 * trouble.  Try to re-add it to the reclaim list.
216			 */
217			rcu_read_lock();
218			spin_lock(&ip->i_flags_lock);
219
220			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
221			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
222			trace_xfs_iget_reclaim_fail(ip);
223			goto out_error;
224		}
225
226		spin_lock(&pag->pag_ici_lock);
227		spin_lock(&ip->i_flags_lock);
228
229		/*
230		 * Clear the per-lifetime state in the inode as we are now
231		 * effectively a new inode and need to return to the initial
232		 * state before reuse occurs.
233		 */
234		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
235		ip->i_flags |= XFS_INEW;
236		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
237		inode->i_state = I_NEW;
238
239		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
240		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
241
242		spin_unlock(&ip->i_flags_lock);
243		spin_unlock(&pag->pag_ici_lock);
244	} else {
245		/* If the VFS inode is being torn down, pause and try again. */
246		if (!igrab(inode)) {
247			trace_xfs_iget_skip(ip);
248			error = -EAGAIN;
249			goto out_error;
250		}
251
252		/* We've got a live one. */
253		spin_unlock(&ip->i_flags_lock);
254		rcu_read_unlock();
255		trace_xfs_iget_hit(ip);
256	}
257
258	if (lock_flags != 0)
259		xfs_ilock(ip, lock_flags);
260
261	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
262	XFS_STATS_INC(xs_ig_found);
263
264	return 0;
265
266out_error:
267	spin_unlock(&ip->i_flags_lock);
268	rcu_read_unlock();
269	return error;
270}
271
272
273static int
274xfs_iget_cache_miss(
275	struct xfs_mount	*mp,
276	struct xfs_perag	*pag,
277	xfs_trans_t		*tp,
278	xfs_ino_t		ino,
279	struct xfs_inode	**ipp,
280	int			flags,
281	int			lock_flags)
282{
283	struct xfs_inode	*ip;
284	int			error;
285	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
286	int			iflags;
287
288	ip = xfs_inode_alloc(mp, ino);
289	if (!ip)
290		return -ENOMEM;
291
292	error = xfs_iread(mp, tp, ip, flags);
293	if (error)
294		goto out_destroy;
295
296	trace_xfs_iget_miss(ip);
297
298	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
299		error = -ENOENT;
300		goto out_destroy;
301	}
302
303	/*
304	 * Preload the radix tree so we can insert safely under the
305	 * write spinlock. Note that we cannot sleep inside the preload
306	 * region. Since we can be called from transaction context, don't
307	 * recurse into the file system.
308	 */
309	if (radix_tree_preload(GFP_NOFS)) {
310		error = -EAGAIN;
311		goto out_destroy;
312	}
313
314	/*
315	 * Because the inode hasn't been added to the radix-tree yet it can't
316	 * be found by another thread, so we can do the non-sleeping lock here.
317	 */
318	if (lock_flags) {
319		if (!xfs_ilock_nowait(ip, lock_flags))
320			BUG();
321	}
322
323	/*
324	 * These values must be set before inserting the inode into the radix
325	 * tree as the moment it is inserted a concurrent lookup (allowed by the
326	 * RCU locking mechanism) can find it and that lookup must see that this
327	 * is an inode currently under construction (i.e. that XFS_INEW is set).
328	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
329	 * memory barrier that ensures this detection works correctly at lookup
330	 * time.
331	 */
332	iflags = XFS_INEW;
333	if (flags & XFS_IGET_DONTCACHE)
334		iflags |= XFS_IDONTCACHE;
335	ip->i_udquot = NULL;
336	ip->i_gdquot = NULL;
337	ip->i_pdquot = NULL;
338	xfs_iflags_set(ip, iflags);
339
340	/* insert the new inode */
341	spin_lock(&pag->pag_ici_lock);
342	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
343	if (unlikely(error)) {
344		WARN_ON(error != -EEXIST);
345		XFS_STATS_INC(xs_ig_dup);
346		error = -EAGAIN;
347		goto out_preload_end;
348	}
349	spin_unlock(&pag->pag_ici_lock);
350	radix_tree_preload_end();
351
352	*ipp = ip;
353	return 0;
354
355out_preload_end:
356	spin_unlock(&pag->pag_ici_lock);
357	radix_tree_preload_end();
358	if (lock_flags)
359		xfs_iunlock(ip, lock_flags);
360out_destroy:
361	__destroy_inode(VFS_I(ip));
362	xfs_inode_free(ip);
363	return error;
364}
365
366/*
367 * Look up an inode by number in the given file system.
