1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
21 *          Adrian Hunter
22 *          Zoltan Sogor
23 */
24
25/*
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
33 *
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
43 *
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
53 *
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
59 *
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
65 *
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
68 *
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
71 */
72
73#include <linux/crc32.h>
74#include <linux/slab.h>
75#include "ubifs.h"
76
77/**
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
81 */
82void ubifs_ro_mode(struct ubifs_info *c, int err)
83{
84	if (!c->ro_error) {
85		c->ro_error = 1;
86		c->no_chk_data_crc = 0;
87		c->vfs_sb->s_flags |= MS_RDONLY;
88		ubifs_warn(c, "switched to read-only mode, error %d", err);
89		dump_stack();
90	}
91}
92
93/*
94 * Below are simple wrappers over UBI I/O functions which include some
95 * additional checks and UBIFS debugging stuff. See corresponding UBI function
96 * for more information.
97 */
98
99int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
100		   int len, int even_ebadmsg)
101{
102	int err;
103
104	err = ubi_read(c->ubi, lnum, buf, offs, len);
105	/*
106	 * In case of %-EBADMSG print the error message only if the
107	 * @even_ebadmsg is true.
108	 */
109	if (err && (err != -EBADMSG || even_ebadmsg)) {
110		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
111			  len, lnum, offs, err);
112		dump_stack();
113	}
114	return err;
115}
116
117int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
118		    int len)
119{
120	int err;
121
122	ubifs_assert(!c->ro_media && !c->ro_mount);
123	if (c->ro_error)
124		return -EROFS;
125	if (!dbg_is_tst_rcvry(c))
126		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
127	else
128		err = dbg_leb_write(c, lnum, buf, offs, len);
129	if (err) {
130		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
131			  len, lnum, offs, err);
132		ubifs_ro_mode(c, err);
133		dump_stack();
134	}
135	return err;
136}
137
138int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
139{
140	int err;
141
142	ubifs_assert(!c->ro_media && !c->ro_mount);
143	if (c->ro_error)
144		return -EROFS;
145	if (!dbg_is_tst_rcvry(c))
146		err = ubi_leb_change(c->ubi, lnum, buf, len);
147	else
148		err = dbg_leb_change(c, lnum, buf, len);
149	if (err) {
150		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
151			  len, lnum, err);
152		ubifs_ro_mode(c, err);
153		dump_stack();
154	}
155	return err;
156}
157
158int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
159{
160	int err;
161
162	ubifs_assert(!c->ro_media && !c->ro_mount);
163	if (c->ro_error)
164		return -EROFS;
165	if (!dbg_is_tst_rcvry(c))
166		err = ubi_leb_unmap(c->ubi, lnum);
167	else
168		err = dbg_leb_unmap(c, lnum);
169	if (err) {
170		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
171		ubifs_ro_mode(c, err);
172		dump_stack();
173	}
174	return err;
175}
176
177int ubifs_leb_map(struct ubifs_info *c, int lnum)
178{
179	int err;
180
181	ubifs_assert(!c->ro_media && !c->ro_mount);
182	if (c->ro_error)
183		return -EROFS;
184	if (!dbg_is_tst_rcvry(c))
185		err = ubi_leb_map(c->ubi, lnum);
186	else
187		err = dbg_leb_map(c, lnum);
188	if (err) {
189		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
190		ubifs_ro_mode(c, err);
191		dump_stack();
192	}
193	return err;
194}
195
196int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
197{
198	int err;
199
200	err = ubi_is_mapped(c->ubi, lnum);
201	if (err < 0) {
202		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
203			  lnum, err);
204		dump_stack();
205	}
206	return err;
207}
208
209/**
210 * ubifs_check_node - check node.
211 * @c: UBIFS file-system description object
212 * @buf: node to check
213 * @lnum: logical eraseblock number
214 * @offs: offset within the logical eraseblock
215 * @quiet: print no messages
216 * @must_chk_crc: indicates whether to always check the CRC
217 *
218 * This function checks node magic number and CRC checksum. This function also
219 * validates node length to prevent UBIFS from becoming crazy when an attacker
220 * feeds it a file-system image with incorrect nodes. For example, too large
221 * node length in the common header could cause UBIFS to read memory outside of
222 * allocated buffer when checking the CRC checksum.
