1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_bit.h"
24#include "xfs_sb.h"
25#include "xfs_mount.h"
26#include "xfs_trans.h"
27#include "xfs_buf_item.h"
28#include "xfs_trans_priv.h"
29#include "xfs_error.h"
30#include "xfs_trace.h"
31#include "xfs_log.h"
32
33
34kmem_zone_t	*xfs_buf_item_zone;
35
36static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37{
38	return container_of(lip, struct xfs_buf_log_item, bli_item);
39}
40
41STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
42
43static inline int
44xfs_buf_log_format_size(
45	struct xfs_buf_log_format *blfp)
46{
47	return offsetof(struct xfs_buf_log_format, blf_data_map) +
48			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
49}
50
51/*
52 * This returns the number of log iovecs needed to log the
53 * given buf log item.
54 *
55 * It calculates this as 1 iovec for the buf log format structure
56 * and 1 for each stretch of non-contiguous chunks to be logged.
57 * Contiguous chunks are logged in a single iovec.
58 *
59 * If the XFS_BLI_STALE flag has been set, then log nothing.
60 */
61STATIC void
62xfs_buf_item_size_segment(
63	struct xfs_buf_log_item	*bip,
64	struct xfs_buf_log_format *blfp,
65	int			*nvecs,
66	int			*nbytes)
67{
68	struct xfs_buf		*bp = bip->bli_buf;
69	int			next_bit;
70	int			last_bit;
71
72	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
73	if (last_bit == -1)
74		return;
75
76	/*
77	 * initial count for a dirty buffer is 2 vectors - the format structure
78	 * and the first dirty region.
79	 */
80	*nvecs += 2;
81	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
82
83	while (last_bit != -1) {
84		/*
85		 * This takes the bit number to start looking from and
86		 * returns the next set bit from there.  It returns -1
87		 * if there are no more bits set or the start bit is
88		 * beyond the end of the bitmap.
89		 */
90		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
91					last_bit + 1);
92		/*
93		 * If we run out of bits, leave the loop,
94		 * else if we find a new set of bits bump the number of vecs,
95		 * else keep scanning the current set of bits.
96		 */
97		if (next_bit == -1) {
98			break;
99		} else if (next_bit != last_bit + 1) {
100			last_bit = next_bit;
101			(*nvecs)++;
102		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
103			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
104			    XFS_BLF_CHUNK)) {
105			last_bit = next_bit;
106			(*nvecs)++;
107		} else {
108			last_bit++;
109		}
110		*nbytes += XFS_BLF_CHUNK;
111	}
112}
113
114/*
115 * This returns the number of log iovecs needed to log the given buf log item.
116 *
117 * It calculates this as 1 iovec for the buf log format structure and 1 for each
118 * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
119 * in a single iovec.
120 *
121 * Discontiguous buffers need a format structure per region that that is being
122 * logged. This makes the changes in the buffer appear to log recovery as though
123 * they came from separate buffers, just like would occur if multiple buffers
124 * were used instead of a single discontiguous buffer. This enables
125 * discontiguous buffers to be in-memory constructs, completely transparent to
126 * what ends up on disk.
127 *
128 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
129 * format structures.
130 */
131STATIC void
132xfs_buf_item_size(
133	struct xfs_log_item	*lip,
134	int			*nvecs,
135	int			*nbytes)
136{
137	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
138	int			i;
139
140	ASSERT(atomic_read(&bip->bli_refcount) > 0);
141	if (bip->bli_flags & XFS_BLI_STALE) {
142		/*
143		 * The buffer is stale, so all we need to log
144		 * is the buf log format structure with the
145		 * cancel flag in it.
146		 */
147		trace_xfs_buf_item_size_stale(bip);
148		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
149		*nvecs += bip->bli_format_count;
150		for (i = 0; i < bip->bli_format_count; i++) {
151			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
152		}
153		return;
154	}
155
156	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
157
158	if (bip->bli_flags & XFS_BLI_ORDERED) {
159		/*
160		 * The buffer has been logged just to order it.
161		 * It is not being included in the transaction
162		 * commit, so no vectors are used at all.
163		 */
164		trace_xfs_buf_item_size_ordered(bip);
165		*nvecs = XFS_LOG_VEC_ORDERED;
166		return;
167	}
168
169	/*
170	 * the vector count is based on the number of buffer vectors we have
171	 * dirty bits in. This will only be greater than one when we have a
172	 * compound buffer with more than one segment dirty. Hence for compound
173	 * buffers we need to track which segment the dirty bits correspond to,
174	 * and when we move from one segment to the next increment the vector
175	 * count for the extra buf log format structure that will need to be
176	 * written.
