1/* 2 * linux/fs/jbd/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25#include <linux/module.h> 26#include <linux/time.h> 27#include <linux/fs.h> 28#include <linux/jbd.h> 29#include <linux/errno.h> 30#include <linux/slab.h> 31#include <linux/init.h> 32#include <linux/mm.h> 33#include <linux/freezer.h> 34#include <linux/pagemap.h> 35#include <linux/kthread.h> 36#include <linux/poison.h> 37#include <linux/proc_fs.h> 38#include <linux/debugfs.h> 39#include <linux/ratelimit.h> 40 41#define CREATE_TRACE_POINTS 42#include <trace/events/jbd.h> 43 44#include <asm/uaccess.h> 45#include <asm/page.h> 46 47EXPORT_SYMBOL(journal_start); 48EXPORT_SYMBOL(journal_restart); 49EXPORT_SYMBOL(journal_extend); 50EXPORT_SYMBOL(journal_stop); 51EXPORT_SYMBOL(journal_lock_updates); 52EXPORT_SYMBOL(journal_unlock_updates); 53EXPORT_SYMBOL(journal_get_write_access); 54EXPORT_SYMBOL(journal_get_create_access); 55EXPORT_SYMBOL(journal_get_undo_access); 56EXPORT_SYMBOL(journal_dirty_data); 57EXPORT_SYMBOL(journal_dirty_metadata); 58EXPORT_SYMBOL(journal_release_buffer); 59EXPORT_SYMBOL(journal_forget); 60#if 0 61EXPORT_SYMBOL(journal_sync_buffer); 62#endif 63EXPORT_SYMBOL(journal_flush); 64EXPORT_SYMBOL(journal_revoke); 65 66EXPORT_SYMBOL(journal_init_dev); 67EXPORT_SYMBOL(journal_init_inode); 68EXPORT_SYMBOL(journal_update_format); 69EXPORT_SYMBOL(journal_check_used_features); 70EXPORT_SYMBOL(journal_check_available_features); 71EXPORT_SYMBOL(journal_set_features); 72EXPORT_SYMBOL(journal_create); 73EXPORT_SYMBOL(journal_load); 74EXPORT_SYMBOL(journal_destroy); 75EXPORT_SYMBOL(journal_abort); 76EXPORT_SYMBOL(journal_errno); 77EXPORT_SYMBOL(journal_ack_err); 78EXPORT_SYMBOL(journal_clear_err); 79EXPORT_SYMBOL(log_wait_commit); 80EXPORT_SYMBOL(log_start_commit); 81EXPORT_SYMBOL(journal_start_commit); 82EXPORT_SYMBOL(journal_force_commit_nested); 83EXPORT_SYMBOL(journal_wipe); 84EXPORT_SYMBOL(journal_blocks_per_page); 85EXPORT_SYMBOL(journal_invalidatepage); 86EXPORT_SYMBOL(journal_try_to_free_buffers); 87EXPORT_SYMBOL(journal_force_commit); 88 89static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 90static void __journal_abort_soft (journal_t *journal, int errno); 91static const char *journal_dev_name(journal_t *journal, char *buffer); 92 93#ifdef CONFIG_JBD_DEBUG 94void __jbd_debug(int level, const char *file, const char *func, 95 unsigned int line, const char *fmt, ...) 96{ 97 struct va_format vaf; 98 va_list args; 99 100 if (level > journal_enable_debug) 101 return; 102 va_start(args, fmt); 103 vaf.fmt = fmt; 104 vaf.va = &args; 105 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 106 va_end(args); 107} 108EXPORT_SYMBOL(__jbd_debug); 109#endif 110 111/* 112 * Helper function used to manage commit timeouts 113 */ 114 115static void commit_timeout(unsigned long __data) 116{ 117 struct task_struct * p = (struct task_struct *) __data; 118 119 wake_up_process(p); 120} 121 122/* 123 * kjournald: The main thread function used to manage a logging device 124 * journal. 125 * 126 * This kernel thread is responsible for two things: 127 * 128 * 1) COMMIT: Every so often we need to commit the current state of the 129 * filesystem to disk. The journal thread is responsible for writing 130 * all of the metadata buffers to disk. 131 * 132 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 133 * of the data in that part of the log has been rewritten elsewhere on 134 * the disk. Flushing these old buffers to reclaim space in the log is 135 * known as checkpointing, and this thread is responsible for that job. 136 */ 137 138static int kjournald(void *arg) 139{ 140 journal_t *journal = arg; 141 transaction_t *transaction; 142 143 /* 144 * Set up an interval timer which can be used to trigger a commit wakeup 145 * after the commit interval expires 146 */ 147 setup_timer(&journal->j_commit_timer, commit_timeout, 148 (unsigned long)current); 149 150 set_freezable(); 151 152 /* Record that the journal thread is running */ 153 journal->j_task = current; 154 wake_up(&journal->j_wait_done_commit); 155 156 printk(KERN_INFO "kjournald starting. Commit interval %ld seconds\n", 157 journal->j_commit_interval / HZ); 158 159 /* 160 * And now, wait forever for commit wakeup events. 161 */ 162 spin_lock(&journal->j_state_lock); 163 164loop: 165 if (journal->j_flags & JFS_UNMOUNT) 166 goto end_loop; 167 168 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 169 journal->j_commit_sequence, journal->j_commit_request); 170 171 if (journal->j_commit_sequence != journal->j_commit_request) { 172 jbd_debug(1, "OK, requests differ\n"); 173 spin_unlock(&journal->j_state_lock); 174 del_timer_sync(&journal->j_commit_timer); 175 journal_commit_transaction(journal); 176 spin_lock(&journal->j_state_lock); 177 goto loop; 178 } 179 180 wake_up(&journal->j_wait_done_commit); 181 if (freezing(current)) { 182 /* 183 * The simpler the better. Flushing journal isn't a 184 * good idea, because that depends on threads that may 185 * be already stopped. 186 */ 187 jbd_debug(1, "Now suspending kjournald\n"); 188 spin_unlock(&journal->j_state_lock); 189 try_to_freeze(); 190 spin_lock(&journal->j_state_lock); 191 } else { 192 /* 193 * We assume on resume that commits are already there, 194 * so we don't sleep 195 */ 196 DEFINE_WAIT(wait); 197 int should_sleep = 1; 198 199 prepare_to_wait(&journal->j_wait_commit, &wait, 200 TASK_INTERRUPTIBLE); 201 if (journal->j_commit_sequence != journal->j_commit_request) 202 should_sleep = 0; 203 transaction = journal->j_running_transaction; 204 if (transaction && time_after_eq(jiffies, 205 transaction->t_expires)) 206 should_sleep = 0; 207 if (journal->j_flags & JFS_UNMOUNT) 208 should_sleep = 0; 209 if (should_sleep) { 210 spin_unlock(&journal->j_state_lock); 211 schedule(); 212 spin_lock(&journal->j_state_lock); 213 } 214 finish_wait(&journal->j_wait_commit, &wait); 215 } 216 217 jbd_debug(1, "kjournald wakes\n"); 218 219 /* 220 * Were we woken up by a commit wakeup event? 221 */ 222 transaction = journal->j_running_transaction; 223 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 224 journal->j_commit_request = transaction->t_tid; 225 jbd_debug(1, "woke because of timeout\n"); 226 } 227 goto loop; 228 229end_loop: 230 spin_unlock(&journal->j_state_lock); 231 del_timer_sync(&journal->j_commit_timer); 232 journal->j_task = NULL; 233 wake_up(&journal->j_wait_done_commit); 234 jbd_debug(1, "Journal thread exiting.\n"); 235 return 0; 236} 237 238static int journal_start_thread(journal_t *journal) 239{ 240 struct task_struct *t; 241 242 t = kthread_run(kjournald, journal, "kjournald"); 243 if (IS_ERR(t)) 244 return PTR_ERR(t); 245 246 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 247 return 0; 248} 249 250static void journal_kill_thread(journal_t *journal) 251{ 252 spin_lock(&journal->j_state_lock); 253 journal->j_flags |= JFS_UNMOUNT; 254 255 while (journal->j_task) { 256 wake_up(&journal->j_wait_commit); 257 spin_unlock(&journal->j_state_lock); 258 wait_event(journal->j_wait_done_commit, 259 journal->j_task == NULL); 260 spin_lock(&journal->j_state_lock); 261 } 262 spin_unlock(&journal->j_state_lock); 263} 264 265/* 266 * journal_write_metadata_buffer: write a metadata buffer to the journal. 