1/*
2 * linux/fs/jbd/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks.  The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 *   transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 *   revoked blocks.  If there are multiple revoke records in the log
24 *   for a single block, only the last one counts, and if there is a log
25 *   entry for a block beyond the last revoke, then that log entry still
26 *   gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 *   The desired end result is the journaling of the new block, so we
33 *   cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 *   The revoke must take precedence over the write of the block, so we
37 *   need either to cancel the journal entry or to write the revoke
38 *   later in the log than the log block.  In this case, we choose the
39 *   latter: journaling a block cancels any revoke record for that block
40 *   in the current transaction, so any revoke for that block in the
41 *   transaction must have happened after the block was journaled and so
42 *   the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 *   The data write is allowed to succeed, but the revoke is _not_
46 *   cancelled.  We still need to prevent old log records from
47 *   overwriting the new data.  We don't even need to clear the revoke
48 *   bit here.
49 *
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
53 *
54 * Revoke information on buffers is a tri-state value:
55 *
56 * RevokeValid clear:	no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 *			buffer has not been revoked, and cancel_revoke
59 *			need do nothing.
60 * RevokeValid set, Revoked set:
61 *			buffer has been revoked.
62 *
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table.  Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
72 *
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
77 *
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
81 */
82
83#ifndef __KERNEL__
84#include "jfs_user.h"
85#else
86#include <linux/time.h>
87#include <linux/fs.h>
88#include <linux/jbd.h>
89#include <linux/errno.h>
90#include <linux/slab.h>
91#include <linux/list.h>
92#include <linux/init.h>
93#include <linux/bio.h>
94#endif
95#include <linux/log2.h>
96#include <linux/hash.h>
97
98static struct kmem_cache *revoke_record_cache;
99static struct kmem_cache *revoke_table_cache;
100
101/* Each revoke record represents one single revoked block.  During
102   journal replay, this involves recording the transaction ID of the
103   last transaction to revoke this block. */
104
105struct jbd_revoke_record_s
106{
107	struct list_head  hash;
108	tid_t		  sequence;	/* Used for recovery only */
109	unsigned int	  blocknr;
110};
111
112
113/* The revoke table is just a simple hash table of revoke records. */
114struct jbd_revoke_table_s
115{
116	/* It is conceivable that we might want a larger hash table
117	 * for recovery.  Must be a power of two. */
118	int		  hash_size;
119	int		  hash_shift;
120	struct list_head *hash_table;
121};
122
123
124#ifdef __KERNEL__
125static void write_one_revoke_record(journal_t *, transaction_t *,
126				    struct journal_head **, int *,
127				    struct jbd_revoke_record_s *, int);
128static void flush_descriptor(journal_t *, struct journal_head *, int, int);
129#endif
130
131/* Utility functions to maintain the revoke table */
132
133static inline int hash(journal_t *journal, unsigned int block)
134{
135	struct jbd_revoke_table_s *table = journal->j_revoke;
136
137	return hash_32(block, table->hash_shift);
138}
139
140static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
141			      tid_t seq)
142{
143	struct list_head *hash_list;
144	struct jbd_revoke_record_s *record;
145
146repeat:
147	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
148	if (!record)
149		goto oom;
150
151	record->sequence = seq;
152	record->blocknr = blocknr;
153	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
154	spin_lock(&journal->j_revoke_lock);
155	list_add(&record->hash, hash_list);
156	spin_unlock(&journal->j_revoke_lock);
157	return 0;
158
159oom:
160	if (!journal_oom_retry)
161		return -ENOMEM;
162	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
163	yield();
164	goto repeat;
165}
166
167/* Find a revoke record in the journal's hash table. */
168
169static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
170						      unsigned int blocknr)
171{
172	struct list_head *hash_list;
173	struct jbd_revoke_record_s *record;
174
175	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
