1/*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates.  This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25#include <linux/module.h>
26#include <linux/time.h>
27#include <linux/fs.h>
28#include <linux/jbd2.h>
29#include <linux/errno.h>
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/mm.h>
33#include <linux/freezer.h>
34#include <linux/pagemap.h>
35#include <linux/kthread.h>
36#include <linux/poison.h>
37#include <linux/proc_fs.h>
38#include <linux/seq_file.h>
39#include <linux/math64.h>
40#include <linux/hash.h>
41#include <linux/log2.h>
42#include <linux/vmalloc.h>
43#include <linux/backing-dev.h>
44#include <linux/bitops.h>
45#include <linux/ratelimit.h>
46
47#define CREATE_TRACE_POINTS
48#include <trace/events/jbd2.h>
49
50#include <asm/uaccess.h>
51#include <asm/page.h>
52
53#ifdef CONFIG_JBD2_DEBUG
54ushort jbd2_journal_enable_debug __read_mostly;
55EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59#endif
60
61EXPORT_SYMBOL(jbd2_journal_extend);
62EXPORT_SYMBOL(jbd2_journal_stop);
63EXPORT_SYMBOL(jbd2_journal_lock_updates);
64EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65EXPORT_SYMBOL(jbd2_journal_get_write_access);
66EXPORT_SYMBOL(jbd2_journal_get_create_access);
67EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68EXPORT_SYMBOL(jbd2_journal_set_triggers);
69EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70EXPORT_SYMBOL(jbd2_journal_forget);
71#if 0
72EXPORT_SYMBOL(journal_sync_buffer);
73#endif
74EXPORT_SYMBOL(jbd2_journal_flush);
75EXPORT_SYMBOL(jbd2_journal_revoke);
76
77EXPORT_SYMBOL(jbd2_journal_init_dev);
78EXPORT_SYMBOL(jbd2_journal_init_inode);
79EXPORT_SYMBOL(jbd2_journal_check_used_features);
80EXPORT_SYMBOL(jbd2_journal_check_available_features);
81EXPORT_SYMBOL(jbd2_journal_set_features);
82EXPORT_SYMBOL(jbd2_journal_load);
83EXPORT_SYMBOL(jbd2_journal_destroy);
84EXPORT_SYMBOL(jbd2_journal_abort);
85EXPORT_SYMBOL(jbd2_journal_errno);
86EXPORT_SYMBOL(jbd2_journal_ack_err);
87EXPORT_SYMBOL(jbd2_journal_clear_err);
88EXPORT_SYMBOL(jbd2_log_wait_commit);
89EXPORT_SYMBOL(jbd2_log_start_commit);
90EXPORT_SYMBOL(jbd2_journal_start_commit);
91EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92EXPORT_SYMBOL(jbd2_journal_wipe);
93EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96EXPORT_SYMBOL(jbd2_journal_force_commit);
97EXPORT_SYMBOL(jbd2_journal_file_inode);
98EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101EXPORT_SYMBOL(jbd2_inode_cache);
102
103static void __journal_abort_soft (journal_t *journal, int errno);
104static int jbd2_journal_create_slab(size_t slab_size);
105
106#ifdef CONFIG_JBD2_DEBUG
107void __jbd2_debug(int level, const char *file, const char *func,
108		  unsigned int line, const char *fmt, ...)
109{
110	struct va_format vaf;
111	va_list args;
112
113	if (level > jbd2_journal_enable_debug)
114		return;
115	va_start(args, fmt);
116	vaf.fmt = fmt;
117	vaf.va = &args;
118	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119	va_end(args);
120}
121EXPORT_SYMBOL(__jbd2_debug);
122#endif
123
124/* Checksumming functions */
125static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126{
127	if (!jbd2_journal_has_csum_v2or3(j))
128		return 1;
129
130	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131}
132
133static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134{
135	__u32 csum;
136	__be32 old_csum;
137
138	old_csum = sb->s_checksum;
139	sb->s_checksum = 0;
140	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141	sb->s_checksum = old_csum;
142
143	return cpu_to_be32(csum);
144}
145
146static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147{
148	if (!jbd2_journal_has_csum_v2or3(j))
149		return 1;
150
151	return sb->s_checksum == jbd2_superblock_csum(j, sb);
152}
153
154static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155{
156	if (!jbd2_journal_has_csum_v2or3(j))
157		return;
158
159	sb->s_checksum = jbd2_superblock_csum(j, sb);
160}
161
162/*
163 * Helper function used to manage commit timeouts
164 */
165
166static void commit_timeout(unsigned long __data)
167{
168	struct task_struct * p = (struct task_struct *) __data;
169
170	wake_up_process(p);
171}
172
173/*
174 * kjournald2: The main thread function used to manage a logging device
175 * journal.
176 *
177 * This kernel thread is responsible for two things:
178 *
179 * 1) COMMIT:  Every so often we need to commit the current state of the
180 *    filesystem to disk.  The journal thread is responsible for writing
181 *    all of the metadata buffers to disk.
182 *
183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184 *    of the data in that part of the log has been rewritten elsewhere on
185 *    the disk.  Flushing these old buffers to reclaim space in the log is
186 *    known as checkpointing, and this thread is responsible for that job.
187 */
188
189static int kjournald2(void *arg)
190{
191	journal_t *journal = arg;
192	transaction_t *transaction;
193
194	/*
195	 * Set up an interval timer which can be used to trigger a commit wakeup
196	 * after the commit interval expires
197	 */
198	setup_timer(&journal->j_commit_timer, commit_timeout,
199			(unsigned long)current);
200
201	set_freezable();
202
203	/* Record that the journal thread is running */
204	journal->j_task = current;
205	wake_up(&journal->j_wait_done_commit);
206
207	/*
208	 * And now, wait forever for commit wakeup events.
209	 */
210	write_lock(&journal->j_state_lock);
211
212loop:
213	if (journal->j_flags & JBD2_UNMOUNT)
214		goto end_loop;
215
216	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217		journal->j_commit_sequence, journal->j_commit_request);
218
219	if (journal->j_commit_sequence != journal->j_commit_request) {
220		jbd_debug(1, "OK, requests differ\n");
221		write_unlock(&journal->j_state_lock);
222		del_timer_sync(&journal->j_commit_timer);
223		jbd2_journal_commit_transaction(journal);
224		write_lock(&journal->j_state_lock);
225		goto loop;
226	}
227
228	wake_up(&journal->j_wait_done_commit);
229	if (freezing(current)) {
230		/*
231		 * The simpler the better. Flushing journal isn't a
232		 * good idea, because that depends on threads that may
233		 * be already stopped.
234		 */
235		jbd_debug(1, "Now suspending kjournald2\n");
236		write_unlock(&journal->j_state_lock);
237		try_to_freeze();
238		write_lock(&journal->j_state_lock);
239	} else {
240		/*
241		 * We assume on resume that commits are already there,
242		 * so we don't sleep
243		 */
244		DEFINE_WAIT(wait);
245		int should_sleep = 1;
246
247		prepare_to_wait(&journal->j_wait_commit, &wait,
248				TASK_INTERRUPTIBLE);
249		if (journal->j_commit_sequence != journal->j_commit_request)
250			should_sleep = 0;
251		transaction = journal->j_running_transaction;
252		if (transaction && time_after_eq(jiffies,
253						transaction->t_expires))
254			should_sleep = 0;
255		if (journal->j_flags & JBD2_UNMOUNT)
256			should_sleep = 0;
257		if (should_sleep) {
258			write_unlock(&journal->j_state_lock);
259			schedule();
260			write_lock(&journal->j_state_lock);
261		}
262		finish_wait(&journal->j_wait_commit, &wait);
263	}
264
265	jbd_debug(1, "kjournald2 wakes\n");
266
267	/*
268	 * Were we woken up by a commit wakeup event?
269	 */
270	transaction = journal->j_running_transaction;
271	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272		journal->j_commit_request = transaction->t_tid;
273		jbd_debug(1, "woke because of timeout\n");
274	}
275	goto loop;
276
277end_loop:
278	write_unlock(&journal->j_state_lock);
279	del_timer_sync(&journal->j_commit_timer);
280	journal->j_task = NULL;
281	wake_up(&journal->j_wait_done_commit);
282	jbd_debug(1, "Journal thread exiting.\n");
283	return 0;
284}
285
286static int jbd2_journal_start_thread(journal_t *journal)
287{
288	struct task_struct *t;
289
290	t = kthread_run(kjournald2, journal, "jbd2/%s",
291			journal->j_devname);
292	if (IS_ERR(t))
293		return PTR_ERR(t);
294
295	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296	return 0;
297}
298
299static void journal_kill_thread(journal_t *journal)
300{
301	write_lock(&journal->j_state_lock);
302	journal->j_flags |= JBD2_UNMOUNT;
303
304	while (journal->j_task) {
305		write_unlock(&journal->j_state_lock);
306		wake_up(&journal->j_wait_commit);
307		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308		write_lock(&journal->j_state_lock);
309	}
310	write_unlock(&journal->j_state_lock);
311}
312
313/*
314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315 *
316 * Writes a metadata buffer to a given disk block.  The actual IO is not
317 * performed but a new buffer_head is constructed which labels the data
318 * to be written with the correct destination disk block.
319 *
320 * Any magic-number escaping which needs to be done will cause a
321 * copy-out here.  If the buffer happens to start with the
322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323 * magic number is only written to the log for descripter blocks.  In
324 * this case, we copy the data and replace the first word with 0, and we
325 * return a result code which indicates that this buffer needs to be
326 * marked as an escaped buffer in the corresponding log descriptor
327 * block.  The missing word can then be restored when the block is read
328 * during recovery.
329 *
330 * If the source buffer has already been modified by a new transaction
331 * since we took the last commit snapshot, we use the frozen copy of
332 * that data for IO. If we end up using the existing buffer_head's data
333 * for the write, then we have to make sure nobody modifies it while the
334 * IO is in progress. do_get_write_access() handles this.
335 *
336 * The function returns a pointer to the buffer_head to be used for IO.
337 *
338 *
339 * Return value:
340 *  <0: Error
341 * >=0: Finished OK
342 *
343 * On success:
344 * Bit 0 set == escape performed on the data
345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346 */
347
348int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349				  struct journal_head  *jh_in,
350				  struct buffer_head **bh_out,
351				  sector_t blocknr)
352{
353	int need_copy_out = 0;
354	int done_copy_out = 0;
355	int do_escape = 0;
356	char *mapped_data;
357	struct buffer_head *new_bh;
358	struct page *new_page;
359	unsigned int new_offset;
360	struct buffer_head *bh_in = jh2bh(jh_in);
361	journal_t *journal = transaction->t_journal;
362
363	/*
364	 * The buffer really shouldn't be locked: only the current committing
365	 * transaction is allowed to write it, so nobody else is allowed
366	 * to do any IO.
