1/*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22/*
23 *  linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 *  from
31 *
32 *  linux/fs/minix/inode.c
33 *
34 *  Copyright (C) 1991, 1992  Linus Torvalds
35 *
36 *  Big-endian to little-endian byte-swapping/bitmaps by
37 *        David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40#include <linux/module.h>
41#include <linux/string.h>
42#include <linux/slab.h>
43#include <linux/init.h>
44#include <linux/blkdev.h>
45#include <linux/parser.h>
46#include <linux/crc32.h>
47#include <linux/vfs.h>
48#include <linux/writeback.h>
49#include <linux/seq_file.h>
50#include <linux/mount.h>
51#include "nilfs.h"
52#include "export.h"
53#include "mdt.h"
54#include "alloc.h"
55#include "btree.h"
56#include "btnode.h"
57#include "page.h"
58#include "cpfile.h"
59#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60#include "ifile.h"
61#include "dat.h"
62#include "segment.h"
63#include "segbuf.h"
64
65MODULE_AUTHOR("NTT Corp.");
66MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67		   "(NILFS)");
68MODULE_LICENSE("GPL");
69
70static struct kmem_cache *nilfs_inode_cachep;
71struct kmem_cache *nilfs_transaction_cachep;
72struct kmem_cache *nilfs_segbuf_cachep;
73struct kmem_cache *nilfs_btree_path_cache;
74
75static int nilfs_setup_super(struct super_block *sb, int is_mount);
76static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77
78static void nilfs_set_error(struct super_block *sb)
79{
80	struct the_nilfs *nilfs = sb->s_fs_info;
81	struct nilfs_super_block **sbp;
82
83	down_write(&nilfs->ns_sem);
84	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85		nilfs->ns_mount_state |= NILFS_ERROR_FS;
86		sbp = nilfs_prepare_super(sb, 0);
87		if (likely(sbp)) {
88			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89			if (sbp[1])
90				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
92		}
93	}
94	up_write(&nilfs->ns_sem);
95}
96
97/**
98 * nilfs_error() - report failure condition on a filesystem
99 *
100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101 * reporting an error message.  It should be called when NILFS detects
102 * incoherences or defects of meta data on disk.  As for sustainable
103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104 * function should be used instead.
105 *
106 * The segment constructor must not call this function because it can
107 * kill itself.
108 */
109void nilfs_error(struct super_block *sb, const char *function,
110		 const char *fmt, ...)
111{
112	struct the_nilfs *nilfs = sb->s_fs_info;
113	struct va_format vaf;
114	va_list args;
115
116	va_start(args, fmt);
117
118	vaf.fmt = fmt;
119	vaf.va = &args;
120
121	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122	       sb->s_id, function, &vaf);
123
124	va_end(args);
125
126	if (!(sb->s_flags & MS_RDONLY)) {
127		nilfs_set_error(sb);
128
129		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130			printk(KERN_CRIT "Remounting filesystem read-only\n");
131			sb->s_flags |= MS_RDONLY;
132		}
133	}
134
135	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136		panic("NILFS (device %s): panic forced after error\n",
137		      sb->s_id);
138}
139
140void nilfs_warning(struct super_block *sb, const char *function,
141		   const char *fmt, ...)
142{
143	struct va_format vaf;
144	va_list args;
145
146	va_start(args, fmt);
147
148	vaf.fmt = fmt;
149	vaf.va = &args;
150
151	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152	       sb->s_id, function, &vaf);
153
154	va_end(args);
155}
156
157
158struct inode *nilfs_alloc_inode(struct super_block *sb)
159{
160	struct nilfs_inode_info *ii;
161
162	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163	if (!ii)
164		return NULL;
165	ii->i_bh = NULL;
166	ii->i_state = 0;
167	ii->i_cno = 0;
168	ii->vfs_inode.i_version = 1;
169	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
170	return &ii->vfs_inode;
171}
172
173static void nilfs_i_callback(struct rcu_head *head)
174{
175	struct inode *inode = container_of(head, struct inode, i_rcu);
176	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
177
178	if (mdi) {
179		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180		kfree(mdi);
181	}
182	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
183}
184
185void nilfs_destroy_inode(struct inode *inode)
186{
187	call_rcu(&inode->i_rcu, nilfs_i_callback);
188}
189
190static int nilfs_sync_super(struct super_block *sb, int flag)
191{
192	struct the_nilfs *nilfs = sb->s_fs_info;
193	int err;
194
195 retry:
196	set_buffer_dirty(nilfs->ns_sbh[0]);
197	if (nilfs_test_opt(nilfs, BARRIER)) {
198		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199					  WRITE_SYNC | WRITE_FLUSH_FUA);
200	} else {
201		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202	}
203
204	if (unlikely(err)) {
205		printk(KERN_ERR
206		       "NILFS: unable to write superblock (err=%d)\n", err);
207		if (err == -EIO && nilfs->ns_sbh[1]) {
208			/*
209			 * sbp[0] points to newer log than sbp[1],
210			 * so copy sbp[0] to sbp[1] to take over sbp[0].
211			 */
212			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213			       nilfs->ns_sbsize);
214			nilfs_fall_back_super_block(nilfs);
215			goto retry;
216		}
217	} else {
218		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
219
220		nilfs->ns_sbwcount++;
221
222		/*
223		 * The latest segment becomes trailable from the position
224		 * written in superblock.