368 * The inode is looked up in the cache held in each AG.
369 * If the inode is found in the cache, initialise the vfs inode
370 * if necessary.
371 *
372 * If it is not in core, read it in from the file system's device,
373 * add it to the cache and initialise the vfs inode.
374 *
375 * The inode is locked according to the value of the lock_flags parameter.
376 * This flag parameter indicates how and if the inode's IO lock and inode lock
377 * should be taken.
378 *
379 * mp -- the mount point structure for the current file system.  It points
380 *       to the inode hash table.
381 * tp -- a pointer to the current transaction if there is one.  This is
382 *       simply passed through to the xfs_iread() call.
383 * ino -- the number of the inode desired.  This is the unique identifier
384 *        within the file system for the inode being requested.
385 * lock_flags -- flags indicating how to lock the inode.  See the comment
386 *		 for xfs_ilock() for a list of valid values.
387 */
388int
389xfs_iget(
390	xfs_mount_t	*mp,
391	xfs_trans_t	*tp,
392	xfs_ino_t	ino,
393	uint		flags,
394	uint		lock_flags,
395	xfs_inode_t	**ipp)
396{
397	xfs_inode_t	*ip;
398	int		error;
399	xfs_perag_t	*pag;
400	xfs_agino_t	agino;
401
402	/*
403	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
404	 * doesn't get freed while it's being referenced during a
405	 * radix tree traversal here.  It assumes this function
406	 * aqcuires only the ILOCK (and therefore it has no need to
407	 * involve the IOLOCK in this synchronization).
408	 */
409	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
410
411	/* reject inode numbers outside existing AGs */
412	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
413		return -EINVAL;
414
415	/* get the perag structure and ensure that it's inode capable */
416	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
417	agino = XFS_INO_TO_AGINO(mp, ino);
418
419again:
420	error = 0;
421	rcu_read_lock();
422	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
423
424	if (ip) {
425		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
426		if (error)
427			goto out_error_or_again;
428	} else {
429		rcu_read_unlock();
430		XFS_STATS_INC(xs_ig_missed);
431
432		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
433							flags, lock_flags);
434		if (error)
435			goto out_error_or_again;
436	}
437	xfs_perag_put(pag);
438
439	*ipp = ip;
440
441	/*
442	 * If we have a real type for an on-disk inode, we can setup the inode
443	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
444	 */
445	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
446		xfs_setup_existing_inode(ip);
447	return 0;
448
449out_error_or_again:
450	if (error == -EAGAIN) {
451		delay(1);
452		goto again;
453	}
454	xfs_perag_put(pag);
455	return error;
456}
457
458/*
459 * The inode lookup is done in batches to keep the amount of lock traffic and
460 * radix tree lookups to a minimum. The batch size is a trade off between
461 * lookup reduction and stack usage. This is in the reclaim path, so we can't
462 * be too greedy.
463 */
464#define XFS_LOOKUP_BATCH	32
465
466STATIC int
467xfs_inode_ag_walk_grab(
468	struct xfs_inode	*ip)
469{
470	struct inode		*inode = VFS_I(ip);
471
472	ASSERT(rcu_read_lock_held());
473
474	/*
475	 * check for stale RCU freed inode
476	 *
477	 * If the inode has been reallocated, it doesn't matter if it's not in
478	 * the AG we are walking - we are walking for writeback, so if it
479	 * passes all the "valid inode" checks and is dirty, then we'll write
480	 * it back anyway.  If it has been reallocated and still being
481	 * initialised, the XFS_INEW check below will catch it.
482	 */
483	spin_lock(&ip->i_flags_lock);
484	if (!ip->i_ino)
485		goto out_unlock_noent;
486
487	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
488	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
489		goto out_unlock_noent;
490	spin_unlock(&ip->i_flags_lock);
491
492	/* nothing to sync during shutdown */
493	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
494		return -EFSCORRUPTED;
495
496	/* If we can't grab the inode, it must on it's way to reclaim. */
497	if (!igrab(inode))
498		return -ENOENT;
499
500	/* inode is valid */
501	return 0;
502
503out_unlock_noent:
504	spin_unlock(&ip->i_flags_lock);
505	return -ENOENT;
506}
507
508STATIC int
509xfs_inode_ag_walk(
510	struct xfs_mount	*mp,
511	struct xfs_perag	*pag,
512	int			(*execute)(struct xfs_inode *ip, int flags,
513					   void *args),
514	int			flags,
515	void			*args,
516	int			tag)
517{
518	uint32_t		first_index;
519	int			last_error = 0;
520	int			skipped;
521	int			done;
522	int			nr_found;
523
524restart:
525	done = 0;
526	skipped = 0;
527	first_index = 0;
528	nr_found = 0;
529	do {
530		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
531		int		error = 0;
532		int		i;
533
534		rcu_read_lock();
535
536		if (tag == -1)
537			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
538					(void **)batch, first_index,
539					XFS_LOOKUP_BATCH);
540		else
541			nr_found = radix_tree_gang_lookup_tag(
542					&pag->pag_ici_root,
543					(void **) batch, first_index,
544					XFS_LOOKUP_BATCH, tag);
545
546		if (!nr_found) {
547			rcu_read_unlock();
548			break;
549		}
550
551		/*
552		 * Grab the inodes before we drop the lock. if we found
553		 * nothing, nr == 0 and the loop will be skipped.