223 *
224 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
225 * true, which is controlled by corresponding UBIFS mount option. However, if
226 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
227 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
228 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
229 * is checked. This is because during mounting or re-mounting from R/O mode to
230 * R/W mode we may read journal nodes (when replying the journal or doing the
231 * recovery) and the journal nodes may potentially be corrupted, so checking is
232 * required.
233 *
234 * This function returns zero in case of success and %-EUCLEAN in case of bad
235 * CRC or magic.
236 */
237int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
238		     int offs, int quiet, int must_chk_crc)
239{
240	int err = -EINVAL, type, node_len;
241	uint32_t crc, node_crc, magic;
242	const struct ubifs_ch *ch = buf;
243
244	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
245	ubifs_assert(!(offs & 7) && offs < c->leb_size);
246
247	magic = le32_to_cpu(ch->magic);
248	if (magic != UBIFS_NODE_MAGIC) {
249		if (!quiet)
250			ubifs_err(c, "bad magic %#08x, expected %#08x",
251				  magic, UBIFS_NODE_MAGIC);
252		err = -EUCLEAN;
253		goto out;
254	}
255
256	type = ch->node_type;
257	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
258		if (!quiet)
259			ubifs_err(c, "bad node type %d", type);
260		goto out;
261	}
262
263	node_len = le32_to_cpu(ch->len);
264	if (node_len + offs > c->leb_size)
265		goto out_len;
266
267	if (c->ranges[type].max_len == 0) {
268		if (node_len != c->ranges[type].len)
269			goto out_len;
270	} else if (node_len < c->ranges[type].min_len ||
271		   node_len > c->ranges[type].max_len)
272		goto out_len;
273
274	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
275	    !c->remounting_rw && c->no_chk_data_crc)
276		return 0;
277
278	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
279	node_crc = le32_to_cpu(ch->crc);
280	if (crc != node_crc) {
281		if (!quiet)
282			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
283				  crc, node_crc);
284		err = -EUCLEAN;
285		goto out;
286	}
287
288	return 0;
289
290out_len:
291	if (!quiet)
292		ubifs_err(c, "bad node length %d", node_len);
293out:
294	if (!quiet) {
295		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
296		ubifs_dump_node(c, buf);
297		dump_stack();
298	}
299	return err;
300}
301
302/**
303 * ubifs_pad - pad flash space.
304 * @c: UBIFS file-system description object
305 * @buf: buffer to put padding to
306 * @pad: how many bytes to pad
307 *
308 * The flash media obliges us to write only in chunks of %c->min_io_size and
309 * when we have to write less data we add padding node to the write-buffer and
310 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311 * media is being scanned. If the amount of wasted space is not enough to fit a
312 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313 * pattern (%UBIFS_PADDING_BYTE).
314 *
315 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
316 * used.
317 */
318void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
319{
320	uint32_t crc;
321
322	ubifs_assert(pad >= 0 && !(pad & 7));
323
324	if (pad >= UBIFS_PAD_NODE_SZ) {
325		struct ubifs_ch *ch = buf;
326		struct ubifs_pad_node *pad_node = buf;
327
328		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
329		ch->node_type = UBIFS_PAD_NODE;
330		ch->group_type = UBIFS_NO_NODE_GROUP;
331		ch->padding[0] = ch->padding[1] = 0;
332		ch->sqnum = 0;
333		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
334		pad -= UBIFS_PAD_NODE_SZ;
335		pad_node->pad_len = cpu_to_le32(pad);
336		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
337		ch->crc = cpu_to_le32(crc);
338		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
339	} else if (pad > 0)
340		/* Too little space, padding node won't fit */
341		memset(buf, UBIFS_PADDING_BYTE, pad);
342}
343
344/**
345 * next_sqnum - get next sequence number.