367	 *
368	 * akpm: except if we're journalling data, and write() output is
369	 * also part of a shared mapping, and another thread has
370	 * decided to launch a writepage() against this buffer.
371	 */
372	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373
374retry_alloc:
375	new_bh = alloc_buffer_head(GFP_NOFS);
376	if (!new_bh) {
377		/*
378		 * Failure is not an option, but __GFP_NOFAIL is going
379		 * away; so we retry ourselves here.
380		 */
381		congestion_wait(BLK_RW_ASYNC, HZ/50);
382		goto retry_alloc;
383	}
384
385	/* keep subsequent assertions sane */
386	atomic_set(&new_bh->b_count, 1);
387
388	jbd_lock_bh_state(bh_in);
389repeat:
390	/*
391	 * If a new transaction has already done a buffer copy-out, then
392	 * we use that version of the data for the commit.
393	 */
394	if (jh_in->b_frozen_data) {
395		done_copy_out = 1;
396		new_page = virt_to_page(jh_in->b_frozen_data);
397		new_offset = offset_in_page(jh_in->b_frozen_data);
398	} else {
399		new_page = jh2bh(jh_in)->b_page;
400		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401	}
402
403	mapped_data = kmap_atomic(new_page);
404	/*
405	 * Fire data frozen trigger if data already wasn't frozen.  Do this
406	 * before checking for escaping, as the trigger may modify the magic
407	 * offset.  If a copy-out happens afterwards, it will have the correct
408	 * data in the buffer.
409	 */
410	if (!done_copy_out)
411		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412					   jh_in->b_triggers);
413
414	/*
415	 * Check for escaping
416	 */
417	if (*((__be32 *)(mapped_data + new_offset)) ==
418				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419		need_copy_out = 1;
420		do_escape = 1;
421	}
422	kunmap_atomic(mapped_data);
423
424	/*
425	 * Do we need to do a data copy?
426	 */
427	if (need_copy_out && !done_copy_out) {
428		char *tmp;
429
430		jbd_unlock_bh_state(bh_in);
431		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432		if (!tmp) {
433			brelse(new_bh);
434			return -ENOMEM;
435		}
436		jbd_lock_bh_state(bh_in);
437		if (jh_in->b_frozen_data) {
438			jbd2_free(tmp, bh_in->b_size);
439			goto repeat;
440		}
441
442		jh_in->b_frozen_data = tmp;
443		mapped_data = kmap_atomic(new_page);
444		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445		kunmap_atomic(mapped_data);
446
447		new_page = virt_to_page(tmp);
448		new_offset = offset_in_page(tmp);
449		done_copy_out = 1;
450
451		/*
452		 * This isn't strictly necessary, as we're using frozen
453		 * data for the escaping, but it keeps consistency with
454		 * b_frozen_data usage.
455		 */
456		jh_in->b_frozen_triggers = jh_in->b_triggers;
457	}
458
459	/*
460	 * Did we need to do an escaping?  Now we've done all the
461	 * copying, we can finally do so.
462	 */
463	if (do_escape) {
464		mapped_data = kmap_atomic(new_page);
465		*((unsigned int *)(mapped_data + new_offset)) = 0;
466		kunmap_atomic(mapped_data);
467	}
468
469	set_bh_page(new_bh, new_page, new_offset);
470	new_bh->b_size = bh_in->b_size;
471	new_bh->b_bdev = journal->j_dev;
472	new_bh->b_blocknr = blocknr;
473	new_bh->b_private = bh_in;
474	set_buffer_mapped(new_bh);
475	set_buffer_dirty(new_bh);
476
477	*bh_out = new_bh;
478
479	/*
480	 * The to-be-written buffer needs to get moved to the io queue,
481	 * and the original buffer whose contents we are shadowing or
482	 * copying is moved to the transaction's shadow queue.
483	 */
484	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485	spin_lock(&journal->j_list_lock);
486	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487	spin_unlock(&journal->j_list_lock);
488	set_buffer_shadow(bh_in);
489	jbd_unlock_bh_state(bh_in);
490
491	return do_escape | (done_copy_out << 1);
492}
493
494/*
495 * Allocation code for the journal file.  Manage the space left in the
496 * journal, so that we can begin checkpointing when appropriate.
497 */
498
499/*
500 * Called with j_state_lock locked for writing.
501 * Returns true if a transaction commit was started.
502 */
503int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504{
505	/* Return if the txn has already requested to be committed */
506	if (journal->j_commit_request == target)
507		return 0;
508
509	/*
510	 * The only transaction we can possibly wait upon is the
511	 * currently running transaction (if it exists).  Otherwise,
512	 * the target tid must be an old one.
513	 */
514	if (journal->j_running_transaction &&
515	    journal->j_running_transaction->t_tid == target) {
516		/*
517		 * We want a new commit: OK, mark the request and wakeup the
518		 * commit thread.  We do _not_ do the commit ourselves.
519		 */
520
521		journal->j_commit_request = target;
522		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523			  journal->j_commit_request,
524			  journal->j_commit_sequence);
525		journal->j_running_transaction->t_requested = jiffies;
526		wake_up(&journal->j_wait_commit);
527		return 1;
528	} else if (!tid_geq(journal->j_commit_request, target))
529		/* This should never happen, but if it does, preserve
530		   the evidence before kjournald goes into a loop and
531		   increments j_commit_sequence beyond all recognition. */
532		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533			  journal->j_commit_request,
534			  journal->j_commit_sequence,
535			  target, journal->j_running_transaction ?
536			  journal->j_running_transaction->t_tid : 0);
537	return 0;
538}
539
540int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541{
542	int ret;
543
544	write_lock(&journal->j_state_lock);
545	ret = __jbd2_log_start_commit(journal, tid);
546	write_unlock(&journal->j_state_lock);
547	return ret;
548}
549
550/*
551 * Force and wait any uncommitted transactions.  We can only force the running
552 * transaction if we don't have an active handle, otherwise, we will deadlock.
553 * Returns: <0 in case of error,
554 *           0 if nothing to commit,
555 *           1 if transaction was successfully committed.
556 */
557static int __jbd2_journal_force_commit(journal_t *journal)
558{
559	transaction_t *transaction = NULL;
560	tid_t tid;
561	int need_to_start = 0, ret = 0;
562
563	read_lock(&journal->j_state_lock);
564	if (journal->j_running_transaction && !current->journal_info) {
565		transaction = journal->j_running_transaction;
566		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567			need_to_start = 1;
568	} else if (journal->j_committing_transaction)
569		transaction = journal->j_committing_transaction;
570
571	if (!transaction) {
572		/* Nothing to commit */
573		read_unlock(&journal->j_state_lock);
574		return 0;
575	}
576	tid = transaction->t_tid;
577	read_unlock(&journal->j_state_lock);
578	if (need_to_start)
579		jbd2_log_start_commit(journal, tid);
580	ret = jbd2_log_wait_commit(journal, tid);
581	if (!ret)
582		ret = 1;
583
584	return ret;
585}
586
587/**
588 * Force and wait upon a commit if the calling process is not within
589 * transaction.  This is used for forcing out undo-protected data which contains
590 * bitmaps, when the fs is running out of space.
591 *
592 * @journal: journal to force
593 * Returns true if progress was made.
594 */
595int jbd2_journal_force_commit_nested(journal_t *journal)
596{
597	int ret;
598
599	ret = __jbd2_journal_force_commit(journal);
600	return ret > 0;
601}
602
603/**
604 * int journal_force_commit() - force any uncommitted transactions
605 * @journal: journal to force
606 *
607 * Caller want unconditional commit. We can only force the running transaction
608 * if we don't have an active handle, otherwise, we will deadlock.
609 */
610int jbd2_journal_force_commit(journal_t *journal)
611{
612	int ret;
613
614	J_ASSERT(!current->journal_info);
615	ret = __jbd2_journal_force_commit(journal);
616	if (ret > 0)
617		ret = 0;
618	return ret;
619}
620
621/*
622 * Start a commit of the current running transaction (if any).  Returns true
623 * if a transaction is going to be committed (or is currently already
624 * committing), and fills its tid in at *ptid
625 */
626int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627{
628	int ret = 0;
629
630	write_lock(&journal->j_state_lock);
631	if (journal->j_running_transaction) {
632		tid_t tid = journal->j_running_transaction->t_tid;
633
634		__jbd2_log_start_commit(journal, tid);
635		/* There's a running transaction and we've just made sure
636		 * it's commit has been scheduled. */
637		if (ptid)
638			*ptid = tid;
639		ret = 1;
640	} else if (journal->j_committing_transaction) {
641		/*
642		 * If commit has been started, then we have to wait for
643		 * completion of that transaction.
644		 */
645		if (ptid)
646			*ptid = journal->j_committing_transaction->t_tid;
647		ret = 1;
648	}
649	write_unlock(&journal->j_state_lock);
650	return ret;
651}
652
653/*
654 * Return 1 if a given transaction has not yet sent barrier request
655 * connected with a transaction commit. If 0 is returned, transaction
656 * may or may not have sent the barrier. Used to avoid sending barrier
657 * twice in common cases.
658 */
659int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660{
661	int ret = 0;
662	transaction_t *commit_trans;
663
664	if (!(journal->j_flags & JBD2_BARRIER))
665		return 0;
666	read_lock(&journal->j_state_lock);
667	/* Transaction already committed? */
668	if (tid_geq(journal->j_commit_sequence, tid))
669		goto out;
670	commit_trans = journal->j_committing_transaction;
671	if (!commit_trans || commit_trans->t_tid != tid) {
672		ret = 1;
673		goto out;
674	}
675	/*
676	 * Transaction is being committed and we already proceeded to
677	 * submitting a flush to fs partition?
678	 */
679	if (journal->j_fs_dev != journal->j_dev) {
680		if (!commit_trans->t_need_data_flush ||
681		    commit_trans->t_state >= T_COMMIT_DFLUSH)
682			goto out;
683	} else {
684		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685			goto out;
686	}
687	ret = 1;
688out:
689	read_unlock(&journal->j_state_lock);
690	return ret;
691}
692EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693
694/*
695 * Wait for a specified commit to complete.
