1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/capability.h>
27#include <linux/fs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/highmem.h>
31#include <linux/pagemap.h>
32#include <linux/uio.h>
33#include <linux/sched.h>
34#include <linux/splice.h>
35#include <linux/mount.h>
36#include <linux/writeback.h>
37#include <linux/falloc.h>
38#include <linux/quotaops.h>
39#include <linux/blkdev.h>
40
41#include <cluster/masklog.h>
42
43#include "ocfs2.h"
44
45#include "alloc.h"
46#include "aops.h"
47#include "dir.h"
48#include "dlmglue.h"
49#include "extent_map.h"
50#include "file.h"
51#include "sysfile.h"
52#include "inode.h"
53#include "ioctl.h"
54#include "journal.h"
55#include "locks.h"
56#include "mmap.h"
57#include "suballoc.h"
58#include "super.h"
59#include "xattr.h"
60#include "acl.h"
61#include "quota.h"
62#include "refcounttree.h"
63#include "ocfs2_trace.h"
64
65#include "buffer_head_io.h"
66
67static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68{
69	struct ocfs2_file_private *fp;
70
71	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72	if (!fp)
73		return -ENOMEM;
74
75	fp->fp_file = file;
76	mutex_init(&fp->fp_mutex);
77	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78	file->private_data = fp;
79
80	return 0;
81}
82
83static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84{
85	struct ocfs2_file_private *fp = file->private_data;
86	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88	if (fp) {
89		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90		ocfs2_lock_res_free(&fp->fp_flock);
91		kfree(fp);
92		file->private_data = NULL;
93	}
94}
95
96static int ocfs2_file_open(struct inode *inode, struct file *file)
97{
98	int status;
99	int mode = file->f_flags;
100	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
104			      file->f_path.dentry->d_name.len,
105			      file->f_path.dentry->d_name.name, mode);
106
107	if (file->f_mode & FMODE_WRITE)
108		dquot_initialize(inode);
109
110	spin_lock(&oi->ip_lock);
111
112	/* Check that the inode hasn't been wiped from disk by another
113	 * node. If it hasn't then we're safe as long as we hold the
114	 * spin lock until our increment of open count. */
115	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116		spin_unlock(&oi->ip_lock);
117
118		status = -ENOENT;
119		goto leave;
120	}
121
122	if (mode & O_DIRECT)
123		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125	oi->ip_open_count++;
126	spin_unlock(&oi->ip_lock);
127
128	status = ocfs2_init_file_private(inode, file);
129	if (status) {
130		/*
131		 * We want to set open count back if we're failing the
132		 * open.
133		 */
134		spin_lock(&oi->ip_lock);
135		oi->ip_open_count--;
136		spin_unlock(&oi->ip_lock);
137	}
138
139leave:
140	return status;
141}
142
143static int ocfs2_file_release(struct inode *inode, struct file *file)
144{
145	struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147	spin_lock(&oi->ip_lock);
148	if (!--oi->ip_open_count)
149		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152				 oi->ip_blkno,
153				 file->f_path.dentry->d_name.len,
154				 file->f_path.dentry->d_name.name,
155				 oi->ip_open_count);
156	spin_unlock(&oi->ip_lock);
157
158	ocfs2_free_file_private(inode, file);
159
160	return 0;
161}
162
163static int ocfs2_dir_open(struct inode *inode, struct file *file)
164{
165	return ocfs2_init_file_private(inode, file);
166}
167
168static int ocfs2_dir_release(struct inode *inode, struct file *file)
169{
170	ocfs2_free_file_private(inode, file);
171	return 0;
172}
173
174static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175			   int datasync)
176{
177	int err = 0;
178	struct inode *inode = file->f_mapping->host;
179	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
180	struct ocfs2_inode_info *oi = OCFS2_I(inode);
181	journal_t *journal = osb->journal->j_journal;
182	int ret;
183	tid_t commit_tid;
184	bool needs_barrier = false;
185
186	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
187			      OCFS2_I(inode)->ip_blkno,
188			      file->f_path.dentry->d_name.len,
189			      file->f_path.dentry->d_name.name,
190			      (unsigned long long)datasync);
191
192	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
193		return -EROFS;
194
195	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
196	if (err)
197		return err;
198
199	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
200	if (journal->j_flags & JBD2_BARRIER &&
201	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
202		needs_barrier = true;
203	err = jbd2_complete_transaction(journal, commit_tid);
204	if (needs_barrier) {
205		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
206		if (!err)
207			err = ret;
208	}
209
210	if (err)
211		mlog_errno(err);
212
213	return (err < 0) ? -EIO : 0;
214}
215
216int ocfs2_should_update_atime(struct inode *inode,
217			      struct vfsmount *vfsmnt)
218{
219	struct timespec now;
220	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
221
222	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
223		return 0;
224
225	if ((inode->i_flags & S_NOATIME) ||
226	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
227		return 0;
228
229	/*
230	 * We can be called with no vfsmnt structure - NFSD will
231	 * sometimes do this.
232	 *
233	 * Note that our action here is different than touch_atime() -
234	 * if we can't tell whether this is a noatime mount, then we
235	 * don't know whether to trust the value of s_atime_quantum.
236	 */
237	if (vfsmnt == NULL)
238		return 0;
239
240	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
241	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
242		return 0;
243
244	if (vfsmnt->mnt_flags & MNT_RELATIME) {
245		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
246		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
247			return 1;
248
249		return 0;
250	}
251
252	now = CURRENT_TIME;
253	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
254		return 0;
255	else
256		return 1;
257}
258
259int ocfs2_update_inode_atime(struct inode *inode,
260			     struct buffer_head *bh)
261{
262	int ret;
263	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
264	handle_t *handle;
265	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
266
267	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
268	if (IS_ERR(handle)) {
269		ret = PTR_ERR(handle);
270		mlog_errno(ret);
271		goto out;
272	}
273
274	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
275				      OCFS2_JOURNAL_ACCESS_WRITE);
276	if (ret) {
277		mlog_errno(ret);
278		goto out_commit;
279	}
280
281	/*
282	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
283	 * have i_mutex to guard against concurrent changes to other
284	 * inode fields.
285	 */
286	inode->i_atime = CURRENT_TIME;
287	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
288	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
289	ocfs2_update_inode_fsync_trans(handle, inode, 0);
290	ocfs2_journal_dirty(handle, bh);
291
292out_commit:
293	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
294out:
295	return ret;
296}
297
298int ocfs2_set_inode_size(handle_t *handle,
299				struct inode *inode,
300				struct buffer_head *fe_bh,
301				u64 new_i_size)
302{
303	int status;
304
305	i_size_write(inode, new_i_size);
306	inode->i_blocks = ocfs2_inode_sector_count(inode);
307	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
308
309	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
310	if (status < 0) {
311		mlog_errno(status);
312		goto bail;
313	}
314
315bail:
316	return status;
317}
318
319int ocfs2_simple_size_update(struct inode *inode,
320			     struct buffer_head *di_bh,
321			     u64 new_i_size)
322{
323	int ret;
324	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
325	handle_t *handle = NULL;
326
327	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
328	if (IS_ERR(handle)) {
329		ret = PTR_ERR(handle);
330		mlog_errno(ret);
331		goto out;
332	}
333
334	ret = ocfs2_set_inode_size(handle, inode, di_bh,
335				   new_i_size);
336	if (ret < 0)
337		mlog_errno(ret);
338
339	ocfs2_update_inode_fsync_trans(handle, inode, 0);
340	ocfs2_commit_trans(osb, handle);
341out:
342	return ret;
343}
344
345static int ocfs2_cow_file_pos(struct inode *inode,
346			      struct buffer_head *fe_bh,
347			      u64 offset)
348{
349	int status;
350	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
351	unsigned int num_clusters = 0;
352	unsigned int ext_flags = 0;
353
354	/*
355	 * If the new offset is aligned to the range of the cluster, there is
356	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
357	 * CoW either.
358	 */
359	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
360		return 0;
361
362	status = ocfs2_get_clusters(inode, cpos, &phys,
363				    &num_clusters, &ext_flags);
364	if (status) {
365		mlog_errno(status);
366		goto out;
367	}
368
369	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
370		goto out;
371
372	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
373
374out:
375	return status;
376}
377
378static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
379				     struct inode *inode,
380				     struct buffer_head *fe_bh,
381				     u64 new_i_size)
382{
383	int status;
384	handle_t *handle;
385	struct ocfs2_dinode *di;
386	u64 cluster_bytes;
387
388	/*
389	 * We need to CoW the cluster contains the offset if it is reflinked
390	 * since we will call ocfs2_zero_range_for_truncate later which will
391	 * write "0" from offset to the end of the cluster.
392	 */
393	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
394	if (status) {
395		mlog_errno(status);
396		return status;
397	}
398
399	/* TODO: This needs to actually orphan the inode in this
400	 * transaction. */
401
402	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
403	if (IS_ERR(handle)) {
404		status = PTR_ERR(handle);
405		mlog_errno(status);
406		goto out;
407	}
408
409	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
410					 OCFS2_JOURNAL_ACCESS_WRITE);
411	if (status < 0) {
412		mlog_errno(status);
413		goto out_commit;
414	}
415
416	/*
417	 * Do this before setting i_size.
