1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include "reiserfs.h"
8#include "acl.h"
9#include "xattr.h"
10#include <linux/exportfs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <linux/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21#include <linux/uio.h>
22
23int reiserfs_commit_write(struct file *f, struct page *page,
24			  unsigned from, unsigned to);
25
26void reiserfs_evict_inode(struct inode *inode)
27{
28	/*
29	 * We need blocks for transaction + (user+group) quota
30	 * update (possibly delete)
31	 */
32	int jbegin_count =
33	    JOURNAL_PER_BALANCE_CNT * 2 +
34	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
35	struct reiserfs_transaction_handle th;
36	int err;
37
38	if (!inode->i_nlink && !is_bad_inode(inode))
39		dquot_initialize(inode);
40
41	truncate_inode_pages_final(&inode->i_data);
42	if (inode->i_nlink)
43		goto no_delete;
44
45	/*
46	 * The = 0 happens when we abort creating a new inode
47	 * for some reason like lack of space..
48	 * also handles bad_inode case
49	 */
50	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
51
52		reiserfs_delete_xattrs(inode);
53
54		reiserfs_write_lock(inode->i_sb);
55
56		if (journal_begin(&th, inode->i_sb, jbegin_count))
57			goto out;
58		reiserfs_update_inode_transaction(inode);
59
60		reiserfs_discard_prealloc(&th, inode);
61
62		err = reiserfs_delete_object(&th, inode);
63
64		/*
65		 * Do quota update inside a transaction for journaled quotas.
66		 * We must do that after delete_object so that quota updates
67		 * go into the same transaction as stat data deletion
68		 */
69		if (!err) {
70			int depth = reiserfs_write_unlock_nested(inode->i_sb);
71			dquot_free_inode(inode);
72			reiserfs_write_lock_nested(inode->i_sb, depth);
73		}
74
75		if (journal_end(&th))
76			goto out;
77
78		/*
79		 * check return value from reiserfs_delete_object after
80		 * ending the transaction
81		 */
82		if (err)
83		    goto out;
84
85		/*
86		 * all items of file are deleted, so we can remove
87		 * "save" link
88		 * we can't do anything about an error here
89		 */
90		remove_save_link(inode, 0 /* not truncate */);
91out:
92		reiserfs_write_unlock(inode->i_sb);
93	} else {
94		/* no object items are in the tree */
95		;
96	}
97
98	/* note this must go after the journal_end to prevent deadlock */
99	clear_inode(inode);
100
101	dquot_drop(inode);
102	inode->i_blocks = 0;
103	return;
104
105no_delete:
106	clear_inode(inode);
107	dquot_drop(inode);
108}
109
110static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
111			  __u32 objectid, loff_t offset, int type, int length)
112{
113	key->version = version;
114
115	key->on_disk_key.k_dir_id = dirid;
116	key->on_disk_key.k_objectid = objectid;
117	set_cpu_key_k_offset(key, offset);
118	set_cpu_key_k_type(key, type);
119	key->key_length = length;
120}
121
122/*
123 * take base of inode_key (it comes from inode always) (dirid, objectid)
124 * and version from an inode, set offset and type of key
125 */
126void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
127		  int type, int length)
128{
129	_make_cpu_key(key, get_inode_item_key_version(inode),
130		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
131		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
132		      length);
133}
134
135/* when key is 0, do not set version and short key */
136inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
137			      int version,
138			      loff_t offset, int type, int length,
139			      int entry_count /*or ih_free_space */ )
140{
141	if (key) {
142		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
143		ih->ih_key.k_objectid =
144		    cpu_to_le32(key->on_disk_key.k_objectid);
145	}
146	put_ih_version(ih, version);
147	set_le_ih_k_offset(ih, offset);
148	set_le_ih_k_type(ih, type);
149	put_ih_item_len(ih, length);
150	/*    set_ih_free_space (ih, 0); */
151	/*
152	 * for directory items it is entry count, for directs and stat
153	 * datas - 0xffff, for indirects - 0
154	 */
155	put_ih_entry_count(ih, entry_count);
156}
157
158/*
159 * FIXME: we might cache recently accessed indirect item
160 * Ugh.  Not too eager for that....
161 * I cut the code until such time as I see a convincing argument (benchmark).
162 * I don't want a bloated inode struct..., and I don't like code complexity....
163 */
164
165/*
166 * cutting the code is fine, since it really isn't in use yet and is easy
167 * to add back in.  But, Vladimir has a really good idea here.  Think
168 * about what happens for reading a file.  For each page,
169 * The VFS layer calls reiserfs_readpage, who searches the tree to find
170 * an indirect item.  This indirect item has X number of pointers, where
171 * X is a big number if we've done the block allocation right.  But,
172 * we only use one or two of these pointers during each call to readpage,
173 * needlessly researching again later on.
174 *
175 * The size of the cache could be dynamic based on the size of the file.
176 *
177 * I'd also like to see us cache the location the stat data item, since
178 * we are needlessly researching for that frequently.
179 *
180 * --chris
181 */
182
183/*
184 * If this page has a file tail in it, and
185 * it was read in by get_block_create_0, the page data is valid,
186 * but tail is still sitting in a direct item, and we can't write to
187 * it.  So, look through this page, and check all the mapped buffers
188 * to make sure they have valid block numbers.  Any that don't need
189 * to be unmapped, so that __block_write_begin will correctly call
190 * reiserfs_get_block to convert the tail into an unformatted node
191 */
192static inline void fix_tail_page_for_writing(struct page *page)
193{
194	struct buffer_head *head, *next, *bh;
195
196	if (page && page_has_buffers(page)) {
197		head = page_buffers(page);
198		bh = head;
199		do {
200			next = bh->b_this_page;
201			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
202				reiserfs_unmap_buffer(bh);
203			}
204			bh = next;
205		} while (bh != head);
206	}
207}
208
209/*
210 * reiserfs_get_block does not need to allocate a block only if it has been
211 * done already or non-hole position has been found in the indirect item
212 */
213static inline int allocation_needed(int retval, b_blocknr_t allocated,
214				    struct item_head *ih,
215				    __le32 * item, int pos_in_item)
216{
217	if (allocated)
218		return 0;
219	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
220	    get_block_num(item, pos_in_item))
221		return 0;
222	return 1;
223}
224
225static inline int indirect_item_found(int retval, struct item_head *ih)
226{
227	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
228}
229
230static inline void set_block_dev_mapped(struct buffer_head *bh,
231					b_blocknr_t block, struct inode *inode)
232{
233	map_bh(bh, inode->i_sb, block);
234}
235
236/*
237 * files which were created in the earlier version can not be longer,
238 * than 2 gb
239 */
240static int file_capable(struct inode *inode, sector_t block)
241{
242	/* it is new file. */
243	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
244	    /* old file, but 'block' is inside of 2gb */
245	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
246		return 1;
247
248	return 0;
249}
250
251static int restart_transaction(struct reiserfs_transaction_handle *th,
252			       struct inode *inode, struct treepath *path)
253{
254	struct super_block *s = th->t_super;
255	int err;
256
257	BUG_ON(!th->t_trans_id);
258	BUG_ON(!th->t_refcount);
259
260	pathrelse(path);
261
262	/* we cannot restart while nested */
263	if (th->t_refcount > 1) {
264		return 0;
265	}
266	reiserfs_update_sd(th, inode);
267	err = journal_end(th);
268	if (!err) {
269		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
270		if (!err)
271			reiserfs_update_inode_transaction(inode);
272	}
273	return err;
274}
275
276/*
277 * it is called by get_block when create == 0. Returns block number
278 * for 'block'-th logical block of file. When it hits direct item it
279 * returns 0 (being called from bmap) or read direct item into piece
280 * of page (bh_result)
281 * Please improve the english/clarity in the comment above, as it is
282 * hard to understand.
283 */
284static int _get_block_create_0(struct inode *inode, sector_t block,
285			       struct buffer_head *bh_result, int args)
286{
287	INITIALIZE_PATH(path);
288	struct cpu_key key;
289	struct buffer_head *bh;
290	struct item_head *ih, tmp_ih;
291	b_blocknr_t blocknr;
292	char *p = NULL;
293	int chars;
294	int ret;
295	int result;
296	int done = 0;
297	unsigned long offset;
298
299	/* prepare the key to look for the 'block'-th block of file */
300	make_cpu_key(&key, inode,
301		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
302		     3);
303
304	result = search_for_position_by_key(inode->i_sb, &key, &path);
305	if (result != POSITION_FOUND) {
306		pathrelse(&path);
307		if (p)
308			kunmap(bh_result->b_page);
309		if (result == IO_ERROR)
310			return -EIO;
311		/*
312		 * We do not return -ENOENT if there is a hole but page is
313		 * uptodate, because it means that there is some MMAPED data
314		 * associated with it that is yet to be written to disk.
315		 */
316		if ((args & GET_BLOCK_NO_HOLE)
317		    && !PageUptodate(bh_result->b_page)) {
318			return -ENOENT;
319		}
320		return 0;
321	}
322
323	bh = get_last_bh(&path);
324	ih = tp_item_head(&path);
325	if (is_indirect_le_ih(ih)) {
326		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
327
328		/*
329		 * FIXME: here we could cache indirect item or part of it in
330		 * the inode to avoid search_by_key in case of subsequent
331		 * access to file
332		 */
333		blocknr = get_block_num(ind_item, path.pos_in_item);
334		ret = 0;
335		if (blocknr) {
336			map_bh(bh_result, inode->i_sb, blocknr);
337			if (path.pos_in_item ==
338			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
339				set_buffer_boundary(bh_result);
340			}
341		} else
342			/*
343			 * We do not return -ENOENT if there is a hole but
344			 * page is uptodate, because it means that there is
345			 * some MMAPED data associated with it that is
346			 * yet to be written to disk.
347			 */
348		if ((args & GET_BLOCK_NO_HOLE)
349			    && !PageUptodate(bh_result->b_page)) {
350			ret = -ENOENT;
351		}
352
353		pathrelse(&path);
354		if (p)
355			kunmap(bh_result->b_page);
356		return ret;
357	}
358	/* requested data are in direct item(s) */
359	if (!(args & GET_BLOCK_READ_DIRECT)) {
360		/*
361		 * we are called by bmap. FIXME: we can not map block of file
362		 * when it is stored in direct item(s)
363		 */
364		pathrelse(&path);
365		if (p)
366			kunmap(bh_result->b_page);
367		return -ENOENT;
368	}
369
370	/*
371	 * if we've got a direct item, and the buffer or page was uptodate,
372	 * we don't want to pull data off disk again.  skip to the
373	 * end, where we map the buffer and return
374	 */
375	if (buffer_uptodate(bh_result)) {
376		goto finished;
377	} else
378		/*
379		 * grab_tail_page can trigger calls to reiserfs_get_block on
380		 * up to date pages without any buffers.  If the page is up
381		 * to date, we don't want read old data off disk.  Set the up
382		 * to date bit on the buffer instead and jump to the end
383		 */
384	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
385		set_buffer_uptodate(bh_result);
386		goto finished;
387	}
388	/* read file tail into part of page */
389	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
390	copy_item_head(&tmp_ih, ih);
391
392	/*
393	 * we only want to kmap if we are reading the tail into the page.
394	 * this is not the common case, so we don't kmap until we are
395	 * sure we need to.  But, this means the item might move if
396	 * kmap schedules
397	 */
398	if (!p)
399		p = (char *)kmap(bh_result->b_page);
400
401	p += offset;
402	memset(p, 0, inode->i_sb->s_blocksize);
403	do {
404		if (!is_direct_le_ih(ih)) {
405			BUG();
406		}
407		/*
408		 * make sure we don't read more bytes than actually exist in
409		 * the file.  This can happen in odd cases where i_size isn't
410		 * correct, and when direct item padding results in a few
411		 * extra bytes at the end of the direct item
412		 */
413		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
414			break;
415		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
416			chars =
417			    inode->i_size - (le_ih_k_offset(ih) - 1) -
418			    path.pos_in_item;
419			done = 1;
420		} else {
421			chars = ih_item_len(ih) - path.pos_in_item;
422		}
423		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
424
425		if (done)
426			break;
427
428		p += chars;
429
430		/*
431		 * we done, if read direct item is not the last item of
432		 * node FIXME: we could try to check right delimiting key
433		 * to see whether direct item continues in the right
434		 * neighbor or rely on i_size
435		 */
436		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
437			break;
438
439		/* update key to look for the next piece */
440		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
441		result = search_for_position_by_key(inode->i_sb, &key, &path);
442		if (result != POSITION_FOUND)
443			/* i/o error most likely */
444			break;
445		bh = get_last_bh(&path);
446		ih = tp_item_head(&path);
447	} while (1);
448
449	flush_dcache_page(bh_result->b_page);
450	kunmap(bh_result->b_page);
451
452finished:
453	pathrelse(&path);
454
455	if (result == IO_ERROR)
456		return -EIO;
457
458	/*
459	 * this buffer has valid data, but isn't valid for io.  mapping it to
460	 * block #0 tells the rest of reiserfs it just has a tail in it
461	 */
462	map_bh(bh_result, inode->i_sb, 0);
463	set_buffer_uptodate(bh_result);
464	return 0;
465}
466
467/*
468 * this is called to create file map. So, _get_block_create_0 will not
469 * read direct item
470 */
471static int reiserfs_bmap(struct inode *inode, sector_t block,
472			 struct buffer_head *bh_result, int create)
473{
474	if (!file_capable(inode, block))
475		return -EFBIG;
476
477	reiserfs_write_lock(inode->i_sb);
478	/* do not read the direct item */
479	_get_block_create_0(inode, block, bh_result, 0);
480	reiserfs_write_unlock(inode->i_sb);
481	return 0;
482}
483
484/*
485 * special version of get_block that is only used by grab_tail_page right
486 * now.  It is sent to __block_write_begin, and when you try to get a
487 * block past the end of the file (or a block from a hole) it returns
488 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
489 * be able to do i/o on the buffers returned, unless an error value
490 * is also returned.
