1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 *          Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#include <linux/module.h>
31#include <linux/debugfs.h>
32#include <linux/math64.h>
33#include <linux/uaccess.h>
34#include <linux/random.h>
35#include "ubifs.h"
36
37static DEFINE_SPINLOCK(dbg_lock);
38
39static const char *get_key_fmt(int fmt)
40{
41	switch (fmt) {
42	case UBIFS_SIMPLE_KEY_FMT:
43		return "simple";
44	default:
45		return "unknown/invalid format";
46	}
47}
48
49static const char *get_key_hash(int hash)
50{
51	switch (hash) {
52	case UBIFS_KEY_HASH_R5:
53		return "R5";
54	case UBIFS_KEY_HASH_TEST:
55		return "test";
56	default:
57		return "unknown/invalid name hash";
58	}
59}
60
61static const char *get_key_type(int type)
62{
63	switch (type) {
64	case UBIFS_INO_KEY:
65		return "inode";
66	case UBIFS_DENT_KEY:
67		return "direntry";
68	case UBIFS_XENT_KEY:
69		return "xentry";
70	case UBIFS_DATA_KEY:
71		return "data";
72	case UBIFS_TRUN_KEY:
73		return "truncate";
74	default:
75		return "unknown/invalid key";
76	}
77}
78
79static const char *get_dent_type(int type)
80{
81	switch (type) {
82	case UBIFS_ITYPE_REG:
83		return "file";
84	case UBIFS_ITYPE_DIR:
85		return "dir";
86	case UBIFS_ITYPE_LNK:
87		return "symlink";
88	case UBIFS_ITYPE_BLK:
89		return "blkdev";
90	case UBIFS_ITYPE_CHR:
91		return "char dev";
92	case UBIFS_ITYPE_FIFO:
93		return "fifo";
94	case UBIFS_ITYPE_SOCK:
95		return "socket";
96	default:
97		return "unknown/invalid type";
98	}
99}
100
101const char *dbg_snprintf_key(const struct ubifs_info *c,
102			     const union ubifs_key *key, char *buffer, int len)
103{
104	char *p = buffer;
105	int type = key_type(c, key);
106
107	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108		switch (type) {
109		case UBIFS_INO_KEY:
110			len -= snprintf(p, len, "(%lu, %s)",
111					(unsigned long)key_inum(c, key),
112					get_key_type(type));
113			break;
114		case UBIFS_DENT_KEY:
115		case UBIFS_XENT_KEY:
116			len -= snprintf(p, len, "(%lu, %s, %#08x)",
117					(unsigned long)key_inum(c, key),
118					get_key_type(type), key_hash(c, key));
119			break;
120		case UBIFS_DATA_KEY:
121			len -= snprintf(p, len, "(%lu, %s, %u)",
122					(unsigned long)key_inum(c, key),
123					get_key_type(type), key_block(c, key));
124			break;
125		case UBIFS_TRUN_KEY:
126			len -= snprintf(p, len, "(%lu, %s)",
127					(unsigned long)key_inum(c, key),
128					get_key_type(type));
129			break;
130		default:
131			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132					key->u32[0], key->u32[1]);
133		}
134	} else
135		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136	ubifs_assert(len > 0);
137	return p;
138}
139
140const char *dbg_ntype(int type)
141{
142	switch (type) {
143	case UBIFS_PAD_NODE:
144		return "padding node";
145	case UBIFS_SB_NODE:
146		return "superblock node";
147	case UBIFS_MST_NODE:
148		return "master node";
149	case UBIFS_REF_NODE:
150		return "reference node";
151	case UBIFS_INO_NODE:
152		return "inode node";
153	case UBIFS_DENT_NODE:
154		return "direntry node";
155	case UBIFS_XENT_NODE:
156		return "xentry node";
157	case UBIFS_DATA_NODE:
158		return "data node";
159	case UBIFS_TRUN_NODE:
160		return "truncate node";
161	case UBIFS_IDX_NODE:
162		return "indexing node";
163	case UBIFS_CS_NODE:
164		return "commit start node";
165	case UBIFS_ORPH_NODE:
166		return "orphan node";
167	default:
168		return "unknown node";
169	}
170}
171
172static const char *dbg_gtype(int type)
173{
174	switch (type) {
175	case UBIFS_NO_NODE_GROUP:
176		return "no node group";
177	case UBIFS_IN_NODE_GROUP:
178		return "in node group";
179	case UBIFS_LAST_OF_NODE_GROUP:
180		return "last of node group";
181	default:
182		return "unknown";
183	}
184}
185
186const char *dbg_cstate(int cmt_state)
187{
188	switch (cmt_state) {
189	case COMMIT_RESTING:
190		return "commit resting";
191	case COMMIT_BACKGROUND:
192		return "background commit requested";
193	case COMMIT_REQUIRED:
194		return "commit required";
195	case COMMIT_RUNNING_BACKGROUND:
196		return "BACKGROUND commit running";
197	case COMMIT_RUNNING_REQUIRED:
198		return "commit running and required";
199	case COMMIT_BROKEN:
200		return "broken commit";
201	default:
202		return "unknown commit state";
203	}
204}
205
206const char *dbg_jhead(int jhead)
207{
208	switch (jhead) {
209	case GCHD:
210		return "0 (GC)";
211	case BASEHD:
212		return "1 (base)";
213	case DATAHD:
214		return "2 (data)";
215	default:
216		return "unknown journal head";
217	}
218}
219
220static void dump_ch(const struct ubifs_ch *ch)
221{
222	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
223	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
224	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
225	       dbg_ntype(ch->node_type));
226	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
227	       dbg_gtype(ch->group_type));
228	pr_err("\tsqnum          %llu\n",
229	       (unsigned long long)le64_to_cpu(ch->sqnum));
230	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
231}
232
233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234{
235	const struct ubifs_inode *ui = ubifs_inode(inode);
236	struct qstr nm = { .name = NULL };
237	union ubifs_key key;
238	struct ubifs_dent_node *dent, *pdent = NULL;
239	int count = 2;
240
241	pr_err("Dump in-memory inode:");
242	pr_err("\tinode          %lu\n", inode->i_ino);
243	pr_err("\tsize           %llu\n",
244	       (unsigned long long)i_size_read(inode));
245	pr_err("\tnlink          %u\n", inode->i_nlink);
246	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
247	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
248	pr_err("\tatime          %u.%u\n",
249	       (unsigned int)inode->i_atime.tv_sec,
250	       (unsigned int)inode->i_atime.tv_nsec);
251	pr_err("\tmtime          %u.%u\n",
252	       (unsigned int)inode->i_mtime.tv_sec,
253	       (unsigned int)inode->i_mtime.tv_nsec);
254	pr_err("\tctime          %u.%u\n",
255	       (unsigned int)inode->i_ctime.tv_sec,
256	       (unsigned int)inode->i_ctime.tv_nsec);
257	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258	pr_err("\txattr_size     %u\n", ui->xattr_size);
259	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
260	pr_err("\txattr_names    %u\n", ui->xattr_names);
261	pr_err("\tdirty          %u\n", ui->dirty);
262	pr_err("\txattr          %u\n", ui->xattr);
263	pr_err("\tbulk_read      %u\n", ui->xattr);
264	pr_err("\tsynced_i_size  %llu\n",
265	       (unsigned long long)ui->synced_i_size);
266	pr_err("\tui_size        %llu\n",
267	       (unsigned long long)ui->ui_size);
268	pr_err("\tflags          %d\n", ui->flags);
269	pr_err("\tcompr_type     %d\n", ui->compr_type);
270	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
272	pr_err("\tdata_len       %d\n", ui->data_len);
273
274	if (!S_ISDIR(inode->i_mode))
275		return;
276
277	pr_err("List of directory entries:\n");
278	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280	lowest_dent_key(c, &key, inode->i_ino);
281	while (1) {
282		dent = ubifs_tnc_next_ent(c, &key, &nm);
283		if (IS_ERR(dent)) {
284			if (PTR_ERR(dent) != -ENOENT)
285				pr_err("error %ld\n", PTR_ERR(dent));
286			break;
287		}
288
289		pr_err("\t%d: %s (%s)\n",
290		       count++, dent->name, get_dent_type(dent->type));
291
292		nm.name = dent->name;
293		nm.len = le16_to_cpu(dent->nlen);
294		kfree(pdent);
295		pdent = dent;
296		key_read(c, &dent->key, &key);
297	}
298	kfree(pdent);
299}
300
301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302{
303	int i, n;
304	union ubifs_key key;
305	const struct ubifs_ch *ch = node;
306	char key_buf[DBG_KEY_BUF_LEN];
307
308	/* If the magic is incorrect, just hexdump the first bytes */
309	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312			       (void *)node, UBIFS_CH_SZ, 1);
313		return;
314	}
315
316	spin_lock(&dbg_lock);
317	dump_ch(node);
318
319	switch (ch->node_type) {
320	case UBIFS_PAD_NODE:
321	{
322		const struct ubifs_pad_node *pad = node;
323
324		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
325		break;
326	}
327	case UBIFS_SB_NODE:
328	{
329		const struct ubifs_sb_node *sup = node;
330		unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332		pr_err("\tkey_hash       %d (%s)\n",
333		       (int)sup->key_hash, get_key_hash(sup->key_hash));
334		pr_err("\tkey_fmt        %d (%s)\n",
335		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336		pr_err("\tflags          %#x\n", sup_flags);
337		pr_err("\tbig_lpt        %u\n",
338		       !!(sup_flags & UBIFS_FLG_BIGLPT));
339		pr_err("\tspace_fixup    %u\n",
340		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
342		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
343		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
344		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
345		pr_err("\tmax_bud_bytes  %llu\n",
346		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
348		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
349		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
350		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
351		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
352		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
353		pr_err("\tdefault_compr  %u\n",
354		       (int)le16_to_cpu(sup->default_compr));
355		pr_err("\trp_size        %llu\n",
356		       (unsigned long long)le64_to_cpu(sup->rp_size));
357		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
358		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
359		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
360		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
361		pr_err("\tUUID           %pUB\n", sup->uuid);
362		break;
363	}
364	case UBIFS_MST_NODE:
365	{
366		const struct ubifs_mst_node *mst = node;
367
368		pr_err("\thighest_inum   %llu\n",
369		       (unsigned long long)le64_to_cpu(mst->highest_inum));
370		pr_err("\tcommit number  %llu\n",
371		       (unsigned long long)le64_to_cpu(mst->cmt_no));
372		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
373		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
374		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
375		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
376		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
377		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
378		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
379		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
380		pr_err("\tindex_size     %llu\n",
381		       (unsigned long long)le64_to_cpu(mst->index_size));
382		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
383		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
384		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
385		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