418	 */
419	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
420	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
421					       cluster_bytes);
422	if (status) {
423		mlog_errno(status);
424		goto out_commit;
425	}
426
427	i_size_write(inode, new_i_size);
428	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
429
430	di = (struct ocfs2_dinode *) fe_bh->b_data;
431	di->i_size = cpu_to_le64(new_i_size);
432	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
433	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
434	ocfs2_update_inode_fsync_trans(handle, inode, 0);
435
436	ocfs2_journal_dirty(handle, fe_bh);
437
438out_commit:
439	ocfs2_commit_trans(osb, handle);
440out:
441	return status;
442}
443
444int ocfs2_truncate_file(struct inode *inode,
445			       struct buffer_head *di_bh,
446			       u64 new_i_size)
447{
448	int status = 0;
449	struct ocfs2_dinode *fe = NULL;
450	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451
452	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
453	 * already validated it */
454	fe = (struct ocfs2_dinode *) di_bh->b_data;
455
456	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457				  (unsigned long long)le64_to_cpu(fe->i_size),
458				  (unsigned long long)new_i_size);
459
460	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461			"Inode %llu, inode i_size = %lld != di "
462			"i_size = %llu, i_flags = 0x%x\n",
463			(unsigned long long)OCFS2_I(inode)->ip_blkno,
464			i_size_read(inode),
465			(unsigned long long)le64_to_cpu(fe->i_size),
466			le32_to_cpu(fe->i_flags));
467
468	if (new_i_size > le64_to_cpu(fe->i_size)) {
469		trace_ocfs2_truncate_file_error(
470			(unsigned long long)le64_to_cpu(fe->i_size),
471			(unsigned long long)new_i_size);
472		status = -EINVAL;
473		mlog_errno(status);
474		goto bail;
475	}
476
477	down_write(&OCFS2_I(inode)->ip_alloc_sem);
478
479	ocfs2_resv_discard(&osb->osb_la_resmap,
480			   &OCFS2_I(inode)->ip_la_data_resv);
481
482	/*
483	 * The inode lock forced other nodes to sync and drop their
484	 * pages, which (correctly) happens even if we have a truncate
485	 * without allocation change - ocfs2 cluster sizes can be much
486	 * greater than page size, so we have to truncate them
487	 * anyway.
488	 */
489	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
490	truncate_inode_pages(inode->i_mapping, new_i_size);
491
492	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
493		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
494					       i_size_read(inode), 1);
495		if (status)
496			mlog_errno(status);
497
498		goto bail_unlock_sem;
499	}
500
501	/* alright, we're going to need to do a full blown alloc size
502	 * change. Orphan the inode so that recovery can complete the
503	 * truncate if necessary. This does the task of marking
504	 * i_size. */
505	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
506	if (status < 0) {
507		mlog_errno(status);
508		goto bail_unlock_sem;
509	}
510
511	status = ocfs2_commit_truncate(osb, inode, di_bh);
512	if (status < 0) {
513		mlog_errno(status);
514		goto bail_unlock_sem;
515	}
516
517	/* TODO: orphan dir cleanup here. */
518bail_unlock_sem:
519	up_write(&OCFS2_I(inode)->ip_alloc_sem);
520
521bail:
522	if (!status && OCFS2_I(inode)->ip_clusters == 0)
523		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
524
525	return status;
526}
527
528/*
529 * extend file allocation only here.
530 * we'll update all the disk stuff, and oip->alloc_size
531 *
532 * expect stuff to be locked, a transaction started and enough data /
533 * metadata reservations in the contexts.
534 *
535 * Will return -EAGAIN, and a reason if a restart is needed.
536 * If passed in, *reason will always be set, even in error.
537 */
538int ocfs2_add_inode_data(struct ocfs2_super *osb,
539			 struct inode *inode,
540			 u32 *logical_offset,
541			 u32 clusters_to_add,
542			 int mark_unwritten,
543			 struct buffer_head *fe_bh,
544			 handle_t *handle,
545			 struct ocfs2_alloc_context *data_ac,
546			 struct ocfs2_alloc_context *meta_ac,
547			 enum ocfs2_alloc_restarted *reason_ret)
548{
549	int ret;
550	struct ocfs2_extent_tree et;
551
552	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
553	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
554					  clusters_to_add, mark_unwritten,
555					  data_ac, meta_ac, reason_ret);
556
557	return ret;
558}
559
560static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
561				     u32 clusters_to_add, int mark_unwritten)
562{
563	int status = 0;
564	int restart_func = 0;
565	int credits;
566	u32 prev_clusters;
567	struct buffer_head *bh = NULL;
568	struct ocfs2_dinode *fe = NULL;
569	handle_t *handle = NULL;
570	struct ocfs2_alloc_context *data_ac = NULL;
571	struct ocfs2_alloc_context *meta_ac = NULL;
572	enum ocfs2_alloc_restarted why = RESTART_NONE;
573	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
574	struct ocfs2_extent_tree et;
575	int did_quota = 0;
576
577	/*
578	 * Unwritten extent only exists for file systems which
579	 * support holes.
580	 */
581	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
582
583	status = ocfs2_read_inode_block(inode, &bh);
584	if (status < 0) {
585		mlog_errno(status);
586		goto leave;
587	}
588	fe = (struct ocfs2_dinode *) bh->b_data;
589
590restart_all:
591	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
592
593	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
594	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
595				       &data_ac, &meta_ac);
596	if (status) {
597		mlog_errno(status);
598		goto leave;
599	}
600
601	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
602	handle = ocfs2_start_trans(osb, credits);
603	if (IS_ERR(handle)) {
604		status = PTR_ERR(handle);
605		handle = NULL;
606		mlog_errno(status);
607		goto leave;
608	}
609
610restarted_transaction:
611	trace_ocfs2_extend_allocation(
612		(unsigned long long)OCFS2_I(inode)->ip_blkno,
613		(unsigned long long)i_size_read(inode),
614		le32_to_cpu(fe->i_clusters), clusters_to_add,
615		why, restart_func);
616
617	status = dquot_alloc_space_nodirty(inode,
618			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
619	if (status)
620		goto leave;
621	did_quota = 1;
622
623	/* reserve a write to the file entry early on - that we if we
624	 * run out of credits in the allocation path, we can still
625	 * update i_size. */
626	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
627					 OCFS2_JOURNAL_ACCESS_WRITE);
628	if (status < 0) {
629		mlog_errno(status);
630		goto leave;
631	}
632
633	prev_clusters = OCFS2_I(inode)->ip_clusters;
634
635	status = ocfs2_add_inode_data(osb,
636				      inode,
637				      &logical_start,
638				      clusters_to_add,
639				      mark_unwritten,
640				      bh,
641				      handle,
642				      data_ac,
643				      meta_ac,
644				      &why);
645	if ((status < 0) && (status != -EAGAIN)) {
646		if (status != -ENOSPC)
647			mlog_errno(status);
648		goto leave;
649	}
650	ocfs2_update_inode_fsync_trans(handle, inode, 1);
651	ocfs2_journal_dirty(handle, bh);
652
653	spin_lock(&OCFS2_I(inode)->ip_lock);
654	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
655	spin_unlock(&OCFS2_I(inode)->ip_lock);
656	/* Release unused quota reservation */
657	dquot_free_space(inode,
658			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
659	did_quota = 0;
660
661	if (why != RESTART_NONE && clusters_to_add) {
662		if (why == RESTART_META) {
663			restart_func = 1;
664			status = 0;
665		} else {
666			BUG_ON(why != RESTART_TRANS);
667
668			status = ocfs2_allocate_extend_trans(handle, 1);
669			if (status < 0) {
670				/* handle still has to be committed at
671				 * this point. */
672				status = -ENOMEM;
673				mlog_errno(status);
674				goto leave;
675			}
676			goto restarted_transaction;
677		}
678	}
679
680	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
681	     le32_to_cpu(fe->i_clusters),
682	     (unsigned long long)le64_to_cpu(fe->i_size),
683	     OCFS2_I(inode)->ip_clusters,
684	     (unsigned long long)i_size_read(inode));
685
686leave:
687	if (status < 0 && did_quota)
688		dquot_free_space(inode,
689			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
690	if (handle) {
691		ocfs2_commit_trans(osb, handle);
692		handle = NULL;
693	}
694	if (data_ac) {
695		ocfs2_free_alloc_context(data_ac);
696		data_ac = NULL;
697	}
698	if (meta_ac) {
699		ocfs2_free_alloc_context(meta_ac);
700		meta_ac = NULL;
701	}
702	if ((!status) && restart_func) {
703		restart_func = 0;
704		goto restart_all;
705	}
706	brelse(bh);
707	bh = NULL;
708
709	return status;
710}
711
712int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
713		u32 clusters_to_add, int mark_unwritten)
714{
715	return __ocfs2_extend_allocation(inode, logical_start,
716			clusters_to_add, mark_unwritten);
717}
718
719/*
720 * While a write will already be ordering the data, a truncate will not.
721 * Thus, we need to explicitly order the zeroed pages.