491 *
492 * So, this allows __block_write_begin to be used for reading a single block
493 * in a page.  Where it does not produce a valid page for holes, or past the
494 * end of the file.  This turns out to be exactly what we need for reading
495 * tails for conversion.
496 *
497 * The point of the wrapper is forcing a certain value for create, even
498 * though the VFS layer is calling this function with create==1.  If you
499 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
500 * don't use this function.
501*/
502static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
503				       struct buffer_head *bh_result,
504				       int create)
505{
506	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
507}
508
509/*
510 * This is special helper for reiserfs_get_block in case we are executing
511 * direct_IO request.
512 */
513static int reiserfs_get_blocks_direct_io(struct inode *inode,
514					 sector_t iblock,
515					 struct buffer_head *bh_result,
516					 int create)
517{
518	int ret;
519
520	bh_result->b_page = NULL;
521
522	/*
523	 * We set the b_size before reiserfs_get_block call since it is
524	 * referenced in convert_tail_for_hole() that may be called from
525	 * reiserfs_get_block()
526	 */
527	bh_result->b_size = (1 << inode->i_blkbits);
528
529	ret = reiserfs_get_block(inode, iblock, bh_result,
530				 create | GET_BLOCK_NO_DANGLE);
531	if (ret)
532		goto out;
533
534	/* don't allow direct io onto tail pages */
535	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
536		/*
537		 * make sure future calls to the direct io funcs for this
538		 * offset in the file fail by unmapping the buffer
539		 */
540		clear_buffer_mapped(bh_result);
541		ret = -EINVAL;
542	}
543
544	/*
545	 * Possible unpacked tail. Flush the data before pages have
546	 * disappeared
547	 */
548	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
549		int err;
550
551		reiserfs_write_lock(inode->i_sb);
552
553		err = reiserfs_commit_for_inode(inode);
554		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
555
556		reiserfs_write_unlock(inode->i_sb);
557
558		if (err < 0)
559			ret = err;
560	}
561out:
562	return ret;
563}
564
565/*
566 * helper function for when reiserfs_get_block is called for a hole
567 * but the file tail is still in a direct item
568 * bh_result is the buffer head for the hole
569 * tail_offset is the offset of the start of the tail in the file
570 *
571 * This calls prepare_write, which will start a new transaction
572 * you should not be in a transaction, or have any paths held when you
573 * call this.
574 */
575static int convert_tail_for_hole(struct inode *inode,
576				 struct buffer_head *bh_result,
577				 loff_t tail_offset)
578{
579	unsigned long index;
580	unsigned long tail_end;
581	unsigned long tail_start;
582	struct page *tail_page;
583	struct page *hole_page = bh_result->b_page;
584	int retval = 0;
585
586	if ((tail_offset & (bh_result->b_size - 1)) != 1)
587		return -EIO;
588
589	/* always try to read until the end of the block */
590	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
591	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
592
593	index = tail_offset >> PAGE_CACHE_SHIFT;
594	/*
595	 * hole_page can be zero in case of direct_io, we are sure
596	 * that we cannot get here if we write with O_DIRECT into tail page
597	 */
598	if (!hole_page || index != hole_page->index) {
599		tail_page = grab_cache_page(inode->i_mapping, index);
600		retval = -ENOMEM;
601		if (!tail_page) {
602			goto out;
603		}
604	} else {
605		tail_page = hole_page;
606	}
607
608	/*
609	 * we don't have to make sure the conversion did not happen while
610	 * we were locking the page because anyone that could convert
611	 * must first take i_mutex.
612	 *
613	 * We must fix the tail page for writing because it might have buffers
614	 * that are mapped, but have a block number of 0.  This indicates tail
615	 * data that has been read directly into the page, and
616	 * __block_write_begin won't trigger a get_block in this case.
617	 */
618	fix_tail_page_for_writing(tail_page);
619	retval = __reiserfs_write_begin(tail_page, tail_start,
620				      tail_end - tail_start);
621	if (retval)
622		goto unlock;
623
624	/* tail conversion might change the data in the page */
625	flush_dcache_page(tail_page);
626
627	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
628
629unlock:
630	if (tail_page != hole_page) {
631		unlock_page(tail_page);
632		page_cache_release(tail_page);
633	}
634out:
635	return retval;
636}
637
638static inline int _allocate_block(struct reiserfs_transaction_handle *th,
639				  sector_t block,
640				  struct inode *inode,
641				  b_blocknr_t * allocated_block_nr,
642				  struct treepath *path, int flags)
643{
644	BUG_ON(!th->t_trans_id);
645
646#ifdef REISERFS_PREALLOCATE
647	if (!(flags & GET_BLOCK_NO_IMUX)) {
648		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
649						  path, block);
650	}
651#endif
652	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
653					 block);
654}
655
656int reiserfs_get_block(struct inode *inode, sector_t block,
657		       struct buffer_head *bh_result, int create)
658{
659	int repeat, retval = 0;
660	/* b_blocknr_t is (unsigned) 32 bit int*/
661	b_blocknr_t allocated_block_nr = 0;
662	INITIALIZE_PATH(path);
663	int pos_in_item;
664	struct cpu_key key;
665	struct buffer_head *bh, *unbh = NULL;
666	struct item_head *ih, tmp_ih;
667	__le32 *item;
668	int done;
669	int fs_gen;
670	struct reiserfs_transaction_handle *th = NULL;
671	/*
672	 * space reserved in transaction batch:
673	 * . 3 balancings in direct->indirect conversion
674	 * . 1 block involved into reiserfs_update_sd()
675	 * XXX in practically impossible worst case direct2indirect()
676	 * can incur (much) more than 3 balancings.
677	 * quota update for user, group
678	 */
679	int jbegin_count =
680	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
681	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
682	int version;
683	int dangle = 1;
684	loff_t new_offset =
685	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
686
687	reiserfs_write_lock(inode->i_sb);
688	version = get_inode_item_key_version(inode);
689
690	if (!file_capable(inode, block)) {
691		reiserfs_write_unlock(inode->i_sb);
692		return -EFBIG;
693	}
694
695	/*
696	 * if !create, we aren't changing the FS, so we don't need to
697	 * log anything, so we don't need to start a transaction
698	 */
699	if (!(create & GET_BLOCK_CREATE)) {
700		int ret;
701		/* find number of block-th logical block of the file */
702		ret = _get_block_create_0(inode, block, bh_result,
703					  create | GET_BLOCK_READ_DIRECT);
704		reiserfs_write_unlock(inode->i_sb);
705		return ret;
706	}
707
708	/*
709	 * if we're already in a transaction, make sure to close
710	 * any new transactions we start in this func
711	 */
712	if ((create & GET_BLOCK_NO_DANGLE) ||
713	    reiserfs_transaction_running(inode->i_sb))
714		dangle = 0;
715
716	/*
717	 * If file is of such a size, that it might have a tail and
718	 * tails are enabled  we should mark it as possibly needing
719	 * tail packing on close
720	 */
721	if ((have_large_tails(inode->i_sb)
722	     && inode->i_size < i_block_size(inode) * 4)
723	    || (have_small_tails(inode->i_sb)
724		&& inode->i_size < i_block_size(inode)))
725		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
726
727	/* set the key of the first byte in the 'block'-th block of file */
728	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
729	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
730start_trans:
731		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
732		if (!th) {
733			retval = -ENOMEM;
734			goto failure;
735		}
736		reiserfs_update_inode_transaction(inode);
737	}
738research:
739
740	retval = search_for_position_by_key(inode->i_sb, &key, &path);
741	if (retval == IO_ERROR) {
742		retval = -EIO;
743		goto failure;
744	}
745
746	bh = get_last_bh(&path);
747	ih = tp_item_head(&path);
748	item = tp_item_body(&path);
749	pos_in_item = path.pos_in_item;
750
751	fs_gen = get_generation(inode->i_sb);
752	copy_item_head(&tmp_ih, ih);
753
754	if (allocation_needed
755	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
756		/* we have to allocate block for the unformatted node */
757		if (!th) {
758			pathrelse(&path);
759			goto start_trans;
760		}
761
762		repeat =
763		    _allocate_block(th, block, inode, &allocated_block_nr,
764				    &path, create);
765
766		/*
767		 * restart the transaction to give the journal a chance to free
768		 * some blocks.  releases the path, so we have to go back to
769		 * research if we succeed on the second try
770		 */
771		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
772			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
773			retval = restart_transaction(th, inode, &path);
774			if (retval)
775				goto failure;
776			repeat =
777			    _allocate_block(th, block, inode,
778					    &allocated_block_nr, NULL, create);
779
780			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
781				goto research;
782			}
783			if (repeat == QUOTA_EXCEEDED)
784				retval = -EDQUOT;
785			else
786				retval = -ENOSPC;
787			goto failure;
788		}
789
790		if (fs_changed(fs_gen, inode->i_sb)
791		    && item_moved(&tmp_ih, &path)) {
792			goto research;
793		}
794	}
795
796	if (indirect_item_found(retval, ih)) {
797		b_blocknr_t unfm_ptr;
798		/*
799		 * 'block'-th block is in the file already (there is
800		 * corresponding cell in some indirect item). But it may be
801		 * zero unformatted node pointer (hole)
802		 */
803		unfm_ptr = get_block_num(item, pos_in_item);
804		if (unfm_ptr == 0) {
805			/* use allocated block to plug the hole */
806			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
807			if (fs_changed(fs_gen, inode->i_sb)
808			    && item_moved(&tmp_ih, &path)) {
809				reiserfs_restore_prepared_buffer(inode->i_sb,
810								 bh);
811				goto research;
812			}
813			set_buffer_new(bh_result);
814			if (buffer_dirty(bh_result)
815			    && reiserfs_data_ordered(inode->i_sb))
816				reiserfs_add_ordered_list(inode, bh_result);
817			put_block_num(item, pos_in_item, allocated_block_nr);
818			unfm_ptr = allocated_block_nr;
819			journal_mark_dirty(th, bh);
820			reiserfs_update_sd(th, inode);
821		}
822		set_block_dev_mapped(bh_result, unfm_ptr, inode);
823		pathrelse(&path);
824		retval = 0;
825		if (!dangle && th)
826			retval = reiserfs_end_persistent_transaction(th);
827
828		reiserfs_write_unlock(inode->i_sb);
829
830		/*
831		 * the item was found, so new blocks were not added to the file
832		 * there is no need to make sure the inode is updated with this
833		 * transaction
834		 */
835		return retval;
836	}
837
838	if (!th) {
839		pathrelse(&path);
840		goto start_trans;
841	}
842
843	/*
844	 * desired position is not found or is in the direct item. We have
845	 * to append file with holes up to 'block'-th block converting
846	 * direct items to indirect one if necessary
847	 */
848	done = 0;
849	do {
850		if (is_statdata_le_ih(ih)) {
851			__le32 unp = 0;
852			struct cpu_key tmp_key;
853
854			/* indirect item has to be inserted */
855			make_le_item_head(&tmp_ih, &key, version, 1,
856					  TYPE_INDIRECT, UNFM_P_SIZE,
857					  0 /* free_space */ );
858
859			/*
860			 * we are going to add 'block'-th block to the file.