346 * @c: UBIFS file-system description object
347 */
348static unsigned long long next_sqnum(struct ubifs_info *c)
349{
350	unsigned long long sqnum;
351
352	spin_lock(&c->cnt_lock);
353	sqnum = ++c->max_sqnum;
354	spin_unlock(&c->cnt_lock);
355
356	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
357		if (sqnum >= SQNUM_WATERMARK) {
358			ubifs_err(c, "sequence number overflow %llu, end of life",
359				  sqnum);
360			ubifs_ro_mode(c, -EINVAL);
361		}
362		ubifs_warn(c, "running out of sequence numbers, end of life soon");
363	}
364
365	return sqnum;
366}
367
368/**
369 * ubifs_prepare_node - prepare node to be written to flash.
370 * @c: UBIFS file-system description object
371 * @node: the node to pad
372 * @len: node length
373 * @pad: if the buffer has to be padded
374 *
375 * This function prepares node at @node to be written to the media - it
376 * calculates node CRC, fills the common header, and adds proper padding up to
377 * the next minimum I/O unit if @pad is not zero.
378 */
379void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
380{
381	uint32_t crc;
382	struct ubifs_ch *ch = node;
383	unsigned long long sqnum = next_sqnum(c);
384
385	ubifs_assert(len >= UBIFS_CH_SZ);
386
387	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
388	ch->len = cpu_to_le32(len);
389	ch->group_type = UBIFS_NO_NODE_GROUP;
390	ch->sqnum = cpu_to_le64(sqnum);
391	ch->padding[0] = ch->padding[1] = 0;
392	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
393	ch->crc = cpu_to_le32(crc);
394
395	if (pad) {
396		len = ALIGN(len, 8);
397		pad = ALIGN(len, c->min_io_size) - len;
398		ubifs_pad(c, node + len, pad);
399	}
400}
401
402/**
403 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
404 * @c: UBIFS file-system description object
405 * @node: the node to pad
406 * @len: node length
407 * @last: indicates the last node of the group
408 *
409 * This function prepares node at @node to be written to the media - it
410 * calculates node CRC and fills the common header.
411 */
412void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
413{
414	uint32_t crc;
415	struct ubifs_ch *ch = node;
416	unsigned long long sqnum = next_sqnum(c);
417
418	ubifs_assert(len >= UBIFS_CH_SZ);
419
420	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
421	ch->len = cpu_to_le32(len);
422	if (last)
423		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
424	else
425		ch->group_type = UBIFS_IN_NODE_GROUP;
426	ch->sqnum = cpu_to_le64(sqnum);
427	ch->padding[0] = ch->padding[1] = 0;
428	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
429	ch->crc = cpu_to_le32(crc);
430}
431
432/**
433 * wbuf_timer_callback - write-buffer timer callback function.
434 * @timer: timer data (write-buffer descriptor)
435 *
436 * This function is called when the write-buffer timer expires.
437 */
438static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
439{
440	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
441
442	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
443	wbuf->need_sync = 1;
444	wbuf->c->need_wbuf_sync = 1;
445	ubifs_wake_up_bgt(wbuf->c);
446	return HRTIMER_NORESTART;
447}
448
449/**
450 * new_wbuf_timer - start new write-buffer timer.
451 * @wbuf: write-buffer descriptor
452 */
453static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
454{
455	ubifs_assert(!hrtimer_active(&wbuf->timer));
456
457	if (wbuf->no_timer)
458		return;
459	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
460	       dbg_jhead(wbuf->jhead),
461	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
462	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
463		       USEC_PER_SEC));
464	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
465			       HRTIMER_MODE_REL);
466}
467
468/**
469 * cancel_wbuf_timer - cancel write-buffer timer.
470 * @wbuf: write-buffer descriptor
471 */
472static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
473{
474	if (wbuf->no_timer)
475		return;
476	wbuf->need_sync = 0;
477	hrtimer_cancel(&wbuf->timer);
478}
479
480/**
481 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
482 * @wbuf: write-buffer to synchronize
483 *
484 * This function synchronizes write-buffer @buf and returns zero in case of
485 * success or a negative error code in case of failure.