554		 */
555		for (i = 0; i < nr_found; i++) {
556			struct xfs_inode *ip = batch[i];
557
558			if (done || xfs_inode_ag_walk_grab(ip))
559				batch[i] = NULL;
560
561			/*
562			 * Update the index for the next lookup. Catch
563			 * overflows into the next AG range which can occur if
564			 * we have inodes in the last block of the AG and we
565			 * are currently pointing to the last inode.
566			 *
567			 * Because we may see inodes that are from the wrong AG
568			 * due to RCU freeing and reallocation, only update the
569			 * index if it lies in this AG. It was a race that lead
570			 * us to see this inode, so another lookup from the
571			 * same index will not find it again.
572			 */
573			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
574				continue;
575			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
576			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
577				done = 1;
578		}
579
580		/* unlock now we've grabbed the inodes. */
581		rcu_read_unlock();
582
583		for (i = 0; i < nr_found; i++) {
584			if (!batch[i])
585				continue;
586			error = execute(batch[i], flags, args);
587			IRELE(batch[i]);
588			if (error == -EAGAIN) {
589				skipped++;
590				continue;
591			}
592			if (error && last_error != -EFSCORRUPTED)
593				last_error = error;
594		}
595
596		/* bail out if the filesystem is corrupted.  */
597		if (error == -EFSCORRUPTED)
598			break;
599
600		cond_resched();
601
602	} while (nr_found && !done);
603
604	if (skipped) {
605		delay(1);
606		goto restart;
607	}
608	return last_error;
609}
610
611/*
612 * Background scanning to trim post-EOF preallocated space. This is queued
613 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
614 */
615STATIC void
616xfs_queue_eofblocks(
617	struct xfs_mount *mp)
618{
619	rcu_read_lock();
620	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
621		queue_delayed_work(mp->m_eofblocks_workqueue,
622				   &mp->m_eofblocks_work,
623				   msecs_to_jiffies(xfs_eofb_secs * 1000));
624	rcu_read_unlock();
625}
626
627void
628xfs_eofblocks_worker(
629	struct work_struct *work)
630{
631	struct xfs_mount *mp = container_of(to_delayed_work(work),
632				struct xfs_mount, m_eofblocks_work);
633	xfs_icache_free_eofblocks(mp, NULL);
634	xfs_queue_eofblocks(mp);
635}
636
637int
638xfs_inode_ag_iterator(
639	struct xfs_mount	*mp,
640	int			(*execute)(struct xfs_inode *ip, int flags,
641					   void *args),
642	int			flags,
643	void			*args)
644{
645	struct xfs_perag	*pag;
646	int			error = 0;
647	int			last_error = 0;
648	xfs_agnumber_t		ag;
649
650	ag = 0;
651	while ((pag = xfs_perag_get(mp, ag))) {
652		ag = pag->pag_agno + 1;
653		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
654		xfs_perag_put(pag);
655		if (error) {
656			last_error = error;
657			if (error == -EFSCORRUPTED)
658				break;
659		}
660	}
661	return last_error;
662}
663
664int
665xfs_inode_ag_iterator_tag(
666	struct xfs_mount	*mp,
667	int			(*execute)(struct xfs_inode *ip, int flags,
668					   void *args),
669	int			flags,
670	void			*args,
671	int			tag)
672{
673	struct xfs_perag	*pag;
674	int			error = 0;
675	int			last_error = 0;
676	xfs_agnumber_t		ag;
677
678	ag = 0;
679	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
680		ag = pag->pag_agno + 1;
681		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
682		xfs_perag_put(pag);
683		if (error) {
684			last_error = error;
685			if (error == -EFSCORRUPTED)
686				break;
687		}
688	}
689	return last_error;
690}
691
692/*
693 * Queue a new inode reclaim pass if there are reclaimable inodes and there
694 * isn't a reclaim pass already in progress. By default it runs every 5s based
695 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
696 * tunable, but that can be done if this method proves to be ineffective or too
697 * aggressive.
