1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
31#include <linux/time.h>
32#include <linux/random.h>
33#include <linux/delay.h>
34
35#include <cluster/masklog.h>
36
37#include "ocfs2.h"
38
39#include "alloc.h"
40#include "blockcheck.h"
41#include "dir.h"
42#include "dlmglue.h"
43#include "extent_map.h"
44#include "heartbeat.h"
45#include "inode.h"
46#include "journal.h"
47#include "localalloc.h"
48#include "slot_map.h"
49#include "super.h"
50#include "sysfile.h"
51#include "uptodate.h"
52#include "quota.h"
53#include "file.h"
54#include "namei.h"
55
56#include "buffer_head_io.h"
57#include "ocfs2_trace.h"
58
59DEFINE_SPINLOCK(trans_inc_lock);
60
61#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63static int ocfs2_force_read_journal(struct inode *inode);
64static int ocfs2_recover_node(struct ocfs2_super *osb,
65			      int node_num, int slot_num);
66static int __ocfs2_recovery_thread(void *arg);
67static int ocfs2_commit_cache(struct ocfs2_super *osb);
68static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70				      int dirty, int replayed);
71static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72				 int slot_num);
73static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74				 int slot,
75				 enum ocfs2_orphan_reco_type orphan_reco_type);
76static int ocfs2_commit_thread(void *arg);
77static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78					    int slot_num,
79					    struct ocfs2_dinode *la_dinode,
80					    struct ocfs2_dinode *tl_dinode,
81					    struct ocfs2_quota_recovery *qrec,
82					    enum ocfs2_orphan_reco_type orphan_reco_type);
83
84static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85{
86	return __ocfs2_wait_on_mount(osb, 0);
87}
88
89static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90{
91	return __ocfs2_wait_on_mount(osb, 1);
92}
93
94/*
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
97 */
98
99enum ocfs2_replay_state {
100	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
101	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
102	REPLAY_DONE 		/* Replay was already queued */
103};
104
105struct ocfs2_replay_map {
106	unsigned int rm_slots;
107	enum ocfs2_replay_state rm_state;
108	unsigned char rm_replay_slots[0];
109};
110
111void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112{
113	if (!osb->replay_map)
114		return;
115
116	/* If we've already queued the replay, we don't have any more to do */
117	if (osb->replay_map->rm_state == REPLAY_DONE)
118		return;
119
120	osb->replay_map->rm_state = state;
121}
122
123int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124{
125	struct ocfs2_replay_map *replay_map;
126	int i, node_num;
127
128	/* If replay map is already set, we don't do it again */
129	if (osb->replay_map)
130		return 0;
131
132	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135	if (!replay_map) {
136		mlog_errno(-ENOMEM);
137		return -ENOMEM;
138	}
139
140	spin_lock(&osb->osb_lock);
141
142	replay_map->rm_slots = osb->max_slots;
143	replay_map->rm_state = REPLAY_UNNEEDED;
144
145	/* set rm_replay_slots for offline slot(s) */
146	for (i = 0; i < replay_map->rm_slots; i++) {
147		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148			replay_map->rm_replay_slots[i] = 1;
149	}
150
151	osb->replay_map = replay_map;
152	spin_unlock(&osb->osb_lock);
153	return 0;
154}
155
156void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157		enum ocfs2_orphan_reco_type orphan_reco_type)
158{
159	struct ocfs2_replay_map *replay_map = osb->replay_map;
160	int i;
161
162	if (!replay_map)
163		return;
164
165	if (replay_map->rm_state != REPLAY_NEEDED)
166		return;
167
168	for (i = 0; i < replay_map->rm_slots; i++)
169		if (replay_map->rm_replay_slots[i])
170			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171							NULL, NULL,
172							orphan_reco_type);
173	replay_map->rm_state = REPLAY_DONE;
174}
175
176void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177{
178	struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180	if (!osb->replay_map)
181		return;
182
183	kfree(replay_map);
184	osb->replay_map = NULL;
185}
186
187int ocfs2_recovery_init(struct ocfs2_super *osb)
188{
189	struct ocfs2_recovery_map *rm;
190
191	mutex_init(&osb->recovery_lock);
192	osb->disable_recovery = 0;
193	osb->recovery_thread_task = NULL;
194	init_waitqueue_head(&osb->recovery_event);
195
196	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197		     osb->max_slots * sizeof(unsigned int),
198		     GFP_KERNEL);
199	if (!rm) {
200		mlog_errno(-ENOMEM);
201		return -ENOMEM;
202	}
203
204	rm->rm_entries = (unsigned int *)((char *)rm +
205					  sizeof(struct ocfs2_recovery_map));
206	osb->recovery_map = rm;
207
208	return 0;
209}
210
211/* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215{
216	mb();
217	return osb->recovery_thread_task != NULL;
218}
219
220void ocfs2_recovery_exit(struct ocfs2_super *osb)
221{
222	struct ocfs2_recovery_map *rm;
223
224	/* disable any new recovery threads and wait for any currently
225	 * running ones to exit. Do this before setting the vol_state. */
226	mutex_lock(&osb->recovery_lock);
227	osb->disable_recovery = 1;
228	mutex_unlock(&osb->recovery_lock);
229	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231	/* At this point, we know that no more recovery threads can be
232	 * launched, so wait for any recovery completion work to
233	 * complete. */
234	flush_workqueue(ocfs2_wq);
235
236	/*
237	 * Now that recovery is shut down, and the osb is about to be
238	 * freed,  the osb_lock is not taken here.
239	 */
240	rm = osb->recovery_map;
241	/* XXX: Should we bug if there are dirty entries? */
242
243	kfree(rm);
244}
245
246static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247				     unsigned int node_num)
248{
249	int i;
250	struct ocfs2_recovery_map *rm = osb->recovery_map;
251
252	assert_spin_locked(&osb->osb_lock);
253
254	for (i = 0; i < rm->rm_used; i++) {
255		if (rm->rm_entries[i] == node_num)
256			return 1;
257	}
258
259	return 0;
260}
261
262/* Behaves like test-and-set.  Returns the previous value */
263static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264				  unsigned int node_num)
265{
266	struct ocfs2_recovery_map *rm = osb->recovery_map;
267
268	spin_lock(&osb->osb_lock);
269	if (__ocfs2_recovery_map_test(osb, node_num)) {
270		spin_unlock(&osb->osb_lock);
271		return 1;
272	}
273
274	/* XXX: Can this be exploited? Not from o2dlm... */
275	BUG_ON(rm->rm_used >= osb->max_slots);
276
277	rm->rm_entries[rm->rm_used] = node_num;
278	rm->rm_used++;
279	spin_unlock(&osb->osb_lock);
280
281	return 0;
282}
283
284static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285				     unsigned int node_num)
286{
287	int i;
288	struct ocfs2_recovery_map *rm = osb->recovery_map;
289
290	spin_lock(&osb->osb_lock);
291
292	for (i = 0; i < rm->rm_used; i++) {
293		if (rm->rm_entries[i] == node_num)
294			break;
295	}
296
297	if (i < rm->rm_used) {
298		/* XXX: be careful with the pointer math */
299		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300			(rm->rm_used - i - 1) * sizeof(unsigned int));
301		rm->rm_used--;
302	}
303
304	spin_unlock(&osb->osb_lock);
305}
306
307static int ocfs2_commit_cache(struct ocfs2_super *osb)
308{
309	int status = 0;
310	unsigned int flushed;
311	struct ocfs2_journal *journal = NULL;
312
313	journal = osb->journal;
314
315	/* Flush all pending commits and checkpoint the journal. */
316	down_write(&journal->j_trans_barrier);
317
318	flushed = atomic_read(&journal->j_num_trans);
319	trace_ocfs2_commit_cache_begin(flushed);
320	if (flushed == 0) {
321		up_write(&journal->j_trans_barrier);
322		goto finally;
323	}
324
325	jbd2_journal_lock_updates(journal->j_journal);
326	status = jbd2_journal_flush(journal->j_journal);
327	jbd2_journal_unlock_updates(journal->j_journal);
328	if (status < 0) {
329		up_write(&journal->j_trans_barrier);
330		mlog_errno(status);
331		goto finally;
332	}
333
334	ocfs2_inc_trans_id(journal);
335
336	flushed = atomic_read(&journal->j_num_trans);
337	atomic_set(&journal->j_num_trans, 0);
338	up_write(&journal->j_trans_barrier);
339
340	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341
342	ocfs2_wake_downconvert_thread(osb);
343	wake_up(&journal->j_checkpointed);
344finally:
345	return status;
346}
347
348handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349{
350	journal_t *journal = osb->journal->j_journal;
351	handle_t *handle;
352
353	BUG_ON(!osb || !osb->journal->j_journal);
354
355	if (ocfs2_is_hard_readonly(osb))
356		return ERR_PTR(-EROFS);
357
358	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359	BUG_ON(max_buffs <= 0);
360
361	/* Nested transaction? Just return the handle... */
362	if (journal_current_handle())
363		return jbd2_journal_start(journal, max_buffs);
364
365	sb_start_intwrite(osb->sb);
366
367	down_read(&osb->journal->j_trans_barrier);
368
369	handle = jbd2_journal_start(journal, max_buffs);
370	if (IS_ERR(handle)) {
371		up_read(&osb->journal->j_trans_barrier);
372		sb_end_intwrite(osb->sb);
373
374		mlog_errno(PTR_ERR(handle));
375
376		if (is_journal_aborted(journal)) {
377			ocfs2_abort(osb->sb, "Detected aborted journal");
378			handle = ERR_PTR(-EROFS);
379		}
380	} else {
381		if (!ocfs2_mount_local(osb))
382			atomic_inc(&(osb->journal->j_num_trans));
383	}
384
385	return handle;
386}
387
388int ocfs2_commit_trans(struct ocfs2_super *osb,
389		       handle_t *handle)
390{
391	int ret, nested;
392	struct ocfs2_journal *journal = osb->journal;
393
394	BUG_ON(!handle);
395
396	nested = handle->h_ref > 1;
397	ret = jbd2_journal_stop(handle);
398	if (ret < 0)
399		mlog_errno(ret);
400
401	if (!nested) {
402		up_read(&journal->j_trans_barrier);
403		sb_end_intwrite(osb->sb);
404	}
405
406	return ret;
407}
408
409/*
410 * 'nblocks' is what you want to add to the current transaction.
