1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_trans.h"
25#include "xfs_trans_priv.h"
26#include "xfs_buf_item.h"
27#include "xfs_extfree_item.h"
28#include "xfs_log.h"
29
30
31kmem_zone_t	*xfs_efi_zone;
32kmem_zone_t	*xfs_efd_zone;
33
34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35{
36	return container_of(lip, struct xfs_efi_log_item, efi_item);
37}
38
39void
40xfs_efi_item_free(
41	struct xfs_efi_log_item	*efip)
42{
43	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44		kmem_free(efip);
45	else
46		kmem_zone_free(xfs_efi_zone, efip);
47}
48
49/*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
53 * committed vs unpin operations in bulk insert operations. Hence the reference
54 * count to ensure only the last caller frees the EFI.
55 */
56STATIC void
57__xfs_efi_release(
58	struct xfs_efi_log_item	*efip)
59{
60	struct xfs_ail		*ailp = efip->efi_item.li_ailp;
61
62	if (atomic_dec_and_test(&efip->efi_refcount)) {
63		spin_lock(&ailp->xa_lock);
64		/* xfs_trans_ail_delete() drops the AIL lock. */
65		xfs_trans_ail_delete(ailp, &efip->efi_item,
66				     SHUTDOWN_LOG_IO_ERROR);
67		xfs_efi_item_free(efip);
68	}
69}
70
71/*
72 * This returns the number of iovecs needed to log the given efi item.
73 * We only need 1 iovec for an efi item.  It just logs the efi_log_format
74 * structure.
75 */
76static inline int
77xfs_efi_item_sizeof(
78	struct xfs_efi_log_item *efip)
79{
80	return sizeof(struct xfs_efi_log_format) +
81	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
82}
83
84STATIC void
85xfs_efi_item_size(
86	struct xfs_log_item	*lip,
87	int			*nvecs,
88	int			*nbytes)
89{
90	*nvecs += 1;
91	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
92}
93
94/*
95 * This is called to fill in the vector of log iovecs for the
96 * given efi log item. We use only 1 iovec, and we point that
97 * at the efi_log_format structure embedded in the efi item.
98 * It is at this point that we assert that all of the extent
99 * slots in the efi item have been filled.
100 */
101STATIC void
102xfs_efi_item_format(
103	struct xfs_log_item	*lip,
104	struct xfs_log_vec	*lv)
105{
106	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
107	struct xfs_log_iovec	*vecp = NULL;
108
109	ASSERT(atomic_read(&efip->efi_next_extent) ==
110				efip->efi_format.efi_nextents);
111
112	efip->efi_format.efi_type = XFS_LI_EFI;
113	efip->efi_format.efi_size = 1;
114
115	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
116			&efip->efi_format,
117			xfs_efi_item_sizeof(efip));
118}
119
120
121/*
122 * Pinning has no meaning for an efi item, so just return.
123 */
124STATIC void
125xfs_efi_item_pin(
126	struct xfs_log_item	*lip)
127{
128}
129
130/*
131 * While EFIs cannot really be pinned, the unpin operation is the last place at
132 * which the EFI is manipulated during a transaction.  If we are being asked to
133 * remove the EFI it's because the transaction has been cancelled and by
134 * definition that means the EFI cannot be in the AIL so remove it from the
135 * transaction and free it.  Otherwise coordinate with xfs_efi_release()
136 * to determine who gets to free the EFI.
137 */
138STATIC void
139xfs_efi_item_unpin(
140	struct xfs_log_item	*lip,
141	int			remove)
142{
143	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
144
145	if (remove) {
146		ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
147		if (lip->li_desc)
148			xfs_trans_del_item(lip);
149		xfs_efi_item_free(efip);
150		return;
151	}
152	__xfs_efi_release(efip);
153}
154
155/*
156 * Efi items have no locking or pushing.  However, since EFIs are pulled from
157 * the AIL when their corresponding EFDs are committed to disk, their situation
158 * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
159 * will eventually flush the log.  This should help in getting the EFI out of
160 * the AIL.
161 */
162STATIC uint
163xfs_efi_item_push(
164	struct xfs_log_item	*lip,
165	struct list_head	*buffer_list)
166{
167	return XFS_ITEM_PINNED;
168}
169
170STATIC void
171xfs_efi_item_unlock(
172	struct xfs_log_item	*lip)
173{
174	if (lip->li_flags & XFS_LI_ABORTED)
175		xfs_efi_item_free(EFI_ITEM(lip));
176}
177
178/*
179 * The EFI is logged only once and cannot be moved in the log, so simply return
180 * the lsn at which it's been logged.