225		 */
226		clear_nilfs_discontinued(nilfs);
227
228		/* update GC protection for recent segments */
229		if (nilfs->ns_sbh[1]) {
230			if (flag == NILFS_SB_COMMIT_ALL) {
231				set_buffer_dirty(nilfs->ns_sbh[1]);
232				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233					goto out;
234			}
235			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237				sbp = nilfs->ns_sbp[1];
238		}
239
240		spin_lock(&nilfs->ns_last_segment_lock);
241		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242		spin_unlock(&nilfs->ns_last_segment_lock);
243	}
244 out:
245	return err;
246}
247
248void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249			  struct the_nilfs *nilfs)
250{
251	sector_t nfreeblocks;
252
253	/* nilfs->ns_sem must be locked by the caller. */
254	nilfs_count_free_blocks(nilfs, &nfreeblocks);
255	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
256
257	spin_lock(&nilfs->ns_last_segment_lock);
258	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261	spin_unlock(&nilfs->ns_last_segment_lock);
262}
263
264struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265					       int flip)
266{
267	struct the_nilfs *nilfs = sb->s_fs_info;
268	struct nilfs_super_block **sbp = nilfs->ns_sbp;
269
270	/* nilfs->ns_sem must be locked by the caller. */
271	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272		if (sbp[1] &&
273		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275		} else {
276			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277			       sb->s_id);
278			return NULL;
279		}
280	} else if (sbp[1] &&
281		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283	}
284
285	if (flip && sbp[1])
286		nilfs_swap_super_block(nilfs);
287
288	return sbp;
289}
290
291int nilfs_commit_super(struct super_block *sb, int flag)
292{
293	struct the_nilfs *nilfs = sb->s_fs_info;
294	struct nilfs_super_block **sbp = nilfs->ns_sbp;
295	time_t t;
296
297	/* nilfs->ns_sem must be locked by the caller. */
298	t = get_seconds();
299	nilfs->ns_sbwtime = t;
300	sbp[0]->s_wtime = cpu_to_le64(t);
301	sbp[0]->s_sum = 0;
302	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303					     (unsigned char *)sbp[0],
304					     nilfs->ns_sbsize));
305	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306		sbp[1]->s_wtime = sbp[0]->s_wtime;
307		sbp[1]->s_sum = 0;
308		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309					    (unsigned char *)sbp[1],
310					    nilfs->ns_sbsize));
311	}
312	clear_nilfs_sb_dirty(nilfs);
313	nilfs->ns_flushed_device = 1;
314	/* make sure store to ns_flushed_device cannot be reordered */
315	smp_wmb();
316	return nilfs_sync_super(sb, flag);
317}
318
319/**
320 * nilfs_cleanup_super() - write filesystem state for cleanup
321 * @sb: super block instance to be unmounted or degraded to read-only
322 *
323 * This function restores state flags in the on-disk super block.
324 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
325 * filesystem was not clean previously.
326 */
327int nilfs_cleanup_super(struct super_block *sb)
328{
329	struct the_nilfs *nilfs = sb->s_fs_info;
330	struct nilfs_super_block **sbp;
331	int flag = NILFS_SB_COMMIT;
332	int ret = -EIO;
333
334	sbp = nilfs_prepare_super(sb, 0);
335	if (sbp) {
336		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
337		nilfs_set_log_cursor(sbp[0], nilfs);
338		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
339			/*
340			 * make the "clean" flag also to the opposite
341			 * super block if both super blocks point to
342			 * the same checkpoint.
343			 */
344			sbp[1]->s_state = sbp[0]->s_state;
345			flag = NILFS_SB_COMMIT_ALL;
346		}
347		ret = nilfs_commit_super(sb, flag);
348	}
349	return ret;
350}
351
352/**
353 * nilfs_move_2nd_super - relocate secondary super block
354 * @sb: super block instance
355 * @sb2off: new offset of the secondary super block (in bytes)
356 */
357static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
358{
359	struct the_nilfs *nilfs = sb->s_fs_info;
360	struct buffer_head *nsbh;
361	struct nilfs_super_block *nsbp;
362	sector_t blocknr, newblocknr;
363	unsigned long offset;
364	int sb2i = -1;  /* array index of the secondary superblock */
365	int ret = 0;
366
367	/* nilfs->ns_sem must be locked by the caller. */
368	if (nilfs->ns_sbh[1] &&
369	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
370		sb2i = 1;
371		blocknr = nilfs->ns_sbh[1]->b_blocknr;
372	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
373		sb2i = 0;
374		blocknr = nilfs->ns_sbh[0]->b_blocknr;
375	}
376	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
377		goto out;  /* super block location is unchanged */
378
379	/* Get new super block buffer */
380	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
381	offset = sb2off & (nilfs->ns_blocksize - 1);
382	nsbh = sb_getblk(sb, newblocknr);
383	if (!nsbh) {
384		printk(KERN_WARNING
385		       "NILFS warning: unable to move secondary superblock "
386		       "to block %llu\n", (unsigned long long)newblocknr);
387		ret = -EIO;
388		goto out;
389	}
390	nsbp = (void *)nsbh->b_data + offset;
391	memset(nsbp, 0, nilfs->ns_blocksize);
392
393	if (sb2i >= 0) {
394		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
395		brelse(nilfs->ns_sbh[sb2i]);
396		nilfs->ns_sbh[sb2i] = nsbh;
397		nilfs->ns_sbp[sb2i] = nsbp;
398	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
399		/* secondary super block will be restored to index 1 */
400		nilfs->ns_sbh[1] = nsbh;
401		nilfs->ns_sbp[1] = nsbp;
402	} else {
403		brelse(nsbh);
404	}
405out:
406	return ret;
407}
408
409/**
410 * nilfs_resize_fs - resize the filesystem
411 * @sb: super block instance
412 * @newsize: new size of the filesystem (in bytes)
413 */
414int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
415{
416	struct the_nilfs *nilfs = sb->s_fs_info;
417	struct nilfs_super_block **sbp;
418	__u64 devsize, newnsegs;
419	loff_t sb2off;
420	int ret;
421
422	ret = -ERANGE;
423	devsize = i_size_read(sb->s_bdev->bd_inode);
424	if (newsize > devsize)
425		goto out;
426
427	/*
428	 * Write lock is required to protect some functions depending
429	 * on the number of segments, the number of reserved segments,
430	 * and so forth.