411 *
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
417 *
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
421 *
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
425 */
426int ocfs2_extend_trans(handle_t *handle, int nblocks)
427{
428	int status, old_nblocks;
429
430	BUG_ON(!handle);
431	BUG_ON(nblocks < 0);
432
433	if (!nblocks)
434		return 0;
435
436	old_nblocks = handle->h_buffer_credits;
437
438	trace_ocfs2_extend_trans(old_nblocks, nblocks);
439
440#ifdef CONFIG_OCFS2_DEBUG_FS
441	status = 1;
442#else
443	status = jbd2_journal_extend(handle, nblocks);
444	if (status < 0) {
445		mlog_errno(status);
446		goto bail;
447	}
448#endif
449
450	if (status > 0) {
451		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452		status = jbd2_journal_restart(handle,
453					      old_nblocks + nblocks);
454		if (status < 0) {
455			mlog_errno(status);
456			goto bail;
457		}
458	}
459
460	status = 0;
461bail:
462	return status;
463}
464
465/*
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
470 */
471int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472{
473	int status, old_nblks;
474
475	BUG_ON(!handle);
476
477	old_nblks = handle->h_buffer_credits;
478	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480	if (old_nblks < thresh)
481		return 0;
482
483	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484	if (status < 0) {
485		mlog_errno(status);
486		goto bail;
487	}
488
489	if (status > 0) {
490		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491		if (status < 0)
492			mlog_errno(status);
493	}
494
495bail:
496	return status;
497}
498
499
500struct ocfs2_triggers {
501	struct jbd2_buffer_trigger_type	ot_triggers;
502	int				ot_offset;
503};
504
505static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506{
507	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508}
509
510static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511				 struct buffer_head *bh,
512				 void *data, size_t size)
513{
514	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515
516	/*
517	 * We aren't guaranteed to have the superblock here, so we
518	 * must unconditionally compute the ecc data.
519	 * __ocfs2_journal_access() will only set the triggers if
520	 * metaecc is enabled.
521	 */
522	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523}
524
525/*
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
528 */
529static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530				 struct buffer_head *bh,
531				 void *data, size_t size)
532{
533	struct ocfs2_disk_dqtrailer *dqt =
534		ocfs2_block_dqtrailer(size, data);
535
536	/*
537	 * We aren't guaranteed to have the superblock here, so we
538	 * must unconditionally compute the ecc data.
539	 * __ocfs2_journal_access() will only set the triggers if
540	 * metaecc is enabled.
541	 */
542	ocfs2_block_check_compute(data, size, &dqt->dq_check);
543}
544
545/*
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
548 */
549static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550				 struct buffer_head *bh,
551				 void *data, size_t size)
552{
553	struct ocfs2_dir_block_trailer *trailer =
554		ocfs2_dir_trailer_from_size(size, data);
555
556	/*
557	 * We aren't guaranteed to have the superblock here, so we
558	 * must unconditionally compute the ecc data.
559	 * __ocfs2_journal_access() will only set the triggers if
560	 * metaecc is enabled.
561	 */
562	ocfs2_block_check_compute(data, size, &trailer->db_check);
563}
564
565static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566				struct buffer_head *bh)
567{
568	mlog(ML_ERROR,
569	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
570	     "bh->b_blocknr = %llu\n",
571	     (unsigned long)bh,
572	     (unsigned long long)bh->b_blocknr);
573
574	/* We aren't guaranteed to have the superblock here - but if we
575	 * don't, it'll just crash. */
576	ocfs2_error(bh->b_assoc_map->host->i_sb,
577		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578}
579
580static struct ocfs2_triggers di_triggers = {
581	.ot_triggers = {
582		.t_frozen = ocfs2_frozen_trigger,
583		.t_abort = ocfs2_abort_trigger,
584	},
585	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
586};
587
588static struct ocfs2_triggers eb_triggers = {
589	.ot_triggers = {
590		.t_frozen = ocfs2_frozen_trigger,
591		.t_abort = ocfs2_abort_trigger,
592	},
593	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
594};
595
596static struct ocfs2_triggers rb_triggers = {
597	.ot_triggers = {
598		.t_frozen = ocfs2_frozen_trigger,
599		.t_abort = ocfs2_abort_trigger,
600	},
601	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
602};
603
604static struct ocfs2_triggers gd_triggers = {
605	.ot_triggers = {
606		.t_frozen = ocfs2_frozen_trigger,
607		.t_abort = ocfs2_abort_trigger,
608	},
609	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
610};
611
612static struct ocfs2_triggers db_triggers = {
613	.ot_triggers = {
614		.t_frozen = ocfs2_db_frozen_trigger,
615		.t_abort = ocfs2_abort_trigger,
616	},
617};
618
619static struct ocfs2_triggers xb_triggers = {
620	.ot_triggers = {
621		.t_frozen = ocfs2_frozen_trigger,
622		.t_abort = ocfs2_abort_trigger,
623	},
624	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
625};
626
627static struct ocfs2_triggers dq_triggers = {
628	.ot_triggers = {
629		.t_frozen = ocfs2_dq_frozen_trigger,
630		.t_abort = ocfs2_abort_trigger,
631	},
632};
633
634static struct ocfs2_triggers dr_triggers = {
635	.ot_triggers = {
636		.t_frozen = ocfs2_frozen_trigger,
637		.t_abort = ocfs2_abort_trigger,
638	},
639	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
640};
641
642static struct ocfs2_triggers dl_triggers = {
643	.ot_triggers = {
644		.t_frozen = ocfs2_frozen_trigger,
645		.t_abort = ocfs2_abort_trigger,
646	},
647	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
648};
649
650static int __ocfs2_journal_access(handle_t *handle,
651				  struct ocfs2_caching_info *ci,
652				  struct buffer_head *bh,
653				  struct ocfs2_triggers *triggers,
654				  int type)
655{
656	int status;
657	struct ocfs2_super *osb =
658		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
659
660	BUG_ON(!ci || !ci->ci_ops);
661	BUG_ON(!handle);
662	BUG_ON(!bh);
663
664	trace_ocfs2_journal_access(
665		(unsigned long long)ocfs2_metadata_cache_owner(ci),
666		(unsigned long long)bh->b_blocknr, type, bh->b_size);
667
668	/* we can safely remove this assertion after testing. */
669	if (!buffer_uptodate(bh)) {
670		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
671		mlog(ML_ERROR, "b_blocknr=%llu\n",
672		     (unsigned long long)bh->b_blocknr);
673		BUG();
674	}
675
676	/* Set the current transaction information on the ci so
677	 * that the locking code knows whether it can drop it's locks
678	 * on this ci or not. We're protected from the commit
679	 * thread updating the current transaction id until
680	 * ocfs2_commit_trans() because ocfs2_start_trans() took
681	 * j_trans_barrier for us. */
682	ocfs2_set_ci_lock_trans(osb->journal, ci);
683
684	ocfs2_metadata_cache_io_lock(ci);
685	switch (type) {
686	case OCFS2_JOURNAL_ACCESS_CREATE:
687	case OCFS2_JOURNAL_ACCESS_WRITE:
688		status = jbd2_journal_get_write_access(handle, bh);
689		break;
690
691	case OCFS2_JOURNAL_ACCESS_UNDO:
692		status = jbd2_journal_get_undo_access(handle, bh);
693		break;
694
695	default:
696		status = -EINVAL;
697		mlog(ML_ERROR, "Unknown access type!\n");
698	}
699	if (!status && ocfs2_meta_ecc(osb) && triggers)