698 */
699static void
700xfs_reclaim_work_queue(
701	struct xfs_mount        *mp)
702{
703
704	rcu_read_lock();
705	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
706		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
707			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
708	}
709	rcu_read_unlock();
710}
711
712/*
713 * This is a fast pass over the inode cache to try to get reclaim moving on as
714 * many inodes as possible in a short period of time. It kicks itself every few
715 * seconds, as well as being kicked by the inode cache shrinker when memory
716 * goes low. It scans as quickly as possible avoiding locked inodes or those
717 * already being flushed, and once done schedules a future pass.
718 */
719void
720xfs_reclaim_worker(
721	struct work_struct *work)
722{
723	struct xfs_mount *mp = container_of(to_delayed_work(work),
724					struct xfs_mount, m_reclaim_work);
725
726	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
727	xfs_reclaim_work_queue(mp);
728}
729
730static void
731__xfs_inode_set_reclaim_tag(
732	struct xfs_perag	*pag,
733	struct xfs_inode	*ip)
734{
735	radix_tree_tag_set(&pag->pag_ici_root,
736			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
737			   XFS_ICI_RECLAIM_TAG);
738
739	if (!pag->pag_ici_reclaimable) {
740		/* propagate the reclaim tag up into the perag radix tree */
741		spin_lock(&ip->i_mount->m_perag_lock);
742		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
743				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
744				XFS_ICI_RECLAIM_TAG);
745		spin_unlock(&ip->i_mount->m_perag_lock);
746
747		/* schedule periodic background inode reclaim */
748		xfs_reclaim_work_queue(ip->i_mount);
749
750		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
751							-1, _RET_IP_);
752	}
753	pag->pag_ici_reclaimable++;
754}
755
756/*
757 * We set the inode flag atomically with the radix tree tag.
758 * Once we get tag lookups on the radix tree, this inode flag
759 * can go away.
760 */
761void
762xfs_inode_set_reclaim_tag(
763	xfs_inode_t	*ip)
764{
765	struct xfs_mount *mp = ip->i_mount;
766	struct xfs_perag *pag;
767
768	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
769	spin_lock(&pag->pag_ici_lock);
770	spin_lock(&ip->i_flags_lock);
771	__xfs_inode_set_reclaim_tag(pag, ip);
772	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
773	spin_unlock(&ip->i_flags_lock);
774	spin_unlock(&pag->pag_ici_lock);
775	xfs_perag_put(pag);
776}
777
778STATIC void
779__xfs_inode_clear_reclaim(
780	xfs_perag_t	*pag,
781	xfs_inode_t	*ip)
782{
783	pag->pag_ici_reclaimable--;
784	if (!pag->pag_ici_reclaimable) {
785		/* clear the reclaim tag from the perag radix tree */
786		spin_lock(&ip->i_mount->m_perag_lock);
787		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
788				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
789				XFS_ICI_RECLAIM_TAG);
790		spin_unlock(&ip->i_mount->m_perag_lock);
791		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
792							-1, _RET_IP_);
793	}
794}
795
796STATIC void
797__xfs_inode_clear_reclaim_tag(
798	xfs_mount_t	*mp,
799	xfs_perag_t	*pag,
800	xfs_inode_t	*ip)
801{
802	radix_tree_tag_clear(&pag->pag_ici_root,
803			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
804	__xfs_inode_clear_reclaim(pag, ip);
805}
806
807/*
808 * Grab the inode for reclaim exclusively.
809 * Return 0 if we grabbed it, non-zero otherwise.
810 */
811STATIC int
812xfs_reclaim_inode_grab(
813	struct xfs_inode	*ip,
814	int			flags)
815{
816	ASSERT(rcu_read_lock_held());
817
818	/* quick check for stale RCU freed inode */
819	if (!ip->i_ino)
820		return 1;
821
822	/*
823	 * If we are asked for non-blocking operation, do unlocked checks to
824	 * see if the inode already is being flushed or in reclaim to avoid
825	 * lock traffic.
826	 */
827	if ((flags & SYNC_TRYLOCK) &&
828	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
829		return 1;
830
831	/*
832	 * The radix tree lock here protects a thread in xfs_iget from racing
833	 * with us starting reclaim on the inode.  Once we have the
834	 * XFS_IRECLAIM flag set it will not touch us.