177	 */
178	for (i = 0; i < bip->bli_format_count; i++) {
179		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
180					  nvecs, nbytes);
181	}
182	trace_xfs_buf_item_size(bip);
183}
184
185static inline void
186xfs_buf_item_copy_iovec(
187	struct xfs_log_vec	*lv,
188	struct xfs_log_iovec	**vecp,
189	struct xfs_buf		*bp,
190	uint			offset,
191	int			first_bit,
192	uint			nbits)
193{
194	offset += first_bit * XFS_BLF_CHUNK;
195	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
196			xfs_buf_offset(bp, offset),
197			nbits * XFS_BLF_CHUNK);
198}
199
200static inline bool
201xfs_buf_item_straddle(
202	struct xfs_buf		*bp,
203	uint			offset,
204	int			next_bit,
205	int			last_bit)
206{
207	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
208		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
209		 XFS_BLF_CHUNK);
210}
211
212static void
213xfs_buf_item_format_segment(
214	struct xfs_buf_log_item	*bip,
215	struct xfs_log_vec	*lv,
216	struct xfs_log_iovec	**vecp,
217	uint			offset,
218	struct xfs_buf_log_format *blfp)
219{
220	struct xfs_buf	*bp = bip->bli_buf;
221	uint		base_size;
222	int		first_bit;
223	int		last_bit;
224	int		next_bit;
225	uint		nbits;
226
227	/* copy the flags across from the base format item */
228	blfp->blf_flags = bip->__bli_format.blf_flags;
229
230	/*
231	 * Base size is the actual size of the ondisk structure - it reflects
232	 * the actual size of the dirty bitmap rather than the size of the in
233	 * memory structure.
234	 */
235	base_size = xfs_buf_log_format_size(blfp);
236
237	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
238	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
239		/*
240		 * If the map is not be dirty in the transaction, mark
241		 * the size as zero and do not advance the vector pointer.
242		 */
243		return;
244	}
245
246	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
247	blfp->blf_size = 1;
248
249	if (bip->bli_flags & XFS_BLI_STALE) {
250		/*
251		 * The buffer is stale, so all we need to log
252		 * is the buf log format structure with the
253		 * cancel flag in it.
254		 */
255		trace_xfs_buf_item_format_stale(bip);
256		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
257		return;
258	}
259
260
261	/*
262	 * Fill in an iovec for each set of contiguous chunks.
263	 */
264	last_bit = first_bit;
265	nbits = 1;
266	for (;;) {
267		/*
268		 * This takes the bit number to start looking from and
269		 * returns the next set bit from there.  It returns -1
270		 * if there are no more bits set or the start bit is
271		 * beyond the end of the bitmap.
272		 */
273		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
274					(uint)last_bit + 1);
275		/*
276		 * If we run out of bits fill in the last iovec and get out of
277		 * the loop.  Else if we start a new set of bits then fill in
278		 * the iovec for the series we were looking at and start
279		 * counting the bits in the new one.  Else we're still in the
280		 * same set of bits so just keep counting and scanning.
281		 */
282		if (next_bit == -1) {
283			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
284						first_bit, nbits);
285			blfp->blf_size++;
286			break;
287		} else if (next_bit != last_bit + 1 ||
288		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
289			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
290						first_bit, nbits);
291			blfp->blf_size++;
292			first_bit = next_bit;
293			last_bit = next_bit;
294			nbits = 1;
295		} else {
296			last_bit++;
297			nbits++;
298		}
299	}
300}
301
302/*
303 * This is called to fill in the vector of log iovecs for the
304 * given log buf item.  It fills the first entry with a buf log
305 * format structure, and the rest point to contiguous chunks
306 * within the buffer.
307 */
308STATIC void
309xfs_buf_item_format(
310	struct xfs_log_item	*lip,
311	struct xfs_log_vec	*lv)
312{
313	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
314	struct xfs_buf		*bp = bip->bli_buf;
315	struct xfs_log_iovec	*vecp = NULL;
316	uint			offset = 0;
317	int			i;
318
319	ASSERT(atomic_read(&bip->bli_refcount) > 0);
320	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
321	       (bip->bli_flags & XFS_BLI_STALE));
322	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
323	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
324	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
325
326
327	/*
328	 * If it is an inode buffer, transfer the in-memory state to the
329	 * format flags and clear the in-memory state.
330	 *
331	 * For buffer based inode allocation, we do not transfer
332	 * this state if the inode buffer allocation has not yet been committed
333	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
334	 * correct replay of the inode allocation.