700		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701	ocfs2_metadata_cache_io_unlock(ci);
702
703	if (status < 0)
704		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705		     status, type);
706
707	return status;
708}
709
710int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711			    struct buffer_head *bh, int type)
712{
713	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714}
715
716int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717			    struct buffer_head *bh, int type)
718{
719	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720}
721
722int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723			    struct buffer_head *bh, int type)
724{
725	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726				      type);
727}
728
729int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730			    struct buffer_head *bh, int type)
731{
732	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733}
734
735int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736			    struct buffer_head *bh, int type)
737{
738	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739}
740
741int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742			    struct buffer_head *bh, int type)
743{
744	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745}
746
747int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748			    struct buffer_head *bh, int type)
749{
750	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751}
752
753int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754			    struct buffer_head *bh, int type)
755{
756	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757}
758
759int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760			    struct buffer_head *bh, int type)
761{
762	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763}
764
765int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766			 struct buffer_head *bh, int type)
767{
768	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769}
770
771void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772{
773	int status;
774
775	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776
777	status = jbd2_journal_dirty_metadata(handle, bh);
778	BUG_ON(status);
779}
780
781#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
782
783void ocfs2_set_journal_params(struct ocfs2_super *osb)
784{
785	journal_t *journal = osb->journal->j_journal;
786	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
787
788	if (osb->osb_commit_interval)
789		commit_interval = osb->osb_commit_interval;
790
791	write_lock(&journal->j_state_lock);
792	journal->j_commit_interval = commit_interval;
793	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
794		journal->j_flags |= JBD2_BARRIER;
795	else
796		journal->j_flags &= ~JBD2_BARRIER;
797	write_unlock(&journal->j_state_lock);
798}
799
800int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
801{
802	int status = -1;
803	struct inode *inode = NULL; /* the journal inode */
804	journal_t *j_journal = NULL;
805	struct ocfs2_dinode *di = NULL;
806	struct buffer_head *bh = NULL;
807	struct ocfs2_super *osb;
808	int inode_lock = 0;
809
810	BUG_ON(!journal);
811
812	osb = journal->j_osb;
813
814	/* already have the inode for our journal */
815	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
816					    osb->slot_num);
817	if (inode == NULL) {
818		status = -EACCES;
819		mlog_errno(status);
820		goto done;
821	}
822	if (is_bad_inode(inode)) {
823		mlog(ML_ERROR, "access error (bad inode)\n");
824		iput(inode);
825		inode = NULL;
826		status = -EACCES;
827		goto done;
828	}
829
830	SET_INODE_JOURNAL(inode);
831	OCFS2_I(inode)->ip_open_count++;
832
833	/* Skip recovery waits here - journal inode metadata never
834	 * changes in a live cluster so it can be considered an
835	 * exception to the rule. */
836	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
837	if (status < 0) {
838		if (status != -ERESTARTSYS)
839			mlog(ML_ERROR, "Could not get lock on journal!\n");
840		goto done;
841	}
842
843	inode_lock = 1;
844	di = (struct ocfs2_dinode *)bh->b_data;
845
846	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
847		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
848		     i_size_read(inode));
849		status = -EINVAL;
850		goto done;
851	}
852
853	trace_ocfs2_journal_init(i_size_read(inode),
854				 (unsigned long long)inode->i_blocks,
855				 OCFS2_I(inode)->ip_clusters);
856
857	/* call the kernels journal init function now */
858	j_journal = jbd2_journal_init_inode(inode);
859	if (j_journal == NULL) {
860		mlog(ML_ERROR, "Linux journal layer error\n");
861		status = -EINVAL;
862		goto done;
863	}
864
865	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
866
867	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
868		  OCFS2_JOURNAL_DIRTY_FL);
869
870	journal->j_journal = j_journal;
871	journal->j_inode = inode;
872	journal->j_bh = bh;
873
874	ocfs2_set_journal_params(osb);
875
876	journal->j_state = OCFS2_JOURNAL_LOADED;
877
878	status = 0;
879done:
880	if (status < 0) {
881		if (inode_lock)
882			ocfs2_inode_unlock(inode, 1);
883		brelse(bh);
884		if (inode) {
885			OCFS2_I(inode)->ip_open_count--;
886			iput(inode);
887		}
888	}
889
890	return status;
891}
892
893static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
894{
895	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
896}
897
898static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
899{
900	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
901}
902
903static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
904				      int dirty, int replayed)
905{
906	int status;
907	unsigned int flags;
908	struct ocfs2_journal *journal = osb->journal;
909	struct buffer_head *bh = journal->j_bh;
910	struct ocfs2_dinode *fe;
911
912	fe = (struct ocfs2_dinode *)bh->b_data;
913
914	/* The journal bh on the osb always comes from ocfs2_journal_init()
915	 * and was validated there inside ocfs2_inode_lock_full().  It's a
916	 * code bug if we mess it up. */
917	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
918
919	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
920	if (dirty)
921		flags |= OCFS2_JOURNAL_DIRTY_FL;
922	else
923		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
924	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
925
926	if (replayed)
927		ocfs2_bump_recovery_generation(fe);
928
929	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
930	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
931	if (status < 0)
932		mlog_errno(status);
933
934	return status;
935}
936
937/*
938 * If the journal has been kmalloc'd it needs to be freed after this
939 * call.
940 */
941void ocfs2_journal_shutdown(struct ocfs2_super *osb)
942{
943	struct ocfs2_journal *journal = NULL;
944	int status = 0;
945	struct inode *inode = NULL;
946	int num_running_trans = 0;
947
948	BUG_ON(!osb);
949
950	journal = osb->journal;
951	if (!journal)
952		goto done;
953
954	inode = journal->j_inode;
955
956	if (journal->j_state != OCFS2_JOURNAL_LOADED)
957		goto done;
958
959	/* need to inc inode use count - jbd2_journal_destroy will iput. */
960	if (!igrab(inode))
961		BUG();
962
963	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
964	trace_ocfs2_journal_shutdown(num_running_trans);
965
966	/* Do a commit_cache here. It will flush our journal, *and*
967	 * release any locks that are still held.
968	 * set the SHUTDOWN flag and release the trans lock.