835	 *
836	 * Due to RCU lookup, we may find inodes that have been freed and only
837	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
838	 * aren't candidates for reclaim at all, so we must check the
839	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
840	 */
841	spin_lock(&ip->i_flags_lock);
842	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
843	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
844		/* not a reclaim candidate. */
845		spin_unlock(&ip->i_flags_lock);
846		return 1;
847	}
848	__xfs_iflags_set(ip, XFS_IRECLAIM);
849	spin_unlock(&ip->i_flags_lock);
850	return 0;
851}
852
853/*
854 * Inodes in different states need to be treated differently. The following
855 * table lists the inode states and the reclaim actions necessary:
856 *
857 *	inode state	     iflush ret		required action
858 *      ---------------      ----------         ---------------
859 *	bad			-		reclaim
860 *	shutdown		EIO		unpin and reclaim
861 *	clean, unpinned		0		reclaim
862 *	stale, unpinned		0		reclaim
863 *	clean, pinned(*)	0		requeue
864 *	stale, pinned		EAGAIN		requeue
865 *	dirty, async		-		requeue
866 *	dirty, sync		0		reclaim
867 *
868 * (*) dgc: I don't think the clean, pinned state is possible but it gets
869 * handled anyway given the order of checks implemented.
870 *
871 * Also, because we get the flush lock first, we know that any inode that has
872 * been flushed delwri has had the flush completed by the time we check that
873 * the inode is clean.
874 *
875 * Note that because the inode is flushed delayed write by AIL pushing, the
876 * flush lock may already be held here and waiting on it can result in very
877 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
878 * the caller should push the AIL first before trying to reclaim inodes to
879 * minimise the amount of time spent waiting.  For background relaim, we only
880 * bother to reclaim clean inodes anyway.
881 *
882 * Hence the order of actions after gaining the locks should be:
883 *	bad		=> reclaim
884 *	shutdown	=> unpin and reclaim
885 *	pinned, async	=> requeue
886 *	pinned, sync	=> unpin
887 *	stale		=> reclaim
888 *	clean		=> reclaim
889 *	dirty, async	=> requeue
890 *	dirty, sync	=> flush, wait and reclaim
891 */
892STATIC int
893xfs_reclaim_inode(
894	struct xfs_inode	*ip,
895	struct xfs_perag	*pag,
896	int			sync_mode)
897{
898	struct xfs_buf		*bp = NULL;
899	int			error;
900
901restart:
902	error = 0;
903	xfs_ilock(ip, XFS_ILOCK_EXCL);
904	if (!xfs_iflock_nowait(ip)) {
905		if (!(sync_mode & SYNC_WAIT))
906			goto out;
907		xfs_iflock(ip);
908	}
909
910	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
911		xfs_iunpin_wait(ip);
912		xfs_iflush_abort(ip, false);
913		goto reclaim;
914	}
915	if (xfs_ipincount(ip)) {
916		if (!(sync_mode & SYNC_WAIT))
917			goto out_ifunlock;
918		xfs_iunpin_wait(ip);
919	}
920	if (xfs_iflags_test(ip, XFS_ISTALE))
921		goto reclaim;
922	if (xfs_inode_clean(ip))
923		goto reclaim;
924
925	/*
926	 * Never flush out dirty data during non-blocking reclaim, as it would
927	 * just contend with AIL pushing trying to do the same job.
928	 */
929	if (!(sync_mode & SYNC_WAIT))
930		goto out_ifunlock;
931
932	/*
933	 * Now we have an inode that needs flushing.
934	 *
935	 * Note that xfs_iflush will never block on the inode buffer lock, as
936	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
937	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
938	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
939	 * result in an ABBA deadlock with xfs_ifree_cluster().
940	 *
941	 * As xfs_ifree_cluser() must gather all inodes that are active in the
942	 * cache to mark them stale, if we hit this case we don't actually want
943	 * to do IO here - we want the inode marked stale so we can simply
944	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
945	 * inode, back off and try again.  Hopefully the next pass through will
946	 * see the stale flag set on the inode.
947	 */
948	error = xfs_iflush(ip, &bp);
949	if (error == -EAGAIN) {
950		xfs_iunlock(ip, XFS_ILOCK_EXCL);
951		/* backoff longer than in xfs_ifree_cluster */
952		delay(2);
953		goto restart;
954	}
955
956	if (!error) {
957		error = xfs_bwrite(bp);
958		xfs_buf_relse(bp);
959	}
960
961	xfs_iflock(ip);
962reclaim:
963	xfs_ifunlock(ip);
964	xfs_iunlock(ip, XFS_ILOCK_EXCL);
965
966	XFS_STATS_INC(xs_ig_reclaims);
967	/*
968	 * Remove the inode from the per-AG radix tree.