267 * 268 * Writes a metadata buffer to a given disk block. The actual IO is not 269 * performed but a new buffer_head is constructed which labels the data 270 * to be written with the correct destination disk block. 271 * 272 * Any magic-number escaping which needs to be done will cause a 273 * copy-out here. If the buffer happens to start with the 274 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the 275 * magic number is only written to the log for descripter blocks. In 276 * this case, we copy the data and replace the first word with 0, and we 277 * return a result code which indicates that this buffer needs to be 278 * marked as an escaped buffer in the corresponding log descriptor 279 * block. The missing word can then be restored when the block is read 280 * during recovery. 281 * 282 * If the source buffer has already been modified by a new transaction 283 * since we took the last commit snapshot, we use the frozen copy of 284 * that data for IO. If we end up using the existing buffer_head's data 285 * for the write, then we *have* to lock the buffer to prevent anyone 286 * else from using and possibly modifying it while the IO is in 287 * progress. 288 * 289 * The function returns a pointer to the buffer_heads to be used for IO. 290 * 291 * We assume that the journal has already been locked in this function. 292 * 293 * Return value: 294 * <0: Error 295 * >=0: Finished OK 296 * 297 * On success: 298 * Bit 0 set == escape performed on the data 299 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 300 */ 301 302int journal_write_metadata_buffer(transaction_t *transaction, 303 struct journal_head *jh_in, 304 struct journal_head **jh_out, 305 unsigned int blocknr) 306{ 307 int need_copy_out = 0; 308 int done_copy_out = 0; 309 int do_escape = 0; 310 char *mapped_data; 311 struct buffer_head *new_bh; 312 struct journal_head *new_jh; 313 struct page *new_page; 314 unsigned int new_offset; 315 struct buffer_head *bh_in = jh2bh(jh_in); 316 journal_t *journal = transaction->t_journal; 317 318 /* 319 * The buffer really shouldn't be locked: only the current committing 320 * transaction is allowed to write it, so nobody else is allowed 321 * to do any IO. 322 * 323 * akpm: except if we're journalling data, and write() output is 324 * also part of a shared mapping, and another thread has 325 * decided to launch a writepage() against this buffer. 326 */ 327 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 328 329 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 330 /* keep subsequent assertions sane */ 331 atomic_set(&new_bh->b_count, 1); 332 new_jh = journal_add_journal_head(new_bh); /* This sleeps */ 333 334 /* 335 * If a new transaction has already done a buffer copy-out, then 336 * we use that version of the data for the commit. 337 */ 338 jbd_lock_bh_state(bh_in); 339repeat: 340 if (jh_in->b_frozen_data) { 341 done_copy_out = 1; 342 new_page = virt_to_page(jh_in->b_frozen_data); 343 new_offset = offset_in_page(jh_in->b_frozen_data); 344 } else { 345 new_page = jh2bh(jh_in)->b_page; 346 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 347 } 348 349 mapped_data = kmap_atomic(new_page); 350 /* 351 * Check for escaping 352 */ 353 if (*((__be32 *)(mapped_data + new_offset)) == 354 cpu_to_be32(JFS_MAGIC_NUMBER)) { 355 need_copy_out = 1; 356 do_escape = 1; 357 } 358 kunmap_atomic(mapped_data); 359 360 /* 361 * Do we need to do a data copy? 362 */ 363 if (need_copy_out && !done_copy_out) { 364 char *tmp; 365 366 jbd_unlock_bh_state(bh_in); 367 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS); 368 jbd_lock_bh_state(bh_in); 369 if (jh_in->b_frozen_data) { 370 jbd_free(tmp, bh_in->b_size); 371 goto repeat; 372 } 373 374 jh_in->b_frozen_data = tmp; 375 mapped_data = kmap_atomic(new_page); 376 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 377 kunmap_atomic(mapped_data); 378 379 new_page = virt_to_page(tmp); 380 new_offset = offset_in_page(tmp); 381 done_copy_out = 1; 382 } 383 384 /* 385 * Did we need to do an escaping? Now we've done all the 386 * copying, we can finally do so. 387 */ 388 if (do_escape) { 389 mapped_data = kmap_atomic(new_page); 390 *((unsigned int *)(mapped_data + new_offset)) = 0; 391 kunmap_atomic(mapped_data); 392 } 393 394 set_bh_page(new_bh, new_page, new_offset); 395 new_jh->b_transaction = NULL; 396 new_bh->b_size = jh2bh(jh_in)->b_size; 397 new_bh->b_bdev = transaction->t_journal->j_dev; 398 new_bh->b_blocknr = blocknr; 399 set_buffer_mapped(new_bh); 400 set_buffer_dirty(new_bh); 401 402 *jh_out = new_jh; 403 404 /* 405 * The to-be-written buffer needs to get moved to the io queue, 406 * and the original buffer whose contents we are shadowing or 407 * copying is moved to the transaction's shadow queue. 408 */ 409 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 410 spin_lock(&journal->j_list_lock); 411 __journal_file_buffer(jh_in, transaction, BJ_Shadow); 412 spin_unlock(&journal->j_list_lock); 413 jbd_unlock_bh_state(bh_in); 414 415 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 416 journal_file_buffer(new_jh, transaction, BJ_IO); 417 418 return do_escape | (done_copy_out << 1); 419} 420 421/* 422 * Allocation code for the journal file. Manage the space left in the 423 * journal, so that we can begin checkpointing when appropriate. 424 */ 425 426/* 427 * __log_space_left: Return the number of free blocks left in the journal. 428 * 429 * Called with the journal already locked. 430 * 431 * Called under j_state_lock 432 */ 433 434int __log_space_left(journal_t *journal) 435{ 436 int left = journal->j_free; 437 438 assert_spin_locked(&journal->j_state_lock); 439 440 /* 441 * Be pessimistic here about the number of those free blocks which 442 * might be required for log descriptor control blocks. 443 */ 444 445#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 446 447 left -= MIN_LOG_RESERVED_BLOCKS; 448 449 if (left <= 0) 450 return 0; 451 left -= (left >> 3); 452 return left; 453} 454 455/* 456 * Called under j_state_lock. Returns true if a transaction commit was started. 457 */ 458int __log_start_commit(journal_t *journal, tid_t target) 459{ 460 /* 461 * The only transaction we can possibly wait upon is the 462 * currently running transaction (if it exists). Otherwise, 463 * the target tid must be an old one. 464 */ 465 if (journal->j_commit_request != target && 466 journal->j_running_transaction && 467 journal->j_running_transaction->t_tid == target) { 468 /* 469 * We want a new commit: OK, mark the request and wakeup the 470 * commit thread. We do _not_ do the commit ourselves. 