722 */
723static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
724						struct buffer_head *di_bh)
725{
726	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
727	handle_t *handle = NULL;
728	int ret = 0;
729
730	if (!ocfs2_should_order_data(inode))
731		goto out;
732
733	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
734	if (IS_ERR(handle)) {
735		ret = -ENOMEM;
736		mlog_errno(ret);
737		goto out;
738	}
739
740	ret = ocfs2_jbd2_file_inode(handle, inode);
741	if (ret < 0) {
742		mlog_errno(ret);
743		goto out;
744	}
745
746	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
747				      OCFS2_JOURNAL_ACCESS_WRITE);
748	if (ret)
749		mlog_errno(ret);
750	ocfs2_update_inode_fsync_trans(handle, inode, 1);
751
752out:
753	if (ret) {
754		if (!IS_ERR(handle))
755			ocfs2_commit_trans(osb, handle);
756		handle = ERR_PTR(ret);
757	}
758	return handle;
759}
760
761/* Some parts of this taken from generic_cont_expand, which turned out
762 * to be too fragile to do exactly what we need without us having to
763 * worry about recursive locking in ->write_begin() and ->write_end(). */
764static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
765				 u64 abs_to, struct buffer_head *di_bh)
766{
767	struct address_space *mapping = inode->i_mapping;
768	struct page *page;
769	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
770	handle_t *handle;
771	int ret = 0;
772	unsigned zero_from, zero_to, block_start, block_end;
773	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
774
775	BUG_ON(abs_from >= abs_to);
776	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
777	BUG_ON(abs_from & (inode->i_blkbits - 1));
778
779	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
780	if (IS_ERR(handle)) {
781		ret = PTR_ERR(handle);
782		goto out;
783	}
784
785	page = find_or_create_page(mapping, index, GFP_NOFS);
786	if (!page) {
787		ret = -ENOMEM;
788		mlog_errno(ret);
789		goto out_commit_trans;
790	}
791
792	/* Get the offsets within the page that we want to zero */
793	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
794	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
795	if (!zero_to)
796		zero_to = PAGE_CACHE_SIZE;
797
798	trace_ocfs2_write_zero_page(
799			(unsigned long long)OCFS2_I(inode)->ip_blkno,
800			(unsigned long long)abs_from,
801			(unsigned long long)abs_to,
802			index, zero_from, zero_to);
803
804	/* We know that zero_from is block aligned */
805	for (block_start = zero_from; block_start < zero_to;
806	     block_start = block_end) {
807		block_end = block_start + (1 << inode->i_blkbits);
808
809		/*
810		 * block_start is block-aligned.  Bump it by one to force
811		 * __block_write_begin and block_commit_write to zero the
812		 * whole block.
813		 */
814		ret = __block_write_begin(page, block_start + 1, 0,
815					  ocfs2_get_block);
816		if (ret < 0) {
817			mlog_errno(ret);
818			goto out_unlock;
819		}
820
821
822		/* must not update i_size! */
823		ret = block_commit_write(page, block_start + 1,
824					 block_start + 1);
825		if (ret < 0)
826			mlog_errno(ret);
827		else
828			ret = 0;
829	}
830
831	/*
832	 * fs-writeback will release the dirty pages without page lock
833	 * whose offset are over inode size, the release happens at
834	 * block_write_full_page().
835	 */
836	i_size_write(inode, abs_to);
837	inode->i_blocks = ocfs2_inode_sector_count(inode);
838	di->i_size = cpu_to_le64((u64)i_size_read(inode));
839	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
840	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
841	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
842	di->i_mtime_nsec = di->i_ctime_nsec;
843	if (handle) {
844		ocfs2_journal_dirty(handle, di_bh);
845		ocfs2_update_inode_fsync_trans(handle, inode, 1);
846	}
847
848out_unlock:
849	unlock_page(page);
850	page_cache_release(page);
851out_commit_trans:
852	if (handle)
853		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
854out:
855	return ret;
856}
857
858/*
859 * Find the next range to zero.  We do this in terms of bytes because
860 * that's what ocfs2_zero_extend() wants, and it is dealing with the
861 * pagecache.  We may return multiple extents.
862 *
863 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
864 * needs to be zeroed.  range_start and range_end return the next zeroing
865 * range.  A subsequent call should pass the previous range_end as its
866 * zero_start.  If range_end is 0, there's nothing to do.
867 *
868 * Unwritten extents are skipped over.  Refcounted extents are CoWd.
869 */
870static int ocfs2_zero_extend_get_range(struct inode *inode,
871				       struct buffer_head *di_bh,
872				       u64 zero_start, u64 zero_end,
873				       u64 *range_start, u64 *range_end)
874{
875	int rc = 0, needs_cow = 0;
876	u32 p_cpos, zero_clusters = 0;
877	u32 zero_cpos =
878		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
879	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
880	unsigned int num_clusters = 0;
881	unsigned int ext_flags = 0;
882
883	while (zero_cpos < last_cpos) {
884		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
885					&num_clusters, &ext_flags);
886		if (rc) {
887			mlog_errno(rc);
888			goto out;
889		}
890
891		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
892			zero_clusters = num_clusters;
893			if (ext_flags & OCFS2_EXT_REFCOUNTED)
894				needs_cow = 1;
895			break;
896		}
897
898		zero_cpos += num_clusters;
899	}
900	if (!zero_clusters) {
901		*range_end = 0;
902		goto out;
903	}
904
905	while ((zero_cpos + zero_clusters) < last_cpos) {
906		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
907					&p_cpos, &num_clusters,
908					&ext_flags);
909		if (rc) {
910			mlog_errno(rc);
911			goto out;
912		}
913
914		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
915			break;
916		if (ext_flags & OCFS2_EXT_REFCOUNTED)
917			needs_cow = 1;
918		zero_clusters += num_clusters;
919	}
920	if ((zero_cpos + zero_clusters) > last_cpos)
921		zero_clusters = last_cpos - zero_cpos;
922
923	if (needs_cow) {
924		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
925					zero_clusters, UINT_MAX);
926		if (rc) {
927			mlog_errno(rc);
928			goto out;
929		}
930	}
931
932	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
933	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
934					     zero_cpos + zero_clusters);
935
936out:
937	return rc;
938}
939
940/*
941 * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
942 * has made sure that the entire range needs zeroing.
943 */
944static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
945				   u64 range_end, struct buffer_head *di_bh)
946{
947	int rc = 0;
948	u64 next_pos;
949	u64 zero_pos = range_start;
950
951	trace_ocfs2_zero_extend_range(
952			(unsigned long long)OCFS2_I(inode)->ip_blkno,
953			(unsigned long long)range_start,
954			(unsigned long long)range_end);
955	BUG_ON(range_start >= range_end);
956
957	while (zero_pos < range_end) {
958		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
959		if (next_pos > range_end)
960			next_pos = range_end;
961		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
962		if (rc < 0) {
963			mlog_errno(rc);
964			break;
965		}
966		zero_pos = next_pos;
967
968		/*
969		 * Very large extends have the potential to lock up
970		 * the cpu for extended periods of time.
971		 */
972		cond_resched();
973	}
974
975	return rc;
976}
977
978int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
979		      loff_t zero_to_size)
980{
981	int ret = 0;
982	u64 zero_start, range_start = 0, range_end = 0;
983	struct super_block *sb = inode->i_sb;
984
985	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
986	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
987				(unsigned long long)zero_start,
988				(unsigned long long)i_size_read(inode));
989	while (zero_start < zero_to_size) {
990		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
991						  zero_to_size,
992						  &range_start,
993						  &range_end);
994		if (ret) {
995			mlog_errno(ret);
996			break;
997		}
998		if (!range_end)
999			break;
1000		/* Trim the ends */
1001		if (range_start < zero_start)
1002			range_start = zero_start;
1003		if (range_end > zero_to_size)
1004			range_end = zero_to_size;
1005
1006		ret = ocfs2_zero_extend_range(inode, range_start,
1007					      range_end, di_bh);
1008		if (ret) {
1009			mlog_errno(ret);
1010			break;
1011		}
1012		zero_start = range_end;
1013	}
1014
1015	return ret;
1016}
1017
1018int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1019			  u64 new_i_size, u64 zero_to)
1020{
1021	int ret;
1022	u32 clusters_to_add;
1023	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1024
1025	/*
1026	 * Only quota files call this without a bh, and they can't be
1027	 * refcounted.
1028	 */
1029	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1030	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1031
1032	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1033	if (clusters_to_add < oi->ip_clusters)
1034		clusters_to_add = 0;
1035	else
1036		clusters_to_add -= oi->ip_clusters;
1037
1038	if (clusters_to_add) {
1039		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1040						clusters_to_add, 0);
1041		if (ret) {
1042			mlog_errno(ret);
1043			goto out;
1044		}
1045	}
1046
1047	/*
1048	 * Call this even if we don't add any clusters to the tree. We
1049	 * still need to zero the area between the old i_size and the
1050	 * new i_size.
1051	 */
1052	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1053	if (ret < 0)
1054		mlog_errno(ret);
1055
1056out:
1057	return ret;
1058}
1059
1060static int ocfs2_extend_file(struct inode *inode,
1061			     struct buffer_head *di_bh,
1062			     u64 new_i_size)
1063{
1064	int ret = 0;
1065	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1066
1067	BUG_ON(!di_bh);
1068
1069	/* setattr sometimes calls us like this. */
1070	if (new_i_size == 0)
1071		goto out;
1072
1073	if (i_size_read(inode) == new_i_size)
1074		goto out;
1075	BUG_ON(new_i_size < i_size_read(inode));
1076
1077	/*
1078	 * The alloc sem blocks people in read/write from reading our
1079	 * allocation until we're done changing it. We depend on
1080	 * i_mutex to block other extend/truncate calls while we're
1081	 * here.  We even have to hold it for sparse files because there
1082	 * might be some tail zeroing.