861			 * Use allocated block for that
862			 */
863			if (cpu_key_k_offset(&key) == 1) {
864				unp = cpu_to_le32(allocated_block_nr);
865				set_block_dev_mapped(bh_result,
866						     allocated_block_nr, inode);
867				set_buffer_new(bh_result);
868				done = 1;
869			}
870			tmp_key = key;	/* ;) */
871			set_cpu_key_k_offset(&tmp_key, 1);
872			PATH_LAST_POSITION(&path)++;
873
874			retval =
875			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
876						 inode, (char *)&unp);
877			if (retval) {
878				reiserfs_free_block(th, inode,
879						    allocated_block_nr, 1);
880				/*
881				 * retval == -ENOSPC, -EDQUOT or -EIO
882				 * or -EEXIST
883				 */
884				goto failure;
885			}
886		} else if (is_direct_le_ih(ih)) {
887			/* direct item has to be converted */
888			loff_t tail_offset;
889
890			tail_offset =
891			    ((le_ih_k_offset(ih) -
892			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
893
894			/*
895			 * direct item we just found fits into block we have
896			 * to map. Convert it into unformatted node: use
897			 * bh_result for the conversion
898			 */
899			if (tail_offset == cpu_key_k_offset(&key)) {
900				set_block_dev_mapped(bh_result,
901						     allocated_block_nr, inode);
902				unbh = bh_result;
903				done = 1;
904			} else {
905				/*
906				 * we have to pad file tail stored in direct
907				 * item(s) up to block size and convert it
908				 * to unformatted node. FIXME: this should
909				 * also get into page cache
910				 */
911
912				pathrelse(&path);
913				/*
914				 * ugly, but we can only end the transaction if
915				 * we aren't nested
916				 */
917				BUG_ON(!th->t_refcount);
918				if (th->t_refcount == 1) {
919					retval =
920					    reiserfs_end_persistent_transaction
921					    (th);
922					th = NULL;
923					if (retval)
924						goto failure;
925				}
926
927				retval =
928				    convert_tail_for_hole(inode, bh_result,
929							  tail_offset);
930				if (retval) {
931					if (retval != -ENOSPC)
932						reiserfs_error(inode->i_sb,
933							"clm-6004",
934							"convert tail failed "
935							"inode %lu, error %d",
936							inode->i_ino,
937							retval);
938					if (allocated_block_nr) {
939						/*
940						 * the bitmap, the super,
941						 * and the stat data == 3
942						 */
943						if (!th)
944							th = reiserfs_persistent_transaction(inode->i_sb, 3);
945						if (th)
946							reiserfs_free_block(th,
947									    inode,
948									    allocated_block_nr,
949									    1);
950					}
951					goto failure;
952				}
953				goto research;
954			}
955			retval =
956			    direct2indirect(th, inode, &path, unbh,
957					    tail_offset);
958			if (retval) {
959				reiserfs_unmap_buffer(unbh);
960				reiserfs_free_block(th, inode,
961						    allocated_block_nr, 1);
962				goto failure;
963			}
964			/*
965			 * it is important the set_buffer_uptodate is done
966			 * after the direct2indirect.  The buffer might
967			 * contain valid data newer than the data on disk
968			 * (read by readpage, changed, and then sent here by
969			 * writepage).  direct2indirect needs to know if unbh
970			 * was already up to date, so it can decide if the
971			 * data in unbh needs to be replaced with data from
972			 * the disk
973			 */
974			set_buffer_uptodate(unbh);
975
976			/*
977			 * unbh->b_page == NULL in case of DIRECT_IO request,
978			 * this means buffer will disappear shortly, so it
979			 * should not be added to
980			 */
981			if (unbh->b_page) {
982				/*
983				 * we've converted the tail, so we must
984				 * flush unbh before the transaction commits
985				 */
986				reiserfs_add_tail_list(inode, unbh);
987
988				/*
989				 * mark it dirty now to prevent commit_write
990				 * from adding this buffer to the inode's
991				 * dirty buffer list
992				 */
993				/*
994				 * AKPM: changed __mark_buffer_dirty to
995				 * mark_buffer_dirty().  It's still atomic,
996				 * but it sets the page dirty too, which makes
997				 * it eligible for writeback at any time by the
998				 * VM (which was also the case with
999				 * __mark_buffer_dirty())
1000				 */
1001				mark_buffer_dirty(unbh);
1002			}
1003		} else {
1004			/*
1005			 * append indirect item with holes if needed, when
1006			 * appending pointer to 'block'-th block use block,
1007			 * which is already allocated
1008			 */
1009			struct cpu_key tmp_key;
1010			/*
1011			 * We use this in case we need to allocate
1012			 * only one block which is a fastpath
1013			 */
1014			unp_t unf_single = 0;
1015			unp_t *un;
1016			__u64 max_to_insert =
1017			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1018			    UNFM_P_SIZE;
1019			__u64 blocks_needed;
1020
1021			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1022			       "vs-804: invalid position for append");
1023			/*
1024			 * indirect item has to be appended,
1025			 * set up key of that position
1026			 * (key type is unimportant)
1027			 */
1028			make_cpu_key(&tmp_key, inode,
1029				     le_key_k_offset(version,
1030						     &ih->ih_key) +
1031				     op_bytes_number(ih,
1032						     inode->i_sb->s_blocksize),
1033				     TYPE_INDIRECT, 3);
1034
1035			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1036			       "green-805: invalid offset");
1037			blocks_needed =
1038			    1 +
1039			    ((cpu_key_k_offset(&key) -
1040			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1041			     s_blocksize_bits);
1042
1043			if (blocks_needed == 1) {
1044				un = &unf_single;
1045			} else {
1046				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
1047				if (!un) {
1048					un = &unf_single;
1049					blocks_needed = 1;
1050					max_to_insert = 0;
1051				}
1052			}
1053			if (blocks_needed <= max_to_insert) {
1054				/*
1055				 * we are going to add target block to
1056				 * the file. Use allocated block for that
1057				 */
1058				un[blocks_needed - 1] =
1059				    cpu_to_le32(allocated_block_nr);
1060				set_block_dev_mapped(bh_result,
1061						     allocated_block_nr, inode);
1062				set_buffer_new(bh_result);
1063				done = 1;
1064			} else {
1065				/* paste hole to the indirect item */
1066				/*
1067				 * If kmalloc failed, max_to_insert becomes
1068				 * zero and it means we only have space for
1069				 * one block
1070				 */
1071				blocks_needed =
1072				    max_to_insert ? max_to_insert : 1;
1073			}
1074			retval =
1075			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1076						     (char *)un,
1077						     UNFM_P_SIZE *
1078						     blocks_needed);
1079
1080			if (blocks_needed != 1)
1081				kfree(un);
1082
1083			if (retval) {
1084				reiserfs_free_block(th, inode,
1085						    allocated_block_nr, 1);
1086				goto failure;
1087			}
1088			if (!done) {
1089				/*
1090				 * We need to mark new file size in case
1091				 * this function will be interrupted/aborted
1092				 * later on. And we may do this only for
1093				 * holes.
1094				 */
1095				inode->i_size +=
1096				    inode->i_sb->s_blocksize * blocks_needed;
1097			}
1098		}
1099
1100		if (done == 1)
1101			break;
1102
1103		/*
1104		 * this loop could log more blocks than we had originally
1105		 * asked for.  So, we have to allow the transaction to end
1106		 * if it is too big or too full.  Update the inode so things
1107		 * are consistent if we crash before the function returns
1108		 * release the path so that anybody waiting on the path before
1109		 * ending their transaction will be able to continue.
1110		 */
1111		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1112			retval = restart_transaction(th, inode, &path);
1113			if (retval)
1114				goto failure;
1115		}
1116		/*
1117		 * inserting indirect pointers for a hole can take a
1118		 * long time.  reschedule if needed and also release the write
1119		 * lock for others.
1120		 */
1121		reiserfs_cond_resched(inode->i_sb);
1122
1123		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1124		if (retval == IO_ERROR) {
1125			retval = -EIO;
1126			goto failure;
1127		}
1128		if (retval == POSITION_FOUND) {
1129			reiserfs_warning(inode->i_sb, "vs-825",
1130					 "%K should not be found", &key);
1131			retval = -EEXIST;
1132			if (allocated_block_nr)
1133				reiserfs_free_block(th, inode,
1134						    allocated_block_nr, 1);
1135			pathrelse(&path);
1136			goto failure;
1137		}
1138		bh = get_last_bh(&path);
1139		ih = tp_item_head(&path);
1140		item = tp_item_body(&path);
1141		pos_in_item = path.pos_in_item;
1142	} while (1);
1143
1144	retval = 0;
1145
1146failure:
1147	if (th && (!dangle || (retval && !th->t_trans_id))) {
1148		int err;
1149		if (th->t_trans_id)
1150			reiserfs_update_sd(th, inode);
1151		err = reiserfs_end_persistent_transaction(th);
1152		if (err)
1153			retval = err;
1154	}
1155
1156	reiserfs_write_unlock(inode->i_sb);
1157	reiserfs_check_path(&path);
1158	return retval;
1159}
1160
1161static int
1162reiserfs_readpages(struct file *file, struct address_space *mapping,
1163		   struct list_head *pages, unsigned nr_pages)
1164{
1165	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1166}
1167
1168/*
1169 * Compute real number of used bytes by file
1170 * Following three functions can go away when we'll have enough space in
1171 * stat item
1172 */
1173static int real_space_diff(struct inode *inode, int sd_size)
1174{
1175	int bytes;
1176	loff_t blocksize = inode->i_sb->s_blocksize;
1177
1178	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179		return sd_size;
1180
1181	/*
1182	 * End of file is also in full block with indirect reference, so round
1183	 * up to the next block.
1184	 *
1185	 * there is just no way to know if the tail is actually packed
1186	 * on the file, so we have to assume it isn't.  When we pack the
1187	 * tail, we add 4 bytes to pretend there really is an unformatted
1188	 * node pointer
1189	 */
1190	bytes =
1191	    ((inode->i_size +
1192	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193	    sd_size;
1194	return bytes;
1195}
1196
1197static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198					int sd_size)
1199{
1200	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201		return inode->i_size +
1202		    (loff_t) (real_space_diff(inode, sd_size));
1203	}
1204	return ((loff_t) real_space_diff(inode, sd_size)) +
1205	    (((loff_t) blocks) << 9);
1206}
1207
1208/* Compute number of blocks used by file in ReiserFS counting */
1209static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1210{
1211	loff_t bytes = inode_get_bytes(inode);
1212	loff_t real_space = real_space_diff(inode, sd_size);
1213
1214	/* keeps fsck and non-quota versions of reiserfs happy */
1215	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216		bytes += (loff_t) 511;
1217	}
1218
1219	/*
1220	 * files from before the quota patch might i_blocks such that
1221	 * bytes < real_space.  Deal with that here to prevent it from
1222	 * going negative.
1223	 */
1224	if (bytes < real_space)
1225		return 0;
1226	return (bytes - real_space) >> 9;
1227}
1228
1229/*
1230 * BAD: new directories have stat data of new type and all other items
1231 * of old type. Version stored in the inode says about body items, so
1232 * in update_stat_data we can not rely on inode, but have to check
1233 * item version directly
1234 */
1235
1236/* called by read_locked_inode */
1237static void init_inode(struct inode *inode, struct treepath *path)
1238{
1239	struct buffer_head *bh;
1240	struct item_head *ih;
1241	__u32 rdev;
1242
1243	bh = PATH_PLAST_BUFFER(path);
1244	ih = tp_item_head(path);
1245
1246	copy_key(INODE_PKEY(inode), &ih->ih_key);
1247
1248	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249	REISERFS_I(inode)->i_flags = 0;
1250	REISERFS_I(inode)->i_prealloc_block = 0;
1251	REISERFS_I(inode)->i_prealloc_count = 0;
1252	REISERFS_I(inode)->i_trans_id = 0;
1253	REISERFS_I(inode)->i_jl = NULL;
1254	reiserfs_init_xattr_rwsem(inode);
1255
1256	if (stat_data_v1(ih)) {
1257		struct stat_data_v1 *sd =
1258		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1259		unsigned long blocks;
1260
1261		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262		set_inode_sd_version(inode, STAT_DATA_V1);
1263		inode->i_mode = sd_v1_mode(sd);
1264		set_nlink(inode, sd_v1_nlink(sd));
1265		i_uid_write(inode, sd_v1_uid(sd));
1266		i_gid_write(inode, sd_v1_gid(sd));
1267		inode->i_size = sd_v1_size(sd);
1268		inode->i_atime.tv_sec = sd_v1_atime(sd);
1269		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271		inode->i_atime.tv_nsec = 0;
1272		inode->i_ctime.tv_nsec = 0;
1273		inode->i_mtime.tv_nsec = 0;
1274
1275		inode->i_blocks = sd_v1_blocks(sd);
1276		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277		blocks = (inode->i_size + 511) >> 9;
1278		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1279
1280		/*
1281		 * there was a bug in <=3.5.23 when i_blocks could take
1282		 * negative values. Starting from 3.5.17 this value could
1283		 * even be stored in stat data. For such files we set
1284		 * i_blocks based on file size. Just 2 notes: this can be
1285		 * wrong for sparse files. On-disk value will be only
1286		 * updated if file's inode will ever change
1287		 */
1288		if (inode->i_blocks > blocks) {
1289			inode->i_blocks = blocks;
1290		}
1291
1292		rdev = sd_v1_rdev(sd);
1293		REISERFS_I(inode)->i_first_direct_byte =
1294		    sd_v1_first_direct_byte(sd);
1295
1296		/*
1297		 * an early bug in the quota code can give us an odd
1298		 * number for the block count.  This is incorrect, fix it here.
