1/*
2 *  linux/fs/nfs/file.c
3 *
4 *  Copyright (C) 1992  Rick Sladkey
5 *
6 *  Changes Copyright (C) 1994 by Florian La Roche
7 *   - Do not copy data too often around in the kernel.
8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
9 *   - Put in a better version of read look-ahead buffering. Original idea
10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11 *
12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13 *
14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
15 *
16 *  nfs regular file handling functions
17 */
18
19#include <linux/module.h>
20#include <linux/time.h>
21#include <linux/kernel.h>
22#include <linux/errno.h>
23#include <linux/fcntl.h>
24#include <linux/stat.h>
25#include <linux/nfs_fs.h>
26#include <linux/nfs_mount.h>
27#include <linux/mm.h>
28#include <linux/pagemap.h>
29#include <linux/gfp.h>
30#include <linux/swap.h>
31
32#include <asm/uaccess.h>
33
34#include "delegation.h"
35#include "internal.h"
36#include "iostat.h"
37#include "fscache.h"
38#include "pnfs.h"
39
40#include "nfstrace.h"
41
42#define NFSDBG_FACILITY		NFSDBG_FILE
43
44static const struct vm_operations_struct nfs_file_vm_ops;
45
46/* Hack for future NFS swap support */
47#ifndef IS_SWAPFILE
48# define IS_SWAPFILE(inode)	(0)
49#endif
50
51int nfs_check_flags(int flags)
52{
53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54		return -EINVAL;
55
56	return 0;
57}
58EXPORT_SYMBOL_GPL(nfs_check_flags);
59
60/*
61 * Open file
62 */
63static int
64nfs_file_open(struct inode *inode, struct file *filp)
65{
66	int res;
67
68	dprintk("NFS: open file(%pD2)\n", filp);
69
70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71	res = nfs_check_flags(filp->f_flags);
72	if (res)
73		return res;
74
75	res = nfs_open(inode, filp);
76	return res;
77}
78
79int
80nfs_file_release(struct inode *inode, struct file *filp)
81{
82	dprintk("NFS: release(%pD2)\n", filp);
83
84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85	return nfs_release(inode, filp);
86}
87EXPORT_SYMBOL_GPL(nfs_file_release);
88
89/**
90 * nfs_revalidate_size - Revalidate the file size
91 * @inode - pointer to inode struct
92 * @file - pointer to struct file
93 *
94 * Revalidates the file length. This is basically a wrapper around
95 * nfs_revalidate_inode() that takes into account the fact that we may
96 * have cached writes (in which case we don't care about the server's
97 * idea of what the file length is), or O_DIRECT (in which case we
98 * shouldn't trust the cache).
99 */
100static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101{
102	struct nfs_server *server = NFS_SERVER(inode);
103	struct nfs_inode *nfsi = NFS_I(inode);
104
105	if (nfs_have_delegated_attributes(inode))
106		goto out_noreval;
107
108	if (filp->f_flags & O_DIRECT)
109		goto force_reval;
110	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111		goto force_reval;
112	if (nfs_attribute_timeout(inode))
113		goto force_reval;
114out_noreval:
115	return 0;
116force_reval:
117	return __nfs_revalidate_inode(server, inode);
118}
119
120loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121{
122	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123			filp, offset, whence);
124
125	/*
126	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127	 * the cached file length
128	 */
129	if (whence != SEEK_SET && whence != SEEK_CUR) {
130		struct inode *inode = filp->f_mapping->host;
131
132		int retval = nfs_revalidate_file_size(inode, filp);
133		if (retval < 0)
134			return (loff_t)retval;
135	}
136
137	return generic_file_llseek(filp, offset, whence);
138}
139EXPORT_SYMBOL_GPL(nfs_file_llseek);
140
141/*
142 * Flush all dirty pages, and check for write errors.