1083	 */
1084	down_write(&oi->ip_alloc_sem);
1085
1086	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1087		/*
1088		 * We can optimize small extends by keeping the inodes
1089		 * inline data.
1090		 */
1091		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1092			up_write(&oi->ip_alloc_sem);
1093			goto out_update_size;
1094		}
1095
1096		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1097		if (ret) {
1098			up_write(&oi->ip_alloc_sem);
1099			mlog_errno(ret);
1100			goto out;
1101		}
1102	}
1103
1104	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1105		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1106	else
1107		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1108					    new_i_size);
1109
1110	up_write(&oi->ip_alloc_sem);
1111
1112	if (ret < 0) {
1113		mlog_errno(ret);
1114		goto out;
1115	}
1116
1117out_update_size:
1118	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1119	if (ret < 0)
1120		mlog_errno(ret);
1121
1122out:
1123	return ret;
1124}
1125
1126int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1127{
1128	int status = 0, size_change;
1129	struct inode *inode = d_inode(dentry);
1130	struct super_block *sb = inode->i_sb;
1131	struct ocfs2_super *osb = OCFS2_SB(sb);
1132	struct buffer_head *bh = NULL;
1133	handle_t *handle = NULL;
1134	struct dquot *transfer_to[MAXQUOTAS] = { };
1135	int qtype;
1136
1137	trace_ocfs2_setattr(inode, dentry,
1138			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1139			    dentry->d_name.len, dentry->d_name.name,
1140			    attr->ia_valid, attr->ia_mode,
1141			    from_kuid(&init_user_ns, attr->ia_uid),
1142			    from_kgid(&init_user_ns, attr->ia_gid));
1143
1144	/* ensuring we don't even attempt to truncate a symlink */
1145	if (S_ISLNK(inode->i_mode))
1146		attr->ia_valid &= ~ATTR_SIZE;
1147
1148#define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1149			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1150	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1151		return 0;
1152
1153	status = inode_change_ok(inode, attr);
1154	if (status)
1155		return status;
1156
1157	if (is_quota_modification(inode, attr))
1158		dquot_initialize(inode);
1159	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1160	if (size_change) {
1161		status = ocfs2_rw_lock(inode, 1);
1162		if (status < 0) {
1163			mlog_errno(status);
1164			goto bail;
1165		}
1166	}
1167
1168	status = ocfs2_inode_lock(inode, &bh, 1);
1169	if (status < 0) {
1170		if (status != -ENOENT)
1171			mlog_errno(status);
1172		goto bail_unlock_rw;
1173	}
1174
1175	if (size_change) {
1176		status = inode_newsize_ok(inode, attr->ia_size);
1177		if (status)
1178			goto bail_unlock;
1179
1180		inode_dio_wait(inode);
1181
1182		if (i_size_read(inode) >= attr->ia_size) {
1183			if (ocfs2_should_order_data(inode)) {
1184				status = ocfs2_begin_ordered_truncate(inode,
1185								      attr->ia_size);
1186				if (status)
1187					goto bail_unlock;
1188			}
1189			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1190		} else
1191			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1192		if (status < 0) {
1193			if (status != -ENOSPC)
1194				mlog_errno(status);
1195			status = -ENOSPC;
1196			goto bail_unlock;
1197		}
1198	}
1199
1200	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1201	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1202		/*
1203		 * Gather pointers to quota structures so that allocation /
1204		 * freeing of quota structures happens here and not inside
1205		 * dquot_transfer() where we have problems with lock ordering
1206		 */
1207		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1208		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1209		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1210			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1211			if (!transfer_to[USRQUOTA]) {
1212				status = -ESRCH;
1213				goto bail_unlock;
1214			}
1215		}
1216		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1217		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1218		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1219			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1220			if (!transfer_to[GRPQUOTA]) {
1221				status = -ESRCH;
1222				goto bail_unlock;
1223			}
1224		}
1225		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1226					   2 * ocfs2_quota_trans_credits(sb));
1227		if (IS_ERR(handle)) {
1228			status = PTR_ERR(handle);
1229			mlog_errno(status);
1230			goto bail_unlock;
1231		}
1232		status = __dquot_transfer(inode, transfer_to);
1233		if (status < 0)
1234			goto bail_commit;
1235	} else {
1236		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1237		if (IS_ERR(handle)) {
1238			status = PTR_ERR(handle);
1239			mlog_errno(status);
1240			goto bail_unlock;
1241		}
1242	}
1243
1244	setattr_copy(inode, attr);
1245	mark_inode_dirty(inode);
1246
1247	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1248	if (status < 0)
1249		mlog_errno(status);
1250
1251bail_commit:
1252	ocfs2_commit_trans(osb, handle);
1253bail_unlock:
1254	ocfs2_inode_unlock(inode, 1);
1255bail_unlock_rw:
1256	if (size_change)
1257		ocfs2_rw_unlock(inode, 1);
1258bail:
1259
1260	/* Release quota pointers in case we acquired them */
1261	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1262		dqput(transfer_to[qtype]);
1263
1264	if (!status && attr->ia_valid & ATTR_MODE) {
1265		status = ocfs2_acl_chmod(inode, bh);
1266		if (status < 0)
1267			mlog_errno(status);
1268	}
1269
1270	brelse(bh);
1271	return status;
1272}
1273
1274int ocfs2_getattr(struct vfsmount *mnt,
1275		  struct dentry *dentry,
1276		  struct kstat *stat)
1277{
1278	struct inode *inode = d_inode(dentry);
1279	struct super_block *sb = d_inode(dentry)->i_sb;
1280	struct ocfs2_super *osb = sb->s_fs_info;
1281	int err;
1282
1283	err = ocfs2_inode_revalidate(dentry);
1284	if (err) {
1285		if (err != -ENOENT)
1286			mlog_errno(err);
1287		goto bail;
1288	}
1289
1290	generic_fillattr(inode, stat);
1291
1292	/* We set the blksize from the cluster size for performance */
1293	stat->blksize = osb->s_clustersize;
1294
1295bail:
1296	return err;
1297}
1298
1299int ocfs2_permission(struct inode *inode, int mask)
1300{
1301	int ret;
1302
1303	if (mask & MAY_NOT_BLOCK)
1304		return -ECHILD;
1305
1306	ret = ocfs2_inode_lock(inode, NULL, 0);
1307	if (ret) {
1308		if (ret != -ENOENT)
1309			mlog_errno(ret);
1310		goto out;
1311	}
1312
1313	ret = generic_permission(inode, mask);
1314
1315	ocfs2_inode_unlock(inode, 0);
1316out:
1317	return ret;
1318}
1319
1320static int __ocfs2_write_remove_suid(struct inode *inode,
1321				     struct buffer_head *bh)
1322{
1323	int ret;
1324	handle_t *handle;
1325	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1326	struct ocfs2_dinode *di;
1327
1328	trace_ocfs2_write_remove_suid(
1329			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1330			inode->i_mode);
1331
1332	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1333	if (IS_ERR(handle)) {
1334		ret = PTR_ERR(handle);
1335		mlog_errno(ret);
1336		goto out;
1337	}
1338
1339	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1340				      OCFS2_JOURNAL_ACCESS_WRITE);
1341	if (ret < 0) {
1342		mlog_errno(ret);
1343		goto out_trans;
1344	}
1345
1346	inode->i_mode &= ~S_ISUID;
1347	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1348		inode->i_mode &= ~S_ISGID;
1349
1350	di = (struct ocfs2_dinode *) bh->b_data;
1351	di->i_mode = cpu_to_le16(inode->i_mode);
1352	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1353
1354	ocfs2_journal_dirty(handle, bh);
1355
1356out_trans:
1357	ocfs2_commit_trans(osb, handle);
1358out:
1359	return ret;
1360}
1361
1362/*
1363 * Will look for holes and unwritten extents in the range starting at
1364 * pos for count bytes (inclusive).
1365 */
1366static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1367				       size_t count)
1368{
1369	int ret = 0;
1370	unsigned int extent_flags;
1371	u32 cpos, clusters, extent_len, phys_cpos;
1372	struct super_block *sb = inode->i_sb;
1373
1374	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1375	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1376
1377	while (clusters) {
1378		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1379					 &extent_flags);
1380		if (ret < 0) {
1381			mlog_errno(ret);
1382			goto out;
1383		}
1384
1385		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1386			ret = 1;
1387			break;
1388		}
1389
1390		if (extent_len > clusters)
1391			extent_len = clusters;
1392
1393		clusters -= extent_len;
1394		cpos += extent_len;
1395	}
1396out:
1397	return ret;
1398}
1399
1400static int ocfs2_write_remove_suid(struct inode *inode)
1401{
1402	int ret;
1403	struct buffer_head *bh = NULL;
1404
1405	ret = ocfs2_read_inode_block(inode, &bh);
1406	if (ret < 0) {
1407		mlog_errno(ret);
1408		goto out;
1409	}
1410
1411	ret =  __ocfs2_write_remove_suid(inode, bh);
1412out:
1413	brelse(bh);
1414	return ret;
1415}
1416
1417/*
1418 * Allocate enough extents to cover the region starting at byte offset
1419 * start for len bytes. Existing extents are skipped, any extents
1420 * added are marked as "unwritten".