471 */ 472 473 journal->j_commit_request = target; 474 jbd_debug(1, "JBD: requesting commit %d/%d\n", 475 journal->j_commit_request, 476 journal->j_commit_sequence); 477 wake_up(&journal->j_wait_commit); 478 return 1; 479 } else if (!tid_geq(journal->j_commit_request, target)) 480 /* This should never happen, but if it does, preserve 481 the evidence before kjournald goes into a loop and 482 increments j_commit_sequence beyond all recognition. */ 483 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n", 484 journal->j_commit_request, journal->j_commit_sequence, 485 target, journal->j_running_transaction ? 486 journal->j_running_transaction->t_tid : 0); 487 return 0; 488} 489 490int log_start_commit(journal_t *journal, tid_t tid) 491{ 492 int ret; 493 494 spin_lock(&journal->j_state_lock); 495 ret = __log_start_commit(journal, tid); 496 spin_unlock(&journal->j_state_lock); 497 return ret; 498} 499 500/* 501 * Force and wait upon a commit if the calling process is not within 502 * transaction. This is used for forcing out undo-protected data which contains 503 * bitmaps, when the fs is running out of space. 504 * 505 * We can only force the running transaction if we don't have an active handle; 506 * otherwise, we will deadlock. 507 * 508 * Returns true if a transaction was started. 509 */ 510int journal_force_commit_nested(journal_t *journal) 511{ 512 transaction_t *transaction = NULL; 513 tid_t tid; 514 515 spin_lock(&journal->j_state_lock); 516 if (journal->j_running_transaction && !current->journal_info) { 517 transaction = journal->j_running_transaction; 518 __log_start_commit(journal, transaction->t_tid); 519 } else if (journal->j_committing_transaction) 520 transaction = journal->j_committing_transaction; 521 522 if (!transaction) { 523 spin_unlock(&journal->j_state_lock); 524 return 0; /* Nothing to retry */ 525 } 526 527 tid = transaction->t_tid; 528 spin_unlock(&journal->j_state_lock); 529 log_wait_commit(journal, tid); 530 return 1; 531} 532 533/* 534 * Start a commit of the current running transaction (if any). Returns true 535 * if a transaction is going to be committed (or is currently already 536 * committing), and fills its tid in at *ptid 537 */ 538int journal_start_commit(journal_t *journal, tid_t *ptid) 539{ 540 int ret = 0; 541 542 spin_lock(&journal->j_state_lock); 543 if (journal->j_running_transaction) { 544 tid_t tid = journal->j_running_transaction->t_tid; 545 546 __log_start_commit(journal, tid); 547 /* There's a running transaction and we've just made sure 548 * it's commit has been scheduled. */ 549 if (ptid) 550 *ptid = tid; 551 ret = 1; 552 } else if (journal->j_committing_transaction) { 553 /* 554 * If commit has been started, then we have to wait for 555 * completion of that transaction. 556 */ 557 if (ptid) 558 *ptid = journal->j_committing_transaction->t_tid; 559 ret = 1; 560 } 561 spin_unlock(&journal->j_state_lock); 562 return ret; 563} 564 565/* 566 * Wait for a specified commit to complete. 567 * The caller may not hold the journal lock. 568 */ 569int log_wait_commit(journal_t *journal, tid_t tid) 570{ 571 int err = 0; 572 573#ifdef CONFIG_JBD_DEBUG 574 spin_lock(&journal->j_state_lock); 575 if (!tid_geq(journal->j_commit_request, tid)) { 576 printk(KERN_ERR 577 "%s: error: j_commit_request=%d, tid=%d\n", 578 __func__, journal->j_commit_request, tid); 579 } 580 spin_unlock(&journal->j_state_lock); 581#endif 582 spin_lock(&journal->j_state_lock); 583 /* 584 * Not running or committing trans? Must be already committed. This 585 * saves us from waiting for a *long* time when tid overflows. 586 */ 587 if (!((journal->j_running_transaction && 588 journal->j_running_transaction->t_tid == tid) || 589 (journal->j_committing_transaction && 590 journal->j_committing_transaction->t_tid == tid))) 591 goto out_unlock; 592 593 if (!tid_geq(journal->j_commit_waited, tid)) 594 journal->j_commit_waited = tid; 595 while (tid_gt(tid, journal->j_commit_sequence)) { 596 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 597 tid, journal->j_commit_sequence); 598 wake_up(&journal->j_wait_commit); 599 spin_unlock(&journal->j_state_lock); 600 wait_event(journal->j_wait_done_commit, 601 !tid_gt(tid, journal->j_commit_sequence)); 602 spin_lock(&journal->j_state_lock); 603 } 604out_unlock: 605 spin_unlock(&journal->j_state_lock); 606 607 if (unlikely(is_journal_aborted(journal))) 608 err = -EIO; 609 return err; 610} 611 612/* 613 * Return 1 if a given transaction has not yet sent barrier request 614 * connected with a transaction commit. If 0 is returned, transaction 615 * may or may not have sent the barrier. Used to avoid sending barrier 616 * twice in common cases. 617 */ 618int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 619{ 620 int ret = 0; 621 transaction_t *commit_trans; 622 623 if (!(journal->j_flags & JFS_BARRIER)) 624 return 0; 625 spin_lock(&journal->j_state_lock); 626 /* Transaction already committed? */ 627 if (tid_geq(journal->j_commit_sequence, tid)) 628 goto out; 629 /* 630 * Transaction is being committed and we already proceeded to 631 * writing commit record? 632 */ 633 commit_trans = journal->j_committing_transaction; 634 if (commit_trans && commit_trans->t_tid == tid && 635 commit_trans->t_state >= T_COMMIT_RECORD) 636 goto out; 637 ret = 1; 638out: 639 spin_unlock(&journal->j_state_lock); 640 return ret; 641} 642EXPORT_SYMBOL(journal_trans_will_send_data_barrier); 643 644/* 645 * Log buffer allocation routines: 646 */ 647 648int journal_next_log_block(journal_t *journal, unsigned int *retp) 649{ 650 unsigned int blocknr; 651 652 spin_lock(&journal->j_state_lock); 653 J_ASSERT(journal->j_free > 1); 654 655 blocknr = journal->j_head; 656 journal->j_head++; 657 journal->j_free--; 658 if (journal->j_head == journal->j_last) 659 journal->j_head = journal->j_first; 660 spin_unlock(&journal->j_state_lock); 661 return journal_bmap(journal, blocknr, retp); 662} 663 664/* 665 * Conversion of logical to physical block numbers for the journal 666 * 667 * On external journals the journal blocks are identity-mapped, so 668 * this is a no-op. If needed, we can use j_blk_offset - everything is 669 * ready. 670 */ 671int journal_bmap(journal_t *journal, unsigned int blocknr, 672 unsigned int *retp) 673{ 674 int err = 0; 675 unsigned int ret; 676 677 if (journal->j_inode) { 678 ret = bmap(journal->j_inode, blocknr); 679 if (ret) 680 *retp = ret; 681 else { 682 char b[BDEVNAME_SIZE]; 683 684 printk(KERN_ALERT "%s: journal block not found " 685 "at offset %u on %s\n", 686 __func__, 687 blocknr, 688 bdevname(journal->j_dev, b)); 689 err = -EIO; 690 __journal_abort_soft(journal, err); 691 } 692 } else { 693 *retp = blocknr; /* +journal->j_blk_offset */ 694 } 695 return err; 696} 697 698/* 699 * We play buffer_head aliasing tricks to write data/metadata blocks to 700 * the journal without copying their contents, but for journal 701 * descriptor blocks we do need to generate bona fide buffers. 