486 *
487 * Note, although write-buffers are of @c->max_write_size, this function does
488 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
489 * if the write-buffer is only partially filled with data, only the used part
490 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
491 * This way we waste less space.
492 */
493int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
494{
495	struct ubifs_info *c = wbuf->c;
496	int err, dirt, sync_len;
497
498	cancel_wbuf_timer_nolock(wbuf);
499	if (!wbuf->used || wbuf->lnum == -1)
500		/* Write-buffer is empty or not seeked */
501		return 0;
502
503	dbg_io("LEB %d:%d, %d bytes, jhead %s",
504	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
505	ubifs_assert(!(wbuf->avail & 7));
506	ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
507	ubifs_assert(wbuf->size >= c->min_io_size);
508	ubifs_assert(wbuf->size <= c->max_write_size);
509	ubifs_assert(wbuf->size % c->min_io_size == 0);
510	ubifs_assert(!c->ro_media && !c->ro_mount);
511	if (c->leb_size - wbuf->offs >= c->max_write_size)
512		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
513
514	if (c->ro_error)
515		return -EROFS;
516
517	/*
518	 * Do not write whole write buffer but write only the minimum necessary
519	 * amount of min. I/O units.
520	 */
521	sync_len = ALIGN(wbuf->used, c->min_io_size);
522	dirt = sync_len - wbuf->used;
523	if (dirt)
524		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
525	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
526	if (err)
527		return err;
528
529	spin_lock(&wbuf->lock);
530	wbuf->offs += sync_len;
531	/*
532	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
533	 * But our goal is to optimize writes and make sure we write in
534	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
535	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
536	 * sure that @wbuf->offs + @wbuf->size is aligned to
537	 * @c->max_write_size. This way we make sure that after next
538	 * write-buffer flush we are again at the optimal offset (aligned to
539	 * @c->max_write_size).
540	 */
541	if (c->leb_size - wbuf->offs < c->max_write_size)
542		wbuf->size = c->leb_size - wbuf->offs;
543	else if (wbuf->offs & (c->max_write_size - 1))
544		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
545	else
546		wbuf->size = c->max_write_size;
547	wbuf->avail = wbuf->size;
548	wbuf->used = 0;
549	wbuf->next_ino = 0;
550	spin_unlock(&wbuf->lock);
551
552	if (wbuf->sync_callback)
553		err = wbuf->sync_callback(c, wbuf->lnum,
554					  c->leb_size - wbuf->offs, dirt);
555	return err;
556}
557
558/**
559 * ubifs_wbuf_seek_nolock - seek write-buffer.
560 * @wbuf: write-buffer
561 * @lnum: logical eraseblock number to seek to
562 * @offs: logical eraseblock offset to seek to
563 *
564 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
565 * The write-buffer has to be empty. Returns zero in case of success and a
566 * negative error code in case of failure.
567 */
568int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
569{
570	const struct ubifs_info *c = wbuf->c;
571
572	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
573	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
574	ubifs_assert(offs >= 0 && offs <= c->leb_size);
575	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
576	ubifs_assert(lnum != wbuf->lnum);
577	ubifs_assert(wbuf->used == 0);
578
579	spin_lock(&wbuf->lock);
580	wbuf->lnum = lnum;
581	wbuf->offs = offs;
582	if (c->leb_size - wbuf->offs < c->max_write_size)
583		wbuf->size = c->leb_size - wbuf->offs;
584	else if (wbuf->offs & (c->max_write_size - 1))
585		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
586	else
587		wbuf->size = c->max_write_size;
588	wbuf->avail = wbuf->size;
589	wbuf->used = 0;
590	spin_unlock(&wbuf->lock);
591
592	return 0;
593}
594
595/**
596 * ubifs_bg_wbufs_sync - synchronize write-buffers.