335	 *
336	 * For icreate item based inode allocation, the buffers aren't written
337	 * to the journal during allocation, and hence we should always tag the
338	 * buffer as an inode buffer so that the correct unlinked list replay
339	 * occurs during recovery.
340	 */
341	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
342		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
343		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
344		      xfs_log_item_in_current_chkpt(lip)))
345			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
346		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
347	}
348
349	if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
350							XFS_BLI_ORDERED) {
351		/*
352		 * The buffer has been logged just to order it.  It is not being
353		 * included in the transaction commit, so don't format it.
354		 */
355		trace_xfs_buf_item_format_ordered(bip);
356		return;
357	}
358
359	for (i = 0; i < bip->bli_format_count; i++) {
360		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
361					    &bip->bli_formats[i]);
362		offset += bp->b_maps[i].bm_len;
363	}
364
365	/*
366	 * Check to make sure everything is consistent.
367	 */
368	trace_xfs_buf_item_format(bip);
369}
370
371/*
372 * This is called to pin the buffer associated with the buf log item in memory
373 * so it cannot be written out.
374 *
375 * We also always take a reference to the buffer log item here so that the bli
376 * is held while the item is pinned in memory. This means that we can
377 * unconditionally drop the reference count a transaction holds when the
378 * transaction is completed.
379 */
380STATIC void
381xfs_buf_item_pin(
382	struct xfs_log_item	*lip)
383{
384	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
385
386	ASSERT(atomic_read(&bip->bli_refcount) > 0);
387	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
388	       (bip->bli_flags & XFS_BLI_ORDERED) ||
389	       (bip->bli_flags & XFS_BLI_STALE));
390
391	trace_xfs_buf_item_pin(bip);
392
393	atomic_inc(&bip->bli_refcount);
394	atomic_inc(&bip->bli_buf->b_pin_count);
395}
396
397/*
398 * This is called to unpin the buffer associated with the buf log
399 * item which was previously pinned with a call to xfs_buf_item_pin().
400 *
401 * Also drop the reference to the buf item for the current transaction.
402 * If the XFS_BLI_STALE flag is set and we are the last reference,
403 * then free up the buf log item and unlock the buffer.
404 *
405 * If the remove flag is set we are called from uncommit in the
406 * forced-shutdown path.  If that is true and the reference count on
407 * the log item is going to drop to zero we need to free the item's
408 * descriptor in the transaction.
409 */
410STATIC void
411xfs_buf_item_unpin(
412	struct xfs_log_item	*lip,
413	int			remove)
414{
415	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
416	xfs_buf_t	*bp = bip->bli_buf;
417	struct xfs_ail	*ailp = lip->li_ailp;
418	int		stale = bip->bli_flags & XFS_BLI_STALE;
419	int		freed;
420
421	ASSERT(bp->b_fspriv == bip);
422	ASSERT(atomic_read(&bip->bli_refcount) > 0);
423
424	trace_xfs_buf_item_unpin(bip);
425
426	freed = atomic_dec_and_test(&bip->bli_refcount);
427
428	if (atomic_dec_and_test(&bp->b_pin_count))
429		wake_up_all(&bp->b_waiters);
430
431	if (freed && stale) {
432		ASSERT(bip->bli_flags & XFS_BLI_STALE);
433		ASSERT(xfs_buf_islocked(bp));
434		ASSERT(XFS_BUF_ISSTALE(bp));
435		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
436
437		trace_xfs_buf_item_unpin_stale(bip);
438
439		if (remove) {
440			/*
441			 * If we are in a transaction context, we have to
442			 * remove the log item from the transaction as we are
443			 * about to release our reference to the buffer.  If we
444			 * don't, the unlock that occurs later in
445			 * xfs_trans_uncommit() will try to reference the
446			 * buffer which we no longer have a hold on.
447			 */
448			if (lip->li_desc)
449				xfs_trans_del_item(lip);
450
451			/*
452			 * Since the transaction no longer refers to the buffer,
453			 * the buffer should no longer refer to the transaction.
454			 */
455			bp->b_transp = NULL;
456		}
457
458		/*
459		 * If we get called here because of an IO error, we may
460		 * or may not have the item on the AIL. xfs_trans_ail_delete()
461		 * will take care of that situation.
462		 * xfs_trans_ail_delete() drops the AIL lock.
463		 */
464		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
465			xfs_buf_do_callbacks(bp);
466			bp->b_fspriv = NULL;
467			bp->b_iodone = NULL;
468		} else {
469			spin_lock(&ailp->xa_lock);
470			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
471			xfs_buf_item_relse(bp);
472			ASSERT(bp->b_fspriv == NULL);
473		}
474		xfs_buf_relse(bp);
475	} else if (freed && remove) {
476		/*
477		 * There are currently two references to the buffer - the active
478		 * LRU reference and the buf log item. What we are about to do
479		 * here - simulate a failed IO completion - requires 3
480		 * references.