702 * 703 * After the caller of journal_get_descriptor_buffer() has finished modifying 704 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 705 * But we don't bother doing that, so there will be coherency problems with 706 * mmaps of blockdevs which hold live JBD-controlled filesystems. 707 */ 708struct journal_head *journal_get_descriptor_buffer(journal_t *journal) 709{ 710 struct buffer_head *bh; 711 unsigned int blocknr; 712 int err; 713 714 err = journal_next_log_block(journal, &blocknr); 715 716 if (err) 717 return NULL; 718 719 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 720 if (!bh) 721 return NULL; 722 lock_buffer(bh); 723 memset(bh->b_data, 0, journal->j_blocksize); 724 set_buffer_uptodate(bh); 725 unlock_buffer(bh); 726 BUFFER_TRACE(bh, "return this buffer"); 727 return journal_add_journal_head(bh); 728} 729 730/* 731 * Management for journal control blocks: functions to create and 732 * destroy journal_t structures, and to initialise and read existing 733 * journal blocks from disk. */ 734 735/* First: create and setup a journal_t object in memory. We initialise 736 * very few fields yet: that has to wait until we have created the 737 * journal structures from from scratch, or loaded them from disk. */ 738 739static journal_t * journal_init_common (void) 740{ 741 journal_t *journal; 742 int err; 743 744 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 745 if (!journal) 746 goto fail; 747 748 init_waitqueue_head(&journal->j_wait_transaction_locked); 749 init_waitqueue_head(&journal->j_wait_logspace); 750 init_waitqueue_head(&journal->j_wait_done_commit); 751 init_waitqueue_head(&journal->j_wait_checkpoint); 752 init_waitqueue_head(&journal->j_wait_commit); 753 init_waitqueue_head(&journal->j_wait_updates); 754 mutex_init(&journal->j_checkpoint_mutex); 755 spin_lock_init(&journal->j_revoke_lock); 756 spin_lock_init(&journal->j_list_lock); 757 spin_lock_init(&journal->j_state_lock); 758 759 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE); 760 761 /* The journal is marked for error until we succeed with recovery! */ 762 journal->j_flags = JFS_ABORT; 763 764 /* Set up a default-sized revoke table for the new mount. */ 765 err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 766 if (err) { 767 kfree(journal); 768 goto fail; 769 } 770 return journal; 771fail: 772 return NULL; 773} 774 775/* journal_init_dev and journal_init_inode: 776 * 777 * Create a journal structure assigned some fixed set of disk blocks to 778 * the journal. We don't actually touch those disk blocks yet, but we 779 * need to set up all of the mapping information to tell the journaling 780 * system where the journal blocks are. 781 * 782 */ 783 784/** 785 * journal_t * journal_init_dev() - creates and initialises a journal structure 786 * @bdev: Block device on which to create the journal 787 * @fs_dev: Device which hold journalled filesystem for this journal. 788 * @start: Block nr Start of journal. 789 * @len: Length of the journal in blocks. 790 * @blocksize: blocksize of journalling device 791 * 792 * Returns: a newly created journal_t * 793 * 794 * journal_init_dev creates a journal which maps a fixed contiguous 795 * range of blocks on an arbitrary block device. 796 * 797 */ 798journal_t * journal_init_dev(struct block_device *bdev, 799 struct block_device *fs_dev, 800 int start, int len, int blocksize) 801{ 802 journal_t *journal = journal_init_common(); 803 struct buffer_head *bh; 804 int n; 805 806 if (!journal) 807 return NULL; 808 809 /* journal descriptor can store up to n blocks -bzzz */ 810 journal->j_blocksize = blocksize; 811 n = journal->j_blocksize / sizeof(journal_block_tag_t); 812 journal->j_wbufsize = n; 813 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 814 if (!journal->j_wbuf) { 815 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 816 __func__); 817 goto out_err; 818 } 819 journal->j_dev = bdev; 820 journal->j_fs_dev = fs_dev; 821 journal->j_blk_offset = start; 822 journal->j_maxlen = len; 823 824 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 825 if (!bh) { 826 printk(KERN_ERR 827 "%s: Cannot get buffer for journal superblock\n", 828 __func__); 829 goto out_err; 830 } 831 journal->j_sb_buffer = bh; 832 journal->j_superblock = (journal_superblock_t *)bh->b_data; 833 834 return journal; 835out_err: 836 kfree(journal->j_wbuf); 837 kfree(journal); 838 return NULL; 839} 840 841/** 842 * journal_t * journal_init_inode () - creates a journal which maps to a inode. 843 * @inode: An inode to create the journal in 844 * 845 * journal_init_inode creates a journal which maps an on-disk inode as 846 * the journal. The inode must exist already, must support bmap() and 847 * must have all data blocks preallocated. 848 */ 849journal_t * journal_init_inode (struct inode *inode) 850{ 851 struct buffer_head *bh; 852 journal_t *journal = journal_init_common(); 853 int err; 854 int n; 855 unsigned int blocknr; 856 857 if (!journal) 858 return NULL; 859 860 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 861 journal->j_inode = inode; 862 jbd_debug(1, 863 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 864 journal, inode->i_sb->s_id, inode->i_ino, 865 (long long) inode->i_size, 866 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 867 868 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 869 journal->j_blocksize = inode->i_sb->s_blocksize; 870 871 /* journal descriptor can store up to n blocks -bzzz */ 872 n = journal->j_blocksize / sizeof(journal_block_tag_t); 873 journal->j_wbufsize = n; 874 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 875 if (!journal->j_wbuf) { 876 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 877 __func__); 878 goto out_err; 879 } 880 881 err = journal_bmap(journal, 0, &blocknr); 882 /* If that failed, give up */ 883 if (err) { 884 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 885 __func__); 886 goto out_err; 887 } 888 889 bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize); 890 if (!bh) { 891 printk(KERN_ERR 892 "%s: Cannot get buffer for journal superblock\n", 893 __func__); 894 goto out_err; 895 } 896 journal->j_sb_buffer = bh; 897 journal->j_superblock = (journal_superblock_t *)bh->b_data; 898 899 return journal; 900out_err: 901 kfree(journal->j_wbuf); 902 kfree(journal); 903 return NULL; 904} 905 906/* 907 * If the journal init or create aborts, we need to mark the journal 908 * superblock as being NULL to prevent the journal destroy from writing 909 * back a bogus superblock. 