969	 *
970	 * Because radix_tree_delete won't complain even if the item was never
971	 * added to the tree assert that it's been there before to catch
972	 * problems with the inode life time early on.
973	 */
974	spin_lock(&pag->pag_ici_lock);
975	if (!radix_tree_delete(&pag->pag_ici_root,
976				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
977		ASSERT(0);
978	__xfs_inode_clear_reclaim(pag, ip);
979	spin_unlock(&pag->pag_ici_lock);
980
981	/*
982	 * Here we do an (almost) spurious inode lock in order to coordinate
983	 * with inode cache radix tree lookups.  This is because the lookup
984	 * can reference the inodes in the cache without taking references.
985	 *
986	 * We make that OK here by ensuring that we wait until the inode is
987	 * unlocked after the lookup before we go ahead and free it.
988	 */
989	xfs_ilock(ip, XFS_ILOCK_EXCL);
990	xfs_qm_dqdetach(ip);
991	xfs_iunlock(ip, XFS_ILOCK_EXCL);
992
993	xfs_inode_free(ip);
994	return error;
995
996out_ifunlock:
997	xfs_ifunlock(ip);
998out:
999	xfs_iflags_clear(ip, XFS_IRECLAIM);
1000	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1001	/*
1002	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1003	 * a short while. However, this just burns CPU time scanning the tree
1004	 * waiting for IO to complete and the reclaim work never goes back to
1005	 * the idle state. Instead, return 0 to let the next scheduled
1006	 * background reclaim attempt to reclaim the inode again.
1007	 */
1008	return 0;
1009}
1010
1011/*
1012 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1013 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1014 * then a shut down during filesystem unmount reclaim walk leak all the
1015 * unreclaimed inodes.
1016 */
1017STATIC int
1018xfs_reclaim_inodes_ag(
1019	struct xfs_mount	*mp,
1020	int			flags,
1021	int			*nr_to_scan)
1022{
1023	struct xfs_perag	*pag;
1024	int			error = 0;
1025	int			last_error = 0;
1026	xfs_agnumber_t		ag;
1027	int			trylock = flags & SYNC_TRYLOCK;
1028	int			skipped;
1029
1030restart:
1031	ag = 0;
1032	skipped = 0;
1033	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1034		unsigned long	first_index = 0;
1035		int		done = 0;
1036		int		nr_found = 0;
1037
1038		ag = pag->pag_agno + 1;
1039
1040		if (trylock) {
1041			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1042				skipped++;
1043				xfs_perag_put(pag);
1044				continue;
1045			}
1046			first_index = pag->pag_ici_reclaim_cursor;
1047		} else
1048			mutex_lock(&pag->pag_ici_reclaim_lock);
1049
1050		do {
1051			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1052			int	i;
1053
1054			rcu_read_lock();
1055			nr_found = radix_tree_gang_lookup_tag(
1056					&pag->pag_ici_root,
1057					(void **)batch, first_index,
1058					XFS_LOOKUP_BATCH,
1059					XFS_ICI_RECLAIM_TAG);
1060			if (!nr_found) {
1061				done = 1;
1062				rcu_read_unlock();
1063				break;
1064			}
1065
1066			/*
1067			 * Grab the inodes before we drop the lock. if we found
1068			 * nothing, nr == 0 and the loop will be skipped.
1069			 */
1070			for (i = 0; i < nr_found; i++) {
1071				struct xfs_inode *ip = batch[i];
1072
1073				if (done || xfs_reclaim_inode_grab(ip, flags))
1074					batch[i] = NULL;
1075
1076				/*
1077				 * Update the index for the next lookup. Catch
1078				 * overflows into the next AG range which can
1079				 * occur if we have inodes in the last block of
1080				 * the AG and we are currently pointing to the
1081				 * last inode.
1082				 *
1083				 * Because we may see inodes that are from the
1084				 * wrong AG due to RCU freeing and
1085				 * reallocation, only update the index if it
1086				 * lies in this AG. It was a race that lead us
1087				 * to see this inode, so another lookup from
1088				 * the same index will not find it again.
