1/* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25#include <linux/module.h> 26#include <linux/time.h> 27#include <linux/fs.h> 28#include <linux/jbd2.h> 29#include <linux/errno.h> 30#include <linux/slab.h> 31#include <linux/init.h> 32#include <linux/mm.h> 33#include <linux/freezer.h> 34#include <linux/pagemap.h> 35#include <linux/kthread.h> 36#include <linux/poison.h> 37#include <linux/proc_fs.h> 38#include <linux/seq_file.h> 39#include <linux/math64.h> 40#include <linux/hash.h> 41#include <linux/log2.h> 42#include <linux/vmalloc.h> 43#include <linux/backing-dev.h> 44#include <linux/bitops.h> 45#include <linux/ratelimit.h> 46 47#define CREATE_TRACE_POINTS 48#include <trace/events/jbd2.h> 49 50#include <asm/uaccess.h> 51#include <asm/page.h> 52 53#ifdef CONFIG_JBD2_DEBUG 54ushort jbd2_journal_enable_debug __read_mostly; 55EXPORT_SYMBOL(jbd2_journal_enable_debug); 56 57module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 58MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 59#endif 60 61EXPORT_SYMBOL(jbd2_journal_extend); 62EXPORT_SYMBOL(jbd2_journal_stop); 63EXPORT_SYMBOL(jbd2_journal_lock_updates); 64EXPORT_SYMBOL(jbd2_journal_unlock_updates); 65EXPORT_SYMBOL(jbd2_journal_get_write_access); 66EXPORT_SYMBOL(jbd2_journal_get_create_access); 67EXPORT_SYMBOL(jbd2_journal_get_undo_access); 68EXPORT_SYMBOL(jbd2_journal_set_triggers); 69EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 70EXPORT_SYMBOL(jbd2_journal_forget); 71#if 0 72EXPORT_SYMBOL(journal_sync_buffer); 73#endif 74EXPORT_SYMBOL(jbd2_journal_flush); 75EXPORT_SYMBOL(jbd2_journal_revoke); 76 77EXPORT_SYMBOL(jbd2_journal_init_dev); 78EXPORT_SYMBOL(jbd2_journal_init_inode); 79EXPORT_SYMBOL(jbd2_journal_check_used_features); 80EXPORT_SYMBOL(jbd2_journal_check_available_features); 81EXPORT_SYMBOL(jbd2_journal_set_features); 82EXPORT_SYMBOL(jbd2_journal_load); 83EXPORT_SYMBOL(jbd2_journal_destroy); 84EXPORT_SYMBOL(jbd2_journal_abort); 85EXPORT_SYMBOL(jbd2_journal_errno); 86EXPORT_SYMBOL(jbd2_journal_ack_err); 87EXPORT_SYMBOL(jbd2_journal_clear_err); 88EXPORT_SYMBOL(jbd2_log_wait_commit); 89EXPORT_SYMBOL(jbd2_log_start_commit); 90EXPORT_SYMBOL(jbd2_journal_start_commit); 91EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 92EXPORT_SYMBOL(jbd2_journal_wipe); 93EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 94EXPORT_SYMBOL(jbd2_journal_invalidatepage); 95EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 96EXPORT_SYMBOL(jbd2_journal_force_commit); 97EXPORT_SYMBOL(jbd2_journal_file_inode); 98EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 99EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 100EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 101EXPORT_SYMBOL(jbd2_inode_cache); 102 103static void __journal_abort_soft (journal_t *journal, int errno); 104static int jbd2_journal_create_slab(size_t slab_size); 105 106#ifdef CONFIG_JBD2_DEBUG 107void __jbd2_debug(int level, const char *file, const char *func, 108 unsigned int line, const char *fmt, ...) 109{ 110 struct va_format vaf; 111 va_list args; 112 113 if (level > jbd2_journal_enable_debug) 114 return; 115 va_start(args, fmt); 116 vaf.fmt = fmt; 117 vaf.va = &args; 118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 119 va_end(args); 120} 121EXPORT_SYMBOL(__jbd2_debug); 122#endif 123 124/* Checksumming functions */ 125static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 126{ 127 if (!jbd2_journal_has_csum_v2or3(j)) 128 return 1; 129 130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 131} 132 133static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 134{ 135 __u32 csum; 136 __be32 old_csum; 137 138 old_csum = sb->s_checksum; 139 sb->s_checksum = 0; 140 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 141 sb->s_checksum = old_csum; 142 143 return cpu_to_be32(csum); 144} 145 146static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 147{ 148 if (!jbd2_journal_has_csum_v2or3(j)) 149 return 1; 150 151 return sb->s_checksum == jbd2_superblock_csum(j, sb); 152} 153 154static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 155{ 156 if (!jbd2_journal_has_csum_v2or3(j)) 157 return; 158 159 sb->s_checksum = jbd2_superblock_csum(j, sb); 160} 161 162/* 163 * Helper function used to manage commit timeouts 164 */ 165 166static void commit_timeout(unsigned long __data) 167{ 168 struct task_struct * p = (struct task_struct *) __data; 169 170 wake_up_process(p); 171} 172 173/* 174 * kjournald2: The main thread function used to manage a logging device 175 * journal. 176 * 177 * This kernel thread is responsible for two things: 178 * 179 * 1) COMMIT: Every so often we need to commit the current state of the 180 * filesystem to disk. The journal thread is responsible for writing 181 * all of the metadata buffers to disk. 182 * 183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 184 * of the data in that part of the log has been rewritten elsewhere on 185 * the disk. Flushing these old buffers to reclaim space in the log is 186 * known as checkpointing, and this thread is responsible for that job. 187 */ 188 189static int kjournald2(void *arg) 190{ 191 journal_t *journal = arg; 192 transaction_t *transaction; 193 194 /* 195 * Set up an interval timer which can be used to trigger a commit wakeup 196 * after the commit interval expires 197 */ 198 setup_timer(&journal->j_commit_timer, commit_timeout, 199 (unsigned long)current); 200 201 set_freezable(); 202 203 /* Record that the journal thread is running */ 204 journal->j_task = current; 205 wake_up(&journal->j_wait_done_commit); 206 207 /* 208 * And now, wait forever for commit wakeup events. 209 */ 210 write_lock(&journal->j_state_lock); 211 212loop: 213 if (journal->j_flags & JBD2_UNMOUNT) 214 goto end_loop; 215 216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 217 journal->j_commit_sequence, journal->j_commit_request); 218 219 if (journal->j_commit_sequence != journal->j_commit_request) { 220 jbd_debug(1, "OK, requests differ\n"); 221 write_unlock(&journal->j_state_lock); 222 del_timer_sync(&journal->j_commit_timer); 223 jbd2_journal_commit_transaction(journal); 224 write_lock(&journal->j_state_lock); 225 goto loop; 226 } 227 228 wake_up(&journal->j_wait_done_commit); 229 if (freezing(current)) { 230 /* 231 * The simpler the better. Flushing journal isn't a 232 * good idea, because that depends on threads that may 233 * be already stopped. 234 */ 235 jbd_debug(1, "Now suspending kjournald2\n"); 236 write_unlock(&journal->j_state_lock); 237 try_to_freeze(); 238 write_lock(&journal->j_state_lock); 239 } else { 240 /* 241 * We assume on resume that commits are already there, 242 * so we don't sleep 243 */ 244 DEFINE_WAIT(wait); 245 int should_sleep = 1; 246 247 prepare_to_wait(&journal->j_wait_commit, &wait, 248 TASK_INTERRUPTIBLE); 249 if (journal->j_commit_sequence != journal->j_commit_request) 250 should_sleep = 0; 251 transaction = journal->j_running_transaction; 252 if (transaction && time_after_eq(jiffies, 253 transaction->t_expires)) 254 should_sleep = 0; 255 if (journal->j_flags & JBD2_UNMOUNT) 256 should_sleep = 0; 257 if (should_sleep) { 258 write_unlock(&journal->j_state_lock); 259 schedule(); 260 write_lock(&journal->j_state_lock); 261 } 262 finish_wait(&journal->j_wait_commit, &wait); 263 } 264 265 jbd_debug(1, "kjournald2 wakes\n"); 266 267 /* 268 * Were we woken up by a commit wakeup event? 269 */ 270 transaction = journal->j_running_transaction; 271 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 272 journal->j_commit_request = transaction->t_tid; 273 jbd_debug(1, "woke because of timeout\n"); 274 } 275 goto loop; 276 277end_loop: 278 write_unlock(&journal->j_state_lock); 279 del_timer_sync(&journal->j_commit_timer); 280 journal->j_task = NULL; 281 wake_up(&journal->j_wait_done_commit); 282 jbd_debug(1, "Journal thread exiting.\n"); 283 return 0; 284} 285 286static int jbd2_journal_start_thread(journal_t *journal) 287{ 288 struct task_struct *t; 289 290 t = kthread_run(kjournald2, journal, "jbd2/%s", 291 journal->j_devname); 292 if (IS_ERR(t)) 293 return PTR_ERR(t); 294 295 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 296 return 0; 297} 298 299static void journal_kill_thread(journal_t *journal) 300{ 301 write_lock(&journal->j_state_lock); 302 journal->j_flags |= JBD2_UNMOUNT; 303 304 while (journal->j_task) { 305 write_unlock(&journal->j_state_lock); 306 wake_up(&journal->j_wait_commit); 307 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 308 write_lock(&journal->j_state_lock); 309 } 310 write_unlock(&journal->j_state_lock); 311} 312 313/* 314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 315 * 316 * Writes a metadata buffer to a given disk block. The actual IO is not 317 * performed but a new buffer_head is constructed which labels the data 318 * to be written with the correct destination disk block. 319 * 320 * Any magic-number escaping which needs to be done will cause a 321 * copy-out here. If the buffer happens to start with the 322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 323 * magic number is only written to the log for descripter blocks. In 324 * this case, we copy the data and replace the first word with 0, and we 325 * return a result code which indicates that this buffer needs to be 326 * marked as an escaped buffer in the corresponding log descriptor 327 * block. The missing word can then be restored when the block is read 328 * during recovery. 329 * 330 * If the source buffer has already been modified by a new transaction 331 * since we took the last commit snapshot, we use the frozen copy of 332 * that data for IO. If we end up using the existing buffer_head's data 333 * for the write, then we have to make sure nobody modifies it while the 334 * IO is in progress. do_get_write_access() handles this. 335 * 336 * The function returns a pointer to the buffer_head to be used for IO. 337 * 338 * 339 * Return value: 340 * <0: Error 341 * >=0: Finished OK 342 * 343 * On success: 344 * Bit 0 set == escape performed on the data 345 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 346 */ 347 348int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 349 struct journal_head *jh_in, 350 struct buffer_head **bh_out, 351 sector_t blocknr) 352{ 353 int need_copy_out = 0; 354 int done_copy_out = 0; 355 int do_escape = 0; 356 char *mapped_data; 357 struct buffer_head *new_bh; 358 struct page *new_page; 359 unsigned int new_offset; 360 struct buffer_head *bh_in = jh2bh(jh_in); 361 journal_t *journal = transaction->t_journal; 362 363 /* 364 * The buffer really shouldn't be locked: only the current committing 365 * transaction is allowed to write it, so nobody else is allowed 366 * to do any IO. 367 * 368 * akpm: except if we're journalling data, and write() output is 369 * also part of a shared mapping, and another thread has 370 * decided to launch a writepage() against this buffer. 