1299		 */
1300		if (inode->i_blocks & 1) {
1301			inode->i_blocks++;
1302		}
1303		inode_set_bytes(inode,
1304				to_real_used_space(inode, inode->i_blocks,
1305						   SD_V1_SIZE));
1306		/*
1307		 * nopack is initially zero for v1 objects. For v2 objects,
1308		 * nopack is initialised from sd_attrs
1309		 */
1310		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311	} else {
1312		/*
1313		 * new stat data found, but object may have old items
1314		 * (directories and symlinks)
1315		 */
1316		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1317
1318		inode->i_mode = sd_v2_mode(sd);
1319		set_nlink(inode, sd_v2_nlink(sd));
1320		i_uid_write(inode, sd_v2_uid(sd));
1321		inode->i_size = sd_v2_size(sd);
1322		i_gid_write(inode, sd_v2_gid(sd));
1323		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324		inode->i_atime.tv_sec = sd_v2_atime(sd);
1325		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326		inode->i_ctime.tv_nsec = 0;
1327		inode->i_mtime.tv_nsec = 0;
1328		inode->i_atime.tv_nsec = 0;
1329		inode->i_blocks = sd_v2_blocks(sd);
1330		rdev = sd_v2_rdev(sd);
1331		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332			inode->i_generation =
1333			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334		else
1335			inode->i_generation = sd_v2_generation(sd);
1336
1337		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339		else
1340			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341		REISERFS_I(inode)->i_first_direct_byte = 0;
1342		set_inode_sd_version(inode, STAT_DATA_V2);
1343		inode_set_bytes(inode,
1344				to_real_used_space(inode, inode->i_blocks,
1345						   SD_V2_SIZE));
1346		/*
1347		 * read persistent inode attributes from sd and initialise
1348		 * generic inode flags from them
1349		 */
1350		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1352	}
1353
1354	pathrelse(path);
1355	if (S_ISREG(inode->i_mode)) {
1356		inode->i_op = &reiserfs_file_inode_operations;
1357		inode->i_fop = &reiserfs_file_operations;
1358		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359	} else if (S_ISDIR(inode->i_mode)) {
1360		inode->i_op = &reiserfs_dir_inode_operations;
1361		inode->i_fop = &reiserfs_dir_operations;
1362	} else if (S_ISLNK(inode->i_mode)) {
1363		inode->i_op = &reiserfs_symlink_inode_operations;
1364		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1365	} else {
1366		inode->i_blocks = 0;
1367		inode->i_op = &reiserfs_special_inode_operations;
1368		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1369	}
1370}
1371
1372/* update new stat data with inode fields */
1373static void inode2sd(void *sd, struct inode *inode, loff_t size)
1374{
1375	struct stat_data *sd_v2 = (struct stat_data *)sd;
1376	__u16 flags;
1377
1378	set_sd_v2_mode(sd_v2, inode->i_mode);
1379	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1380	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1381	set_sd_v2_size(sd_v2, size);
1382	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1383	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1384	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1385	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1386	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1387	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1388		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1389	else
1390		set_sd_v2_generation(sd_v2, inode->i_generation);
1391	flags = REISERFS_I(inode)->i_attrs;
1392	i_attrs_to_sd_attrs(inode, &flags);
1393	set_sd_v2_attrs(sd_v2, flags);
1394}
1395
1396/* used to copy inode's fields to old stat data */
1397static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1398{
1399	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1400
1401	set_sd_v1_mode(sd_v1, inode->i_mode);
1402	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1403	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1404	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1405	set_sd_v1_size(sd_v1, size);
1406	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1407	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1408	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1409
1410	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1411		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1412	else
1413		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1414
1415	/* Sigh. i_first_direct_byte is back */
1416	set_sd_v1_first_direct_byte(sd_v1,
1417				    REISERFS_I(inode)->i_first_direct_byte);
1418}
1419
1420/*
1421 * NOTE, you must prepare the buffer head before sending it here,
1422 * and then log it after the call
1423 */
1424static void update_stat_data(struct treepath *path, struct inode *inode,
1425			     loff_t size)
1426{
1427	struct buffer_head *bh;
1428	struct item_head *ih;
1429
1430	bh = PATH_PLAST_BUFFER(path);
1431	ih = tp_item_head(path);
1432
1433	if (!is_statdata_le_ih(ih))
1434		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1435			       INODE_PKEY(inode), ih);
1436
1437	/* path points to old stat data */
1438	if (stat_data_v1(ih)) {
1439		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1440	} else {
1441		inode2sd(ih_item_body(bh, ih), inode, size);
1442	}
1443
1444	return;
1445}
1446
1447void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1448			     struct inode *inode, loff_t size)
1449{
1450	struct cpu_key key;
1451	INITIALIZE_PATH(path);
1452	struct buffer_head *bh;
1453	int fs_gen;
1454	struct item_head *ih, tmp_ih;
1455	int retval;
1456
1457	BUG_ON(!th->t_trans_id);
1458
1459	/* key type is unimportant */
1460	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1461
1462	for (;;) {
1463		int pos;
1464		/* look for the object's stat data */
1465		retval = search_item(inode->i_sb, &key, &path);
1466		if (retval == IO_ERROR) {
1467			reiserfs_error(inode->i_sb, "vs-13050",
1468				       "i/o failure occurred trying to "
1469				       "update %K stat data", &key);
1470			return;
1471		}
1472		if (retval == ITEM_NOT_FOUND) {
1473			pos = PATH_LAST_POSITION(&path);
1474			pathrelse(&path);
1475			if (inode->i_nlink == 0) {
1476				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1477				return;
1478			}
1479			reiserfs_warning(inode->i_sb, "vs-13060",
1480					 "stat data of object %k (nlink == %d) "
1481					 "not found (pos %d)",
1482					 INODE_PKEY(inode), inode->i_nlink,
1483					 pos);
1484			reiserfs_check_path(&path);
1485			return;
1486		}
1487
1488		/*
1489		 * sigh, prepare_for_journal might schedule.  When it
1490		 * schedules the FS might change.  We have to detect that,
1491		 * and loop back to the search if the stat data item has moved
1492		 */
1493		bh = get_last_bh(&path);
1494		ih = tp_item_head(&path);
1495		copy_item_head(&tmp_ih, ih);
1496		fs_gen = get_generation(inode->i_sb);
1497		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1498
1499		/* Stat_data item has been moved after scheduling. */
1500		if (fs_changed(fs_gen, inode->i_sb)
1501		    && item_moved(&tmp_ih, &path)) {
1502			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1503			continue;
1504		}
1505		break;
1506	}
1507	update_stat_data(&path, inode, size);
1508	journal_mark_dirty(th, bh);
1509	pathrelse(&path);
1510	return;
1511}
1512
1513/*
1514 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1515 * does a make_bad_inode when things go wrong.  But, we need to make sure
1516 * and clear the key in the private portion of the inode, otherwise a
1517 * corresponding iput might try to delete whatever object the inode last
1518 * represented.
1519 */
1520static void reiserfs_make_bad_inode(struct inode *inode)
1521{
1522	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1523	make_bad_inode(inode);
1524}
1525
1526/*
1527 * initially this function was derived from minix or ext2's analog and
1528 * evolved as the prototype did
1529 */
1530int reiserfs_init_locked_inode(struct inode *inode, void *p)
1531{
1532	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1533	inode->i_ino = args->objectid;
1534	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1535	return 0;
1536}
1537
1538/*
1539 * looks for stat data in the tree, and fills up the fields of in-core
1540 * inode stat data fields
1541 */
1542void reiserfs_read_locked_inode(struct inode *inode,
1543				struct reiserfs_iget_args *args)
1544{
1545	INITIALIZE_PATH(path_to_sd);
1546	struct cpu_key key;
1547	unsigned long dirino;
1548	int retval;
1549
1550	dirino = args->dirid;
1551
1552	/*
1553	 * set version 1, version 2 could be used too, because stat data
1554	 * key is the same in both versions
1555	 */
1556	key.version = KEY_FORMAT_3_5;
1557	key.on_disk_key.k_dir_id = dirino;
1558	key.on_disk_key.k_objectid = inode->i_ino;
1559	key.on_disk_key.k_offset = 0;
1560	key.on_disk_key.k_type = 0;
1561
1562	/* look for the object's stat data */
1563	retval = search_item(inode->i_sb, &key, &path_to_sd);
1564	if (retval == IO_ERROR) {
1565		reiserfs_error(inode->i_sb, "vs-13070",
1566			       "i/o failure occurred trying to find "
1567			       "stat data of %K", &key);
1568		reiserfs_make_bad_inode(inode);
1569		return;
1570	}
1571
1572	/* a stale NFS handle can trigger this without it being an error */
1573	if (retval != ITEM_FOUND) {
1574		pathrelse(&path_to_sd);
1575		reiserfs_make_bad_inode(inode);
1576		clear_nlink(inode);
1577		return;
1578	}
1579
1580	init_inode(inode, &path_to_sd);
1581
1582	/*
1583	 * It is possible that knfsd is trying to access inode of a file
1584	 * that is being removed from the disk by some other thread. As we
1585	 * update sd on unlink all that is required is to check for nlink
1586	 * here. This bug was first found by Sizif when debugging
1587	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1588	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1589
1590	 * More logical fix would require changes in fs/inode.c:iput() to
1591	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1592	 * in iget() to return NULL if I_FREEING inode is found in
1593	 * hash-table.
1594	 */
1595
1596	/*
1597	 * Currently there is one place where it's ok to meet inode with
1598	 * nlink==0: processing of open-unlinked and half-truncated files
1599	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1600	 */
1601	if ((inode->i_nlink == 0) &&
1602	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1603		reiserfs_warning(inode->i_sb, "vs-13075",
1604				 "dead inode read from disk %K. "
1605				 "This is likely to be race with knfsd. Ignore",
1606				 &key);
1607		reiserfs_make_bad_inode(inode);
1608	}
1609
1610	/* init inode should be relsing */
1611	reiserfs_check_path(&path_to_sd);
1612
1613	/*
1614	 * Stat data v1 doesn't support ACLs.
1615	 */
1616	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1617		cache_no_acl(inode);
1618}
1619
1620/*
1621 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1622 *
1623 * @inode:    inode from hash table to check
1624 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1625 *
1626 * This function is called by iget5_locked() to distinguish reiserfs inodes
1627 * having the same inode numbers. Such inodes can only exist due to some
1628 * error condition. One of them should be bad. Inodes with identical
1629 * inode numbers (objectids) are distinguished by parent directory ids.
1630 *
1631 */
1632int reiserfs_find_actor(struct inode *inode, void *opaque)
1633{
1634	struct reiserfs_iget_args *args;
1635
1636	args = opaque;
1637	/* args is already in CPU order */
1638	return (inode->i_ino == args->objectid) &&
1639	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1640}
1641
1642struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1643{
1644	struct inode *inode;
1645	struct reiserfs_iget_args args;
1646	int depth;
1647
1648	args.objectid = key->on_disk_key.k_objectid;
1649	args.dirid = key->on_disk_key.k_dir_id;
1650	depth = reiserfs_write_unlock_nested(s);
1651	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1652			     reiserfs_find_actor, reiserfs_init_locked_inode,
1653			     (void *)(&args));
1654	reiserfs_write_lock_nested(s, depth);
1655	if (!inode)
1656		return ERR_PTR(-ENOMEM);
1657
1658	if (inode->i_state & I_NEW) {
1659		reiserfs_read_locked_inode(inode, &args);
1660		unlock_new_inode(inode);
1661	}
1662
1663	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1664		/* either due to i/o error or a stale NFS handle */
1665		iput(inode);
1666		inode = NULL;
1667	}
1668	return inode;
1669}
1670
1671static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1672	u32 objectid, u32 dir_id, u32 generation)
1673
1674{
1675	struct cpu_key key;
1676	struct inode *inode;
1677
1678	key.on_disk_key.k_objectid = objectid;
1679	key.on_disk_key.k_dir_id = dir_id;
1680	reiserfs_write_lock(sb);
1681	inode = reiserfs_iget(sb, &key);
1682	if (inode && !IS_ERR(inode) && generation != 0 &&
1683	    generation != inode->i_generation) {
1684		iput(inode);
1685		inode = NULL;
1686	}
1687	reiserfs_write_unlock(sb);
1688
1689	return d_obtain_alias(inode);
1690}
1691
1692struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1693		int fh_len, int fh_type)
1694{
1695	/*
1696	 * fhtype happens to reflect the number of u32s encoded.
1697	 * due to a bug in earlier code, fhtype might indicate there
1698	 * are more u32s then actually fitted.
1699	 * so if fhtype seems to be more than len, reduce fhtype.
1700	 * Valid types are:
1701	 *   2 - objectid + dir_id - legacy support
1702	 *   3 - objectid + dir_id + generation
1703	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1704	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1705	 *   6 - as above plus generation of directory
1706	 * 6 does not fit in NFSv2 handles
1707	 */
1708	if (fh_type > fh_len) {
1709		if (fh_type != 6 || fh_len != 5)
1710			reiserfs_warning(sb, "reiserfs-13077",
1711				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1712				fh_type, fh_len);
1713		fh_type = fh_len;
1714	}
1715	if (fh_len < 2)
1716		return NULL;
1717
1718	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1719		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1720}
1721
1722struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1723		int fh_len, int fh_type)
1724{
1725	if (fh_type > fh_len)
1726		fh_type = fh_len;
1727	if (fh_type < 4)
1728		return NULL;
1729
1730	return reiserfs_get_dentry(sb,
1731		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1732		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1733		(fh_type == 6) ? fid->raw[5] : 0);
1734}
1735
1736int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1737		       struct inode *parent)
1738{
1739	int maxlen = *lenp;
1740
1741	if (parent && (maxlen < 5)) {
1742		*lenp = 5;
1743		return FILEID_INVALID;
1744	} else if (maxlen < 3) {
1745		*lenp = 3;
1746		return FILEID_INVALID;
1747	}
1748
1749	data[0] = inode->i_ino;
1750	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1751	data[2] = inode->i_generation;
1752	*lenp = 3;
1753	if (parent) {
1754		data[3] = parent->i_ino;
1755		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1756		*lenp = 5;
1757		if (maxlen >= 6) {
1758			data[5] = parent->i_generation;
1759			*lenp = 6;
1760		}
1761	}
1762	return *lenp;
1763}
1764
1765/*
1766 * looks for stat data, then copies fields to it, marks the buffer
1767 * containing stat data as dirty
1768 */
1769/*
1770 * reiserfs inodes are never really dirty, since the dirty inode call
1771 * always logs them.  This call allows the VFS inode marking routines
1772 * to properly mark inodes for datasync and such, but only actually
1773 * does something when called for a synchronous update.