431	 */
432	down_write(&nilfs->ns_segctor_sem);
433
434	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
435	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
436	do_div(newnsegs, nilfs->ns_blocks_per_segment);
437
438	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
439	up_write(&nilfs->ns_segctor_sem);
440	if (ret < 0)
441		goto out;
442
443	ret = nilfs_construct_segment(sb);
444	if (ret < 0)
445		goto out;
446
447	down_write(&nilfs->ns_sem);
448	nilfs_move_2nd_super(sb, sb2off);
449	ret = -EIO;
450	sbp = nilfs_prepare_super(sb, 0);
451	if (likely(sbp)) {
452		nilfs_set_log_cursor(sbp[0], nilfs);
453		/*
454		 * Drop NILFS_RESIZE_FS flag for compatibility with
455		 * mount-time resize which may be implemented in a
456		 * future release.
457		 */
458		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
459					      ~NILFS_RESIZE_FS);
460		sbp[0]->s_dev_size = cpu_to_le64(newsize);
461		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
462		if (sbp[1])
463			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
464		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
465	}
466	up_write(&nilfs->ns_sem);
467
468	/*
469	 * Reset the range of allocatable segments last.  This order
470	 * is important in the case of expansion because the secondary
471	 * superblock must be protected from log write until migration
472	 * completes.
473	 */
474	if (!ret)
475		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
476out:
477	return ret;
478}
479
480static void nilfs_put_super(struct super_block *sb)
481{
482	struct the_nilfs *nilfs = sb->s_fs_info;
483
484	nilfs_detach_log_writer(sb);
485
486	if (!(sb->s_flags & MS_RDONLY)) {
487		down_write(&nilfs->ns_sem);
488		nilfs_cleanup_super(sb);
489		up_write(&nilfs->ns_sem);
490	}
491
492	iput(nilfs->ns_sufile);
493	iput(nilfs->ns_cpfile);
494	iput(nilfs->ns_dat);
495
496	destroy_nilfs(nilfs);
497	sb->s_fs_info = NULL;
498}
499
500static int nilfs_sync_fs(struct super_block *sb, int wait)
501{
502	struct the_nilfs *nilfs = sb->s_fs_info;
503	struct nilfs_super_block **sbp;
504	int err = 0;
505
506	/* This function is called when super block should be written back */
507	if (wait)
508		err = nilfs_construct_segment(sb);
509
510	down_write(&nilfs->ns_sem);
511	if (nilfs_sb_dirty(nilfs)) {
512		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
513		if (likely(sbp)) {
514			nilfs_set_log_cursor(sbp[0], nilfs);
515			nilfs_commit_super(sb, NILFS_SB_COMMIT);
516		}
517	}
518	up_write(&nilfs->ns_sem);
519
520	if (!err)
521		err = nilfs_flush_device(nilfs);
522
523	return err;
524}
525
526int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
527			    struct nilfs_root **rootp)
528{
529	struct the_nilfs *nilfs = sb->s_fs_info;
530	struct nilfs_root *root;
531	struct nilfs_checkpoint *raw_cp;
532	struct buffer_head *bh_cp;
533	int err = -ENOMEM;
534
535	root = nilfs_find_or_create_root(
536		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
537	if (!root)
538		return err;
539
540	if (root->ifile)
541		goto reuse; /* already attached checkpoint */
542
543	down_read(&nilfs->ns_segctor_sem);
544	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
545					  &bh_cp);
546	up_read(&nilfs->ns_segctor_sem);
547	if (unlikely(err)) {
548		if (err == -ENOENT || err == -EINVAL) {
549			printk(KERN_ERR
550			       "NILFS: Invalid checkpoint "
551			       "(checkpoint number=%llu)\n",
552			       (unsigned long long)cno);
553			err = -EINVAL;
554		}
555		goto failed;
556	}
557
558	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
559			       &raw_cp->cp_ifile_inode, &root->ifile);
560	if (err)
561		goto failed_bh;
562
563	atomic64_set(&root->inodes_count,
564			le64_to_cpu(raw_cp->cp_inodes_count));
565	atomic64_set(&root->blocks_count,
566			le64_to_cpu(raw_cp->cp_blocks_count));
567
568	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
569
570 reuse:
571	*rootp = root;
572	return 0;
573
574 failed_bh:
575	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
576 failed:
577	nilfs_put_root(root);
578
579	return err;
580}
581
582static int nilfs_freeze(struct super_block *sb)
583{
584	struct the_nilfs *nilfs = sb->s_fs_info;
585	int err;
586
587	if (sb->s_flags & MS_RDONLY)
588		return 0;
589
590	/* Mark super block clean */
591	down_write(&nilfs->ns_sem);
592	err = nilfs_cleanup_super(sb);
593	up_write(&nilfs->ns_sem);
594	return err;
595}
596
597static int nilfs_unfreeze(struct super_block *sb)
598{
599	struct the_nilfs *nilfs = sb->s_fs_info;
600
601	if (sb->s_flags & MS_RDONLY)
602		return 0;
603
604	down_write(&nilfs->ns_sem);
605	nilfs_setup_super(sb, false);
606	up_write(&nilfs->ns_sem);
607	return 0;
608}
609
610static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
611{
612	struct super_block *sb = dentry->d_sb;
613	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
614	struct the_nilfs *nilfs = root->nilfs;
615	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
616	unsigned long long blocks;
617	unsigned long overhead;
618	unsigned long nrsvblocks;
619	sector_t nfreeblocks;
620	u64 nmaxinodes, nfreeinodes;
621	int err;
622
623	/*
624	 * Compute all of the segment blocks
625	 *
626	 * The blocks before first segment and after last segment
627	 * are excluded.