1089				 */
1090				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1091								pag->pag_agno)
1092					continue;
1093				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1094				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1095					done = 1;
1096			}
1097
1098			/* unlock now we've grabbed the inodes. */
1099			rcu_read_unlock();
1100
1101			for (i = 0; i < nr_found; i++) {
1102				if (!batch[i])
1103					continue;
1104				error = xfs_reclaim_inode(batch[i], pag, flags);
1105				if (error && last_error != -EFSCORRUPTED)
1106					last_error = error;
1107			}
1108
1109			*nr_to_scan -= XFS_LOOKUP_BATCH;
1110
1111			cond_resched();
1112
1113		} while (nr_found && !done && *nr_to_scan > 0);
1114
1115		if (trylock && !done)
1116			pag->pag_ici_reclaim_cursor = first_index;
1117		else
1118			pag->pag_ici_reclaim_cursor = 0;
1119		mutex_unlock(&pag->pag_ici_reclaim_lock);
1120		xfs_perag_put(pag);
1121	}
1122
1123	/*
1124	 * if we skipped any AG, and we still have scan count remaining, do
1125	 * another pass this time using blocking reclaim semantics (i.e
1126	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1127	 * ensure that when we get more reclaimers than AGs we block rather
1128	 * than spin trying to execute reclaim.
1129	 */
1130	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1131		trylock = 0;
1132		goto restart;
1133	}
1134	return last_error;
1135}
1136
1137int
1138xfs_reclaim_inodes(
1139	xfs_mount_t	*mp,
1140	int		mode)
1141{
1142	int		nr_to_scan = INT_MAX;
1143
1144	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1145}
1146
1147/*
1148 * Scan a certain number of inodes for reclaim.
1149 *
1150 * When called we make sure that there is a background (fast) inode reclaim in
1151 * progress, while we will throttle the speed of reclaim via doing synchronous
1152 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1153 * them to be cleaned, which we hope will not be very long due to the
1154 * background walker having already kicked the IO off on those dirty inodes.
1155 */
1156long
1157xfs_reclaim_inodes_nr(
1158	struct xfs_mount	*mp,
1159	int			nr_to_scan)
1160{
1161	/* kick background reclaimer and push the AIL */
1162	xfs_reclaim_work_queue(mp);
1163	xfs_ail_push_all(mp->m_ail);
1164
1165	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1166}
1167
1168/*
1169 * Return the number of reclaimable inodes in the filesystem for
1170 * the shrinker to determine how much to reclaim.
1171 */
1172int
1173xfs_reclaim_inodes_count(
1174	struct xfs_mount	*mp)
1175{
1176	struct xfs_perag	*pag;
1177	xfs_agnumber_t		ag = 0;
1178	int			reclaimable = 0;
1179
1180	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1181		ag = pag->pag_agno + 1;
1182		reclaimable += pag->pag_ici_reclaimable;
1183		xfs_perag_put(pag);
1184	}
1185	return reclaimable;
1186}
1187
1188STATIC int
1189xfs_inode_match_id(
1190	struct xfs_inode	*ip,
1191	struct xfs_eofblocks	*eofb)
1192{
1193	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1194	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1195		return 0;
1196
1197	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1198	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1199		return 0;
1200
1201	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1202	    xfs_get_projid(ip) != eofb->eof_prid)
1203		return 0;
1204
1205	return 1;
1206}
1207
1208/*
1209 * A union-based inode filtering algorithm. Process the inode if any of the
1210 * criteria match. This is for global/internal scans only.
1211 */
1212STATIC int
1213xfs_inode_match_id_union(
1214	struct xfs_inode	*ip,
1215	struct xfs_eofblocks	*eofb)
1216{
1217	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1218	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1219		return 1;
1220
1221	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1222	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1223		return 1;
1224
1225	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1226	    xfs_get_projid(ip) == eofb->eof_prid)
1227		return 1;
1228
1229	return 0;
1230}
1231
1232STATIC int
1233xfs_inode_free_eofblocks(
1234	struct xfs_inode	*ip,
1235	int			flags,
1236	void			*args)
1237{
1238	int ret;
1239	struct xfs_eofblocks *eofb = args;
1240	bool need_iolock = true;
1241	int match;
1242
1243	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1244
1245	if (!xfs_can_free_eofblocks(ip, false)) {
1246		/* inode could be preallocated or append-only */
1247		trace_xfs_inode_free_eofblocks_invalid(ip);
1248		xfs_inode_clear_eofblocks_tag(ip);
1249		return 0;
1250	}
1251
1252	/*
1253	 * If the mapping is dirty the operation can block and wait for some
1254	 * time. Unless we are waiting, skip it.