371 */ 372 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 373 374retry_alloc: 375 new_bh = alloc_buffer_head(GFP_NOFS); 376 if (!new_bh) { 377 /* 378 * Failure is not an option, but __GFP_NOFAIL is going 379 * away; so we retry ourselves here. 380 */ 381 congestion_wait(BLK_RW_ASYNC, HZ/50); 382 goto retry_alloc; 383 } 384 385 /* keep subsequent assertions sane */ 386 atomic_set(&new_bh->b_count, 1); 387 388 jbd_lock_bh_state(bh_in); 389repeat: 390 /* 391 * If a new transaction has already done a buffer copy-out, then 392 * we use that version of the data for the commit. 393 */ 394 if (jh_in->b_frozen_data) { 395 done_copy_out = 1; 396 new_page = virt_to_page(jh_in->b_frozen_data); 397 new_offset = offset_in_page(jh_in->b_frozen_data); 398 } else { 399 new_page = jh2bh(jh_in)->b_page; 400 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 401 } 402 403 mapped_data = kmap_atomic(new_page); 404 /* 405 * Fire data frozen trigger if data already wasn't frozen. Do this 406 * before checking for escaping, as the trigger may modify the magic 407 * offset. If a copy-out happens afterwards, it will have the correct 408 * data in the buffer. 409 */ 410 if (!done_copy_out) 411 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 412 jh_in->b_triggers); 413 414 /* 415 * Check for escaping 416 */ 417 if (*((__be32 *)(mapped_data + new_offset)) == 418 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 419 need_copy_out = 1; 420 do_escape = 1; 421 } 422 kunmap_atomic(mapped_data); 423 424 /* 425 * Do we need to do a data copy? 426 */ 427 if (need_copy_out && !done_copy_out) { 428 char *tmp; 429 430 jbd_unlock_bh_state(bh_in); 431 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 432 if (!tmp) { 433 brelse(new_bh); 434 return -ENOMEM; 435 } 436 jbd_lock_bh_state(bh_in); 437 if (jh_in->b_frozen_data) { 438 jbd2_free(tmp, bh_in->b_size); 439 goto repeat; 440 } 441 442 jh_in->b_frozen_data = tmp; 443 mapped_data = kmap_atomic(new_page); 444 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 445 kunmap_atomic(mapped_data); 446 447 new_page = virt_to_page(tmp); 448 new_offset = offset_in_page(tmp); 449 done_copy_out = 1; 450 451 /* 452 * This isn't strictly necessary, as we're using frozen 453 * data for the escaping, but it keeps consistency with 454 * b_frozen_data usage. 455 */ 456 jh_in->b_frozen_triggers = jh_in->b_triggers; 457 } 458 459 /* 460 * Did we need to do an escaping? Now we've done all the 461 * copying, we can finally do so. 462 */ 463 if (do_escape) { 464 mapped_data = kmap_atomic(new_page); 465 *((unsigned int *)(mapped_data + new_offset)) = 0; 466 kunmap_atomic(mapped_data); 467 } 468 469 set_bh_page(new_bh, new_page, new_offset); 470 new_bh->b_size = bh_in->b_size; 471 new_bh->b_bdev = journal->j_dev; 472 new_bh->b_blocknr = blocknr; 473 new_bh->b_private = bh_in; 474 set_buffer_mapped(new_bh); 475 set_buffer_dirty(new_bh); 476 477 *bh_out = new_bh; 478 479 /* 480 * The to-be-written buffer needs to get moved to the io queue, 481 * and the original buffer whose contents we are shadowing or 482 * copying is moved to the transaction's shadow queue. 483 */ 484 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 485 spin_lock(&journal->j_list_lock); 486 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 487 spin_unlock(&journal->j_list_lock); 488 set_buffer_shadow(bh_in); 489 jbd_unlock_bh_state(bh_in); 490 491 return do_escape | (done_copy_out << 1); 492} 493 494/* 495 * Allocation code for the journal file. Manage the space left in the 496 * journal, so that we can begin checkpointing when appropriate. 497 */ 498 499/* 500 * Called with j_state_lock locked for writing. 501 * Returns true if a transaction commit was started. 502 */ 503int __jbd2_log_start_commit(journal_t *journal, tid_t target) 504{ 505 /* Return if the txn has already requested to be committed */ 506 if (journal->j_commit_request == target) 507 return 0; 508 509 /* 510 * The only transaction we can possibly wait upon is the 511 * currently running transaction (if it exists). Otherwise, 512 * the target tid must be an old one. 513 */ 514 if (journal->j_running_transaction && 515 journal->j_running_transaction->t_tid == target) { 516 /* 517 * We want a new commit: OK, mark the request and wakeup the 518 * commit thread. We do _not_ do the commit ourselves. 519 */ 520 521 journal->j_commit_request = target; 522 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 523 journal->j_commit_request, 524 journal->j_commit_sequence); 525 journal->j_running_transaction->t_requested = jiffies; 526 wake_up(&journal->j_wait_commit); 527 return 1; 528 } else if (!tid_geq(journal->j_commit_request, target)) 529 /* This should never happen, but if it does, preserve 530 the evidence before kjournald goes into a loop and 531 increments j_commit_sequence beyond all recognition. */ 532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 533 journal->j_commit_request, 534 journal->j_commit_sequence, 535 target, journal->j_running_transaction ? 536 journal->j_running_transaction->t_tid : 0); 537 return 0; 538} 539 540int jbd2_log_start_commit(journal_t *journal, tid_t tid) 541{ 542 int ret; 543 544 write_lock(&journal->j_state_lock); 545 ret = __jbd2_log_start_commit(journal, tid); 546 write_unlock(&journal->j_state_lock); 547 return ret; 548} 549 550/* 551 * Force and wait any uncommitted transactions. We can only force the running 552 * transaction if we don't have an active handle, otherwise, we will deadlock. 553 * Returns: <0 in case of error, 554 * 0 if nothing to commit, 555 * 1 if transaction was successfully committed. 556 */ 557static int __jbd2_journal_force_commit(journal_t *journal) 558{ 559 transaction_t *transaction = NULL; 560 tid_t tid; 561 int need_to_start = 0, ret = 0; 562 563 read_lock(&journal->j_state_lock); 564 if (journal->j_running_transaction && !current->journal_info) { 565 transaction = journal->j_running_transaction; 566 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 567 need_to_start = 1; 568 } else if (journal->j_committing_transaction) 569 transaction = journal->j_committing_transaction; 570 571 if (!transaction) { 572 /* Nothing to commit */ 573 read_unlock(&journal->j_state_lock); 574 return 0; 575 } 576 tid = transaction->t_tid; 577 read_unlock(&journal->j_state_lock); 578 if (need_to_start) 579 jbd2_log_start_commit(journal, tid); 580 ret = jbd2_log_wait_commit(journal, tid); 581 if (!ret) 582 ret = 1; 583 584 return ret; 585} 586 587/** 588 * Force and wait upon a commit if the calling process is not within 589 * transaction. This is used for forcing out undo-protected data which contains 590 * bitmaps, when the fs is running out of space. 591 * 592 * @journal: journal to force 593 * Returns true if progress was made. 594 */ 595int jbd2_journal_force_commit_nested(journal_t *journal) 596{ 597 int ret; 598 599 ret = __jbd2_journal_force_commit(journal); 600 return ret > 0; 601} 602 603/** 604 * int journal_force_commit() - force any uncommitted transactions 605 * @journal: journal to force 606 * 607 * Caller want unconditional commit. We can only force the running transaction 608 * if we don't have an active handle, otherwise, we will deadlock. 609 */ 610int jbd2_journal_force_commit(journal_t *journal) 611{ 612 int ret; 613 614 J_ASSERT(!current->journal_info); 615 ret = __jbd2_journal_force_commit(journal); 616 if (ret > 0) 617 ret = 0; 618 return ret; 619} 620 621/* 622 * Start a commit of the current running transaction (if any). Returns true 623 * if a transaction is going to be committed (or is currently already 624 * committing), and fills its tid in at *ptid 625 */ 626int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 627{ 628 int ret = 0; 629 630 write_lock(&journal->j_state_lock); 631 if (journal->j_running_transaction) { 632 tid_t tid = journal->j_running_transaction->t_tid; 633 634 __jbd2_log_start_commit(journal, tid); 635 /* There's a running transaction and we've just made sure 636 * it's commit has been scheduled. */ 637 if (ptid) 638 *ptid = tid; 639 ret = 1; 640 } else if (journal->j_committing_transaction) { 641 /* 642 * If commit has been started, then we have to wait for 643 * completion of that transaction. 644 */ 645 if (ptid) 646 *ptid = journal->j_committing_transaction->t_tid; 647 ret = 1; 648 } 649 write_unlock(&journal->j_state_lock); 650 return ret; 651} 652 653/* 654 * Return 1 if a given transaction has not yet sent barrier request 655 * connected with a transaction commit. If 0 is returned, transaction 656 * may or may not have sent the barrier. Used to avoid sending barrier 657 * twice in common cases. 658 */ 659int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 660{ 661 int ret = 0; 662 transaction_t *commit_trans; 663 664 if (!(journal->j_flags & JBD2_BARRIER)) 665 return 0; 666 read_lock(&journal->j_state_lock); 667 /* Transaction already committed? */ 668 if (tid_geq(journal->j_commit_sequence, tid)) 669 goto out; 670 commit_trans = journal->j_committing_transaction; 671 if (!commit_trans || commit_trans->t_tid != tid) { 672 ret = 1; 673 goto out; 674 } 675 /* 676 * Transaction is being committed and we already proceeded to 677 * submitting a flush to fs partition? 678 */ 679 if (journal->j_fs_dev != journal->j_dev) { 680 if (!commit_trans->t_need_data_flush || 681 commit_trans->t_state >= T_COMMIT_DFLUSH) 682 goto out; 683 } else { 684 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 685 goto out; 686 } 687 ret = 1; 688out: 689 read_unlock(&journal->j_state_lock); 690 return ret; 691} 692EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 693 694/* 695 * Wait for a specified commit to complete. 