696 * The caller may not hold the journal lock.
697 */
698int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699{
700	int err = 0;
701
702	read_lock(&journal->j_state_lock);
703#ifdef CONFIG_JBD2_DEBUG
704	if (!tid_geq(journal->j_commit_request, tid)) {
705		printk(KERN_ERR
706		       "%s: error: j_commit_request=%d, tid=%d\n",
707		       __func__, journal->j_commit_request, tid);
708	}
709#endif
710	while (tid_gt(tid, journal->j_commit_sequence)) {
711		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712				  tid, journal->j_commit_sequence);
713		read_unlock(&journal->j_state_lock);
714		wake_up(&journal->j_wait_commit);
715		wait_event(journal->j_wait_done_commit,
716				!tid_gt(tid, journal->j_commit_sequence));
717		read_lock(&journal->j_state_lock);
718	}
719	read_unlock(&journal->j_state_lock);
720
721	if (unlikely(is_journal_aborted(journal)))
722		err = -EIO;
723	return err;
724}
725
726/*
727 * When this function returns the transaction corresponding to tid
728 * will be completed.  If the transaction has currently running, start
729 * committing that transaction before waiting for it to complete.  If
730 * the transaction id is stale, it is by definition already completed,
731 * so just return SUCCESS.
732 */
733int jbd2_complete_transaction(journal_t *journal, tid_t tid)
734{
735	int	need_to_wait = 1;
736
737	read_lock(&journal->j_state_lock);
738	if (journal->j_running_transaction &&
739	    journal->j_running_transaction->t_tid == tid) {
740		if (journal->j_commit_request != tid) {
741			/* transaction not yet started, so request it */
742			read_unlock(&journal->j_state_lock);
743			jbd2_log_start_commit(journal, tid);
744			goto wait_commit;
745		}
746	} else if (!(journal->j_committing_transaction &&
747		     journal->j_committing_transaction->t_tid == tid))
748		need_to_wait = 0;
749	read_unlock(&journal->j_state_lock);
750	if (!need_to_wait)
751		return 0;
752wait_commit:
753	return jbd2_log_wait_commit(journal, tid);
754}
755EXPORT_SYMBOL(jbd2_complete_transaction);
756
757/*
758 * Log buffer allocation routines:
759 */
760
761int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
762{
763	unsigned long blocknr;
764
765	write_lock(&journal->j_state_lock);
766	J_ASSERT(journal->j_free > 1);
767
768	blocknr = journal->j_head;
769	journal->j_head++;
770	journal->j_free--;
771	if (journal->j_head == journal->j_last)
772		journal->j_head = journal->j_first;
773	write_unlock(&journal->j_state_lock);
774	return jbd2_journal_bmap(journal, blocknr, retp);
775}
776
777/*
778 * Conversion of logical to physical block numbers for the journal
779 *
780 * On external journals the journal blocks are identity-mapped, so
781 * this is a no-op.  If needed, we can use j_blk_offset - everything is
782 * ready.
783 */
784int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
785		 unsigned long long *retp)
786{
787	int err = 0;
788	unsigned long long ret;
789
790	if (journal->j_inode) {
791		ret = bmap(journal->j_inode, blocknr);
792		if (ret)
793			*retp = ret;
794		else {
795			printk(KERN_ALERT "%s: journal block not found "
796					"at offset %lu on %s\n",
797			       __func__, blocknr, journal->j_devname);
798			err = -EIO;
799			__journal_abort_soft(journal, err);
800		}
801	} else {
802		*retp = blocknr; /* +journal->j_blk_offset */
803	}
804	return err;
805}
806
807/*
808 * We play buffer_head aliasing tricks to write data/metadata blocks to
809 * the journal without copying their contents, but for journal
810 * descriptor blocks we do need to generate bona fide buffers.
811 *
812 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
813 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
814 * But we don't bother doing that, so there will be coherency problems with
815 * mmaps of blockdevs which hold live JBD-controlled filesystems.
816 */
817struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
818{
819	struct buffer_head *bh;
820	unsigned long long blocknr;
821	int err;
822
823	err = jbd2_journal_next_log_block(journal, &blocknr);
824
825	if (err)
826		return NULL;
827
828	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
829	if (!bh)
830		return NULL;
831	lock_buffer(bh);
832	memset(bh->b_data, 0, journal->j_blocksize);
833	set_buffer_uptodate(bh);
834	unlock_buffer(bh);
835	BUFFER_TRACE(bh, "return this buffer");
836	return bh;
837}
838
839/*
840 * Return tid of the oldest transaction in the journal and block in the journal
841 * where the transaction starts.
842 *
843 * If the journal is now empty, return which will be the next transaction ID
844 * we will write and where will that transaction start.
845 *
846 * The return value is 0 if journal tail cannot be pushed any further, 1 if
847 * it can.
848 */
849int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
850			      unsigned long *block)
851{
852	transaction_t *transaction;
853	int ret;
854
855	read_lock(&journal->j_state_lock);
856	spin_lock(&journal->j_list_lock);
857	transaction = journal->j_checkpoint_transactions;
858	if (transaction) {
859		*tid = transaction->t_tid;
860		*block = transaction->t_log_start;
861	} else if ((transaction = journal->j_committing_transaction) != NULL) {
862		*tid = transaction->t_tid;
863		*block = transaction->t_log_start;
864	} else if ((transaction = journal->j_running_transaction) != NULL) {
865		*tid = transaction->t_tid;
866		*block = journal->j_head;
867	} else {
868		*tid = journal->j_transaction_sequence;
869		*block = journal->j_head;
870	}
871	ret = tid_gt(*tid, journal->j_tail_sequence);
872	spin_unlock(&journal->j_list_lock);
873	read_unlock(&journal->j_state_lock);
874
875	return ret;
876}
877
878/*
879 * Update information in journal structure and in on disk journal superblock
880 * about log tail. This function does not check whether information passed in
881 * really pushes log tail further. It's responsibility of the caller to make
882 * sure provided log tail information is valid (e.g. by holding
883 * j_checkpoint_mutex all the time between computing log tail and calling this
884 * function as is the case with jbd2_cleanup_journal_tail()).
885 *
886 * Requires j_checkpoint_mutex
887 */
888int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
889{
890	unsigned long freed;
891	int ret;
892
893	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
894
895	/*
896	 * We cannot afford for write to remain in drive's caches since as
897	 * soon as we update j_tail, next transaction can start reusing journal
898	 * space and if we lose sb update during power failure we'd replay
899	 * old transaction with possibly newly overwritten data.
900	 */
901	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
902	if (ret)
903		goto out;
904
905	write_lock(&journal->j_state_lock);
906	freed = block - journal->j_tail;
907	if (block < journal->j_tail)
908		freed += journal->j_last - journal->j_first;
909
910	trace_jbd2_update_log_tail(journal, tid, block, freed);
911	jbd_debug(1,
912		  "Cleaning journal tail from %d to %d (offset %lu), "
913		  "freeing %lu\n",
914		  journal->j_tail_sequence, tid, block, freed);
915
916	journal->j_free += freed;
917	journal->j_tail_sequence = tid;
918	journal->j_tail = block;
919	write_unlock(&journal->j_state_lock);
920
921out:
922	return ret;
923}
924
925/*
926 * This is a variaon of __jbd2_update_log_tail which checks for validity of
927 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
928 * with other threads updating log tail.