597 * @c: UBIFS file-system description object
598 *
599 * This function is called by background thread to synchronize write-buffers.
600 * Returns zero in case of success and a negative error code in case of
601 * failure.
602 */
603int ubifs_bg_wbufs_sync(struct ubifs_info *c)
604{
605	int err, i;
606
607	ubifs_assert(!c->ro_media && !c->ro_mount);
608	if (!c->need_wbuf_sync)
609		return 0;
610	c->need_wbuf_sync = 0;
611
612	if (c->ro_error) {
613		err = -EROFS;
614		goto out_timers;
615	}
616
617	dbg_io("synchronize");
618	for (i = 0; i < c->jhead_cnt; i++) {
619		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
620
621		cond_resched();
622
623		/*
624		 * If the mutex is locked then wbuf is being changed, so
625		 * synchronization is not necessary.
626		 */
627		if (mutex_is_locked(&wbuf->io_mutex))
628			continue;
629
630		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
631		if (!wbuf->need_sync) {
632			mutex_unlock(&wbuf->io_mutex);
633			continue;
634		}
635
636		err = ubifs_wbuf_sync_nolock(wbuf);
637		mutex_unlock(&wbuf->io_mutex);
638		if (err) {
639			ubifs_err(c, "cannot sync write-buffer, error %d", err);
640			ubifs_ro_mode(c, err);
641			goto out_timers;
642		}
643	}
644
645	return 0;
646
647out_timers:
648	/* Cancel all timers to prevent repeated errors */
649	for (i = 0; i < c->jhead_cnt; i++) {
650		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
651
652		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
653		cancel_wbuf_timer_nolock(wbuf);
654		mutex_unlock(&wbuf->io_mutex);
655	}
656	return err;
657}
658
659/**
660 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
661 * @wbuf: write-buffer
662 * @buf: node to write
663 * @len: node length
664 *
665 * This function writes data to flash via write-buffer @wbuf. This means that
666 * the last piece of the node won't reach the flash media immediately if it
667 * does not take whole max. write unit (@c->max_write_size). Instead, the node
668 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
669 * because more data are appended to the write-buffer).
670 *
671 * This function returns zero in case of success and a negative error code in
672 * case of failure. If the node cannot be written because there is no more
673 * space in this logical eraseblock, %-ENOSPC is returned.
674 */
675int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
676{
677	struct ubifs_info *c = wbuf->c;
678	int err, written, n, aligned_len = ALIGN(len, 8);
679
680	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
681	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
682	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
683	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
684	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
685	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
686	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
687	ubifs_assert(wbuf->size >= c->min_io_size);
688	ubifs_assert(wbuf->size <= c->max_write_size);
689	ubifs_assert(wbuf->size % c->min_io_size == 0);
690	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
691	ubifs_assert(!c->ro_media && !c->ro_mount);
692	ubifs_assert(!c->space_fixup);
693	if (c->leb_size - wbuf->offs >= c->max_write_size)
694		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
695
696	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
697		err = -ENOSPC;
698		goto out;
699	}
700
701	cancel_wbuf_timer_nolock(wbuf);
702
703	if (c->ro_error)
704		return -EROFS;
705
706	if (aligned_len <= wbuf->avail) {
707		/*
708		 * The node is not very large and fits entirely within
709		 * write-buffer.
710		 */
711		memcpy(wbuf->buf + wbuf->used, buf, len);
712
713		if (aligned_len == wbuf->avail) {
714			dbg_io("flush jhead %s wbuf to LEB %d:%d",
715			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
716			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
717					      wbuf->offs, wbuf->size);
718			if (err)
719				goto out;
720
721			spin_lock(&wbuf->lock);
722			wbuf->offs += wbuf->size;
723			if (c->leb_size - wbuf->offs >= c->max_write_size)
724				wbuf->size = c->max_write_size;
725			else
726				wbuf->size = c->leb_size - wbuf->offs;
727			wbuf->avail = wbuf->size;
728			wbuf->used = 0;
729			wbuf->next_ino = 0;
730			spin_unlock(&wbuf->lock);
731		} else {
732			spin_lock(&wbuf->lock);
733			wbuf->avail -= aligned_len;
734			wbuf->used += aligned_len;
735			spin_unlock(&wbuf->lock);
736		}
737
738		goto exit;
739	}
740
741	written = 0;
742
743	if (wbuf->used) {
744		/*
745		 * The node is large enough and does not fit entirely within
746		 * current available space. We have to fill and flush
747		 * write-buffer and switch to the next max. write unit.