696 * The caller may not hold the journal lock. 697 */ 698int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 699{ 700 int err = 0; 701 702 read_lock(&journal->j_state_lock); 703#ifdef CONFIG_JBD2_DEBUG 704 if (!tid_geq(journal->j_commit_request, tid)) { 705 printk(KERN_ERR 706 "%s: error: j_commit_request=%d, tid=%d\n", 707 __func__, journal->j_commit_request, tid); 708 } 709#endif 710 while (tid_gt(tid, journal->j_commit_sequence)) { 711 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 712 tid, journal->j_commit_sequence); 713 read_unlock(&journal->j_state_lock); 714 wake_up(&journal->j_wait_commit); 715 wait_event(journal->j_wait_done_commit, 716 !tid_gt(tid, journal->j_commit_sequence)); 717 read_lock(&journal->j_state_lock); 718 } 719 read_unlock(&journal->j_state_lock); 720 721 if (unlikely(is_journal_aborted(journal))) 722 err = -EIO; 723 return err; 724} 725 726/* 727 * When this function returns the transaction corresponding to tid 728 * will be completed. If the transaction has currently running, start 729 * committing that transaction before waiting for it to complete. If 730 * the transaction id is stale, it is by definition already completed, 731 * so just return SUCCESS. 732 */ 733int jbd2_complete_transaction(journal_t *journal, tid_t tid) 734{ 735 int need_to_wait = 1; 736 737 read_lock(&journal->j_state_lock); 738 if (journal->j_running_transaction && 739 journal->j_running_transaction->t_tid == tid) { 740 if (journal->j_commit_request != tid) { 741 /* transaction not yet started, so request it */ 742 read_unlock(&journal->j_state_lock); 743 jbd2_log_start_commit(journal, tid); 744 goto wait_commit; 745 } 746 } else if (!(journal->j_committing_transaction && 747 journal->j_committing_transaction->t_tid == tid)) 748 need_to_wait = 0; 749 read_unlock(&journal->j_state_lock); 750 if (!need_to_wait) 751 return 0; 752wait_commit: 753 return jbd2_log_wait_commit(journal, tid); 754} 755EXPORT_SYMBOL(jbd2_complete_transaction); 756 757/* 758 * Log buffer allocation routines: 759 */ 760 761int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 762{ 763 unsigned long blocknr; 764 765 write_lock(&journal->j_state_lock); 766 J_ASSERT(journal->j_free > 1); 767 768 blocknr = journal->j_head; 769 journal->j_head++; 770 journal->j_free--; 771 if (journal->j_head == journal->j_last) 772 journal->j_head = journal->j_first; 773 write_unlock(&journal->j_state_lock); 774 return jbd2_journal_bmap(journal, blocknr, retp); 775} 776 777/* 778 * Conversion of logical to physical block numbers for the journal 779 * 780 * On external journals the journal blocks are identity-mapped, so 781 * this is a no-op. If needed, we can use j_blk_offset - everything is 782 * ready. 783 */ 784int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 785 unsigned long long *retp) 786{ 787 int err = 0; 788 unsigned long long ret; 789 790 if (journal->j_inode) { 791 ret = bmap(journal->j_inode, blocknr); 792 if (ret) 793 *retp = ret; 794 else { 795 printk(KERN_ALERT "%s: journal block not found " 796 "at offset %lu on %s\n", 797 __func__, blocknr, journal->j_devname); 798 err = -EIO; 799 __journal_abort_soft(journal, err); 800 } 801 } else { 802 *retp = blocknr; /* +journal->j_blk_offset */ 803 } 804 return err; 805} 806 807/* 808 * We play buffer_head aliasing tricks to write data/metadata blocks to 809 * the journal without copying their contents, but for journal 810 * descriptor blocks we do need to generate bona fide buffers. 811 * 812 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 813 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 814 * But we don't bother doing that, so there will be coherency problems with 815 * mmaps of blockdevs which hold live JBD-controlled filesystems. 816 */ 817struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 818{ 819 struct buffer_head *bh; 820 unsigned long long blocknr; 821 int err; 822 823 err = jbd2_journal_next_log_block(journal, &blocknr); 824 825 if (err) 826 return NULL; 827 828 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 829 if (!bh) 830 return NULL; 831 lock_buffer(bh); 832 memset(bh->b_data, 0, journal->j_blocksize); 833 set_buffer_uptodate(bh); 834 unlock_buffer(bh); 835 BUFFER_TRACE(bh, "return this buffer"); 836 return bh; 837} 838 839/* 840 * Return tid of the oldest transaction in the journal and block in the journal 841 * where the transaction starts. 842 * 843 * If the journal is now empty, return which will be the next transaction ID 844 * we will write and where will that transaction start. 845 * 846 * The return value is 0 if journal tail cannot be pushed any further, 1 if 847 * it can. 848 */ 849int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 850 unsigned long *block) 851{ 852 transaction_t *transaction; 853 int ret; 854 855 read_lock(&journal->j_state_lock); 856 spin_lock(&journal->j_list_lock); 857 transaction = journal->j_checkpoint_transactions; 858 if (transaction) { 859 *tid = transaction->t_tid; 860 *block = transaction->t_log_start; 861 } else if ((transaction = journal->j_committing_transaction) != NULL) { 862 *tid = transaction->t_tid; 863 *block = transaction->t_log_start; 864 } else if ((transaction = journal->j_running_transaction) != NULL) { 865 *tid = transaction->t_tid; 866 *block = journal->j_head; 867 } else { 868 *tid = journal->j_transaction_sequence; 869 *block = journal->j_head; 870 } 871 ret = tid_gt(*tid, journal->j_tail_sequence); 872 spin_unlock(&journal->j_list_lock); 873 read_unlock(&journal->j_state_lock); 874 875 return ret; 876} 877 878/* 879 * Update information in journal structure and in on disk journal superblock 880 * about log tail. This function does not check whether information passed in 881 * really pushes log tail further. It's responsibility of the caller to make 882 * sure provided log tail information is valid (e.g. by holding 883 * j_checkpoint_mutex all the time between computing log tail and calling this 884 * function as is the case with jbd2_cleanup_journal_tail()). 885 * 886 * Requires j_checkpoint_mutex 887 */ 888int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 889{ 890 unsigned long freed; 891 int ret; 892 893 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 894 895 /* 896 * We cannot afford for write to remain in drive's caches since as 897 * soon as we update j_tail, next transaction can start reusing journal 898 * space and if we lose sb update during power failure we'd replay 899 * old transaction with possibly newly overwritten data. 900 */ 901 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 902 if (ret) 903 goto out; 904 905 write_lock(&journal->j_state_lock); 906 freed = block - journal->j_tail; 907 if (block < journal->j_tail) 908 freed += journal->j_last - journal->j_first; 909 910 trace_jbd2_update_log_tail(journal, tid, block, freed); 911 jbd_debug(1, 912 "Cleaning journal tail from %d to %d (offset %lu), " 913 "freeing %lu\n", 914 journal->j_tail_sequence, tid, block, freed); 915 916 journal->j_free += freed; 917 journal->j_tail_sequence = tid; 918 journal->j_tail = block; 919 write_unlock(&journal->j_state_lock); 920 921out: 922 return ret; 923} 924 925/* 926 * This is a variaon of __jbd2_update_log_tail which checks for validity of 927 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 928 * with other threads updating log tail. 929 */ 930void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 931{ 932 mutex_lock(&journal->j_checkpoint_mutex); 933 if (tid_gt(tid, journal->j_tail_sequence)) 934 __jbd2_update_log_tail(journal, tid, block); 935 mutex_unlock(&journal->j_checkpoint_mutex); 936} 937 938struct jbd2_stats_proc_session { 939 journal_t *journal; 940 struct transaction_stats_s *stats; 941 int start; 942 int max; 943}; 944 945static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 946{ 947 return *pos ? NULL : SEQ_START_TOKEN; 948} 949 950static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 951{ 952 return NULL; 953} 954 955static int jbd2_seq_info_show(struct seq_file *seq, void *v) 956{ 957 struct jbd2_stats_proc_session *s = seq->private; 958 959 if (v != SEQ_START_TOKEN) 960 return 0; 961 seq_printf(seq, "%lu transactions (%lu requested), " 962 "each up to %u blocks\n", 963 s->stats->ts_tid, s->stats->ts_requested, 964 s->journal->j_max_transaction_buffers); 965 if (s->stats->ts_tid == 0) 966 return 0; 967 seq_printf(seq, "average: \n %ums waiting for transaction\n", 968 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 969 seq_printf(seq, " %ums request delay\n", 970 (s->stats->ts_requested == 0) ? 0 : 971 jiffies_to_msecs(s->stats->run.rs_request_delay / 972 s->stats->ts_requested)); 973 seq_printf(seq, " %ums running transaction\n", 974 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 975 seq_printf(seq, " %ums transaction was being locked\n", 976 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 977 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 978 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 979 seq_printf(seq, " %ums logging transaction\n", 980 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 981 seq_printf(seq, " %lluus average transaction commit time\n", 982 div_u64(s->journal->j_average_commit_time, 1000)); 983 seq_printf(seq, " %lu handles per transaction\n", 984 s->stats->run.rs_handle_count / s->stats->ts_tid); 985 seq_printf(seq, " %lu blocks per transaction\n", 986 s->stats->run.rs_blocks / s->stats->ts_tid); 987 seq_printf(seq, " %lu logged blocks per transaction\n", 988 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 989 return 0; 990} 991 992static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 993{ 994} 995 996static const struct seq_operations jbd2_seq_info_ops = { 997 .start = jbd2_seq_info_start, 998 .next = jbd2_seq_info_next, 999 .stop = jbd2_seq_info_stop, 1000 .show = jbd2_seq_info_show, 1001}; 1002 1003static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1004{ 1005 journal_t *journal = PDE_DATA(inode); 1006 struct jbd2_stats_proc_session *s; 1007 int rc, size; 1008 1009 s = kmalloc(sizeof(*s), GFP_KERNEL); 1010 if (s == NULL) 1011 return -ENOMEM; 1012 size = sizeof(struct transaction_stats_s); 1013 s->stats = kmalloc(size, GFP_KERNEL); 1014 if (s->stats == NULL) { 1015 kfree(s); 1016 return -ENOMEM; 1017 } 1018 spin_lock(&journal->j_history_lock); 1019 memcpy(s->stats, &journal->j_stats, size); 1020 s->journal = journal; 1021 spin_unlock(&journal->j_history_lock); 1022 1023 rc = seq_open(file, &jbd2_seq_info_ops); 