386		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
387		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
388		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
389		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
390		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
391		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
392		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
393		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
394		pr_err("\ttotal_free     %llu\n",
395		       (unsigned long long)le64_to_cpu(mst->total_free));
396		pr_err("\ttotal_dirty    %llu\n",
397		       (unsigned long long)le64_to_cpu(mst->total_dirty));
398		pr_err("\ttotal_used     %llu\n",
399		       (unsigned long long)le64_to_cpu(mst->total_used));
400		pr_err("\ttotal_dead     %llu\n",
401		       (unsigned long long)le64_to_cpu(mst->total_dead));
402		pr_err("\ttotal_dark     %llu\n",
403		       (unsigned long long)le64_to_cpu(mst->total_dark));
404		break;
405	}
406	case UBIFS_REF_NODE:
407	{
408		const struct ubifs_ref_node *ref = node;
409
410		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
411		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
412		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
413		break;
414	}
415	case UBIFS_INO_NODE:
416	{
417		const struct ubifs_ino_node *ino = node;
418
419		key_read(c, &ino->key, &key);
420		pr_err("\tkey            %s\n",
421		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422		pr_err("\tcreat_sqnum    %llu\n",
423		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424		pr_err("\tsize           %llu\n",
425		       (unsigned long long)le64_to_cpu(ino->size));
426		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
427		pr_err("\tatime          %lld.%u\n",
428		       (long long)le64_to_cpu(ino->atime_sec),
429		       le32_to_cpu(ino->atime_nsec));
430		pr_err("\tmtime          %lld.%u\n",
431		       (long long)le64_to_cpu(ino->mtime_sec),
432		       le32_to_cpu(ino->mtime_nsec));
433		pr_err("\tctime          %lld.%u\n",
434		       (long long)le64_to_cpu(ino->ctime_sec),
435		       le32_to_cpu(ino->ctime_nsec));
436		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
437		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
438		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
439		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
440		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
441		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
442		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
443		pr_err("\tcompr_type     %#x\n",
444		       (int)le16_to_cpu(ino->compr_type));
445		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
446		break;
447	}
448	case UBIFS_DENT_NODE:
449	case UBIFS_XENT_NODE:
450	{
451		const struct ubifs_dent_node *dent = node;
452		int nlen = le16_to_cpu(dent->nlen);
453
454		key_read(c, &dent->key, &key);
455		pr_err("\tkey            %s\n",
456		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457		pr_err("\tinum           %llu\n",
458		       (unsigned long long)le64_to_cpu(dent->inum));
459		pr_err("\ttype           %d\n", (int)dent->type);
460		pr_err("\tnlen           %d\n", nlen);
461		pr_err("\tname           ");
462
463		if (nlen > UBIFS_MAX_NLEN)
464			pr_err("(bad name length, not printing, bad or corrupted node)");
465		else {
466			for (i = 0; i < nlen && dent->name[i]; i++)
467				pr_cont("%c", dent->name[i]);
468		}
469		pr_cont("\n");
470
471		break;
472	}
473	case UBIFS_DATA_NODE:
474	{
475		const struct ubifs_data_node *dn = node;
476		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478		key_read(c, &dn->key, &key);
479		pr_err("\tkey            %s\n",
480		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
482		pr_err("\tcompr_typ      %d\n",
483		       (int)le16_to_cpu(dn->compr_type));
484		pr_err("\tdata size      %d\n", dlen);
485		pr_err("\tdata:\n");
486		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487			       (void *)&dn->data, dlen, 0);
488		break;
489	}
490	case UBIFS_TRUN_NODE:
491	{
492		const struct ubifs_trun_node *trun = node;
493
494		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
495		pr_err("\told_size       %llu\n",
496		       (unsigned long long)le64_to_cpu(trun->old_size));
497		pr_err("\tnew_size       %llu\n",
498		       (unsigned long long)le64_to_cpu(trun->new_size));
499		break;
500	}
501	case UBIFS_IDX_NODE:
502	{
503		const struct ubifs_idx_node *idx = node;
504
505		n = le16_to_cpu(idx->child_cnt);
506		pr_err("\tchild_cnt      %d\n", n);
507		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
508		pr_err("\tBranches:\n");
509
510		for (i = 0; i < n && i < c->fanout - 1; i++) {
511			const struct ubifs_branch *br;
512
513			br = ubifs_idx_branch(c, idx, i);
514			key_read(c, &br->key, &key);
515			pr_err("\t%d: LEB %d:%d len %d key %s\n",
516			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517			       le32_to_cpu(br->len),
518			       dbg_snprintf_key(c, &key, key_buf,
519						DBG_KEY_BUF_LEN));
520		}
521		break;
522	}
523	case UBIFS_CS_NODE:
524		break;
525	case UBIFS_ORPH_NODE:
526	{
527		const struct ubifs_orph_node *orph = node;
528
529		pr_err("\tcommit number  %llu\n",
530		       (unsigned long long)
531				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532		pr_err("\tlast node flag %llu\n",
533		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535		pr_err("\t%d orphan inode numbers:\n", n);
536		for (i = 0; i < n; i++)
537			pr_err("\t  ino %llu\n",
538			       (unsigned long long)le64_to_cpu(orph->inos[i]));
539		break;
540	}
541	default:
542		pr_err("node type %d was not recognized\n",
543		       (int)ch->node_type);
544	}
545	spin_unlock(&dbg_lock);
546}
547
548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549{
550	spin_lock(&dbg_lock);
551	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552	       req->new_ino, req->dirtied_ino);
553	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
554	       req->new_ino_d, req->dirtied_ino_d);
555	pr_err("\tnew_page    %d, dirtied_page %d\n",
556	       req->new_page, req->dirtied_page);
557	pr_err("\tnew_dent    %d, mod_dent     %d\n",
558	       req->new_dent, req->mod_dent);
559	pr_err("\tidx_growth  %d\n", req->idx_growth);
560	pr_err("\tdata_growth %d dd_growth     %d\n",
561	       req->data_growth, req->dd_growth);
562	spin_unlock(&dbg_lock);
563}
564
565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566{
567	spin_lock(&dbg_lock);
568	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
569	       current->pid, lst->empty_lebs, lst->idx_lebs);
570	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573	       lst->total_used, lst->total_dark, lst->total_dead);
574	spin_unlock(&dbg_lock);
575}
576
577void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
578{
579	int i;
580	struct rb_node *rb;
581	struct ubifs_bud *bud;
582	struct ubifs_gced_idx_leb *idx_gc;
583	long long available, outstanding, free;
584
585	spin_lock(&c->space_lock);
586	spin_lock(&dbg_lock);
587	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588	       current->pid, bi->data_growth + bi->dd_growth,
589	       bi->data_growth + bi->dd_growth + bi->idx_growth);
590	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591	       bi->data_growth, bi->dd_growth, bi->idx_growth);
592	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595	       bi->page_budget, bi->inode_budget, bi->dent_budget);
596	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
599
600	if (bi != &c->bi)
601		/*
602		 * If we are dumping saved budgeting data, do not print
603		 * additional information which is about the current state, not
604		 * the old one which corresponded to the saved budgeting data.
605		 */
606		goto out_unlock;
607
608	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611	       atomic_long_read(&c->dirty_pg_cnt),
612	       atomic_long_read(&c->dirty_zn_cnt),
613	       atomic_long_read(&c->clean_zn_cnt));
614	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
615
616	/* If we are in R/O mode, journal heads do not exist */
617	if (c->jheads)
618		for (i = 0; i < c->jhead_cnt; i++)
619			pr_err("\tjhead %s\t LEB %d\n",
620			       dbg_jhead(c->jheads[i].wbuf.jhead),
621			       c->jheads[i].wbuf.lnum);
622	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623		bud = rb_entry(rb, struct ubifs_bud, rb);
624		pr_err("\tbud LEB %d\n", bud->lnum);
625	}
626	list_for_each_entry(bud, &c->old_buds, list)
627		pr_err("\told bud LEB %d\n", bud->lnum);
628	list_for_each_entry(idx_gc, &c->idx_gc, list)
629		pr_err("\tGC'ed idx LEB %d unmap %d\n",
630		       idx_gc->lnum, idx_gc->unmap);
631	pr_err("\tcommit state %d\n", c->cmt_state);
632
633	/* Print budgeting predictions */
634	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635	outstanding = c->bi.data_growth + c->bi.dd_growth;
636	free = ubifs_get_free_space_nolock(c);
637	pr_err("Budgeting predictions:\n");
638	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639	       available, outstanding, free);
640out_unlock:
641	spin_unlock(&dbg_lock);
642	spin_unlock(&c->space_lock);
643}
644
645void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
646{
647	int i, spc, dark = 0, dead = 0;
648	struct rb_node *rb;
649	struct ubifs_bud *bud;
650
651	spc = lp->free + lp->dirty;
652	if (spc < c->dead_wm)
653		dead = spc;
654	else
655		dark = ubifs_calc_dark(c, spc);
656
657	if (lp->flags & LPROPS_INDEX)
658		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
660		       lp->flags);
661	else
662		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
665
666	if (lp->flags & LPROPS_TAKEN) {
667		if (lp->flags & LPROPS_INDEX)
668			pr_cont("index, taken");
669		else
670			pr_cont("taken");
671	} else {
672		const char *s;
673
674		if (lp->flags & LPROPS_INDEX) {
675			switch (lp->flags & LPROPS_CAT_MASK) {
676			case LPROPS_DIRTY_IDX:
677				s = "dirty index";
678				break;
679			case LPROPS_FRDI_IDX:
680				s = "freeable index";
681				break;
682			default:
683				s = "index";
684			}
685		} else {
686			switch (lp->flags & LPROPS_CAT_MASK) {
687			case LPROPS_UNCAT:
688				s = "not categorized";
689				break;
690			case LPROPS_DIRTY:
691				s = "dirty";
692				break;
693			case LPROPS_FREE:
694				s = "free";
695				break;
696			case LPROPS_EMPTY:
697				s = "empty";
698				break;
699			case LPROPS_FREEABLE:
700				s = "freeable";
701				break;
702			default:
703				s = NULL;
704				break;
705			}
706		}
707		pr_cont("%s", s);
708	}
709
710	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
711		bud = rb_entry(rb, struct ubifs_bud, rb);
712		if (bud->lnum == lp->lnum) {
713			int head = 0;
714			for (i = 0; i < c->jhead_cnt; i++) {
715				/*
716				 * Note, if we are in R/O mode or in the middle
717				 * of mounting/re-mounting, the write-buffers do
718				 * not exist.