969	 * the commit thread will take the trans lock for us below. */
970	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
971
972	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
973	 * drop the trans_lock (which we want to hold until we
974	 * completely destroy the journal. */
975	if (osb->commit_task) {
976		/* Wait for the commit thread */
977		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
978		kthread_stop(osb->commit_task);
979		osb->commit_task = NULL;
980	}
981
982	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
983
984	if (ocfs2_mount_local(osb)) {
985		jbd2_journal_lock_updates(journal->j_journal);
986		status = jbd2_journal_flush(journal->j_journal);
987		jbd2_journal_unlock_updates(journal->j_journal);
988		if (status < 0)
989			mlog_errno(status);
990	}
991
992	if (status == 0) {
993		/*
994		 * Do not toggle if flush was unsuccessful otherwise
995		 * will leave dirty metadata in a "clean" journal
996		 */
997		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
998		if (status < 0)
999			mlog_errno(status);
1000	}
1001
1002	/* Shutdown the kernel journal system */
1003	jbd2_journal_destroy(journal->j_journal);
1004	journal->j_journal = NULL;
1005
1006	OCFS2_I(inode)->ip_open_count--;
1007
1008	/* unlock our journal */
1009	ocfs2_inode_unlock(inode, 1);
1010
1011	brelse(journal->j_bh);
1012	journal->j_bh = NULL;
1013
1014	journal->j_state = OCFS2_JOURNAL_FREE;
1015
1016//	up_write(&journal->j_trans_barrier);
1017done:
1018	if (inode)
1019		iput(inode);
1020}
1021
1022static void ocfs2_clear_journal_error(struct super_block *sb,
1023				      journal_t *journal,
1024				      int slot)
1025{
1026	int olderr;
1027
1028	olderr = jbd2_journal_errno(journal);
1029	if (olderr) {
1030		mlog(ML_ERROR, "File system error %d recorded in "
1031		     "journal %u.\n", olderr, slot);
1032		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1033		     sb->s_id);
1034
1035		jbd2_journal_ack_err(journal);
1036		jbd2_journal_clear_err(journal);
1037	}
1038}
1039
1040int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1041{
1042	int status = 0;
1043	struct ocfs2_super *osb;
1044
1045	BUG_ON(!journal);
1046
1047	osb = journal->j_osb;
1048
1049	status = jbd2_journal_load(journal->j_journal);
1050	if (status < 0) {
1051		mlog(ML_ERROR, "Failed to load journal!\n");
1052		goto done;
1053	}
1054
1055	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1056
1057	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1058	if (status < 0) {
1059		mlog_errno(status);
1060		goto done;
1061	}
1062
1063	/* Launch the commit thread */
1064	if (!local) {
1065		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1066					       "ocfs2cmt");
1067		if (IS_ERR(osb->commit_task)) {
1068			status = PTR_ERR(osb->commit_task);
1069			osb->commit_task = NULL;
1070			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1071			     "error=%d", status);
1072			goto done;
1073		}
1074	} else
1075		osb->commit_task = NULL;
1076
1077done:
1078	return status;
1079}
1080
1081
1082/* 'full' flag tells us whether we clear out all blocks or if we just
1083 * mark the journal clean */
1084int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1085{
1086	int status;
1087
1088	BUG_ON(!journal);
1089
1090	status = jbd2_journal_wipe(journal->j_journal, full);
1091	if (status < 0) {
1092		mlog_errno(status);
1093		goto bail;
1094	}
1095
1096	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1097	if (status < 0)
1098		mlog_errno(status);
1099
1100bail:
1101	return status;
1102}
1103
1104static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1105{
1106	int empty;
1107	struct ocfs2_recovery_map *rm = osb->recovery_map;
1108
1109	spin_lock(&osb->osb_lock);
1110	empty = (rm->rm_used == 0);
1111	spin_unlock(&osb->osb_lock);
1112
1113	return empty;
1114}
1115
1116void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1117{
1118	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1119}
1120
1121/*
1122 * JBD Might read a cached version of another nodes journal file. We
1123 * don't want this as this file changes often and we get no
1124 * notification on those changes. The only way to be sure that we've
1125 * got the most up to date version of those blocks then is to force
1126 * read them off disk. Just searching through the buffer cache won't
1127 * work as there may be pages backing this file which are still marked
1128 * up to date. We know things can't change on this file underneath us
1129 * as we have the lock by now :)
1130 */
1131static int ocfs2_force_read_journal(struct inode *inode)
1132{
1133	int status = 0;
1134	int i;
1135	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1136#define CONCURRENT_JOURNAL_FILL 32ULL
1137	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1138
1139	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1140
1141	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1142	v_blkno = 0;
1143	while (v_blkno < num_blocks) {
1144		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1145						     &p_blkno, &p_blocks, NULL);
1146		if (status < 0) {
1147			mlog_errno(status);
1148			goto bail;
1149		}
1150
1151		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1152			p_blocks = CONCURRENT_JOURNAL_FILL;
1153
1154		/* We are reading journal data which should not
1155		 * be put in the uptodate cache */
1156		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1157						p_blkno, p_blocks, bhs);
1158		if (status < 0) {
1159			mlog_errno(status);
1160			goto bail;
1161		}
1162
1163		for(i = 0; i < p_blocks; i++) {
1164			brelse(bhs[i]);
1165			bhs[i] = NULL;
1166		}
1167
1168		v_blkno += p_blocks;
1169	}
1170
1171bail:
1172	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1173		brelse(bhs[i]);
1174	return status;
1175}
1176
1177struct ocfs2_la_recovery_item {
1178	struct list_head	lri_list;
1179	int			lri_slot;
1180	struct ocfs2_dinode	*lri_la_dinode;
1181	struct ocfs2_dinode	*lri_tl_dinode;
1182	struct ocfs2_quota_recovery *lri_qrec;
1183	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1184};
1185
1186/* Does the second half of the recovery process. By this point, the
1187 * node is marked clean and can actually be considered recovered,
1188 * hence it's no longer in the recovery map, but there's still some
1189 * cleanup we can do which shouldn't happen within the recovery thread
1190 * as locking in that context becomes very difficult if we are to take
1191 * recovering nodes into account.
1192 *
1193 * NOTE: This function can and will sleep on recovery of other nodes
1194 * during cluster locking, just like any other ocfs2 process.