929 */
930void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
931{
932	mutex_lock(&journal->j_checkpoint_mutex);
933	if (tid_gt(tid, journal->j_tail_sequence))
934		__jbd2_update_log_tail(journal, tid, block);
935	mutex_unlock(&journal->j_checkpoint_mutex);
936}
937
938struct jbd2_stats_proc_session {
939	journal_t *journal;
940	struct transaction_stats_s *stats;
941	int start;
942	int max;
943};
944
945static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
946{
947	return *pos ? NULL : SEQ_START_TOKEN;
948}
949
950static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
951{
952	return NULL;
953}
954
955static int jbd2_seq_info_show(struct seq_file *seq, void *v)
956{
957	struct jbd2_stats_proc_session *s = seq->private;
958
959	if (v != SEQ_START_TOKEN)
960		return 0;
961	seq_printf(seq, "%lu transactions (%lu requested), "
962		   "each up to %u blocks\n",
963		   s->stats->ts_tid, s->stats->ts_requested,
964		   s->journal->j_max_transaction_buffers);
965	if (s->stats->ts_tid == 0)
966		return 0;
967	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
968	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
969	seq_printf(seq, "  %ums request delay\n",
970	    (s->stats->ts_requested == 0) ? 0 :
971	    jiffies_to_msecs(s->stats->run.rs_request_delay /
972			     s->stats->ts_requested));
973	seq_printf(seq, "  %ums running transaction\n",
974	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
975	seq_printf(seq, "  %ums transaction was being locked\n",
976	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
977	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
978	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
979	seq_printf(seq, "  %ums logging transaction\n",
980	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
981	seq_printf(seq, "  %lluus average transaction commit time\n",
982		   div_u64(s->journal->j_average_commit_time, 1000));
983	seq_printf(seq, "  %lu handles per transaction\n",
984	    s->stats->run.rs_handle_count / s->stats->ts_tid);
985	seq_printf(seq, "  %lu blocks per transaction\n",
986	    s->stats->run.rs_blocks / s->stats->ts_tid);
987	seq_printf(seq, "  %lu logged blocks per transaction\n",
988	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
989	return 0;
990}
991
992static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
993{
994}
995
996static const struct seq_operations jbd2_seq_info_ops = {
997	.start  = jbd2_seq_info_start,
998	.next   = jbd2_seq_info_next,
999	.stop   = jbd2_seq_info_stop,
1000	.show   = jbd2_seq_info_show,
1001};
1002
1003static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1004{
1005	journal_t *journal = PDE_DATA(inode);
1006	struct jbd2_stats_proc_session *s;
1007	int rc, size;
1008
1009	s = kmalloc(sizeof(*s), GFP_KERNEL);
1010	if (s == NULL)
1011		return -ENOMEM;
1012	size = sizeof(struct transaction_stats_s);
1013	s->stats = kmalloc(size, GFP_KERNEL);
1014	if (s->stats == NULL) {
1015		kfree(s);
1016		return -ENOMEM;
1017	}
1018	spin_lock(&journal->j_history_lock);
1019	memcpy(s->stats, &journal->j_stats, size);
1020	s->journal = journal;
1021	spin_unlock(&journal->j_history_lock);
1022
1023	rc = seq_open(file, &jbd2_seq_info_ops);
1024	if (rc == 0) {
1025		struct seq_file *m = file->private_data;
1026		m->private = s;
1027	} else {
1028		kfree(s->stats);
1029		kfree(s);
1030	}
1031	return rc;
1032
1033}
1034
1035static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1036{
1037	struct seq_file *seq = file->private_data;
1038	struct jbd2_stats_proc_session *s = seq->private;
1039	kfree(s->stats);
1040	kfree(s);
1041	return seq_release(inode, file);
1042}
1043
1044static const struct file_operations jbd2_seq_info_fops = {
1045	.owner		= THIS_MODULE,
1046	.open           = jbd2_seq_info_open,
1047	.read           = seq_read,
1048	.llseek         = seq_lseek,
1049	.release        = jbd2_seq_info_release,
1050};
1051
1052static struct proc_dir_entry *proc_jbd2_stats;
1053
1054static void jbd2_stats_proc_init(journal_t *journal)
1055{
1056	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1057	if (journal->j_proc_entry) {
1058		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1059				 &jbd2_seq_info_fops, journal);
1060	}
1061}
1062
1063static void jbd2_stats_proc_exit(journal_t *journal)
1064{
1065	remove_proc_entry("info", journal->j_proc_entry);
1066	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1067}
1068
1069/*
1070 * Management for journal control blocks: functions to create and
1071 * destroy journal_t structures, and to initialise and read existing
1072 * journal blocks from disk.  */
1073
1074/* First: create and setup a journal_t object in memory.  We initialise
1075 * very few fields yet: that has to wait until we have created the
1076 * journal structures from from scratch, or loaded them from disk. */
1077
1078static journal_t * journal_init_common (void)
1079{
1080	journal_t *journal;
1081	int err;
1082
1083	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1084	if (!journal)
1085		return NULL;
1086
1087	init_waitqueue_head(&journal->j_wait_transaction_locked);
1088	init_waitqueue_head(&journal->j_wait_done_commit);
1089	init_waitqueue_head(&journal->j_wait_commit);
1090	init_waitqueue_head(&journal->j_wait_updates);
1091	init_waitqueue_head(&journal->j_wait_reserved);
1092	mutex_init(&journal->j_barrier);
1093	mutex_init(&journal->j_checkpoint_mutex);
1094	spin_lock_init(&journal->j_revoke_lock);
1095	spin_lock_init(&journal->j_list_lock);
1096	rwlock_init(&journal->j_state_lock);
1097
1098	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1099	journal->j_min_batch_time = 0;
1100	journal->j_max_batch_time = 15000; /* 15ms */
1101	atomic_set(&journal->j_reserved_credits, 0);
1102
1103	/* The journal is marked for error until we succeed with recovery! */
1104	journal->j_flags = JBD2_ABORT;
1105
1106	/* Set up a default-sized revoke table for the new mount. */
1107	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1108	if (err) {
1109		kfree(journal);
1110		return NULL;
1111	}
1112
1113	spin_lock_init(&journal->j_history_lock);
1114
1115	return journal;
1116}
1117
1118/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1119 *
1120 * Create a journal structure assigned some fixed set of disk blocks to
1121 * the journal.  We don't actually touch those disk blocks yet, but we
1122 * need to set up all of the mapping information to tell the journaling
1123 * system where the journal blocks are.
1124 *
1125 */
1126
1127/**
1128 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1129 *  @bdev: Block device on which to create the journal
1130 *  @fs_dev: Device which hold journalled filesystem for this journal.
1131 *  @start: Block nr Start of journal.
1132 *  @len:  Length of the journal in blocks.
1133 *  @blocksize: blocksize of journalling device
1134 *
1135 *  Returns: a newly created journal_t *
1136 *
1137 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1138 *  range of blocks on an arbitrary block device.
1139 *
1140 */
1141journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1142			struct block_device *fs_dev,
1143			unsigned long long start, int len, int blocksize)
1144{
1145	journal_t *journal = journal_init_common();
1146	struct buffer_head *bh;
1147	char *p;
1148	int n;
1149
1150	if (!journal)
1151		return NULL;
1152
1153	/* journal descriptor can store up to n blocks -bzzz */
1154	journal->j_blocksize = blocksize;
1155	journal->j_dev = bdev;
1156	journal->j_fs_dev = fs_dev;
1157	journal->j_blk_offset = start;
1158	journal->j_maxlen = len;
1159	bdevname(journal->j_dev, journal->j_devname);
1160	p = journal->j_devname;
1161	while ((p = strchr(p, '/')))
1162		*p = '!';
1163	jbd2_stats_proc_init(journal);
1164	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1165	journal->j_wbufsize = n;
1166	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1167	if (!journal->j_wbuf) {
1168		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1169			__func__);
1170		goto out_err;
1171	}
1172
1173	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1174	if (!bh) {
1175		printk(KERN_ERR
1176		       "%s: Cannot get buffer for journal superblock\n",
1177		       __func__);
1178		goto out_err;
1179	}
1180	journal->j_sb_buffer = bh;
1181	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1182
1183	return journal;
1184out_err:
1185	kfree(journal->j_wbuf);
1186	jbd2_stats_proc_exit(journal);
1187	kfree(journal);
1188	return NULL;
1189}
1190
1191/**
1192 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1193 *  @inode: An inode to create the journal in
1194 *
1195 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1196 * the journal.  The inode must exist already, must support bmap() and
1197 * must have all data blocks preallocated.
1198 */
1199journal_t * jbd2_journal_init_inode (struct inode *inode)
1200{
1201	struct buffer_head *bh;
1202	journal_t *journal = journal_init_common();
1203	char *p;
1204	int err;
1205	int n;
1206	unsigned long long blocknr;
1207
1208	if (!journal)
1209		return NULL;
1210
1211	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1212	journal->j_inode = inode;
1213	bdevname(journal->j_dev, journal->j_devname);
1214	p = journal->j_devname;
1215	while ((p = strchr(p, '/')))
1216		*p = '!';
1217	p = journal->j_devname + strlen(journal->j_devname);
1218	sprintf(p, "-%lu", journal->j_inode->i_ino);
1219	jbd_debug(1,
1220		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1221		  journal, inode->i_sb->s_id, inode->i_ino,
1222		  (long long) inode->i_size,
1223		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1224
1225	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1226	journal->j_blocksize = inode->i_sb->s_blocksize;
1227	jbd2_stats_proc_init(journal);
1228
1229	/* journal descriptor can store up to n blocks -bzzz */
1230	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1231	journal->j_wbufsize = n;
1232	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1233	if (!journal->j_wbuf) {
1234		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1235			__func__);
1236		goto out_err;
1237	}
1238
1239	err = jbd2_journal_bmap(journal, 0, &blocknr);
1240	/* If that failed, give up */
1241	if (err) {
1242		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1243		       __func__);
1244		goto out_err;
1245	}
1246
1247	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1248	if (!bh) {
1249		printk(KERN_ERR
1250		       "%s: Cannot get buffer for journal superblock\n",
1251		       __func__);
1252		goto out_err;
1253	}
1254	journal->j_sb_buffer = bh;
1255	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1256
1257	return journal;
1258out_err:
1259	kfree(journal->j_wbuf);
1260	jbd2_stats_proc_exit(journal);
1261	kfree(journal);
1262	return NULL;
1263}
1264
1265/*
1266 * If the journal init or create aborts, we need to mark the journal
1267 * superblock as being NULL to prevent the journal destroy from writing
1268 * back a bogus superblock.
1269 */
1270static void journal_fail_superblock (journal_t *journal)
1271{
1272	struct buffer_head *bh = journal->j_sb_buffer;
1273	brelse(bh);
1274	journal->j_sb_buffer = NULL;
1275}
1276
1277/*
1278 * Given a journal_t structure, initialise the various fields for
1279 * startup of a new journaling session.  We use this both when creating
1280 * a journal, and after recovering an old journal to reset it for
1281 * subsequent use.
1282 */
1283
1284static int journal_reset(journal_t *journal)
1285{
1286	journal_superblock_t *sb = journal->j_superblock;
1287	unsigned long long first, last;
1288
1289	first = be32_to_cpu(sb->s_first);
1290	last = be32_to_cpu(sb->s_maxlen);
1291	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1292		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1293		       first, last);
1294		journal_fail_superblock(journal);
1295		return -EINVAL;
1296	}
1297
1298	journal->j_first = first;
1299	journal->j_last = last;
1300
1301	journal->j_head = first;
1302	journal->j_tail = first;
1303	journal->j_free = last - first;
1304
1305	journal->j_tail_sequence = journal->j_transaction_sequence;
1306	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1307	journal->j_commit_request = journal->j_commit_sequence;
1308
1309	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1310
1311	/*
1312	 * As a special case, if the on-disk copy is already marked as needing
1313	 * no recovery (s_start == 0), then we can safely defer the superblock
1314	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1315	 * attempting a write to a potential-readonly device.
1316	 */
1317	if (sb->s_start == 0) {
1318		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1319			"(start %ld, seq %d, errno %d)\n",
1320			journal->j_tail, journal->j_tail_sequence,
1321			journal->j_errno);
1322		journal->j_flags |= JBD2_FLUSHED;
1323	} else {
1324		/* Lock here to make assertions happy... */
1325		mutex_lock(&journal->j_checkpoint_mutex);
1326		/*
1327		 * Update log tail information. We use WRITE_FUA since new
1328		 * transaction will start reusing journal space and so we
1329		 * must make sure information about current log tail is on
1330		 * disk before that.
1331		 */
1332		jbd2_journal_update_sb_log_tail(journal,
1333						journal->j_tail_sequence,
1334						journal->j_tail,
1335						WRITE_FUA);
1336		mutex_unlock(&journal->j_checkpoint_mutex);
1337	}
1338	return jbd2_journal_start_thread(journal);
1339}
1340
1341static int jbd2_write_superblock(journal_t *journal, int write_op)
1342{
1343	struct buffer_head *bh = journal->j_sb_buffer;
1344	journal_superblock_t *sb = journal->j_superblock;
1345	int ret;
1346
1347	trace_jbd2_write_superblock(journal, write_op);
1348	if (!(journal->j_flags & JBD2_BARRIER))
1349		write_op &= ~(REQ_FUA | REQ_FLUSH);
1350	lock_buffer(bh);
1351	if (buffer_write_io_error(bh)) {
1352		/*
1353		 * Oh, dear.  A previous attempt to write the journal
1354		 * superblock failed.  This could happen because the
1355		 * USB device was yanked out.  Or it could happen to
1356		 * be a transient write error and maybe the block will
1357		 * be remapped.  Nothing we can do but to retry the
1358		 * write and hope for the best.