1024 if (rc == 0) { 1025 struct seq_file *m = file->private_data; 1026 m->private = s; 1027 } else { 1028 kfree(s->stats); 1029 kfree(s); 1030 } 1031 return rc; 1032 1033} 1034 1035static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1036{ 1037 struct seq_file *seq = file->private_data; 1038 struct jbd2_stats_proc_session *s = seq->private; 1039 kfree(s->stats); 1040 kfree(s); 1041 return seq_release(inode, file); 1042} 1043 1044static const struct file_operations jbd2_seq_info_fops = { 1045 .owner = THIS_MODULE, 1046 .open = jbd2_seq_info_open, 1047 .read = seq_read, 1048 .llseek = seq_lseek, 1049 .release = jbd2_seq_info_release, 1050}; 1051 1052static struct proc_dir_entry *proc_jbd2_stats; 1053 1054static void jbd2_stats_proc_init(journal_t *journal) 1055{ 1056 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1057 if (journal->j_proc_entry) { 1058 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1059 &jbd2_seq_info_fops, journal); 1060 } 1061} 1062 1063static void jbd2_stats_proc_exit(journal_t *journal) 1064{ 1065 remove_proc_entry("info", journal->j_proc_entry); 1066 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1067} 1068 1069/* 1070 * Management for journal control blocks: functions to create and 1071 * destroy journal_t structures, and to initialise and read existing 1072 * journal blocks from disk. */ 1073 1074/* First: create and setup a journal_t object in memory. We initialise 1075 * very few fields yet: that has to wait until we have created the 1076 * journal structures from from scratch, or loaded them from disk. */ 1077 1078static journal_t * journal_init_common (void) 1079{ 1080 journal_t *journal; 1081 int err; 1082 1083 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1084 if (!journal) 1085 return NULL; 1086 1087 init_waitqueue_head(&journal->j_wait_transaction_locked); 1088 init_waitqueue_head(&journal->j_wait_done_commit); 1089 init_waitqueue_head(&journal->j_wait_commit); 1090 init_waitqueue_head(&journal->j_wait_updates); 1091 init_waitqueue_head(&journal->j_wait_reserved); 1092 mutex_init(&journal->j_barrier); 1093 mutex_init(&journal->j_checkpoint_mutex); 1094 spin_lock_init(&journal->j_revoke_lock); 1095 spin_lock_init(&journal->j_list_lock); 1096 rwlock_init(&journal->j_state_lock); 1097 1098 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1099 journal->j_min_batch_time = 0; 1100 journal->j_max_batch_time = 15000; /* 15ms */ 1101 atomic_set(&journal->j_reserved_credits, 0); 1102 1103 /* The journal is marked for error until we succeed with recovery! */ 1104 journal->j_flags = JBD2_ABORT; 1105 1106 /* Set up a default-sized revoke table for the new mount. */ 1107 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1108 if (err) { 1109 kfree(journal); 1110 return NULL; 1111 } 1112 1113 spin_lock_init(&journal->j_history_lock); 1114 1115 return journal; 1116} 1117 1118/* jbd2_journal_init_dev and jbd2_journal_init_inode: 1119 * 1120 * Create a journal structure assigned some fixed set of disk blocks to 1121 * the journal. We don't actually touch those disk blocks yet, but we 1122 * need to set up all of the mapping information to tell the journaling 1123 * system where the journal blocks are. 1124 * 1125 */ 1126 1127/** 1128 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1129 * @bdev: Block device on which to create the journal 1130 * @fs_dev: Device which hold journalled filesystem for this journal. 1131 * @start: Block nr Start of journal. 1132 * @len: Length of the journal in blocks. 1133 * @blocksize: blocksize of journalling device 1134 * 1135 * Returns: a newly created journal_t * 1136 * 1137 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1138 * range of blocks on an arbitrary block device. 1139 * 1140 */ 1141journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1142 struct block_device *fs_dev, 1143 unsigned long long start, int len, int blocksize) 1144{ 1145 journal_t *journal = journal_init_common(); 1146 struct buffer_head *bh; 1147 char *p; 1148 int n; 1149 1150 if (!journal) 1151 return NULL; 1152 1153 /* journal descriptor can store up to n blocks -bzzz */ 1154 journal->j_blocksize = blocksize; 1155 journal->j_dev = bdev; 1156 journal->j_fs_dev = fs_dev; 1157 journal->j_blk_offset = start; 1158 journal->j_maxlen = len; 1159 bdevname(journal->j_dev, journal->j_devname); 1160 p = journal->j_devname; 1161 while ((p = strchr(p, '/'))) 1162 *p = '!'; 1163 jbd2_stats_proc_init(journal); 1164 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1165 journal->j_wbufsize = n; 1166 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1167 if (!journal->j_wbuf) { 1168 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1169 __func__); 1170 goto out_err; 1171 } 1172 1173 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1174 if (!bh) { 1175 printk(KERN_ERR 1176 "%s: Cannot get buffer for journal superblock\n", 1177 __func__); 1178 goto out_err; 1179 } 1180 journal->j_sb_buffer = bh; 1181 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1182 1183 return journal; 1184out_err: 1185 kfree(journal->j_wbuf); 1186 jbd2_stats_proc_exit(journal); 1187 kfree(journal); 1188 return NULL; 1189} 1190 1191/** 1192 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1193 * @inode: An inode to create the journal in 1194 * 1195 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1196 * the journal. The inode must exist already, must support bmap() and 1197 * must have all data blocks preallocated. 1198 */ 1199journal_t * jbd2_journal_init_inode (struct inode *inode) 1200{ 1201 struct buffer_head *bh; 1202 journal_t *journal = journal_init_common(); 1203 char *p; 1204 int err; 1205 int n; 1206 unsigned long long blocknr; 1207 1208 if (!journal) 1209 return NULL; 1210 1211 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1212 journal->j_inode = inode; 1213 bdevname(journal->j_dev, journal->j_devname); 1214 p = journal->j_devname; 1215 while ((p = strchr(p, '/'))) 1216 *p = '!'; 1217 p = journal->j_devname + strlen(journal->j_devname); 1218 sprintf(p, "-%lu", journal->j_inode->i_ino); 1219 jbd_debug(1, 1220 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1221 journal, inode->i_sb->s_id, inode->i_ino, 1222 (long long) inode->i_size, 1223 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1224 1225 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1226 journal->j_blocksize = inode->i_sb->s_blocksize; 1227 jbd2_stats_proc_init(journal); 1228 1229 /* journal descriptor can store up to n blocks -bzzz */ 1230 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1231 journal->j_wbufsize = n; 1232 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1233 if (!journal->j_wbuf) { 1234 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1235 __func__); 1236 goto out_err; 1237 } 1238 1239 err = jbd2_journal_bmap(journal, 0, &blocknr); 1240 /* If that failed, give up */ 1241 if (err) { 1242 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1243 __func__); 1244 goto out_err; 1245 } 1246 1247 bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize); 1248 if (!bh) { 1249 printk(KERN_ERR 1250 "%s: Cannot get buffer for journal superblock\n", 1251 __func__); 1252 goto out_err; 1253 } 1254 journal->j_sb_buffer = bh; 1255 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1256 1257 return journal; 1258out_err: 1259 kfree(journal->j_wbuf); 1260 jbd2_stats_proc_exit(journal); 1261 kfree(journal); 1262 return NULL; 1263} 1264 1265/* 1266 * If the journal init or create aborts, we need to mark the journal 1267 * superblock as being NULL to prevent the journal destroy from writing 1268 * back a bogus superblock. 1269 */ 1270static void journal_fail_superblock (journal_t *journal) 1271{ 1272 struct buffer_head *bh = journal->j_sb_buffer; 1273 brelse(bh); 1274 journal->j_sb_buffer = NULL; 1275} 1276 1277/* 1278 * Given a journal_t structure, initialise the various fields for 1279 * startup of a new journaling session. We use this both when creating 1280 * a journal, and after recovering an old journal to reset it for 1281 * subsequent use. 1282 */ 1283 1284static int journal_reset(journal_t *journal) 1285{ 1286 journal_superblock_t *sb = journal->j_superblock; 1287 unsigned long long first, last; 1288 1289 first = be32_to_cpu(sb->s_first); 1290 last = be32_to_cpu(sb->s_maxlen); 1291 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1292 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1293 first, last); 1294 journal_fail_superblock(journal); 1295 return -EINVAL; 1296 } 1297 1298 journal->j_first = first; 1299 journal->j_last = last; 1300 1301 journal->j_head = first; 1302 journal->j_tail = first; 1303 journal->j_free = last - first; 1304 1305 journal->j_tail_sequence = journal->j_transaction_sequence; 1306 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1307 journal->j_commit_request = journal->j_commit_sequence; 1308 1309 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1310 1311 /* 1312 * As a special case, if the on-disk copy is already marked as needing 1313 * no recovery (s_start == 0), then we can safely defer the superblock 1314 * update until the next commit by setting JBD2_FLUSHED. This avoids 1315 * attempting a write to a potential-readonly device. 1316 */ 1317 if (sb->s_start == 0) { 1318 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1319 "(start %ld, seq %d, errno %d)\n", 1320 journal->j_tail, journal->j_tail_sequence, 1321 journal->j_errno); 1322 journal->j_flags |= JBD2_FLUSHED; 1323 } else { 1324 /* Lock here to make assertions happy... */ 1325 mutex_lock(&journal->j_checkpoint_mutex); 1326 /* 1327 * Update log tail information. We use WRITE_FUA since new 1328 * transaction will start reusing journal space and so we 1329 * must make sure information about current log tail is on 1330 * disk before that. 1331 */ 1332 jbd2_journal_update_sb_log_tail(journal, 1333 journal->j_tail_sequence, 1334 journal->j_tail, 1335 WRITE_FUA); 1336 mutex_unlock(&journal->j_checkpoint_mutex); 1337 } 1338 return jbd2_journal_start_thread(journal); 1339} 1340 1341static int jbd2_write_superblock(journal_t *journal, int write_op) 1342{ 1343 struct buffer_head *bh = journal->j_sb_buffer; 1344 journal_superblock_t *sb = journal->j_superblock; 1345 int ret; 1346 1347 trace_jbd2_write_superblock(journal, write_op); 1348 if (!