143 */
144int
145nfs_file_flush(struct file *file, fl_owner_t id)
146{
147	struct inode	*inode = file_inode(file);
148
149	dprintk("NFS: flush(%pD2)\n", file);
150
151	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152	if ((file->f_mode & FMODE_WRITE) == 0)
153		return 0;
154
155	/*
156	 * If we're holding a write delegation, then just start the i/o
157	 * but don't wait for completion (or send a commit).
158	 */
159	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160		return filemap_fdatawrite(file->f_mapping);
161
162	/* Flush writes to the server and return any errors */
163	return vfs_fsync(file, 0);
164}
165EXPORT_SYMBOL_GPL(nfs_file_flush);
166
167ssize_t
168nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
169{
170	struct inode *inode = file_inode(iocb->ki_filp);
171	ssize_t result;
172
173	if (iocb->ki_flags & IOCB_DIRECT)
174		return nfs_file_direct_read(iocb, to, iocb->ki_pos);
175
176	dprintk("NFS: read(%pD2, %zu@%lu)\n",
177		iocb->ki_filp,
178		iov_iter_count(to), (unsigned long) iocb->ki_pos);
179
180	result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
181	if (!result) {
182		result = generic_file_read_iter(iocb, to);
183		if (result > 0)
184			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
185	}
186	return result;
187}
188EXPORT_SYMBOL_GPL(nfs_file_read);
189
190ssize_t
191nfs_file_splice_read(struct file *filp, loff_t *ppos,
192		     struct pipe_inode_info *pipe, size_t count,
193		     unsigned int flags)
194{
195	struct inode *inode = file_inode(filp);
196	ssize_t res;
197
198	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
199		filp, (unsigned long) count, (unsigned long long) *ppos);
200
201	res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
202	if (!res) {
203		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
204		if (res > 0)
205			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
206	}
207	return res;
208}
209EXPORT_SYMBOL_GPL(nfs_file_splice_read);
210
211int
212nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
213{
214	struct inode *inode = file_inode(file);
215	int	status;
216
217	dprintk("NFS: mmap(%pD2)\n", file);
218
219	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
220	 *       so we call that before revalidating the mapping
221	 */
222	status = generic_file_mmap(file, vma);
223	if (!status) {
224		vma->vm_ops = &nfs_file_vm_ops;
225		status = nfs_revalidate_mapping(inode, file->f_mapping);
226	}
227	return status;
228}
229EXPORT_SYMBOL_GPL(nfs_file_mmap);
230
231/*
232 * Flush any dirty pages for this process, and check for write errors.
233 * The return status from this call provides a reliable indication of
234 * whether any write errors occurred for this process.
235 *
236 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
237 * disk, but it retrieves and clears ctx->error after synching, despite
238 * the two being set at the same time in nfs_context_set_write_error().
239 * This is because the former is used to notify the _next_ call to
240 * nfs_file_write() that a write error occurred, and hence cause it to
241 * fall back to doing a synchronous write.
242 */
243int
244nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
245{
246	struct nfs_open_context *ctx = nfs_file_open_context(file);
247	struct inode *inode = file_inode(file);
248	int have_error, do_resend, status;
249	int ret = 0;
250
251	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
252
253	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
254	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
255	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
256	status = nfs_commit_inode(inode, FLUSH_SYNC);
257	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
258	if (have_error) {
259		ret = xchg(&ctx->error, 0);
260		if (ret)
261			goto out;
262	}
263	if (status < 0) {
264		ret = status;
265		goto out;
266	}
267	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
268	if (do_resend)
269		ret = -EAGAIN;
270out:
271	return ret;
272}
273EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
274
275static int
276nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
277{
278	int ret;
279	struct inode *inode = file_inode(file);
280
281	trace_nfs_fsync_enter(inode);
282
283	nfs_inode_dio_wait(inode);
284	do {
285		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
286		if (ret != 0)
287			break;
288		mutex_lock(&inode->i_mutex);
289		ret = nfs_file_fsync_commit(file, start, end, datasync);
290		mutex_unlock(&inode->i_mutex);
291		/*
292		 * If nfs_file_fsync_commit detected a server reboot, then
293		 * resend all dirty pages that might have been covered by
294		 * the NFS_CONTEXT_RESEND_WRITES flag
295		 */
296		start = 0;
297		end = LLONG_MAX;
298	} while (ret == -EAGAIN);
299
300	trace_nfs_fsync_exit(inode, ret);
301	return ret;
302}
303
304/*
305 * Decide whether a read/modify/write cycle may be more efficient
306 * then a modify/write/read cycle when writing to a page in the
307 * page cache.