1195 */
1196void ocfs2_complete_recovery(struct work_struct *work)
1197{
1198	int ret = 0;
1199	struct ocfs2_journal *journal =
1200		container_of(work, struct ocfs2_journal, j_recovery_work);
1201	struct ocfs2_super *osb = journal->j_osb;
1202	struct ocfs2_dinode *la_dinode, *tl_dinode;
1203	struct ocfs2_la_recovery_item *item, *n;
1204	struct ocfs2_quota_recovery *qrec;
1205	enum ocfs2_orphan_reco_type orphan_reco_type;
1206	LIST_HEAD(tmp_la_list);
1207
1208	trace_ocfs2_complete_recovery(
1209		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1210
1211	spin_lock(&journal->j_lock);
1212	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1213	spin_unlock(&journal->j_lock);
1214
1215	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1216		list_del_init(&item->lri_list);
1217
1218		ocfs2_wait_on_quotas(osb);
1219
1220		la_dinode = item->lri_la_dinode;
1221		tl_dinode = item->lri_tl_dinode;
1222		qrec = item->lri_qrec;
1223		orphan_reco_type = item->lri_orphan_reco_type;
1224
1225		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1226			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1227			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1228			qrec);
1229
1230		if (la_dinode) {
1231			ret = ocfs2_complete_local_alloc_recovery(osb,
1232								  la_dinode);
1233			if (ret < 0)
1234				mlog_errno(ret);
1235
1236			kfree(la_dinode);
1237		}
1238
1239		if (tl_dinode) {
1240			ret = ocfs2_complete_truncate_log_recovery(osb,
1241								   tl_dinode);
1242			if (ret < 0)
1243				mlog_errno(ret);
1244
1245			kfree(tl_dinode);
1246		}
1247
1248		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1249				orphan_reco_type);
1250		if (ret < 0)
1251			mlog_errno(ret);
1252
1253		if (qrec) {
1254			ret = ocfs2_finish_quota_recovery(osb, qrec,
1255							  item->lri_slot);
1256			if (ret < 0)
1257				mlog_errno(ret);
1258			/* Recovery info is already freed now */
1259		}
1260
1261		kfree(item);
1262	}
1263
1264	trace_ocfs2_complete_recovery_end(ret);
1265}
1266
1267/* NOTE: This function always eats your references to la_dinode and
1268 * tl_dinode, either manually on error, or by passing them to
1269 * ocfs2_complete_recovery */
1270static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1271					    int slot_num,
1272					    struct ocfs2_dinode *la_dinode,
1273					    struct ocfs2_dinode *tl_dinode,
1274					    struct ocfs2_quota_recovery *qrec,
1275					    enum ocfs2_orphan_reco_type orphan_reco_type)
1276{
1277	struct ocfs2_la_recovery_item *item;
1278
1279	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1280	if (!item) {
1281		/* Though we wish to avoid it, we are in fact safe in
1282		 * skipping local alloc cleanup as fsck.ocfs2 is more
1283		 * than capable of reclaiming unused space. */
1284		kfree(la_dinode);
1285		kfree(tl_dinode);
1286
1287		if (qrec)
1288			ocfs2_free_quota_recovery(qrec);
1289
1290		mlog_errno(-ENOMEM);
1291		return;
1292	}
1293
1294	INIT_LIST_HEAD(&item->lri_list);
1295	item->lri_la_dinode = la_dinode;
1296	item->lri_slot = slot_num;
1297	item->lri_tl_dinode = tl_dinode;
1298	item->lri_qrec = qrec;
1299	item->lri_orphan_reco_type = orphan_reco_type;
1300
1301	spin_lock(&journal->j_lock);
1302	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1303	queue_work(ocfs2_wq, &journal->j_recovery_work);
1304	spin_unlock(&journal->j_lock);
1305}
1306
1307/* Called by the mount code to queue recovery the last part of
1308 * recovery for it's own and offline slot(s). */
1309void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1310{
1311	struct ocfs2_journal *journal = osb->journal;
1312
1313	if (ocfs2_is_hard_readonly(osb))
1314		return;
1315
1316	/* No need to queue up our truncate_log as regular cleanup will catch
1317	 * that */
1318	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1319					osb->local_alloc_copy, NULL, NULL,
1320					ORPHAN_NEED_TRUNCATE);
1321	ocfs2_schedule_truncate_log_flush(osb, 0);
1322
1323	osb->local_alloc_copy = NULL;
1324	osb->dirty = 0;
1325
1326	/* queue to recover orphan slots for all offline slots */
1327	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1328	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1329	ocfs2_free_replay_slots(osb);
1330}
1331
1332void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1333{
1334	if (osb->quota_rec) {
1335		ocfs2_queue_recovery_completion(osb->journal,
1336						osb->slot_num,
1337						NULL,
1338						NULL,
1339						osb->quota_rec,
1340						ORPHAN_NEED_TRUNCATE);
1341		osb->quota_rec = NULL;
1342	}
1343}
1344
1345static int __ocfs2_recovery_thread(void *arg)
1346{
1347	int status, node_num, slot_num;
1348	struct ocfs2_super *osb = arg;
1349	struct ocfs2_recovery_map *rm = osb->recovery_map;
1350	int *rm_quota = NULL;
1351	int rm_quota_used = 0, i;
1352	struct ocfs2_quota_recovery *qrec;
1353
1354	status = ocfs2_wait_on_mount(osb);
1355	if (status < 0) {
1356		goto bail;
1357	}
1358
1359	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1360	if (!rm_quota) {
1361		status = -ENOMEM;
1362		goto bail;
1363	}
1364restart:
1365	status = ocfs2_super_lock(osb, 1);
1366	if (status < 0) {
1367		mlog_errno(status);
1368		goto bail;
1369	}
1370
1371	status = ocfs2_compute_replay_slots(osb);
1372	if (status < 0)
1373		mlog_errno(status);
1374
1375	/* queue recovery for our own slot */
1376	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1377					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1378
1379	spin_lock(&osb->osb_lock);
1380	while (rm->rm_used) {
1381		/* It's always safe to remove entry zero, as we won't
1382		 * clear it until ocfs2_recover_node() has succeeded. */
1383		node_num = rm->rm_entries[0];
1384		spin_unlock(&osb->osb_lock);
1385		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1386		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1387		if (slot_num == -ENOENT) {
1388			status = 0;
1389			goto skip_recovery;
1390		}
1391
1392		/* It is a bit subtle with quota recovery. We cannot do it
1393		 * immediately because we have to obtain cluster locks from
1394		 * quota files and we also don't want to just skip it because
1395		 * then quota usage would be out of sync until some node takes
1396		 * the slot. So we remember which nodes need quota recovery
1397		 * and when everything else is done, we recover quotas. */
1398		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1399		if (i == rm_quota_used)
1400			rm_quota[rm_quota_used++] = slot_num;
1401
1402		status = ocfs2_recover_node(osb, node_num, slot_num);
1403skip_recovery:
1404		if (!status) {
1405			ocfs2_recovery_map_clear(osb, node_num);
1406		} else {
1407			mlog(ML_ERROR,
1408			     "Error %d recovering node %d on device (%u,%u)!\n",
1409			     status, node_num,
1410			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1411			mlog(ML_ERROR, "Volume requires unmount.\n");
1412		}
1413
1414		spin_lock(&osb->osb_lock);
1415	}
1416	spin_unlock(&osb->osb_lock);
1417	trace_ocfs2_recovery_thread_end(status);
1418
1419	/* Refresh all journal recovery generations from disk */
1420	status = ocfs2_check_journals_nolocks(osb);
1421	status = (status == -EROFS) ? 0 : status;
1422	if (status < 0)
1423		mlog_errno(status);
1424
1425	/* Now it is right time to recover quotas... We have to do this under
1426	 * superblock lock so that no one can start using the slot (and crash)
1427	 * before we recover it */
1428	for (i = 0; i < rm_quota_used; i++) {
1429		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1430		if (IS_ERR(qrec)) {
1431			status = PTR_ERR(qrec);
1432			mlog_errno(status);
1433			continue;
1434		}
1435		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1436						NULL, NULL, qrec,
1437						ORPHAN_NEED_TRUNCATE);
1438	}
1439
1440	ocfs2_super_unlock(osb, 1);
1441
1442	/* queue recovery for offline slots */
1443	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1444
1445bail:
1446	mutex_lock(&osb->recovery_lock);
1447	if (!status && !ocfs2_recovery_completed(osb)) {
1448		mutex_unlock(&osb->recovery_lock);
1449		goto restart;
1450	}
1451
1452	ocfs2_free_replay_slots(osb);
1453	osb->recovery_thread_task = NULL;
1454	mb(); /* sync with ocfs2_recovery_thread_running */
1455	wake_up(&osb->recovery_event);
1456
1457	mutex_unlock(&osb->recovery_lock);
1458
1459	kfree(rm_quota);
1460
1461	/* no one is callint kthread_stop() for us so the kthread() api
1462	 * requires that we call do_exit().  And it isn't exported, but
1463	 * complete_and_exit() seems to be a minimal wrapper around it. */
1464	complete_and_exit(NULL, status);
1465}
1466
1467void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1468{
1469	mutex_lock(&osb->recovery_lock);
1470
1471	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1472		osb->disable_recovery, osb->recovery_thread_task,
1473		osb->disable_recovery ?