481		 *
482		 * The LRU reference is removed by the xfs_buf_stale() call. The
483		 * buf item reference is removed by the xfs_buf_iodone()
484		 * callback that is run by xfs_buf_do_callbacks() during ioend
485		 * processing (via the bp->b_iodone callback), and then finally
486		 * the ioend processing will drop the IO reference if the buffer
487		 * is marked XBF_ASYNC.
488		 *
489		 * Hence we need to take an additional reference here so that IO
490		 * completion processing doesn't free the buffer prematurely.
491		 */
492		xfs_buf_lock(bp);
493		xfs_buf_hold(bp);
494		bp->b_flags |= XBF_ASYNC;
495		xfs_buf_ioerror(bp, -EIO);
496		XFS_BUF_UNDONE(bp);
497		xfs_buf_stale(bp);
498		xfs_buf_ioend(bp);
499	}
500}
501
502/*
503 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
504 * seconds so as to not spam logs too much on repeated detection of the same
505 * buffer being bad..
506 */
507
508static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
509
510STATIC uint
511xfs_buf_item_push(
512	struct xfs_log_item	*lip,
513	struct list_head	*buffer_list)
514{
515	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
516	struct xfs_buf		*bp = bip->bli_buf;
517	uint			rval = XFS_ITEM_SUCCESS;
518
519	if (xfs_buf_ispinned(bp))
520		return XFS_ITEM_PINNED;
521	if (!xfs_buf_trylock(bp)) {
522		/*
523		 * If we have just raced with a buffer being pinned and it has
524		 * been marked stale, we could end up stalling until someone else
525		 * issues a log force to unpin the stale buffer. Check for the
526		 * race condition here so xfsaild recognizes the buffer is pinned
527		 * and queues a log force to move it along.
528		 */
529		if (xfs_buf_ispinned(bp))
530			return XFS_ITEM_PINNED;
531		return XFS_ITEM_LOCKED;
532	}
533
534	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
535
536	trace_xfs_buf_item_push(bip);
537
538	/* has a previous flush failed due to IO errors? */
539	if ((bp->b_flags & XBF_WRITE_FAIL) &&
540	    ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
541		xfs_warn(bp->b_target->bt_mount,
542"Failing async write on buffer block 0x%llx. Retrying async write.",
543			 (long long)bp->b_bn);
544	}
545
546	if (!xfs_buf_delwri_queue(bp, buffer_list))
547		rval = XFS_ITEM_FLUSHING;
548	xfs_buf_unlock(bp);
549	return rval;
550}
551
552/*
553 * Release the buffer associated with the buf log item.  If there is no dirty
554 * logged data associated with the buffer recorded in the buf log item, then
555 * free the buf log item and remove the reference to it in the buffer.
556 *
557 * This call ignores the recursion count.  It is only called when the buffer
558 * should REALLY be unlocked, regardless of the recursion count.
559 *
560 * We unconditionally drop the transaction's reference to the log item. If the
561 * item was logged, then another reference was taken when it was pinned, so we
562 * can safely drop the transaction reference now.  This also allows us to avoid
563 * potential races with the unpin code freeing the bli by not referencing the
564 * bli after we've dropped the reference count.
565 *
566 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
567 * if necessary but do not unlock the buffer.  This is for support of
568 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
569 * free the item.
570 */
571STATIC void
572xfs_buf_item_unlock(
573	struct xfs_log_item	*lip)
574{
575	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
576	struct xfs_buf		*bp = bip->bli_buf;
577	bool			clean;
578	bool			aborted;
579	int			flags;
580
581	/* Clear the buffer's association with this transaction. */
582	bp->b_transp = NULL;
583
584	/*
585	 * If this is a transaction abort, don't return early.  Instead, allow
586	 * the brelse to happen.  Normally it would be done for stale
587	 * (cancelled) buffers at unpin time, but we'll never go through the
588	 * pin/unpin cycle if we abort inside commit.
589	 */
590	aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
591	/*
592	 * Before possibly freeing the buf item, copy the per-transaction state
593	 * so we can reference it safely later after clearing it from the
594	 * buffer log item.
595	 */
596	flags = bip->bli_flags;
597	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
598
599	/*
600	 * If the buf item is marked stale, then don't do anything.  We'll
601	 * unlock the buffer and free the buf item when the buffer is unpinned
602	 * for the last time.