(journal->j_flags & JBD2_BARRIER)) 1349 write_op &= ~(REQ_FUA | REQ_FLUSH); 1350 lock_buffer(bh); 1351 if (buffer_write_io_error(bh)) { 1352 /* 1353 * Oh, dear. A previous attempt to write the journal 1354 * superblock failed. This could happen because the 1355 * USB device was yanked out. Or it could happen to 1356 * be a transient write error and maybe the block will 1357 * be remapped. Nothing we can do but to retry the 1358 * write and hope for the best. 1359 */ 1360 printk(KERN_ERR "JBD2: previous I/O error detected " 1361 "for journal superblock update for %s.\n", 1362 journal->j_devname); 1363 clear_buffer_write_io_error(bh); 1364 set_buffer_uptodate(bh); 1365 } 1366 jbd2_superblock_csum_set(journal, sb); 1367 get_bh(bh); 1368 bh->b_end_io = end_buffer_write_sync; 1369 ret = submit_bh(write_op, bh); 1370 wait_on_buffer(bh); 1371 if (buffer_write_io_error(bh)) { 1372 clear_buffer_write_io_error(bh); 1373 set_buffer_uptodate(bh); 1374 ret = -EIO; 1375 } 1376 if (ret) { 1377 printk(KERN_ERR "JBD2: Error %d detected when updating " 1378 "journal superblock for %s.\n", ret, 1379 journal->j_devname); 1380 jbd2_journal_abort(journal, ret); 1381 } 1382 1383 return ret; 1384} 1385 1386/** 1387 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1388 * @journal: The journal to update. 1389 * @tail_tid: TID of the new transaction at the tail of the log 1390 * @tail_block: The first block of the transaction at the tail of the log 1391 * @write_op: With which operation should we write the journal sb 1392 * 1393 * Update a journal's superblock information about log tail and write it to 1394 * disk, waiting for the IO to complete. 1395 */ 1396int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1397 unsigned long tail_block, int write_op) 1398{ 1399 journal_superblock_t *sb = journal->j_superblock; 1400 int ret; 1401 1402 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1403 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1404 tail_block, tail_tid); 1405 1406 sb->s_sequence = cpu_to_be32(tail_tid); 1407 sb->s_start = cpu_to_be32(tail_block); 1408 1409 ret = jbd2_write_superblock(journal, write_op); 1410 if (ret) 1411 goto out; 1412 1413 /* Log is no longer empty */ 1414 write_lock(&journal->j_state_lock); 1415 WARN_ON(!sb->s_sequence); 1416 journal->j_flags &= ~JBD2_FLUSHED; 1417 write_unlock(&journal->j_state_lock); 1418 1419out: 1420 return ret; 1421} 1422 1423/** 1424 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1425 * @journal: The journal to update. 1426 * @write_op: With which operation should we write the journal sb 1427 * 1428 * Update a journal's dynamic superblock fields to show that journal is empty. 1429 * Write updated superblock to disk waiting for IO to complete. 1430 */ 1431static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1432{ 1433 journal_superblock_t *sb = journal->j_superblock; 1434 1435 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1436 read_lock(&journal->j_state_lock); 1437 /* Is it already empty? */ 1438 if (sb->s_start == 0) { 1439 read_unlock(&journal->j_state_lock); 1440 return; 1441 } 1442 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1443 journal->j_tail_sequence); 1444 1445 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1446 sb->s_start = cpu_to_be32(0); 1447 read_unlock(&journal->j_state_lock); 1448 1449 jbd2_write_superblock(journal, write_op); 1450 1451 /* Log is no longer empty */ 1452 write_lock(&journal->j_state_lock); 1453 journal->j_flags |= JBD2_FLUSHED; 1454 write_unlock(&journal->j_state_lock); 1455} 1456 1457 1458/** 1459 * jbd2_journal_update_sb_errno() - Update error in the journal. 1460 * @journal: The journal to update. 1461 * 1462 * Update a journal's errno. Write updated superblock to disk waiting for IO 1463 * to complete. 1464 */ 1465void jbd2_journal_update_sb_errno(journal_t *journal) 1466{ 1467 journal_superblock_t *sb = journal->j_superblock; 1468 1469 read_lock(&journal->j_state_lock); 1470 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1471 journal->j_errno); 1472 sb->s_errno = cpu_to_be32(journal->j_errno); 1473 read_unlock(&journal->j_state_lock); 1474 1475 jbd2_write_superblock(journal, WRITE_SYNC); 1476} 1477EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1478 1479/* 1480 * Read the superblock for a given journal, performing initial 1481 * validation of the format. 1482 */ 1483static int journal_get_superblock(journal_t *journal) 1484{ 1485 struct buffer_head *bh; 1486 journal_superblock_t *sb; 1487 int err = -EIO; 1488 1489 bh = journal->j_sb_buffer; 1490 1491 J_ASSERT(bh != NULL); 1492 if (!buffer_uptodate(bh)) { 1493 ll_rw_block(READ, 1, &bh); 1494 wait_on_buffer(bh); 1495 if (!buffer_uptodate(bh)) { 1496 printk(KERN_ERR 1497 "JBD2: IO error reading journal superblock\n"); 1498 goto out; 1499 } 1500 } 1501 1502 if (buffer_verified(bh)) 1503 return 0; 1504 1505 sb = journal->j_superblock; 1506 1507 err = -EINVAL; 1508 1509 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1510 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1511 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1512 goto out; 1513 } 1514 1515 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1516 case JBD2_SUPERBLOCK_V1: 1517 journal->j_format_version = 1; 1518 break; 1519 case JBD2_SUPERBLOCK_V2: 1520 journal->j_format_version = 2; 1521 break; 1522 default: 1523 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1524 goto out; 1525 } 1526 1527 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1528 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1529 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1530 printk(KERN_WARNING "JBD2: journal file too short\n"); 1531 goto out; 1532 } 1533 1534 if (be32_to_cpu(sb->s_first) == 0 || 1535 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1536 printk(KERN_WARNING 1537 "JBD2: Invalid start block of journal: %u\n", 1538 be32_to_cpu(sb->s_first)); 1539 goto out; 1540 } 1541 1542 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2) && 1543 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1544 /* Can't have checksum v2 and v3 at the same time! */ 1545 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1546 "at the same time!\n"); 1547 goto out; 1548 } 1549 1550 if (jbd2_journal_has_csum_v2or3(journal) && 1551 JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM)) { 1552 /* Can't have checksum v1 and v2 on at the same time! */ 1553 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1554 "at the same time!\n"); 1555 goto out; 1556 } 1557 1558 if (!jbd2_verify_csum_type(journal, sb)) { 1559 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1560 goto out; 1561 } 1562 1563 /* Load the checksum driver */ 1564 if (jbd2_journal_has_csum_v2or3(journal)) { 1565 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1566 if (IS_ERR(journal->j_chksum_driver)) { 1567 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1568 err = PTR_ERR(journal->j_chksum_driver); 1569 journal->j_chksum_driver = NULL; 1570 goto out; 1571 } 1572 } 1573 1574 /* Check superblock checksum */ 1575 if (!jbd2_superblock_csum_verify(journal, sb)) { 1576 printk(KERN_ERR "JBD2: journal checksum error\n"); 1577 goto out; 1578 } 1579 1580 /* Precompute checksum seed for all metadata */ 1581 if (jbd2_journal_has_csum_v2or3(journal)) 1582 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1583 sizeof(sb->s_uuid)); 1584 1585 set_buffer_verified(bh); 1586 1587 return 0; 1588 1589out: 1590 journal_fail_superblock(journal); 1591 return err; 1592} 1593 1594/* 1595 * Load the on-disk journal superblock and read the key fields into the 1596 * journal_t. 1597 */ 1598 1599static int load_superblock(journal_t *journal) 1600{ 1601 int err; 1602 journal_superblock_t *sb; 1603 1604 err = journal_get_superblock(journal); 1605 if (err) 1606 return err; 1607 1608 sb = journal->j_superblock; 1609 1610 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1611 journal->j_tail = be32_to_cpu(sb->s_start); 1612 journal->j_first = be32_to_cpu(sb->s_first); 1613 journal->j_last = be32_to_cpu(sb->s_maxlen); 1614 journal->j_errno = be32_to_cpu(sb->s_errno); 1615 1616 return 0; 1617} 1618 1619 1620/** 1621 * int jbd2_journal_load() - Read journal from disk. 1622 * @journal: Journal to act on. 1623 * 1624 * Given a journal_t structure which tells us which disk blocks contain 1625 * a journal, read the journal from disk to initialise the in-memory 1626 * structures. 1627 */ 1628int jbd2_journal_load(journal_t *journal) 1629{ 1630 int err; 1631 journal_superblock_t *sb; 1632 1633 err = load_superblock(journal); 1634 if (err) 1635 return err; 1636 1637 sb = journal->j_superblock; 1638 /* If this is a V2 superblock, then we have to check the 1639 * features flags on it. */ 1640 1641 if (journal->j_format_version >= 2) { 1642 if ((sb->s_feature_ro_compat & 1643 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1644 (sb->s_feature_incompat & 1645 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1646 printk(KERN_WARNING 1647 "JBD2: Unrecognised features on journal\n"); 1648 return -EINVAL; 1649 } 1650 } 1651 1652 /* 1653 * Create a slab for this blocksize 1654 */ 1655 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1656 if (err) 1657 return err; 1658 1659 /* Let the recovery code check whether it needs to recover any 1660 * data from the journal. */ 1661 if (jbd2_journal_recover(journal)) 1662 goto recovery_error; 1663 1664 if (journal->j_failed_commit) { 1665 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1666 "is corrupt.\n", journal->j_failed_commit, 1667 journal->j_devname); 1668 return -EIO; 1669 } 1670 1671 /* OK, we've finished with the dynamic journal bits: 1672 * reinitialise the dynamic contents of the superblock in memory 1673 * and reset them on disk. */ 1674 if (journal_reset(journal)) 1675 goto recovery_error; 1676 1677 journal->j_flags &= ~JBD2_ABORT; 1678 journal->j_flags |= JBD2_LOADED; 1679 return 0; 1680 1681recovery_error: 1682 printk(KERN_WARNING "JBD2: recovery failed\n"); 1683 return -EIO; 1684} 1685 1686/** 1687 * void jbd2_journal_destroy() - Release a journal_t structure. 1688 * @journal: Journal to act on. 1689 * 1690 * Release a journal_t structure once it is no longer in use by the 1691 * journaled object. 1692 * Return <0 if we couldn't clean up the journal. 