1/* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23/* 24 * This file implements the functions that access LEB properties and their 25 * categories. LEBs are categorized based on the needs of UBIFS, and the 26 * categories are stored as either heaps or lists to provide a fast way of 27 * finding a LEB in a particular category. For example, UBIFS may need to find 28 * an empty LEB for the journal, or a very dirty LEB for garbage collection. 29 */ 30 31#include "ubifs.h" 32 33/** 34 * get_heap_comp_val - get the LEB properties value for heap comparisons. 35 * @lprops: LEB properties 36 * @cat: LEB category 37 */ 38static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat) 39{ 40 switch (cat) { 41 case LPROPS_FREE: 42 return lprops->free; 43 case LPROPS_DIRTY_IDX: 44 return lprops->free + lprops->dirty; 45 default: 46 return lprops->dirty; 47 } 48} 49 50/** 51 * move_up_lpt_heap - move a new heap entry up as far as possible. 52 * @c: UBIFS file-system description object 53 * @heap: LEB category heap 54 * @lprops: LEB properties to move 55 * @cat: LEB category 56 * 57 * New entries to a heap are added at the bottom and then moved up until the 58 * parent's value is greater. In the case of LPT's category heaps, the value 59 * is either the amount of free space or the amount of dirty space, depending 60 * on the category. 61 */ 62static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 63 struct ubifs_lprops *lprops, int cat) 64{ 65 int val1, val2, hpos; 66 67 hpos = lprops->hpos; 68 if (!hpos) 69 return; /* Already top of the heap */ 70 val1 = get_heap_comp_val(lprops, cat); 71 /* Compare to parent and, if greater, move up the heap */ 72 do { 73 int ppos = (hpos - 1) / 2; 74 75 val2 = get_heap_comp_val(heap->arr[ppos], cat); 76 if (val2 >= val1) 77 return; 78 /* Greater than parent so move up */ 79 heap->arr[ppos]->hpos = hpos; 80 heap->arr[hpos] = heap->arr[ppos]; 81 heap->arr[ppos] = lprops; 82 lprops->hpos = ppos; 83 hpos = ppos; 84 } while (hpos); 85} 86 87/** 88 * adjust_lpt_heap - move a changed heap entry up or down the heap. 89 * @c: UBIFS file-system description object 90 * @heap: LEB category heap 91 * @lprops: LEB properties to move 92 * @hpos: heap position of @lprops 93 * @cat: LEB category 94 * 95 * Changed entries in a heap are moved up or down until the parent's value is 96 * greater. In the case of LPT's category heaps, the value is either the amount 97 * of free space or the amount of dirty space, depending on the category. 98 */ 99static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 100 struct ubifs_lprops *lprops, int hpos, int cat) 101{ 102 int val1, val2, val3, cpos; 103 104 val1 = get_heap_comp_val(lprops, cat); 105 /* Compare to parent and, if greater than parent, move up the heap */ 106 if (hpos) { 107 int ppos = (hpos - 1) / 2; 108 109 val2 = get_heap_comp_val(heap->arr[ppos], cat); 110 if (val1 > val2) { 111 /* Greater than parent so move up */ 112 while (1) { 113 heap->arr[ppos]->hpos = hpos; 114 heap->arr[hpos] = heap->arr[ppos]; 115 heap->arr[ppos] = lprops; 116 lprops->hpos = ppos; 117 hpos = ppos; 118 if (!hpos) 119 return; 120 ppos = (hpos - 1) / 2; 121 val2 = get_heap_comp_val(heap->arr[ppos], cat); 122 if (val1 <= val2) 123 return; 124 /* Still greater than parent so keep going */ 125 } 126 } 127 } 128 129 /* Not greater than parent, so compare to children */ 130 while (1) { 131 /* Compare to left child */ 132 cpos = hpos * 2 + 1; 133 if (cpos >= heap->cnt) 134 return; 135 val2 = get_heap_comp_val(heap->arr[cpos], cat); 136 if (val1 < val2) { 137 /* Less than left child, so promote biggest child */ 138 if (cpos + 1 < heap->cnt) { 139 val3 = get_heap_comp_val(heap->arr[cpos + 1], 140 cat); 141 if (val3 > val2) 142 cpos += 1; /* Right child is bigger */ 143 } 144 heap->arr[cpos]->hpos = hpos; 145 heap->arr[hpos] = heap->arr[cpos]; 146 heap->arr[cpos] = lprops; 147 lprops->hpos = cpos; 148 hpos = cpos; 149 continue; 150 } 151 /* Compare to right child */ 152 cpos += 1; 153 if (cpos >= heap->cnt) 154 return; 155 val3 = get_heap_comp_val(heap->arr[cpos], cat); 156 if (val1 < val3) { 157 /* Less than right child, so promote right child */ 158 heap->arr[cpos]->hpos = hpos; 159 heap->arr[hpos] = heap->arr[cpos]; 160 heap->arr[cpos] = lprops; 161 lprops->hpos = cpos; 162 hpos = cpos; 163 continue; 164 } 165 return; 166 } 167} 168 169/** 170 * add_to_lpt_heap - add LEB properties to a LEB category heap. 171 * @c: UBIFS file-system description object 172 * @lprops: LEB properties to add 173 * @cat: LEB category 174 * 175 * This function returns %1 if @lprops is added to the heap for LEB category 176 * @cat, otherwise %0 is returned because the heap is full. 177 */ 178static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, 179 int cat) 180{ 181 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 