1774 */
1775int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1776{
1777	struct reiserfs_transaction_handle th;
1778	int jbegin_count = 1;
1779
1780	if (inode->i_sb->s_flags & MS_RDONLY)
1781		return -EROFS;
1782	/*
1783	 * memory pressure can sometimes initiate write_inode calls with
1784	 * sync == 1,
1785	 * these cases are just when the system needs ram, not when the
1786	 * inode needs to reach disk for safety, and they can safely be
1787	 * ignored because the altered inode has already been logged.
1788	 */
1789	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1790		reiserfs_write_lock(inode->i_sb);
1791		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1792			reiserfs_update_sd(&th, inode);
1793			journal_end_sync(&th);
1794		}
1795		reiserfs_write_unlock(inode->i_sb);
1796	}
1797	return 0;
1798}
1799
1800/*
1801 * stat data of new object is inserted already, this inserts the item
1802 * containing "." and ".." entries
1803 */
1804static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1805				  struct inode *inode,
1806				  struct item_head *ih, struct treepath *path,
1807				  struct inode *dir)
1808{
1809	struct super_block *sb = th->t_super;
1810	char empty_dir[EMPTY_DIR_SIZE];
1811	char *body = empty_dir;
1812	struct cpu_key key;
1813	int retval;
1814
1815	BUG_ON(!th->t_trans_id);
1816
1817	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1818		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1819		      TYPE_DIRENTRY, 3 /*key length */ );
1820
1821	/*
1822	 * compose item head for new item. Directories consist of items of
1823	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1824	 * is done by reiserfs_new_inode
1825	 */
1826	if (old_format_only(sb)) {
1827		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1828				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1829
1830		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1831				       ih->ih_key.k_objectid,
1832				       INODE_PKEY(dir)->k_dir_id,
1833				       INODE_PKEY(dir)->k_objectid);
1834	} else {
1835		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1836				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1837
1838		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1839				    ih->ih_key.k_objectid,
1840				    INODE_PKEY(dir)->k_dir_id,
1841				    INODE_PKEY(dir)->k_objectid);
1842	}
1843
1844	/* look for place in the tree for new item */
1845	retval = search_item(sb, &key, path);
1846	if (retval == IO_ERROR) {
1847		reiserfs_error(sb, "vs-13080",
1848			       "i/o failure occurred creating new directory");
1849		return -EIO;
1850	}
1851	if (retval == ITEM_FOUND) {
1852		pathrelse(path);
1853		reiserfs_warning(sb, "vs-13070",
1854				 "object with this key exists (%k)",
1855				 &(ih->ih_key));
1856		return -EEXIST;
1857	}
1858
1859	/* insert item, that is empty directory item */
1860	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1861}
1862
1863/*
1864 * stat data of object has been inserted, this inserts the item
1865 * containing the body of symlink
1866 */
1867static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1868				struct inode *inode,
1869				struct item_head *ih,
1870				struct treepath *path, const char *symname,
1871				int item_len)
1872{
1873	struct super_block *sb = th->t_super;
1874	struct cpu_key key;
1875	int retval;
1876
1877	BUG_ON(!th->t_trans_id);
1878
1879	_make_cpu_key(&key, KEY_FORMAT_3_5,
1880		      le32_to_cpu(ih->ih_key.k_dir_id),
1881		      le32_to_cpu(ih->ih_key.k_objectid),
1882		      1, TYPE_DIRECT, 3 /*key length */ );
1883
1884	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1885			  0 /*free_space */ );
1886
1887	/* look for place in the tree for new item */
1888	retval = search_item(sb, &key, path);
1889	if (retval == IO_ERROR) {
1890		reiserfs_error(sb, "vs-13080",
1891			       "i/o failure occurred creating new symlink");
1892		return -EIO;
1893	}
1894	if (retval == ITEM_FOUND) {
1895		pathrelse(path);
1896		reiserfs_warning(sb, "vs-13080",
1897				 "object with this key exists (%k)",
1898				 &(ih->ih_key));
1899		return -EEXIST;
1900	}
1901
1902	/* insert item, that is body of symlink */
1903	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1904}
1905
1906/*
1907 * inserts the stat data into the tree, and then calls
1908 * reiserfs_new_directory (to insert ".", ".." item if new object is
1909 * directory) or reiserfs_new_symlink (to insert symlink body if new
1910 * object is symlink) or nothing (if new object is regular file)
1911
1912 * NOTE! uid and gid must already be set in the inode.  If we return
1913 * non-zero due to an error, we have to drop the quota previously allocated
1914 * for the fresh inode.  This can only be done outside a transaction, so
1915 * if we return non-zero, we also end the transaction.
1916 *
1917 * @th: active transaction handle
1918 * @dir: parent directory for new inode
1919 * @mode: mode of new inode
1920 * @symname: symlink contents if inode is symlink
1921 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1922 *         symlinks
1923 * @inode: inode to be filled
1924 * @security: optional security context to associate with this inode
1925 */
1926int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1927		       struct inode *dir, umode_t mode, const char *symname,
1928		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1929		          strlen (symname) for symlinks) */
1930		       loff_t i_size, struct dentry *dentry,
1931		       struct inode *inode,
1932		       struct reiserfs_security_handle *security)
1933{
1934	struct super_block *sb = dir->i_sb;
1935	struct reiserfs_iget_args args;
1936	INITIALIZE_PATH(path_to_key);
1937	struct cpu_key key;
1938	struct item_head ih;
1939	struct stat_data sd;
1940	int retval;
1941	int err;
1942	int depth;
1943
1944	BUG_ON(!th->t_trans_id);
1945
1946	depth = reiserfs_write_unlock_nested(sb);
1947	err = dquot_alloc_inode(inode);
1948	reiserfs_write_lock_nested(sb, depth);
1949	if (err)
1950		goto out_end_trans;
1951	if (!dir->i_nlink) {
1952		err = -EPERM;
1953		goto out_bad_inode;
1954	}
1955
1956	/* item head of new item */
1957	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1958	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1959	if (!ih.ih_key.k_objectid) {
1960		err = -ENOMEM;
1961		goto out_bad_inode;
1962	}
1963	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1964	if (old_format_only(sb))
1965		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1966				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1967	else
1968		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1969				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1970	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1971	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1972
1973	depth = reiserfs_write_unlock_nested(inode->i_sb);
1974	err = insert_inode_locked4(inode, args.objectid,
1975			     reiserfs_find_actor, &args);
1976	reiserfs_write_lock_nested(inode->i_sb, depth);
1977	if (err) {
1978		err = -EINVAL;
1979		goto out_bad_inode;
1980	}
1981
1982	if (old_format_only(sb))
1983		/*
1984		 * not a perfect generation count, as object ids can be reused,
1985		 * but this is as good as reiserfs can do right now.
1986		 * note that the private part of inode isn't filled in yet,
1987		 * we have to use the directory.
1988		 */
1989		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1990	else
1991#if defined( USE_INODE_GENERATION_COUNTER )
1992		inode->i_generation =
1993		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1994#else
1995		inode->i_generation = ++event;
1996#endif
1997
1998	/* fill stat data */
1999	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
2000
2001	/* uid and gid must already be set by the caller for quota init */
2002
2003	/* symlink cannot be immutable or append only, right? */
2004	if (S_ISLNK(inode->i_mode))
2005		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
2006
2007	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
2008	inode->i_size = i_size;
2009	inode->i_blocks = 0;
2010	inode->i_bytes = 0;
2011	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2012	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2013
2014	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2015	REISERFS_I(inode)->i_flags = 0;
2016	REISERFS_I(inode)->i_prealloc_block = 0;
2017	REISERFS_I(inode)->i_prealloc_count = 0;
2018	REISERFS_I(inode)->i_trans_id = 0;
2019	REISERFS_I(inode)->i_jl = NULL;
2020	REISERFS_I(inode)->i_attrs =
2021	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2022	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2023	reiserfs_init_xattr_rwsem(inode);
2024
2025	/* key to search for correct place for new stat data */
2026	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2027		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2028		      TYPE_STAT_DATA, 3 /*key length */ );
2029
2030	/* find proper place for inserting of stat data */
2031	retval = search_item(sb, &key, &path_to_key);
2032	if (retval == IO_ERROR) {
2033		err = -EIO;
2034		goto out_bad_inode;
2035	}
2036	if (retval == ITEM_FOUND) {
2037		pathrelse(&path_to_key);
2038		err = -EEXIST;
2039		goto out_bad_inode;
2040	}
2041	if (old_format_only(sb)) {
2042		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2043		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2044			pathrelse(&path_to_key);
2045			err = -EINVAL;
2046			goto out_bad_inode;
2047		}
2048		inode2sd_v1(&sd, inode, inode->i_size);
2049	} else {
2050		inode2sd(&sd, inode, inode->i_size);
2051	}
2052	/*
2053	 * store in in-core inode the key of stat data and version all
2054	 * object items will have (directory items will have old offset
2055	 * format, other new objects will consist of new items)
2056	 */
2057	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2058		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2059	else
2060		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2061	if (old_format_only(sb))
2062		set_inode_sd_version(inode, STAT_DATA_V1);
2063	else
2064		set_inode_sd_version(inode, STAT_DATA_V2);
2065
2066	/* insert the stat data into the tree */
2067#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2068	if (REISERFS_I(dir)->new_packing_locality)
2069		th->displace_new_blocks = 1;
2070#endif
2071	retval =
2072	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2073				 (char *)(&sd));
2074	if (retval) {
2075		err = retval;
2076		reiserfs_check_path(&path_to_key);
2077		goto out_bad_inode;
2078	}
2079#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2080	if (!th->displace_new_blocks)
2081		REISERFS_I(dir)->new_packing_locality = 0;
2082#endif
2083	if (S_ISDIR(mode)) {
2084		/* insert item with "." and ".." */
2085		retval =
2086		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2087	}
2088
2089	if (S_ISLNK(mode)) {
2090		/* insert body of symlink */
2091		if (!old_format_only(sb))
2092			i_size = ROUND_UP(i_size);
2093		retval =
2094		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2095					 i_size);
2096	}
2097	if (retval) {
2098		err = retval;
2099		reiserfs_check_path(&path_to_key);
2100		journal_end(th);
2101		goto out_inserted_sd;
2102	}
2103
2104	if (reiserfs_posixacl(inode->i_sb)) {
2105		reiserfs_write_unlock(inode->i_sb);
2106		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2107		reiserfs_write_lock(inode->i_sb);
2108		if (retval) {
2109			err = retval;
2110			reiserfs_check_path(&path_to_key);
2111			journal_end(th);
2112			goto out_inserted_sd;
2113		}
2114	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
2115		reiserfs_warning(inode->i_sb, "jdm-13090",
2116				 "ACLs aren't enabled in the fs, "
2117				 "but vfs thinks they are!");
2118	} else if (IS_PRIVATE(dir))
2119		inode->i_flags |= S_PRIVATE;
2120
2121	if (security->name) {
2122		reiserfs_write_unlock(inode->i_sb);
2123		retval = reiserfs_security_write(th, inode, security);
2124		reiserfs_write_lock(inode->i_sb);
2125		if (retval) {
2126			err = retval;
2127			reiserfs_check_path(&path_to_key);
2128			retval = journal_end(th);
2129			if (retval)
2130				err = retval;
2131			goto out_inserted_sd;
2132		}
2133	}
2134
2135	reiserfs_update_sd(th, inode);
2136	reiserfs_check_path(&path_to_key);
2137
2138	return 0;
2139
2140out_bad_inode:
2141	/* Invalidate the object, nothing was inserted yet */
2142	INODE_PKEY(inode)->k_objectid = 0;
2143
2144	/* Quota change must be inside a transaction for journaling */
2145	depth = reiserfs_write_unlock_nested(inode->i_sb);
2146	dquot_free_inode(inode);
2147	reiserfs_write_lock_nested(inode->i_sb, depth);
2148
2149out_end_trans:
2150	journal_end(th);
2151	/*
2152	 * Drop can be outside and it needs more credits so it's better
2153	 * to have it outside
2154	 */
2155	depth = reiserfs_write_unlock_nested(inode->i_sb);
2156	dquot_drop(inode);
2157	reiserfs_write_lock_nested(inode->i_sb, depth);
2158	inode->i_flags |= S_NOQUOTA;
2159	make_bad_inode(inode);
2160
2161out_inserted_sd:
2162	clear_nlink(inode);
2163	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2164	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2165	iput(inode);
2166	return err;
2167}
2168
2169/*
2170 * finds the tail page in the page cache,
2171 * reads the last block in.
2172 *
2173 * On success, page_result is set to a locked, pinned page, and bh_result
2174 * is set to an up to date buffer for the last block in the file.  returns 0.
2175 *
2176 * tail conversion is not done, so bh_result might not be valid for writing
2177 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2178 * trying to write the block.
2179 *
2180 * on failure, nonzero is returned, page_result and bh_result are untouched.