628	 */
629	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
630		- nilfs->ns_first_data_block;
631	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
632
633	/*
634	 * Compute the overhead
635	 *
636	 * When distributing meta data blocks outside segment structure,
637	 * We must count them as the overhead.
638	 */
639	overhead = 0;
640
641	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
642	if (unlikely(err))
643		return err;
644
645	err = nilfs_ifile_count_free_inodes(root->ifile,
646					    &nmaxinodes, &nfreeinodes);
647	if (unlikely(err)) {
648		printk(KERN_WARNING
649			"NILFS warning: fail to count free inodes: err %d.\n",
650			err);
651		if (err == -ERANGE) {
652			/*
653			 * If nilfs_palloc_count_max_entries() returns
654			 * -ERANGE error code then we simply treat
655			 * curent inodes count as maximum possible and
656			 * zero as free inodes value.
657			 */
658			nmaxinodes = atomic64_read(&root->inodes_count);
659			nfreeinodes = 0;
660			err = 0;
661		} else
662			return err;
663	}
664
665	buf->f_type = NILFS_SUPER_MAGIC;
666	buf->f_bsize = sb->s_blocksize;
667	buf->f_blocks = blocks - overhead;
668	buf->f_bfree = nfreeblocks;
669	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
670		(buf->f_bfree - nrsvblocks) : 0;
671	buf->f_files = nmaxinodes;
672	buf->f_ffree = nfreeinodes;
673	buf->f_namelen = NILFS_NAME_LEN;
674	buf->f_fsid.val[0] = (u32)id;
675	buf->f_fsid.val[1] = (u32)(id >> 32);
676
677	return 0;
678}
679
680static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
681{
682	struct super_block *sb = dentry->d_sb;
683	struct the_nilfs *nilfs = sb->s_fs_info;
684	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
685
686	if (!nilfs_test_opt(nilfs, BARRIER))
687		seq_puts(seq, ",nobarrier");
688	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
689		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
690	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
691		seq_puts(seq, ",errors=panic");
692	if (nilfs_test_opt(nilfs, ERRORS_CONT))
693		seq_puts(seq, ",errors=continue");
694	if (nilfs_test_opt(nilfs, STRICT_ORDER))
695		seq_puts(seq, ",order=strict");
696	if (nilfs_test_opt(nilfs, NORECOVERY))
697		seq_puts(seq, ",norecovery");
698	if (nilfs_test_opt(nilfs, DISCARD))
699		seq_puts(seq, ",discard");
700
701	return 0;
702}
703
704static const struct super_operations nilfs_sops = {
705	.alloc_inode    = nilfs_alloc_inode,
706	.destroy_inode  = nilfs_destroy_inode,
707	.dirty_inode    = nilfs_dirty_inode,
708	.evict_inode    = nilfs_evict_inode,
709	.put_super      = nilfs_put_super,
710	.sync_fs        = nilfs_sync_fs,
711	.freeze_fs	= nilfs_freeze,
712	.unfreeze_fs	= nilfs_unfreeze,
713	.statfs         = nilfs_statfs,
714	.remount_fs     = nilfs_remount,
715	.show_options = nilfs_show_options
716};
717
718enum {
719	Opt_err_cont, Opt_err_panic, Opt_err_ro,
720	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
721	Opt_discard, Opt_nodiscard, Opt_err,
722};
723
724static match_table_t tokens = {
725	{Opt_err_cont, "errors=continue"},
726	{Opt_err_panic, "errors=panic"},
727	{Opt_err_ro, "errors=remount-ro"},
728	{Opt_barrier, "barrier"},
729	{Opt_nobarrier, "nobarrier"},
730	{Opt_snapshot, "cp=%u"},
731	{Opt_order, "order=%s"},
732	{Opt_norecovery, "norecovery"},
733	{Opt_discard, "discard"},
734	{Opt_nodiscard, "nodiscard"},
735	{Opt_err, NULL}
736};
737
738static int parse_options(char *options, struct super_block *sb, int is_remount)
739{
740	struct the_nilfs *nilfs = sb->s_fs_info;
741	char *p;
742	substring_t args[MAX_OPT_ARGS];
743
744	if (!options)
745		return 1;
746
747	while ((p = strsep(&options, ",")) != NULL) {
748		int token;
749		if (!*p)
750			continue;
751
752		token = match_token(p, tokens, args);
753		switch (token) {
754		case Opt_barrier:
755			nilfs_set_opt(nilfs, BARRIER);
756			break;
757		case Opt_nobarrier:
758			nilfs_clear_opt(nilfs, BARRIER);
759			break;
760		case Opt_order:
761			if (strcmp(args[0].from, "relaxed") == 0)
762				/* Ordered data semantics */
763				nilfs_clear_opt(nilfs, STRICT_ORDER);
764			else if (strcmp(args[0].from, "strict") == 0)
765				/* Strict in-order semantics */
766				nilfs_set_opt(nilfs, STRICT_ORDER);
767			else
768				return 0;
769			break;
770		case Opt_err_panic:
771			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
772			break;
773		case Opt_err_ro:
774			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
775			break;
776		case Opt_err_cont:
777			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
778			break;
779		case Opt_snapshot:
780			if (is_remount) {
781				printk(KERN_ERR
782				       "NILFS: \"%s\" option is invalid "
783				       "for remount.\n", p);
784				return 0;
785			}
786			break;
787		case Opt_norecovery:
788			nilfs_set_opt(nilfs, NORECOVERY);
789			break;
790		case Opt_discard:
791			nilfs_set_opt(nilfs, DISCARD);
792			break;
793		case Opt_nodiscard:
794			nilfs_clear_opt(nilfs, DISCARD);
795			break;
796		default:
797			printk(KERN_ERR
798			       "NILFS: Unrecognized mount option \"%s\"\n", p);
799			return 0;
800		}
801	}
802	return 1;
803}
804
805static inline void
806nilfs_set_default_options(struct super_block *sb,
807			  struct nilfs_super_block *sbp)
808{
809	struct the_nilfs *nilfs = sb->s_fs_info;
810
811	nilfs->ns_mount_opt =
812		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
813}
814
815static int nilfs_setup_super(struct super_block *sb, int is_mount)
816{
817	struct the_nilfs *nilfs = sb->s_fs_info;
818	struct nilfs_super_block **sbp;
819	int max_mnt_count;
820	int mnt_count;
821
822	/* nilfs->ns_sem must be locked by the caller. */
823	sbp = nilfs_prepare_super(sb, 0);
824	if (!sbp)
825		return -EIO;
826
827	if (!is_mount)
828		goto skip_mount_setup;
829
830	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
831	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
832
833	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
834		printk(KERN_WARNING
835		       "NILFS warning: mounting fs with errors\n");
836#if 0
837	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
838		printk(KERN_WARNING
839		       "NILFS warning: maximal mount count reached\n");
840#endif
841	}
842	if (!max_mnt_count)
843		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
844
845	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
846	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
847
848skip_mount_setup:
849	sbp[0]->s_state =
850		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
851	/* synchronize sbp[1] with sbp[0] */
852	if (sbp[1])
853		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
854	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
855}
856
857struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
858						 u64 pos, int blocksize,
859						 struct buffer_head **pbh)
860{
861	unsigned long long sb_index = pos;
862	unsigned long offset;
863
864	offset = do_div(sb_index, blocksize);
865	*pbh = sb_bread(sb, sb_index);
866	if (!*pbh)
867		return NULL;
868	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
869}
870
871int nilfs_store_magic_and_option(struct super_block *sb,
872				 struct nilfs_super_block *sbp,
873				 char *data)
874{
875	struct the_nilfs *nilfs = sb->s_fs_info;
876
877	sb->s_magic = le16_to_cpu(sbp->s_magic);
878
879	/* FS independent flags */
880#ifdef NILFS_ATIME_DISABLE
881	sb->s_flags |= MS_NOATIME;
882#endif
883
884	nilfs_set_default_options(sb, sbp);
885
886	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
887	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
888	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
889	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
890
891	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
892}
893
894int nilfs_check_feature_compatibility(struct super_block *sb,
895				      struct nilfs_super_block *sbp)
896{
897	__u64 features;
898
899	features = le64_to_cpu(sbp->s_feature_incompat) &
900		~NILFS_FEATURE_INCOMPAT_SUPP;
901	if (features) {
902		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
903		       "optional features (%llx)\n",
904		       (unsigned long long)features);
905		return -EINVAL;
906	}
907	features = le64_to_cpu(sbp->s_feature_compat_ro) &
908		~NILFS_FEATURE_COMPAT_RO_SUPP;
909	if (!(sb->s_flags & MS_RDONLY) && features) {
910		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
911		       "unsupported optional features (%llx)\n",
912		       (unsigned long long)features);
913		return -EINVAL;
914	}
915	return 0;
916}
917
918static int nilfs_get_root_dentry(struct super_block *sb,
919				 struct nilfs_root *root,
920				 struct dentry **root_dentry)
921{
922	struct inode *inode;
923	struct dentry *dentry;
924	int ret = 0;
925
926	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
927	if (IS_ERR(inode)) {
928		printk(KERN_ERR "NILFS: get root inode failed\n");
929		ret = PTR_ERR(inode);
930		goto out;
931	}
932	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
933		iput(inode);
934		printk(KERN_ERR "NILFS: corrupt root inode.\n");
935		ret = -EINVAL;
936		goto out;
937	}
938
939	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
940		dentry = d_find_alias(inode);
941		if (!dentry) {
942			dentry = d_make_root(inode);
943			if (!dentry) {
944				ret = -ENOMEM;
945				goto failed_dentry;
946			}
947		} else {
948			iput(inode);
949		}
950	} else {
951		dentry = d_obtain_root(inode);
952		if (IS_ERR(dentry)) {
953			ret = PTR_ERR(dentry);
954			goto failed_dentry;
955		}
956	}
957	*root_dentry = dentry;
958 out:
959	return ret;
960
961 failed_dentry:
962	printk(KERN_ERR "NILFS: get root dentry failed\n");
963	goto out;
964}
965
966static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
967				 struct dentry **root_dentry)
968{
969	struct the_nilfs *nilfs = s->s_fs_info;
970	struct nilfs_root *root;
971	int ret;
972
973	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
974
975	down_read(&nilfs->ns_segctor_sem);
976	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