1359		 */
1360		printk(KERN_ERR "JBD2: previous I/O error detected "
1361		       "for journal superblock update for %s.\n",
1362		       journal->j_devname);
1363		clear_buffer_write_io_error(bh);
1364		set_buffer_uptodate(bh);
1365	}
1366	jbd2_superblock_csum_set(journal, sb);
1367	get_bh(bh);
1368	bh->b_end_io = end_buffer_write_sync;
1369	ret = submit_bh(write_op, bh);
1370	wait_on_buffer(bh);
1371	if (buffer_write_io_error(bh)) {
1372		clear_buffer_write_io_error(bh);
1373		set_buffer_uptodate(bh);
1374		ret = -EIO;
1375	}
1376	if (ret) {
1377		printk(KERN_ERR "JBD2: Error %d detected when updating "
1378		       "journal superblock for %s.\n", ret,
1379		       journal->j_devname);
1380		jbd2_journal_abort(journal, ret);
1381	}
1382
1383	return ret;
1384}
1385
1386/**
1387 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1388 * @journal: The journal to update.
1389 * @tail_tid: TID of the new transaction at the tail of the log
1390 * @tail_block: The first block of the transaction at the tail of the log
1391 * @write_op: With which operation should we write the journal sb
1392 *
1393 * Update a journal's superblock information about log tail and write it to
1394 * disk, waiting for the IO to complete.
1395 */
1396int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1397				     unsigned long tail_block, int write_op)
1398{
1399	journal_superblock_t *sb = journal->j_superblock;
1400	int ret;
1401
1402	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1403	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1404		  tail_block, tail_tid);
1405
1406	sb->s_sequence = cpu_to_be32(tail_tid);
1407	sb->s_start    = cpu_to_be32(tail_block);
1408
1409	ret = jbd2_write_superblock(journal, write_op);
1410	if (ret)
1411		goto out;
1412
1413	/* Log is no longer empty */
1414	write_lock(&journal->j_state_lock);
1415	WARN_ON(!sb->s_sequence);
1416	journal->j_flags &= ~JBD2_FLUSHED;
1417	write_unlock(&journal->j_state_lock);
1418
1419out:
1420	return ret;
1421}
1422
1423/**
1424 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1425 * @journal: The journal to update.
1426 * @write_op: With which operation should we write the journal sb
1427 *
1428 * Update a journal's dynamic superblock fields to show that journal is empty.
1429 * Write updated superblock to disk waiting for IO to complete.
1430 */
1431static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1432{
1433	journal_superblock_t *sb = journal->j_superblock;
1434
1435	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1436	read_lock(&journal->j_state_lock);
1437	/* Is it already empty? */
1438	if (sb->s_start == 0) {
1439		read_unlock(&journal->j_state_lock);
1440		return;
1441	}
1442	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1443		  journal->j_tail_sequence);
1444
1445	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1446	sb->s_start    = cpu_to_be32(0);
1447	read_unlock(&journal->j_state_lock);
1448
1449	jbd2_write_superblock(journal, write_op);
1450
1451	/* Log is no longer empty */
1452	write_lock(&journal->j_state_lock);
1453	journal->j_flags |= JBD2_FLUSHED;
1454	write_unlock(&journal->j_state_lock);
1455}
1456
1457
1458/**
1459 * jbd2_journal_update_sb_errno() - Update error in the journal.
1460 * @journal: The journal to update.
1461 *
1462 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1463 * to complete.
1464 */
1465void jbd2_journal_update_sb_errno(journal_t *journal)
1466{
1467	journal_superblock_t *sb = journal->j_superblock;
1468
1469	read_lock(&journal->j_state_lock);
1470	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1471		  journal->j_errno);
1472	sb->s_errno    = cpu_to_be32(journal->j_errno);
1473	read_unlock(&journal->j_state_lock);
1474
1475	jbd2_write_superblock(journal, WRITE_SYNC);
1476}
1477EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1478
1479/*
1480 * Read the superblock for a given journal, performing initial
1481 * validation of the format.
1482 */
1483static int journal_get_superblock(journal_t *journal)
1484{
1485	struct buffer_head *bh;
1486	journal_superblock_t *sb;
1487	int err = -EIO;
1488
1489	bh = journal->j_sb_buffer;
1490
1491	J_ASSERT(bh != NULL);
1492	if (!buffer_uptodate(bh)) {
1493		ll_rw_block(READ, 1, &bh);
1494		wait_on_buffer(bh);
1495		if (!buffer_uptodate(bh)) {
1496			printk(KERN_ERR
1497				"JBD2: IO error reading journal superblock\n");
1498			goto out;
1499		}
1500	}
1501
1502	if (buffer_verified(bh))
1503		return 0;
1504
1505	sb = journal->j_superblock;
1506
1507	err = -EINVAL;
1508
1509	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1510	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1511		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1512		goto out;
1513	}
1514
1515	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1516	case JBD2_SUPERBLOCK_V1:
1517		journal->j_format_version = 1;
1518		break;
1519	case JBD2_SUPERBLOCK_V2:
1520		journal->j_format_version = 2;
1521		break;
1522	default:
1523		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1524		goto out;
1525	}
1526
1527	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1528		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1529	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1530		printk(KERN_WARNING "JBD2: journal file too short\n");
1531		goto out;
1532	}
1533
1534	if (be32_to_cpu(sb->s_first) == 0 ||
1535	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1536		printk(KERN_WARNING
1537			"JBD2: Invalid start block of journal: %u\n",
1538			be32_to_cpu(sb->s_first));
1539		goto out;
1540	}
1541
1542	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2) &&
1543	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1544		/* Can't have checksum v2 and v3 at the same time! */
1545		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1546		       "at the same time!\n");
1547		goto out;
1548	}
1549
1550	if (jbd2_journal_has_csum_v2or3(journal) &&
1551	    JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM)) {
1552		/* Can't have checksum v1 and v2 on at the same time! */
1553		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1554		       "at the same time!\n");
1555		goto out;
1556	}
1557
1558	if (!jbd2_verify_csum_type(journal, sb)) {
1559		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1560		goto out;
1561	}
1562
1563	/* Load the checksum driver */
1564	if (jbd2_journal_has_csum_v2or3(journal)) {
1565		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1566		if (IS_ERR(journal->j_chksum_driver)) {
1567			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1568			err = PTR_ERR(journal->j_chksum_driver);
1569			journal->j_chksum_driver = NULL;
1570			goto out;
1571		}
1572	}
1573
1574	/* Check superblock checksum */
1575	if (!jbd2_superblock_csum_verify(journal, sb)) {
1576		printk(KERN_ERR "JBD2: journal checksum error\n");
1577		goto out;
1578	}
1579
1580	/* Precompute checksum seed for all metadata */
1581	if (jbd2_journal_has_csum_v2or3(journal))
1582		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1583						   sizeof(sb->s_uuid));
1584
1585	set_buffer_verified(bh);
1586
1587	return 0;
1588
1589out:
1590	journal_fail_superblock(journal);
1591	return err;
1592}
1593
1594/*
1595 * Load the on-disk journal superblock and read the key fields into the
1596 * journal_t.
1597 */
1598
1599static int load_superblock(journal_t *journal)
1600{
1601	int err;
1602	journal_superblock_t *sb;
1603
1604	err = journal_get_superblock(journal);
1605	if (err)
1606		return err;
1607
1608	sb = journal->j_superblock;
1609
1610	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1611	journal->j_tail = be32_to_cpu(sb->s_start);
1612	journal->j_first = be32_to_cpu(sb->s_first);
1613	journal->j_last = be32_to_cpu(sb->s_maxlen);
1614	journal->j_errno = be32_to_cpu(sb->s_errno);
1615
1616	return 0;
1617}
1618
1619
1620/**
1621 * int jbd2_journal_load() - Read journal from disk.
1622 * @journal: Journal to act on.
1623 *
1624 * Given a journal_t structure which tells us which disk blocks contain
1625 * a journal, read the journal from disk to initialise the in-memory
1626 * structures.
1627 */
1628int jbd2_journal_load(journal_t *journal)
1629{
1630	int err;
1631	journal_superblock_t *sb;
1632
1633	err = load_superblock(journal);
1634	if (err)
1635		return err;
1636
1637	sb = journal->j_superblock;
1638	/* If this is a V2 superblock, then we have to check the
1639	 * features flags on it. */
1640
1641	if (journal->j_format_version >= 2) {
1642		if ((sb->s_feature_ro_compat &
1643		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1644		    (sb->s_feature_incompat &
1645		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1646			printk(KERN_WARNING
1647				"JBD2: Unrecognised features on journal\n");
1648			return -EINVAL;
1649		}
1650	}
1651
1652	/*
1653	 * Create a slab for this blocksize
1654	 */
1655	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1656	if (err)
1657		return err;
1658
1659	/* Let the recovery code check whether it needs to recover any
1660	 * data from the journal. */
1661	if (jbd2_journal_recover(journal))
1662		goto recovery_error;
1663
1664	if (journal->j_failed_commit) {
1665		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1666		       "is corrupt.\n", journal->j_failed_commit,
1667		       journal->j_devname);
1668		return -EIO;
1669	}
1670
1671	/* OK, we've finished with the dynamic journal bits:
1672	 * reinitialise the dynamic contents of the superblock in memory
1673	 * and reset them on disk. */
1674	if (journal_reset(journal))
1675		goto recovery_error;
1676
1677	journal->j_flags &= ~JBD2_ABORT;
1678	journal->j_flags |= JBD2_LOADED;
1679	return 0;
1680
1681recovery_error:
1682	printk(KERN_WARNING "JBD2: recovery failed\n");
1683	return -EIO;
1684}
1685
1686/**
1687 * void jbd2_journal_destroy() - Release a journal_t structure.
1688 * @journal: Journal to act on.
1689 *
1690 * Release a journal_t structure once it is no longer in use by the
1691 * journaled object.
1692 * Return <0 if we couldn't clean up the journal.