1421 */
1422static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1423					    u64 start, u64 len)
1424{
1425	int ret;
1426	u32 cpos, phys_cpos, clusters, alloc_size;
1427	u64 end = start + len;
1428	struct buffer_head *di_bh = NULL;
1429
1430	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1431		ret = ocfs2_read_inode_block(inode, &di_bh);
1432		if (ret) {
1433			mlog_errno(ret);
1434			goto out;
1435		}
1436
1437		/*
1438		 * Nothing to do if the requested reservation range
1439		 * fits within the inode.
1440		 */
1441		if (ocfs2_size_fits_inline_data(di_bh, end))
1442			goto out;
1443
1444		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1445		if (ret) {
1446			mlog_errno(ret);
1447			goto out;
1448		}
1449	}
1450
1451	/*
1452	 * We consider both start and len to be inclusive.
1453	 */
1454	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1455	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1456	clusters -= cpos;
1457
1458	while (clusters) {
1459		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1460					 &alloc_size, NULL);
1461		if (ret) {
1462			mlog_errno(ret);
1463			goto out;
1464		}
1465
1466		/*
1467		 * Hole or existing extent len can be arbitrary, so
1468		 * cap it to our own allocation request.
1469		 */
1470		if (alloc_size > clusters)
1471			alloc_size = clusters;
1472
1473		if (phys_cpos) {
1474			/*
1475			 * We already have an allocation at this
1476			 * region so we can safely skip it.
1477			 */
1478			goto next;
1479		}
1480
1481		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1482		if (ret) {
1483			if (ret != -ENOSPC)
1484				mlog_errno(ret);
1485			goto out;
1486		}
1487
1488next:
1489		cpos += alloc_size;
1490		clusters -= alloc_size;
1491	}
1492
1493	ret = 0;
1494out:
1495
1496	brelse(di_bh);
1497	return ret;
1498}
1499
1500/*
1501 * Truncate a byte range, avoiding pages within partial clusters. This
1502 * preserves those pages for the zeroing code to write to.
1503 */
1504static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1505					 u64 byte_len)
1506{
1507	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1508	loff_t start, end;
1509	struct address_space *mapping = inode->i_mapping;
1510
1511	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1512	end = byte_start + byte_len;
1513	end = end & ~(osb->s_clustersize - 1);
1514
1515	if (start < end) {
1516		unmap_mapping_range(mapping, start, end - start, 0);
1517		truncate_inode_pages_range(mapping, start, end - 1);
1518	}
1519}
1520
1521static int ocfs2_zero_partial_clusters(struct inode *inode,
1522				       u64 start, u64 len)
1523{
1524	int ret = 0;
1525	u64 tmpend, end = start + len;
1526	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1527	unsigned int csize = osb->s_clustersize;
1528	handle_t *handle;
1529
1530	/*
1531	 * The "start" and "end" values are NOT necessarily part of
1532	 * the range whose allocation is being deleted. Rather, this
1533	 * is what the user passed in with the request. We must zero
1534	 * partial clusters here. There's no need to worry about
1535	 * physical allocation - the zeroing code knows to skip holes.
1536	 */
1537	trace_ocfs2_zero_partial_clusters(
1538		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1539		(unsigned long long)start, (unsigned long long)end);
1540
1541	/*
1542	 * If both edges are on a cluster boundary then there's no
1543	 * zeroing required as the region is part of the allocation to
1544	 * be truncated.
1545	 */
1546	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1547		goto out;
1548
1549	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1550	if (IS_ERR(handle)) {
1551		ret = PTR_ERR(handle);
1552		mlog_errno(ret);
1553		goto out;
1554	}
1555
1556	/*
1557	 * We want to get the byte offset of the end of the 1st cluster.
1558	 */
1559	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1560	if (tmpend > end)
1561		tmpend = end;
1562
1563	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1564						 (unsigned long long)tmpend);
1565
1566	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1567	if (ret)
1568		mlog_errno(ret);
1569
1570	if (tmpend < end) {
1571		/*
1572		 * This may make start and end equal, but the zeroing
1573		 * code will skip any work in that case so there's no
1574		 * need to catch it up here.
1575		 */
1576		start = end & ~(osb->s_clustersize - 1);
1577
1578		trace_ocfs2_zero_partial_clusters_range2(
1579			(unsigned long long)start, (unsigned long long)end);
1580
1581		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1582		if (ret)
1583			mlog_errno(ret);
1584	}
1585	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1586
1587	ocfs2_commit_trans(osb, handle);
1588out:
1589	return ret;
1590}
1591
1592static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1593{
1594	int i;
1595	struct ocfs2_extent_rec *rec = NULL;
1596
1597	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1598
1599		rec = &el->l_recs[i];
1600
1601		if (le32_to_cpu(rec->e_cpos) < pos)
1602			break;
1603	}
1604
1605	return i;
1606}
1607
1608/*
1609 * Helper to calculate the punching pos and length in one run, we handle the
1610 * following three cases in order:
1611 *
1612 * - remove the entire record
1613 * - remove a partial record
1614 * - no record needs to be removed (hole-punching completed)
1615*/
1616static void ocfs2_calc_trunc_pos(struct inode *inode,
1617				 struct ocfs2_extent_list *el,
1618				 struct ocfs2_extent_rec *rec,
1619				 u32 trunc_start, u32 *trunc_cpos,
1620				 u32 *trunc_len, u32 *trunc_end,
1621				 u64 *blkno, int *done)
1622{
1623	int ret = 0;
1624	u32 coff, range;
1625
1626	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1627
1628	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1629		/*
1630		 * remove an entire extent record.
1631		 */
1632		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1633		/*
1634		 * Skip holes if any.
1635		 */
1636		if (range < *trunc_end)
1637			*trunc_end = range;
1638		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1639		*blkno = le64_to_cpu(rec->e_blkno);
1640		*trunc_end = le32_to_cpu(rec->e_cpos);
1641	} else if (range > trunc_start) {
1642		/*
1643		 * remove a partial extent record, which means we're
1644		 * removing the last extent record.
1645		 */
1646		*trunc_cpos = trunc_start;
1647		/*
1648		 * skip hole if any.
1649		 */
1650		if (range < *trunc_end)
1651			*trunc_end = range;
1652		*trunc_len = *trunc_end - trunc_start;
1653		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1654		*blkno = le64_to_cpu(rec->e_blkno) +
1655				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1656		*trunc_end = trunc_start;
1657	} else {
1658		/*
1659		 * It may have two following possibilities:
1660		 *
1661		 * - last record has been removed
1662		 * - trunc_start was within a hole
1663		 *
1664		 * both two cases mean the completion of hole punching.
1665		 */
1666		ret = 1;
1667	}
1668
1669	*done = ret;
1670}
1671
1672static int ocfs2_remove_inode_range(struct inode *inode,
1673				    struct buffer_head *di_bh, u64 byte_start,
1674				    u64 byte_len)
1675{
1676	int ret = 0, flags = 0, done = 0, i;
1677	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1678	u32 cluster_in_el;
1679	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1680	struct ocfs2_cached_dealloc_ctxt dealloc;
1681	struct address_space *mapping = inode->i_mapping;
1682	struct ocfs2_extent_tree et;
1683	struct ocfs2_path *path = NULL;
1684	struct ocfs2_extent_list *el = NULL;
1685	struct ocfs2_extent_rec *rec = NULL;
1686	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1687	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1688
1689	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1690	ocfs2_init_dealloc_ctxt(&dealloc);
1691
1692	trace_ocfs2_remove_inode_range(
1693			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1694			(unsigned long long)byte_start,
1695			(unsigned long long)byte_len);
1696
1697	if (byte_len == 0)
1698		return 0;
1699
1700	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1701		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1702					    byte_start + byte_len, 0);
1703		if (ret) {
1704			mlog_errno(ret);
1705			goto out;
1706		}
1707		/*
1708		 * There's no need to get fancy with the page cache
1709		 * truncate of an inline-data inode. We're talking
1710		 * about less than a page here, which will be cached
1711		 * in the dinode buffer anyway.
1712		 */
1713		unmap_mapping_range(mapping, 0, 0, 0);
1714		truncate_inode_pages(mapping, 0);
1715		goto out;
1716	}
1717
1718	/*
1719	 * For reflinks, we may need to CoW 2 clusters which might be
1720	 * partially zero'd later, if hole's start and end offset were
1721	 * within one cluster(means is not exactly aligned to clustersize).
1722	 */
1723
1724	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1725
1726		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1727		if (ret) {
1728			mlog_errno(ret);
1729			goto out;
1730		}
1731
1732		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1733		if (ret) {
1734			mlog_errno(ret);
1735			goto out;
1736		}
1737	}
1738
1739	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1740	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1741	cluster_in_el = trunc_end;
1742
1743	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1744	if (ret) {
1745		mlog_errno(ret);
1746		goto out;
1747	}
1748
1749	path = ocfs2_new_path_from_et(&et);
1750	if (!path) {
1751		ret = -ENOMEM;
1752		mlog_errno(ret);
1753		goto out;
1754	}
1755
1756	while (trunc_end > trunc_start) {
1757
1758		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1759				      cluster_in_el);
1760		if (ret) {
1761			mlog_errno(ret);
1762			goto out;
1763		}
1764
1765		el = path_leaf_el(path);
1766
1767		i = ocfs2_find_rec(el, trunc_end);
1768		/*
1769		 * Need to go to previous extent block.