308 *
309 * The modify/write/read cycle may occur if a page is read before
310 * being completely filled by the writer.  In this situation, the
311 * page must be completely written to stable storage on the server
312 * before it can be refilled by reading in the page from the server.
313 * This can lead to expensive, small, FILE_SYNC mode writes being
314 * done.
315 *
316 * It may be more efficient to read the page first if the file is
317 * open for reading in addition to writing, the page is not marked
318 * as Uptodate, it is not dirty or waiting to be committed,
319 * indicating that it was previously allocated and then modified,
320 * that there were valid bytes of data in that range of the file,
321 * and that the new data won't completely replace the old data in
322 * that range of the file.
323 */
324static int nfs_want_read_modify_write(struct file *file, struct page *page,
325			loff_t pos, unsigned len)
326{
327	unsigned int pglen = nfs_page_length(page);
328	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
329	unsigned int end = offset + len;
330
331	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
332		if (!PageUptodate(page))
333			return 1;
334		return 0;
335	}
336
337	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
338	    !PageUptodate(page) &&		/* Uptodate? */
339	    !PagePrivate(page) &&		/* i/o request already? */
340	    pglen &&				/* valid bytes of file? */
341	    (end < pglen || offset))		/* replace all valid bytes? */
342		return 1;
343	return 0;
344}
345
346/*
347 * This does the "real" work of the write. We must allocate and lock the
348 * page to be sent back to the generic routine, which then copies the
349 * data from user space.
350 *
351 * If the writer ends up delaying the write, the writer needs to
352 * increment the page use counts until he is done with the page.
353 */
354static int nfs_write_begin(struct file *file, struct address_space *mapping,
355			loff_t pos, unsigned len, unsigned flags,
356			struct page **pagep, void **fsdata)
357{
358	int ret;
359	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
360	struct page *page;
361	int once_thru = 0;
362
363	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
364		file, mapping->host->i_ino, len, (long long) pos);
365
366start:
367	/*
368	 * Prevent starvation issues if someone is doing a consistency
369	 * sync-to-disk
370	 */
371	ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
372				 nfs_wait_bit_killable, TASK_KILLABLE);
373	if (ret)
374		return ret;
375	/*
376	 * Wait for O_DIRECT to complete
377	 */
378	nfs_inode_dio_wait(mapping->host);
379
380	page = grab_cache_page_write_begin(mapping, index, flags);
381	if (!page)
382		return -ENOMEM;
383	*pagep = page;
384
385	ret = nfs_flush_incompatible(file, page);
386	if (ret) {
387		unlock_page(page);
388		page_cache_release(page);
389	} else if (!once_thru &&
390		   nfs_want_read_modify_write(file, page, pos, len)) {
391		once_thru = 1;
392		ret = nfs_readpage(file, page);
393		page_cache_release(page);
394		if (!ret)
395			goto start;
396	}
397	return ret;
398}
399
400static int nfs_write_end(struct file *file, struct address_space *mapping,
401			loff_t pos, unsigned len, unsigned copied,
402			struct page *page, void *fsdata)
403{
404	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
405	struct nfs_open_context *ctx = nfs_file_open_context(file);
406	int status;
407
408	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
409		file, mapping->host->i_ino, len, (long long) pos);
410
411	/*
412	 * Zero any uninitialised parts of the page, and then mark the page
413	 * as up to date if it turns out that we're extending the file.