748		 */
749		dbg_io("flush jhead %s wbuf to LEB %d:%d",
750		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
751		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
752		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
753				      wbuf->size);
754		if (err)
755			goto out;
756
757		wbuf->offs += wbuf->size;
758		len -= wbuf->avail;
759		aligned_len -= wbuf->avail;
760		written += wbuf->avail;
761	} else if (wbuf->offs & (c->max_write_size - 1)) {
762		/*
763		 * The write-buffer offset is not aligned to
764		 * @c->max_write_size and @wbuf->size is less than
765		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
766		 * following writes are done in optimal @c->max_write_size
767		 * chunks.
768		 */
769		dbg_io("write %d bytes to LEB %d:%d",
770		       wbuf->size, wbuf->lnum, wbuf->offs);
771		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
772				      wbuf->size);
773		if (err)
774			goto out;
775
776		wbuf->offs += wbuf->size;
777		len -= wbuf->size;
778		aligned_len -= wbuf->size;
779		written += wbuf->size;
780	}
781
782	/*
783	 * The remaining data may take more whole max. write units, so write the
784	 * remains multiple to max. write unit size directly to the flash media.
785	 * We align node length to 8-byte boundary because we anyway flash wbuf
786	 * if the remaining space is less than 8 bytes.
787	 */
788	n = aligned_len >> c->max_write_shift;
789	if (n) {
790		n <<= c->max_write_shift;
791		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
792		       wbuf->offs);
793		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
794				      wbuf->offs, n);
795		if (err)
796			goto out;
797		wbuf->offs += n;
798		aligned_len -= n;
799		len -= n;
800		written += n;
801	}
802
803	spin_lock(&wbuf->lock);
804	if (aligned_len)
805		/*
806		 * And now we have what's left and what does not take whole
807		 * max. write unit, so write it to the write-buffer and we are
808		 * done.
809		 */
810		memcpy(wbuf->buf, buf + written, len);
811
812	if (c->leb_size - wbuf->offs >= c->max_write_size)
813		wbuf->size = c->max_write_size;
814	else
815		wbuf->size = c->leb_size - wbuf->offs;
816	wbuf->avail = wbuf->size - aligned_len;
817	wbuf->used = aligned_len;
818	wbuf->next_ino = 0;
819	spin_unlock(&wbuf->lock);
820
821exit:
822	if (wbuf->sync_callback) {
823		int free = c->leb_size - wbuf->offs - wbuf->used;
824
825		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
826		if (err)
827			goto out;
828	}
829
830	if (wbuf->used)
831		new_wbuf_timer_nolock(wbuf);
832
833	return 0;
834
835out:
836	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
837		  len, wbuf->lnum, wbuf->offs, err);
838	ubifs_dump_node(c, buf);
839	dump_stack();
840	ubifs_dump_leb(c, wbuf->lnum);
841	return err;
842}
843
844/**
845 * ubifs_write_node - write node to the media.
846 * @c: UBIFS file-system description object
847 * @buf: the node to write
848 * @len: node length
849 * @lnum: logical eraseblock number
850 * @offs: offset within the logical eraseblock
851 *
852 * This function automatically fills node magic number, assigns sequence
853 * number, and calculates node CRC checksum. The length of the @buf buffer has
854 * to be aligned to the minimal I/O unit size. This function automatically
855 * appends padding node and padding bytes if needed. Returns zero in case of
856 * success and a negative error code in case of failure.