182 183 if (heap->cnt >= heap->max_cnt) { 184 const int b = LPT_HEAP_SZ / 2 - 1; 185 int cpos, val1, val2; 186 187 /* Compare to some other LEB on the bottom of heap */ 188 /* Pick a position kind of randomly */ 189 cpos = (((size_t)lprops >> 4) & b) + b; 190 ubifs_assert(cpos >= b); 191 ubifs_assert(cpos < LPT_HEAP_SZ); 192 ubifs_assert(cpos < heap->cnt); 193 194 val1 = get_heap_comp_val(lprops, cat); 195 val2 = get_heap_comp_val(heap->arr[cpos], cat); 196 if (val1 > val2) { 197 struct ubifs_lprops *lp; 198 199 lp = heap->arr[cpos]; 200 lp->flags &= ~LPROPS_CAT_MASK; 201 lp->flags |= LPROPS_UNCAT; 202 list_add(&lp->list, &c->uncat_list); 203 lprops->hpos = cpos; 204 heap->arr[cpos] = lprops; 205 move_up_lpt_heap(c, heap, lprops, cat); 206 dbg_check_heap(c, heap, cat, lprops->hpos); 207 return 1; /* Added to heap */ 208 } 209 dbg_check_heap(c, heap, cat, -1); 210 return 0; /* Not added to heap */ 211 } else { 212 lprops->hpos = heap->cnt++; 213 heap->arr[lprops->hpos] = lprops; 214 move_up_lpt_heap(c, heap, lprops, cat); 215 dbg_check_heap(c, heap, cat, lprops->hpos); 216 return 1; /* Added to heap */ 217 } 218} 219 220/** 221 * remove_from_lpt_heap - remove LEB properties from a LEB category heap. 222 * @c: UBIFS file-system description object 223 * @lprops: LEB properties to remove 224 * @cat: LEB category 225 */ 226static void remove_from_lpt_heap(struct ubifs_info *c, 227 struct ubifs_lprops *lprops, int cat) 228{ 229 struct ubifs_lpt_heap *heap; 230 int hpos = lprops->hpos; 231 232 heap = &c->lpt_heap[cat - 1]; 233 ubifs_assert(hpos >= 0 && hpos < heap->cnt); 234 ubifs_assert(heap->arr[hpos] == lprops); 235 heap->cnt -= 1; 236 if (hpos < heap->cnt) { 237 heap->arr[hpos] = heap->arr[heap->cnt]; 238 heap->arr[hpos]->hpos = hpos; 239 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); 240 } 241 dbg_check_heap(c, heap, cat, -1); 242} 243 244/** 245 * lpt_heap_replace - replace lprops in a category heap. 246 * @c: UBIFS file-system description object 247 * @old_lprops: LEB properties to replace 248 * @new_lprops: LEB properties with which to replace 249 * @cat: LEB category 250 * 251 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 252 * and the lprops that the pnode contains. When that happens, references in 253 * the category heaps to those lprops must be updated to point to the new 254 * lprops. This function does that. 255 */ 256static void lpt_heap_replace(struct ubifs_info *c, 257 struct ubifs_lprops *old_lprops, 258 struct ubifs_lprops *new_lprops, int cat) 259{ 260 struct ubifs_lpt_heap *heap; 261 int hpos = new_lprops->hpos; 262 263 heap = &c->lpt_heap[cat - 1]; 264 heap->arr[hpos] = new_lprops; 265} 266 267/** 268 * ubifs_add_to_cat - add LEB properties to a category list or heap. 269 * @c: UBIFS file-system description object 270 * @lprops: LEB properties to add 271 * @cat: LEB category to which to add 272 * 273 * LEB properties are categorized to enable fast find operations. 274 */ 275void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, 276 int cat) 277{ 278 switch (cat) { 279 case LPROPS_DIRTY: 280 case LPROPS_DIRTY_IDX: 281 case LPROPS_FREE: 282 if (add_to_lpt_heap(c, lprops, cat)) 283 break; 284 /* No more room on heap so make it un-categorized */ 285 cat = LPROPS_UNCAT; 286 /* Fall through */ 287 case LPROPS_UNCAT: 288 list_add(&lprops->list, &c->uncat_list); 289 break; 290 case LPROPS_EMPTY: 291 list_add(&lprops->list, &c->empty_list); 292 break; 293 case LPROPS_FREEABLE: 294 list_add(&lprops->list, &c->freeable_list); 295 c->freeable_cnt += 1; 296 break; 297 case LPROPS_FRDI_IDX: 298 list_add(&lprops->list, &c->frdi_idx_list); 299 break; 300 default: 301 ubifs_assert(0); 302 } 303 304 lprops->flags &= ~LPROPS_CAT_MASK; 305 lprops->flags |= cat; 306 c->in_a_category_cnt += 1; 307 ubifs_assert(c->in_a_category_cnt <= c->main_lebs); 308} 309 310/** 311 * ubifs_remove_from_cat - remove LEB properties from a category list or heap. 312 * @c: UBIFS file-system description object 313 * @lprops: LEB properties to remove 314 * @cat: LEB category from which to remove 315 * 316 * LEB properties are categorized to enable fast find operations. 