181 */
182STATIC xfs_lsn_t
183xfs_efi_item_committed(
184	struct xfs_log_item	*lip,
185	xfs_lsn_t		lsn)
186{
187	return lsn;
188}
189
190/*
191 * The EFI dependency tracking op doesn't do squat.  It can't because
192 * it doesn't know where the free extent is coming from.  The dependency
193 * tracking has to be handled by the "enclosing" metadata object.  For
194 * example, for inodes, the inode is locked throughout the extent freeing
195 * so the dependency should be recorded there.
196 */
197STATIC void
198xfs_efi_item_committing(
199	struct xfs_log_item	*lip,
200	xfs_lsn_t		lsn)
201{
202}
203
204/*
205 * This is the ops vector shared by all efi log items.
206 */
207static const struct xfs_item_ops xfs_efi_item_ops = {
208	.iop_size	= xfs_efi_item_size,
209	.iop_format	= xfs_efi_item_format,
210	.iop_pin	= xfs_efi_item_pin,
211	.iop_unpin	= xfs_efi_item_unpin,
212	.iop_unlock	= xfs_efi_item_unlock,
213	.iop_committed	= xfs_efi_item_committed,
214	.iop_push	= xfs_efi_item_push,
215	.iop_committing = xfs_efi_item_committing
216};
217
218
219/*
220 * Allocate and initialize an efi item with the given number of extents.
221 */
222struct xfs_efi_log_item *
223xfs_efi_init(
224	struct xfs_mount	*mp,
225	uint			nextents)
226
227{
228	struct xfs_efi_log_item	*efip;
229	uint			size;
230
231	ASSERT(nextents > 0);
232	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
233		size = (uint)(sizeof(xfs_efi_log_item_t) +
234			((nextents - 1) * sizeof(xfs_extent_t)));
235		efip = kmem_zalloc(size, KM_SLEEP);
236	} else {
237		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
238	}
239
240	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
241	efip->efi_format.efi_nextents = nextents;
242	efip->efi_format.efi_id = (__psint_t)(void*)efip;
243	atomic_set(&efip->efi_next_extent, 0);
244	atomic_set(&efip->efi_refcount, 2);
245
246	return efip;
247}
248
249/*
250 * Copy an EFI format buffer from the given buf, and into the destination
251 * EFI format structure.
252 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
253 * one of which will be the native format for this kernel.
254 * It will handle the conversion of formats if necessary.
255 */
256int
257xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
258{
259	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
260	uint i;
261	uint len = sizeof(xfs_efi_log_format_t) +
262		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
263	uint len32 = sizeof(xfs_efi_log_format_32_t) +
264		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
265	uint len64 = sizeof(xfs_efi_log_format_64_t) +
266		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
267
268	if (buf->i_len == len) {
269		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
270		return 0;
271	} else if (buf->i_len == len32) {
272		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
273
274		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
275		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
276		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
277		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
278		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
279			dst_efi_fmt->efi_extents[i].ext_start =
280				src_efi_fmt_32->efi_extents[i].ext_start;
281			dst_efi_fmt->efi_extents[i].ext_len =
282				src_efi_fmt_32->efi_extents[i].ext_len;
283		}
284		return 0;
285	} else if (buf->i_len == len64) {
286		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
287
288		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
289		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
290		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
291		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
292		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
293			dst_efi_fmt->efi_extents[i].ext_start =
294				src_efi_fmt_64->efi_extents[i].ext_start;
295			dst_efi_fmt->efi_extents[i].ext_len =
296				src_efi_fmt_64->efi_extents[i].ext_len;
297		}
298		return 0;
299	}
300	return -EFSCORRUPTED;
301}
302
303/*
304 * This is called by the efd item code below to release references to the given
305 * efi item.  Each efd calls this with the number of extents that it has
306 * logged, and when the sum of these reaches the total number of extents logged
307 * by this efi item we can free the efi item.
308 */
309void
310xfs_efi_release(xfs_efi_log_item_t	*efip,
311		uint			nextents)
312{
313	ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
314	if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) {
315		/* recovery needs us to drop the EFI reference, too */
316		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
317			__xfs_efi_release(efip);
318
319		__xfs_efi_release(efip);
320		/* efip may now have been freed, do not reference it again. */
321	}
322}
323
324static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
325{
326	return container_of(lip, struct xfs_efd_log_item, efd_item);
327}
328
329STATIC void
330xfs_efd_item_free(struct xfs_efd_log_item *efdp)
331{
332	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
333		kmem_free(efdp);
334	else
335		kmem_zone_free(xfs_efd_zone, efdp);
336}
337
338/*
339 * This returns the number of iovecs needed to log the given efd item.
340 * We only need 1 iovec for an efd item.  It just logs the efd_log_format
341 * structure.