414	 */
415	if (!PageUptodate(page)) {
416		unsigned pglen = nfs_page_length(page);
417		unsigned end = offset + len;
418
419		if (pglen == 0) {
420			zero_user_segments(page, 0, offset,
421					end, PAGE_CACHE_SIZE);
422			SetPageUptodate(page);
423		} else if (end >= pglen) {
424			zero_user_segment(page, end, PAGE_CACHE_SIZE);
425			if (offset == 0)
426				SetPageUptodate(page);
427		} else
428			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
429	}
430
431	status = nfs_updatepage(file, page, offset, copied);
432
433	unlock_page(page);
434	page_cache_release(page);
435
436	if (status < 0)
437		return status;
438	NFS_I(mapping->host)->write_io += copied;
439
440	if (nfs_ctx_key_to_expire(ctx)) {
441		status = nfs_wb_all(mapping->host);
442		if (status < 0)
443			return status;
444	}
445
446	return copied;
447}
448
449/*
450 * Partially or wholly invalidate a page
451 * - Release the private state associated with a page if undergoing complete
452 *   page invalidation
453 * - Called if either PG_private or PG_fscache is set on the page
454 * - Caller holds page lock
455 */
456static void nfs_invalidate_page(struct page *page, unsigned int offset,
457				unsigned int length)
458{
459	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
460		 page, offset, length);
461
462	if (offset != 0 || length < PAGE_CACHE_SIZE)
463		return;
464	/* Cancel any unstarted writes on this page */
465	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
466
467	nfs_fscache_invalidate_page(page, page->mapping->host);
468}
469
470/*
471 * Attempt to release the private state associated with a page
472 * - Called if either PG_private or PG_fscache is set on the page
473 * - Caller holds page lock
474 * - Return true (may release page) or false (may not)
475 */
476static int nfs_release_page(struct page *page, gfp_t gfp)
477{
478	struct address_space *mapping = page->mapping;
479
480	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
481
482	/* Always try to initiate a 'commit' if relevant, but only
483	 * wait for it if __GFP_WAIT is set.  Even then, only wait 1
484	 * second and only if the 'bdi' is not congested.
485	 * Waiting indefinitely can cause deadlocks when the NFS
486	 * server is on this machine, when a new TCP connection is
487	 * needed and in other rare cases.  There is no particular
488	 * need to wait extensively here.  A short wait has the
489	 * benefit that someone else can worry about the freezer.
490	 */
491	if (mapping) {
492		struct nfs_server *nfss = NFS_SERVER(mapping->host);
493		nfs_commit_inode(mapping->host, 0);
494		if ((gfp & __GFP_WAIT) &&
495		    !bdi_write_congested(&nfss->backing_dev_info)) {
496			wait_on_page_bit_killable_timeout(page, PG_private,
497							  HZ);
498			if (PagePrivate(page))
499				set_bdi_congested(&nfss->backing_dev_info,
500						  BLK_RW_ASYNC);
501		}
502	}
503	/* If PagePrivate() is set, then the page is not freeable */
504	if (PagePrivate(page))
505		return 0;
506	return nfs_fscache_release_page(page, gfp);
507}
508
509static void nfs_check_dirty_writeback(struct page *page,
510				bool *dirty, bool *writeback)
511{
512	struct nfs_inode *nfsi;
513	struct address_space *mapping = page_file_mapping(page);
514
515	if (!mapping || PageSwapCache(page))
516		return;
517
518	/*
519	 * Check if an unstable page is currently being committed and
520	 * if so, have the VM treat it as if the page is under writeback
521	 * so it will not block due to pages that will shortly be freeable.