317 */ 318static void ubifs_remove_from_cat(struct ubifs_info *c, 319 struct ubifs_lprops *lprops, int cat) 320{ 321 switch (cat) { 322 case LPROPS_DIRTY: 323 case LPROPS_DIRTY_IDX: 324 case LPROPS_FREE: 325 remove_from_lpt_heap(c, lprops, cat); 326 break; 327 case LPROPS_FREEABLE: 328 c->freeable_cnt -= 1; 329 ubifs_assert(c->freeable_cnt >= 0); 330 /* Fall through */ 331 case LPROPS_UNCAT: 332 case LPROPS_EMPTY: 333 case LPROPS_FRDI_IDX: 334 ubifs_assert(!list_empty(&lprops->list)); 335 list_del(&lprops->list); 336 break; 337 default: 338 ubifs_assert(0); 339 } 340 341 c->in_a_category_cnt -= 1; 342 ubifs_assert(c->in_a_category_cnt >= 0); 343} 344 345/** 346 * ubifs_replace_cat - replace lprops in a category list or heap. 347 * @c: UBIFS file-system description object 348 * @old_lprops: LEB properties to replace 349 * @new_lprops: LEB properties with which to replace 350 * 351 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 352 * and the lprops that the pnode contains. When that happens, references in 353 * category lists and heaps must be replaced. This function does that. 354 */ 355void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, 356 struct ubifs_lprops *new_lprops) 357{ 358 int cat; 359 360 cat = new_lprops->flags & LPROPS_CAT_MASK; 361 switch (cat) { 362 case LPROPS_DIRTY: 363 case LPROPS_DIRTY_IDX: 364 case LPROPS_FREE: 365 lpt_heap_replace(c, old_lprops, new_lprops, cat); 366 break; 367 case LPROPS_UNCAT: 368 case LPROPS_EMPTY: 369 case LPROPS_FREEABLE: 370 case LPROPS_FRDI_IDX: 371 list_replace(&old_lprops->list, &new_lprops->list); 372 break; 373 default: 374 ubifs_assert(0); 375 } 376} 377 378/** 379 * ubifs_ensure_cat - ensure LEB properties are categorized. 380 * @c: UBIFS file-system description object 381 * @lprops: LEB properties 382 * 383 * A LEB may have fallen off of the bottom of a heap, and ended up as 384 * un-categorized even though it has enough space for us now. If that is the 385 * case this function will put the LEB back onto a heap. 386 */ 387void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) 388{ 389 int cat = lprops->flags & LPROPS_CAT_MASK; 390 391 if (cat != LPROPS_UNCAT) 392 return; 393 cat = ubifs_categorize_lprops(c, lprops); 394 if (cat == LPROPS_UNCAT) 395 return; 396 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT); 397 ubifs_add_to_cat(c, lprops, cat); 398} 399 400/** 401 * ubifs_categorize_lprops - categorize LEB properties. 402 * @c: UBIFS file-system description object 403 * @lprops: LEB properties to categorize 404 * 405 * LEB properties are categorized to enable fast find operations. This function 406 * returns the LEB category to which the LEB properties belong. Note however 407 * that if the LEB category is stored as a heap and the heap is full, the 408 * LEB properties may have their category changed to %LPROPS_UNCAT. 409 */ 410int ubifs_categorize_lprops(const struct ubifs_info *c, 411 const struct ubifs_lprops *lprops) 412{ 413 if (lprops->flags & LPROPS_TAKEN) 414 return LPROPS_UNCAT; 415 416 if (lprops->free == c->leb_size) { 417 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 418 return LPROPS_EMPTY; 419 } 420 421 if (lprops->free + lprops->dirty == c->leb_size) { 422 if (lprops->flags & LPROPS_INDEX) 423 return LPROPS_FRDI_IDX; 424 else 425 return LPROPS_FREEABLE; 426 } 427 428 if (lprops->flags & LPROPS_INDEX) { 429 if (lprops->dirty + lprops->free >= c->min_idx_node_sz) 430 return LPROPS_DIRTY_IDX; 431 } else { 432 if (lprops->dirty >= c->dead_wm && 433 lprops->dirty > lprops->free) 434 return LPROPS_DIRTY; 435 if (lprops->free > 0) 436 return LPROPS_FREE; 437 } 438 439 return LPROPS_UNCAT; 440} 441 442/** 443 * change_category - change LEB properties category. 444 * @c: UBIFS file-system description object 445 * @lprops: LEB properties to re-categorize 446 * 447 * LEB properties are categorized to enable fast find operations. When the LEB 448 * properties change they must be re-categorized. 449 */ 450static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) 451{ 452 int old_cat = lprops->flags & LPROPS_CAT_MASK; 453 int new_cat = ubifs_categorize_lprops(c, lprops); 454 455 if (old_cat == new_cat) { 456 struct ubifs_lpt_heap *heap; 457 458 /* lprops on a heap now must be moved up or down */ 459 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) 460 return; /* Not on a heap */ 461 heap = &c->lpt_heap[new_cat - 1]; 462 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat); 463 } else { 464 ubifs_remove_from_cat(c, lprops, old_cat); 465 ubifs_add_to_cat(c, lprops, new_cat); 466 } 467} 468 469/** 470 * ubifs_calc_dark - calculate LEB dark space size. 471 * @c: the UBIFS file-system description object 472 * @spc: amount of free and dirty space in the LEB 473 * 474 * This function calculates and returns amount of dark space in an LEB which 475 * has @spc bytes of free and dirty space. 476 * 477 * UBIFS is trying to account the space which might not be usable, and this 478 * space is called "dark space". For example, if an LEB has only %512 free 479 * bytes, it is dark space, because it cannot fit a large data node. 480 */ 481int ubifs_calc_dark(const struct ubifs_info *c, int spc) 482{ 483 ubifs_assert(!(spc & 7)); 484 485 if (spc < c->dark_wm) 486 return spc; 487 488 /* 489 * If we have slightly more space then the dark space watermark, we can 490 * anyway safely assume it we'll be able to write a node of the 491 * smallest size there. 