2181 */
2182static int grab_tail_page(struct inode *inode,
2183			  struct page **page_result,
2184			  struct buffer_head **bh_result)
2185{
2186
2187	/*
2188	 * we want the page with the last byte in the file,
2189	 * not the page that will hold the next byte for appending
2190	 */
2191	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2192	unsigned long pos = 0;
2193	unsigned long start = 0;
2194	unsigned long blocksize = inode->i_sb->s_blocksize;
2195	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2196	struct buffer_head *bh;
2197	struct buffer_head *head;
2198	struct page *page;
2199	int error;
2200
2201	/*
2202	 * we know that we are only called with inode->i_size > 0.
2203	 * we also know that a file tail can never be as big as a block
2204	 * If i_size % blocksize == 0, our file is currently block aligned
2205	 * and it won't need converting or zeroing after a truncate.
2206	 */
2207	if ((offset & (blocksize - 1)) == 0) {
2208		return -ENOENT;
2209	}
2210	page = grab_cache_page(inode->i_mapping, index);
2211	error = -ENOMEM;
2212	if (!page) {
2213		goto out;
2214	}
2215	/* start within the page of the last block in the file */
2216	start = (offset / blocksize) * blocksize;
2217
2218	error = __block_write_begin(page, start, offset - start,
2219				    reiserfs_get_block_create_0);
2220	if (error)
2221		goto unlock;
2222
2223	head = page_buffers(page);
2224	bh = head;
2225	do {
2226		if (pos >= start) {
2227			break;
2228		}
2229		bh = bh->b_this_page;
2230		pos += blocksize;
2231	} while (bh != head);
2232
2233	if (!buffer_uptodate(bh)) {
2234		/*
2235		 * note, this should never happen, prepare_write should be
2236		 * taking care of this for us.  If the buffer isn't up to
2237		 * date, I've screwed up the code to find the buffer, or the
2238		 * code to call prepare_write
2239		 */
2240		reiserfs_error(inode->i_sb, "clm-6000",
2241			       "error reading block %lu", bh->b_blocknr);
2242		error = -EIO;
2243		goto unlock;
2244	}
2245	*bh_result = bh;
2246	*page_result = page;
2247
2248out:
2249	return error;
2250
2251unlock:
2252	unlock_page(page);
2253	page_cache_release(page);
2254	return error;
2255}
2256
2257/*
2258 * vfs version of truncate file.  Must NOT be called with
2259 * a transaction already started.
2260 *
2261 * some code taken from block_truncate_page
2262 */
2263int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2264{
2265	struct reiserfs_transaction_handle th;
2266	/* we want the offset for the first byte after the end of the file */
2267	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2268	unsigned blocksize = inode->i_sb->s_blocksize;
2269	unsigned length;
2270	struct page *page = NULL;
2271	int error;
2272	struct buffer_head *bh = NULL;
2273	int err2;
2274
2275	reiserfs_write_lock(inode->i_sb);
2276
2277	if (inode->i_size > 0) {
2278		error = grab_tail_page(inode, &page, &bh);
2279		if (error) {
2280			/*
2281			 * -ENOENT means we truncated past the end of the
2282			 * file, and get_block_create_0 could not find a
2283			 * block to read in, which is ok.
2284			 */
2285			if (error != -ENOENT)
2286				reiserfs_error(inode->i_sb, "clm-6001",
2287					       "grab_tail_page failed %d",
2288					       error);
2289			page = NULL;
2290			bh = NULL;
2291		}
2292	}
2293
2294	/*
2295	 * so, if page != NULL, we have a buffer head for the offset at
2296	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2297	 * then we have an unformatted node.  Otherwise, we have a direct item,
2298	 * and no zeroing is required on disk.  We zero after the truncate,
2299	 * because the truncate might pack the item anyway
2300	 * (it will unmap bh if it packs).
2301	 *
2302	 * it is enough to reserve space in transaction for 2 balancings:
2303	 * one for "save" link adding and another for the first
2304	 * cut_from_item. 1 is for update_sd
2305	 */
2306	error = journal_begin(&th, inode->i_sb,
2307			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2308	if (error)
2309		goto out;
2310	reiserfs_update_inode_transaction(inode);
2311	if (update_timestamps)
2312		/*
2313		 * we are doing real truncate: if the system crashes
2314		 * before the last transaction of truncating gets committed
2315		 * - on reboot the file either appears truncated properly
2316		 * or not truncated at all
2317		 */
2318		add_save_link(&th, inode, 1);
2319	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2320	error = journal_end(&th);
2321	if (error)
2322		goto out;
2323
2324	/* check reiserfs_do_truncate after ending the transaction */
2325	if (err2) {
2326		error = err2;
2327  		goto out;
2328	}
2329
2330	if (update_timestamps) {
2331		error = remove_save_link(inode, 1 /* truncate */);
2332		if (error)
2333			goto out;
2334	}
2335
2336	if (page) {
2337		length = offset & (blocksize - 1);
2338		/* if we are not on a block boundary */
2339		if (length) {
2340			length = blocksize - length;
2341			zero_user(page, offset, length);
2342			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2343				mark_buffer_dirty(bh);
2344			}
2345		}
2346		unlock_page(page);
2347		page_cache_release(page);
2348	}
2349
2350	reiserfs_write_unlock(inode->i_sb);
2351
2352	return 0;
2353out:
2354	if (page) {
2355		unlock_page(page);
2356		page_cache_release(page);
2357	}
2358
2359	reiserfs_write_unlock(inode->i_sb);
2360
2361	return error;
2362}
2363
2364static int map_block_for_writepage(struct inode *inode,
2365				   struct buffer_head *bh_result,
2366				   unsigned long block)
2367{
2368	struct reiserfs_transaction_handle th;
2369	int fs_gen;
2370	struct item_head tmp_ih;
2371	struct item_head *ih;
2372	struct buffer_head *bh;
2373	__le32 *item;
2374	struct cpu_key key;
2375	INITIALIZE_PATH(path);
2376	int pos_in_item;
2377	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2378	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2379	int retval;
2380	int use_get_block = 0;
2381	int bytes_copied = 0;
2382	int copy_size;
2383	int trans_running = 0;
2384
2385	/*
2386	 * catch places below that try to log something without
2387	 * starting a trans
2388	 */
2389	th.t_trans_id = 0;
2390
2391	if (!buffer_uptodate(bh_result)) {
2392		return -EIO;
2393	}
2394
2395	kmap(bh_result->b_page);
2396start_over:
2397	reiserfs_write_lock(inode->i_sb);
2398	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2399
2400research:
2401	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2402	if (retval != POSITION_FOUND) {
2403		use_get_block = 1;
2404		goto out;
2405	}
2406
2407	bh = get_last_bh(&path);
2408	ih = tp_item_head(&path);
2409	item = tp_item_body(&path);
2410	pos_in_item = path.pos_in_item;
2411
2412	/* we've found an unformatted node */
2413	if (indirect_item_found(retval, ih)) {
2414		if (bytes_copied > 0) {
2415			reiserfs_warning(inode->i_sb, "clm-6002",
2416					 "bytes_copied %d", bytes_copied);
2417		}
2418		if (!get_block_num(item, pos_in_item)) {
2419			/* crap, we are writing to a hole */
2420			use_get_block = 1;
2421			goto out;
2422		}
2423		set_block_dev_mapped(bh_result,
2424				     get_block_num(item, pos_in_item), inode);
2425	} else if (is_direct_le_ih(ih)) {
2426		char *p;
2427		p = page_address(bh_result->b_page);
2428		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2429		copy_size = ih_item_len(ih) - pos_in_item;
2430
2431		fs_gen = get_generation(inode->i_sb);
2432		copy_item_head(&tmp_ih, ih);
2433
2434		if (!trans_running) {
2435			/* vs-3050 is gone, no need to drop the path */
2436			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2437			if (retval)
2438				goto out;
2439			reiserfs_update_inode_transaction(inode);
2440			trans_running = 1;
2441			if (fs_changed(fs_gen, inode->i_sb)
2442			    && item_moved(&tmp_ih, &path)) {
2443				reiserfs_restore_prepared_buffer(inode->i_sb,
2444								 bh);
2445				goto research;
2446			}
2447		}
2448
2449		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2450
2451		if (fs_changed(fs_gen, inode->i_sb)
2452		    && item_moved(&tmp_ih, &path)) {
2453			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2454			goto research;
2455		}
2456
2457		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2458		       copy_size);
2459
2460		journal_mark_dirty(&th, bh);
2461		bytes_copied += copy_size;
2462		set_block_dev_mapped(bh_result, 0, inode);
2463
2464		/* are there still bytes left? */
2465		if (bytes_copied < bh_result->b_size &&
2466		    (byte_offset + bytes_copied) < inode->i_size) {
2467			set_cpu_key_k_offset(&key,
2468					     cpu_key_k_offset(&key) +
2469					     copy_size);
2470			goto research;
2471		}
2472	} else {
2473		reiserfs_warning(inode->i_sb, "clm-6003",
2474				 "bad item inode %lu", inode->i_ino);
2475		retval = -EIO;
2476		goto out;
2477	}
2478	retval = 0;
2479
2480out:
2481	pathrelse(&path);
2482	if (trans_running) {
2483		int err = journal_end(&th);
2484		if (err)
2485			retval = err;
2486		trans_running = 0;
2487	}
2488	reiserfs_write_unlock(inode->i_sb);
2489
2490	/* this is where we fill in holes in the file. */
2491	if (use_get_block) {
2492		retval = reiserfs_get_block(inode, block, bh_result,
2493					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2494					    | GET_BLOCK_NO_DANGLE);
2495		if (!retval) {
2496			if (!buffer_mapped(bh_result)
2497			    || bh_result->b_blocknr == 0) {
2498				/* get_block failed to find a mapped unformatted node. */
2499				use_get_block = 0;
2500				goto start_over;
2501			}
2502		}
2503	}
2504	kunmap(bh_result->b_page);
2505
2506	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2507		/*
2508		 * we've copied data from the page into the direct item, so the
2509		 * buffer in the page is now clean, mark it to reflect that.
2510		 */
2511		lock_buffer(bh_result);
2512		clear_buffer_dirty(bh_result);
2513		unlock_buffer(bh_result);
2514	}
2515	return retval;
2516}
2517
2518/*
2519 * mason@suse.com: updated in 2.5.54 to follow the same general io
2520 * start/recovery path as __block_write_full_page, along with special
2521 * code to handle reiserfs tails.
2522 */
2523static int reiserfs_write_full_page(struct page *page,
2524				    struct writeback_control *wbc)
2525{
2526	struct inode *inode = page->mapping->host;
2527	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2528	int error = 0;
2529	unsigned long block;
2530	sector_t last_block;
2531	struct buffer_head *head, *bh;
2532	int partial = 0;
2533	int nr = 0;
2534	int checked = PageChecked(page);
2535	struct reiserfs_transaction_handle th;
2536	struct super_block *s = inode->i_sb;
2537	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2538	th.t_trans_id = 0;
2539
2540	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2541	if (checked && (current->flags & PF_MEMALLOC)) {
2542		redirty_page_for_writepage(wbc, page);
2543		unlock_page(page);
2544		return 0;
2545	}
2546
2547	/*
2548	 * The page dirty bit is cleared before writepage is called, which
2549	 * means we have to tell create_empty_buffers to make dirty buffers
2550	 * The page really should be up to date at this point, so tossing
2551	 * in the BH_Uptodate is just a sanity check.
2552	 */
2553	if (!page_has_buffers(page)) {
2554		create_empty_buffers(page, s->s_blocksize,
2555				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2556	}
2557	head = page_buffers(page);
2558
2559	/*
2560	 * last page in the file, zero out any contents past the
2561	 * last byte in the file
2562	 */
2563	if (page->index >= end_index) {
2564		unsigned last_offset;
2565
2566		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2567		/* no file contents in this page */
2568		if (page->index >= end_index + 1 || !last_offset) {
2569			unlock_page(page);
2570			return 0;
2571		}
2572		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2573	}
2574	bh = head;
2575	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2576	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2577	/* first map all the buffers, logging any direct items we find */
2578	do {
2579		if (block > last_block) {
2580			/*
2581			 * This can happen when the block size is less than
2582			 * the page size.  The corresponding bytes in the page
2583			 * were zero filled above
2584			 */
2585			clear_buffer_dirty(bh);
2586			set_buffer_uptodate(bh);
2587		} else if ((checked || buffer_dirty(bh)) &&
2588		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2589						       && bh->b_blocknr ==
2590						       0))) {
2591			/*
2592			 * not mapped yet, or it points to a direct item, search
2593			 * the btree for the mapping info, and log any direct
2594			 * items found
2595			 */
2596			if ((error = map_block_for_writepage(inode, bh, block))) {
2597				goto fail;
2598			}
2599		}
2600		bh = bh->b_this_page;
2601		block++;
2602	} while (bh != head);
2603
2604	/*
2605	 * we start the transaction after map_block_for_writepage,
2606	 * because it can create holes in the file (an unbounded operation).