1693 */
1694int jbd2_journal_destroy(journal_t *journal)
1695{
1696	int err = 0;
1697
1698	/* Wait for the commit thread to wake up and die. */
1699	journal_kill_thread(journal);
1700
1701	/* Force a final log commit */
1702	if (journal->j_running_transaction)
1703		jbd2_journal_commit_transaction(journal);
1704
1705	/* Force any old transactions to disk */
1706
1707	/* Totally anal locking here... */
1708	spin_lock(&journal->j_list_lock);
1709	while (journal->j_checkpoint_transactions != NULL) {
1710		spin_unlock(&journal->j_list_lock);
1711		mutex_lock(&journal->j_checkpoint_mutex);
1712		err = jbd2_log_do_checkpoint(journal);
1713		mutex_unlock(&journal->j_checkpoint_mutex);
1714		/*
1715		 * If checkpointing failed, just free the buffers to avoid
1716		 * looping forever
1717		 */
1718		if (err) {
1719			jbd2_journal_destroy_checkpoint(journal);
1720			spin_lock(&journal->j_list_lock);
1721			break;
1722		}
1723		spin_lock(&journal->j_list_lock);
1724	}
1725
1726	J_ASSERT(journal->j_running_transaction == NULL);
1727	J_ASSERT(journal->j_committing_transaction == NULL);
1728	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1729	spin_unlock(&journal->j_list_lock);
1730
1731	if (journal->j_sb_buffer) {
1732		if (!is_journal_aborted(journal)) {
1733			mutex_lock(&journal->j_checkpoint_mutex);
1734
1735			write_lock(&journal->j_state_lock);
1736			journal->j_tail_sequence =
1737				++journal->j_transaction_sequence;
1738			write_unlock(&journal->j_state_lock);
1739
1740			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1741			mutex_unlock(&journal->j_checkpoint_mutex);
1742		} else
1743			err = -EIO;
1744		brelse(journal->j_sb_buffer);
1745	}
1746
1747	if (journal->j_proc_entry)
1748		jbd2_stats_proc_exit(journal);
1749	iput(journal->j_inode);
1750	if (journal->j_revoke)
1751		jbd2_journal_destroy_revoke(journal);
1752	if (journal->j_chksum_driver)
1753		crypto_free_shash(journal->j_chksum_driver);
1754	kfree(journal->j_wbuf);
1755	kfree(journal);
1756
1757	return err;
1758}
1759
1760
1761/**
1762 *int jbd2_journal_check_used_features () - Check if features specified are used.
1763 * @journal: Journal to check.
1764 * @compat: bitmask of compatible features
1765 * @ro: bitmask of features that force read-only mount
1766 * @incompat: bitmask of incompatible features
1767 *
1768 * Check whether the journal uses all of a given set of
1769 * features.  Return true (non-zero) if it does.
1770 **/
1771
1772int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1773				 unsigned long ro, unsigned long incompat)
1774{
1775	journal_superblock_t *sb;
1776
1777	if (!compat && !ro && !incompat)
1778		return 1;
1779	/* Load journal superblock if it is not loaded yet. */
1780	if (journal->j_format_version == 0 &&
1781	    journal_get_superblock(journal) != 0)
1782		return 0;
1783	if (journal->j_format_version == 1)
1784		return 0;
1785
1786	sb = journal->j_superblock;
1787
1788	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1789	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1790	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1791		return 1;
1792
1793	return 0;
1794}
1795
1796/**
1797 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1798 * @journal: Journal to check.
1799 * @compat: bitmask of compatible features
1800 * @ro: bitmask of features that force read-only mount
1801 * @incompat: bitmask of incompatible features
1802 *
1803 * Check whether the journaling code supports the use of
1804 * all of a given set of features on this journal.  Return true
1805 * (non-zero) if it can. */
1806
1807int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1808				      unsigned long ro, unsigned long incompat)
1809{
1810	if (!compat && !ro && !incompat)
1811		return 1;
1812
1813	/* We can support any known requested features iff the
1814	 * superblock is in version 2.  Otherwise we fail to support any
1815	 * extended sb features. */
1816
1817	if (journal->j_format_version != 2)
1818		return 0;
1819
1820	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1821	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1822	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1823		return 1;
1824
1825	return 0;
1826}
1827
1828/**
1829 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1830 * @journal: Journal to act on.
1831 * @compat: bitmask of compatible features
1832 * @ro: bitmask of features that force read-only mount
1833 * @incompat: bitmask of incompatible features
1834 *
1835 * Mark a given journal feature as present on the
1836 * superblock.  Returns true if the requested features could be set.
1837 *
1838 */
1839
1840int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1841			  unsigned long ro, unsigned long incompat)
1842{
1843#define INCOMPAT_FEATURE_ON(f) \
1844		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1845#define COMPAT_FEATURE_ON(f) \
1846		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1847	journal_superblock_t *sb;
1848
1849	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1850		return 1;
1851
1852	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1853		return 0;
1854
1855	/* If enabling v2 checksums, turn on v3 instead */
1856	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1857		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1858		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1859	}
1860
1861	/* Asking for checksumming v3 and v1?  Only give them v3. */
1862	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1863	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1864		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1865
1866	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1867		  compat, ro, incompat);
1868
1869	sb = journal->j_superblock;
1870
1871	/* If enabling v3 checksums, update superblock */
1872	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1873		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1874		sb->s_feature_compat &=
1875			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1876
1877		/* Load the checksum driver */
1878		if (journal->j_chksum_driver == NULL) {
1879			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1880								      0, 0);
1881			if (IS_ERR(journal->j_chksum_driver)) {
1882				printk(KERN_ERR "JBD2: Cannot load crc32c "
1883				       "driver.\n");
1884				journal->j_chksum_driver = NULL;
1885				return 0;
1886			}
1887
1888			/* Precompute checksum seed for all metadata */
1889			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1890							   sb->s_uuid,
1891							   sizeof(sb->s_uuid));
1892		}
1893	}
1894
1895	/* If enabling v1 checksums, downgrade superblock */
1896	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1897		sb->s_feature_incompat &=
1898			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1899				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1900
1901	sb->s_feature_compat    |= cpu_to_be32(compat);
1902	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1903	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1904
1905	return 1;
1906#undef COMPAT_FEATURE_ON
1907#undef INCOMPAT_FEATURE_ON
1908}
1909
1910/*
1911 * jbd2_journal_clear_features () - Clear a given journal feature in the
1912 * 				    superblock
1913 * @journal: Journal to act on.
1914 * @compat: bitmask of compatible features
1915 * @ro: bitmask of features that force read-only mount
1916 * @incompat: bitmask of incompatible features
1917 *
1918 * Clear a given journal feature as present on the
1919 * superblock.
1920 */
1921void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1922				unsigned long ro, unsigned long incompat)
1923{
1924	journal_superblock_t *sb;
1925
1926	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1927		  compat, ro, incompat);
1928
1929	sb = journal->j_superblock;
1930
1931	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1932	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1933	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1934}
1935EXPORT_SYMBOL(jbd2_journal_clear_features);
1936
1937/**
1938 * int jbd2_journal_flush () - Flush journal
1939 * @journal: Journal to act on.
1940 *
1941 * Flush all data for a given journal to disk and empty the journal.
1942 * Filesystems can use this when remounting readonly to ensure that
1943 * recovery does not need to happen on remount.
1944 */
1945
1946int jbd2_journal_flush(journal_t *journal)
1947{
1948	int err = 0;
1949	transaction_t *transaction = NULL;
1950
1951	write_lock(&journal->j_state_lock);
1952
1953	/* Force everything buffered to the log... */
1954	if (journal->j_running_transaction) {
1955		transaction = journal->j_running_transaction;
1956		__jbd2_log_start_commit(journal, transaction->t_tid);
1957	} else if (journal->j_committing_transaction)
1958		transaction = journal->j_committing_transaction;
1959
1960	/* Wait for the log commit to complete... */
1961	if (transaction) {
1962		tid_t tid = transaction->t_tid;
1963
1964		write_unlock(&journal->j_state_lock);
1965		jbd2_log_wait_commit(journal, tid);
1966	} else {
1967		write_unlock(&journal->j_state_lock);
1968	}
1969
1970	/* ...and flush everything in the log out to disk. */
1971	spin_lock(&journal->j_list_lock);
1972	while (!err && journal->j_checkpoint_transactions != NULL) {
1973		spin_unlock(&journal->j_list_lock);
1974		mutex_lock(&journal->j_checkpoint_mutex);
1975		err = jbd2_log_do_checkpoint(journal);
1976		mutex_unlock(&journal->j_checkpoint_mutex);
1977		spin_lock(&journal->j_list_lock);
1978	}
1979	spin_unlock(&journal->j_list_lock);
1980
1981	if (is_journal_aborted(journal))
1982		return -EIO;
1983
1984	mutex_lock(&journal->j_checkpoint_mutex);
1985	if (!err) {
1986		err = jbd2_cleanup_journal_tail(journal);
1987		if (err < 0) {
1988			mutex_unlock(&journal->j_checkpoint_mutex);
1989			goto out;
1990		}
1991		err = 0;
1992	}
1993
1994	/* Finally, mark the journal as really needing no recovery.
1995	 * This sets s_start==0 in the underlying superblock, which is
1996	 * the magic code for a fully-recovered superblock.  Any future
1997	 * commits of data to the journal will restore the current
1998	 * s_start value. */
1999	jbd2_mark_journal_empty(journal, WRITE_FUA);
2000	mutex_unlock(&journal->j_checkpoint_mutex);
2001	write_lock(&journal->j_state_lock);
2002	J_ASSERT(!journal->j_running_transaction);
2003	J_ASSERT(!journal->j_committing_transaction);
2004	J_ASSERT(!journal->j_checkpoint_transactions);
2005	J_ASSERT(journal->j_head == journal->j_tail);
2006	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2007	write_unlock(&journal->j_state_lock);
2008out:
2009	return err;
2010}
2011
2012/**
2013 * int jbd2_journal_wipe() - Wipe journal contents
2014 * @journal: Journal to act on.
2015 * @write: flag (see below)
2016 *
2017 * Wipe out all of the contents of a journal, safely.  This will produce
2018 * a warning if the journal contains any valid recovery information.
2019 * Must be called between journal_init_*() and jbd2_journal_load().
2020 *
2021 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2022 * we merely suppress recovery.