492 */ 493 if (spc - c->dark_wm < MIN_WRITE_SZ) 494 return spc - MIN_WRITE_SZ; 495 496 return c->dark_wm; 497} 498 499/** 500 * is_lprops_dirty - determine if LEB properties are dirty. 501 * @c: the UBIFS file-system description object 502 * @lprops: LEB properties to test 503 */ 504static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) 505{ 506 struct ubifs_pnode *pnode; 507 int pos; 508 509 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1); 510 pnode = (struct ubifs_pnode *)container_of(lprops - pos, 511 struct ubifs_pnode, 512 lprops[0]); 513 return !test_bit(COW_CNODE, &pnode->flags) && 514 test_bit(DIRTY_CNODE, &pnode->flags); 515} 516 517/** 518 * ubifs_change_lp - change LEB properties. 519 * @c: the UBIFS file-system description object 520 * @lp: LEB properties to change 521 * @free: new free space amount 522 * @dirty: new dirty space amount 523 * @flags: new flags 524 * @idx_gc_cnt: change to the count of @idx_gc list 525 * 526 * This function changes LEB properties (@free, @dirty or @flag). However, the 527 * property which has the %LPROPS_NC value is not changed. Returns a pointer to 528 * the updated LEB properties on success and a negative error code on failure. 529 * 530 * Note, the LEB properties may have had to be copied (due to COW) and 531 * consequently the pointer returned may not be the same as the pointer 532 * passed. 533 */ 534const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, 535 const struct ubifs_lprops *lp, 536 int free, int dirty, int flags, 537 int idx_gc_cnt) 538{ 539 /* 540 * This is the only function that is allowed to change lprops, so we 541 * discard the "const" qualifier. 542 */ 543 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; 544 545 dbg_lp("LEB %d, free %d, dirty %d, flags %d", 546 lprops->lnum, free, dirty, flags); 547 548 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 549 ubifs_assert(c->lst.empty_lebs >= 0 && 550 c->lst.empty_lebs <= c->main_lebs); 551 ubifs_assert(c->freeable_cnt >= 0); 552 ubifs_assert(c->freeable_cnt <= c->main_lebs); 553 ubifs_assert(c->lst.taken_empty_lebs >= 0); 554 ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs); 555 ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7)); 556 ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7)); 557 ubifs_assert(!(c->lst.total_used & 7)); 558 ubifs_assert(free == LPROPS_NC || free >= 0); 559 ubifs_assert(dirty == LPROPS_NC || dirty >= 0); 560 561 if (!is_lprops_dirty(c, lprops)) { 562 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum); 563 if (IS_ERR(lprops)) 564 return lprops; 565 } else 566 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum)); 567 568 ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7)); 569 570 spin_lock(&c->space_lock); 571 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 572 c->lst.taken_empty_lebs -= 1; 573 574 if (!(lprops->flags & LPROPS_INDEX)) { 575 int old_spc; 576 577 old_spc = lprops->free + lprops->dirty; 578 if (old_spc < c->dead_wm) 579 c->lst.total_dead -= old_spc; 580 else 581 c->lst.total_dark -= ubifs_calc_dark(c, old_spc); 582 583 c->lst.total_used -= c->leb_size - old_spc; 584 } 585 586 if (free != LPROPS_NC) { 587 free = ALIGN(free, 8); 588 c->lst.total_free += free - lprops->free; 589 590 /* Increase or decrease empty LEBs counter if needed */ 591 if (free == c->leb_size) { 592 if (lprops->free != c->leb_size) 593 c->lst.empty_lebs += 1; 594 } else if (lprops->free == c->leb_size) 595 c->lst.empty_lebs -= 1; 596 lprops->free = free; 597 } 598 599 if (dirty != LPROPS_NC) { 600 dirty = ALIGN(dirty, 8); 601 c->lst.total_dirty += dirty - lprops->dirty; 602 lprops->dirty = dirty; 603 } 604 605 if (flags != LPROPS_NC) { 606 /* Take care about indexing LEBs counter if needed */ 607 if ((lprops->flags & LPROPS_INDEX)) { 608 if (!(flags & LPROPS_INDEX)) 609 c->lst.idx_lebs -= 1; 610 } else if (flags & LPROPS_INDEX) 611 c->lst.idx_lebs += 1; 612 lprops->flags = flags; 613 } 614 615 if (!(lprops->flags & LPROPS_INDEX)) { 616 int new_spc; 617 618 new_spc = lprops->free + lprops->dirty; 619 if (new_spc < c->dead_wm) 620 c->lst.total_dead += new_spc; 621 else 622 c->lst.total_dark += ubifs_calc_dark(c, new_spc); 623 624 c->lst.total_used += c->leb_size - new_spc; 625 } 626 627 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 628 c->lst.taken_empty_lebs += 1; 629 630 change_category(c, lprops); 631 c->idx_gc_cnt += idx_gc_cnt; 632 spin_unlock(&c->space_lock); 633 return lprops; 634} 635 636/** 637 * ubifs_get_lp_stats - get lprops statistics. 638 * @c: UBIFS file-system description object 639 * @st: return statistics 640 */ 641void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst) 642{ 643 spin_lock(&c->space_lock); 644 memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats)); 645 spin_unlock(&c->space_lock); 646} 647 648/** 649 * ubifs_change_one_lp - change LEB properties. 