719				 */
720				if (c->jheads &&
721				    lp->lnum == c->jheads[i].wbuf.lnum) {
722					pr_cont(", jhead %s", dbg_jhead(i));
723					head = 1;
724				}
725			}
726			if (!head)
727				pr_cont(", bud of jhead %s",
728				       dbg_jhead(bud->jhead));
729		}
730	}
731	if (lp->lnum == c->gc_lnum)
732		pr_cont(", GC LEB");
733	pr_cont(")\n");
734}
735
736void ubifs_dump_lprops(struct ubifs_info *c)
737{
738	int lnum, err;
739	struct ubifs_lprops lp;
740	struct ubifs_lp_stats lst;
741
742	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743	ubifs_get_lp_stats(c, &lst);
744	ubifs_dump_lstats(&lst);
745
746	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
747		err = ubifs_read_one_lp(c, lnum, &lp);
748		if (err) {
749			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
750			continue;
751		}
752
753		ubifs_dump_lprop(c, &lp);
754	}
755	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
756}
757
758void ubifs_dump_lpt_info(struct ubifs_info *c)
759{
760	int i;
761
762	spin_lock(&dbg_lock);
763	pr_err("(pid %d) dumping LPT information\n", current->pid);
764	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
765	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
766	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
767	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
768	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
769	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
770	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
771	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
772	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
773	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
774	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
775	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
776	pr_err("\tspace_bits:    %d\n", c->space_bits);
777	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
778	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
779	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
780	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
781	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
782	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
783	pr_err("\tLPT head is at %d:%d\n",
784	       c->nhead_lnum, c->nhead_offs);
785	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
786	if (c->big_lpt)
787		pr_err("\tLPT lsave is at %d:%d\n",
788		       c->lsave_lnum, c->lsave_offs);
789	for (i = 0; i < c->lpt_lebs; i++)
790		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
791		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
792		       c->ltab[i].tgc, c->ltab[i].cmt);
793	spin_unlock(&dbg_lock);
794}
795
796void ubifs_dump_sleb(const struct ubifs_info *c,
797		     const struct ubifs_scan_leb *sleb, int offs)
798{
799	struct ubifs_scan_node *snod;
800
801	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
802	       current->pid, sleb->lnum, offs);
803
804	list_for_each_entry(snod, &sleb->nodes, list) {
805		cond_resched();
806		pr_err("Dumping node at LEB %d:%d len %d\n",
807		       sleb->lnum, snod->offs, snod->len);
808		ubifs_dump_node(c, snod->node);
809	}
810}
811
812void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
813{
814	struct ubifs_scan_leb *sleb;
815	struct ubifs_scan_node *snod;
816	void *buf;
817
818	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
819
820	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
821	if (!buf) {
822		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
823		return;
824	}
825
826	sleb = ubifs_scan(c, lnum, 0, buf, 0);
827	if (IS_ERR(sleb)) {
828		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
829		goto out;
830	}
831
832	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
833	       sleb->nodes_cnt, sleb->endpt);
834
835	list_for_each_entry(snod, &sleb->nodes, list) {
836		cond_resched();
837		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
838		       snod->offs, snod->len);
839		ubifs_dump_node(c, snod->node);
840	}
841
842	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
843	ubifs_scan_destroy(sleb);
844
845out:
846	vfree(buf);
847	return;
848}
849
850void ubifs_dump_znode(const struct ubifs_info *c,
851		      const struct ubifs_znode *znode)
852{
853	int n;
854	const struct ubifs_zbranch *zbr;
855	char key_buf[DBG_KEY_BUF_LEN];
856
857	spin_lock(&dbg_lock);
858	if (znode->parent)
859		zbr = &znode->parent->zbranch[znode->iip];
860	else
861		zbr = &c->zroot;
862
863	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
864	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
865	       znode->level, znode->child_cnt, znode->flags);
866
867	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
868		spin_unlock(&dbg_lock);
869		return;
870	}
871
872	pr_err("zbranches:\n");
873	for (n = 0; n < znode->child_cnt; n++) {
874		zbr = &znode->zbranch[n];
875		if (znode->level > 0)
876			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
877			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
878			       dbg_snprintf_key(c, &zbr->key, key_buf,
879						DBG_KEY_BUF_LEN));
880		else
881			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
882			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883			       dbg_snprintf_key(c, &zbr->key, key_buf,
884						DBG_KEY_BUF_LEN));
885	}
886	spin_unlock(&dbg_lock);
887}
888
889void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
890{
891	int i;
892
893	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
894	       current->pid, cat, heap->cnt);
895	for (i = 0; i < heap->cnt; i++) {
896		struct ubifs_lprops *lprops = heap->arr[i];
897
898		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
899		       i, lprops->lnum, lprops->hpos, lprops->free,
900		       lprops->dirty, lprops->flags);
901	}
902	pr_err("(pid %d) finish dumping heap\n", current->pid);
903}
904
905void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
906		      struct ubifs_nnode *parent, int iip)
907{
908	int i;
909
910	pr_err("(pid %d) dumping pnode:\n", current->pid);
911	pr_err("\taddress %zx parent %zx cnext %zx\n",
912	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
913	pr_err("\tflags %lu iip %d level %d num %d\n",
914	       pnode->flags, iip, pnode->level, pnode->num);
915	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
916		struct ubifs_lprops *lp = &pnode->lprops[i];
917
918		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
919		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
920	}
921}
922
923void ubifs_dump_tnc(struct ubifs_info *c)
924{
925	struct ubifs_znode *znode;
926	int level;
927
928	pr_err("\n");
929	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
930	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
931	level = znode->level;
932	pr_err("== Level %d ==\n", level);
933	while (znode) {
934		if (level != znode->level) {
935			level = znode->level;
936			pr_err("== Level %d ==\n", level);
937		}
938		ubifs_dump_znode(c, znode);
939		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
940	}
941	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
942}
943
944static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
945		      void *priv)
946{
947	ubifs_dump_znode(c, znode);
948	return 0;
949}
950
951/**
952 * ubifs_dump_index - dump the on-flash index.
953 * @c: UBIFS file-system description object
954 *
955 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
956 * which dumps only in-memory znodes and does not read znodes which from flash.
957 */
958void ubifs_dump_index(struct ubifs_info *c)
959{
960	dbg_walk_index(c, NULL, dump_znode, NULL);
961}
962
963/**
964 * dbg_save_space_info - save information about flash space.
965 * @c: UBIFS file-system description object
966 *
967 * This function saves information about UBIFS free space, dirty space, etc, in
968 * order to check it later.
969 */
970void dbg_save_space_info(struct ubifs_info *c)
971{
972	struct ubifs_debug_info *d = c->dbg;
973	int freeable_cnt;
974
975	spin_lock(&c->space_lock);
976	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
977	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
978	d->saved_idx_gc_cnt = c->idx_gc_cnt;
979
980	/*
981	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
982	 * affects the free space calculations, and UBIFS might not know about
983	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984	 * only when we read their lprops, and we do this only lazily, upon the
985	 * need. So at any given point of time @c->freeable_cnt might be not
986	 * exactly accurate.
987	 *
988	 * Just one example about the issue we hit when we did not zero
989	 * @c->freeable_cnt.
990	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991	 *    amount of free space in @d->saved_free
992	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993	 *    information from flash, where we cache LEBs from various
994	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
997	 *    -> 'ubifs_add_to_cat()').
998	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
999	 *    becomes %1.
1000	 * 4. We calculate the amount of free space when the re-mount is
1001	 *    finished in 'dbg_check_space_info()' and it does not match
1002	 *    @d->saved_free.
1003	 */
1004	freeable_cnt = c->freeable_cnt;
1005	c->freeable_cnt = 0;
1006	d->saved_free = ubifs_get_free_space_nolock(c);
1007	c->freeable_cnt = freeable_cnt;
1008	spin_unlock(&c->space_lock);
1009}
1010
1011/**
1012 * dbg_check_space_info - check flash space information.
1013 * @c: UBIFS file-system description object
1014 *
1015 * This function compares current flash space information with the information
1016 * which was saved when the 'dbg_save_space_info()' function was called.
1017 * Returns zero if the information has not changed, and %-EINVAL it it has
1018 * changed.
1019 */
1020int dbg_check_space_info(struct ubifs_info *c)
1021{
1022	struct ubifs_debug_info *d = c->dbg;
1023	struct ubifs_lp_stats lst;
1024	long long free;
1025	int freeable_cnt;
1026
1027	spin_lock(&c->space_lock);
1028	freeable_cnt = c->freeable_cnt;
1029	c->freeable_cnt = 0;
1030	free = ubifs_get_free_space_nolock(c);
1031	c->freeable_cnt = freeable_cnt;
1032	spin_unlock(&c->space_lock);
1033
1034	if (free != d->saved_free) {
1035		ubifs_err(c, "free space changed from %lld to %lld",
1036			  d->saved_free, free);
1037		goto out;
1038	}
1039
1040	return 0;
1041
1042out:
1043	ubifs_msg(c, "saved lprops statistics dump");
1044	ubifs_dump_lstats(&d->saved_lst);
1045	ubifs_msg(c, "saved budgeting info dump");
1046	ubifs_dump_budg(c, &d->saved_bi);
1047	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048	ubifs_msg(c, "current lprops statistics dump");
1049	ubifs_get_lp_stats(c, &lst);
1050	ubifs_dump_lstats(&lst);
1051	ubifs_msg(c, "current budgeting info dump");
1052	ubifs_dump_budg(c, &c->bi);
1053	dump_stack();
1054	return -EINVAL;
1055}
1056
1057/**
1058 * dbg_check_synced_i_size - check synchronized inode size.
1059 * @c: UBIFS file-system description object
1060 * @inode: inode to check
1061 *
1062 * If inode is clean, synchronized inode size has to be equivalent to current
1063 * inode size. This function has to be called only for locked inodes (@i_mutex
1064 * has to be locked). Returns %0 if synchronized inode size if correct, and
1065 * %-EINVAL if not.
1066 */
1067int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1068{
1069	int err = 0;
1070	struct ubifs_inode *ui = ubifs_inode(inode);
1071
1072	if (!dbg_is_chk_gen(c))
1073		return 0;
1074	if (!S_ISREG(inode->i_mode))
1075		return 0;
1076
1077	mutex_lock(&ui->ui_mutex);
1078	spin_lock(&ui->ui_lock);
1079	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081			  ui->ui_size, ui->synced_i_size);
1082		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083			  inode->i_mode, i_size_read(inode));
1084		dump_stack();
1085		err = -EINVAL;
1086	}
1087	spin_unlock(&ui->ui_lock);
1088	mutex_unlock(&ui->ui_mutex);
1089	return err;
1090}
1091
1092/*
1093 * dbg_check_dir - check directory inode size and link count.
1094 * @c: UBIFS file-system description object
1095 * @dir: the directory to calculate size for
1096 * @size: the result is returned here
1097 *
1098 * This function makes sure that directory size and link count are correct.
1099 * Returns zero in case of success and a negative error code in case of
1100 * failure.
1101 *
1102 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103 * calling this function.
1104 */
1105int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1106{
1107	unsigned int nlink = 2;
1108	union ubifs_key key;
1109	struct ubifs_dent_node *dent, *pdent = NULL;
1110	struct qstr nm = { .name = NULL };
1111	loff_t size = UBIFS_INO_NODE_SZ;
1112
1113	if (!dbg_is_chk_gen(c))
1114		return 0;
1115
1116	if (!S_ISDIR(dir->i_mode))
1117		return 0;
1118
1119	lowest_dent_key(c, &key, dir->i_ino);
1120	while (1) {
1121		int err;
1122
1123		dent = ubifs_tnc_next_ent(c, &key, &nm);
1124		if (IS_ERR(dent)) {
1125			err = PTR_ERR(dent);
1126			if (err == -ENOENT)
1127				break;
1128			return err;
1129		}
1130
1131		nm.name = dent->name;
1132		nm.len = le16_to_cpu(dent->nlen);
1133		size += CALC_DENT_SIZE(nm.len);
1134		if (dent->type == UBIFS_ITYPE_DIR)
1135			nlink += 1;
1136		kfree(pdent);
1137		pdent = dent;
1138		key_read(c, &dent->key, &key);
1139	}
1140	kfree(pdent);
1141
1142	if (i_size_read(dir) != size) {
1143		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1144			  dir->i_ino, (unsigned long long)i_size_read(dir),
1145			  (unsigned long long)size);
1146		ubifs_dump_inode(c, dir);
1147		dump_stack();
1148		return -EINVAL;
1149	}
1150	if (dir->i_nlink != nlink) {
1151		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1152			  dir->i_ino, dir->i_nlink, nlink);
1153		ubifs_dump_inode(c, dir);
1154		dump_stack();
1155		return -EINVAL;
1156	}
1157
1158	return 0;
1159}
1160
1161/**
1162 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1163 * @c: UBIFS file-system description object
1164 * @zbr1: first zbranch
1165 * @zbr2: following zbranch
1166 *
1167 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1168 * names of the direntries/xentries which are referred by the keys. This
1169 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1170 * sure the name of direntry/xentry referred by @zbr1 is less than
1171 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1172 * and a negative error code in case of failure.