1770		 */
1771		if (i < 0) {
1772			if (path->p_tree_depth == 0)
1773				break;
1774
1775			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1776							    path,
1777							    &cluster_in_el);
1778			if (ret) {
1779				mlog_errno(ret);
1780				goto out;
1781			}
1782
1783			/*
1784			 * We've reached the leftmost extent block,
1785			 * it's safe to leave.
1786			 */
1787			if (cluster_in_el == 0)
1788				break;
1789
1790			/*
1791			 * The 'pos' searched for previous extent block is
1792			 * always one cluster less than actual trunc_end.
1793			 */
1794			trunc_end = cluster_in_el + 1;
1795
1796			ocfs2_reinit_path(path, 1);
1797
1798			continue;
1799
1800		} else
1801			rec = &el->l_recs[i];
1802
1803		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1804				     &trunc_len, &trunc_end, &blkno, &done);
1805		if (done)
1806			break;
1807
1808		flags = rec->e_flags;
1809		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1810
1811		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1812					       phys_cpos, trunc_len, flags,
1813					       &dealloc, refcount_loc, false);
1814		if (ret < 0) {
1815			mlog_errno(ret);
1816			goto out;
1817		}
1818
1819		cluster_in_el = trunc_end;
1820
1821		ocfs2_reinit_path(path, 1);
1822	}
1823
1824	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1825
1826out:
1827	ocfs2_free_path(path);
1828	ocfs2_schedule_truncate_log_flush(osb, 1);
1829	ocfs2_run_deallocs(osb, &dealloc);
1830
1831	return ret;
1832}
1833
1834/*
1835 * Parts of this function taken from xfs_change_file_space()
1836 */
1837static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1838				     loff_t f_pos, unsigned int cmd,
1839				     struct ocfs2_space_resv *sr,
1840				     int change_size)
1841{
1842	int ret;
1843	s64 llen;
1844	loff_t size;
1845	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1846	struct buffer_head *di_bh = NULL;
1847	handle_t *handle;
1848	unsigned long long max_off = inode->i_sb->s_maxbytes;
1849
1850	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1851		return -EROFS;
1852
1853	mutex_lock(&inode->i_mutex);
1854
1855	/*
1856	 * This prevents concurrent writes on other nodes
1857	 */
1858	ret = ocfs2_rw_lock(inode, 1);
1859	if (ret) {
1860		mlog_errno(ret);
1861		goto out;
1862	}
1863
1864	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1865	if (ret) {
1866		mlog_errno(ret);
1867		goto out_rw_unlock;
1868	}
1869
1870	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1871		ret = -EPERM;
1872		goto out_inode_unlock;
1873	}
1874
1875	switch (sr->l_whence) {
1876	case 0: /*SEEK_SET*/
1877		break;
1878	case 1: /*SEEK_CUR*/
1879		sr->l_start += f_pos;
1880		break;
1881	case 2: /*SEEK_END*/
1882		sr->l_start += i_size_read(inode);
1883		break;
1884	default:
1885		ret = -EINVAL;
1886		goto out_inode_unlock;
1887	}
1888	sr->l_whence = 0;
1889
1890	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1891
1892	if (sr->l_start < 0
1893	    || sr->l_start > max_off
1894	    || (sr->l_start + llen) < 0
1895	    || (sr->l_start + llen) > max_off) {
1896		ret = -EINVAL;
1897		goto out_inode_unlock;
1898	}
1899	size = sr->l_start + sr->l_len;
1900
1901	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1902	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1903		if (sr->l_len <= 0) {
1904			ret = -EINVAL;
1905			goto out_inode_unlock;
1906		}
1907	}
1908
1909	if (file && should_remove_suid(file->f_path.dentry)) {
1910		ret = __ocfs2_write_remove_suid(inode, di_bh);
1911		if (ret) {
1912			mlog_errno(ret);
1913			goto out_inode_unlock;
1914		}
1915	}
1916
1917	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1918	switch (cmd) {
1919	case OCFS2_IOC_RESVSP:
1920	case OCFS2_IOC_RESVSP64:
1921		/*
1922		 * This takes unsigned offsets, but the signed ones we
1923		 * pass have been checked against overflow above.
1924		 */
1925		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1926						       sr->l_len);
1927		break;
1928	case OCFS2_IOC_UNRESVSP:
1929	case OCFS2_IOC_UNRESVSP64:
1930		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1931					       sr->l_len);
1932		break;
1933	default:
1934		ret = -EINVAL;
1935	}
1936	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1937	if (ret) {
1938		mlog_errno(ret);
1939		goto out_inode_unlock;
1940	}
1941
1942	/*
1943	 * We update c/mtime for these changes
1944	 */
1945	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1946	if (IS_ERR(handle)) {
1947		ret = PTR_ERR(handle);
1948		mlog_errno(ret);
1949		goto out_inode_unlock;
1950	}
1951
1952	if (change_size && i_size_read(inode) < size)
1953		i_size_write(inode, size);
1954
1955	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1956	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1957	if (ret < 0)
1958		mlog_errno(ret);
1959
1960	if (file && (file->f_flags & O_SYNC))
1961		handle->h_sync = 1;
1962
1963	ocfs2_commit_trans(osb, handle);
1964
1965out_inode_unlock:
1966	brelse(di_bh);
1967	ocfs2_inode_unlock(inode, 1);
1968out_rw_unlock:
1969	ocfs2_rw_unlock(inode, 1);
1970
1971out:
1972	mutex_unlock(&inode->i_mutex);
1973	return ret;
1974}
1975
1976int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1977			    struct ocfs2_space_resv *sr)
1978{
1979	struct inode *inode = file_inode(file);
1980	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1981	int ret;
1982
1983	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1984	    !ocfs2_writes_unwritten_extents(osb))
1985		return -ENOTTY;
1986	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1987		 !ocfs2_sparse_alloc(osb))
1988		return -ENOTTY;
1989
1990	if (!S_ISREG(inode->i_mode))
1991		return -EINVAL;
1992
1993	if (!(file->f_mode & FMODE_WRITE))
1994		return -EBADF;
1995
1996	ret = mnt_want_write_file(file);
1997	if (ret)
1998		return ret;
1999	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2000	mnt_drop_write_file(file);
2001	return ret;
2002}
2003
2004static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2005			    loff_t len)
2006{
2007	struct inode *inode = file_inode(file);
2008	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2009	struct ocfs2_space_resv sr;
2010	int change_size = 1;
2011	int cmd = OCFS2_IOC_RESVSP64;
2012
2013	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2014		return -EOPNOTSUPP;
2015	if (!ocfs2_writes_unwritten_extents(osb))
2016		return -EOPNOTSUPP;
2017
2018	if (mode & FALLOC_FL_KEEP_SIZE)
2019		change_size = 0;
2020
2021	if (mode & FALLOC_FL_PUNCH_HOLE)
2022		cmd = OCFS2_IOC_UNRESVSP64;
2023
2024	sr.l_whence = 0;
2025	sr.l_start = (s64)offset;
2026	sr.l_len = (s64)len;
2027
2028	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2029					 change_size);
2030}
2031
2032int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2033				   size_t count)
2034{
2035	int ret = 0;
2036	unsigned int extent_flags;
2037	u32 cpos, clusters, extent_len, phys_cpos;
2038	struct super_block *sb = inode->i_sb;
2039
2040	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2041	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2042	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2043		return 0;
2044
2045	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2046	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2047
2048	while (clusters) {
2049		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2050					 &extent_flags);
2051		if (ret < 0) {
2052			mlog_errno(ret);
2053			goto out;
2054		}
2055
2056		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2057			ret = 1;
2058			break;
2059		}
2060
2061		if (extent_len > clusters)
2062			extent_len = clusters;
2063
2064		clusters -= extent_len;
2065		cpos += extent_len;
2066	}
2067out:
2068	return ret;
2069}
2070
2071static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2072{
2073	int blockmask = inode->i_sb->s_blocksize - 1;
2074	loff_t final_size = pos + count;
2075
2076	if ((pos & blockmask) || (final_size & blockmask))
2077		return 1;
2078	return 0;
2079}
2080
2081static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2082					    struct file *file,
2083					    loff_t pos, size_t count,
2084					    int *meta_level)
2085{
2086	int ret;
2087	struct buffer_head *di_bh = NULL;
2088	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2089	u32 clusters =
2090		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2091
2092	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2093	if (ret) {
2094		mlog_errno(ret);
2095		goto out;
2096	}
2097
2098	*meta_level = 1;
2099
2100	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2101	if (ret)
2102		mlog_errno(ret);
2103out:
2104	brelse(di_bh);
2105	return ret;
2106}
2107
2108static int ocfs2_prepare_inode_for_write(struct file *file,
2109					 loff_t pos,
2110					 size_t count,
2111					 int appending,
2112					 int *direct_io,
2113					 int *has_refcount)
2114{
2115	int ret = 0, meta_level = 0;
2116	struct dentry *dentry = file->f_path.dentry;
2117	struct inode *inode = d_inode(dentry);
2118	loff_t end;
2119	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2120	int full_coherency = !(osb->s_mount_opt &
2121		OCFS2_MOUNT_COHERENCY_BUFFERED);
2122
2123	/*
2124	 * We start with a read level meta lock and only jump to an ex
2125	 * if we need to make modifications here.