650 * @c: the UBIFS file-system description object 651 * @lnum: LEB to change properties for 652 * @free: amount of free space 653 * @dirty: amount of dirty space 654 * @flags_set: flags to set 655 * @flags_clean: flags to clean 656 * @idx_gc_cnt: change to the count of idx_gc list 657 * 658 * This function changes properties of LEB @lnum. It is a helper wrapper over 659 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the 660 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and 661 * a negative error code in case of failure. 662 */ 663int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 664 int flags_set, int flags_clean, int idx_gc_cnt) 665{ 666 int err = 0, flags; 667 const struct ubifs_lprops *lp; 668 669 ubifs_get_lprops(c); 670 671 lp = ubifs_lpt_lookup_dirty(c, lnum); 672 if (IS_ERR(lp)) { 673 err = PTR_ERR(lp); 674 goto out; 675 } 676 677 flags = (lp->flags | flags_set) & ~flags_clean; 678 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt); 679 if (IS_ERR(lp)) 680 err = PTR_ERR(lp); 681 682out: 683 ubifs_release_lprops(c); 684 if (err) 685 ubifs_err(c, "cannot change properties of LEB %d, error %d", 686 lnum, err); 687 return err; 688} 689 690/** 691 * ubifs_update_one_lp - update LEB properties. 692 * @c: the UBIFS file-system description object 693 * @lnum: LEB to change properties for 694 * @free: amount of free space 695 * @dirty: amount of dirty space to add 696 * @flags_set: flags to set 697 * @flags_clean: flags to clean 698 * 699 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to 700 * current dirty space, not substitutes it. 701 */ 702int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 703 int flags_set, int flags_clean) 704{ 705 int err = 0, flags; 706 const struct ubifs_lprops *lp; 707 708 ubifs_get_lprops(c); 709 710 lp = ubifs_lpt_lookup_dirty(c, lnum); 711 if (IS_ERR(lp)) { 712 err = PTR_ERR(lp); 713 goto out; 714 } 715 716 flags = (lp->flags | flags_set) & ~flags_clean; 717 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0); 718 if (IS_ERR(lp)) 719 err = PTR_ERR(lp); 720 721out: 722 ubifs_release_lprops(c); 723 if (err) 724 ubifs_err(c, "cannot update properties of LEB %d, error %d", 725 lnum, err); 726 return err; 727} 728 729/** 730 * ubifs_read_one_lp - read LEB properties. 731 * @c: the UBIFS file-system description object 732 * @lnum: LEB to read properties for 733 * @lp: where to store read properties 734 * 735 * This helper function reads properties of a LEB @lnum and stores them in @lp. 736 * Returns zero in case of success and a negative error code in case of 737 * failure. 738 */ 739int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) 740{ 741 int err = 0; 742 const struct ubifs_lprops *lpp; 743 744 ubifs_get_lprops(c); 745 746 lpp = ubifs_lpt_lookup(c, lnum); 747 if (IS_ERR(lpp)) { 748 err = PTR_ERR(lpp); 749 ubifs_err(c, "cannot read properties of LEB %d, error %d", 750 lnum, err); 751 goto out; 752 } 753 754 memcpy(lp, lpp, sizeof(struct ubifs_lprops)); 755 756out: 757 ubifs_release_lprops(c); 758 return err; 759} 760 761/** 762 * ubifs_fast_find_free - try to find a LEB with free space quickly. 763 * @c: the UBIFS file-system description object 764 * 765 * This function returns LEB properties for a LEB with free space or %NULL if 766 * the function is unable to find a LEB quickly. 767 */ 768const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c) 769{ 770 struct ubifs_lprops *lprops; 771 struct ubifs_lpt_heap *heap; 772 773 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 774 775 heap = &c->lpt_heap[LPROPS_FREE - 1]; 776 if (heap->cnt == 0) 777 return NULL; 778 779 lprops = heap->arr[0]; 780 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 781 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 782 return lprops; 783} 784 785/** 786 * ubifs_fast_find_empty - try to find an empty LEB quickly. 787 * @c: the UBIFS file-system description object 788 * 789 * This function returns LEB properties for an empty LEB or %NULL if the 790 * function is unable to find an empty LEB quickly. 791 */ 792const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) 793{ 794 struct ubifs_lprops *lprops; 795 796 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 797 798 if (list_empty(&c->empty_list)) 799 return NULL; 800 801 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); 802 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 803 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 804 ubifs_assert(lprops->free == c->leb_size); 805 return lprops; 806} 807 808/** 809 * ubifs_fast_find_freeable - try to find a freeable LEB quickly. 810 * @c: the UBIFS file-system description object 811 * 812 * This function returns LEB properties for a freeable LEB or %NULL if the 813 * function is unable to find a freeable LEB quickly. 