1173 */
1174static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1175			       struct ubifs_zbranch *zbr2)
1176{
1177	int err, nlen1, nlen2, cmp;
1178	struct ubifs_dent_node *dent1, *dent2;
1179	union ubifs_key key;
1180	char key_buf[DBG_KEY_BUF_LEN];
1181
1182	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1183	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184	if (!dent1)
1185		return -ENOMEM;
1186	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1187	if (!dent2) {
1188		err = -ENOMEM;
1189		goto out_free;
1190	}
1191
1192	err = ubifs_tnc_read_node(c, zbr1, dent1);
1193	if (err)
1194		goto out_free;
1195	err = ubifs_validate_entry(c, dent1);
1196	if (err)
1197		goto out_free;
1198
1199	err = ubifs_tnc_read_node(c, zbr2, dent2);
1200	if (err)
1201		goto out_free;
1202	err = ubifs_validate_entry(c, dent2);
1203	if (err)
1204		goto out_free;
1205
1206	/* Make sure node keys are the same as in zbranch */
1207	err = 1;
1208	key_read(c, &dent1->key, &key);
1209	if (keys_cmp(c, &zbr1->key, &key)) {
1210		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1211			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1212						       DBG_KEY_BUF_LEN));
1213		ubifs_err(c, "but it should have key %s according to tnc",
1214			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1215					   DBG_KEY_BUF_LEN));
1216		ubifs_dump_node(c, dent1);
1217		goto out_free;
1218	}
1219
1220	key_read(c, &dent2->key, &key);
1221	if (keys_cmp(c, &zbr2->key, &key)) {
1222		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1223			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1224						       DBG_KEY_BUF_LEN));
1225		ubifs_err(c, "but it should have key %s according to tnc",
1226			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1227					   DBG_KEY_BUF_LEN));
1228		ubifs_dump_node(c, dent2);
1229		goto out_free;
1230	}
1231
1232	nlen1 = le16_to_cpu(dent1->nlen);
1233	nlen2 = le16_to_cpu(dent2->nlen);
1234
1235	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1236	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1237		err = 0;
1238		goto out_free;
1239	}
1240	if (cmp == 0 && nlen1 == nlen2)
1241		ubifs_err(c, "2 xent/dent nodes with the same name");
1242	else
1243		ubifs_err(c, "bad order of colliding key %s",
1244			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1245
1246	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1247	ubifs_dump_node(c, dent1);
1248	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1249	ubifs_dump_node(c, dent2);
1250
1251out_free:
1252	kfree(dent2);
1253	kfree(dent1);
1254	return err;
1255}
1256
1257/**
1258 * dbg_check_znode - check if znode is all right.
1259 * @c: UBIFS file-system description object
1260 * @zbr: zbranch which points to this znode
1261 *
1262 * This function makes sure that znode referred to by @zbr is all right.
1263 * Returns zero if it is, and %-EINVAL if it is not.
1264 */
1265static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1266{
1267	struct ubifs_znode *znode = zbr->znode;
1268	struct ubifs_znode *zp = znode->parent;
1269	int n, err, cmp;
1270
1271	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1272		err = 1;
1273		goto out;
1274	}
1275	if (znode->level < 0) {
1276		err = 2;
1277		goto out;
1278	}
1279	if (znode->iip < 0 || znode->iip >= c->fanout) {
1280		err = 3;
1281		goto out;
1282	}
1283
1284	if (zbr->len == 0)
1285		/* Only dirty zbranch may have no on-flash nodes */
1286		if (!ubifs_zn_dirty(znode)) {
1287			err = 4;
1288			goto out;
1289		}
1290
1291	if (ubifs_zn_dirty(znode)) {
1292		/*
1293		 * If znode is dirty, its parent has to be dirty as well. The
1294		 * order of the operation is important, so we have to have
1295		 * memory barriers.
1296		 */
1297		smp_mb();
1298		if (zp && !ubifs_zn_dirty(zp)) {
1299			/*
1300			 * The dirty flag is atomic and is cleared outside the
1301			 * TNC mutex, so znode's dirty flag may now have
1302			 * been cleared. The child is always cleared before the
1303			 * parent, so we just need to check again.
1304			 */
1305			smp_mb();
1306			if (ubifs_zn_dirty(znode)) {
1307				err = 5;
1308				goto out;
1309			}
1310		}
1311	}
1312
1313	if (zp) {
1314		const union ubifs_key *min, *max;
1315
1316		if (znode->level != zp->level - 1) {
1317			err = 6;
1318			goto out;
1319		}
1320
1321		/* Make sure the 'parent' pointer in our znode is correct */
1322		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1323		if (!err) {
1324			/* This zbranch does not exist in the parent */
1325			err = 7;
1326			goto out;
1327		}
1328
1329		if (znode->iip >= zp->child_cnt) {
1330			err = 8;
1331			goto out;
1332		}
1333
1334		if (znode->iip != n) {
1335			/* This may happen only in case of collisions */
1336			if (keys_cmp(c, &zp->zbranch[n].key,
1337				     &zp->zbranch[znode->iip].key)) {
1338				err = 9;
1339				goto out;
1340			}
1341			n = znode->iip;
1342		}
1343
1344		/*
1345		 * Make sure that the first key in our znode is greater than or
1346		 * equal to the key in the pointing zbranch.
1347		 */
1348		min = &zbr->key;
1349		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1350		if (cmp == 1) {
1351			err = 10;
1352			goto out;
1353		}
1354
1355		if (n + 1 < zp->child_cnt) {
1356			max = &zp->zbranch[n + 1].key;
1357
1358			/*
1359			 * Make sure the last key in our znode is less or
1360			 * equivalent than the key in the zbranch which goes
1361			 * after our pointing zbranch.
1362			 */
1363			cmp = keys_cmp(c, max,
1364				&znode->zbranch[znode->child_cnt - 1].key);
1365			if (cmp == -1) {
1366				err = 11;
1367				goto out;
1368			}
1369		}
1370	} else {
1371		/* This may only be root znode */
1372		if (zbr != &c->zroot) {
1373			err = 12;
1374			goto out;
1375		}
1376	}
1377
1378	/*
1379	 * Make sure that next key is greater or equivalent then the previous
1380	 * one.
1381	 */
1382	for (n = 1; n < znode->child_cnt; n++) {
1383		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1384			       &znode->zbranch[n].key);
1385		if (cmp > 0) {
1386			err = 13;
1387			goto out;
1388		}
1389		if (cmp == 0) {
1390			/* This can only be keys with colliding hash */
1391			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1392				err = 14;
1393				goto out;
1394			}
1395
1396			if (znode->level != 0 || c->replaying)
1397				continue;
1398
1399			/*
1400			 * Colliding keys should follow binary order of
1401			 * corresponding xentry/dentry names.
1402			 */
1403			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1404						  &znode->zbranch[n]);
1405			if (err < 0)
1406				return err;
1407			if (err) {
1408				err = 15;
1409				goto out;
1410			}
1411		}
1412	}
1413
1414	for (n = 0; n < znode->child_cnt; n++) {
1415		if (!znode->zbranch[n].znode &&
1416		    (znode->zbranch[n].lnum == 0 ||
1417		     znode->zbranch[n].len == 0)) {
1418			err = 16;
1419			goto out;
1420		}
1421
1422		if (znode->zbranch[n].lnum != 0 &&
1423		    znode->zbranch[n].len == 0) {
1424			err = 17;
1425			goto out;
1426		}
1427
1428		if (znode->zbranch[n].lnum == 0 &&
1429		    znode->zbranch[n].len != 0) {
1430			err = 18;
1431			goto out;
1432		}
1433
1434		if (znode->zbranch[n].lnum == 0 &&
1435		    znode->zbranch[n].offs != 0) {
1436			err = 19;
1437			goto out;
1438		}
1439
1440		if (znode->level != 0 && znode->zbranch[n].znode)
1441			if (znode->zbranch[n].znode->parent != znode) {
1442				err = 20;
1443				goto out;
1444			}
1445	}
1446
1447	return 0;
1448
1449out:
1450	ubifs_err(c, "failed, error %d", err);
1451	ubifs_msg(c, "dump of the znode");
1452	ubifs_dump_znode(c, znode);
1453	if (zp) {
1454		ubifs_msg(c, "dump of the parent znode");
1455		ubifs_dump_znode(c, zp);
1456	}
1457	dump_stack();
1458	return -EINVAL;
1459}
1460
1461/**
1462 * dbg_check_tnc - check TNC tree.
1463 * @c: UBIFS file-system description object
1464 * @extra: do extra checks that are possible at start commit
1465 *
1466 * This function traverses whole TNC tree and checks every znode. Returns zero
1467 * if everything is all right and %-EINVAL if something is wrong with TNC.
1468 */
1469int dbg_check_tnc(struct ubifs_info *c, int extra)
1470{
1471	struct ubifs_znode *znode;
1472	long clean_cnt = 0, dirty_cnt = 0;
1473	int err, last;
1474
1475	if (!dbg_is_chk_index(c))
1476		return 0;
1477
1478	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1479	if (!c->zroot.znode)
1480		return 0;
1481
1482	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1483	while (1) {
1484		struct ubifs_znode *prev;
1485		struct ubifs_zbranch *zbr;
1486
1487		if (!znode->parent)
1488			zbr = &c->zroot;
1489		else
1490			zbr = &znode->parent->zbranch[znode->iip];
1491
1492		err = dbg_check_znode(c, zbr);
1493		if (err)
1494			return err;
1495
1496		if (extra) {
1497			if (ubifs_zn_dirty(znode))
1498				dirty_cnt += 1;
1499			else
1500				clean_cnt += 1;
1501		}
1502
1503		prev = znode;
1504		znode = ubifs_tnc_postorder_next(znode);
1505		if (!znode)
1506			break;
1507
1508		/*
1509		 * If the last key of this znode is equivalent to the first key
1510		 * of the next znode (collision), then check order of the keys.
1511		 */
1512		last = prev->child_cnt - 1;
1513		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1514		    !keys_cmp(c, &prev->zbranch[last].key,
1515			      &znode->zbranch[0].key)) {
1516			err = dbg_check_key_order(c, &prev->zbranch[last],
1517						  &znode->zbranch[0]);
1518			if (err < 0)
1519				return err;
1520			if (err) {
1521				ubifs_msg(c, "first znode");
1522				ubifs_dump_znode(c, prev);
1523				ubifs_msg(c, "second znode");
1524				ubifs_dump_znode(c, znode);
1525				return -EINVAL;
1526			}
1527		}
1528	}
1529
1530	if (extra) {
1531		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1532			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1533				  atomic_long_read(&c->clean_zn_cnt),
1534				  clean_cnt);
1535			return -EINVAL;
1536		}
1537		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1538			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1539				  atomic_long_read(&c->dirty_zn_cnt),
1540				  dirty_cnt);
1541			return -EINVAL;
1542		}
1543	}
1544
1545	return 0;
1546}
1547
1548/**
1549 * dbg_walk_index - walk the on-flash index.
1550 * @c: UBIFS file-system description object
1551 * @leaf_cb: called for each leaf node
1552 * @znode_cb: called for each indexing node
1553 * @priv: private data which is passed to callbacks
1554 *
1555 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1556 * node and @znode_cb for each indexing node. Returns zero in case of success
1557 * and a negative error code in case of failure.
1558 *
1559 * It would be better if this function removed every znode it pulled to into
1560 * the TNC, so that the behavior more closely matched the non-debugging
1561 * behavior.
1562 */
1563int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1564		   dbg_znode_callback znode_cb, void *priv)
1565{
1566	int err;
1567	struct ubifs_zbranch *zbr;
1568	struct ubifs_znode *znode, *child;
1569
1570	mutex_lock(&c->tnc_mutex);
1571	/* If the root indexing node is not in TNC - pull it */
1572	if (!c->zroot.znode) {
1573		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1574		if (IS_ERR(c->zroot.znode)) {
1575			err = PTR_ERR(c->zroot.znode);
1576			c->zroot.znode = NULL;
1577			goto out_unlock;
1578		}
1579	}
1580
1581	/*
1582	 * We are going to traverse the indexing tree in the postorder manner.
1583	 * Go down and find the leftmost indexing node where we are going to
1584	 * start from.