1693 */ 1694int jbd2_journal_destroy(journal_t *journal) 1695{ 1696 int err = 0; 1697 1698 /* Wait for the commit thread to wake up and die. */ 1699 journal_kill_thread(journal); 1700 1701 /* Force a final log commit */ 1702 if (journal->j_running_transaction) 1703 jbd2_journal_commit_transaction(journal); 1704 1705 /* Force any old transactions to disk */ 1706 1707 /* Totally anal locking here... */ 1708 spin_lock(&journal->j_list_lock); 1709 while (journal->j_checkpoint_transactions != NULL) { 1710 spin_unlock(&journal->j_list_lock); 1711 mutex_lock(&journal->j_checkpoint_mutex); 1712 err = jbd2_log_do_checkpoint(journal); 1713 mutex_unlock(&journal->j_checkpoint_mutex); 1714 /* 1715 * If checkpointing failed, just free the buffers to avoid 1716 * looping forever 1717 */ 1718 if (err) { 1719 jbd2_journal_destroy_checkpoint(journal); 1720 spin_lock(&journal->j_list_lock); 1721 break; 1722 } 1723 spin_lock(&journal->j_list_lock); 1724 } 1725 1726 J_ASSERT(journal->j_running_transaction == NULL); 1727 J_ASSERT(journal->j_committing_transaction == NULL); 1728 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1729 spin_unlock(&journal->j_list_lock); 1730 1731 if (journal->j_sb_buffer) { 1732 if (!is_journal_aborted(journal)) { 1733 mutex_lock(&journal->j_checkpoint_mutex); 1734 1735 write_lock(&journal->j_state_lock); 1736 journal->j_tail_sequence = 1737 ++journal->j_transaction_sequence; 1738 write_unlock(&journal->j_state_lock); 1739 1740 jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA); 1741 mutex_unlock(&journal->j_checkpoint_mutex); 1742 } else 1743 err = -EIO; 1744 brelse(journal->j_sb_buffer); 1745 } 1746 1747 if (journal->j_proc_entry) 1748 jbd2_stats_proc_exit(journal); 1749 iput(journal->j_inode); 1750 if (journal->j_revoke) 1751 jbd2_journal_destroy_revoke(journal); 1752 if (journal->j_chksum_driver) 1753 crypto_free_shash(journal->j_chksum_driver); 1754 kfree(journal->j_wbuf); 1755 kfree(journal); 1756 1757 return err; 1758} 1759 1760 1761/** 1762 *int jbd2_journal_check_used_features () - Check if features specified are used. 1763 * @journal: Journal to check. 1764 * @compat: bitmask of compatible features 1765 * @ro: bitmask of features that force read-only mount 1766 * @incompat: bitmask of incompatible features 1767 * 1768 * Check whether the journal uses all of a given set of 1769 * features. Return true (non-zero) if it does. 1770 **/ 1771 1772int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1773 unsigned long ro, unsigned long incompat) 1774{ 1775 journal_superblock_t *sb; 1776 1777 if (!compat && !ro && !incompat) 1778 return 1; 1779 /* Load journal superblock if it is not loaded yet. */ 1780 if (journal->j_format_version == 0 && 1781 journal_get_superblock(journal) != 0) 1782 return 0; 1783 if (journal->j_format_version == 1) 1784 return 0; 1785 1786 sb = journal->j_superblock; 1787 1788 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1789 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1790 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1791 return 1; 1792 1793 return 0; 1794} 1795 1796/** 1797 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1798 * @journal: Journal to check. 1799 * @compat: bitmask of compatible features 1800 * @ro: bitmask of features that force read-only mount 1801 * @incompat: bitmask of incompatible features 1802 * 1803 * Check whether the journaling code supports the use of 1804 * all of a given set of features on this journal. Return true 1805 * (non-zero) if it can. */ 1806 1807int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1808 unsigned long ro, unsigned long incompat) 1809{ 1810 if (!compat && !ro && !incompat) 1811 return 1; 1812 1813 /* We can support any known requested features iff the 1814 * superblock is in version 2. Otherwise we fail to support any 1815 * extended sb features. */ 1816 1817 if (journal->j_format_version != 2) 1818 return 0; 1819 1820 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1821 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1822 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1823 return 1; 1824 1825 return 0; 1826} 1827 1828/** 1829 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1830 * @journal: Journal to act on. 1831 * @compat: bitmask of compatible features 1832 * @ro: bitmask of features that force read-only mount 1833 * @incompat: bitmask of incompatible features 1834 * 1835 * Mark a given journal feature as present on the 1836 * superblock. Returns true if the requested features could be set. 1837 * 1838 */ 1839 1840int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1841 unsigned long ro, unsigned long incompat) 1842{ 1843#define INCOMPAT_FEATURE_ON(f) \ 1844 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1845#define COMPAT_FEATURE_ON(f) \ 1846 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1847 journal_superblock_t *sb; 1848 1849 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1850 return 1; 1851 1852 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1853 return 0; 1854 1855 /* If enabling v2 checksums, turn on v3 instead */ 1856 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1857 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1858 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1859 } 1860 1861 /* Asking for checksumming v3 and v1? Only give them v3. */ 1862 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1863 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1864 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1865 1866 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1867 compat, ro, incompat); 1868 1869 sb = journal->j_superblock; 1870 1871 /* If enabling v3 checksums, update superblock */ 1872 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1873 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1874 sb->s_feature_compat &= 1875 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1876 1877 /* Load the checksum driver */ 1878 if (journal->j_chksum_driver == NULL) { 1879 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1880 0, 0); 1881 if (IS_ERR(journal->j_chksum_driver)) { 1882 printk(KERN_ERR "JBD2: Cannot load crc32c " 1883 "driver.\n"); 1884 journal->j_chksum_driver = NULL; 1885 return 0; 1886 } 1887 1888 /* Precompute checksum seed for all metadata */ 1889 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1890 sb->s_uuid, 1891 sizeof(sb->s_uuid)); 1892 } 1893 } 1894 1895 /* If enabling v1 checksums, downgrade superblock */ 1896 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1897 sb->s_feature_incompat &= 1898 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1899 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1900 1901 sb->s_feature_compat |= cpu_to_be32(compat); 1902 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1903 sb->s_feature_incompat |= cpu_to_be32(incompat); 1904 1905 return 1; 1906#undef COMPAT_FEATURE_ON 1907#undef INCOMPAT_FEATURE_ON 1908} 1909 1910/* 1911 * jbd2_journal_clear_features () - Clear a given journal feature in the 1912 * superblock 1913 * @journal: Journal to act on. 1914 * @compat: bitmask of compatible features 1915 * @ro: bitmask of features that force read-only mount 1916 * @incompat: bitmask of incompatible features 1917 * 1918 * Clear a given journal feature as present on the 1919 * superblock. 1920 */ 1921void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1922 unsigned long ro, unsigned long incompat) 1923{ 1924 journal_superblock_t *sb; 1925 1926 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1927 compat, ro, incompat); 1928 1929 sb = journal->j_superblock; 1930 1931 sb->s_feature_compat &= ~cpu_to_be32(compat); 1932 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1933 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1934} 1935EXPORT_SYMBOL(jbd2_journal_clear_features); 1936 1937/** 1938 * int jbd2_journal_flush () - Flush journal 1939 * @journal: Journal to act on. 1940 * 1941 * Flush all data for a given journal to disk and empty the journal. 1942 * Filesystems can use this when remounting readonly to ensure that 1943 * recovery does not need to happen on remount. 1944 */ 1945 1946int jbd2_journal_flush(journal_t *journal) 1947{ 1948 int err = 0; 1949 transaction_t *transaction = NULL; 1950 1951 write_lock(&journal->j_state_lock); 1952 1953 /* Force everything buffered to the log... */ 1954 if (journal->j_running_transaction) { 1955 transaction = journal->j_running_transaction; 1956 __jbd2_log_start_commit(journal, transaction->t_tid); 1957 } else if (journal->j_committing_transaction) 1958 transaction = journal->j_committing_transaction; 1959 1960 /* Wait for the log commit to complete... */ 1961 if (transaction) { 1962 tid_t tid = transaction->t_tid; 1963 1964 write_unlock(&journal->j_state_lock); 1965 jbd2_log_wait_commit(journal, tid); 1966 } else { 1967 write_unlock(&journal->j_state_lock); 1968 } 1969 1970 /* ...and flush everything in the log out to disk. */ 1971 spin_lock(&journal->j_list_lock); 1972 while (!err && journal->j_checkpoint_transactions != NULL) { 1973 spin_unlock(&journal->j_list_lock); 1974 mutex_lock(&journal->j_checkpoint_mutex); 1975 err = jbd2_log_do_checkpoint(journal); 1976 mutex_unlock(&journal->j_checkpoint_mutex); 1977 spin_lock(&journal->j_list_lock); 1978 } 1979 spin_unlock(&journal->j_list_lock); 1980 1981 if (is_journal_aborted(journal)) 1982 return -EIO; 1983 1984 mutex_lock(&journal->j_checkpoint_mutex); 1985 if (!err) { 1986 err = jbd2_cleanup_journal_tail(journal); 1987 if (err < 0) { 1988 mutex_unlock(&journal->j_checkpoint_mutex); 1989 goto out; 1990 } 1991 err = 0; 1992 } 1993 1994 /* Finally, mark the journal as really needing no recovery. 1995 * This sets s_start==0 in the underlying superblock, which is 1996 * the magic code for a fully-recovered superblock. Any future 1997 * commits of data to the journal will restore the current 1998 * s_start value. */ 1999 jbd2_mark_journal_empty(journal, WRITE_FUA); 2000 mutex_unlock(&journal->j_checkpoint_mutex); 2001 write_lock(&journal->j_state_lock); 2002 J_ASSERT(!journal->j_running_transaction); 2003 J_ASSERT(!journal->j_committing_transaction); 2004 J_ASSERT(!journal->j_checkpoint_transactions); 2005 J_ASSERT(journal->j_head == journal->j_tail); 2006 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2007 write_unlock(&journal->j_state_lock); 2008out: 2009 return err; 2010} 2011 2012/** 2013 * int jbd2_journal_wipe() - Wipe journal contents 2014 * @journal: Journal to act on. 2015 * @write: flag (see below) 2016 * 2017 * Wipe out all of the contents of a journal, safely. This will produce 2018 * a warning if the journal contains any valid recovery information. 