910 */ 911static void journal_fail_superblock (journal_t *journal) 912{ 913 struct buffer_head *bh = journal->j_sb_buffer; 914 brelse(bh); 915 journal->j_sb_buffer = NULL; 916} 917 918/* 919 * Given a journal_t structure, initialise the various fields for 920 * startup of a new journaling session. We use this both when creating 921 * a journal, and after recovering an old journal to reset it for 922 * subsequent use. 923 */ 924 925static int journal_reset(journal_t *journal) 926{ 927 journal_superblock_t *sb = journal->j_superblock; 928 unsigned int first, last; 929 930 first = be32_to_cpu(sb->s_first); 931 last = be32_to_cpu(sb->s_maxlen); 932 if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) { 933 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n", 934 first, last); 935 journal_fail_superblock(journal); 936 return -EINVAL; 937 } 938 939 journal->j_first = first; 940 journal->j_last = last; 941 942 journal->j_head = first; 943 journal->j_tail = first; 944 journal->j_free = last - first; 945 946 journal->j_tail_sequence = journal->j_transaction_sequence; 947 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 948 journal->j_commit_request = journal->j_commit_sequence; 949 950 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 951 952 /* 953 * As a special case, if the on-disk copy is already marked as needing 954 * no recovery (s_start == 0), then we can safely defer the superblock 955 * update until the next commit by setting JFS_FLUSHED. This avoids 956 * attempting a write to a potential-readonly device. 957 */ 958 if (sb->s_start == 0) { 959 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 960 "(start %u, seq %d, errno %d)\n", 961 journal->j_tail, journal->j_tail_sequence, 962 journal->j_errno); 963 journal->j_flags |= JFS_FLUSHED; 964 } else { 965 /* Lock here to make assertions happy... */ 966 mutex_lock(&journal->j_checkpoint_mutex); 967 /* 968 * Update log tail information. We use WRITE_FUA since new 969 * transaction will start reusing journal space and so we 970 * must make sure information about current log tail is on 971 * disk before that. 972 */ 973 journal_update_sb_log_tail(journal, 974 journal->j_tail_sequence, 975 journal->j_tail, 976 WRITE_FUA); 977 mutex_unlock(&journal->j_checkpoint_mutex); 978 } 979 return journal_start_thread(journal); 980} 981 982/** 983 * int journal_create() - Initialise the new journal file 984 * @journal: Journal to create. This structure must have been initialised 985 * 986 * Given a journal_t structure which tells us which disk blocks we can 987 * use, create a new journal superblock and initialise all of the 988 * journal fields from scratch. 989 **/ 990int journal_create(journal_t *journal) 991{ 992 unsigned int blocknr; 993 struct buffer_head *bh; 994 journal_superblock_t *sb; 995 int i, err; 996 997 if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) { 998 printk (KERN_ERR "Journal length (%d blocks) too short.\n", 999 journal->j_maxlen); 1000 journal_fail_superblock(journal); 1001 return -EINVAL; 1002 } 1003 1004 if (journal->j_inode == NULL) { 1005 /* 1006 * We don't know what block to start at! 1007 */ 1008 printk(KERN_EMERG 1009 "%s: creation of journal on external device!\n", 1010 __func__); 1011 BUG(); 1012 } 1013 1014 /* Zero out the entire journal on disk. We cannot afford to 1015 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */ 1016 jbd_debug(1, "JBD: Zeroing out journal blocks...\n"); 1017 for (i = 0; i < journal->j_maxlen; i++) { 1018 err = journal_bmap(journal, i, &blocknr); 1019 if (err) 1020 return err; 1021 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1022 if (unlikely(!bh)) 1023 return -ENOMEM; 1024 lock_buffer(bh); 1025 memset (bh->b_data, 0, journal->j_blocksize); 1026 BUFFER_TRACE(bh, "marking dirty"); 1027 mark_buffer_dirty(bh); 1028 BUFFER_TRACE(bh, "marking uptodate"); 1029 set_buffer_uptodate(bh); 1030 unlock_buffer(bh); 1031 __brelse(bh); 1032 } 1033 1034 sync_blockdev(journal->j_dev); 1035 jbd_debug(1, "JBD: journal cleared.\n"); 1036 1037 /* OK, fill in the initial static fields in the new superblock */ 1038 sb = journal->j_superblock; 1039 1040 sb->s_header.h_magic = cpu_to_be32(JFS_MAGIC_NUMBER); 1041 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2); 1042 1043 sb->s_blocksize = cpu_to_be32(journal->j_blocksize); 1044 sb->s_maxlen = cpu_to_be32(journal->j_maxlen); 1045 sb->s_first = cpu_to_be32(1); 1046 1047 journal->j_transaction_sequence = 1; 1048 1049 journal->j_flags &= ~JFS_ABORT; 1050 journal->j_format_version = 2; 1051 1052 return journal_reset(journal); 1053} 1054 1055static void journal_write_superblock(journal_t *journal, int write_op) 1056{ 1057 struct buffer_head *bh = journal->j_sb_buffer; 1058 int ret; 1059 1060 trace_journal_write_superblock(journal, write_op); 1061 if (!(journal->j_flags & JFS_BARRIER)) 1062 write_op &= ~(REQ_FUA | REQ_FLUSH); 1063 lock_buffer(bh); 1064 if (buffer_write_io_error(bh)) { 1065 char b[BDEVNAME_SIZE]; 1066 /* 1067 * Oh, dear. A previous attempt to write the journal 1068 * superblock failed. This could happen because the 1069 * USB device was yanked out. Or it could happen to 1070 * be a transient write error and maybe the block will 1071 * be remapped. Nothing we can do but to retry the 1072 * write and hope for the best. 1073 */ 1074 printk(KERN_ERR "JBD: previous I/O error detected " 1075 "for journal superblock update for %s.\n", 1076 journal_dev_name(journal, b)); 1077 clear_buffer_write_io_error(bh); 1078 set_buffer_uptodate(bh); 1079 } 1080 1081 get_bh(bh); 1082 bh->b_end_io = end_buffer_write_sync; 1083 ret = submit_bh(write_op, bh); 1084 wait_on_buffer(bh); 1085 if (buffer_write_io_error(bh)) { 1086 clear_buffer_write_io_error(bh); 1087 set_buffer_uptodate(bh); 1088 ret = -EIO; 1089 } 1090 if (ret) { 1091 char b[BDEVNAME_SIZE]; 1092 printk(KERN_ERR "JBD: Error %d detected " 1093 "when updating journal superblock for %s.\n", 1094 ret, journal_dev_name(journal, b)); 1095 } 1096} 1097 1098/** 1099 * journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1100 * @journal: The journal to update. 1101 * @tail_tid: TID of the new transaction at the tail of the log 1102 * @tail_block: The first block of the transaction at the tail of the log 1103 * @write_op: With which operation should we write the journal sb 1104 * 1105 * Update a journal's superblock information about log tail and write it to 1106 * disk, waiting for the IO to complete. 1107 */ 1108void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1109 unsigned int tail_block, int write_op) 1110{ 1111 journal_superblock_t *sb = journal->j_superblock; 1112 1113 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1114 jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n", 1115 tail_block, tail_tid); 1116 1117 sb->s_sequence = cpu_to_be32(tail_tid); 1118 sb->s_start = cpu_to_be32(tail_block); 1119 1120 journal_write_superblock(journal, write_op); 1121 1122 /* Log is no longer empty */ 1123 spin_lock(&journal->j_state_lock); 1124 WARN_ON(!sb->s_sequence); 1125 journal->j_flags &= ~JFS_FLUSHED; 1126 spin_unlock(&journal->j_state_lock); 1127} 1128 1129/** 1130 * mark_journal_empty() - Mark on disk journal as empty. 