1585	 */
1586	znode = c->zroot.znode;
1587	while (znode->level > 0) {
1588		zbr = &znode->zbranch[0];
1589		child = zbr->znode;
1590		if (!child) {
1591			child = ubifs_load_znode(c, zbr, znode, 0);
1592			if (IS_ERR(child)) {
1593				err = PTR_ERR(child);
1594				goto out_unlock;
1595			}
1596			zbr->znode = child;
1597		}
1598
1599		znode = child;
1600	}
1601
1602	/* Iterate over all indexing nodes */
1603	while (1) {
1604		int idx;
1605
1606		cond_resched();
1607
1608		if (znode_cb) {
1609			err = znode_cb(c, znode, priv);
1610			if (err) {
1611				ubifs_err(c, "znode checking function returned error %d",
1612					  err);
1613				ubifs_dump_znode(c, znode);
1614				goto out_dump;
1615			}
1616		}
1617		if (leaf_cb && znode->level == 0) {
1618			for (idx = 0; idx < znode->child_cnt; idx++) {
1619				zbr = &znode->zbranch[idx];
1620				err = leaf_cb(c, zbr, priv);
1621				if (err) {
1622					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1623						  err, zbr->lnum, zbr->offs);
1624					goto out_dump;
1625				}
1626			}
1627		}
1628
1629		if (!znode->parent)
1630			break;
1631
1632		idx = znode->iip + 1;
1633		znode = znode->parent;
1634		if (idx < znode->child_cnt) {
1635			/* Switch to the next index in the parent */
1636			zbr = &znode->zbranch[idx];
1637			child = zbr->znode;
1638			if (!child) {
1639				child = ubifs_load_znode(c, zbr, znode, idx);
1640				if (IS_ERR(child)) {
1641					err = PTR_ERR(child);
1642					goto out_unlock;
1643				}
1644				zbr->znode = child;
1645			}
1646			znode = child;
1647		} else
1648			/*
1649			 * This is the last child, switch to the parent and
1650			 * continue.
1651			 */
1652			continue;
1653
1654		/* Go to the lowest leftmost znode in the new sub-tree */
1655		while (znode->level > 0) {
1656			zbr = &znode->zbranch[0];
1657			child = zbr->znode;
1658			if (!child) {
1659				child = ubifs_load_znode(c, zbr, znode, 0);
1660				if (IS_ERR(child)) {
1661					err = PTR_ERR(child);
1662					goto out_unlock;
1663				}
1664				zbr->znode = child;
1665			}
1666			znode = child;
1667		}
1668	}
1669
1670	mutex_unlock(&c->tnc_mutex);
1671	return 0;
1672
1673out_dump:
1674	if (znode->parent)
1675		zbr = &znode->parent->zbranch[znode->iip];
1676	else
1677		zbr = &c->zroot;
1678	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1679	ubifs_dump_znode(c, znode);
1680out_unlock:
1681	mutex_unlock(&c->tnc_mutex);
1682	return err;
1683}
1684
1685/**
1686 * add_size - add znode size to partially calculated index size.
1687 * @c: UBIFS file-system description object
1688 * @znode: znode to add size for
1689 * @priv: partially calculated index size
1690 *
1691 * This is a helper function for 'dbg_check_idx_size()' which is called for
1692 * every indexing node and adds its size to the 'long long' variable pointed to
1693 * by @priv.
1694 */
1695static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1696{
1697	long long *idx_size = priv;
1698	int add;
1699
1700	add = ubifs_idx_node_sz(c, znode->child_cnt);
1701	add = ALIGN(add, 8);
1702	*idx_size += add;
1703	return 0;
1704}
1705
1706/**
1707 * dbg_check_idx_size - check index size.
1708 * @c: UBIFS file-system description object
1709 * @idx_size: size to check
1710 *
1711 * This function walks the UBIFS index, calculates its size and checks that the
1712 * size is equivalent to @idx_size. Returns zero in case of success and a
1713 * negative error code in case of failure.
1714 */
1715int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1716{
1717	int err;
1718	long long calc = 0;
1719
1720	if (!dbg_is_chk_index(c))
1721		return 0;
1722
1723	err = dbg_walk_index(c, NULL, add_size, &calc);
1724	if (err) {
1725		ubifs_err(c, "error %d while walking the index", err);
1726		return err;
1727	}
1728
1729	if (calc != idx_size) {
1730		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1731			  calc, idx_size);
1732		dump_stack();
1733		return -EINVAL;
1734	}
1735
1736	return 0;
1737}
1738
1739/**
1740 * struct fsck_inode - information about an inode used when checking the file-system.
1741 * @rb: link in the RB-tree of inodes
1742 * @inum: inode number
1743 * @mode: inode type, permissions, etc
1744 * @nlink: inode link count
1745 * @xattr_cnt: count of extended attributes
1746 * @references: how many directory/xattr entries refer this inode (calculated
1747 *              while walking the index)
1748 * @calc_cnt: for directory inode count of child directories
1749 * @size: inode size (read from on-flash inode)
1750 * @xattr_sz: summary size of all extended attributes (read from on-flash
1751 *            inode)
1752 * @calc_sz: for directories calculated directory size
1753 * @calc_xcnt: count of extended attributes
1754 * @calc_xsz: calculated summary size of all extended attributes
1755 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1756 *             inode (read from on-flash inode)
1757 * @calc_xnms: calculated sum of lengths of all extended attribute names
1758 */
1759struct fsck_inode {
1760	struct rb_node rb;
1761	ino_t inum;
1762	umode_t mode;
1763	unsigned int nlink;
1764	unsigned int xattr_cnt;
1765	int references;
1766	int calc_cnt;
1767	long long size;
1768	unsigned int xattr_sz;
1769	long long calc_sz;
1770	long long calc_xcnt;
1771	long long calc_xsz;
1772	unsigned int xattr_nms;
1773	long long calc_xnms;
1774};
1775
1776/**
1777 * struct fsck_data - private FS checking information.
1778 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1779 */
1780struct fsck_data {
1781	struct rb_root inodes;
1782};
1783
1784/**
1785 * add_inode - add inode information to RB-tree of inodes.
1786 * @c: UBIFS file-system description object
1787 * @fsckd: FS checking information
1788 * @ino: raw UBIFS inode to add
1789 *
1790 * This is a helper function for 'check_leaf()' which adds information about
1791 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1792 * case of success and a negative error code in case of failure.
1793 */
1794static struct fsck_inode *add_inode(struct ubifs_info *c,
1795				    struct fsck_data *fsckd,
1796				    struct ubifs_ino_node *ino)
1797{
1798	struct rb_node **p, *parent = NULL;
1799	struct fsck_inode *fscki;
1800	ino_t inum = key_inum_flash(c, &ino->key);
1801	struct inode *inode;
1802	struct ubifs_inode *ui;
1803
1804	p = &fsckd->inodes.rb_node;
1805	while (*p) {
1806		parent = *p;
1807		fscki = rb_entry(parent, struct fsck_inode, rb);
1808		if (inum < fscki->inum)
1809			p = &(*p)->rb_left;
1810		else if (inum > fscki->inum)
1811			p = &(*p)->rb_right;
1812		else
1813			return fscki;
1814	}
1815
1816	if (inum > c->highest_inum) {
1817		ubifs_err(c, "too high inode number, max. is %lu",
1818			  (unsigned long)c->highest_inum);
1819		return ERR_PTR(-EINVAL);
1820	}
1821
1822	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1823	if (!fscki)
1824		return ERR_PTR(-ENOMEM);
1825
1826	inode = ilookup(c->vfs_sb, inum);
1827
1828	fscki->inum = inum;
1829	/*
1830	 * If the inode is present in the VFS inode cache, use it instead of
1831	 * the on-flash inode which might be out-of-date. E.g., the size might
1832	 * be out-of-date. If we do not do this, the following may happen, for
1833	 * example:
1834	 *   1. A power cut happens
1835	 *   2. We mount the file-system R/O, the replay process fixes up the
1836	 *      inode size in the VFS cache, but on on-flash.
1837	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1838	 *      size.
1839	 */
1840	if (!inode) {
1841		fscki->nlink = le32_to_cpu(ino->nlink);
1842		fscki->size = le64_to_cpu(ino->size);
1843		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1844		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1845		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1846		fscki->mode = le32_to_cpu(ino->mode);
1847	} else {
1848		ui = ubifs_inode(inode);
1849		fscki->nlink = inode->i_nlink;
1850		fscki->size = inode->i_size;
1851		fscki->xattr_cnt = ui->xattr_cnt;
1852		fscki->xattr_sz = ui->xattr_size;
1853		fscki->xattr_nms = ui->xattr_names;
1854		fscki->mode = inode->i_mode;
1855		iput(inode);
1856	}
1857
1858	if (S_ISDIR(fscki->mode)) {
1859		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1860		fscki->calc_cnt = 2;
1861	}
1862
1863	rb_link_node(&fscki->rb, parent, p);
1864	rb_insert_color(&fscki->rb, &fsckd->inodes);
1865
1866	return fscki;
1867}
1868
1869/**
1870 * search_inode - search inode in the RB-tree of inodes.
1871 * @fsckd: FS checking information
1872 * @inum: inode number to search
1873 *
1874 * This is a helper function for 'check_leaf()' which searches inode @inum in
1875 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1876 * the inode was not found.
1877 */
1878static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1879{
1880	struct rb_node *p;
1881	struct fsck_inode *fscki;
1882
1883	p = fsckd->inodes.rb_node;
1884	while (p) {
1885		fscki = rb_entry(p, struct fsck_inode, rb);
1886		if (inum < fscki->inum)
1887			p = p->rb_left;
1888		else if (inum > fscki->inum)
1889			p = p->rb_right;
1890		else
1891			return fscki;
1892	}
1893	return NULL;
1894}
1895
1896/**
1897 * read_add_inode - read inode node and add it to RB-tree of inodes.
1898 * @c: UBIFS file-system description object
1899 * @fsckd: FS checking information
1900 * @inum: inode number to read
1901 *
1902 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1903 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1904 * information pointer in case of success and a negative error code in case of
1905 * failure.
1906 */
1907static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1908					 struct fsck_data *fsckd, ino_t inum)
1909{
1910	int n, err;
1911	union ubifs_key key;
1912	struct ubifs_znode *znode;
1913	struct ubifs_zbranch *zbr;
1914	struct ubifs_ino_node *ino;
1915	struct fsck_inode *fscki;
1916
1917	fscki = search_inode(fsckd, inum);
1918	if (fscki)
1919		return fscki;
1920
1921	ino_key_init(c, &key, inum);
1922	err = ubifs_lookup_level0(c, &key, &znode, &n);
1923	if (!err) {
1924		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1925		return ERR_PTR(-ENOENT);
1926	} else if (err < 0) {
1927		ubifs_err(c, "error %d while looking up inode %lu",
1928			  err, (unsigned long)inum);
1929		return ERR_PTR(err);
1930	}
1931
1932	zbr = &znode->zbranch[n];
1933	if (zbr->len < UBIFS_INO_NODE_SZ) {
1934		ubifs_err(c, "bad node %lu node length %d",
1935			  (unsigned long)inum, zbr->len);
1936		return ERR_PTR(-EINVAL);
1937	}
1938
1939	ino = kmalloc(zbr->len, GFP_NOFS);
1940	if (!ino)
1941		return ERR_PTR(-ENOMEM);
1942
1943	err = ubifs_tnc_read_node(c, zbr, ino);
1944	if (err) {
1945		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1946			  zbr->lnum, zbr->offs, err);
1947		kfree(ino);
1948		return ERR_PTR(err);
1949	}
1950
1951	fscki = add_inode(c, fsckd, ino);
1952	kfree(ino);
1953	if (IS_ERR(fscki)) {
1954		ubifs_err(c, "error %ld while adding inode %lu node",
1955			  PTR_ERR(fscki), (unsigned long)inum);
1956		return fscki;
1957	}
1958
1959	return fscki;
1960}
1961
1962/**
1963 * check_leaf - check leaf node.