2019 * Must be called between journal_init_*() and jbd2_journal_load(). 2020 * 2021 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2022 * we merely suppress recovery. 2023 */ 2024 2025int jbd2_journal_wipe(journal_t *journal, int write) 2026{ 2027 int err = 0; 2028 2029 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2030 2031 err = load_superblock(journal); 2032 if (err) 2033 return err; 2034 2035 if (!journal->j_tail) 2036 goto no_recovery; 2037 2038 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2039 write ? "Clearing" : "Ignoring"); 2040 2041 err = jbd2_journal_skip_recovery(journal); 2042 if (write) { 2043 /* Lock to make assertions happy... */ 2044 mutex_lock(&journal->j_checkpoint_mutex); 2045 jbd2_mark_journal_empty(journal, WRITE_FUA); 2046 mutex_unlock(&journal->j_checkpoint_mutex); 2047 } 2048 2049 no_recovery: 2050 return err; 2051} 2052 2053/* 2054 * Journal abort has very specific semantics, which we describe 2055 * for journal abort. 2056 * 2057 * Two internal functions, which provide abort to the jbd layer 2058 * itself are here. 2059 */ 2060 2061/* 2062 * Quick version for internal journal use (doesn't lock the journal). 2063 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2064 * and don't attempt to make any other journal updates. 2065 */ 2066void __jbd2_journal_abort_hard(journal_t *journal) 2067{ 2068 transaction_t *transaction; 2069 2070 if (journal->j_flags & JBD2_ABORT) 2071 return; 2072 2073 printk(KERN_ERR "Aborting journal on device %s.\n", 2074 journal->j_devname); 2075 2076 write_lock(&journal->j_state_lock); 2077 journal->j_flags |= JBD2_ABORT; 2078 transaction = journal->j_running_transaction; 2079 if (transaction) 2080 __jbd2_log_start_commit(journal, transaction->t_tid); 2081 write_unlock(&journal->j_state_lock); 2082} 2083 2084/* Soft abort: record the abort error status in the journal superblock, 2085 * but don't do any other IO. */ 2086static void __journal_abort_soft (journal_t *journal, int errno) 2087{ 2088 if (journal->j_flags & JBD2_ABORT) 2089 return; 2090 2091 if (!journal->j_errno) 2092 journal->j_errno = errno; 2093 2094 __jbd2_journal_abort_hard(journal); 2095 2096 if (errno) { 2097 jbd2_journal_update_sb_errno(journal); 2098 write_lock(&journal->j_state_lock); 2099 journal->j_flags |= JBD2_REC_ERR; 2100 write_unlock(&journal->j_state_lock); 2101 } 2102} 2103 2104/** 2105 * void jbd2_journal_abort () - Shutdown the journal immediately. 2106 * @journal: the journal to shutdown. 2107 * @errno: an error number to record in the journal indicating 2108 * the reason for the shutdown. 2109 * 2110 * Perform a complete, immediate shutdown of the ENTIRE 2111 * journal (not of a single transaction). This operation cannot be 2112 * undone without closing and reopening the journal. 2113 * 2114 * The jbd2_journal_abort function is intended to support higher level error 2115 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2116 * mode. 2117 * 2118 * Journal abort has very specific semantics. Any existing dirty, 2119 * unjournaled buffers in the main filesystem will still be written to 2120 * disk by bdflush, but the journaling mechanism will be suspended 2121 * immediately and no further transaction commits will be honoured. 2122 * 2123 * Any dirty, journaled buffers will be written back to disk without 2124 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2125 * filesystem, but we _do_ attempt to leave as much data as possible 2126 * behind for fsck to use for cleanup. 2127 * 2128 * Any attempt to get a new transaction handle on a journal which is in 2129 * ABORT state will just result in an -EROFS error return. A 2130 * jbd2_journal_stop on an existing handle will return -EIO if we have 2131 * entered abort state during the update. 2132 * 2133 * Recursive transactions are not disturbed by journal abort until the 2134 * final jbd2_journal_stop, which will receive the -EIO error. 2135 * 2136 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2137 * which will be recorded (if possible) in the journal superblock. This 2138 * allows a client to record failure conditions in the middle of a 2139 * transaction without having to complete the transaction to record the 2140 * failure to disk. ext3_error, for example, now uses this 2141 * functionality. 2142 * 2143 * Errors which originate from within the journaling layer will NOT 2144 * supply an errno; a null errno implies that absolutely no further 2145 * writes are done to the journal (unless there are any already in 2146 * progress). 2147 * 2148 */ 2149 2150void jbd2_journal_abort(journal_t *journal, int errno) 2151{ 2152 __journal_abort_soft(journal, errno); 2153} 2154 2155/** 2156 * int jbd2_journal_errno () - returns the journal's error state. 2157 * @journal: journal to examine. 2158 * 2159 * This is the errno number set with jbd2_journal_abort(), the last 2160 * time the journal was mounted - if the journal was stopped 2161 * without calling abort this will be 0. 2162 * 2163 * If the journal has been aborted on this mount time -EROFS will 2164 * be returned. 2165 */ 2166int jbd2_journal_errno(journal_t *journal) 2167{ 2168 int err; 2169 2170 read_lock(&journal->j_state_lock); 2171 if (journal->j_flags & JBD2_ABORT) 2172 err = -EROFS; 2173 else 2174 err = journal->j_errno; 2175 read_unlock(&journal->j_state_lock); 2176 return err; 2177} 2178 2179/** 2180 * int jbd2_journal_clear_err () - clears the journal's error state 2181 * @journal: journal to act on. 2182 * 2183 * An error must be cleared or acked to take a FS out of readonly 2184 * mode. 2185 */ 2186int jbd2_journal_clear_err(journal_t *journal) 2187{ 2188 int err = 0; 2189 2190 write_lock(&journal->j_state_lock); 2191 if (journal->j_flags & JBD2_ABORT) 2192 err = -EROFS; 2193 else 2194 journal->j_errno = 0; 2195 write_unlock(&journal->j_state_lock); 2196 return err; 2197} 2198 2199/** 2200 * void jbd2_journal_ack_err() - Ack journal err. 2201 * @journal: journal to act on. 2202 * 2203 * An error must be cleared or acked to take a FS out of readonly 2204 * mode. 2205 */ 2206void jbd2_journal_ack_err(journal_t *journal) 2207{ 2208 write_lock(&journal->j_state_lock); 2209 if (journal->j_errno) 2210 journal->j_flags |= JBD2_ACK_ERR; 2211 write_unlock(&journal->j_state_lock); 2212} 2213 2214int jbd2_journal_blocks_per_page(struct inode *inode) 2215{ 2216 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2217} 2218 2219/* 2220 * helper functions to deal with 32 or 64bit block numbers. 2221 */ 2222size_t journal_tag_bytes(journal_t *journal) 2223{ 2224 size_t sz; 2225 2226 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3)) 2227 return sizeof(journal_block_tag3_t); 2228 2229 sz = sizeof(journal_block_tag_t); 2230 2231 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 2232 sz += sizeof(__u16); 2233 2234 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2235 return sz; 2236 else 2237 return sz - sizeof(__u32); 2238} 2239 2240/* 2241 * JBD memory management 2242 * 2243 * These functions are used to allocate block-sized chunks of memory 2244 * used for making copies of buffer_head data. Very often it will be 2245 * page-sized chunks of data, but sometimes it will be in 2246 * sub-page-size chunks. (For example, 16k pages on Power systems 2247 * with a 4k block file system.) For blocks smaller than a page, we 2248 * use a SLAB allocator. There are slab caches for each block size, 2249 * which are allocated at mount time, if necessary, and we only free 2250 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2251 * this reason we don't need to a mutex to protect access to 2252 * jbd2_slab[] allocating or releasing memory; only in 2253 * jbd2_journal_create_slab(). 2254 */ 2255#define JBD2_MAX_SLABS 8 2256static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2257 2258static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2259 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2260 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2261}; 2262 2263 2264static void jbd2_journal_destroy_slabs(void) 2265{ 2266 int i; 2267 2268 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2269 if (jbd2_slab[i]) 2270 kmem_cache_destroy(jbd2_slab[i]); 2271 jbd2_slab[i] = NULL; 2272 } 2273} 2274 2275static int jbd2_journal_create_slab(size_t size) 2276{ 2277 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2278 int i = order_base_2(size) - 10; 2279 size_t slab_size; 2280 2281 if (size == PAGE_SIZE) 2282 return 0; 2283 2284 if (i >= JBD2_MAX_SLABS) 2285 return -EINVAL; 2286 2287 if (unlikely(i < 0)) 2288 i = 0; 2289 mutex_lock(&jbd2_slab_create_mutex); 2290 if (jbd2_slab[i]) { 2291 mutex_unlock(&jbd2_slab_create_mutex); 2292 return 0; /* Already created */ 2293 } 2294 2295 slab_size = 1 << (i+10); 2296 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2297 slab_size, 0, NULL); 2298 mutex_unlock(&jbd2_slab_create_mutex); 2299 if (!jbd2_slab[i]) { 2300 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2301 return -ENOMEM; 2302 } 2303 return 0; 2304} 2305 2306static struct kmem_cache *get_slab(size_t size) 2307{ 2308 int i = order_base_2(size) - 10; 2309 2310 BUG_ON(i >= JBD2_MAX_SLABS); 2311 if (unlikely(i < 0)) 2312 i = 0; 2313 BUG_ON(jbd2_slab[i] == NULL); 2314 return jbd2_slab[i]; 2315} 2316 2317void *jbd2_alloc(size_t size, gfp_t flags) 2318{ 2319 void *ptr; 2320 2321 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2322 2323 flags |= __GFP_REPEAT; 2324 if (size == PAGE_SIZE) 2325 ptr = (void *)__get_free_pages(flags, 0); 2326 else if (size > PAGE_SIZE) { 2327 int order = get_order(size); 2328 2329 if (order < 3) 2330 ptr = (void *)__get_free_pages(flags, order); 2331 else 2332 ptr = vmalloc(size); 2333 } else 2334 ptr = kmem_cache_alloc(get_slab(size), flags); 2335 2336 /* Check alignment; SLUB has gotten this wrong in the past, 2337 * and this can lead to user data corruption! */ 2338 BUG_ON(((unsigned long) ptr) & (size-1)); 2339 2340 return ptr; 2341} 2342 2343void jbd2_free(void *ptr, size_t size) 2344{ 2345 if (size == PAGE_SIZE) { 2346 free_pages((unsigned long)ptr, 0); 2347 return; 2348 } 2349 if (size > PAGE_SIZE) { 2350 int order = get_order(size); 2351 2352 if (order < 3) 2353 free_pages((unsigned long)ptr, order); 2354 else 2355 vfree(ptr); 2356 return; 2357 } 2358 kmem_cache_free(get_slab(size), ptr); 2359}; 2360 2361/* 2362 * Journal_head storage management 2363 */ 2364static struct kmem_cache *jbd2_journal_head_cache; 2365#ifdef CONFIG_JBD2_DEBUG 2366static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2367#endif 2368 2369static int jbd2_journal_init_journal_head_cache(void) 2370{ 2371 int retval; 2372 2373 J_ASSERT(jbd2_journal_head_cache == NULL); 2374 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2375 sizeof(struct journal_head), 2376 0, /* offset */ 2377 SLAB_TEMPORARY, /* flags */ 2378 NULL); /* ctor */ 2379 retval = 0; 2380 if (!jbd2_journal_head_cache) { 2381 retval = -ENOMEM; 2382 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2383 } 2384 return retval; 2385} 2386 2387static void jbd2_journal_destroy_journal_head_cache(void) 2388{ 2389 if (jbd2_journal_head_cache) { 2390 kmem_cache_destroy(jbd2_journal_head_cache); 2391 jbd2_journal_head_cache = NULL; 2392 } 2393} 2394 2395/* 2396 * journal_head splicing and dicing 2397 */ 2398static struct journal_head *journal_alloc_journal_head(void) 2399{ 2400 struct journal_head *ret; 2401 2402#ifdef CONFIG_JBD2_DEBUG 2403 atomic_inc(&nr_journal_heads); 2404#endif 2405 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2406 if (!ret) { 2407 jbd_debug(1, "out of memory for journal_head\n"); 2408 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2409 while (!ret) { 2410 yield(); 2411 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2412 } 2413 } 2414 return ret; 2415} 2416 2417static void journal_free_journal_head(struct journal_head *jh) 2418{ 2419#ifdef CONFIG_JBD2_DEBUG 2420 atomic_dec(&nr_journal_heads); 2421 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2422#endif 2423 kmem_cache_free(jbd2_journal_head_cache, jh); 2424} 2425 2426/* 2427 * A journal_head is attached to a buffer_head whenever JBD has an 2428 * interest in the buffer. 2429 * 2430 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2431 * is set. This bit is tested in core kernel code where we need to take 2432 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2433 * there. 2434 * 2435 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2436 * 2437 * When a buffer has its BH_JBD bit set it is immune from being released by 2438 * core kernel code, mainly via ->b_count. 2439 * 2440 * A journal_head is detached from its buffer_head when the journal_head's 2441 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2442 * transaction (b_cp_transaction) hold their references to b_jcount. 2443 * 2444 * Various places in the kernel want to attach a journal_head to a buffer_head 2445 * _before_ attaching the journal_head to a transaction. To protect the 2446 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2447 * journal_head's b_jcount refcount by one. The caller must call 2448 * jbd2_journal_put_journal_head() to undo this. 2449 * 2450 * So the typical usage would be: 2451 * 2452 * (Attach a journal_head if needed. Increments b_jcount) 2453 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2454 * ... 2455 * (Get another reference for transaction) 2456 * jbd2_journal_grab_journal_head(bh); 2457 * jh->b_transaction = xxx; 2458 * (Put original reference) 2459 * jbd2_journal_put_journal_head(jh); 2460 */ 2461 2462/* 2463 * Give a buffer_head a journal_head. 2464 * 2465 * May sleep. 2466 */ 2467struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2468{ 2469 struct journal_head *jh; 2470 struct journal_head *new_jh = NULL; 2471 2472repeat: 2473 if (!buffer_jbd(bh)) 2474 new_jh = journal_alloc_journal_head(); 2475 2476 jbd_lock_bh_journal_head(bh); 2477 if (buffer_jbd(bh)) { 2478 jh = bh2jh(bh); 2479 } else { 2480 J_ASSERT_BH(bh, 2481 (atomic_read(&bh->b_count) > 0) || 2482 (bh->b_page && bh->b_page->mapping)); 2483 2484 if (!new_jh) { 2485 jbd_unlock_bh_journal_head(bh); 2486 goto repeat; 2487 } 2488 2489 jh = new_jh; 2490 new_jh = NULL; /* We consumed it */ 2491 set_buffer_jbd(bh); 2492 bh->b_private = jh; 2493 jh->b_bh = bh; 2494 get_bh(bh); 2495 BUFFER_TRACE(bh, "added journal_head"); 2496 } 2497 jh->b_jcount++; 2498 jbd_unlock_bh_journal_head(bh); 2499 if (new_jh) 2500 journal_free_journal_head(new_jh); 2501 return bh->b_private; 2502} 2503 2504/* 2505 * Grab a ref against this buffer_head's journal_head. If it ended up not 2506 * having a journal_head, return NULL 2507 */ 2508struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2509{ 2510 struct journal_head *jh = NULL; 2511 2512 jbd_lock_bh_journal_head(bh); 2513 if (buffer_jbd(bh)) { 2514 jh = bh2jh(bh); 2515 jh->b_jcount++; 2516 } 2517 jbd_unlock_bh_journal_head(bh); 2518 return jh; 2519} 2520 2521static void __journal_remove_journal_head(struct buffer_head *bh) 2522{ 2523 struct journal_head *jh = bh2jh(bh); 2524 2525 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2526 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2527 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2528 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2529 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2530 J_ASSERT_BH(bh, buffer_jbd(bh)); 2531 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2532 BUFFER_TRACE(bh, "remove journal_head"); 2533 if (jh->b_frozen_data) { 2534 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2535 jbd2_free(jh->b_frozen_data, bh->b_size); 2536 } 2537 if (jh->b_committed_data) { 2538 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2539 jbd2_free(jh->b_committed_data, bh->b_size); 2540 } 2541 bh->b_private = NULL; 2542 jh->b_bh = NULL; /* debug, really */ 2543 clear_buffer_jbd(bh); 2544 journal_free_journal_head(jh); 2545} 2546 2547/* 2548 * Drop a reference on the passed journal_head. If it fell to zero then 2549 * release the journal_head from the buffer_head. 2550 */ 2551void jbd2_journal_put_journal_head(struct journal_head *jh) 2552{ 2553 struct buffer_head *bh = jh2bh(jh); 2554 2555 jbd_lock_bh_journal_head(bh); 2556 J_ASSERT_JH(jh, jh->b_jcount > 0); 2557 --jh->b_jcount; 2558 if (!jh->b_jcount) { 2559 __journal_remove_journal_head(bh); 2560 jbd_unlock_bh_journal_head(bh); 2561 __brelse(bh); 2562 } else 2563 jbd_unlock_bh_journal_head(bh); 2564} 2565 2566/* 2567 * Initialize jbd inode head 2568 */ 2569void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2570{ 2571 jinode->i_transaction = NULL; 2572 jinode->i_next_transaction = NULL; 2573 jinode->i_vfs_inode = inode; 2574 jinode->i_flags = 0; 2575 INIT_LIST_HEAD(&jinode->i_list); 2576} 2577 2578/* 2579 * Function to be called before we start removing inode from memory (i.e., 2580 * clear_inode() is a fine place to be called from). It removes inode from 2581 * transaction's lists. 2582 */ 2583void jbd2_journal_release_jbd_inode(journal_t *journal, 2584 struct jbd2_inode *jinode) 2585{ 2586 if (!journal) 2587 return; 2588restart: 2589 spin_lock(&journal->j_list_lock); 2590 /* Is commit writing out inode - we have to wait */ 2591 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2592 wait_queue_head_t *wq; 2593 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2594 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2595 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2596 spin_unlock(&journal->j_list_lock); 2597 schedule(); 2598 finish_wait(wq, &wait.wait); 2599 goto restart; 2600 } 2601 2602 if (jinode->i_transaction) { 2603 list_del(&jinode->i_list); 2604 jinode->i_transaction = NULL; 2605 } 2606 spin_unlock(&journal->j_list_lock); 2607} 2608 2609 2610#ifdef CONFIG_PROC_FS 2611 2612#define JBD2_STATS_PROC_NAME "fs/jbd2" 2613 2614static void __init jbd2_create_jbd_stats_proc_entry(void) 2615{ 2616 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2617} 2618 2619static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2620{ 2621 if (proc_jbd2_stats) 2622 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2623} 2624 2625#else 2626 2627#define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2628#define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2629 2630#endif 2631 2632struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2633 2634static int __init jbd2_journal_init_handle_cache(void) 2635{ 2636 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2637 if (jbd2_handle_cache == NULL) { 2638 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2639 return -ENOMEM; 2640 } 2641 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2642 if (jbd2_inode_cache == NULL) { 2643 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2644 kmem_cache_destroy(jbd2_handle_cache); 2645 return -ENOMEM; 2646 } 2647 return 0; 2648} 2649 2650static void jbd2_journal_destroy_handle_cache(void) 2651{ 2652 if (jbd2_handle_cache) 2653 kmem_cache_destroy(jbd2_handle_cache); 2654 if (jbd2_inode_cache) 2655 kmem_cache_destroy(jbd2_inode_cache); 2656 2657} 2658 2659/* 2660 * Module startup and shutdown 2661 */ 2662 2663static int __init journal_init_caches(void) 2664{ 2665 int ret; 2666 2667 ret = jbd2_journal_init_revoke_caches(); 2668 if (ret == 0) 2669 ret = jbd2_journal_init_journal_head_cache(); 2670 if (ret == 0) 2671 ret = jbd2_journal_init_handle_cache(); 2672 if (ret == 0) 2673 ret = jbd2_journal_init_transaction_cache(); 2674 return ret; 2675} 2676 2677static void jbd2_journal_destroy_caches(void) 2678{ 2679 jbd2_journal_destroy_revoke_caches(); 2680 jbd2_journal_destroy_journal_head_cache(); 2681 jbd2_journal_destroy_handle_cache(); 2682 jbd2_journal_destroy_transaction_cache(); 2683 jbd2_journal_destroy_slabs(); 2684} 2685 2686static int __init journal_init(void) 2687{ 2688 int ret; 2689 2690 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2691 2692 ret = journal_init_caches(); 2693 if (ret == 0) { 2694 jbd2_create_jbd_stats_proc_entry(); 2695 } else { 2696 jbd2_journal_destroy_caches(); 2697 } 2698 return ret; 2699} 2700 2701static void __exit journal_exit(void) 2702{ 2703#ifdef CONFIG_JBD2_DEBUG 2704 int n = atomic_read(&nr_journal_heads); 2705 if (n) 2706 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2707#endif 2708 jbd2_remove_jbd_stats_proc_entry(); 2709 jbd2_journal_destroy_caches(); 2710} 2711 2712MODULE_LICENSE("GPL"); 2713module_init(journal_init); 2714module_exit(journal_exit); 2715 2716