603	 */
604	if (flags & XFS_BLI_STALE) {
605		trace_xfs_buf_item_unlock_stale(bip);
606		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
607		if (!aborted) {
608			atomic_dec(&bip->bli_refcount);
609			return;
610		}
611	}
612
613	trace_xfs_buf_item_unlock(bip);
614
615	/*
616	 * If the buf item isn't tracking any data, free it, otherwise drop the
617	 * reference we hold to it. If we are aborting the transaction, this may
618	 * be the only reference to the buf item, so we free it anyway
619	 * regardless of whether it is dirty or not. A dirty abort implies a
620	 * shutdown, anyway.
621	 *
622	 * Ordered buffers are dirty but may have no recorded changes, so ensure
623	 * we only release clean items here.
624	 */
625	clean = (flags & XFS_BLI_DIRTY) ? false : true;
626	if (clean) {
627		int i;
628		for (i = 0; i < bip->bli_format_count; i++) {
629			if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
630				     bip->bli_formats[i].blf_map_size)) {
631				clean = false;
632				break;
633			}
634		}
635	}
636
637	/*
638	 * Clean buffers, by definition, cannot be in the AIL. However, aborted
639	 * buffers may be dirty and hence in the AIL. Therefore if we are
640	 * aborting a buffer and we've just taken the last refernce away, we
641	 * have to check if it is in the AIL before freeing it. We need to free
642	 * it in this case, because an aborted transaction has already shut the
643	 * filesystem down and this is the last chance we will have to do so.
644	 */
645	if (atomic_dec_and_test(&bip->bli_refcount)) {
646		if (clean)
647			xfs_buf_item_relse(bp);
648		else if (aborted) {
649			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
650			if (lip->li_flags & XFS_LI_IN_AIL) {
651				spin_lock(&lip->li_ailp->xa_lock);
652				xfs_trans_ail_delete(lip->li_ailp, lip,
653						     SHUTDOWN_LOG_IO_ERROR);
654			}
655			xfs_buf_item_relse(bp);
656		}
657	}
658
659	if (!(flags & XFS_BLI_HOLD))
660		xfs_buf_relse(bp);
661}
662
663/*
664 * This is called to find out where the oldest active copy of the
665 * buf log item in the on disk log resides now that the last log
666 * write of it completed at the given lsn.
667 * We always re-log all the dirty data in a buffer, so usually the
668 * latest copy in the on disk log is the only one that matters.  For
669 * those cases we simply return the given lsn.
670 *
671 * The one exception to this is for buffers full of newly allocated
672 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
673 * flag set, indicating that only the di_next_unlinked fields from the
674 * inodes in the buffers will be replayed during recovery.  If the
675 * original newly allocated inode images have not yet been flushed
676 * when the buffer is so relogged, then we need to make sure that we
677 * keep the old images in the 'active' portion of the log.  We do this
678 * by returning the original lsn of that transaction here rather than
679 * the current one.
680 */
681STATIC xfs_lsn_t
682xfs_buf_item_committed(
683	struct xfs_log_item	*lip,
684	xfs_lsn_t		lsn)
685{
686	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
687
688	trace_xfs_buf_item_committed(bip);
689
690	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
691		return lip->li_lsn;
692	return lsn;
693}
694
695STATIC void
696xfs_buf_item_committing(
697	struct xfs_log_item	*lip,
698	xfs_lsn_t		commit_lsn)
699{
700}
701
702/*
703 * This is the ops vector shared by all buf log items.
704 */
705static const struct xfs_item_ops xfs_buf_item_ops = {
706	.iop_size	= xfs_buf_item_size,
707	.iop_format	= xfs_buf_item_format,
708	.iop_pin	= xfs_buf_item_pin,
709	.iop_unpin	= xfs_buf_item_unpin,
710	.iop_unlock	= xfs_buf_item_unlock,
711	.iop_committed	= xfs_buf_item_committed,
712	.iop_push	= xfs_buf_item_push,
713	.iop_committing = xfs_buf_item_committing
714};
715
716STATIC int
717xfs_buf_item_get_format(
718	struct xfs_buf_log_item	*bip,
719	int			count)
720{
721	ASSERT(bip->bli_formats == NULL);
722	bip->bli_format_count = count;
723
724	if (count == 1) {
725		bip->bli_formats = &bip->__bli_format;
726		return 0;
727	}
728
729	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
730				KM_SLEEP);
731	if (!bip->bli_formats)
732		return -ENOMEM;
733	return 0;
734}
735
736STATIC void
737xfs_buf_item_free_format(
738	struct xfs_buf_log_item	*bip)
739{
740	if (bip->bli_formats != &bip->__bli_format) {
741		kmem_free(bip->bli_formats);
742		bip->bli_formats = NULL;
743	}
744}
745
746/*
747 * Allocate a new buf log item to go with the given buffer.