1131 * @journal: The journal to update. 1132 * 1133 * Update a journal's dynamic superblock fields to show that journal is empty. 1134 * Write updated superblock to disk waiting for IO to complete. 1135 */ 1136static void mark_journal_empty(journal_t *journal) 1137{ 1138 journal_superblock_t *sb = journal->j_superblock; 1139 1140 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1141 spin_lock(&journal->j_state_lock); 1142 /* Is it already empty? */ 1143 if (sb->s_start == 0) { 1144 spin_unlock(&journal->j_state_lock); 1145 return; 1146 } 1147 jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n", 1148 journal->j_tail_sequence); 1149 1150 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1151 sb->s_start = cpu_to_be32(0); 1152 spin_unlock(&journal->j_state_lock); 1153 1154 journal_write_superblock(journal, WRITE_FUA); 1155 1156 spin_lock(&journal->j_state_lock); 1157 /* Log is empty */ 1158 journal->j_flags |= JFS_FLUSHED; 1159 spin_unlock(&journal->j_state_lock); 1160} 1161 1162/** 1163 * journal_update_sb_errno() - Update error in the journal. 1164 * @journal: The journal to update. 1165 * 1166 * Update a journal's errno. Write updated superblock to disk waiting for IO 1167 * to complete. 1168 */ 1169static void journal_update_sb_errno(journal_t *journal) 1170{ 1171 journal_superblock_t *sb = journal->j_superblock; 1172 1173 spin_lock(&journal->j_state_lock); 1174 jbd_debug(1, "JBD: updating superblock error (errno %d)\n", 1175 journal->j_errno); 1176 sb->s_errno = cpu_to_be32(journal->j_errno); 1177 spin_unlock(&journal->j_state_lock); 1178 1179 journal_write_superblock(journal, WRITE_SYNC); 1180} 1181 1182/* 1183 * Read the superblock for a given journal, performing initial 1184 * validation of the format. 1185 */ 1186 1187static int journal_get_superblock(journal_t *journal) 1188{ 1189 struct buffer_head *bh; 1190 journal_superblock_t *sb; 1191 int err = -EIO; 1192 1193 bh = journal->j_sb_buffer; 1194 1195 J_ASSERT(bh != NULL); 1196 if (!buffer_uptodate(bh)) { 1197 ll_rw_block(READ, 1, &bh); 1198 wait_on_buffer(bh); 1199 if (!buffer_uptodate(bh)) { 1200 printk (KERN_ERR 1201 "JBD: IO error reading journal superblock\n"); 1202 goto out; 1203 } 1204 } 1205 1206 sb = journal->j_superblock; 1207 1208 err = -EINVAL; 1209 1210 if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) || 1211 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1212 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1213 goto out; 1214 } 1215 1216 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1217 case JFS_SUPERBLOCK_V1: 1218 journal->j_format_version = 1; 1219 break; 1220 case JFS_SUPERBLOCK_V2: 1221 journal->j_format_version = 2; 1222 break; 1223 default: 1224 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1225 goto out; 1226 } 1227 1228 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1229 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1230 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1231 printk (KERN_WARNING "JBD: journal file too short\n"); 1232 goto out; 1233 } 1234 1235 if (be32_to_cpu(sb->s_first) == 0 || 1236 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1237 printk(KERN_WARNING 1238 "JBD: Invalid start block of journal: %u\n", 1239 be32_to_cpu(sb->s_first)); 1240 goto out; 1241 } 1242 1243 return 0; 1244 1245out: 1246 journal_fail_superblock(journal); 1247 return err; 1248} 1249 1250/* 1251 * Load the on-disk journal superblock and read the key fields into the 1252 * journal_t. 1253 */ 1254 1255static int load_superblock(journal_t *journal) 1256{ 1257 int err; 1258 journal_superblock_t *sb; 1259 1260 err = journal_get_superblock(journal); 1261 if (err) 1262 return err; 1263 1264 sb = journal->j_superblock; 1265 1266 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1267 journal->j_tail = be32_to_cpu(sb->s_start); 1268 journal->j_first = be32_to_cpu(sb->s_first); 1269 journal->j_last = be32_to_cpu(sb->s_maxlen); 1270 journal->j_errno = be32_to_cpu(sb->s_errno); 1271 1272 return 0; 1273} 1274 1275 1276/** 1277 * int journal_load() - Read journal from disk. 1278 * @journal: Journal to act on. 1279 * 1280 * Given a journal_t structure which tells us which disk blocks contain 1281 * a journal, read the journal from disk to initialise the in-memory 1282 * structures. 1283 */ 1284int journal_load(journal_t *journal) 1285{ 1286 int err; 1287 journal_superblock_t *sb; 1288 1289 err = load_superblock(journal); 1290 if (err) 1291 return err; 1292 1293 sb = journal->j_superblock; 1294 /* If this is a V2 superblock, then we have to check the 1295 * features flags on it. */ 1296 1297 if (journal->j_format_version >= 2) { 1298 if ((sb->s_feature_ro_compat & 1299 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) || 1300 (sb->s_feature_incompat & 1301 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) { 1302 printk (KERN_WARNING 1303 "JBD: Unrecognised features on journal\n"); 1304 return -EINVAL; 1305 } 1306 } 1307 1308 /* Let the recovery code check whether it needs to recover any 1309 * data from the journal. */ 1310 if (journal_recover(journal)) 1311 goto recovery_error; 1312 1313 /* OK, we've finished with the dynamic journal bits: 1314 * reinitialise the dynamic contents of the superblock in memory 1315 * and reset them on disk. */ 1316 if (journal_reset(journal)) 1317 goto recovery_error; 1318 1319 journal->j_flags &= ~JFS_ABORT; 1320 journal->j_flags |= JFS_LOADED; 1321 return 0; 1322 1323recovery_error: 1324 printk (KERN_WARNING "JBD: recovery failed\n"); 1325 return -EIO; 1326} 1327 1328/** 1329 * void journal_destroy() - Release a journal_t structure. 1330 * @journal: Journal to act on. 1331 * 1332 * Release a journal_t structure once it is no longer in use by the 1333 * journaled object. 1334 * Return <0 if we couldn't clean up the journal. 1335 */ 1336int journal_destroy(journal_t *journal) 1337{ 1338 int err = 0; 1339 1340 1341 /* Wait for the commit thread to wake up and die. */ 1342 journal_kill_thread(journal); 1343 1344 /* Force a final log commit */ 1345 if (journal->j_running_transaction) 1346 journal_commit_transaction(journal); 1347 1348 /* Force any old transactions to disk */ 1349 1350 /* We cannot race with anybody but must keep assertions happy */ 1351 mutex_lock(&journal->j_checkpoint_mutex); 1352 /* Totally anal locking here... */ 1353 spin_lock(&journal->j_list_lock); 1354 while (journal->j_checkpoint_transactions != NULL) { 1355 spin_unlock(&journal->j_list_lock); 1356 log_do_checkpoint(journal); 1357 spin_lock(&journal->j_list_lock); 1358 } 1359 1360 J_ASSERT(journal->j_running_transaction == NULL); 1361 J_ASSERT(journal->j_committing_transaction == NULL); 1362 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1363 spin_unlock(&journal->j_list_lock); 1364 1365 if (journal->j_sb_buffer) { 1366 if (!is_journal_aborted(journal)) { 1367 journal->j_tail_sequence = 1368 ++journal->j_transaction_sequence; 1369 mark_journal_empty(journal); 1370 } else 1371 err = -EIO; 1372 brelse(journal->j_sb_buffer); 1373 } 1374 mutex_unlock(&journal->j_checkpoint_mutex); 1375 1376 iput(journal->j_inode); 1377 if (journal->j_revoke) 1378 journal_destroy_revoke(journal); 1379 kfree(journal->j_wbuf); 1380 kfree(journal); 1381 1382 return err; 1383} 1384 1385 1386/** 1387 *int journal_check_used_features () - Check if features specified are used. 1388 * @journal: Journal to check. 