1964 * @c: UBIFS file-system description object
1965 * @zbr: zbranch of the leaf node to check
1966 * @priv: FS checking information
1967 *
1968 * This is a helper function for 'dbg_check_filesystem()' which is called for
1969 * every single leaf node while walking the indexing tree. It checks that the
1970 * leaf node referred from the indexing tree exists, has correct CRC, and does
1971 * some other basic validation. This function is also responsible for building
1972 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1973 * calculates reference count, size, etc for each inode in order to later
1974 * compare them to the information stored inside the inodes and detect possible
1975 * inconsistencies. Returns zero in case of success and a negative error code
1976 * in case of failure.
1977 */
1978static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1979		      void *priv)
1980{
1981	ino_t inum;
1982	void *node;
1983	struct ubifs_ch *ch;
1984	int err, type = key_type(c, &zbr->key);
1985	struct fsck_inode *fscki;
1986
1987	if (zbr->len < UBIFS_CH_SZ) {
1988		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1989			  zbr->len, zbr->lnum, zbr->offs);
1990		return -EINVAL;
1991	}
1992
1993	node = kmalloc(zbr->len, GFP_NOFS);
1994	if (!node)
1995		return -ENOMEM;
1996
1997	err = ubifs_tnc_read_node(c, zbr, node);
1998	if (err) {
1999		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2000			  zbr->lnum, zbr->offs, err);
2001		goto out_free;
2002	}
2003
2004	/* If this is an inode node, add it to RB-tree of inodes */
2005	if (type == UBIFS_INO_KEY) {
2006		fscki = add_inode(c, priv, node);
2007		if (IS_ERR(fscki)) {
2008			err = PTR_ERR(fscki);
2009			ubifs_err(c, "error %d while adding inode node", err);
2010			goto out_dump;
2011		}
2012		goto out;
2013	}
2014
2015	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2016	    type != UBIFS_DATA_KEY) {
2017		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2018			  type, zbr->lnum, zbr->offs);
2019		err = -EINVAL;
2020		goto out_free;
2021	}
2022
2023	ch = node;
2024	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2025		ubifs_err(c, "too high sequence number, max. is %llu",
2026			  c->max_sqnum);
2027		err = -EINVAL;
2028		goto out_dump;
2029	}
2030
2031	if (type == UBIFS_DATA_KEY) {
2032		long long blk_offs;
2033		struct ubifs_data_node *dn = node;
2034
2035		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2036
2037		/*
2038		 * Search the inode node this data node belongs to and insert
2039		 * it to the RB-tree of inodes.
2040		 */
2041		inum = key_inum_flash(c, &dn->key);
2042		fscki = read_add_inode(c, priv, inum);
2043		if (IS_ERR(fscki)) {
2044			err = PTR_ERR(fscki);
2045			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2046				  err, (unsigned long)inum);
2047			goto out_dump;
2048		}
2049
2050		/* Make sure the data node is within inode size */
2051		blk_offs = key_block_flash(c, &dn->key);
2052		blk_offs <<= UBIFS_BLOCK_SHIFT;
2053		blk_offs += le32_to_cpu(dn->size);
2054		if (blk_offs > fscki->size) {
2055			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2056				  zbr->lnum, zbr->offs, fscki->size);
2057			err = -EINVAL;
2058			goto out_dump;
2059		}
2060	} else {
2061		int nlen;
2062		struct ubifs_dent_node *dent = node;
2063		struct fsck_inode *fscki1;
2064
2065		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2066
2067		err = ubifs_validate_entry(c, dent);
2068		if (err)
2069			goto out_dump;
2070
2071		/*
2072		 * Search the inode node this entry refers to and the parent
2073		 * inode node and insert them to the RB-tree of inodes.
2074		 */
2075		inum = le64_to_cpu(dent->inum);
2076		fscki = read_add_inode(c, priv, inum);
2077		if (IS_ERR(fscki)) {
2078			err = PTR_ERR(fscki);
2079			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2080				  err, (unsigned long)inum);
2081			goto out_dump;
2082		}
2083
2084		/* Count how many direntries or xentries refers this inode */
2085		fscki->references += 1;
2086
2087		inum = key_inum_flash(c, &dent->key);
2088		fscki1 = read_add_inode(c, priv, inum);
2089		if (IS_ERR(fscki1)) {
2090			err = PTR_ERR(fscki1);
2091			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2092				  err, (unsigned long)inum);
2093			goto out_dump;
2094		}
2095
2096		nlen = le16_to_cpu(dent->nlen);
2097		if (type == UBIFS_XENT_KEY) {
2098			fscki1->calc_xcnt += 1;
2099			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2100			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2101			fscki1->calc_xnms += nlen;
2102		} else {
2103			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2104			if (dent->type == UBIFS_ITYPE_DIR)
2105				fscki1->calc_cnt += 1;
2106		}
2107	}
2108
2109out:
2110	kfree(node);
2111	return 0;
2112
2113out_dump:
2114	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2115	ubifs_dump_node(c, node);
2116out_free:
2117	kfree(node);
2118	return err;
2119}
2120
2121/**
2122 * free_inodes - free RB-tree of inodes.
2123 * @fsckd: FS checking information
2124 */
2125static void free_inodes(struct fsck_data *fsckd)
2126{
2127	struct fsck_inode *fscki, *n;
2128
2129	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2130		kfree(fscki);
2131}
2132
2133/**
2134 * check_inodes - checks all inodes.
2135 * @c: UBIFS file-system description object
2136 * @fsckd: FS checking information
2137 *
2138 * This is a helper function for 'dbg_check_filesystem()' which walks the
2139 * RB-tree of inodes after the index scan has been finished, and checks that
2140 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2141 * %-EINVAL if not, and a negative error code in case of failure.
2142 */
2143static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2144{
2145	int n, err;
2146	union ubifs_key key;
2147	struct ubifs_znode *znode;
2148	struct ubifs_zbranch *zbr;
2149	struct ubifs_ino_node *ino;
2150	struct fsck_inode *fscki;
2151	struct rb_node *this = rb_first(&fsckd->inodes);
2152
2153	while (this) {
2154		fscki = rb_entry(this, struct fsck_inode, rb);
2155		this = rb_next(this);
2156
2157		if (S_ISDIR(fscki->mode)) {
2158			/*
2159			 * Directories have to have exactly one reference (they
2160			 * cannot have hardlinks), although root inode is an
2161			 * exception.
2162			 */
2163			if (fscki->inum != UBIFS_ROOT_INO &&
2164			    fscki->references != 1) {
2165				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2166					  (unsigned long)fscki->inum,
2167					  fscki->references);
2168				goto out_dump;
2169			}
2170			if (fscki->inum == UBIFS_ROOT_INO &&
2171			    fscki->references != 0) {
2172				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2173					  (unsigned long)fscki->inum,
2174					  fscki->references);
2175				goto out_dump;
2176			}
2177			if (fscki->calc_sz != fscki->size) {
2178				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2179					  (unsigned long)fscki->inum,
2180					  fscki->size, fscki->calc_sz);
2181				goto out_dump;
2182			}
2183			if (fscki->calc_cnt != fscki->nlink) {
2184				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2185					  (unsigned long)fscki->inum,
2186					  fscki->nlink, fscki->calc_cnt);
2187				goto out_dump;
2188			}
2189		} else {
2190			if (fscki->references != fscki->nlink) {
2191				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2192					  (unsigned long)fscki->inum,
2193					  fscki->nlink, fscki->references);
2194				goto out_dump;
2195			}
2196		}
2197		if (fscki->xattr_sz != fscki->calc_xsz) {
2198			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2199				  (unsigned long)fscki->inum, fscki->xattr_sz,
2200				  fscki->calc_xsz);
2201			goto out_dump;
2202		}
2203		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2204			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2205				  (unsigned long)fscki->inum,
2206				  fscki->xattr_cnt, fscki->calc_xcnt);
2207			goto out_dump;
2208		}
2209		if (fscki->xattr_nms != fscki->calc_xnms) {
2210			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2211				  (unsigned long)fscki->inum, fscki->xattr_nms,
2212				  fscki->calc_xnms);
2213			goto out_dump;
2214		}
2215	}
2216
2217	return 0;
2218
2219out_dump:
2220	/* Read the bad inode and dump it */
2221	ino_key_init(c, &key, fscki->inum);
2222	err = ubifs_lookup_level0(c, &key, &znode, &n);
2223	if (!err) {
2224		ubifs_err(c, "inode %lu not found in index",
2225			  (unsigned long)fscki->inum);
2226		return -ENOENT;
2227	} else if (err < 0) {
2228		ubifs_err(c, "error %d while looking up inode %lu",
2229			  err, (unsigned long)fscki->inum);
2230		return err;
2231	}
2232
2233	zbr = &znode->zbranch[n];
2234	ino = kmalloc(zbr->len, GFP_NOFS);
2235	if (!ino)
2236		return -ENOMEM;
2237
2238	err = ubifs_tnc_read_node(c, zbr, ino);
2239	if (err) {
2240		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2241			  zbr->lnum, zbr->offs, err);
2242		kfree(ino);
2243		return err;
2244	}
2245
2246	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2247		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2248	ubifs_dump_node(c, ino);
2249	kfree(ino);
2250	return -EINVAL;
2251}
2252
2253/**
2254 * dbg_check_filesystem - check the file-system.
2255 * @c: UBIFS file-system description object
2256 *
2257 * This function checks the file system, namely:
2258 * o makes sure that all leaf nodes exist and their CRCs are correct;
2259 * o makes sure inode nlink, size, xattr size/count are correct (for all
2260 *   inodes).
2261 *
2262 * The function reads whole indexing tree and all nodes, so it is pretty
2263 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2264 * not, and a negative error code in case of failure.
2265 */
2266int dbg_check_filesystem(struct ubifs_info *c)
2267{
2268	int err;
2269	struct fsck_data fsckd;
2270
2271	if (!dbg_is_chk_fs(c))
2272		return 0;
2273
2274	fsckd.inodes = RB_ROOT;
2275	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2276	if (err)
2277		goto out_free;
2278
2279	err = check_inodes(c, &fsckd);
2280	if (err)
2281		goto out_free;
2282
2283	free_inodes(&fsckd);
2284	return 0;
2285
2286out_free:
2287	ubifs_err(c, "file-system check failed with error %d", err);
2288	dump_stack();
2289	free_inodes(&fsckd);
2290	return err;
2291}
2292
2293/**
2294 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2295 * @c: UBIFS file-system description object
2296 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2297 *
2298 * This function returns zero if the list of data nodes is sorted correctly,
2299 * and %-EINVAL if not.
2300 */
2301int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2302{
2303	struct list_head *cur;
2304	struct ubifs_scan_node *sa, *sb;
2305
2306	if (!dbg_is_chk_gen(c))
2307		return 0;
2308
2309	for (cur = head->next; cur->next != head; cur = cur->next) {
2310		ino_t inuma, inumb;
2311		uint32_t blka, blkb;
2312
2313		cond_resched();
2314		sa = container_of(cur, struct ubifs_scan_node, list);
2315		sb = container_of(cur->next, struct ubifs_scan_node, list);
2316
2317		if (sa->type != UBIFS_DATA_NODE) {
2318			ubifs_err(c, "bad node type %d", sa->type);
2319			ubifs_dump_node(c, sa->node);
2320			return -EINVAL;
2321		}
2322		if (sb->type != UBIFS_DATA_NODE) {
2323			ubifs_err(c, "bad node type %d", sb->type);
2324			ubifs_dump_node(c, sb->node);
2325			return -EINVAL;
2326		}
2327
2328		inuma = key_inum(c, &sa->key);
2329		inumb = key_inum(c, &sb->key);
2330
2331		if (inuma < inumb)
2332			continue;
2333		if (inuma > inumb) {
2334			ubifs_err(c, "larger inum %lu goes before inum %lu",
2335				  (unsigned long)inuma, (unsigned long)inumb);
2336			goto error_dump;
2337		}
2338
2339		blka = key_block(c, &sa->key);
2340		blkb = key_block(c, &sb->key);
2341
2342		if (blka > blkb) {
2343			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2344			goto error_dump;
2345		}
2346		if (blka == blkb) {
2347			ubifs_err(c, "two data nodes for the same block");
2348			goto error_dump;
2349		}
2350	}
2351
2352	return 0;
2353
2354error_dump:
2355	ubifs_dump_node(c, sa->node);
2356	ubifs_dump_node(c, sb->node);
2357	return -EINVAL;
2358}
2359
2360/**
2361 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2362 * @c: UBIFS file-system description object
2363 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2364 *
2365 * This function returns zero if the list of non-data nodes is sorted correctly,
2366 * and %-EINVAL if not.