977	up_read(&nilfs->ns_segctor_sem);
978	if (ret < 0) {
979		ret = (ret == -ENOENT) ? -EINVAL : ret;
980		goto out;
981	} else if (!ret) {
982		printk(KERN_ERR "NILFS: The specified checkpoint is "
983		       "not a snapshot (checkpoint number=%llu).\n",
984		       (unsigned long long)cno);
985		ret = -EINVAL;
986		goto out;
987	}
988
989	ret = nilfs_attach_checkpoint(s, cno, false, &root);
990	if (ret) {
991		printk(KERN_ERR "NILFS: error loading snapshot "
992		       "(checkpoint number=%llu).\n",
993	       (unsigned long long)cno);
994		goto out;
995	}
996	ret = nilfs_get_root_dentry(s, root, root_dentry);
997	nilfs_put_root(root);
998 out:
999	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1000	return ret;
1001}
1002
1003/**
1004 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1005 * @root_dentry: root dentry of the tree to be shrunk
1006 *
1007 * This function returns true if the tree was in-use.
1008 */
1009static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1010{
1011	shrink_dcache_parent(root_dentry);
1012	return d_count(root_dentry) > 1;
1013}
1014
1015int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1016{
1017	struct the_nilfs *nilfs = sb->s_fs_info;
1018	struct nilfs_root *root;
1019	struct inode *inode;
1020	struct dentry *dentry;
1021	int ret;
1022
1023	if (cno > nilfs->ns_cno)
1024		return false;
1025
1026	if (cno >= nilfs_last_cno(nilfs))
1027		return true;	/* protect recent checkpoints */
1028
1029	ret = false;
1030	root = nilfs_lookup_root(nilfs, cno);
1031	if (root) {
1032		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1033		if (inode) {
1034			dentry = d_find_alias(inode);
1035			if (dentry) {
1036				ret = nilfs_tree_is_busy(dentry);
1037				dput(dentry);
1038			}
1039			iput(inode);
1040		}
1041		nilfs_put_root(root);
1042	}
1043	return ret;
1044}
1045
1046/**
1047 * nilfs_fill_super() - initialize a super block instance
1048 * @sb: super_block
1049 * @data: mount options
1050 * @silent: silent mode flag
1051 *
1052 * This function is called exclusively by nilfs->ns_mount_mutex.
1053 * So, the recovery process is protected from other simultaneous mounts.
1054 */
1055static int
1056nilfs_fill_super(struct super_block *sb, void *data, int silent)
1057{
1058	struct the_nilfs *nilfs;
1059	struct nilfs_root *fsroot;
1060	__u64 cno;
1061	int err;
1062
1063	nilfs = alloc_nilfs(sb->s_bdev);
1064	if (!nilfs)
1065		return -ENOMEM;
1066
1067	sb->s_fs_info = nilfs;
1068
1069	err = init_nilfs(nilfs, sb, (char *)data);
1070	if (err)
1071		goto failed_nilfs;
1072
1073	sb->s_op = &nilfs_sops;
1074	sb->s_export_op = &nilfs_export_ops;
1075	sb->s_root = NULL;
1076	sb->s_time_gran = 1;
1077	sb->s_max_links = NILFS_LINK_MAX;
1078
1079	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1080
1081	err = load_nilfs(nilfs, sb);
1082	if (err)
1083		goto failed_nilfs;
1084
1085	cno = nilfs_last_cno(nilfs);
1086	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1087	if (err) {
1088		printk(KERN_ERR "NILFS: error loading last checkpoint "
1089		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1090		goto failed_unload;
1091	}
1092
1093	if (!(sb->s_flags & MS_RDONLY)) {
1094		err = nilfs_attach_log_writer(sb, fsroot);
1095		if (err)
1096			goto failed_checkpoint;
1097	}
1098
1099	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1100	if (err)
1101		goto failed_segctor;
1102
1103	nilfs_put_root(fsroot);
1104
1105	if (!(sb->s_flags & MS_RDONLY)) {
1106		down_write(&nilfs->ns_sem);
1107		nilfs_setup_super(sb, true);
1108		up_write(&nilfs->ns_sem);
1109	}
1110
1111	return 0;
1112
1113 failed_segctor:
1114	nilfs_detach_log_writer(sb);
1115
1116 failed_checkpoint:
1117	nilfs_put_root(fsroot);
1118
1119 failed_unload:
1120	iput(nilfs->ns_sufile);
1121	iput(nilfs->ns_cpfile);
1122	iput(nilfs->ns_dat);
1123
1124 failed_nilfs:
1125	destroy_nilfs(nilfs);
1126	return err;
1127}
1128
1129static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1130{
1131	struct the_nilfs *nilfs = sb->s_fs_info;
1132	unsigned long old_sb_flags;
1133	unsigned long old_mount_opt;
1134	int err;
1135
1136	sync_filesystem(sb);
1137	old_sb_flags = sb->s_flags;
1138	old_mount_opt = nilfs->ns_mount_opt;
1139
1140	if (!parse_options(data, sb, 1)) {
1141		err = -EINVAL;
1142		goto restore_opts;
1143	}
1144	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1145
1146	err = -EINVAL;
1147
1148	if (!nilfs_valid_fs(nilfs)) {
1149		printk(KERN_WARNING "NILFS (device %s): couldn't "
1150		       "remount because the filesystem is in an "
1151		       "incomplete recovery state.\n", sb->s_id);
1152		goto restore_opts;
1153	}
1154
1155	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1156		goto out;
1157	if (*flags & MS_RDONLY) {
1158		/* Shutting down log writer */
1159		nilfs_detach_log_writer(sb);
1160		sb->s_flags |= MS_RDONLY;
1161
1162		/*
1163		 * Remounting a valid RW partition RDONLY, so set
1164		 * the RDONLY flag and then mark the partition as valid again.