748 * Set the buffer's b_fsprivate field to point to the new
749 * buf log item.  If there are other item's attached to the
750 * buffer (see xfs_buf_attach_iodone() below), then put the
751 * buf log item at the front.
752 */
753void
754xfs_buf_item_init(
755	xfs_buf_t	*bp,
756	xfs_mount_t	*mp)
757{
758	xfs_log_item_t		*lip = bp->b_fspriv;
759	xfs_buf_log_item_t	*bip;
760	int			chunks;
761	int			map_size;
762	int			error;
763	int			i;
764
765	/*
766	 * Check to see if there is already a buf log item for
767	 * this buffer.  If there is, it is guaranteed to be
768	 * the first.  If we do already have one, there is
769	 * nothing to do here so return.
770	 */
771	ASSERT(bp->b_target->bt_mount == mp);
772	if (lip != NULL && lip->li_type == XFS_LI_BUF)
773		return;
774
775	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
776	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
777	bip->bli_buf = bp;
778	xfs_buf_hold(bp);
779
780	/*
781	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
782	 * can be divided into. Make sure not to truncate any pieces.
783	 * map_size is the size of the bitmap needed to describe the
784	 * chunks of the buffer.
785	 *
786	 * Discontiguous buffer support follows the layout of the underlying
787	 * buffer. This makes the implementation as simple as possible.
788	 */
789	error = xfs_buf_item_get_format(bip, bp->b_map_count);
790	ASSERT(error == 0);
791
792	for (i = 0; i < bip->bli_format_count; i++) {
793		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
794				      XFS_BLF_CHUNK);
795		map_size = DIV_ROUND_UP(chunks, NBWORD);
796
797		bip->bli_formats[i].blf_type = XFS_LI_BUF;
798		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
799		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
800		bip->bli_formats[i].blf_map_size = map_size;
801	}
802
803	/*
804	 * Put the buf item into the list of items attached to the
805	 * buffer at the front.
806	 */
807	if (bp->b_fspriv)
808		bip->bli_item.li_bio_list = bp->b_fspriv;
809	bp->b_fspriv = bip;
810}
811
812
813/*
814 * Mark bytes first through last inclusive as dirty in the buf
815 * item's bitmap.
816 */
817static void
818xfs_buf_item_log_segment(
819	uint			first,
820	uint			last,
821	uint			*map)
822{
823	uint		first_bit;
824	uint		last_bit;
825	uint		bits_to_set;
826	uint		bits_set;
827	uint		word_num;
828	uint		*wordp;
829	uint		bit;
830	uint		end_bit;
831	uint		mask;
832
833	/*
834	 * Convert byte offsets to bit numbers.
835	 */
836	first_bit = first >> XFS_BLF_SHIFT;
837	last_bit = last >> XFS_BLF_SHIFT;
838
839	/*
840	 * Calculate the total number of bits to be set.
841	 */
842	bits_to_set = last_bit - first_bit + 1;
843
844	/*
845	 * Get a pointer to the first word in the bitmap
846	 * to set a bit in.
847	 */
848	word_num = first_bit >> BIT_TO_WORD_SHIFT;
849	wordp = &map[word_num];
850
851	/*
852	 * Calculate the starting bit in the first word.
853	 */
854	bit = first_bit & (uint)(NBWORD - 1);
855
856	/*
857	 * First set any bits in the first word of our range.
858	 * If it starts at bit 0 of the word, it will be
859	 * set below rather than here.  That is what the variable
860	 * bit tells us. The variable bits_set tracks the number
861	 * of bits that have been set so far.  End_bit is the number
862	 * of the last bit to be set in this word plus one.
863	 */
864	if (bit) {
865		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
866		mask = ((1 << (end_bit - bit)) - 1) << bit;
867		*wordp |= mask;
868		wordp++;
869		bits_set = end_bit - bit;
870	} else {
871		bits_set = 0;
872	}
873
874	/*
875	 * Now set bits a whole word at a time that are between
876	 * first_bit and last_bit.
877	 */
878	while ((bits_to_set - bits_set) >= NBWORD) {
879		*wordp |= 0xffffffff;
880		bits_set += NBWORD;
881		wordp++;
882	}
883
884	/*
885	 * Finally, set any bits left to be set in one last partial word.