1389 * @compat: bitmask of compatible features 1390 * @ro: bitmask of features that force read-only mount 1391 * @incompat: bitmask of incompatible features 1392 * 1393 * Check whether the journal uses all of a given set of 1394 * features. Return true (non-zero) if it does. 1395 **/ 1396 1397int journal_check_used_features (journal_t *journal, unsigned long compat, 1398 unsigned long ro, unsigned long incompat) 1399{ 1400 journal_superblock_t *sb; 1401 1402 if (!compat && !ro && !incompat) 1403 return 1; 1404 if (journal->j_format_version == 1) 1405 return 0; 1406 1407 sb = journal->j_superblock; 1408 1409 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1410 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1411 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1412 return 1; 1413 1414 return 0; 1415} 1416 1417/** 1418 * int journal_check_available_features() - Check feature set in journalling layer 1419 * @journal: Journal to check. 1420 * @compat: bitmask of compatible features 1421 * @ro: bitmask of features that force read-only mount 1422 * @incompat: bitmask of incompatible features 1423 * 1424 * Check whether the journaling code supports the use of 1425 * all of a given set of features on this journal. Return true 1426 * (non-zero) if it can. */ 1427 1428int journal_check_available_features (journal_t *journal, unsigned long compat, 1429 unsigned long ro, unsigned long incompat) 1430{ 1431 if (!compat && !ro && !incompat) 1432 return 1; 1433 1434 /* We can support any known requested features iff the 1435 * superblock is in version 2. Otherwise we fail to support any 1436 * extended sb features. */ 1437 1438 if (journal->j_format_version != 2) 1439 return 0; 1440 1441 if ((compat & JFS_KNOWN_COMPAT_FEATURES) == compat && 1442 (ro & JFS_KNOWN_ROCOMPAT_FEATURES) == ro && 1443 (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat) 1444 return 1; 1445 1446 return 0; 1447} 1448 1449/** 1450 * int journal_set_features () - Mark a given journal feature in the superblock 1451 * @journal: Journal to act on. 1452 * @compat: bitmask of compatible features 1453 * @ro: bitmask of features that force read-only mount 1454 * @incompat: bitmask of incompatible features 1455 * 1456 * Mark a given journal feature as present on the 1457 * superblock. Returns true if the requested features could be set. 1458 * 1459 */ 1460 1461int journal_set_features (journal_t *journal, unsigned long compat, 1462 unsigned long ro, unsigned long incompat) 1463{ 1464 journal_superblock_t *sb; 1465 1466 if (journal_check_used_features(journal, compat, ro, incompat)) 1467 return 1; 1468 1469 if (!journal_check_available_features(journal, compat, ro, incompat)) 1470 return 0; 1471 1472 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1473 compat, ro, incompat); 1474 1475 sb = journal->j_superblock; 1476 1477 sb->s_feature_compat |= cpu_to_be32(compat); 1478 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1479 sb->s_feature_incompat |= cpu_to_be32(incompat); 1480 1481 return 1; 1482} 1483 1484 1485/** 1486 * int journal_update_format () - Update on-disk journal structure. 1487 * @journal: Journal to act on. 1488 * 1489 * Given an initialised but unloaded journal struct, poke about in the 1490 * on-disk structure to update it to the most recent supported version. 1491 */ 1492int journal_update_format (journal_t *journal) 1493{ 1494 journal_superblock_t *sb; 1495 int err; 1496 1497 err = journal_get_superblock(journal); 1498 if (err) 1499 return err; 1500 1501 sb = journal->j_superblock; 1502 1503 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1504 case JFS_SUPERBLOCK_V2: 1505 return 0; 1506 case JFS_SUPERBLOCK_V1: 1507 return journal_convert_superblock_v1(journal, sb); 1508 default: 1509 break; 1510 } 1511 return -EINVAL; 1512} 1513 1514static int journal_convert_superblock_v1(journal_t *journal, 1515 journal_superblock_t *sb) 1516{ 1517 int offset, blocksize; 1518 struct buffer_head *bh; 1519 1520 printk(KERN_WARNING 1521 "JBD: Converting superblock from version 1 to 2.\n"); 1522 1523 /* Pre-initialise new fields to zero */ 1524 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1525 blocksize = be32_to_cpu(sb->s_blocksize); 1526 memset(&sb->s_feature_compat, 0, blocksize-offset); 1527 1528 sb->s_nr_users = cpu_to_be32(1); 1529 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2); 1530 journal->j_format_version = 2; 1531 1532 bh = journal->j_sb_buffer; 1533 BUFFER_TRACE(bh, "marking dirty"); 1534 mark_buffer_dirty(bh); 1535 sync_dirty_buffer(bh); 1536 return 0; 1537} 1538 1539 1540/** 1541 * int journal_flush () - Flush journal 1542 * @journal: Journal to act on. 1543 * 1544 * Flush all data for a given journal to disk and empty the journal. 1545 * Filesystems can use this when remounting readonly to ensure that 1546 * recovery does not need to happen on remount. 1547 */ 1548 1549int journal_flush(journal_t *journal) 1550{ 1551 int err = 0; 1552 transaction_t *transaction = NULL; 1553 1554 spin_lock(&journal->j_state_lock); 1555 1556 /* Force everything buffered to the log... */ 1557 if (journal->j_running_transaction) { 1558 transaction = journal->j_running_transaction; 1559 __log_start_commit(journal, transaction->t_tid); 1560 } else if (journal->j_committing_transaction) 1561 transaction = journal->j_committing_transaction; 1562 1563 /* Wait for the log commit to complete... */ 1564 if (transaction) { 1565 tid_t tid = transaction->t_tid; 1566 1567 spin_unlock(&journal->j_state_lock); 1568 log_wait_commit(journal, tid); 1569 } else { 1570 spin_unlock(&journal->j_state_lock); 1571 } 1572 1573 /* ...and flush everything in the log out to disk. */ 1574 spin_lock(&journal->j_list_lock); 1575 while (!err && journal->j_checkpoint_transactions != NULL) { 1576 spin_unlock(&journal->j_list_lock); 1577 mutex_lock(&journal->j_checkpoint_mutex); 1578 err = log_do_checkpoint(journal); 1579 mutex_unlock(&journal->j_checkpoint_mutex); 1580 spin_lock(&journal->j_list_lock); 1581 } 1582 spin_unlock(&journal->j_list_lock); 1583 1584 if (is_journal_aborted(journal)) 1585 return -EIO; 1586 1587 mutex_lock(&journal->j_checkpoint_mutex); 1588 cleanup_journal_tail(journal); 1589 1590 /* Finally, mark the journal as really needing no recovery. 