814 */ 815const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c) 816{ 817 struct ubifs_lprops *lprops; 818 819 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 820 821 if (list_empty(&c->freeable_list)) 822 return NULL; 823 824 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list); 825 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 826 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 827 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 828 ubifs_assert(c->freeable_cnt > 0); 829 return lprops; 830} 831 832/** 833 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly. 834 * @c: the UBIFS file-system description object 835 * 836 * This function returns LEB properties for a freeable index LEB or %NULL if the 837 * function is unable to find a freeable index LEB quickly. 838 */ 839const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) 840{ 841 struct ubifs_lprops *lprops; 842 843 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 844 845 if (list_empty(&c->frdi_idx_list)) 846 return NULL; 847 848 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list); 849 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 850 ubifs_assert((lprops->flags & LPROPS_INDEX)); 851 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 852 return lprops; 853} 854 855/* 856 * Everything below is related to debugging. 857 */ 858 859/** 860 * dbg_check_cats - check category heaps and lists. 861 * @c: UBIFS file-system description object 862 * 863 * This function returns %0 on success and a negative error code on failure. 864 */ 865int dbg_check_cats(struct ubifs_info *c) 866{ 867 struct ubifs_lprops *lprops; 868 struct list_head *pos; 869 int i, cat; 870 871 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 872 return 0; 873 874 list_for_each_entry(lprops, &c->empty_list, list) { 875 if (lprops->free != c->leb_size) { 876 ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)", 877 lprops->lnum, lprops->free, lprops->dirty, 878 lprops->flags); 879 return -EINVAL; 880 } 881 if (lprops->flags & LPROPS_TAKEN) { 882 ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)", 883 lprops->lnum, lprops->free, lprops->dirty, 884 lprops->flags); 885 return -EINVAL; 886 } 887 } 888 889 i = 0; 890 list_for_each_entry(lprops, &c->freeable_list, list) { 891 if (lprops->free + lprops->dirty != c->leb_size) { 892 ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)", 893 lprops->lnum, lprops->free, lprops->dirty, 894 lprops->flags); 895 return -EINVAL; 896 } 897 if (lprops->flags & LPROPS_TAKEN) { 898 ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)", 899 lprops->lnum, lprops->free, lprops->dirty, 900 lprops->flags); 901 return -EINVAL; 902 } 903 i += 1; 904 } 905 if (i != c->freeable_cnt) { 906 ubifs_err(c, "freeable list count %d expected %d", i, 907 c->freeable_cnt); 908 return -EINVAL; 909 } 910 911 i = 0; 912 list_for_each(pos, &c->idx_gc) 913 i += 1; 914 if (i != c->idx_gc_cnt) { 915 ubifs_err(c, "idx_gc list count %d expected %d", i, 916 c->idx_gc_cnt); 917 return -EINVAL; 918 } 919 920 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 921 if (lprops->free + lprops->dirty != c->leb_size) { 922 ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)", 923 lprops->lnum, lprops->free, lprops->dirty, 924 lprops->flags); 925 return -EINVAL; 926 } 927 if (lprops->flags & LPROPS_TAKEN) { 928 ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)", 929 lprops->lnum, lprops->free, lprops->dirty, 930 lprops->flags); 931 return -EINVAL; 932 } 933 if (!(lprops->flags & LPROPS_INDEX)) { 934 ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)", 935 lprops->lnum, lprops->free, lprops->dirty, 936 lprops->flags); 937 return -EINVAL; 938 } 939 } 940 941 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { 942 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 943 944 for (i = 0; i < heap->cnt; i++) { 945 lprops = heap->arr[i]; 946 if (!lprops) { 947 ubifs_err(c, "null ptr in LPT heap cat %d", cat); 948 return -EINVAL; 949 } 950 if (lprops->hpos != i) { 951 ubifs_err(c, "bad ptr in LPT heap cat %d", cat); 952 return -EINVAL; 953 } 954 if (lprops->flags & LPROPS_TAKEN) { 955 ubifs_err(c, "taken LEB in LPT heap cat %d", cat); 956 return -EINVAL; 957 } 958 } 959 } 960 961 return 0; 962} 963 964void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, 965 int add_pos) 966{ 967 int i = 0, j, err = 0; 968 969 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 970 return; 971 972 for (i = 0; i < heap->cnt; i++) { 973 struct ubifs_lprops *lprops = heap->arr[i]; 974 struct ubifs_lprops *lp; 975 976 if (i != add_pos) 977 if ((lprops->flags & LPROPS_CAT_MASK) != cat) { 978 err = 1; 979 goto out; 980 } 981 if (lprops->hpos != i) { 982 err = 2; 983 goto out; 984 } 985 lp = ubifs_lpt_lookup(c, lprops->lnum); 986 if (IS_ERR(lp)) { 987 err = 3; 988 goto out; 989 } 990 if (lprops != lp) { 991 ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d", 992 (size_t)lprops, (size_t)lp, lprops->lnum, 993 lp->lnum); 994 err = 4; 995 goto out; 996 } 997 for (j = 0; j < i; j++) { 998 lp = heap->arr[j]; 999 if (lp == lprops) { 1000 err = 5; 1001 goto out; 1002 } 1003 if (lp->lnum == lprops->lnum) { 1004 err = 6; 1005 goto out; 1006 } 1007 } 1008 } 1009out: 1010 if (err) { 1011 ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err); 1012 dump_stack(); 1013 ubifs_dump_heap(c, heap, cat); 1014 } 1015} 1016 1017/** 1018 * scan_check_cb - scan callback. 