857 */
858int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
859		     int offs)
860{
861	int err, buf_len = ALIGN(len, c->min_io_size);
862
863	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
864	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
865	       buf_len);
866	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
867	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
868	ubifs_assert(!c->ro_media && !c->ro_mount);
869	ubifs_assert(!c->space_fixup);
870
871	if (c->ro_error)
872		return -EROFS;
873
874	ubifs_prepare_node(c, buf, len, 1);
875	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
876	if (err)
877		ubifs_dump_node(c, buf);
878
879	return err;
880}
881
882/**
883 * ubifs_read_node_wbuf - read node from the media or write-buffer.
884 * @wbuf: wbuf to check for un-written data
885 * @buf: buffer to read to
886 * @type: node type
887 * @len: node length
888 * @lnum: logical eraseblock number
889 * @offs: offset within the logical eraseblock
890 *
891 * This function reads a node of known type and length, checks it and stores
892 * in @buf. If the node partially or fully sits in the write-buffer, this
893 * function takes data from the buffer, otherwise it reads the flash media.
894 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
895 * error code in case of failure.
896 */
897int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
898			 int lnum, int offs)
899{
900	const struct ubifs_info *c = wbuf->c;
901	int err, rlen, overlap;
902	struct ubifs_ch *ch = buf;
903
904	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
905	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
906	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
907	ubifs_assert(!(offs & 7) && offs < c->leb_size);
908	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
909
910	spin_lock(&wbuf->lock);
911	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
912	if (!overlap) {
913		/* We may safely unlock the write-buffer and read the data */
914		spin_unlock(&wbuf->lock);
915		return ubifs_read_node(c, buf, type, len, lnum, offs);
916	}
917
918	/* Don't read under wbuf */
919	rlen = wbuf->offs - offs;
920	if (rlen < 0)
921		rlen = 0;
922
923	/* Copy the rest from the write-buffer */
924	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
925	spin_unlock(&wbuf->lock);
926
927	if (rlen > 0) {
928		/* Read everything that goes before write-buffer */
929		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
930		if (err && err != -EBADMSG)
931			return err;
932	}
933
934	if (type != ch->node_type) {
935		ubifs_err(c, "bad node type (%d but expected %d)",
936			  ch->node_type, type);
937		goto out;
938	}
939
940	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
941	if (err) {
942		ubifs_err(c, "expected node type %d", type);
943		return err;
944	}
945
946	rlen = le32_to_cpu(ch->len);
947	if (rlen != len) {
948		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
949		goto out;
950	}
951
952	return 0;
953
954out:
955	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
956	ubifs_dump_node(c, buf);
957	dump_stack();
958	return -EINVAL;
959}
960
961/**
962 * ubifs_read_node - read node.
963 * @c: UBIFS file-system description object
964 * @buf: buffer to read to
965 * @type: node type
966 * @len: node length (not aligned)
967 * @lnum: logical eraseblock number
968 * @offs: offset within the logical eraseblock
969 *
970 * This function reads a node of known type and and length, checks it and
971 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
972 * and a negative error code in case of failure.
973 */
974int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
975		    int lnum, int offs)
976{
977	int err, l;
978	struct ubifs_ch *ch = buf;
979
980	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
981	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
982	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
983	ubifs_assert(!(offs & 7) && offs < c->leb_size);
984	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
985
986	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
987	if (err && err != -EBADMSG)
988		return err;
989
990	if (type != ch->node_type) {
991		ubifs_errc(c, "bad node type (%d but expected %d)",
992			   ch->node_type, type);
993		goto out;
994	}
995
996	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
997	if (err) {
998		ubifs_errc(c, "expected node type %d", type);
999		return err;
1000	}
1001
1002	l = le32_to_cpu(ch->len);
1003	if (l != len) {
1004		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1005		goto out;
1006	}
1007
1008	return 0;
1009
1010out:
1011	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1012		   offs, ubi_is_mapped(c->ubi, lnum));
1013	if (!c->probing) {
1014		ubifs_dump_node(c, buf);
1015		dump_stack();
1016	}
1017	return -EINVAL;
1018}
1019
1020/**
1021 * ubifs_wbuf_init - initialize write-buffer.