176
177	spin_lock(&journal->j_revoke_lock);
178	record = (struct jbd_revoke_record_s *) hash_list->next;
179	while (&(record->hash) != hash_list) {
180		if (record->blocknr == blocknr) {
181			spin_unlock(&journal->j_revoke_lock);
182			return record;
183		}
184		record = (struct jbd_revoke_record_s *) record->hash.next;
185	}
186	spin_unlock(&journal->j_revoke_lock);
187	return NULL;
188}
189
190void journal_destroy_revoke_caches(void)
191{
192	if (revoke_record_cache) {
193		kmem_cache_destroy(revoke_record_cache);
194		revoke_record_cache = NULL;
195	}
196	if (revoke_table_cache) {
197		kmem_cache_destroy(revoke_table_cache);
198		revoke_table_cache = NULL;
199	}
200}
201
202int __init journal_init_revoke_caches(void)
203{
204	J_ASSERT(!revoke_record_cache);
205	J_ASSERT(!revoke_table_cache);
206
207	revoke_record_cache = kmem_cache_create("revoke_record",
208					   sizeof(struct jbd_revoke_record_s),
209					   0,
210					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
211					   NULL);
212	if (!revoke_record_cache)
213		goto record_cache_failure;
214
215	revoke_table_cache = kmem_cache_create("revoke_table",
216					   sizeof(struct jbd_revoke_table_s),
217					   0, SLAB_TEMPORARY, NULL);
218	if (!revoke_table_cache)
219		goto table_cache_failure;
220
221	return 0;
222
223table_cache_failure:
224	journal_destroy_revoke_caches();
225record_cache_failure:
226	return -ENOMEM;
227}
228
229static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
230{
231	int i;
232	struct jbd_revoke_table_s *table;
233
234	table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
235	if (!table)
236		goto out;
237
238	table->hash_size = hash_size;
239	table->hash_shift = ilog2(hash_size);
240	table->hash_table =
241		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
242	if (!table->hash_table) {
243		kmem_cache_free(revoke_table_cache, table);
244		table = NULL;
245		goto out;
246	}
247
248	for (i = 0; i < hash_size; i++)
249		INIT_LIST_HEAD(&table->hash_table[i]);
250
251out:
252	return table;
253}
254
255static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
256{
257	int i;
258	struct list_head *hash_list;
259
260	for (i = 0; i < table->hash_size; i++) {
261		hash_list = &table->hash_table[i];
262		J_ASSERT(list_empty(hash_list));
263	}
264
265	kfree(table->hash_table);
266	kmem_cache_free(revoke_table_cache, table);
267}
268
269/* Initialise the revoke table for a given journal to a given size. */
270int journal_init_revoke(journal_t *journal, int hash_size)
271{
272	J_ASSERT(journal->j_revoke_table[0] == NULL);
273	J_ASSERT(is_power_of_2(hash_size));
274
275	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
276	if (!journal->j_revoke_table[0])
277		goto fail0;
278
279	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
280	if (!journal->j_revoke_table[1])
281		goto fail1;
282
283	journal->j_revoke = journal->j_revoke_table[1];
284
285	spin_lock_init(&journal->j_revoke_lock);
286
287	return 0;
288
289fail1:
290	journal_destroy_revoke_table(journal->j_revoke_table[0]);
291fail0:
292	return -ENOMEM;
293}
294
295/* Destroy a journal's revoke table.  The table must already be empty! */
296void journal_destroy_revoke(journal_t *journal)
297{
298	journal->j_revoke = NULL;
299	if (journal->j_revoke_table[0])
300		journal_destroy_revoke_table(journal->j_revoke_table[0]);
301	if (journal->j_revoke_table[1])
302		journal_destroy_revoke_table(journal->j_revoke_table[1]);
303}
304
305
306#ifdef __KERNEL__
307
308/*
309 * journal_revoke: revoke a given buffer_head from the journal.  This
310 * prevents the block from being replayed during recovery if we take a
311 * crash after this current transaction commits.  Any subsequent
312 * metadata writes of the buffer in this transaction cancel the
313 * revoke.
314 *
315 * Note that this call may block --- it is up to the caller to make
316 * sure that there are no further calls to journal_write_metadata
317 * before the revoke is complete.  In ext3, this implies calling the
318 * revoke before clearing the block bitmap when we are deleting
319 * metadata.
320 *
321 * Revoke performs a journal_forget on any buffer_head passed in as a
322 * parameter, but does _not_ forget the buffer_head if the bh was only
323 * found implicitly.
324 *
325 * bh_in may not be a journalled buffer - it may have come off
326 * the hash tables without an attached journal_head.
327 *
328 * If bh_in is non-zero, journal_revoke() will decrement its b_count
329 * by one.