522	 */
523	nfsi = NFS_I(mapping->host);
524	if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
525		*writeback = true;
526		return;
527	}
528
529	/*
530	 * If PagePrivate() is set, then the page is not freeable and as the
531	 * inode is not being committed, it's not going to be cleaned in the
532	 * near future so treat it as dirty
533	 */
534	if (PagePrivate(page))
535		*dirty = true;
536}
537
538/*
539 * Attempt to clear the private state associated with a page when an error
540 * occurs that requires the cached contents of an inode to be written back or
541 * destroyed
542 * - Called if either PG_private or fscache is set on the page
543 * - Caller holds page lock
544 * - Return 0 if successful, -error otherwise
545 */
546static int nfs_launder_page(struct page *page)
547{
548	struct inode *inode = page_file_mapping(page)->host;
549	struct nfs_inode *nfsi = NFS_I(inode);
550
551	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
552		inode->i_ino, (long long)page_offset(page));
553
554	nfs_fscache_wait_on_page_write(nfsi, page);
555	return nfs_wb_page(inode, page);
556}
557
558#ifdef CONFIG_NFS_SWAP
559static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
560						sector_t *span)
561{
562	int ret;
563	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
564
565	*span = sis->pages;
566
567	rcu_read_lock();
568	ret = xs_swapper(rcu_dereference(clnt->cl_xprt), 1);
569	rcu_read_unlock();
570
571	return ret;
572}
573
574static void nfs_swap_deactivate(struct file *file)
575{
576	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
577
578	rcu_read_lock();
579	xs_swapper(rcu_dereference(clnt->cl_xprt), 0);
580	rcu_read_unlock();
581}
582#endif
583
584const struct address_space_operations nfs_file_aops = {
585	.readpage = nfs_readpage,
586	.readpages = nfs_readpages,
587	.set_page_dirty = __set_page_dirty_nobuffers,
588	.writepage = nfs_writepage,
589	.writepages = nfs_writepages,
590	.write_begin = nfs_write_begin,
591	.write_end = nfs_write_end,
592	.invalidatepage = nfs_invalidate_page,
593	.releasepage = nfs_release_page,
594	.direct_IO = nfs_direct_IO,
595	.migratepage = nfs_migrate_page,
596	.launder_page = nfs_launder_page,
597	.is_dirty_writeback = nfs_check_dirty_writeback,
598	.error_remove_page = generic_error_remove_page,
599#ifdef CONFIG_NFS_SWAP
600	.swap_activate = nfs_swap_activate,
601	.swap_deactivate = nfs_swap_deactivate,
602#endif
603};
604
605/*
606 * Notification that a PTE pointing to an NFS page is about to be made
607 * writable, implying that someone is about to modify the page through a
608 * shared-writable mapping
609 */
610static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
611{
612	struct page *page = vmf->page;
613	struct file *filp = vma->vm_file;
614	struct inode *inode = file_inode(filp);
615	unsigned pagelen;
616	int ret = VM_FAULT_NOPAGE;
617	struct address_space *mapping;
618
619	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
620		filp, filp->f_mapping->host->i_ino,
621		(long long)page_offset(page));
622
623	/* make sure the cache has finished storing the page */
624	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
625
626	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
627			nfs_wait_bit_killable, TASK_KILLABLE);
628
629	lock_page(page);
630	mapping = page_file_mapping(page);
631	if (mapping != inode->i_mapping)
632		goto out_unlock;
633
634	wait_on_page_writeback(page);
635
636	pagelen = nfs_page_length(page);
637	if (pagelen == 0)
638		goto out_unlock;
639
640	ret = VM_FAULT_LOCKED;
641	if (nfs_flush_incompatible(filp, page) == 0 &&
642	    nfs_updatepage(filp, page, 0, pagelen) == 0)
643		goto out;
644
645	ret = VM_FAULT_SIGBUS;
646out_unlock:
647	unlock_page(page);
648out:
649	return ret;