1474		-1 : ocfs2_recovery_map_set(osb, node_num));
1475
1476	if (osb->disable_recovery)
1477		goto out;
1478
1479	if (osb->recovery_thread_task)
1480		goto out;
1481
1482	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1483						 "ocfs2rec");
1484	if (IS_ERR(osb->recovery_thread_task)) {
1485		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1486		osb->recovery_thread_task = NULL;
1487	}
1488
1489out:
1490	mutex_unlock(&osb->recovery_lock);
1491	wake_up(&osb->recovery_event);
1492}
1493
1494static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1495				    int slot_num,
1496				    struct buffer_head **bh,
1497				    struct inode **ret_inode)
1498{
1499	int status = -EACCES;
1500	struct inode *inode = NULL;
1501
1502	BUG_ON(slot_num >= osb->max_slots);
1503
1504	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1505					    slot_num);
1506	if (!inode || is_bad_inode(inode)) {
1507		mlog_errno(status);
1508		goto bail;
1509	}
1510	SET_INODE_JOURNAL(inode);
1511
1512	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1513	if (status < 0) {
1514		mlog_errno(status);
1515		goto bail;
1516	}
1517
1518	status = 0;
1519
1520bail:
1521	if (inode) {
1522		if (status || !ret_inode)
1523			iput(inode);
1524		else
1525			*ret_inode = inode;
1526	}
1527	return status;
1528}
1529
1530/* Does the actual journal replay and marks the journal inode as
1531 * clean. Will only replay if the journal inode is marked dirty. */
1532static int ocfs2_replay_journal(struct ocfs2_super *osb,
1533				int node_num,
1534				int slot_num)
1535{
1536	int status;
1537	int got_lock = 0;
1538	unsigned int flags;
1539	struct inode *inode = NULL;
1540	struct ocfs2_dinode *fe;
1541	journal_t *journal = NULL;
1542	struct buffer_head *bh = NULL;
1543	u32 slot_reco_gen;
1544
1545	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1546	if (status) {
1547		mlog_errno(status);
1548		goto done;
1549	}
1550
1551	fe = (struct ocfs2_dinode *)bh->b_data;
1552	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1553	brelse(bh);
1554	bh = NULL;
1555
1556	/*
1557	 * As the fs recovery is asynchronous, there is a small chance that
1558	 * another node mounted (and recovered) the slot before the recovery
1559	 * thread could get the lock. To handle that, we dirty read the journal
1560	 * inode for that slot to get the recovery generation. If it is
1561	 * different than what we expected, the slot has been recovered.
1562	 * If not, it needs recovery.
1563	 */
1564	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1565		trace_ocfs2_replay_journal_recovered(slot_num,
1566		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1567		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1568		status = -EBUSY;
1569		goto done;
1570	}
1571
1572	/* Continue with recovery as the journal has not yet been recovered */
1573
1574	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1575	if (status < 0) {
1576		trace_ocfs2_replay_journal_lock_err(status);
1577		if (status != -ERESTARTSYS)
1578			mlog(ML_ERROR, "Could not lock journal!\n");
1579		goto done;
1580	}
1581	got_lock = 1;
1582
1583	fe = (struct ocfs2_dinode *) bh->b_data;
1584
1585	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1587
1588	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1589		trace_ocfs2_replay_journal_skip(node_num);
1590		/* Refresh recovery generation for the slot */
1591		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1592		goto done;
1593	}
1594
1595	/* we need to run complete recovery for offline orphan slots */
1596	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1597
1598	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1599	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1600	       MINOR(osb->sb->s_dev));
1601
1602	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1603
1604	status = ocfs2_force_read_journal(inode);
1605	if (status < 0) {
1606		mlog_errno(status);
1607		goto done;
1608	}
1609
1610	journal = jbd2_journal_init_inode(inode);
1611	if (journal == NULL) {
1612		mlog(ML_ERROR, "Linux journal layer error\n");
1613		status = -EIO;
1614		goto done;
1615	}
1616
1617	status = jbd2_journal_load(journal);
1618	if (status < 0) {
1619		mlog_errno(status);
1620		if (!igrab(inode))
1621			BUG();
1622		jbd2_journal_destroy(journal);
1623		goto done;
1624	}
1625
1626	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1627
1628	/* wipe the journal */
1629	jbd2_journal_lock_updates(journal);
1630	status = jbd2_journal_flush(journal);
1631	jbd2_journal_unlock_updates(journal);
1632	if (status < 0)
1633		mlog_errno(status);
1634
1635	/* This will mark the node clean */
1636	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1637	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1638	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1639
1640	/* Increment recovery generation to indicate successful recovery */
1641	ocfs2_bump_recovery_generation(fe);
1642	osb->slot_recovery_generations[slot_num] =
1643					ocfs2_get_recovery_generation(fe);
1644
1645	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1646	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1647	if (status < 0)
1648		mlog_errno(status);
1649
1650	if (!igrab(inode))
1651		BUG();
1652
1653	jbd2_journal_destroy(journal);
1654
1655	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1656	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1657	       MINOR(osb->sb->s_dev));
1658done:
1659	/* drop the lock on this nodes journal */
1660	if (got_lock)
1661		ocfs2_inode_unlock(inode, 1);
1662
1663	if (inode)
1664		iput(inode);
1665
1666	brelse(bh);
1667
1668	return status;
1669}
1670
1671/*
1672 * Do the most important parts of node recovery:
1673 *  - Replay it's journal
1674 *  - Stamp a clean local allocator file
1675 *  - Stamp a clean truncate log
1676 *  - Mark the node clean
1677 *
1678 * If this function completes without error, a node in OCFS2 can be
1679 * said to have been safely recovered. As a result, failure during the
1680 * second part of a nodes recovery process (local alloc recovery) is
1681 * far less concerning.
1682 */
1683static int ocfs2_recover_node(struct ocfs2_super *osb,
1684			      int node_num, int slot_num)
1685{
1686	int status = 0;
1687	struct ocfs2_dinode *la_copy = NULL;
1688	struct ocfs2_dinode *tl_copy = NULL;
1689
1690	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1691
1692	/* Should not ever be called to recover ourselves -- in that
1693	 * case we should've called ocfs2_journal_load instead. */
1694	BUG_ON(osb->node_num == node_num);
1695
1696	status = ocfs2_replay_journal(osb, node_num, slot_num);
1697	if (status < 0) {
1698		if (status == -EBUSY) {
1699			trace_ocfs2_recover_node_skip(slot_num, node_num);
1700			status = 0;
1701			goto done;
1702		}
1703		mlog_errno(status);
1704		goto done;
1705	}
1706
1707	/* Stamp a clean local alloc file AFTER recovering the journal... */
1708	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1709	if (status < 0) {
1710		mlog_errno(status);
1711		goto done;
1712	}
1713
1714	/* An error from begin_truncate_log_recovery is not
1715	 * serious enough to warrant halting the rest of
1716	 * recovery. */
1717	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1718	if (status < 0)
1719		mlog_errno(status);
1720
1721	/* Likewise, this would be a strange but ultimately not so
1722	 * harmful place to get an error... */
1723	status = ocfs2_clear_slot(osb, slot_num);
1724	if (status < 0)
1725		mlog_errno(status);
1726
1727	/* This will kfree the memory pointed to by la_copy and tl_copy */
1728	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1729					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1730
1731	status = 0;
1732done:
1733
1734	return status;
1735}
1736
1737/* Test node liveness by trylocking his journal. If we get the lock,
1738 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1739 * still alive (we couldn't get the lock) and < 0 on error. */
1740static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1741				 int slot_num)
1742{
1743	int status, flags;
1744	struct inode *inode = NULL;
1745
1746	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1747					    slot_num);
1748	if (inode == NULL) {
1749		mlog(ML_ERROR, "access error\n");
1750		status = -EACCES;
1751		goto bail;
1752	}
1753	if (is_bad_inode(inode)) {
1754		mlog(ML_ERROR, "access error (bad inode)\n");
1755		iput(inode);
1756		inode = NULL;
1757		status = -EACCES;
1758		goto bail;
1759	}
1760	SET_INODE_JOURNAL(inode);
1761
1762	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1763	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1764	if (status < 0) {
1765		if (status != -EAGAIN)
1766			mlog_errno(status);
1767		goto bail;
1768	}
1769
1770	ocfs2_inode_unlock(inode, 1);
1771bail:
1772	if (inode)
1773		iput(inode);
1774
1775	return status;
1776}
1777
1778/* Call this underneath ocfs2_super_lock. It also assumes that the
1779 * slot info struct has been updated from disk. */
1780int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1781{
1782	unsigned int node_num;
1783	int status, i;
1784	u32 gen;
1785	struct buffer_head *bh = NULL;
1786	struct ocfs2_dinode *di;
1787
1788	/* This is called with the super block cluster lock, so we
1789	 * know that the slot map can't change underneath us. */
1790
1791	for (i = 0; i < osb->max_slots; i++) {
1792		/* Read journal inode to get the recovery generation */
1793		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1794		if (status) {
1795			mlog_errno(status);
1796			goto bail;
1797		}
1798		di = (struct ocfs2_dinode *)bh->b_data;
1799		gen = ocfs2_get_recovery_generation(di);
1800		brelse(bh);
1801		bh = NULL;
1802
1803		spin_lock(&osb->osb_lock);
1804		osb->slot_recovery_generations[i] = gen;
1805
1806		trace_ocfs2_mark_dead_nodes(i,
1807					    osb->slot_recovery_generations[i]);
1808
1809		if (i == osb->slot_num) {
1810			spin_unlock(&osb->osb_lock);
1811			continue;
1812		}
1813
1814		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1815		if (status == -ENOENT) {
1816			spin_unlock(&osb->osb_lock);
1817			continue;
1818		}
1819
1820		if (__ocfs2_recovery_map_test(osb, node_num)) {
1821			spin_unlock(&osb->osb_lock);
1822			continue;
1823		}
1824		spin_unlock(&osb->osb_lock);
1825
1826		/* Ok, we have a slot occupied by another node which
1827		 * is not in the recovery map. We trylock his journal
1828		 * file here to test if he's alive. */
1829		status = ocfs2_trylock_journal(osb, i);
1830		if (!status) {
1831			/* Since we're called from mount, we know that
1832			 * the recovery thread can't race us on
1833			 * setting / checking the recovery bits. */
1834			ocfs2_recovery_thread(osb, node_num);
1835		} else if ((status < 0) && (status != -EAGAIN)) {
1836			mlog_errno(status);
1837			goto bail;
1838		}
1839	}
1840
1841	status = 0;
1842bail:
1843	return status;
1844}
1845
1846/*
1847 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1848 * randomness to the timeout to minimize multple nodes firing the timer at the
1849 * same time.