1019 * @c: the UBIFS file-system description object 1020 * @lp: LEB properties to scan 1021 * @in_tree: whether the LEB properties are in main memory 1022 * @lst: lprops statistics to update 1023 * 1024 * This function returns a code that indicates whether the scan should continue 1025 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 1026 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 1027 * (%LPT_SCAN_STOP). 1028 */ 1029static int scan_check_cb(struct ubifs_info *c, 1030 const struct ubifs_lprops *lp, int in_tree, 1031 struct ubifs_lp_stats *lst) 1032{ 1033 struct ubifs_scan_leb *sleb; 1034 struct ubifs_scan_node *snod; 1035 int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret; 1036 void *buf = NULL; 1037 1038 cat = lp->flags & LPROPS_CAT_MASK; 1039 if (cat != LPROPS_UNCAT) { 1040 cat = ubifs_categorize_lprops(c, lp); 1041 if (cat != (lp->flags & LPROPS_CAT_MASK)) { 1042 ubifs_err(c, "bad LEB category %d expected %d", 1043 (lp->flags & LPROPS_CAT_MASK), cat); 1044 return -EINVAL; 1045 } 1046 } 1047 1048 /* Check lp is on its category list (if it has one) */ 1049 if (in_tree) { 1050 struct list_head *list = NULL; 1051 1052 switch (cat) { 1053 case LPROPS_EMPTY: 1054 list = &c->empty_list; 1055 break; 1056 case LPROPS_FREEABLE: 1057 list = &c->freeable_list; 1058 break; 1059 case LPROPS_FRDI_IDX: 1060 list = &c->frdi_idx_list; 1061 break; 1062 case LPROPS_UNCAT: 1063 list = &c->uncat_list; 1064 break; 1065 } 1066 if (list) { 1067 struct ubifs_lprops *lprops; 1068 int found = 0; 1069 1070 list_for_each_entry(lprops, list, list) { 1071 if (lprops == lp) { 1072 found = 1; 1073 break; 1074 } 1075 } 1076 if (!found) { 1077 ubifs_err(c, "bad LPT list (category %d)", cat); 1078 return -EINVAL; 1079 } 1080 } 1081 } 1082 1083 /* Check lp is on its category heap (if it has one) */ 1084 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { 1085 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 1086 1087 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || 1088 lp != heap->arr[lp->hpos]) { 1089 ubifs_err(c, "bad LPT heap (category %d)", cat); 1090 return -EINVAL; 1091 } 1092 } 1093 1094 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1095 if (!buf) 1096 return -ENOMEM; 1097 1098 /* 1099 * After an unclean unmount, empty and freeable LEBs 1100 * may contain garbage - do not scan them. 1101 */ 1102 if (lp->free == c->leb_size) { 1103 lst->empty_lebs += 1; 1104 lst->total_free += c->leb_size; 1105 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1106 return LPT_SCAN_CONTINUE; 1107 } 1108 if (lp->free + lp->dirty == c->leb_size && 1109 !(lp->flags & LPROPS_INDEX)) { 1110 lst->total_free += lp->free; 1111 lst->total_dirty += lp->dirty; 1112 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1113 return LPT_SCAN_CONTINUE; 1114 } 1115 1116 sleb = ubifs_scan(c, lnum, 0, buf, 0); 1117 if (IS_ERR(sleb)) { 1118 ret = PTR_ERR(sleb); 1119 if (ret == -EUCLEAN) { 1120 ubifs_dump_lprops(c); 1121 ubifs_dump_budg(c, &c->bi); 1122 } 1123 goto out; 1124 } 1125 1126 is_idx = -1; 1127 list_for_each_entry(snod, &sleb->nodes, list) { 1128 int found, level = 0; 1129 1130 cond_resched(); 1131 1132 if (is_idx == -1) 1133 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; 1134 1135 if (is_idx && snod->type != UBIFS_IDX_NODE) { 1136 ubifs_err(c, "indexing node in data LEB %d:%d", 1137 lnum, snod->offs); 1138 goto out_destroy; 1139 } 1140 1141 if (snod->type == UBIFS_IDX_NODE) { 1142 struct ubifs_idx_node *idx = snod->node; 1143 1144 key_read(c, ubifs_idx_key(c, idx), &snod->key); 1145 level = le16_to_cpu(idx->level); 1146 } 1147 1148 found = ubifs_tnc_has_node(c, &snod->key, level, lnum, 1149 snod->offs, is_idx); 1150 if (found) { 1151 if (found < 0) 1152 goto out_destroy; 1153 used += ALIGN(snod->len, 8); 1154 } 1155 } 1156 1157 free = c->leb_size - sleb->endpt; 1158 dirty = sleb->endpt - used; 1159 1160 if (free > c->leb_size || free < 0 || dirty > c->leb_size || 1161 dirty < 0) { 1162 ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d", 1163 lnum, free, dirty); 1164 goto out_destroy; 1165 } 1166 1167 if (lp->free + lp->dirty == c->leb_size && 1168 free + dirty == c->leb_size) 1169 if ((is_idx && !