330 */
331
332int journal_revoke(handle_t *handle, unsigned int blocknr,
333		   struct buffer_head *bh_in)
334{
335	struct buffer_head *bh = NULL;
336	journal_t *journal;
337	struct block_device *bdev;
338	int err;
339
340	might_sleep();
341	if (bh_in)
342		BUFFER_TRACE(bh_in, "enter");
343
344	journal = handle->h_transaction->t_journal;
345	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
346		J_ASSERT (!"Cannot set revoke feature!");
347		return -EINVAL;
348	}
349
350	bdev = journal->j_fs_dev;
351	bh = bh_in;
352
353	if (!bh) {
354		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
355		if (bh)
356			BUFFER_TRACE(bh, "found on hash");
357	}
358#ifdef JBD_EXPENSIVE_CHECKING
359	else {
360		struct buffer_head *bh2;
361
362		/* If there is a different buffer_head lying around in
363		 * memory anywhere... */
364		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
365		if (bh2) {
366			/* ... and it has RevokeValid status... */
367			if (bh2 != bh && buffer_revokevalid(bh2))
368				/* ...then it better be revoked too,
369				 * since it's illegal to create a revoke
370				 * record against a buffer_head which is
371				 * not marked revoked --- that would
372				 * risk missing a subsequent revoke
373				 * cancel. */
374				J_ASSERT_BH(bh2, buffer_revoked(bh2));
375			put_bh(bh2);
376		}
377	}
378#endif
379
380	/* We really ought not ever to revoke twice in a row without
381           first having the revoke cancelled: it's illegal to free a
382           block twice without allocating it in between! */
383	if (bh) {
384		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
385				 "inconsistent data on disk")) {
386			if (!bh_in)
387				brelse(bh);
388			return -EIO;
389		}
390		set_buffer_revoked(bh);
391		set_buffer_revokevalid(bh);
392		if (bh_in) {
393			BUFFER_TRACE(bh_in, "call journal_forget");
394			journal_forget(handle, bh_in);
395		} else {
396			BUFFER_TRACE(bh, "call brelse");
397			__brelse(bh);
398		}
399	}
400
401	jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
402	err = insert_revoke_hash(journal, blocknr,
403				handle->h_transaction->t_tid);
404	BUFFER_TRACE(bh_in, "exit");
405	return err;
406}
407
408/*
409 * Cancel an outstanding revoke.  For use only internally by the
410 * journaling code (called from journal_get_write_access).
411 *
412 * We trust buffer_revoked() on the buffer if the buffer is already
413 * being journaled: if there is no revoke pending on the buffer, then we
414 * don't do anything here.
415 *
416 * This would break if it were possible for a buffer to be revoked and
417 * discarded, and then reallocated within the same transaction.  In such
418 * a case we would have lost the revoked bit, but when we arrived here
419 * the second time we would still have a pending revoke to cancel.  So,
420 * do not trust the Revoked bit on buffers unless RevokeValid is also
421 * set.
422 */
423int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
424{
425	struct jbd_revoke_record_s *record;
426	journal_t *journal = handle->h_transaction->t_journal;
427	int need_cancel;
428	int did_revoke = 0;	/* akpm: debug */
429	struct buffer_head *bh = jh2bh(jh);
430
431	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
432
433	/* Is the existing Revoke bit valid?  If so, we trust it, and
434	 * only perform the full cancel if the revoke bit is set.  If
435	 * not, we can't trust the revoke bit, and we need to do the
436	 * full search for a revoke record. */
437	if (test_set_buffer_revokevalid(bh)) {
438		need_cancel = test_clear_buffer_revoked(bh);
439	} else {
440		need_cancel = 1;
441		clear_buffer_revoked(bh);
442	}
443
444	if (need_cancel) {
445		record = find_revoke_record(journal, bh->b_blocknr);
446		if (record) {
447			jbd_debug(4, "cancelled existing revoke on "
448				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
449			spin_lock(&journal->j_revoke_lock);
450			list_del(&record->hash);
451			spin_unlock(&journal->j_revoke_lock);
452			kmem_cache_free(revoke_record_cache, record);
453			did_revoke = 1;
454		}
455	}
456
457#ifdef JBD_EXPENSIVE_CHECKING
458	/* There better not be one left behind by now! */
459	record = find_revoke_record(journal, bh->b_blocknr);
460	J_ASSERT_JH(jh, record == NULL);
461#endif
462
463	/* Finally, have we just cleared revoke on an unhashed
464	 * buffer_head?  If so, we'd better make sure we clear the
465	 * revoked status on any hashed alias too, otherwise the revoke
466	 * state machine will get very upset later on. */
467	if (need_cancel) {
468		struct buffer_head *bh2;
469		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
470		if (bh2) {
471			if (bh2 != bh)
472				clear_buffer_revoked(bh2);
473			__brelse(bh2);
474		}
475	}
476	return did_revoke;
477}
478
479/*
480 * journal_clear_revoked_flags clears revoked flag of buffers in
481 * revoke table to reflect there is no revoked buffer in the next
482 * transaction which is going to be started.