2023 */
2024
2025int jbd2_journal_wipe(journal_t *journal, int write)
2026{
2027	int err = 0;
2028
2029	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2030
2031	err = load_superblock(journal);
2032	if (err)
2033		return err;
2034
2035	if (!journal->j_tail)
2036		goto no_recovery;
2037
2038	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2039		write ? "Clearing" : "Ignoring");
2040
2041	err = jbd2_journal_skip_recovery(journal);
2042	if (write) {
2043		/* Lock to make assertions happy... */
2044		mutex_lock(&journal->j_checkpoint_mutex);
2045		jbd2_mark_journal_empty(journal, WRITE_FUA);
2046		mutex_unlock(&journal->j_checkpoint_mutex);
2047	}
2048
2049 no_recovery:
2050	return err;
2051}
2052
2053/*
2054 * Journal abort has very specific semantics, which we describe
2055 * for journal abort.
2056 *
2057 * Two internal functions, which provide abort to the jbd layer
2058 * itself are here.
2059 */
2060
2061/*
2062 * Quick version for internal journal use (doesn't lock the journal).
2063 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2064 * and don't attempt to make any other journal updates.
2065 */
2066void __jbd2_journal_abort_hard(journal_t *journal)
2067{
2068	transaction_t *transaction;
2069
2070	if (journal->j_flags & JBD2_ABORT)
2071		return;
2072
2073	printk(KERN_ERR "Aborting journal on device %s.\n",
2074	       journal->j_devname);
2075
2076	write_lock(&journal->j_state_lock);
2077	journal->j_flags |= JBD2_ABORT;
2078	transaction = journal->j_running_transaction;
2079	if (transaction)
2080		__jbd2_log_start_commit(journal, transaction->t_tid);
2081	write_unlock(&journal->j_state_lock);
2082}
2083
2084/* Soft abort: record the abort error status in the journal superblock,
2085 * but don't do any other IO. */
2086static void __journal_abort_soft (journal_t *journal, int errno)
2087{
2088	if (journal->j_flags & JBD2_ABORT)
2089		return;
2090
2091	if (!journal->j_errno)
2092		journal->j_errno = errno;
2093
2094	__jbd2_journal_abort_hard(journal);
2095
2096	if (errno) {
2097		jbd2_journal_update_sb_errno(journal);
2098		write_lock(&journal->j_state_lock);
2099		journal->j_flags |= JBD2_REC_ERR;
2100		write_unlock(&journal->j_state_lock);
2101	}
2102}
2103
2104/**
2105 * void jbd2_journal_abort () - Shutdown the journal immediately.
2106 * @journal: the journal to shutdown.
2107 * @errno:   an error number to record in the journal indicating
2108 *           the reason for the shutdown.
2109 *
2110 * Perform a complete, immediate shutdown of the ENTIRE
2111 * journal (not of a single transaction).  This operation cannot be
2112 * undone without closing and reopening the journal.
2113 *
2114 * The jbd2_journal_abort function is intended to support higher level error
2115 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2116 * mode.
2117 *
2118 * Journal abort has very specific semantics.  Any existing dirty,
2119 * unjournaled buffers in the main filesystem will still be written to
2120 * disk by bdflush, but the journaling mechanism will be suspended
2121 * immediately and no further transaction commits will be honoured.
2122 *
2123 * Any dirty, journaled buffers will be written back to disk without
2124 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2125 * filesystem, but we _do_ attempt to leave as much data as possible
2126 * behind for fsck to use for cleanup.
2127 *
2128 * Any attempt to get a new transaction handle on a journal which is in
2129 * ABORT state will just result in an -EROFS error return.  A
2130 * jbd2_journal_stop on an existing handle will return -EIO if we have
2131 * entered abort state during the update.
2132 *
2133 * Recursive transactions are not disturbed by journal abort until the
2134 * final jbd2_journal_stop, which will receive the -EIO error.
2135 *
2136 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2137 * which will be recorded (if possible) in the journal superblock.  This
2138 * allows a client to record failure conditions in the middle of a
2139 * transaction without having to complete the transaction to record the
2140 * failure to disk.  ext3_error, for example, now uses this
2141 * functionality.
2142 *
2143 * Errors which originate from within the journaling layer will NOT
2144 * supply an errno; a null errno implies that absolutely no further
2145 * writes are done to the journal (unless there are any already in
2146 * progress).
2147 *
2148 */
2149
2150void jbd2_journal_abort(journal_t *journal, int errno)
2151{
2152	__journal_abort_soft(journal, errno);
2153}
2154
2155/**
2156 * int jbd2_journal_errno () - returns the journal's error state.
2157 * @journal: journal to examine.
2158 *
2159 * This is the errno number set with jbd2_journal_abort(), the last
2160 * time the journal was mounted - if the journal was stopped
2161 * without calling abort this will be 0.
2162 *
2163 * If the journal has been aborted on this mount time -EROFS will
2164 * be returned.
2165 */
2166int jbd2_journal_errno(journal_t *journal)
2167{
2168	int err;
2169
2170	read_lock(&journal->j_state_lock);
2171	if (journal->j_flags & JBD2_ABORT)
2172		err = -EROFS;
2173	else
2174		err = journal->j_errno;
2175	read_unlock(&journal->j_state_lock);
2176	return err;
2177}
2178
2179/**
2180 * int jbd2_journal_clear_err () - clears the journal's error state
2181 * @journal: journal to act on.
2182 *
2183 * An error must be cleared or acked to take a FS out of readonly
2184 * mode.
2185 */
2186int jbd2_journal_clear_err(journal_t *journal)
2187{
2188	int err = 0;
2189
2190	write_lock(&journal->j_state_lock);
2191	if (journal->j_flags & JBD2_ABORT)
2192		err = -EROFS;
2193	else
2194		journal->j_errno = 0;
2195	write_unlock(&journal->j_state_lock);
2196	return err;
2197}
2198
2199/**
2200 * void jbd2_journal_ack_err() - Ack journal err.
2201 * @journal: journal to act on.
2202 *
2203 * An error must be cleared or acked to take a FS out of readonly
2204 * mode.
2205 */
2206void jbd2_journal_ack_err(journal_t *journal)
2207{
2208	write_lock(&journal->j_state_lock);
2209	if (journal->j_errno)
2210		journal->j_flags |= JBD2_ACK_ERR;
2211	write_unlock(&journal->j_state_lock);
2212}
2213
2214int jbd2_journal_blocks_per_page(struct inode *inode)
2215{
2216	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2217}
2218
2219/*
2220 * helper functions to deal with 32 or 64bit block numbers.
2221 */
2222size_t journal_tag_bytes(journal_t *journal)
2223{
2224	size_t sz;
2225
2226	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3))
2227		return sizeof(journal_block_tag3_t);
2228
2229	sz = sizeof(journal_block_tag_t);
2230
2231	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2232		sz += sizeof(__u16);
2233
2234	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2235		return sz;
2236	else
2237		return sz - sizeof(__u32);
2238}
2239
2240/*
2241 * JBD memory management
2242 *
2243 * These functions are used to allocate block-sized chunks of memory
2244 * used for making copies of buffer_head data.  Very often it will be
2245 * page-sized chunks of data, but sometimes it will be in
2246 * sub-page-size chunks.  (For example, 16k pages on Power systems
2247 * with a 4k block file system.)  For blocks smaller than a page, we
2248 * use a SLAB allocator.  There are slab caches for each block size,
2249 * which are allocated at mount time, if necessary, and we only free
2250 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2251 * this reason we don't need to a mutex to protect access to
2252 * jbd2_slab[] allocating or releasing memory; only in
2253 * jbd2_journal_create_slab().
2254 */
2255#define JBD2_MAX_SLABS 8
2256static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2257
2258static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2259	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2260	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2261};
2262
2263
2264static void jbd2_journal_destroy_slabs(void)
2265{
2266	int i;
2267
2268	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2269		if (jbd2_slab[i])
2270			kmem_cache_destroy(jbd2_slab[i]);
2271		jbd2_slab[i] = NULL;
2272	}
2273}
2274
2275static int jbd2_journal_create_slab(size_t size)
2276{
2277	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2278	int i = order_base_2(size) - 10;
2279	size_t slab_size;
2280
2281	if (size == PAGE_SIZE)
2282		return 0;
2283
2284	if (i >= JBD2_MAX_SLABS)
2285		return -EINVAL;
2286
2287	if (unlikely(i < 0))
2288		i = 0;
2289	mutex_lock(&jbd2_slab_create_mutex);
2290	if (jbd2_slab[i]) {
2291		mutex_unlock(&jbd2_slab_create_mutex);
2292		return 0;	/* Already created */
2293	}
2294
2295	slab_size = 1 << (i+10);
2296	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2297					 slab_size, 0, NULL);
2298	mutex_unlock(&jbd2_slab_create_mutex);
2299	if (!jbd2_slab[i]) {
2300		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2301		return -ENOMEM;
2302	}
2303	return 0;
2304}
2305
2306static struct kmem_cache *get_slab(size_t size)
2307{
2308	int i = order_base_2(size) - 10;
2309
2310	BUG_ON(i >= JBD2_MAX_SLABS);
2311	if (unlikely(i < 0))
2312		i = 0;
2313	BUG_ON(jbd2_slab[i] == NULL);
2314	return jbd2_slab[i];
2315}
2316
2317void *jbd2_alloc(size_t size, gfp_t flags)
2318{
2319	void *ptr;
2320
2321	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2322
2323	flags |= __GFP_REPEAT;
2324	if (size == PAGE_SIZE)
2325		ptr = (void *)__get_free_pages(flags, 0);
2326	else if (size > PAGE_SIZE) {
2327		int order = get_order(size);
2328
2329		if (order < 3)
2330			ptr = (void *)__get_free_pages(flags, order);
2331		else
2332			ptr = vmalloc(size);
2333	} else
2334		ptr = kmem_cache_alloc(get_slab(size), flags);
2335
2336	/* Check alignment; SLUB has gotten this wrong in the past,
2337	 * and this can lead to user data corruption! */
2338	BUG_ON(((unsigned long) ptr) & (size-1));
2339
2340	return ptr;
2341}
2342
2343void jbd2_free(void *ptr, size_t size)
2344{
2345	if (size == PAGE_SIZE) {
2346		free_pages((unsigned long)ptr, 0);
2347		return;
2348	}
2349	if (size > PAGE_SIZE) {
2350		int order = get_order(size);
2351
2352		if (order < 3)
2353			free_pages((unsigned long)ptr, order);
2354		else
2355			vfree(ptr);
2356		return;
2357	}
2358	kmem_cache_free(get_slab(size), ptr);
2359};
2360
2361/*
2362 * Journal_head storage management
2363 */
2364static struct kmem_cache *jbd2_journal_head_cache;
2365#ifdef CONFIG_JBD2_DEBUG
2366static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2367#endif
2368
2369static int jbd2_journal_init_journal_head_cache(void)
2370{
2371	int retval;
2372
2373	J_ASSERT(jbd2_journal_head_cache == NULL);
2374	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2375				sizeof(struct journal_head),
2376				0,		/* offset */
2377				SLAB_TEMPORARY,	/* flags */
2378				NULL);		/* ctor */
2379	retval = 0;
2380	if (!jbd2_journal_head_cache) {
2381		retval = -ENOMEM;
2382		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2383	}
2384	return retval;
2385}
2386
2387static void jbd2_journal_destroy_journal_head_cache(void)
2388{
2389	if (jbd2_journal_head_cache) {
2390		kmem_cache_destroy(jbd2_journal_head_cache);
2391		jbd2_journal_head_cache = NULL;
2392	}
2393}
2394
2395/*
2396 * journal_head splicing and dicing
2397 */
2398static struct journal_head *journal_alloc_journal_head(void)
2399{
2400	struct journal_head *ret;
2401
2402#ifdef CONFIG_JBD2_DEBUG
2403	atomic_inc(&nr_journal_heads);
2404#endif
2405	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2406	if (!ret) {
2407		jbd_debug(1, "out of memory for journal_head\n");
2408		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2409		while (!ret) {
2410			yield();
2411			ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2412		}
2413	}
2414	return ret;
2415}
2416
2417static void journal_free_journal_head(struct journal_head *jh)
2418{
2419#ifdef CONFIG_JBD2_DEBUG
2420	atomic_dec(&nr_journal_heads);
2421	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2422#endif
2423	kmem_cache_free(jbd2_journal_head_cache, jh);
2424}
2425
2426/*
2427 * A journal_head is attached to a buffer_head whenever JBD has an
2428 * interest in the buffer.