1255	 */
1256	if (!(flags & SYNC_WAIT) &&
1257	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1258		return 0;
1259
1260	if (eofb) {
1261		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1262			match = xfs_inode_match_id_union(ip, eofb);
1263		else
1264			match = xfs_inode_match_id(ip, eofb);
1265		if (!match)
1266			return 0;
1267
1268		/* skip the inode if the file size is too small */
1269		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1270		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1271			return 0;
1272
1273		/*
1274		 * A scan owner implies we already hold the iolock. Skip it in
1275		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1276		 * the possibility of EAGAIN being returned.
1277		 */
1278		if (eofb->eof_scan_owner == ip->i_ino)
1279			need_iolock = false;
1280	}
1281
1282	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1283
1284	/* don't revisit the inode if we're not waiting */
1285	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1286		ret = 0;
1287
1288	return ret;
1289}
1290
1291int
1292xfs_icache_free_eofblocks(
1293	struct xfs_mount	*mp,
1294	struct xfs_eofblocks	*eofb)
1295{
1296	int flags = SYNC_TRYLOCK;
1297
1298	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1299		flags = SYNC_WAIT;
1300
1301	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1302					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1303}
1304
1305/*
1306 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1307 * multiple quotas, we don't know exactly which quota caused an allocation
1308 * failure. We make a best effort by including each quota under low free space
1309 * conditions (less than 1% free space) in the scan.
1310 */
1311int
1312xfs_inode_free_quota_eofblocks(
1313	struct xfs_inode *ip)
1314{
1315	int scan = 0;
1316	struct xfs_eofblocks eofb = {0};
1317	struct xfs_dquot *dq;
1318
1319	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1320
1321	/*
1322	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1323	 * can repeatedly trylock on the inode we're currently processing. We
1324	 * run a sync scan to increase effectiveness and use the union filter to
1325	 * cover all applicable quotas in a single scan.
1326	 */
1327	eofb.eof_scan_owner = ip->i_ino;
1328	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1329
1330	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1331		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1332		if (dq && xfs_dquot_lowsp(dq)) {
1333			eofb.eof_uid = VFS_I(ip)->i_uid;
1334			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1335			scan = 1;
1336		}
1337	}
1338
1339	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1340		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1341		if (dq && xfs_dquot_lowsp(dq)) {
1342			eofb.eof_gid = VFS_I(ip)->i_gid;
1343			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1344			scan = 1;
1345		}
1346	}
1347
1348	if (scan)
1349		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1350
1351	return scan;
1352}
1353
1354void
1355xfs_inode_set_eofblocks_tag(
1356	xfs_inode_t	*ip)
1357{
1358	struct xfs_mount *mp = ip->i_mount;
1359	struct xfs_perag *pag;
1360	int tagged;
1361
1362	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1363	spin_lock(&pag->pag_ici_lock);
1364	trace_xfs_inode_set_eofblocks_tag(ip);
1365
1366	tagged = radix_tree_tagged(&pag->pag_ici_root,
1367				   XFS_ICI_EOFBLOCKS_TAG);
1368	radix_tree_tag_set(&pag->pag_ici_root,
1369			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1370			   XFS_ICI_EOFBLOCKS_TAG);
1371	if (!tagged) {
1372		/* propagate the eofblocks tag up into the perag radix tree */
1373		spin_lock(&ip->i_mount->m_perag_lock);
1374		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1375				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1376				   XFS_ICI_EOFBLOCKS_TAG);
1377		spin_unlock(&ip->i_mount->m_perag_lock);
1378
1379		/* kick off background trimming */
1380		xfs_queue_eofblocks(ip->i_mount);
1381
1382		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1383					      -1, _RET_IP_);
1384	}
1385
1386	spin_unlock(&pag->pag_ici_lock);
1387	xfs_perag_put(pag);
1388}
1389
1390void
1391xfs_inode_clear_eofblocks_tag(
1392	xfs_inode_t	*ip)
1393{
1394	struct xfs_mount *mp = ip->i_mount;
1395	struct xfs_perag *pag;
1396
1397	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1398	spin_lock(&pag->pag_ici_lock);
1399	trace_xfs_inode_clear_eofblocks_tag(ip);
1400
1401	radix_tree_tag_clear(&pag->pag_ici_root,
1402			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1403			     XFS_ICI_EOFBLOCKS_TAG);
1404	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1405		/* clear the eofblocks tag from the perag radix tree */
1406		spin_lock(&ip->i_mount->m_perag_lock);
1407		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1408				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1409				     XFS_ICI_EOFBLOCKS_TAG);
1410		spin_unlock(&ip->i_mount->m_perag_lock);
1411		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1412					       -1, _RET_IP_);
1413	}
1414
1415	spin_unlock(&pag->pag_ici_lock);
1416	xfs_perag_put(pag);
1417}
1418
1419