483 */
484void journal_clear_buffer_revoked_flags(journal_t *journal)
485{
486	struct jbd_revoke_table_s *revoke = journal->j_revoke;
487	int i = 0;
488
489	for (i = 0; i < revoke->hash_size; i++) {
490		struct list_head *hash_list;
491		struct list_head *list_entry;
492		hash_list = &revoke->hash_table[i];
493
494		list_for_each(list_entry, hash_list) {
495			struct jbd_revoke_record_s *record;
496			struct buffer_head *bh;
497			record = (struct jbd_revoke_record_s *)list_entry;
498			bh = __find_get_block(journal->j_fs_dev,
499					      record->blocknr,
500					      journal->j_blocksize);
501			if (bh) {
502				clear_buffer_revoked(bh);
503				__brelse(bh);
504			}
505		}
506	}
507}
508
509/* journal_switch_revoke table select j_revoke for next transaction
510 * we do not want to suspend any processing until all revokes are
511 * written -bzzz
512 */
513void journal_switch_revoke_table(journal_t *journal)
514{
515	int i;
516
517	if (journal->j_revoke == journal->j_revoke_table[0])
518		journal->j_revoke = journal->j_revoke_table[1];
519	else
520		journal->j_revoke = journal->j_revoke_table[0];
521
522	for (i = 0; i < journal->j_revoke->hash_size; i++)
523		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
524}
525
526/*
527 * Write revoke records to the journal for all entries in the current
528 * revoke hash, deleting the entries as we go.
529 */
530void journal_write_revoke_records(journal_t *journal,
531				  transaction_t *transaction, int write_op)
532{
533	struct journal_head *descriptor;
534	struct jbd_revoke_record_s *record;
535	struct jbd_revoke_table_s *revoke;
536	struct list_head *hash_list;
537	int i, offset, count;
538
539	descriptor = NULL;
540	offset = 0;
541	count = 0;
542
543	/* select revoke table for committing transaction */
544	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
545		journal->j_revoke_table[1] : journal->j_revoke_table[0];
546
547	for (i = 0; i < revoke->hash_size; i++) {
548		hash_list = &revoke->hash_table[i];
549
550		while (!list_empty(hash_list)) {
551			record = (struct jbd_revoke_record_s *)
552				hash_list->next;
553			write_one_revoke_record(journal, transaction,
554						&descriptor, &offset,
555						record, write_op);
556			count++;
557			list_del(&record->hash);
558			kmem_cache_free(revoke_record_cache, record);
559		}
560	}
561	if (descriptor)
562		flush_descriptor(journal, descriptor, offset, write_op);
563	jbd_debug(1, "Wrote %d revoke records\n", count);
564}
565
566/*
567 * Write out one revoke record.  We need to create a new descriptor
568 * block if the old one is full or if we have not already created one.