886	 */
887	end_bit = bits_to_set - bits_set;
888	if (end_bit) {
889		mask = (1 << end_bit) - 1;
890		*wordp |= mask;
891	}
892}
893
894/*
895 * Mark bytes first through last inclusive as dirty in the buf
896 * item's bitmap.
897 */
898void
899xfs_buf_item_log(
900	xfs_buf_log_item_t	*bip,
901	uint			first,
902	uint			last)
903{
904	int			i;
905	uint			start;
906	uint			end;
907	struct xfs_buf		*bp = bip->bli_buf;
908
909	/*
910	 * walk each buffer segment and mark them dirty appropriately.
911	 */
912	start = 0;
913	for (i = 0; i < bip->bli_format_count; i++) {
914		if (start > last)
915			break;
916		end = start + BBTOB(bp->b_maps[i].bm_len);
917		if (first > end) {
918			start += BBTOB(bp->b_maps[i].bm_len);
919			continue;
920		}
921		if (first < start)
922			first = start;
923		if (end > last)
924			end = last;
925
926		xfs_buf_item_log_segment(first, end,
927					 &bip->bli_formats[i].blf_data_map[0]);
928
929		start += bp->b_maps[i].bm_len;
930	}
931}
932
933
934/*
935 * Return 1 if the buffer has been logged or ordered in a transaction (at any
936 * point, not just the current transaction) and 0 if not.
937 */
938uint
939xfs_buf_item_dirty(
940	xfs_buf_log_item_t	*bip)
941{
942	return (bip->bli_flags & XFS_BLI_DIRTY);
943}
944
945STATIC void
946xfs_buf_item_free(
947	xfs_buf_log_item_t	*bip)
948{
949	xfs_buf_item_free_format(bip);
950	kmem_zone_free(xfs_buf_item_zone, bip);
951}
952
953/*
954 * This is called when the buf log item is no longer needed.  It should
955 * free the buf log item associated with the given buffer and clear
956 * the buffer's pointer to the buf log item.  If there are no more
957 * items in the list, clear the b_iodone field of the buffer (see
958 * xfs_buf_attach_iodone() below).
959 */
960void
961xfs_buf_item_relse(
962	xfs_buf_t	*bp)
963{
964	xfs_buf_log_item_t	*bip = bp->b_fspriv;
965
966	trace_xfs_buf_item_relse(bp, _RET_IP_);
967	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
968
969	bp->b_fspriv = bip->bli_item.li_bio_list;
970	if (bp->b_fspriv == NULL)
971		bp->b_iodone = NULL;
972
973	xfs_buf_rele(bp);
974	xfs_buf_item_free(bip);
975}
976
977
978/*
979 * Add the given log item with its callback to the list of callbacks
980 * to be called when the buffer's I/O completes.  If it is not set
981 * already, set the buffer's b_iodone() routine to be
982 * xfs_buf_iodone_callbacks() and link the log item into the list of
983 * items rooted at b_fsprivate.  Items are always added as the second
984 * entry in the list if there is a first, because the buf item code
985 * assumes that the buf log item is first.
986 */
987void
988xfs_buf_attach_iodone(
989	xfs_buf_t	*bp,
990	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
991	xfs_log_item_t	*lip)
992{
993	xfs_log_item_t	*head_lip;
994
995	ASSERT(xfs_buf_islocked(bp));
996
997	lip->li_cb = cb;
998	head_lip = bp->b_fspriv;
999	if (head_lip) {
1000		lip->li_bio_list = head_lip->li_bio_list;
1001		head_lip->li_bio_list = lip;
1002	} else {
1003		bp->b_fspriv = lip;
1004	}
1005
1006	ASSERT(bp->b_iodone == NULL ||
1007	       bp->b_iodone == xfs_buf_iodone_callbacks);
1008	bp->b_iodone = xfs_buf_iodone_callbacks;
1009}
1010
1011/*
1012 * We can have many callbacks on a buffer. Running the callbacks individually
1013 * can cause a lot of contention on the AIL lock, so we allow for a single
1014 * callback to be able to scan the remaining lip->li_bio_list for other items
1015 * of the same type and callback to be processed in the first call.
1016 *
1017 * As a result, the loop walking the callback list below will also modify the
1018 * list. it removes the first item from the list and then runs the callback.
1019 * The loop then restarts from the new head of the list. This allows the
1020 * callback to scan and modify the list attached to the buffer and we don't
1021 * have to care about maintaining a next item pointer.
1022 */
1023STATIC void
1024xfs_buf_do_callbacks(
1025	struct xfs_buf		*bp)
1026{
1027	struct xfs_log_item	*lip;
1028
1029	while ((lip = bp->b_fspriv) != NULL) {
1030		bp->b_fspriv = lip->li_bio_list;
1031		ASSERT(lip->li_cb != NULL);
1032		/*
1033		 * Clear the next pointer so we don't have any
1034		 * confusion if the item is added to another buf.