1850 */
1851static inline unsigned long ocfs2_orphan_scan_timeout(void)
1852{
1853	unsigned long time;
1854
1855	get_random_bytes(&time, sizeof(time));
1856	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1857	return msecs_to_jiffies(time);
1858}
1859
1860/*
1861 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1862 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1863 * is done to catch any orphans that are left over in orphan directories.
1864 *
1865 * It scans all slots, even ones that are in use. It does so to handle the
1866 * case described below:
1867 *
1868 *   Node 1 has an inode it was using. The dentry went away due to memory
1869 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1870 *   has the open lock.
1871 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1872 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1873 *   open lock, sees that another node has a PR, and does nothing.
1874 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1875 *   open lock, sees the PR still, and does nothing.
1876 *   Basically, we have to trigger an orphan iput on node 1. The only way
1877 *   for this to happen is if node 1 runs node 2's orphan dir.
1878 *
1879 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1880 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1881 * stored in LVB. If the sequence number has changed, it means some other
1882 * node has done the scan.  This node skips the scan and tracks the
1883 * sequence number.  If the sequence number didn't change, it means a scan
1884 * hasn't happened.  The node queues a scan and increments the
1885 * sequence number in the LVB.
1886 */
1887void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1888{
1889	struct ocfs2_orphan_scan *os;
1890	int status, i;
1891	u32 seqno = 0;
1892
1893	os = &osb->osb_orphan_scan;
1894
1895	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1896		goto out;
1897
1898	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1899					    atomic_read(&os->os_state));
1900
1901	status = ocfs2_orphan_scan_lock(osb, &seqno);
1902	if (status < 0) {
1903		if (status != -EAGAIN)
1904			mlog_errno(status);
1905		goto out;
1906	}
1907
1908	/* Do no queue the tasks if the volume is being umounted */
1909	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1910		goto unlock;
1911
1912	if (os->os_seqno != seqno) {
1913		os->os_seqno = seqno;
1914		goto unlock;
1915	}
1916
1917	for (i = 0; i < osb->max_slots; i++)
1918		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1919						NULL, ORPHAN_NO_NEED_TRUNCATE);
1920	/*
1921	 * We queued a recovery on orphan slots, increment the sequence
1922	 * number and update LVB so other node will skip the scan for a while
1923	 */
1924	seqno++;
1925	os->os_count++;
1926	os->os_scantime = CURRENT_TIME;
1927unlock:
1928	ocfs2_orphan_scan_unlock(osb, seqno);
1929out:
1930	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1931					  atomic_read(&os->os_state));
1932	return;
1933}
1934
1935/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1936void ocfs2_orphan_scan_work(struct work_struct *work)
1937{
1938	struct ocfs2_orphan_scan *os;
1939	struct ocfs2_super *osb;
1940
1941	os = container_of(work, struct ocfs2_orphan_scan,
1942			  os_orphan_scan_work.work);
1943	osb = os->os_osb;
1944
1945	mutex_lock(&os->os_lock);
1946	ocfs2_queue_orphan_scan(osb);
1947	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1948		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1949				      ocfs2_orphan_scan_timeout());
1950	mutex_unlock(&os->os_lock);
1951}
1952
1953void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1954{
1955	struct ocfs2_orphan_scan *os;
1956
1957	os = &osb->osb_orphan_scan;
1958	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1959		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1960		mutex_lock(&os->os_lock);
1961		cancel_delayed_work(&os->os_orphan_scan_work);
1962		mutex_unlock(&os->os_lock);
1963	}
1964}
1965
1966void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1967{
1968	struct ocfs2_orphan_scan *os;
1969
1970	os = &osb->osb_orphan_scan;
1971	os->os_osb = osb;
1972	os->os_count = 0;
1973	os->os_seqno = 0;
1974	mutex_init(&os->os_lock);
1975	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1976}
1977
1978void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1979{
1980	struct ocfs2_orphan_scan *os;
1981
1982	os = &osb->osb_orphan_scan;
1983	os->os_scantime = CURRENT_TIME;
1984	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1985		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1986	else {
1987		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1988		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1989				   ocfs2_orphan_scan_timeout());
1990	}
1991}
1992
1993struct ocfs2_orphan_filldir_priv {
1994	struct dir_context	ctx;
1995	struct inode		*head;
1996	struct ocfs2_super	*osb;
1997};
1998
1999static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2000				int name_len, loff_t pos, u64 ino,
2001				unsigned type)
2002{
2003	struct ocfs2_orphan_filldir_priv *p =
2004		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2005	struct inode *iter;
2006
2007	if (name_len == 1 && !strncmp(".", name, 1))
2008		return 0;
2009	if (name_len == 2 && !strncmp("..", name, 2))
2010		return 0;
2011
2012	/* Skip bad inodes so that recovery can continue */
2013	iter = ocfs2_iget(p->osb, ino,
2014			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2015	if (IS_ERR(iter))
2016		return 0;
2017
2018	/* Skip inodes which are already added to recover list, since dio may
2019	 * happen concurrently with unlink/rename */
2020	if (OCFS2_I(iter)->ip_next_orphan) {
2021		iput(iter);
2022		return 0;
2023	}
2024
2025	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2026	/* No locking is required for the next_orphan queue as there
2027	 * is only ever a single process doing orphan recovery. */
2028	OCFS2_I(iter)->ip_next_orphan = p->head;
2029	p->head = iter;
2030
2031	return 0;
2032}
2033
2034static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2035			       int slot,
2036			       struct inode **head)
2037{
2038	int status;
2039	struct inode *orphan_dir_inode = NULL;
2040	struct ocfs2_orphan_filldir_priv priv = {
2041		.ctx.actor = ocfs2_orphan_filldir,
2042		.osb = osb,
2043		.head = *head
2044	};
2045
2046	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2047						       ORPHAN_DIR_SYSTEM_INODE,
2048						       slot);
2049	if  (!orphan_dir_inode) {
2050		status = -ENOENT;
2051		mlog_errno(status);
2052		return status;
2053	}
2054
2055	mutex_lock(&orphan_dir_inode->i_mutex);
2056	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2057	if (status < 0) {
2058		mlog_errno(status);
2059		goto out;
2060	}
2061
2062	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2063	if (status) {
2064		mlog_errno(status);
2065		goto out_cluster;
2066	}
2067
2068	*head = priv.head;
2069
2070out_cluster:
2071	ocfs2_inode_unlock(orphan_dir_inode, 0);
2072out:
2073	mutex_unlock(&orphan_dir_inode->i_mutex);
2074	iput(orphan_dir_inode);
2075	return status;
2076}
2077
2078static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2079					      int slot)
2080{
2081	int ret;
2082
2083	spin_lock(&osb->osb_lock);
2084	ret = !osb->osb_orphan_wipes[slot];
2085	spin_unlock(&osb->osb_lock);
2086	return ret;
2087}
2088
2089static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2090					     int slot)
2091{
2092	spin_lock(&osb->osb_lock);
2093	/* Mark ourselves such that new processes in delete_inode()
2094	 * know to quit early. */
2095	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2096	while (osb->osb_orphan_wipes[slot]) {
2097		/* If any processes are already in the middle of an
2098		 * orphan wipe on this dir, then we need to wait for
2099		 * them. */
2100		spin_unlock(&osb->osb_lock);
2101		wait_event_interruptible(osb->osb_wipe_event,
2102					 ocfs2_orphan_recovery_can_continue(osb, slot));
2103		spin_lock(&osb->osb_lock);
2104	}
2105	spin_unlock(&osb->osb_lock);
2106}
2107
2108static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2109					      int slot)
2110{
2111	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2112}
2113
2114/*
2115 * Orphan recovery. Each mounted node has it's own orphan dir which we
2116 * must run during recovery. Our strategy here is to build a list of
2117 * the inodes in the orphan dir and iget/iput them. The VFS does
2118 * (most) of the rest of the work.