569 */
570
571static void write_one_revoke_record(journal_t *journal,
572				    transaction_t *transaction,
573				    struct journal_head **descriptorp,
574				    int *offsetp,
575				    struct jbd_revoke_record_s *record,
576				    int write_op)
577{
578	struct journal_head *descriptor;
579	int offset;
580	journal_header_t *header;
581
582	/* If we are already aborting, this all becomes a noop.  We
583           still need to go round the loop in
584           journal_write_revoke_records in order to free all of the
585           revoke records: only the IO to the journal is omitted. */
586	if (is_journal_aborted(journal))
587		return;
588
589	descriptor = *descriptorp;
590	offset = *offsetp;
591
592	/* Make sure we have a descriptor with space left for the record */
593	if (descriptor) {
594		if (offset == journal->j_blocksize) {
595			flush_descriptor(journal, descriptor, offset, write_op);
596			descriptor = NULL;
597		}
598	}
599
600	if (!descriptor) {
601		descriptor = journal_get_descriptor_buffer(journal);
602		if (!descriptor)
603			return;
604		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
605		header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
606		header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
607		header->h_sequence  = cpu_to_be32(transaction->t_tid);
608
609		/* Record it so that we can wait for IO completion later */
610		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
611		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
612
613		offset = sizeof(journal_revoke_header_t);
614		*descriptorp = descriptor;
615	}
616
617	* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
618		cpu_to_be32(record->blocknr);
619	offset += 4;
620	*offsetp = offset;
621}
622
623/*
624 * Flush a revoke descriptor out to the journal.  If we are aborting,
625 * this is a noop; otherwise we are generating a buffer which needs to
626 * be waited for during commit, so it has to go onto the appropriate
627 * journal buffer list.
628 */
629
630static void flush_descriptor(journal_t *journal,
631			     struct journal_head *descriptor,
632			     int offset, int write_op)
633{
634	journal_revoke_header_t *header;
635	struct buffer_head *bh = jh2bh(descriptor);
636
637	if (is_journal_aborted(journal)) {
638		put_bh(bh);
639		return;
640	}
641
642	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
643	header->r_count = cpu_to_be32(offset);
644	set_buffer_jwrite(bh);
645	BUFFER_TRACE(bh, "write");
646	set_buffer_dirty(bh);
647	write_dirty_buffer(bh, write_op);
648}
649#endif
650
651/*
652 * Revoke support for recovery.
653 *
654 * Recovery needs to be able to:
655 *
656 *  record all revoke records, including the tid of the latest instance
657 *  of each revoke in the journal
658 *
659 *  check whether a given block in a given transaction should be replayed
660 *  (ie. has not been revoked by a revoke record in that or a subsequent
661 *  transaction)
662 *
663 *  empty the revoke table after recovery.
664 */
665
666/*
667 * First, setting revoke records.  We create a new revoke record for
668 * every block ever revoked in the log as we scan it for recovery, and
669 * we update the existing records if we find multiple revokes for a
670 * single block.
671 */
672
673int journal_set_revoke(journal_t *journal,
674		       unsigned int blocknr,
675		       tid_t sequence)
676{
677	struct jbd_revoke_record_s *record;
678
679	record = find_revoke_record(journal, blocknr);
680	if (record) {
681		/* If we have multiple occurrences, only record the
682		 * latest sequence number in the hashed record */
683		if (tid_gt(sequence, record->sequence))
684			record->sequence = sequence;
685		return 0;
686	}
687	return insert_revoke_hash(journal, blocknr, sequence);
688}
689
690/*
691 * Test revoke records.  For a given block referenced in the log, has
692 * that block been revoked?  A revoke record with a given transaction
693 * sequence number revokes all blocks in that transaction and earlier
694 * ones, but later transactions still need replayed.
695 */
696
697int journal_test_revoke(journal_t *journal,
698			unsigned int blocknr,
699			tid_t sequence)
700{
701	struct jbd_revoke_record_s *record;
702
703	record = find_revoke_record(journal, blocknr);
704	if (!record)
705		return 0;
706	if (tid_gt(sequence, record->sequence))
707		return 0;
708	return 1;
709}
710
711/*
712 * Finally, once recovery is over, we need to clear the revoke table so
713 * that it can be reused by the running filesystem.
714 */
715
716void journal_clear_revoke(journal_t *journal)
717{
718	int i;
719	struct list_head *hash_list;
720	struct jbd_revoke_record_s *record;
721	struct jbd_revoke_table_s *revoke;
722
723	revoke = journal->j_revoke;
724
725	for (i = 0; i < revoke->hash_size; i++) {
726		hash_list = &revoke->hash_table[i];
727		while (!list_empty(hash_list)) {
728			record = (struct jbd_revoke_record_s*) hash_list->next;
729			list_del(&record->hash);
730			kmem_cache_free(revoke_record_cache, record);
731		}
732	}
733}
734