2126	 */
2127	for(;;) {
2128		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2129		if (ret < 0) {
2130			meta_level = -1;
2131			mlog_errno(ret);
2132			goto out;
2133		}
2134
2135		/* Clear suid / sgid if necessary. We do this here
2136		 * instead of later in the write path because
2137		 * remove_suid() calls ->setattr without any hint that
2138		 * we may have already done our cluster locking. Since
2139		 * ocfs2_setattr() *must* take cluster locks to
2140		 * proceed, this will lead us to recursively lock the
2141		 * inode. There's also the dinode i_size state which
2142		 * can be lost via setattr during extending writes (we
2143		 * set inode->i_size at the end of a write. */
2144		if (should_remove_suid(dentry)) {
2145			if (meta_level == 0) {
2146				ocfs2_inode_unlock(inode, meta_level);
2147				meta_level = 1;
2148				continue;
2149			}
2150
2151			ret = ocfs2_write_remove_suid(inode);
2152			if (ret < 0) {
2153				mlog_errno(ret);
2154				goto out_unlock;
2155			}
2156		}
2157
2158		end = pos + count;
2159
2160		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2161		if (ret == 1) {
2162			ocfs2_inode_unlock(inode, meta_level);
2163			meta_level = -1;
2164
2165			ret = ocfs2_prepare_inode_for_refcount(inode,
2166							       file,
2167							       pos,
2168							       count,
2169							       &meta_level);
2170			if (has_refcount)
2171				*has_refcount = 1;
2172			if (direct_io)
2173				*direct_io = 0;
2174		}
2175
2176		if (ret < 0) {
2177			mlog_errno(ret);
2178			goto out_unlock;
2179		}
2180
2181		/*
2182		 * Skip the O_DIRECT checks if we don't need
2183		 * them.
2184		 */
2185		if (!direct_io || !(*direct_io))
2186			break;
2187
2188		/*
2189		 * There's no sane way to do direct writes to an inode
2190		 * with inline data.
2191		 */
2192		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2193			*direct_io = 0;
2194			break;
2195		}
2196
2197		/*
2198		 * Allowing concurrent direct writes means
2199		 * i_size changes wouldn't be synchronized, so
2200		 * one node could wind up truncating another
2201		 * nodes writes.
2202		 */
2203		if (end > i_size_read(inode) && !full_coherency) {
2204			*direct_io = 0;
2205			break;
2206		}
2207
2208		/*
2209		 * Fallback to old way if the feature bit is not set.
2210		 */
2211		if (end > i_size_read(inode) &&
2212				!ocfs2_supports_append_dio(osb)) {
2213			*direct_io = 0;
2214			break;
2215		}
2216
2217		/*
2218		 * We don't fill holes during direct io, so
2219		 * check for them here. If any are found, the
2220		 * caller will have to retake some cluster
2221		 * locks and initiate the io as buffered.
2222		 */
2223		ret = ocfs2_check_range_for_holes(inode, pos, count);
2224		if (ret == 1) {
2225			/*
2226			 * Fallback to old way if the feature bit is not set.
2227			 * Otherwise try dio first and then complete the rest
2228			 * request through buffer io.
2229			 */
2230			if (!ocfs2_supports_append_dio(osb))
2231				*direct_io = 0;
2232			ret = 0;
2233		} else if (ret < 0)
2234			mlog_errno(ret);
2235		break;
2236	}
2237
2238out_unlock:
2239	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2240					    pos, appending, count,
2241					    direct_io, has_refcount);
2242
2243	if (meta_level >= 0)
2244		ocfs2_inode_unlock(inode, meta_level);
2245
2246out:
2247	return ret;
2248}
2249
2250static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2251				    struct iov_iter *from)
2252{
2253	int direct_io, appending, rw_level, have_alloc_sem  = 0;
2254	int can_do_direct, has_refcount = 0;
2255	ssize_t written = 0;
2256	ssize_t ret;
2257	size_t count = iov_iter_count(from), orig_count;
2258	loff_t old_size;
2259	u32 old_clusters;
2260	struct file *file = iocb->ki_filp;
2261	struct inode *inode = file_inode(file);
2262	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2263	int full_coherency = !(osb->s_mount_opt &
2264			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2265	int unaligned_dio = 0;
2266	int dropped_dio = 0;
2267
2268	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2269		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2270		file->f_path.dentry->d_name.len,
2271		file->f_path.dentry->d_name.name,
2272		(unsigned int)from->nr_segs);	/* GRRRRR */
2273
2274	if (count == 0)
2275		return 0;
2276
2277	appending = iocb->ki_flags & IOCB_APPEND ? 1 : 0;
2278	direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2279
2280	mutex_lock(&inode->i_mutex);
2281
2282	ocfs2_iocb_clear_sem_locked(iocb);
2283
2284relock:
2285	/* to match setattr's i_mutex -> rw_lock ordering */
2286	if (direct_io) {
2287		have_alloc_sem = 1;
2288		/* communicate with ocfs2_dio_end_io */
2289		ocfs2_iocb_set_sem_locked(iocb);
2290	}
2291
2292	/*
2293	 * Concurrent O_DIRECT writes are allowed with
2294	 * mount_option "coherency=buffered".
2295	 */
2296	rw_level = (!direct_io || full_coherency);
2297
2298	ret = ocfs2_rw_lock(inode, rw_level);
2299	if (ret < 0) {
2300		mlog_errno(ret);
2301		goto out_sems;
2302	}
2303
2304	/*
2305	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2306	 * inode_lock to guarantee coherency.
2307	 */
2308	if (direct_io && full_coherency) {
2309		/*
2310		 * We need to take and drop the inode lock to force
2311		 * other nodes to drop their caches.  Buffered I/O
2312		 * already does this in write_begin().
2313		 */
2314		ret = ocfs2_inode_lock(inode, NULL, 1);
2315		if (ret < 0) {
2316			mlog_errno(ret);
2317			goto out;
2318		}
2319
2320		ocfs2_inode_unlock(inode, 1);
2321	}
2322
2323	orig_count = iov_iter_count(from);
2324	ret = generic_write_checks(iocb, from);
2325	if (ret <= 0) {
2326		if (ret)
2327			mlog_errno(ret);
2328		goto out;
2329	}
2330	count = ret;
2331
2332	can_do_direct = direct_io;
2333	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, appending,
2334					    &can_do_direct, &has_refcount);
2335	if (ret < 0) {
2336		mlog_errno(ret);
2337		goto out;
2338	}
2339
2340	if (direct_io && !is_sync_kiocb(iocb))
2341		unaligned_dio = ocfs2_is_io_unaligned(inode, count, iocb->ki_pos);
2342
2343	/*
2344	 * We can't complete the direct I/O as requested, fall back to
2345	 * buffered I/O.
2346	 */
2347	if (direct_io && !can_do_direct) {
2348		ocfs2_rw_unlock(inode, rw_level);
2349
2350		have_alloc_sem = 0;
2351		rw_level = -1;
2352
2353		direct_io = 0;
2354		iocb->ki_flags &= ~IOCB_DIRECT;
2355		iov_iter_reexpand(from, orig_count);
2356		dropped_dio = 1;
2357		goto relock;
2358	}
2359
2360	if (unaligned_dio) {
2361		/*
2362		 * Wait on previous unaligned aio to complete before
2363		 * proceeding.
2364		 */
2365		mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio);
2366		/* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2367		ocfs2_iocb_set_unaligned_aio(iocb);
2368	}
2369
2370	/*
2371	 * To later detect whether a journal commit for sync writes is
2372	 * necessary, we sample i_size, and cluster count here.
2373	 */
2374	old_size = i_size_read(inode);
2375	old_clusters = OCFS2_I(inode)->ip_clusters;
2376
2377	/* communicate with ocfs2_dio_end_io */
2378	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2379
2380	written = __generic_file_write_iter(iocb, from);
2381	/* buffered aio wouldn't have proper lock coverage today */
2382	BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2383
2384	if (unlikely(written <= 0))
2385		goto no_sync;
2386
2387	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2388	    IS_SYNC(inode) || dropped_dio) {
2389		ret = filemap_fdatawrite_range(file->f_mapping,
2390					       iocb->ki_pos - written,
2391					       iocb->ki_pos - 1);
2392		if (ret < 0)
2393			written = ret;
2394
2395		if (!ret) {
2396			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2397			if (ret < 0)
2398				written = ret;
2399		}
2400
2401		if (!ret)
2402			ret = filemap_fdatawait_range(file->f_mapping,
2403						      iocb->ki_pos - written,
2404						      iocb->ki_pos - 1);
2405	}
2406
2407no_sync:
2408	/*
2409	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2410	 * function pointer which is called when o_direct io completes so that
2411	 * it can unlock our rw lock.
2412	 * Unfortunately there are error cases which call end_io and others
2413	 * that don't.  so we don't have to unlock the rw_lock if either an
2414	 * async dio is going to do it in the future or an end_io after an
2415	 * error has already done it.