2607	 * starting it here, we can make a reliable estimate for how many
2608	 * blocks we're going to log
2609	 */
2610	if (checked) {
2611		ClearPageChecked(page);
2612		reiserfs_write_lock(s);
2613		error = journal_begin(&th, s, bh_per_page + 1);
2614		if (error) {
2615			reiserfs_write_unlock(s);
2616			goto fail;
2617		}
2618		reiserfs_update_inode_transaction(inode);
2619	}
2620	/* now go through and lock any dirty buffers on the page */
2621	do {
2622		get_bh(bh);
2623		if (!buffer_mapped(bh))
2624			continue;
2625		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2626			continue;
2627
2628		if (checked) {
2629			reiserfs_prepare_for_journal(s, bh, 1);
2630			journal_mark_dirty(&th, bh);
2631			continue;
2632		}
2633		/*
2634		 * from this point on, we know the buffer is mapped to a
2635		 * real block and not a direct item
2636		 */
2637		if (wbc->sync_mode != WB_SYNC_NONE) {
2638			lock_buffer(bh);
2639		} else {
2640			if (!trylock_buffer(bh)) {
2641				redirty_page_for_writepage(wbc, page);
2642				continue;
2643			}
2644		}
2645		if (test_clear_buffer_dirty(bh)) {
2646			mark_buffer_async_write(bh);
2647		} else {
2648			unlock_buffer(bh);
2649		}
2650	} while ((bh = bh->b_this_page) != head);
2651
2652	if (checked) {
2653		error = journal_end(&th);
2654		reiserfs_write_unlock(s);
2655		if (error)
2656			goto fail;
2657	}
2658	BUG_ON(PageWriteback(page));
2659	set_page_writeback(page);
2660	unlock_page(page);
2661
2662	/*
2663	 * since any buffer might be the only dirty buffer on the page,
2664	 * the first submit_bh can bring the page out of writeback.
2665	 * be careful with the buffers.
2666	 */
2667	do {
2668		struct buffer_head *next = bh->b_this_page;
2669		if (buffer_async_write(bh)) {
2670			submit_bh(WRITE, bh);
2671			nr++;
2672		}
2673		put_bh(bh);
2674		bh = next;
2675	} while (bh != head);
2676
2677	error = 0;
2678done:
2679	if (nr == 0) {
2680		/*
2681		 * if this page only had a direct item, it is very possible for
2682		 * no io to be required without there being an error.  Or,
2683		 * someone else could have locked them and sent them down the
2684		 * pipe without locking the page
2685		 */
2686		bh = head;
2687		do {
2688			if (!buffer_uptodate(bh)) {
2689				partial = 1;
2690				break;
2691			}
2692			bh = bh->b_this_page;
2693		} while (bh != head);
2694		if (!partial)
2695			SetPageUptodate(page);
2696		end_page_writeback(page);
2697	}
2698	return error;
2699
2700fail:
2701	/*
2702	 * catches various errors, we need to make sure any valid dirty blocks
2703	 * get to the media.  The page is currently locked and not marked for
2704	 * writeback
2705	 */
2706	ClearPageUptodate(page);
2707	bh = head;
2708	do {
2709		get_bh(bh);
2710		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2711			lock_buffer(bh);
2712			mark_buffer_async_write(bh);
2713		} else {
2714			/*
2715			 * clear any dirty bits that might have come from
2716			 * getting attached to a dirty page
2717			 */
2718			clear_buffer_dirty(bh);
2719		}
2720		bh = bh->b_this_page;
2721	} while (bh != head);
2722	SetPageError(page);
2723	BUG_ON(PageWriteback(page));
2724	set_page_writeback(page);
2725	unlock_page(page);
2726	do {
2727		struct buffer_head *next = bh->b_this_page;
2728		if (buffer_async_write(bh)) {
2729			clear_buffer_dirty(bh);
2730			submit_bh(WRITE, bh);
2731			nr++;
2732		}
2733		put_bh(bh);
2734		bh = next;
2735	} while (bh != head);
2736	goto done;
2737}
2738
2739static int reiserfs_readpage(struct file *f, struct page *page)
2740{
2741	return block_read_full_page(page, reiserfs_get_block);
2742}
2743
2744static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2745{
2746	struct inode *inode = page->mapping->host;
2747	reiserfs_wait_on_write_block(inode->i_sb);
2748	return reiserfs_write_full_page(page, wbc);
2749}
2750
2751static void reiserfs_truncate_failed_write(struct inode *inode)
2752{
2753	truncate_inode_pages(inode->i_mapping, inode->i_size);
2754	reiserfs_truncate_file(inode, 0);
2755}
2756
2757static int reiserfs_write_begin(struct file *file,
2758				struct address_space *mapping,
2759				loff_t pos, unsigned len, unsigned flags,
2760				struct page **pagep, void **fsdata)
2761{
2762	struct inode *inode;
2763	struct page *page;
2764	pgoff_t index;
2765	int ret;
2766	int old_ref = 0;
2767
2768 	inode = mapping->host;
2769	*fsdata = NULL;
2770 	if (flags & AOP_FLAG_CONT_EXPAND &&
2771 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2772 		pos ++;
2773		*fsdata = (void *)(unsigned long)flags;
2774	}
2775
2776	index = pos >> PAGE_CACHE_SHIFT;
2777	page = grab_cache_page_write_begin(mapping, index, flags);
2778	if (!page)
2779		return -ENOMEM;
2780	*pagep = page;
2781
2782	reiserfs_wait_on_write_block(inode->i_sb);
2783	fix_tail_page_for_writing(page);
2784	if (reiserfs_transaction_running(inode->i_sb)) {
2785		struct reiserfs_transaction_handle *th;
2786		th = (struct reiserfs_transaction_handle *)current->
2787		    journal_info;
2788		BUG_ON(!th->t_refcount);
2789		BUG_ON(!th->t_trans_id);
2790		old_ref = th->t_refcount;
2791		th->t_refcount++;
2792	}
2793	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2794	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2795		struct reiserfs_transaction_handle *th = current->journal_info;
2796		/*
2797		 * this gets a little ugly.  If reiserfs_get_block returned an
2798		 * error and left a transacstion running, we've got to close
2799		 * it, and we've got to free handle if it was a persistent
2800		 * transaction.
2801		 *
2802		 * But, if we had nested into an existing transaction, we need
2803		 * to just drop the ref count on the handle.
2804		 *
2805		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2806		 * and it was a persistent trans.  Otherwise, it was nested
2807		 * above.
2808		 */
2809		if (th->t_refcount > old_ref) {
2810			if (old_ref)
2811				th->t_refcount--;
2812			else {
2813				int err;
2814				reiserfs_write_lock(inode->i_sb);
2815				err = reiserfs_end_persistent_transaction(th);
2816				reiserfs_write_unlock(inode->i_sb);
2817				if (err)
2818					ret = err;
2819			}
2820		}
2821	}
2822	if (ret) {
2823		unlock_page(page);
2824		page_cache_release(page);
2825		/* Truncate allocated blocks */
2826		reiserfs_truncate_failed_write(inode);
2827	}
2828	return ret;
2829}
2830
2831int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2832{
2833	struct inode *inode = page->mapping->host;
2834	int ret;
2835	int old_ref = 0;
2836	int depth;
2837
2838	depth = reiserfs_write_unlock_nested(inode->i_sb);
2839	reiserfs_wait_on_write_block(inode->i_sb);
2840	reiserfs_write_lock_nested(inode->i_sb, depth);
2841
2842	fix_tail_page_for_writing(page);
2843	if (reiserfs_transaction_running(inode->i_sb)) {
2844		struct reiserfs_transaction_handle *th;
2845		th = (struct reiserfs_transaction_handle *)current->
2846		    journal_info;
2847		BUG_ON(!th->t_refcount);
2848		BUG_ON(!th->t_trans_id);
2849		old_ref = th->t_refcount;
2850		th->t_refcount++;
2851	}
2852
2853	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2854	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2855		struct reiserfs_transaction_handle *th = current->journal_info;
2856		/*
2857		 * this gets a little ugly.  If reiserfs_get_block returned an
2858		 * error and left a transacstion running, we've got to close
2859		 * it, and we've got to free handle if it was a persistent
2860		 * transaction.
2861		 *
2862		 * But, if we had nested into an existing transaction, we need
2863		 * to just drop the ref count on the handle.
2864		 *
2865		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2866		 * and it was a persistent trans.  Otherwise, it was nested
2867		 * above.
2868		 */
2869		if (th->t_refcount > old_ref) {
2870			if (old_ref)
2871				th->t_refcount--;
2872			else {
2873				int err;
2874				reiserfs_write_lock(inode->i_sb);
2875				err = reiserfs_end_persistent_transaction(th);
2876				reiserfs_write_unlock(inode->i_sb);
2877				if (err)
2878					ret = err;
2879			}
2880		}
2881	}
2882	return ret;
2883
2884}
2885
2886static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2887{
2888	return generic_block_bmap(as, block, reiserfs_bmap);
2889}
2890
2891static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2892			      loff_t pos, unsigned len, unsigned copied,
2893			      struct page *page, void *fsdata)
2894{
2895	struct inode *inode = page->mapping->host;
2896	int ret = 0;
2897	int update_sd = 0;
2898	struct reiserfs_transaction_handle *th;
2899	unsigned start;
2900	bool locked = false;
2901
2902	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2903		pos ++;
2904
2905	reiserfs_wait_on_write_block(inode->i_sb);
2906	if (reiserfs_transaction_running(inode->i_sb))
2907		th = current->journal_info;
2908	else
2909		th = NULL;
2910
2911	start = pos & (PAGE_CACHE_SIZE - 1);
2912	if (unlikely(copied < len)) {
2913		if (!PageUptodate(page))
2914			copied = 0;
2915
2916		page_zero_new_buffers(page, start + copied, start + len);
2917	}
2918	flush_dcache_page(page);
2919
2920	reiserfs_commit_page(inode, page, start, start + copied);
2921
2922	/*
2923	 * generic_commit_write does this for us, but does not update the
2924	 * transaction tracking stuff when the size changes.  So, we have
2925	 * to do the i_size updates here.
2926	 */
2927	if (pos + copied > inode->i_size) {
2928		struct reiserfs_transaction_handle myth;
2929		reiserfs_write_lock(inode->i_sb);
2930		locked = true;
2931		/*
2932		 * If the file have grown beyond the border where it
2933		 * can have a tail, unmark it as needing a tail
2934		 * packing
2935		 */
2936		if ((have_large_tails(inode->i_sb)
2937		     && inode->i_size > i_block_size(inode) * 4)
2938		    || (have_small_tails(inode->i_sb)
2939			&& inode->i_size > i_block_size(inode)))
2940			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2941
2942		ret = journal_begin(&myth, inode->i_sb, 1);
2943		if (ret)
2944			goto journal_error;
2945
2946		reiserfs_update_inode_transaction(inode);
2947		inode->i_size = pos + copied;
2948		/*
2949		 * this will just nest into our transaction.  It's important
2950		 * to use mark_inode_dirty so the inode gets pushed around on
2951		 * the dirty lists, and so that O_SYNC works as expected
2952		 */
2953		mark_inode_dirty(inode);
2954		reiserfs_update_sd(&myth, inode);
2955		update_sd = 1;
2956		ret = journal_end(&myth);
2957		if (ret)
2958			goto journal_error;
2959	}
2960	if (th) {
2961		if (!locked) {
2962			reiserfs_write_lock(inode->i_sb);
2963			locked = true;
2964		}
2965		if (!update_sd)
2966			mark_inode_dirty(inode);
2967		ret = reiserfs_end_persistent_transaction(th);
2968		if (ret)
2969			goto out;
2970	}
2971
2972out:
2973	if (locked)
2974		reiserfs_write_unlock(inode->i_sb);
2975	unlock_page(page);
2976	page_cache_release(page);
2977
2978	if (pos + len > inode->i_size)
2979		reiserfs_truncate_failed_write(inode);
2980
2981	return ret == 0 ? copied : ret;
2982
2983journal_error:
2984	reiserfs_write_unlock(inode->i_sb);
2985	locked = false;
2986	if (th) {
2987		if (!update_sd)
2988			reiserfs_update_sd(th, inode);
2989		ret = reiserfs_end_persistent_transaction(th);
2990	}
2991	goto out;
2992}
2993
2994int reiserfs_commit_write(struct file *f, struct page *page,
2995			  unsigned from, unsigned to)
2996{
2997	struct inode *inode = page->mapping->host;
2998	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2999	int ret = 0;
3000	int update_sd = 0;
3001	struct reiserfs_transaction_handle *th = NULL;
3002	int depth;
3003
3004	depth = reiserfs_write_unlock_nested(inode->i_sb);
3005	reiserfs_wait_on_write_block(inode->i_sb);
3006	reiserfs_write_lock_nested(inode->i_sb, depth);
3007
3008	if (reiserfs_transaction_running(inode->i_sb)) {
3009		th = current->journal_info;
3010	}
3011	reiserfs_commit_page(inode, page, from, to);
3012
3013	/*
3014	 * generic_commit_write does this for us, but does not update the
3015	 * transaction tracking stuff when the size changes.  So, we have
3016	 * to do the i_size updates here.