(lp->flags & LPROPS_INDEX)) || 1170 (!is_idx && free == c->leb_size) || 1171 lp->free == c->leb_size) { 1172 /* 1173 * Empty or freeable LEBs could contain index 1174 * nodes from an uncompleted commit due to an 1175 * unclean unmount. Or they could be empty for 1176 * the same reason. Or it may simply not have been 1177 * unmapped. 1178 */ 1179 free = lp->free; 1180 dirty = lp->dirty; 1181 is_idx = 0; 1182 } 1183 1184 if (is_idx && lp->free + lp->dirty == free + dirty && 1185 lnum != c->ihead_lnum) { 1186 /* 1187 * After an unclean unmount, an index LEB could have a different 1188 * amount of free space than the value recorded by lprops. That 1189 * is because the in-the-gaps method may use free space or 1190 * create free space (as a side-effect of using ubi_leb_change 1191 * and not writing the whole LEB). The incorrect free space 1192 * value is not a problem because the index is only ever 1193 * allocated empty LEBs, so there will never be an attempt to 1194 * write to the free space at the end of an index LEB - except 1195 * by the in-the-gaps method for which it is not a problem. 1196 */ 1197 free = lp->free; 1198 dirty = lp->dirty; 1199 } 1200 1201 if (lp->free != free || lp->dirty != dirty) 1202 goto out_print; 1203 1204 if (is_idx && !(lp->flags & LPROPS_INDEX)) { 1205 if (free == c->leb_size) 1206 /* Free but not unmapped LEB, it's fine */ 1207 is_idx = 0; 1208 else { 1209 ubifs_err(c, "indexing node without indexing flag"); 1210 goto out_print; 1211 } 1212 } 1213 1214 if (!is_idx && (lp->flags & LPROPS_INDEX)) { 1215 ubifs_err(c, "data node with indexing flag"); 1216 goto out_print; 1217 } 1218 1219 if (free == c->leb_size) 1220 lst->empty_lebs += 1; 1221 1222 if (is_idx) 1223 lst->idx_lebs += 1; 1224 1225 if (!(lp->flags & LPROPS_INDEX)) 1226 lst->total_used += c->leb_size - free - dirty; 1227 lst->total_free += free; 1228 lst->total_dirty += dirty; 1229 1230 if (!(lp->flags & LPROPS_INDEX)) { 1231 int spc = free + dirty; 1232 1233 if (spc < c->dead_wm) 1234 lst->total_dead += spc; 1235 else 1236 lst->total_dark += ubifs_calc_dark(c, spc); 1237 } 1238 1239 ubifs_scan_destroy(sleb); 1240 vfree(buf); 1241 return LPT_SCAN_CONTINUE; 1242 1243out_print: 1244 ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d", 1245 lnum, lp->free, lp->dirty, lp->flags, free, dirty); 1246 ubifs_dump_leb(c, lnum); 1247out_destroy: 1248 ubifs_scan_destroy(sleb); 1249 ret = -EINVAL; 1250out: 1251 vfree(buf); 1252 return ret; 1253} 1254 1255/** 1256 * dbg_check_lprops - check all LEB properties. 1257 * @c: UBIFS file-system description object 1258 * 1259 * This function checks all LEB properties and makes sure they are all correct. 1260 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency 1261 * and other negative error codes in case of other errors. This function is 1262 * called while the file system is locked (because of commit start), so no 1263 * additional locking is required. Note that locking the LPT mutex would cause 1264 * a circular lock dependency with the TNC mutex. 1265 */ 1266int dbg_check_lprops(struct ubifs_info *c) 1267{ 1268 int i, err; 1269 struct ubifs_lp_stats lst; 1270 1271 if (!dbg_is_chk_lprops(c)) 1272 return 0; 1273 1274 /* 1275 * As we are going to scan the media, the write buffers have to be 1276 * synchronized. 1277 */ 1278 for (i = 0; i < c->jhead_cnt; i++) { 1279 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1280 if (err) 1281 return err; 1282 } 1283 1284 memset(&lst, 0, sizeof(struct ubifs_lp_stats)); 1285 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, 1286 (ubifs_lpt_scan_callback)scan_check_cb, 1287 &lst); 1288 if (err && err != -ENOSPC) 1289 goto out; 1290 1291 if (lst.empty_lebs != c->lst.empty_lebs || 1292 lst.idx_lebs != c->lst.idx_lebs || 1293 lst.total_free != c->lst.total_free || 1294 lst.total_dirty != c->lst.total_dirty || 1295 lst.total_used != c->lst.total_used) { 1296 ubifs_err(c, "bad overall accounting"); 1297 ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", 1298 lst.empty_lebs, lst.idx_lebs, lst.total_free, 1299 lst.total_dirty, lst.total_used); 1300 ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", 1301 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, 1302 c->lst.total_dirty, c->lst.total_used); 1303 err = -EINVAL; 1304 goto out; 1305 } 1306 1307 if (lst.total_dead != c->lst.total_dead || 1308 lst.total_dark != c->lst.total_dark) { 1309 ubifs_err(c, "bad dead/dark space accounting"); 1310 ubifs_err(c, "calculated: total_dead %lld, total_dark %lld", 1311 lst.total_dead, lst.total_dark); 1312 ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld", 1313 c->lst.total_dead, c->lst.total_dark); 1314 err = -EINVAL; 1315 goto out; 1316 } 1317 1318 err = dbg_check_cats(c); 1319out: 1320 return err; 1321} 1322