1165		 */
1166		down_write(&nilfs->ns_sem);
1167		nilfs_cleanup_super(sb);
1168		up_write(&nilfs->ns_sem);
1169	} else {
1170		__u64 features;
1171		struct nilfs_root *root;
1172
1173		/*
1174		 * Mounting a RDONLY partition read-write, so reread and
1175		 * store the current valid flag.  (It may have been changed
1176		 * by fsck since we originally mounted the partition.)
1177		 */
1178		down_read(&nilfs->ns_sem);
1179		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1180			~NILFS_FEATURE_COMPAT_RO_SUPP;
1181		up_read(&nilfs->ns_sem);
1182		if (features) {
1183			printk(KERN_WARNING "NILFS (device %s): couldn't "
1184			       "remount RDWR because of unsupported optional "
1185			       "features (%llx)\n",
1186			       sb->s_id, (unsigned long long)features);
1187			err = -EROFS;
1188			goto restore_opts;
1189		}
1190
1191		sb->s_flags &= ~MS_RDONLY;
1192
1193		root = NILFS_I(d_inode(sb->s_root))->i_root;
1194		err = nilfs_attach_log_writer(sb, root);
1195		if (err)
1196			goto restore_opts;
1197
1198		down_write(&nilfs->ns_sem);
1199		nilfs_setup_super(sb, true);
1200		up_write(&nilfs->ns_sem);
1201	}
1202 out:
1203	return 0;
1204
1205 restore_opts:
1206	sb->s_flags = old_sb_flags;
1207	nilfs->ns_mount_opt = old_mount_opt;
1208	return err;
1209}
1210
1211struct nilfs_super_data {
1212	struct block_device *bdev;
1213	__u64 cno;
1214	int flags;
1215};
1216
1217/**
1218 * nilfs_identify - pre-read mount options needed to identify mount instance
1219 * @data: mount options
1220 * @sd: nilfs_super_data
1221 */
1222static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1223{
1224	char *p, *options = data;
1225	substring_t args[MAX_OPT_ARGS];
1226	int token;
1227	int ret = 0;
1228
1229	do {
1230		p = strsep(&options, ",");
1231		if (p != NULL && *p) {
1232			token = match_token(p, tokens, args);
1233			if (token == Opt_snapshot) {
1234				if (!(sd->flags & MS_RDONLY)) {
1235					ret++;
1236				} else {
1237					sd->cno = simple_strtoull(args[0].from,
1238								  NULL, 0);
1239					/*
1240					 * No need to see the end pointer;
1241					 * match_token() has done syntax
1242					 * checking.
1243					 */
1244					if (sd->cno == 0)
1245						ret++;
1246				}
1247			}
1248			if (ret)
1249				printk(KERN_ERR
1250				       "NILFS: invalid mount option: %s\n", p);
1251		}
1252		if (!options)
1253			break;
1254		BUG_ON(options == data);
1255		*(options - 1) = ',';
1256	} while (!ret);
1257	return ret;
1258}
1259
1260static int nilfs_set_bdev_super(struct super_block *s, void *data)
1261{
1262	s->s_bdev = data;
1263	s->s_dev = s->s_bdev->bd_dev;
1264	return 0;
1265}
1266
1267static int nilfs_test_bdev_super(struct super_block *s, void *data)
1268{
1269	return (void *)s->s_bdev == data;
1270}
1271
1272static struct dentry *
1273nilfs_mount(struct file_system_type *fs_type, int flags,
1274	     const char *dev_name, void *data)
1275{
1276	struct nilfs_super_data sd;
1277	struct super_block *s;
1278	fmode_t mode = FMODE_READ | FMODE_EXCL;
1279	struct dentry *root_dentry;
1280	int err, s_new = false;
1281
1282	if (!(flags & MS_RDONLY))
1283		mode |= FMODE_WRITE;
1284
1285	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1286	if (IS_ERR(sd.bdev))
1287		return ERR_CAST(sd.bdev);
1288
1289	sd.cno = 0;
1290	sd.flags = flags;
1291	if (nilfs_identify((char *)data, &sd)) {
1292		err = -EINVAL;
1293		goto failed;
1294	}
1295
1296	/*
1297	 * once the super is inserted into the list by sget, s_umount
1298	 * will protect the lockfs code from trying to start a snapshot
1299	 * while we are mounting
1300	 */
1301	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1302	if (sd.bdev->bd_fsfreeze_count > 0) {
1303		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1304		err = -EBUSY;
1305		goto failed;
1306	}
1307	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1308		 sd.bdev);
1309	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1310	if (IS_ERR(s)) {
1311		err = PTR_ERR(s);
1312		goto failed;
1313	}
1314
1315	if (!s->s_root) {
1316		char b[BDEVNAME_SIZE];
1317
1318		s_new = true;
1319
1320		/* New superblock instance created */
1321		s->s_mode = mode;
1322		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1323		sb_set_blocksize(s, block_size(sd.bdev));
1324
1325		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1326		if (err)
1327			goto failed_super;
1328
1329		s->s_flags |= MS_ACTIVE;
1330	} else if (!sd.cno) {
1331		if (nilfs_tree_is_busy(s->s_root)) {
1332			if ((flags ^ s->s_flags) & MS_RDONLY) {
1333				printk(KERN_ERR "NILFS: the device already "
1334				       "has a %s mount.\n",
1335				       (s->s_flags & MS_RDONLY) ?