1035		 * Don't touch the log item after calling its
1036		 * callback, because it could have freed itself.
1037		 */
1038		lip->li_bio_list = NULL;
1039		lip->li_cb(bp, lip);
1040	}
1041}
1042
1043/*
1044 * This is the iodone() function for buffers which have had callbacks
1045 * attached to them by xfs_buf_attach_iodone().  It should remove each
1046 * log item from the buffer's list and call the callback of each in turn.
1047 * When done, the buffer's fsprivate field is set to NULL and the buffer
1048 * is unlocked with a call to iodone().
1049 */
1050void
1051xfs_buf_iodone_callbacks(
1052	struct xfs_buf		*bp)
1053{
1054	struct xfs_log_item	*lip = bp->b_fspriv;
1055	struct xfs_mount	*mp = lip->li_mountp;
1056	static ulong		lasttime;
1057	static xfs_buftarg_t	*lasttarg;
1058
1059	if (likely(!bp->b_error))
1060		goto do_callbacks;
1061
1062	/*
1063	 * If we've already decided to shutdown the filesystem because of
1064	 * I/O errors, there's no point in giving this a retry.
1065	 */
1066	if (XFS_FORCED_SHUTDOWN(mp)) {
1067		xfs_buf_stale(bp);
1068		XFS_BUF_DONE(bp);
1069		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1070		goto do_callbacks;
1071	}
1072
1073	if (bp->b_target != lasttarg ||
1074	    time_after(jiffies, (lasttime + 5*HZ))) {
1075		lasttime = jiffies;
1076		xfs_buf_ioerror_alert(bp, __func__);
1077	}
1078	lasttarg = bp->b_target;
1079
1080	/*
1081	 * If the write was asynchronous then no one will be looking for the
1082	 * error.  Clear the error state and write the buffer out again.
1083	 *
1084	 * XXX: This helps against transient write errors, but we need to find
1085	 * a way to shut the filesystem down if the writes keep failing.
1086	 *
1087	 * In practice we'll shut the filesystem down soon as non-transient
1088	 * errors tend to affect the whole device and a failing log write
1089	 * will make us give up.  But we really ought to do better here.
1090	 */
1091	if (XFS_BUF_ISASYNC(bp)) {
1092		ASSERT(bp->b_iodone != NULL);
1093
1094		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1095
1096		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1097
1098		if (!(bp->b_flags & (XBF_STALE|XBF_WRITE_FAIL))) {
1099			bp->b_flags |= XBF_WRITE | XBF_ASYNC |
1100				       XBF_DONE | XBF_WRITE_FAIL;
1101			xfs_buf_submit(bp);
1102		} else {
1103			xfs_buf_relse(bp);
1104		}
1105
1106		return;
1107	}
1108
1109	/*
1110	 * If the write of the buffer was synchronous, we want to make
1111	 * sure to return the error to the caller of xfs_bwrite().
1112	 */
1113	xfs_buf_stale(bp);
1114	XFS_BUF_DONE(bp);
1115
1116	trace_xfs_buf_error_relse(bp, _RET_IP_);
1117
1118do_callbacks:
1119	xfs_buf_do_callbacks(bp);
1120	bp->b_fspriv = NULL;
1121	bp->b_iodone = NULL;
1122	xfs_buf_ioend(bp);
1123}
1124
1125/*
1126 * This is the iodone() function for buffers which have been
1127 * logged.  It is called when they are eventually flushed out.
1128 * It should remove the buf item from the AIL, and free the buf item.
1129 * It is called by xfs_buf_iodone_callbacks() above which will take
1130 * care of cleaning up the buffer itself.
1131 */
1132void
1133xfs_buf_iodone(
1134	struct xfs_buf		*bp,
1135	struct xfs_log_item	*lip)
1136{
1137	struct xfs_ail		*ailp = lip->li_ailp;
1138
1139	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1140
1141	xfs_buf_rele(bp);
1142
1143	/*
1144	 * If we are forcibly shutting down, this may well be
1145	 * off the AIL already. That's because we simulate the
1146	 * log-committed callbacks to unpin these buffers. Or we may never
1147	 * have put this item on AIL because of the transaction was
1148	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1149	 *
1150	 * Either way, AIL is useless if we're forcing a shutdown.
1151	 */
1152	spin_lock(&ailp->xa_lock);
1153	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1154	xfs_buf_item_free(BUF_ITEM(lip));
1155}
1156