3017	 */
3018	if (pos > inode->i_size) {
3019		struct reiserfs_transaction_handle myth;
3020		/*
3021		 * If the file have grown beyond the border where it
3022		 * can have a tail, unmark it as needing a tail
3023		 * packing
3024		 */
3025		if ((have_large_tails(inode->i_sb)
3026		     && inode->i_size > i_block_size(inode) * 4)
3027		    || (have_small_tails(inode->i_sb)
3028			&& inode->i_size > i_block_size(inode)))
3029			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3030
3031		ret = journal_begin(&myth, inode->i_sb, 1);
3032		if (ret)
3033			goto journal_error;
3034
3035		reiserfs_update_inode_transaction(inode);
3036		inode->i_size = pos;
3037		/*
3038		 * this will just nest into our transaction.  It's important
3039		 * to use mark_inode_dirty so the inode gets pushed around
3040		 * on the dirty lists, and so that O_SYNC works as expected
3041		 */
3042		mark_inode_dirty(inode);
3043		reiserfs_update_sd(&myth, inode);
3044		update_sd = 1;
3045		ret = journal_end(&myth);
3046		if (ret)
3047			goto journal_error;
3048	}
3049	if (th) {
3050		if (!update_sd)
3051			mark_inode_dirty(inode);
3052		ret = reiserfs_end_persistent_transaction(th);
3053		if (ret)
3054			goto out;
3055	}
3056
3057out:
3058	return ret;
3059
3060journal_error:
3061	if (th) {
3062		if (!update_sd)
3063			reiserfs_update_sd(th, inode);
3064		ret = reiserfs_end_persistent_transaction(th);
3065	}
3066
3067	return ret;
3068}
3069
3070void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3071{
3072	if (reiserfs_attrs(inode->i_sb)) {
3073		if (sd_attrs & REISERFS_SYNC_FL)
3074			inode->i_flags |= S_SYNC;
3075		else
3076			inode->i_flags &= ~S_SYNC;
3077		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3078			inode->i_flags |= S_IMMUTABLE;
3079		else
3080			inode->i_flags &= ~S_IMMUTABLE;
3081		if (sd_attrs & REISERFS_APPEND_FL)
3082			inode->i_flags |= S_APPEND;
3083		else
3084			inode->i_flags &= ~S_APPEND;
3085		if (sd_attrs & REISERFS_NOATIME_FL)
3086			inode->i_flags |= S_NOATIME;
3087		else
3088			inode->i_flags &= ~S_NOATIME;
3089		if (sd_attrs & REISERFS_NOTAIL_FL)
3090			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3091		else
3092			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3093	}
3094}
3095
3096void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
3097{
3098	if (reiserfs_attrs(inode->i_sb)) {
3099		if (inode->i_flags & S_IMMUTABLE)
3100			*sd_attrs |= REISERFS_IMMUTABLE_FL;
3101		else
3102			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
3103		if (inode->i_flags & S_SYNC)
3104			*sd_attrs |= REISERFS_SYNC_FL;
3105		else
3106			*sd_attrs &= ~REISERFS_SYNC_FL;
3107		if (inode->i_flags & S_NOATIME)
3108			*sd_attrs |= REISERFS_NOATIME_FL;
3109		else
3110			*sd_attrs &= ~REISERFS_NOATIME_FL;
3111		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
3112			*sd_attrs |= REISERFS_NOTAIL_FL;
3113		else
3114			*sd_attrs &= ~REISERFS_NOTAIL_FL;
3115	}
3116}
3117
3118/*
3119 * decide if this buffer needs to stay around for data logging or ordered
3120 * write purposes
3121 */
3122static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3123{
3124	int ret = 1;
3125	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3126
3127	lock_buffer(bh);
3128	spin_lock(&j->j_dirty_buffers_lock);
3129	if (!buffer_mapped(bh)) {
3130		goto free_jh;
3131	}
3132	/*
3133	 * the page is locked, and the only places that log a data buffer
3134	 * also lock the page.
3135	 */
3136	if (reiserfs_file_data_log(inode)) {
3137		/*
3138		 * very conservative, leave the buffer pinned if
3139		 * anyone might need it.
3140		 */
3141		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3142			ret = 0;
3143		}
3144	} else  if (buffer_dirty(bh)) {
3145		struct reiserfs_journal_list *jl;
3146		struct reiserfs_jh *jh = bh->b_private;
3147
3148		/*
3149		 * why is this safe?
3150		 * reiserfs_setattr updates i_size in the on disk
3151		 * stat data before allowing vmtruncate to be called.
3152		 *
3153		 * If buffer was put onto the ordered list for this
3154		 * transaction, we know for sure either this transaction
3155		 * or an older one already has updated i_size on disk,
3156		 * and this ordered data won't be referenced in the file
3157		 * if we crash.
3158		 *
3159		 * if the buffer was put onto the ordered list for an older
3160		 * transaction, we need to leave it around
3161		 */
3162		if (jh && (jl = jh->jl)
3163		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3164			ret = 0;
3165	}
3166free_jh:
3167	if (ret && bh->b_private) {
3168		reiserfs_free_jh(bh);
3169	}
3170	spin_unlock(&j->j_dirty_buffers_lock);
3171	unlock_buffer(bh);
3172	return ret;
3173}
3174
3175/* clm -- taken from fs/buffer.c:block_invalidate_page */
3176static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3177				    unsigned int length)
3178{
3179	struct buffer_head *head, *bh, *next;
3180	struct inode *inode = page->mapping->host;
3181	unsigned int curr_off = 0;
3182	unsigned int stop = offset + length;
3183	int partial_page = (offset || length < PAGE_CACHE_SIZE);
3184	int ret = 1;
3185
3186	BUG_ON(!PageLocked(page));
3187
3188	if (!partial_page)
3189		ClearPageChecked(page);
3190
3191	if (!page_has_buffers(page))
3192		goto out;
3193
3194	head = page_buffers(page);
3195	bh = head;
3196	do {
3197		unsigned int next_off = curr_off + bh->b_size;
3198		next = bh->b_this_page;
3199
3200		if (next_off > stop)
3201			goto out;
3202
3203		/*
3204		 * is this block fully invalidated?
3205		 */
3206		if (offset <= curr_off) {
3207			if (invalidatepage_can_drop(inode, bh))
3208				reiserfs_unmap_buffer(bh);
3209			else
3210				ret = 0;
3211		}
3212		curr_off = next_off;
3213		bh = next;
3214	} while (bh != head);
3215
3216	/*
3217	 * We release buffers only if the entire page is being invalidated.
3218	 * The get_block cached value has been unconditionally invalidated,
3219	 * so real IO is not possible anymore.
3220	 */
3221	if (!partial_page && ret) {
3222		ret = try_to_release_page(page, 0);
3223		/* maybe should BUG_ON(!ret); - neilb */
3224	}
3225out:
3226	return;
3227}
3228
3229static int reiserfs_set_page_dirty(struct page *page)
3230{
3231	struct inode *inode = page->mapping->host;
3232	if (reiserfs_file_data_log(inode)) {
3233		SetPageChecked(page);
3234		return __set_page_dirty_nobuffers(page);
3235	}
3236	return __set_page_dirty_buffers(page);
3237}
3238
3239/*
3240 * Returns 1 if the page's buffers were dropped.  The page is locked.
3241 *
3242 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3243 * in the buffers at page_buffers(page).
3244 *
3245 * even in -o notail mode, we can't be sure an old mount without -o notail
3246 * didn't create files with tails.
3247 */
3248static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3249{
3250	struct inode *inode = page->mapping->host;
3251	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3252	struct buffer_head *head;
3253	struct buffer_head *bh;
3254	int ret = 1;
3255
3256	WARN_ON(PageChecked(page));
3257	spin_lock(&j->j_dirty_buffers_lock);
3258	head = page_buffers(page);
3259	bh = head;
3260	do {
3261		if (bh->b_private) {
3262			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3263				reiserfs_free_jh(bh);
3264			} else {
3265				ret = 0;
3266				break;
3267			}
3268		}
3269		bh = bh->b_this_page;
3270	} while (bh != head);
3271	if (ret)
3272		ret = try_to_free_buffers(page);
3273	spin_unlock(&j->j_dirty_buffers_lock);
3274	return ret;
3275}
3276
3277/*
3278 * We thank Mingming Cao for helping us understand in great detail what
3279 * to do in this section of the code.
3280 */
3281static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3282				  loff_t offset)
3283{
3284	struct file *file = iocb->ki_filp;
3285	struct inode *inode = file->f_mapping->host;
3286	size_t count = iov_iter_count(iter);
3287	ssize_t ret;
3288
3289	ret = blockdev_direct_IO(iocb, inode, iter, offset,
3290				 reiserfs_get_blocks_direct_io);
3291
3292	/*
3293	 * In case of error extending write may have instantiated a few
3294	 * blocks outside i_size. Trim these off again.
3295	 */
3296	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3297		loff_t isize = i_size_read(inode);
3298		loff_t end = offset + count;
3299
3300		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3301			truncate_setsize(inode, isize);
3302			reiserfs_vfs_truncate_file(inode);
3303		}
3304	}
3305
3306	return ret;
3307}
3308
3309int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3310{
3311	struct inode *inode = d_inode(dentry);
3312	unsigned int ia_valid;
3313	int error;
3314
3315	error = inode_change_ok(inode, attr);
3316	if (error)
3317		return error;
3318
3319	/* must be turned off for recursive notify_change calls */
3320	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3321
3322	if (is_quota_modification(inode, attr))
3323		dquot_initialize(inode);
3324	reiserfs_write_lock(inode->i_sb);
3325	if (attr->ia_valid & ATTR_SIZE) {
3326		/*
3327		 * version 2 items will be caught by the s_maxbytes check
3328		 * done for us in vmtruncate
3329		 */
3330		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3331		    attr->ia_size > MAX_NON_LFS) {
3332			reiserfs_write_unlock(inode->i_sb);
3333			error = -EFBIG;
3334			goto out;
3335		}
3336
3337		inode_dio_wait(inode);
3338
3339		/* fill in hole pointers in the expanding truncate case. */
3340		if (attr->ia_size > inode->i_size) {
3341			error = generic_cont_expand_simple(inode, attr->ia_size);
3342			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3343				int err;
3344				struct reiserfs_transaction_handle th;
3345				/* we're changing at most 2 bitmaps, inode + super */
3346				err = journal_begin(&th, inode->i_sb, 4);
3347				if (!err) {
3348					reiserfs_discard_prealloc(&th, inode);
3349					err = journal_end(&th);
3350				}
3351				if (err)
3352					error = err;
3353			}
3354			if (error) {
3355				reiserfs_write_unlock(inode->i_sb);
3356				goto out;
3357			}
3358			/*
3359			 * file size is changed, ctime and mtime are
3360			 * to be updated
3361			 */
3362			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3363		}
3364	}
3365	reiserfs_write_unlock(inode->i_sb);
3366
3367	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3368	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3369	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3370		/* stat data of format v3.5 has 16 bit uid and gid */
3371		error = -EINVAL;
3372		goto out;
3373	}
3374
3375	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3376	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3377		struct reiserfs_transaction_handle th;
3378		int jbegin_count =
3379		    2 *
3380		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3381		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3382		    2;
3383
3384		error = reiserfs_chown_xattrs(inode, attr);
3385
3386		if (error)
3387			return error;
3388
3389		/*
3390		 * (user+group)*(old+new) structure - we count quota
3391		 * info and , inode write (sb, inode)
3392		 */
3393		reiserfs_write_lock(inode->i_sb);
3394		error = journal_begin(&th, inode->i_sb, jbegin_count);
3395		reiserfs_write_unlock(inode->i_sb);
3396		if (error)
3397			goto out;
3398		error = dquot_transfer(inode, attr);
3399		reiserfs_write_lock(inode->i_sb);
3400		if (error) {
3401			journal_end(&th);
3402			reiserfs_write_unlock(inode->i_sb);
3403			goto out;
3404		}
3405
3406		/*
3407		 * Update corresponding info in inode so that everything
3408		 * is in one transaction
3409		 */
3410		if (attr->ia_valid & ATTR_UID)
3411			inode->i_uid = attr->ia_uid;
3412		if (attr->ia_valid & ATTR_GID)
3413			inode->i_gid = attr->ia_gid;
3414		mark_inode_dirty(inode);
3415		error = journal_end(&th);
3416		reiserfs_write_unlock(inode->i_sb);
3417		if (error)
3418			goto out;
3419	}
3420
3421	if ((attr->ia_valid & ATTR_SIZE) &&
3422	    attr->ia_size != i_size_read(inode)) {
3423		error = inode_newsize_ok(inode, attr->ia_size);
3424		if (!error) {
3425			/*
3426			 * Could race against reiserfs_file_release
3427			 * if called from NFS, so take tailpack mutex.
3428			 */
3429			mutex_lock(&REISERFS_I(inode)->tailpack);
3430			truncate_setsize(inode, attr->ia_size);
3431			reiserfs_truncate_file(inode, 1);
3432			mutex_unlock(&REISERFS_I(inode)->tailpack);
3433		}
3434	}
3435
3436	if (!error) {
3437		setattr_copy(inode, attr);
3438		mark_inode_dirty(inode);
3439	}
3440
3441	if (!error && reiserfs_posixacl(inode->i_sb)) {
3442		if (attr->ia_valid & ATTR_MODE)
3443			error = reiserfs_acl_chmod(inode);
3444	}
3445
3446out:
3447	return error;
3448}
3449
3450const struct address_space_operations reiserfs_address_space_operations = {
3451	.writepage = reiserfs_writepage,
3452	.readpage = reiserfs_readpage,
3453	.readpages = reiserfs_readpages,
3454	.releasepage = reiserfs_releasepage,
3455	.invalidatepage = reiserfs_invalidatepage,
3456	.write_begin = reiserfs_write_begin,
3457	.write_end = reiserfs_write_end,
3458	.bmap = reiserfs_aop_bmap,
3459	.direct_IO = reiserfs_direct_IO,
3460	.set_page_dirty = reiserfs_set_page_dirty,
3461};
3462