2367 */
2368int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2369{
2370	struct list_head *cur;
2371	struct ubifs_scan_node *sa, *sb;
2372
2373	if (!dbg_is_chk_gen(c))
2374		return 0;
2375
2376	for (cur = head->next; cur->next != head; cur = cur->next) {
2377		ino_t inuma, inumb;
2378		uint32_t hasha, hashb;
2379
2380		cond_resched();
2381		sa = container_of(cur, struct ubifs_scan_node, list);
2382		sb = container_of(cur->next, struct ubifs_scan_node, list);
2383
2384		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2385		    sa->type != UBIFS_XENT_NODE) {
2386			ubifs_err(c, "bad node type %d", sa->type);
2387			ubifs_dump_node(c, sa->node);
2388			return -EINVAL;
2389		}
2390		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2391		    sa->type != UBIFS_XENT_NODE) {
2392			ubifs_err(c, "bad node type %d", sb->type);
2393			ubifs_dump_node(c, sb->node);
2394			return -EINVAL;
2395		}
2396
2397		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2398			ubifs_err(c, "non-inode node goes before inode node");
2399			goto error_dump;
2400		}
2401
2402		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2403			continue;
2404
2405		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2406			/* Inode nodes are sorted in descending size order */
2407			if (sa->len < sb->len) {
2408				ubifs_err(c, "smaller inode node goes first");
2409				goto error_dump;
2410			}
2411			continue;
2412		}
2413
2414		/*
2415		 * This is either a dentry or xentry, which should be sorted in
2416		 * ascending (parent ino, hash) order.
2417		 */
2418		inuma = key_inum(c, &sa->key);
2419		inumb = key_inum(c, &sb->key);
2420
2421		if (inuma < inumb)
2422			continue;
2423		if (inuma > inumb) {
2424			ubifs_err(c, "larger inum %lu goes before inum %lu",
2425				  (unsigned long)inuma, (unsigned long)inumb);
2426			goto error_dump;
2427		}
2428
2429		hasha = key_block(c, &sa->key);
2430		hashb = key_block(c, &sb->key);
2431
2432		if (hasha > hashb) {
2433			ubifs_err(c, "larger hash %u goes before %u",
2434				  hasha, hashb);
2435			goto error_dump;
2436		}
2437	}
2438
2439	return 0;
2440
2441error_dump:
2442	ubifs_msg(c, "dumping first node");
2443	ubifs_dump_node(c, sa->node);
2444	ubifs_msg(c, "dumping second node");
2445	ubifs_dump_node(c, sb->node);
2446	return -EINVAL;
2447	return 0;
2448}
2449
2450static inline int chance(unsigned int n, unsigned int out_of)
2451{
2452	return !!((prandom_u32() % out_of) + 1 <= n);
2453
2454}
2455
2456static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2457{
2458	struct ubifs_debug_info *d = c->dbg;
2459
2460	ubifs_assert(dbg_is_tst_rcvry(c));
2461
2462	if (!d->pc_cnt) {
2463		/* First call - decide delay to the power cut */
2464		if (chance(1, 2)) {
2465			unsigned long delay;
2466
2467			if (chance(1, 2)) {
2468				d->pc_delay = 1;
2469				/* Fail within 1 minute */
2470				delay = prandom_u32() % 60000;
2471				d->pc_timeout = jiffies;
2472				d->pc_timeout += msecs_to_jiffies(delay);
2473				ubifs_warn(c, "failing after %lums", delay);
2474			} else {
2475				d->pc_delay = 2;
2476				delay = prandom_u32() % 10000;
2477				/* Fail within 10000 operations */
2478				d->pc_cnt_max = delay;
2479				ubifs_warn(c, "failing after %lu calls", delay);
2480			}
2481		}
2482
2483		d->pc_cnt += 1;
2484	}
2485
2486	/* Determine if failure delay has expired */
2487	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2488			return 0;
2489	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2490			return 0;
2491
2492	if (lnum == UBIFS_SB_LNUM) {
2493		if (write && chance(1, 2))
2494			return 0;
2495		if (chance(19, 20))
2496			return 0;
2497		ubifs_warn(c, "failing in super block LEB %d", lnum);
2498	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2499		if (chance(19, 20))
2500			return 0;
2501		ubifs_warn(c, "failing in master LEB %d", lnum);
2502	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2503		if (write && chance(99, 100))
2504			return 0;
2505		if (chance(399, 400))
2506			return 0;
2507		ubifs_warn(c, "failing in log LEB %d", lnum);
2508	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2509		if (write && chance(7, 8))
2510			return 0;
2511		if (chance(19, 20))
2512			return 0;
2513		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2514	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2515		if (write && chance(1, 2))
2516			return 0;
2517		if (chance(9, 10))
2518			return 0;
2519		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2520	} else if (lnum == c->ihead_lnum) {
2521		if (chance(99, 100))
2522			return 0;
2523		ubifs_warn(c, "failing in index head LEB %d", lnum);
2524	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2525		if (chance(9, 10))
2526			return 0;
2527		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2528	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2529		   !ubifs_search_bud(c, lnum)) {
2530		if (chance(19, 20))
2531			return 0;
2532		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2533	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2534		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2535		if (chance(999, 1000))
2536			return 0;
2537		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2538	} else {
2539		if (chance(9999, 10000))
2540			return 0;
2541		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2542	}
2543
2544	d->pc_happened = 1;
2545	ubifs_warn(c, "========== Power cut emulated ==========");
2546	dump_stack();
2547	return 1;
2548}
2549
2550static int corrupt_data(const struct ubifs_info *c, const void *buf,
2551			unsigned int len)
2552{
2553	unsigned int from, to, ffs = chance(1, 2);
2554	unsigned char *p = (void *)buf;
2555
2556	from = prandom_u32() % len;
2557	/* Corruption span max to end of write unit */
2558	to = min(len, ALIGN(from + 1, c->max_write_size));
2559
2560	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2561		   ffs ? "0xFFs" : "random data");
2562
2563	if (ffs)
2564		memset(p + from, 0xFF, to - from);
2565	else
2566		prandom_bytes(p + from, to - from);
2567
2568	return to;
2569}
2570
2571int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2572		  int offs, int len)
2573{
2574	int err, failing;
2575
2576	if (c->dbg->pc_happened)
2577		return -EROFS;
2578
2579	failing = power_cut_emulated(c, lnum, 1);
2580	if (failing) {
2581		len = corrupt_data(c, buf, len);
2582		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2583			   len, lnum, offs);
2584	}
2585	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2586	if (err)
2587		return err;
2588	if (failing)
2589		return -EROFS;
2590	return 0;
2591}
2592
2593int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2594		   int len)
2595{
2596	int err;
2597
2598	if (c->dbg->pc_happened)
2599		return -EROFS;
2600	if (power_cut_emulated(c, lnum, 1))
2601		return -EROFS;
2602	err = ubi_leb_change(c->ubi, lnum, buf, len);
2603	if (err)
2604		return err;
2605	if (power_cut_emulated(c, lnum, 1))
2606		return -EROFS;
2607	return 0;
2608}
2609
2610int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2611{
2612	int err;
2613
2614	if (c->dbg->pc_happened)
2615		return -EROFS;
2616	if (power_cut_emulated(c, lnum, 0))
2617		return -EROFS;
2618	err = ubi_leb_unmap(c->ubi, lnum);
2619	if (err)
2620		return err;
2621	if (power_cut_emulated(c, lnum, 0))
2622		return -EROFS;
2623	return 0;
2624}
2625
2626int dbg_leb_map(struct ubifs_info *c, int lnum)
2627{
2628	int err;
2629
2630	if (c->dbg->pc_happened)
2631		return -EROFS;
2632	if (power_cut_emulated(c, lnum, 0))
2633		return -EROFS;
2634	err = ubi_leb_map(c->ubi, lnum);
2635	if (err)
2636		return err;
2637	if (power_cut_emulated(c, lnum, 0))
2638		return -EROFS;
2639	return 0;
2640}
2641
2642/*
2643 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2644 * contain the stuff specific to particular file-system mounts.
2645 */
2646static struct dentry *dfs_rootdir;
2647
2648static int dfs_file_open(struct inode *inode, struct file *file)
2649{
2650	file->private_data = inode->i_private;
2651	return nonseekable_open(inode, file);
2652}
2653
2654/**
2655 * provide_user_output - provide output to the user reading a debugfs file.
2656 * @val: boolean value for the answer
2657 * @u: the buffer to store the answer at
2658 * @count: size of the buffer
2659 * @ppos: position in the @u output buffer
2660 *
2661 * This is a simple helper function which stores @val boolean value in the user
2662 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2663 * bytes written to @u in case of success and a negative error code in case of
2664 * failure.
2665 */
2666static int provide_user_output(int val, char __user *u, size_t count,
2667			       loff_t *ppos)
2668{
2669	char buf[3];
2670
2671	if (val)
2672		buf[0] = '1';
2673	else
2674		buf[0] = '0';
2675	buf[1] = '\n';
2676	buf[2] = 0x00;
2677
2678	return simple_read_from_buffer(u, count, ppos, buf, 2);
2679}
2680
2681static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2682			     loff_t *ppos)
2683{
2684	struct dentry *dent = file->f_path.dentry;
2685	struct ubifs_info *c = file->private_data;
2686	struct ubifs_debug_info *d = c->dbg;
2687	int val;
2688
2689	if (dent == d->dfs_chk_gen)
2690		val = d->chk_gen;
2691	else if (dent == d->dfs_chk_index)
2692		val = d->chk_index;
2693	else if (dent == d->dfs_chk_orph)
2694		val = d->chk_orph;
2695	else if (dent == d->dfs_chk_lprops)
2696		val = d->chk_lprops;
2697	else if (dent == d->dfs_chk_fs)
2698		val = d->chk_fs;
2699	else if (dent == d->dfs_tst_rcvry)
2700		val = d->tst_rcvry;
2701	else if (dent == d->dfs_ro_error)
2702		val = c->ro_error;
2703	else
2704		return -EINVAL;
2705
2706	return provide_user_output(val, u, count, ppos);
2707}
2708
2709/**
2710 * interpret_user_input - interpret user debugfs file input.
2711 * @u: user-provided buffer with the input
2712 * @count: buffer size
2713 *
2714 * This is a helper function which interpret user input to a boolean UBIFS
2715 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2716 * in case of failure.
2717 */
2718static int interpret_user_input(const char __user *u, size_t count)
2719{
2720	size_t buf_size;
2721	char buf[8];
2722
2723	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2724	if (copy_from_user(buf, u, buf_size))
2725		return -EFAULT;
2726
2727	if (buf[0] == '1')
2728		return 1;
2729	else if (buf[0] == '0')
2730		return 0;
2731
2732	return -EINVAL;
2733}
2734
2735static ssize_t dfs_file_write(struct file *file, const char __user *u,
2736			      size_t count, loff_t *ppos)
2737{
2738	struct ubifs_info *c = file->private_data;
2739	struct ubifs_debug_info *d = c->dbg;
2740	struct dentry *dent = file->f_path.dentry;
2741	int val;
2742
2743	/*
2744	 * TODO: this is racy - the file-system might have already been
2745	 * unmounted and we'd oops in this case. The plan is to fix it with
2746	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2747	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2748	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2749	 * superblocks and fine the one with the same UUID, and take the
2750	 * locking right.