2119 *
2120 * Orphan recovery can happen at any time, not just mount so we have a
2121 * couple of extra considerations.
2122 *
2123 * - We grab as many inodes as we can under the orphan dir lock -
2124 *   doing iget() outside the orphan dir risks getting a reference on
2125 *   an invalid inode.
2126 * - We must be sure not to deadlock with other processes on the
2127 *   system wanting to run delete_inode(). This can happen when they go
2128 *   to lock the orphan dir and the orphan recovery process attempts to
2129 *   iget() inside the orphan dir lock. This can be avoided by
2130 *   advertising our state to ocfs2_delete_inode().
2131 */
2132static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2133				 int slot,
2134				 enum ocfs2_orphan_reco_type orphan_reco_type)
2135{
2136	int ret = 0;
2137	struct inode *inode = NULL;
2138	struct inode *iter;
2139	struct ocfs2_inode_info *oi;
2140
2141	trace_ocfs2_recover_orphans(slot);
2142
2143	ocfs2_mark_recovering_orphan_dir(osb, slot);
2144	ret = ocfs2_queue_orphans(osb, slot, &inode);
2145	ocfs2_clear_recovering_orphan_dir(osb, slot);
2146
2147	/* Error here should be noted, but we want to continue with as
2148	 * many queued inodes as we've got. */
2149	if (ret)
2150		mlog_errno(ret);
2151
2152	while (inode) {
2153		oi = OCFS2_I(inode);
2154		trace_ocfs2_recover_orphans_iput(
2155					(unsigned long long)oi->ip_blkno);
2156
2157		iter = oi->ip_next_orphan;
2158		oi->ip_next_orphan = NULL;
2159
2160		/*
2161		 * We need to take and drop the inode lock to
2162		 * force read inode from disk.
2163		 */
2164		ret = ocfs2_inode_lock(inode, NULL, 0);
2165		if (ret) {
2166			mlog_errno(ret);
2167			goto next;
2168		}
2169		ocfs2_inode_unlock(inode, 0);
2170
2171		if (inode->i_nlink == 0) {
2172			spin_lock(&oi->ip_lock);
2173			/* Set the proper information to get us going into
2174			 * ocfs2_delete_inode. */
2175			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2176			spin_unlock(&oi->ip_lock);
2177		} else if (orphan_reco_type == ORPHAN_NEED_TRUNCATE) {
2178			struct buffer_head *di_bh = NULL;
2179
2180			ret = ocfs2_rw_lock(inode, 1);
2181			if (ret) {
2182				mlog_errno(ret);
2183				goto next;
2184			}
2185
2186			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2187			if (ret < 0) {
2188				ocfs2_rw_unlock(inode, 1);
2189				mlog_errno(ret);
2190				goto next;
2191			}
2192
2193			ret = ocfs2_truncate_file(inode, di_bh,
2194					i_size_read(inode));
2195			ocfs2_inode_unlock(inode, 1);
2196			ocfs2_rw_unlock(inode, 1);
2197			brelse(di_bh);
2198			if (ret < 0) {
2199				if (ret != -ENOSPC)
2200					mlog_errno(ret);
2201				goto next;
2202			}
2203
2204			ret = ocfs2_del_inode_from_orphan(osb, inode, 0, 0);
2205			if (ret)
2206				mlog_errno(ret);
2207
2208			wake_up(&OCFS2_I(inode)->append_dio_wq);
2209		} /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
2210
2211next:
2212		iput(inode);
2213
2214		inode = iter;
2215	}
2216
2217	return ret;
2218}
2219
2220static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2221{
2222	/* This check is good because ocfs2 will wait on our recovery
2223	 * thread before changing it to something other than MOUNTED
2224	 * or DISABLED. */
2225	wait_event(osb->osb_mount_event,
2226		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2227		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2228		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2229
2230	/* If there's an error on mount, then we may never get to the
2231	 * MOUNTED flag, but this is set right before
2232	 * dismount_volume() so we can trust it. */
2233	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2234		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2235		mlog(0, "mount error, exiting!\n");
2236		return -EBUSY;
2237	}
2238
2239	return 0;
2240}
2241
2242static int ocfs2_commit_thread(void *arg)
2243{
2244	int status;
2245	struct ocfs2_super *osb = arg;
2246	struct ocfs2_journal *journal = osb->journal;
2247
2248	/* we can trust j_num_trans here because _should_stop() is only set in
2249	 * shutdown and nobody other than ourselves should be able to start
2250	 * transactions.  committing on shutdown might take a few iterations
2251	 * as final transactions put deleted inodes on the list */
2252	while (!(kthread_should_stop() &&
2253		 atomic_read(&journal->j_num_trans) == 0)) {
2254
2255		wait_event_interruptible(osb->checkpoint_event,
2256					 atomic_read(&journal->j_num_trans)
2257					 || kthread_should_stop());
2258
2259		status = ocfs2_commit_cache(osb);
2260		if (status < 0) {
2261			static unsigned long abort_warn_time;
2262
2263			/* Warn about this once per minute */
2264			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2265				mlog(ML_ERROR, "status = %d, journal is "
2266						"already aborted.\n", status);
2267			/*
2268			 * After ocfs2_commit_cache() fails, j_num_trans has a
2269			 * non-zero value.  Sleep here to avoid a busy-wait
2270			 * loop.
2271			 */
2272			msleep_interruptible(1000);
2273		}
2274
2275		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2276			mlog(ML_KTHREAD,
2277			     "commit_thread: %u transactions pending on "
2278			     "shutdown\n",
2279			     atomic_read(&journal->j_num_trans));
2280		}
2281	}
2282
2283	return 0;
2284}
2285
2286/* Reads all the journal inodes without taking any cluster locks. Used
2287 * for hard readonly access to determine whether any journal requires
2288 * recovery. Also used to refresh the recovery generation numbers after
2289 * a journal has been recovered by another node.
2290 */
2291int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2292{
2293	int ret = 0;
2294	unsigned int slot;
2295	struct buffer_head *di_bh = NULL;
2296	struct ocfs2_dinode *di;
2297	int journal_dirty = 0;
2298
2299	for(slot = 0; slot < osb->max_slots; slot++) {
2300		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2301		if (ret) {
2302			mlog_errno(ret);
2303			goto out;
2304		}
2305
2306		di = (struct ocfs2_dinode *) di_bh->b_data;
2307
2308		osb->slot_recovery_generations[slot] =
2309					ocfs2_get_recovery_generation(di);
2310
2311		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2312		    OCFS2_JOURNAL_DIRTY_FL)
2313			journal_dirty = 1;
2314
2315		brelse(di_bh);
2316		di_bh = NULL;
2317	}
2318
2319out:
2320	if (journal_dirty)
2321		ret = -EROFS;
2322	return ret;
2323}
2324