342 */
343static inline int
344xfs_efd_item_sizeof(
345	struct xfs_efd_log_item *efdp)
346{
347	return sizeof(xfs_efd_log_format_t) +
348	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
349}
350
351STATIC void
352xfs_efd_item_size(
353	struct xfs_log_item	*lip,
354	int			*nvecs,
355	int			*nbytes)
356{
357	*nvecs += 1;
358	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
359}
360
361/*
362 * This is called to fill in the vector of log iovecs for the
363 * given efd log item. We use only 1 iovec, and we point that
364 * at the efd_log_format structure embedded in the efd item.
365 * It is at this point that we assert that all of the extent
366 * slots in the efd item have been filled.
367 */
368STATIC void
369xfs_efd_item_format(
370	struct xfs_log_item	*lip,
371	struct xfs_log_vec	*lv)
372{
373	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
374	struct xfs_log_iovec	*vecp = NULL;
375
376	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
377
378	efdp->efd_format.efd_type = XFS_LI_EFD;
379	efdp->efd_format.efd_size = 1;
380
381	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
382			&efdp->efd_format,
383			xfs_efd_item_sizeof(efdp));
384}
385
386/*
387 * Pinning has no meaning for an efd item, so just return.
388 */
389STATIC void
390xfs_efd_item_pin(
391	struct xfs_log_item	*lip)
392{
393}
394
395/*
396 * Since pinning has no meaning for an efd item, unpinning does
397 * not either.
398 */
399STATIC void
400xfs_efd_item_unpin(
401	struct xfs_log_item	*lip,
402	int			remove)
403{
404}
405
406/*
407 * There isn't much you can do to push on an efd item.  It is simply stuck
408 * waiting for the log to be flushed to disk.
409 */
410STATIC uint
411xfs_efd_item_push(
412	struct xfs_log_item	*lip,
413	struct list_head	*buffer_list)
414{
415	return XFS_ITEM_PINNED;
416}
417
418STATIC void
419xfs_efd_item_unlock(
420	struct xfs_log_item	*lip)
421{
422	if (lip->li_flags & XFS_LI_ABORTED)
423		xfs_efd_item_free(EFD_ITEM(lip));
424}
425
426/*
427 * When the efd item is committed to disk, all we need to do
428 * is delete our reference to our partner efi item and then
429 * free ourselves.  Since we're freeing ourselves we must
430 * return -1 to keep the transaction code from further referencing
431 * this item.
432 */
433STATIC xfs_lsn_t
434xfs_efd_item_committed(
435	struct xfs_log_item	*lip,
436	xfs_lsn_t		lsn)
437{
438	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
439
440	/*
441	 * If we got a log I/O error, it's always the case that the LR with the
442	 * EFI got unpinned and freed before the EFD got aborted.
443	 */
444	if (!(lip->li_flags & XFS_LI_ABORTED))
445		xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
446
447	xfs_efd_item_free(efdp);
448	return (xfs_lsn_t)-1;
449}
450
451/*
452 * The EFD dependency tracking op doesn't do squat.  It can't because
453 * it doesn't know where the free extent is coming from.  The dependency
454 * tracking has to be handled by the "enclosing" metadata object.  For
455 * example, for inodes, the inode is locked throughout the extent freeing
456 * so the dependency should be recorded there.
457 */
458STATIC void
459xfs_efd_item_committing(
460	struct xfs_log_item	*lip,
461	xfs_lsn_t		lsn)
462{
463}
464
465/*
466 * This is the ops vector shared by all efd log items.
467 */
468static const struct xfs_item_ops xfs_efd_item_ops = {
469	.iop_size	= xfs_efd_item_size,
470	.iop_format	= xfs_efd_item_format,
471	.iop_pin	= xfs_efd_item_pin,
472	.iop_unpin	= xfs_efd_item_unpin,
473	.iop_unlock	= xfs_efd_item_unlock,
474	.iop_committed	= xfs_efd_item_committed,
475	.iop_push	= xfs_efd_item_push,
476	.iop_committing = xfs_efd_item_committing
477};
478
479/*
480 * Allocate and initialize an efd item with the given number of extents.
481 */
482struct xfs_efd_log_item *
483xfs_efd_init(
484	struct xfs_mount	*mp,
485	struct xfs_efi_log_item	*efip,
486	uint			nextents)
487
488{
489	struct xfs_efd_log_item	*efdp;
490	uint			size;
491
492	ASSERT(nextents > 0);
493	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
494		size = (uint)(sizeof(xfs_efd_log_item_t) +
495			((nextents - 1) * sizeof(xfs_extent_t)));
496		efdp = kmem_zalloc(size, KM_SLEEP);
497	} else {
498		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
499	}
500
501	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
502	efdp->efd_efip = efip;
503	efdp->efd_format.efd_nextents = nextents;
504	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
505
506	return efdp;
507}
508