1022 * @c: UBIFS file-system description object
1023 * @wbuf: write-buffer to initialize
1024 *
1025 * This function initializes write-buffer. Returns zero in case of success
1026 * %-ENOMEM in case of failure.
1027 */
1028int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1029{
1030	size_t size;
1031
1032	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1033	if (!wbuf->buf)
1034		return -ENOMEM;
1035
1036	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1037	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1038	if (!wbuf->inodes) {
1039		kfree(wbuf->buf);
1040		wbuf->buf = NULL;
1041		return -ENOMEM;
1042	}
1043
1044	wbuf->used = 0;
1045	wbuf->lnum = wbuf->offs = -1;
1046	/*
1047	 * If the LEB starts at the max. write size aligned address, then
1048	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1049	 * set it to something smaller so that it ends at the closest max.
1050	 * write size boundary.
1051	 */
1052	size = c->max_write_size - (c->leb_start % c->max_write_size);
1053	wbuf->avail = wbuf->size = size;
1054	wbuf->sync_callback = NULL;
1055	mutex_init(&wbuf->io_mutex);
1056	spin_lock_init(&wbuf->lock);
1057	wbuf->c = c;
1058	wbuf->next_ino = 0;
1059
1060	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1061	wbuf->timer.function = wbuf_timer_callback_nolock;
1062	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1063	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1064	wbuf->delta *= 1000000000ULL;
1065	ubifs_assert(wbuf->delta <= ULONG_MAX);
1066	return 0;
1067}
1068
1069/**
1070 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1071 * @wbuf: the write-buffer where to add
1072 * @inum: the inode number
1073 *
1074 * This function adds an inode number to the inode array of the write-buffer.
1075 */
1076void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1077{
1078	if (!wbuf->buf)
1079		/* NOR flash or something similar */
1080		return;
1081
1082	spin_lock(&wbuf->lock);
1083	if (wbuf->used)
1084		wbuf->inodes[wbuf->next_ino++] = inum;
1085	spin_unlock(&wbuf->lock);
1086}
1087
1088/**
1089 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1090 * @wbuf: the write-buffer
1091 * @inum: the inode number
1092 *
1093 * This function returns with %1 if the write-buffer contains some data from the
1094 * given inode otherwise it returns with %0.
1095 */
1096static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1097{
1098	int i, ret = 0;
1099
1100	spin_lock(&wbuf->lock);
1101	for (i = 0; i < wbuf->next_ino; i++)
1102		if (inum == wbuf->inodes[i]) {
1103			ret = 1;
1104			break;
1105		}
1106	spin_unlock(&wbuf->lock);
1107
1108	return ret;
1109}
1110
1111/**
1112 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1113 * @c: UBIFS file-system description object
1114 * @inode: inode to synchronize
1115 *
1116 * This function synchronizes write-buffers which contain nodes belonging to
1117 * @inode. Returns zero in case of success and a negative error code in case of
1118 * failure.
1119 */
1120int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1121{
1122	int i, err = 0;
1123
1124	for (i = 0; i < c->jhead_cnt; i++) {
1125		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1126
1127		if (i == GCHD)
1128			/*
1129			 * GC head is special, do not look at it. Even if the
1130			 * head contains something related to this inode, it is
1131			 * a _copy_ of corresponding on-flash node which sits
1132			 * somewhere else.
1133			 */
1134			continue;
1135
1136		if (!wbuf_has_ino(wbuf, inode->i_ino))
1137			continue;
1138
1139		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1140		if (wbuf_has_ino(wbuf, inode->i_ino))
1141			err = ubifs_wbuf_sync_nolock(wbuf);
1142		mutex_unlock(&wbuf->io_mutex);
1143
1144		if (err) {
1145			ubifs_ro_mode(c, err);
1146			return err;
1147		}
1148	}
1149	return 0;
1150}
1151