2751	 *
2752	 * The other way to go suggested by Al Viro is to create a separate
2753	 * 'ubifs-debug' file-system instead.
2754	 */
2755	if (file->f_path.dentry == d->dfs_dump_lprops) {
2756		ubifs_dump_lprops(c);
2757		return count;
2758	}
2759	if (file->f_path.dentry == d->dfs_dump_budg) {
2760		ubifs_dump_budg(c, &c->bi);
2761		return count;
2762	}
2763	if (file->f_path.dentry == d->dfs_dump_tnc) {
2764		mutex_lock(&c->tnc_mutex);
2765		ubifs_dump_tnc(c);
2766		mutex_unlock(&c->tnc_mutex);
2767		return count;
2768	}
2769
2770	val = interpret_user_input(u, count);
2771	if (val < 0)
2772		return val;
2773
2774	if (dent == d->dfs_chk_gen)
2775		d->chk_gen = val;
2776	else if (dent == d->dfs_chk_index)
2777		d->chk_index = val;
2778	else if (dent == d->dfs_chk_orph)
2779		d->chk_orph = val;
2780	else if (dent == d->dfs_chk_lprops)
2781		d->chk_lprops = val;
2782	else if (dent == d->dfs_chk_fs)
2783		d->chk_fs = val;
2784	else if (dent == d->dfs_tst_rcvry)
2785		d->tst_rcvry = val;
2786	else if (dent == d->dfs_ro_error)
2787		c->ro_error = !!val;
2788	else
2789		return -EINVAL;
2790
2791	return count;
2792}
2793
2794static const struct file_operations dfs_fops = {
2795	.open = dfs_file_open,
2796	.read = dfs_file_read,
2797	.write = dfs_file_write,
2798	.owner = THIS_MODULE,
2799	.llseek = no_llseek,
2800};
2801
2802/**
2803 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2804 * @c: UBIFS file-system description object
2805 *
2806 * This function creates all debugfs files for this instance of UBIFS. Returns
2807 * zero in case of success and a negative error code in case of failure.
2808 *
2809 * Note, the only reason we have not merged this function with the
2810 * 'ubifs_debugging_init()' function is because it is better to initialize
2811 * debugfs interfaces at the very end of the mount process, and remove them at
2812 * the very beginning of the mount process.
2813 */
2814int dbg_debugfs_init_fs(struct ubifs_info *c)
2815{
2816	int err, n;
2817	const char *fname;
2818	struct dentry *dent;
2819	struct ubifs_debug_info *d = c->dbg;
2820
2821	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2822		return 0;
2823
2824	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2825		     c->vi.ubi_num, c->vi.vol_id);
2826	if (n == UBIFS_DFS_DIR_LEN) {
2827		/* The array size is too small */
2828		fname = UBIFS_DFS_DIR_NAME;
2829		dent = ERR_PTR(-EINVAL);
2830		goto out;
2831	}
2832
2833	fname = d->dfs_dir_name;
2834	dent = debugfs_create_dir(fname, dfs_rootdir);
2835	if (IS_ERR_OR_NULL(dent))
2836		goto out;
2837	d->dfs_dir = dent;
2838
2839	fname = "dump_lprops";
2840	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2841	if (IS_ERR_OR_NULL(dent))
2842		goto out_remove;
2843	d->dfs_dump_lprops = dent;
2844
2845	fname = "dump_budg";
2846	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2847	if (IS_ERR_OR_NULL(dent))
2848		goto out_remove;
2849	d->dfs_dump_budg = dent;
2850
2851	fname = "dump_tnc";
2852	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2853	if (IS_ERR_OR_NULL(dent))
2854		goto out_remove;
2855	d->dfs_dump_tnc = dent;
2856
2857	fname = "chk_general";
2858	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2859				   &dfs_fops);
2860	if (IS_ERR_OR_NULL(dent))
2861		goto out_remove;
2862	d->dfs_chk_gen = dent;
2863
2864	fname = "chk_index";
2865	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2866				   &dfs_fops);
2867	if (IS_ERR_OR_NULL(dent))
2868		goto out_remove;
2869	d->dfs_chk_index = dent;
2870
2871	fname = "chk_orphans";
2872	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2873				   &dfs_fops);
2874	if (IS_ERR_OR_NULL(dent))
2875		goto out_remove;
2876	d->dfs_chk_orph = dent;
2877
2878	fname = "chk_lprops";
2879	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2880				   &dfs_fops);
2881	if (IS_ERR_OR_NULL(dent))
2882		goto out_remove;
2883	d->dfs_chk_lprops = dent;
2884
2885	fname = "chk_fs";
2886	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2887				   &dfs_fops);
2888	if (IS_ERR_OR_NULL(dent))
2889		goto out_remove;
2890	d->dfs_chk_fs = dent;
2891
2892	fname = "tst_recovery";
2893	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2894				   &dfs_fops);
2895	if (IS_ERR_OR_NULL(dent))
2896		goto out_remove;
2897	d->dfs_tst_rcvry = dent;
2898
2899	fname = "ro_error";
2900	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901				   &dfs_fops);
2902	if (IS_ERR_OR_NULL(dent))
2903		goto out_remove;
2904	d->dfs_ro_error = dent;
2905
2906	return 0;
2907
2908out_remove:
2909	debugfs_remove_recursive(d->dfs_dir);
2910out:
2911	err = dent ? PTR_ERR(dent) : -ENODEV;
2912	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2913		  fname, err);
2914	return err;
2915}
2916
2917/**
2918 * dbg_debugfs_exit_fs - remove all debugfs files.
2919 * @c: UBIFS file-system description object
2920 */
2921void dbg_debugfs_exit_fs(struct ubifs_info *c)
2922{
2923	if (IS_ENABLED(CONFIG_DEBUG_FS))
2924		debugfs_remove_recursive(c->dbg->dfs_dir);
2925}
2926
2927struct ubifs_global_debug_info ubifs_dbg;
2928
2929static struct dentry *dfs_chk_gen;
2930static struct dentry *dfs_chk_index;
2931static struct dentry *dfs_chk_orph;
2932static struct dentry *dfs_chk_lprops;
2933static struct dentry *dfs_chk_fs;
2934static struct dentry *dfs_tst_rcvry;
2935
2936static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2937				    size_t count, loff_t *ppos)
2938{
2939	struct dentry *dent = file->f_path.dentry;
2940	int val;
2941
2942	if (dent == dfs_chk_gen)
2943		val = ubifs_dbg.chk_gen;
2944	else if (dent == dfs_chk_index)
2945		val = ubifs_dbg.chk_index;
2946	else if (dent == dfs_chk_orph)
2947		val = ubifs_dbg.chk_orph;
2948	else if (dent == dfs_chk_lprops)
2949		val = ubifs_dbg.chk_lprops;
2950	else if (dent == dfs_chk_fs)
2951		val = ubifs_dbg.chk_fs;
2952	else if (dent == dfs_tst_rcvry)
2953		val = ubifs_dbg.tst_rcvry;
2954	else
2955		return -EINVAL;
2956
2957	return provide_user_output(val, u, count, ppos);
2958}
2959
2960static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2961				     size_t count, loff_t *ppos)
2962{
2963	struct dentry *dent = file->f_path.dentry;
2964	int val;
2965
2966	val = interpret_user_input(u, count);
2967	if (val < 0)
2968		return val;
2969
2970	if (dent == dfs_chk_gen)
2971		ubifs_dbg.chk_gen = val;
2972	else if (dent == dfs_chk_index)
2973		ubifs_dbg.chk_index = val;
2974	else if (dent == dfs_chk_orph)
2975		ubifs_dbg.chk_orph = val;
2976	else if (dent == dfs_chk_lprops)
2977		ubifs_dbg.chk_lprops = val;
2978	else if (dent == dfs_chk_fs)
2979		ubifs_dbg.chk_fs = val;
2980	else if (dent == dfs_tst_rcvry)
2981		ubifs_dbg.tst_rcvry = val;
2982	else
2983		return -EINVAL;
2984
2985	return count;
2986}
2987
2988static const struct file_operations dfs_global_fops = {
2989	.read = dfs_global_file_read,
2990	.write = dfs_global_file_write,
2991	.owner = THIS_MODULE,
2992	.llseek = no_llseek,
2993};
2994
2995/**
2996 * dbg_debugfs_init - initialize debugfs file-system.
2997 *
2998 * UBIFS uses debugfs file-system to expose various debugging knobs to
2999 * user-space. This function creates "ubifs" directory in the debugfs
3000 * file-system. Returns zero in case of success and a negative error code in
3001 * case of failure.
3002 */
3003int dbg_debugfs_init(void)
3004{
3005	int err;
3006	const char *fname;
3007	struct dentry *dent;
3008
3009	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3010		return 0;
3011
3012	fname = "ubifs";
3013	dent = debugfs_create_dir(fname, NULL);
3014	if (IS_ERR_OR_NULL(dent))
3015		goto out;
3016	dfs_rootdir = dent;
3017
3018	fname = "chk_general";
3019	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3020				   &dfs_global_fops);
3021	if (IS_ERR_OR_NULL(dent))
3022		goto out_remove;
3023	dfs_chk_gen = dent;
3024
3025	fname = "chk_index";
3026	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3027				   &dfs_global_fops);
3028	if (IS_ERR_OR_NULL(dent))
3029		goto out_remove;
3030	dfs_chk_index = dent;
3031
3032	fname = "chk_orphans";
3033	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3034				   &dfs_global_fops);
3035	if (IS_ERR_OR_NULL(dent))
3036		goto out_remove;
3037	dfs_chk_orph = dent;
3038
3039	fname = "chk_lprops";
3040	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3041				   &dfs_global_fops);
3042	if (IS_ERR_OR_NULL(dent))
3043		goto out_remove;
3044	dfs_chk_lprops = dent;
3045
3046	fname = "chk_fs";
3047	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3048				   &dfs_global_fops);
3049	if (IS_ERR_OR_NULL(dent))
3050		goto out_remove;
3051	dfs_chk_fs = dent;
3052
3053	fname = "tst_recovery";
3054	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3055				   &dfs_global_fops);
3056	if (IS_ERR_OR_NULL(dent))
3057		goto out_remove;
3058	dfs_tst_rcvry = dent;
3059
3060	return 0;
3061
3062out_remove:
3063	debugfs_remove_recursive(dfs_rootdir);
3064out:
3065	err = dent ? PTR_ERR(dent) : -ENODEV;
3066	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3067	       current->pid, fname, err);
3068	return err;
3069}
3070
3071/**
3072 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3073 */
3074void dbg_debugfs_exit(void)
3075{
3076	if (IS_ENABLED(CONFIG_DEBUG_FS))
3077		debugfs_remove_recursive(dfs_rootdir);
3078}
3079
3080/**
3081 * ubifs_debugging_init - initialize UBIFS debugging.
3082 * @c: UBIFS file-system description object
3083 *
3084 * This function initializes debugging-related data for the file system.
3085 * Returns zero in case of success and a negative error code in case of
3086 * failure.
3087 */
3088int ubifs_debugging_init(struct ubifs_info *c)
3089{
3090	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3091	if (!c->dbg)
3092		return -ENOMEM;
3093
3094	return 0;
3095}
3096
3097/**
3098 * ubifs_debugging_exit - free debugging data.
3099 * @c: UBIFS file-system description object
3100 */
3101void ubifs_debugging_exit(struct ubifs_info *c)
3102{
3103	kfree(c->dbg);
3104}
3105