2429 *
2430 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2431 * is set.  This bit is tested in core kernel code where we need to take
2432 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2433 * there.
2434 *
2435 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2436 *
2437 * When a buffer has its BH_JBD bit set it is immune from being released by
2438 * core kernel code, mainly via ->b_count.
2439 *
2440 * A journal_head is detached from its buffer_head when the journal_head's
2441 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2442 * transaction (b_cp_transaction) hold their references to b_jcount.
2443 *
2444 * Various places in the kernel want to attach a journal_head to a buffer_head
2445 * _before_ attaching the journal_head to a transaction.  To protect the
2446 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2447 * journal_head's b_jcount refcount by one.  The caller must call
2448 * jbd2_journal_put_journal_head() to undo this.
2449 *
2450 * So the typical usage would be:
2451 *
2452 *	(Attach a journal_head if needed.  Increments b_jcount)
2453 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2454 *	...
2455 *      (Get another reference for transaction)
2456 *	jbd2_journal_grab_journal_head(bh);
2457 *	jh->b_transaction = xxx;
2458 *	(Put original reference)
2459 *	jbd2_journal_put_journal_head(jh);
2460 */
2461
2462/*
2463 * Give a buffer_head a journal_head.
2464 *
2465 * May sleep.
2466 */
2467struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2468{
2469	struct journal_head *jh;
2470	struct journal_head *new_jh = NULL;
2471
2472repeat:
2473	if (!buffer_jbd(bh))
2474		new_jh = journal_alloc_journal_head();
2475
2476	jbd_lock_bh_journal_head(bh);
2477	if (buffer_jbd(bh)) {
2478		jh = bh2jh(bh);
2479	} else {
2480		J_ASSERT_BH(bh,
2481			(atomic_read(&bh->b_count) > 0) ||
2482			(bh->b_page && bh->b_page->mapping));
2483
2484		if (!new_jh) {
2485			jbd_unlock_bh_journal_head(bh);
2486			goto repeat;
2487		}
2488
2489		jh = new_jh;
2490		new_jh = NULL;		/* We consumed it */
2491		set_buffer_jbd(bh);
2492		bh->b_private = jh;
2493		jh->b_bh = bh;
2494		get_bh(bh);
2495		BUFFER_TRACE(bh, "added journal_head");
2496	}
2497	jh->b_jcount++;
2498	jbd_unlock_bh_journal_head(bh);
2499	if (new_jh)
2500		journal_free_journal_head(new_jh);
2501	return bh->b_private;
2502}
2503
2504/*
2505 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2506 * having a journal_head, return NULL
2507 */
2508struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2509{
2510	struct journal_head *jh = NULL;
2511
2512	jbd_lock_bh_journal_head(bh);
2513	if (buffer_jbd(bh)) {
2514		jh = bh2jh(bh);
2515		jh->b_jcount++;
2516	}
2517	jbd_unlock_bh_journal_head(bh);
2518	return jh;
2519}
2520
2521static void __journal_remove_journal_head(struct buffer_head *bh)
2522{
2523	struct journal_head *jh = bh2jh(bh);
2524
2525	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2526	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2527	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2528	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2529	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2530	J_ASSERT_BH(bh, buffer_jbd(bh));
2531	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2532	BUFFER_TRACE(bh, "remove journal_head");
2533	if (jh->b_frozen_data) {
2534		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2535		jbd2_free(jh->b_frozen_data, bh->b_size);
2536	}
2537	if (jh->b_committed_data) {
2538		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2539		jbd2_free(jh->b_committed_data, bh->b_size);
2540	}
2541	bh->b_private = NULL;
2542	jh->b_bh = NULL;	/* debug, really */
2543	clear_buffer_jbd(bh);
2544	journal_free_journal_head(jh);
2545}
2546
2547/*
2548 * Drop a reference on the passed journal_head.  If it fell to zero then
2549 * release the journal_head from the buffer_head.
2550 */
2551void jbd2_journal_put_journal_head(struct journal_head *jh)
2552{
2553	struct buffer_head *bh = jh2bh(jh);
2554
2555	jbd_lock_bh_journal_head(bh);
2556	J_ASSERT_JH(jh, jh->b_jcount > 0);
2557	--jh->b_jcount;
2558	if (!jh->b_jcount) {
2559		__journal_remove_journal_head(bh);
2560		jbd_unlock_bh_journal_head(bh);
2561		__brelse(bh);
2562	} else
2563		jbd_unlock_bh_journal_head(bh);
2564}
2565
2566/*
2567 * Initialize jbd inode head
2568 */
2569void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2570{
2571	jinode->i_transaction = NULL;
2572	jinode->i_next_transaction = NULL;
2573	jinode->i_vfs_inode = inode;
2574	jinode->i_flags = 0;
2575	INIT_LIST_HEAD(&jinode->i_list);
2576}
2577
2578/*
2579 * Function to be called before we start removing inode from memory (i.e.,
2580 * clear_inode() is a fine place to be called from). It removes inode from
2581 * transaction's lists.
2582 */
2583void jbd2_journal_release_jbd_inode(journal_t *journal,
2584				    struct jbd2_inode *jinode)
2585{
2586	if (!journal)
2587		return;
2588restart:
2589	spin_lock(&journal->j_list_lock);
2590	/* Is commit writing out inode - we have to wait */
2591	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2592		wait_queue_head_t *wq;
2593		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2594		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2595		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2596		spin_unlock(&journal->j_list_lock);
2597		schedule();
2598		finish_wait(wq, &wait.wait);
2599		goto restart;
2600	}
2601
2602	if (jinode->i_transaction) {
2603		list_del(&jinode->i_list);
2604		jinode->i_transaction = NULL;
2605	}
2606	spin_unlock(&journal->j_list_lock);
2607}
2608
2609
2610#ifdef CONFIG_PROC_FS
2611
2612#define JBD2_STATS_PROC_NAME "fs/jbd2"
2613
2614static void __init jbd2_create_jbd_stats_proc_entry(void)
2615{
2616	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2617}
2618
2619static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2620{
2621	if (proc_jbd2_stats)
2622		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2623}
2624
2625#else
2626
2627#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2628#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2629
2630#endif
2631
2632struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2633
2634static int __init jbd2_journal_init_handle_cache(void)
2635{
2636	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2637	if (jbd2_handle_cache == NULL) {
2638		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2639		return -ENOMEM;
2640	}
2641	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2642	if (jbd2_inode_cache == NULL) {
2643		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2644		kmem_cache_destroy(jbd2_handle_cache);
2645		return -ENOMEM;
2646	}
2647	return 0;
2648}
2649
2650static void jbd2_journal_destroy_handle_cache(void)
2651{
2652	if (jbd2_handle_cache)
2653		kmem_cache_destroy(jbd2_handle_cache);
2654	if (jbd2_inode_cache)
2655		kmem_cache_destroy(jbd2_inode_cache);
2656
2657}
2658
2659/*
2660 * Module startup and shutdown
2661 */
2662
2663static int __init journal_init_caches(void)
2664{
2665	int ret;
2666
2667	ret = jbd2_journal_init_revoke_caches();
2668	if (ret == 0)
2669		ret = jbd2_journal_init_journal_head_cache();
2670	if (ret == 0)
2671		ret = jbd2_journal_init_handle_cache();
2672	if (ret == 0)
2673		ret = jbd2_journal_init_transaction_cache();
2674	return ret;
2675}
2676
2677static void jbd2_journal_destroy_caches(void)
2678{
2679	jbd2_journal_destroy_revoke_caches();
2680	jbd2_journal_destroy_journal_head_cache();
2681	jbd2_journal_destroy_handle_cache();
2682	jbd2_journal_destroy_transaction_cache();
2683	jbd2_journal_destroy_slabs();
2684}
2685
2686static int __init journal_init(void)
2687{
2688	int ret;
2689
2690	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2691
2692	ret = journal_init_caches();
2693	if (ret == 0) {
2694		jbd2_create_jbd_stats_proc_entry();
2695	} else {
2696		jbd2_journal_destroy_caches();
2697	}
2698	return ret;
2699}
2700
2701static void __exit journal_exit(void)
2702{
2703#ifdef CONFIG_JBD2_DEBUG
2704	int n = atomic_read(&nr_journal_heads);
2705	if (n)
2706		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2707#endif
2708	jbd2_remove_jbd_stats_proc_entry();
2709	jbd2_journal_destroy_caches();
2710}
2711
2712MODULE_LICENSE("GPL");
2713module_init(journal_init);
2714module_exit(journal_exit);
2715
2716