650}
651
652static const struct vm_operations_struct nfs_file_vm_ops = {
653	.fault = filemap_fault,
654	.map_pages = filemap_map_pages,
655	.page_mkwrite = nfs_vm_page_mkwrite,
656};
657
658static int nfs_need_sync_write(struct file *filp, struct inode *inode)
659{
660	struct nfs_open_context *ctx;
661
662	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
663		return 1;
664	ctx = nfs_file_open_context(filp);
665	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
666	    nfs_ctx_key_to_expire(ctx))
667		return 1;
668	return 0;
669}
670
671ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
672{
673	struct file *file = iocb->ki_filp;
674	struct inode *inode = file_inode(file);
675	unsigned long written = 0;
676	ssize_t result;
677	size_t count = iov_iter_count(from);
678
679	result = nfs_key_timeout_notify(file, inode);
680	if (result)
681		return result;
682
683	if (iocb->ki_flags & IOCB_DIRECT) {
684		result = generic_write_checks(iocb, from);
685		if (result <= 0)
686			return result;
687		return nfs_file_direct_write(iocb, from);
688	}
689
690	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
691		file, count, (long long) iocb->ki_pos);
692
693	result = -EBUSY;
694	if (IS_SWAPFILE(inode))
695		goto out_swapfile;
696	/*
697	 * O_APPEND implies that we must revalidate the file length.
698	 */
699	if (iocb->ki_flags & IOCB_APPEND) {
700		result = nfs_revalidate_file_size(inode, file);
701		if (result)
702			goto out;
703	}
704
705	result = count;
706	if (!count)
707		goto out;
708
709	result = generic_file_write_iter(iocb, from);
710	if (result > 0)
711		written = result;
712
713	/* Return error values for O_DSYNC and IS_SYNC() */
714	if (result >= 0 && nfs_need_sync_write(file, inode)) {
715		int err = vfs_fsync(file, 0);
716		if (err < 0)
717			result = err;
718	}
719	if (result > 0)
720		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
721out:
722	return result;
723
724out_swapfile:
725	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
726	goto out;
727}
728EXPORT_SYMBOL_GPL(nfs_file_write);
729
730static int
731do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
732{
733	struct inode *inode = filp->f_mapping->host;
734	int status = 0;
735	unsigned int saved_type = fl->fl_type;
736
737	/* Try local locking first */
738	posix_test_lock(filp, fl);
739	if (fl->fl_type != F_UNLCK) {
740		/* found a conflict */
741		goto out;
742	}
743	fl->fl_type = saved_type;
744
745	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
746		goto out_noconflict;
747
748	if (is_local)
749		goto out_noconflict;
750
751	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
752out:
753	return status;
754out_noconflict:
755	fl->fl_type = F_UNLCK;
756	goto out;
757}
758
759static int do_vfs_lock(struct file *file, struct file_lock *fl)
760{
761	int res = 0;
762	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
763		case FL_POSIX:
764			res = posix_lock_file_wait(file, fl);
765			break;
766		case FL_FLOCK:
767			res = flock_lock_file_wait(file, fl);
768			break;
769		default:
770			BUG();
771	}
772	return res;
773}
774
775static int
776do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
777{
778	struct inode *inode = filp->f_mapping->host;
779	struct nfs_lock_context *l_ctx;
780	int status;
781
782	/*
783	 * Flush all pending writes before doing anything
784	 * with locks..
785	 */
786	vfs_fsync(filp, 0);
787
788	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
789	if (!IS_ERR(l_ctx)) {
790		status = nfs_iocounter_wait(&l_ctx->io_count);
791		nfs_put_lock_context(l_ctx);
792		if (status < 0)
793			return status;
794	}
795
796	/* NOTE: special case
797	 * 	If we're signalled while cleaning up locks on process exit, we
798	 * 	still need to complete the unlock.