2416	 */
2417	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2418		rw_level = -1;
2419		have_alloc_sem = 0;
2420		unaligned_dio = 0;
2421	}
2422
2423	if (unaligned_dio) {
2424		ocfs2_iocb_clear_unaligned_aio(iocb);
2425		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
2426	}
2427
2428out:
2429	if (rw_level != -1)
2430		ocfs2_rw_unlock(inode, rw_level);
2431
2432out_sems:
2433	if (have_alloc_sem)
2434		ocfs2_iocb_clear_sem_locked(iocb);
2435
2436	mutex_unlock(&inode->i_mutex);
2437
2438	if (written)
2439		ret = written;
2440	return ret;
2441}
2442
2443static ssize_t ocfs2_file_splice_read(struct file *in,
2444				      loff_t *ppos,
2445				      struct pipe_inode_info *pipe,
2446				      size_t len,
2447				      unsigned int flags)
2448{
2449	int ret = 0, lock_level = 0;
2450	struct inode *inode = file_inode(in);
2451
2452	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2453			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2454			in->f_path.dentry->d_name.len,
2455			in->f_path.dentry->d_name.name, len);
2456
2457	/*
2458	 * See the comment in ocfs2_file_read_iter()
2459	 */
2460	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2461	if (ret < 0) {
2462		mlog_errno(ret);
2463		goto bail;
2464	}
2465	ocfs2_inode_unlock(inode, lock_level);
2466
2467	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2468
2469bail:
2470	return ret;
2471}
2472
2473static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2474				   struct iov_iter *to)
2475{
2476	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2477	struct file *filp = iocb->ki_filp;
2478	struct inode *inode = file_inode(filp);
2479
2480	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2481			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2482			filp->f_path.dentry->d_name.len,
2483			filp->f_path.dentry->d_name.name,
2484			to->nr_segs);	/* GRRRRR */
2485
2486
2487	if (!inode) {
2488		ret = -EINVAL;
2489		mlog_errno(ret);
2490		goto bail;
2491	}
2492
2493	ocfs2_iocb_clear_sem_locked(iocb);
2494
2495	/*
2496	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2497	 * need locks to protect pending reads from racing with truncate.
2498	 */
2499	if (iocb->ki_flags & IOCB_DIRECT) {
2500		have_alloc_sem = 1;
2501		ocfs2_iocb_set_sem_locked(iocb);
2502
2503		ret = ocfs2_rw_lock(inode, 0);
2504		if (ret < 0) {
2505			mlog_errno(ret);
2506			goto bail;
2507		}
2508		rw_level = 0;
2509		/* communicate with ocfs2_dio_end_io */
2510		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2511	}
2512
2513	/*
2514	 * We're fine letting folks race truncates and extending
2515	 * writes with read across the cluster, just like they can
2516	 * locally. Hence no rw_lock during read.
2517	 *
2518	 * Take and drop the meta data lock to update inode fields
2519	 * like i_size. This allows the checks down below
2520	 * generic_file_aio_read() a chance of actually working.
2521	 */
2522	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2523	if (ret < 0) {
2524		mlog_errno(ret);
2525		goto bail;
2526	}
2527	ocfs2_inode_unlock(inode, lock_level);
2528
2529	ret = generic_file_read_iter(iocb, to);
2530	trace_generic_file_aio_read_ret(ret);
2531
2532	/* buffered aio wouldn't have proper lock coverage today */
2533	BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2534
2535	/* see ocfs2_file_write_iter */
2536	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2537		rw_level = -1;
2538		have_alloc_sem = 0;
2539	}
2540
2541bail:
2542	if (have_alloc_sem)
2543		ocfs2_iocb_clear_sem_locked(iocb);
2544
2545	if (rw_level != -1)
2546		ocfs2_rw_unlock(inode, rw_level);
2547
2548	return ret;
2549}
2550
2551/* Refer generic_file_llseek_unlocked() */
2552static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2553{
2554	struct inode *inode = file->f_mapping->host;
2555	int ret = 0;
2556
2557	mutex_lock(&inode->i_mutex);
2558
2559	switch (whence) {
2560	case SEEK_SET:
2561		break;
2562	case SEEK_END:
2563		/* SEEK_END requires the OCFS2 inode lock for the file
2564		 * because it references the file's size.
2565		 */
2566		ret = ocfs2_inode_lock(inode, NULL, 0);
2567		if (ret < 0) {
2568			mlog_errno(ret);
2569			goto out;
2570		}
2571		offset += i_size_read(inode);
2572		ocfs2_inode_unlock(inode, 0);
2573		break;
2574	case SEEK_CUR:
2575		if (offset == 0) {
2576			offset = file->f_pos;
2577			goto out;
2578		}
2579		offset += file->f_pos;
2580		break;
2581	case SEEK_DATA:
2582	case SEEK_HOLE:
2583		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2584		if (ret)
2585			goto out;
2586		break;
2587	default:
2588		ret = -EINVAL;
2589		goto out;
2590	}
2591
2592	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2593
2594out:
2595	mutex_unlock(&inode->i_mutex);
2596	if (ret)
2597		return ret;
2598	return offset;
2599}
2600
2601const struct inode_operations ocfs2_file_iops = {
2602	.setattr	= ocfs2_setattr,
2603	.getattr	= ocfs2_getattr,
2604	.permission	= ocfs2_permission,
2605	.setxattr	= generic_setxattr,
2606	.getxattr	= generic_getxattr,
2607	.listxattr	= ocfs2_listxattr,
2608	.removexattr	= generic_removexattr,
2609	.fiemap		= ocfs2_fiemap,
2610	.get_acl	= ocfs2_iop_get_acl,
2611	.set_acl	= ocfs2_iop_set_acl,
2612};
2613
2614const struct inode_operations ocfs2_special_file_iops = {
2615	.setattr	= ocfs2_setattr,
2616	.getattr	= ocfs2_getattr,
2617	.permission	= ocfs2_permission,
2618	.get_acl	= ocfs2_iop_get_acl,
2619	.set_acl	= ocfs2_iop_set_acl,
2620};
2621
2622/*
2623 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2624 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2625 */
2626const struct file_operations ocfs2_fops = {
2627	.llseek		= ocfs2_file_llseek,
2628	.mmap		= ocfs2_mmap,
2629	.fsync		= ocfs2_sync_file,
2630	.release	= ocfs2_file_release,
2631	.open		= ocfs2_file_open,
2632	.read_iter	= ocfs2_file_read_iter,
2633	.write_iter	= ocfs2_file_write_iter,
2634	.unlocked_ioctl	= ocfs2_ioctl,
2635#ifdef CONFIG_COMPAT
2636	.compat_ioctl   = ocfs2_compat_ioctl,
2637#endif
2638	.lock		= ocfs2_lock,
2639	.flock		= ocfs2_flock,
2640	.splice_read	= ocfs2_file_splice_read,
2641	.splice_write	= iter_file_splice_write,
2642	.fallocate	= ocfs2_fallocate,
2643};
2644
2645const struct file_operations ocfs2_dops = {
2646	.llseek		= generic_file_llseek,
2647	.read		= generic_read_dir,
2648	.iterate	= ocfs2_readdir,
2649	.fsync		= ocfs2_sync_file,
2650	.release	= ocfs2_dir_release,
2651	.open		= ocfs2_dir_open,
2652	.unlocked_ioctl	= ocfs2_ioctl,
2653#ifdef CONFIG_COMPAT
2654	.compat_ioctl   = ocfs2_compat_ioctl,
2655#endif
2656	.lock		= ocfs2_lock,
2657	.flock		= ocfs2_flock,
2658};
2659
2660/*
2661 * POSIX-lockless variants of our file_operations.
2662 *
2663 * These will be used if the underlying cluster stack does not support
2664 * posix file locking, if the user passes the "localflocks" mount
2665 * option, or if we have a local-only fs.
2666 *
2667 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2668 * so we still want it in the case of no stack support for
2669 * plocks. Internally, it will do the right thing when asked to ignore
2670 * the cluster.
2671 */
2672const struct file_operations ocfs2_fops_no_plocks = {
2673	.llseek		= ocfs2_file_llseek,
2674	.mmap		= ocfs2_mmap,
2675	.fsync		= ocfs2_sync_file,
2676	.release	= ocfs2_file_release,
2677	.open		= ocfs2_file_open,
2678	.read_iter	= ocfs2_file_read_iter,
2679	.write_iter	= ocfs2_file_write_iter,
2680	.unlocked_ioctl	= ocfs2_ioctl,
2681#ifdef CONFIG_COMPAT
2682	.compat_ioctl   = ocfs2_compat_ioctl,
2683#endif
2684	.flock		= ocfs2_flock,
2685	.splice_read	= ocfs2_file_splice_read,
2686	.splice_write	= iter_file_splice_write,
2687	.fallocate	= ocfs2_fallocate,
2688};
2689
2690const struct file_operations ocfs2_dops_no_plocks = {
2691	.llseek		= generic_file_llseek,
2692	.read		= generic_read_dir,
2693	.iterate	= ocfs2_readdir,
2694	.fsync		= ocfs2_sync_file,
2695	.release	= ocfs2_dir_release,
2696	.open		= ocfs2_dir_open,
2697	.unlocked_ioctl	= ocfs2_ioctl,
2698#ifdef CONFIG_COMPAT
2699	.compat_ioctl   = ocfs2_compat_ioctl,
2700#endif
2701	.flock		= ocfs2_flock,
2702};
2703