1336				       "read-only" : "read/write");
1337				err = -EBUSY;
1338				goto failed_super;
1339			}
1340		} else {
1341			/*
1342			 * Try remount to setup mount states if the current
1343			 * tree is not mounted and only snapshots use this sb.
1344			 */
1345			err = nilfs_remount(s, &flags, data);
1346			if (err)
1347				goto failed_super;
1348		}
1349	}
1350
1351	if (sd.cno) {
1352		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1353		if (err)
1354			goto failed_super;
1355	} else {
1356		root_dentry = dget(s->s_root);
1357	}
1358
1359	if (!s_new)
1360		blkdev_put(sd.bdev, mode);
1361
1362	return root_dentry;
1363
1364 failed_super:
1365	deactivate_locked_super(s);
1366
1367 failed:
1368	if (!s_new)
1369		blkdev_put(sd.bdev, mode);
1370	return ERR_PTR(err);
1371}
1372
1373struct file_system_type nilfs_fs_type = {
1374	.owner    = THIS_MODULE,
1375	.name     = "nilfs2",
1376	.mount    = nilfs_mount,
1377	.kill_sb  = kill_block_super,
1378	.fs_flags = FS_REQUIRES_DEV,
1379};
1380MODULE_ALIAS_FS("nilfs2");
1381
1382static void nilfs_inode_init_once(void *obj)
1383{
1384	struct nilfs_inode_info *ii = obj;
1385
1386	INIT_LIST_HEAD(&ii->i_dirty);
1387#ifdef CONFIG_NILFS_XATTR
1388	init_rwsem(&ii->xattr_sem);
1389#endif
1390	address_space_init_once(&ii->i_btnode_cache);
1391	ii->i_bmap = &ii->i_bmap_data;
1392	inode_init_once(&ii->vfs_inode);
1393}
1394
1395static void nilfs_segbuf_init_once(void *obj)
1396{
1397	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1398}
1399
1400static void nilfs_destroy_cachep(void)
1401{
1402	/*
1403	 * Make sure all delayed rcu free inodes are flushed before we
1404	 * destroy cache.
1405	 */
1406	rcu_barrier();
1407
1408	if (nilfs_inode_cachep)
1409		kmem_cache_destroy(nilfs_inode_cachep);
1410	if (nilfs_transaction_cachep)
1411		kmem_cache_destroy(nilfs_transaction_cachep);
1412	if (nilfs_segbuf_cachep)
1413		kmem_cache_destroy(nilfs_segbuf_cachep);
1414	if (nilfs_btree_path_cache)
1415		kmem_cache_destroy(nilfs_btree_path_cache);
1416}
1417
1418static int __init nilfs_init_cachep(void)
1419{
1420	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421			sizeof(struct nilfs_inode_info), 0,
1422			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1423	if (!nilfs_inode_cachep)
1424		goto fail;
1425
1426	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1427			sizeof(struct nilfs_transaction_info), 0,
1428			SLAB_RECLAIM_ACCOUNT, NULL);
1429	if (!nilfs_transaction_cachep)
1430		goto fail;
1431
1432	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1433			sizeof(struct nilfs_segment_buffer), 0,
1434			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1435	if (!nilfs_segbuf_cachep)
1436		goto fail;
1437
1438	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1439			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1440			0, 0, NULL);
1441	if (!nilfs_btree_path_cache)
1442		goto fail;
1443
1444	return 0;
1445
1446fail:
1447	nilfs_destroy_cachep();
1448	return -ENOMEM;
1449}
1450
1451static int __init init_nilfs_fs(void)
1452{
1453	int err;
1454
1455	err = nilfs_init_cachep();
1456	if (err)
1457		goto fail;
1458
1459	err = nilfs_sysfs_init();
1460	if (err)
1461		goto free_cachep;
1462
1463	err = register_filesystem(&nilfs_fs_type);
1464	if (err)
1465		goto deinit_sysfs_entry;
1466
1467	printk(KERN_INFO "NILFS version 2 loaded\n");
1468	return 0;
1469
1470deinit_sysfs_entry:
1471	nilfs_sysfs_exit();
1472free_cachep:
1473	nilfs_destroy_cachep();
1474fail:
1475	return err;
1476}
1477
1478static void __exit exit_nilfs_fs(void)
1479{
1480	nilfs_destroy_cachep();
1481	nilfs_sysfs_exit();
1482	unregister_filesystem(&nilfs_fs_type);
1483}
1484
1485module_init(init_nilfs_fs)
1486module_exit(exit_nilfs_fs)
1487