799	 */
800	/*
801	 * Use local locking if mounted with "-onolock" or with appropriate
802	 * "-olocal_lock="
803	 */
804	if (!is_local)
805		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
806	else
807		status = do_vfs_lock(filp, fl);
808	return status;
809}
810
811static int
812is_time_granular(struct timespec *ts) {
813	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
814}
815
816static int
817do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
818{
819	struct inode *inode = filp->f_mapping->host;
820	int status;
821
822	/*
823	 * Flush all pending writes before doing anything
824	 * with locks..
825	 */
826	status = nfs_sync_mapping(filp->f_mapping);
827	if (status != 0)
828		goto out;
829
830	/*
831	 * Use local locking if mounted with "-onolock" or with appropriate
832	 * "-olocal_lock="
833	 */
834	if (!is_local)
835		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
836	else
837		status = do_vfs_lock(filp, fl);
838	if (status < 0)
839		goto out;
840
841	/*
842	 * Revalidate the cache if the server has time stamps granular
843	 * enough to detect subsecond changes.  Otherwise, clear the
844	 * cache to prevent missing any changes.
845	 *
846	 * This makes locking act as a cache coherency point.
847	 */
848	nfs_sync_mapping(filp->f_mapping);
849	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
850		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
851			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
852		else
853			nfs_zap_caches(inode);
854	}
855out:
856	return status;
857}
858
859/*
860 * Lock a (portion of) a file
861 */
862int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
863{
864	struct inode *inode = filp->f_mapping->host;
865	int ret = -ENOLCK;
866	int is_local = 0;
867
868	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
869			filp, fl->fl_type, fl->fl_flags,
870			(long long)fl->fl_start, (long long)fl->fl_end);
871
872	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
873
874	/* No mandatory locks over NFS */
875	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
876		goto out_err;
877
878	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
879		is_local = 1;
880
881	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
882		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
883		if (ret < 0)
884			goto out_err;
885	}
886
887	if (IS_GETLK(cmd))
888		ret = do_getlk(filp, cmd, fl, is_local);
889	else if (fl->fl_type == F_UNLCK)
890		ret = do_unlk(filp, cmd, fl, is_local);
891	else
892		ret = do_setlk(filp, cmd, fl, is_local);
893out_err:
894	return ret;
895}
896EXPORT_SYMBOL_GPL(nfs_lock);
897
898/*
899 * Lock a (portion of) a file
900 */
901int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
902{
903	struct inode *inode = filp->f_mapping->host;
904	int is_local = 0;
905
906	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
907			filp, fl->fl_type, fl->fl_flags);
908
909	if (!(fl->fl_flags & FL_FLOCK))
910		return -ENOLCK;
911
912	/*
913	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
914	 * any standard. In principle we might be able to support LOCK_MAND
915	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
916	 * NFS code is not set up for it.
917	 */
918	if (fl->fl_type & LOCK_MAND)
919		return -EINVAL;
920
921	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
922		is_local = 1;
923
924	/* We're simulating flock() locks using posix locks on the server */
925	if (fl->fl_type == F_UNLCK)
926		return do_unlk(filp, cmd, fl, is_local);
927	return do_setlk(filp, cmd, fl, is_local);
928}
929EXPORT_SYMBOL_GPL(nfs_flock);
930
931const struct file_operations nfs_file_operations = {
932	.llseek		= nfs_file_llseek,
933	.read_iter	= nfs_file_read,
934	.write_iter	= nfs_file_write,
935	.mmap		= nfs_file_mmap,
936	.open		= nfs_file_open,
937	.flush		= nfs_file_flush,
938	.release	= nfs_file_release,
939	.fsync		= nfs_file_fsync,
940	.lock		= nfs_lock,
941	.flock		= nfs_flock,
942	.splice_read	= nfs_file_splice_read,
943	.splice_write	= iter_file_splice_write,
944	.check_flags	= nfs_check_flags,
945	.setlease	= simple_nosetlease,
946};
947EXPORT_SYMBOL_GPL(nfs_file_operations);
948