1591 * This sets s_start==0 in the underlying superblock, which is 1592 * the magic code for a fully-recovered superblock. Any future 1593 * commits of data to the journal will restore the current 1594 * s_start value. */ 1595 mark_journal_empty(journal); 1596 mutex_unlock(&journal->j_checkpoint_mutex); 1597 spin_lock(&journal->j_state_lock); 1598 J_ASSERT(!journal->j_running_transaction); 1599 J_ASSERT(!journal->j_committing_transaction); 1600 J_ASSERT(!journal->j_checkpoint_transactions); 1601 J_ASSERT(journal->j_head == journal->j_tail); 1602 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1603 spin_unlock(&journal->j_state_lock); 1604 return 0; 1605} 1606 1607/** 1608 * int journal_wipe() - Wipe journal contents 1609 * @journal: Journal to act on. 1610 * @write: flag (see below) 1611 * 1612 * Wipe out all of the contents of a journal, safely. This will produce 1613 * a warning if the journal contains any valid recovery information. 1614 * Must be called between journal_init_*() and journal_load(). 1615 * 1616 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1617 * we merely suppress recovery. 1618 */ 1619 1620int journal_wipe(journal_t *journal, int write) 1621{ 1622 int err = 0; 1623 1624 J_ASSERT (!(journal->j_flags & JFS_LOADED)); 1625 1626 err = load_superblock(journal); 1627 if (err) 1628 return err; 1629 1630 if (!journal->j_tail) 1631 goto no_recovery; 1632 1633 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1634 write ? "Clearing" : "Ignoring"); 1635 1636 err = journal_skip_recovery(journal); 1637 if (write) { 1638 /* Lock to make assertions happy... */ 1639 mutex_lock(&journal->j_checkpoint_mutex); 1640 mark_journal_empty(journal); 1641 mutex_unlock(&journal->j_checkpoint_mutex); 1642 } 1643 1644 no_recovery: 1645 return err; 1646} 1647 1648/* 1649 * journal_dev_name: format a character string to describe on what 1650 * device this journal is present. 1651 */ 1652 1653static const char *journal_dev_name(journal_t *journal, char *buffer) 1654{ 1655 struct block_device *bdev; 1656 1657 if (journal->j_inode) 1658 bdev = journal->j_inode->i_sb->s_bdev; 1659 else 1660 bdev = journal->j_dev; 1661 1662 return bdevname(bdev, buffer); 1663} 1664 1665/* 1666 * Journal abort has very specific semantics, which we describe 1667 * for journal abort. 1668 * 1669 * Two internal function, which provide abort to te jbd layer 1670 * itself are here. 1671 */ 1672 1673/* 1674 * Quick version for internal journal use (doesn't lock the journal). 1675 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1676 * and don't attempt to make any other journal updates. 1677 */ 1678static void __journal_abort_hard(journal_t *journal) 1679{ 1680 transaction_t *transaction; 1681 char b[BDEVNAME_SIZE]; 1682 1683 if (journal->j_flags & JFS_ABORT) 1684 return; 1685 1686 printk(KERN_ERR "Aborting journal on device %s.\n", 1687 journal_dev_name(journal, b)); 1688 1689 spin_lock(&journal->j_state_lock); 1690 journal->j_flags |= JFS_ABORT; 1691 transaction = journal->j_running_transaction; 1692 if (transaction) 1693 __log_start_commit(journal, transaction->t_tid); 1694 spin_unlock(&journal->j_state_lock); 1695} 1696 1697/* Soft abort: record the abort error status in the journal superblock, 1698 * but don't do any other IO. */ 1699static void __journal_abort_soft (journal_t *journal, int errno) 1700{ 1701 if (journal->j_flags & JFS_ABORT) 1702 return; 1703 1704 if (!journal->j_errno) 1705 journal->j_errno = errno; 1706 1707 __journal_abort_hard(journal); 1708 1709 if (errno) 1710 journal_update_sb_errno(journal); 1711} 1712 1713/** 1714 * void journal_abort () - Shutdown the journal immediately. 1715 * @journal: the journal to shutdown. 1716 * @errno: an error number to record in the journal indicating 1717 * the reason for the shutdown. 1718 * 1719 * Perform a complete, immediate shutdown of the ENTIRE 1720 * journal (not of a single transaction). This operation cannot be 1721 * undone without closing and reopening the journal. 1722 * 1723 * The journal_abort function is intended to support higher level error 1724 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1725 * mode. 1726 * 1727 * Journal abort has very specific semantics. Any existing dirty, 1728 * unjournaled buffers in the main filesystem will still be written to 1729 * disk by bdflush, but the journaling mechanism will be suspended 1730 * immediately and no further transaction commits will be honoured. 1731 * 1732 * Any dirty, journaled buffers will be written back to disk without 1733 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1734 * filesystem, but we _do_ attempt to leave as much data as possible 1735 * behind for fsck to use for cleanup. 1736 * 1737 * Any attempt to get a new transaction handle on a journal which is in 1738 * ABORT state will just result in an -EROFS error return. A 1739 * journal_stop on an existing handle will return -EIO if we have 1740 * entered abort state during the update. 1741 * 1742 * Recursive transactions are not disturbed by journal abort until the 1743 * final journal_stop, which will receive the -EIO error. 1744 * 1745 * Finally, the journal_abort call allows the caller to supply an errno 1746 * which will be recorded (if possible) in the journal superblock. This 1747 * allows a client to record failure conditions in the middle of a 1748 * transaction without having to complete the transaction to record the 1749 * failure to disk. ext3_error, for example, now uses this 1750 * functionality. 1751 * 1752 * Errors which originate from within the journaling layer will NOT 1753 * supply an errno; a null errno implies that absolutely no further 1754 * writes are done to the journal (unless there are any already in 1755 * progress). 1756 * 1757 */ 1758 1759void journal_abort(journal_t *journal, int errno) 1760{ 1761 __journal_abort_soft(journal, errno); 1762} 1763 1764/** 1765 * int journal_errno () - returns the journal's error state. 1766 * @journal: journal to examine. 1767 * 1768 * This is the errno numbet set with journal_abort(), the last 1769 * time the journal was mounted - if the journal was stopped 1770 * without calling abort this will be 0. 1771 * 1772 * If the journal has been aborted on this mount time -EROFS will 1773 * be returned. 1774 */ 1775int journal_errno(journal_t *journal) 1776{ 1777 int err; 1778 1779 spin_lock(&journal->j_state_lock); 1780 if (journal->j_flags & JFS_ABORT) 1781 err = -EROFS; 1782 else 1783 err = journal->j_errno; 1784 spin_unlock(&journal->j_state_lock); 1785 return err; 1786} 1787 1788/** 1789 * int journal_clear_err () - clears the journal's error state 1790 * @journal: journal to act on. 1791 * 1792 * An error must be cleared or Acked to take a FS out of readonly 1793 * mode. 1794 */ 1795int journal_clear_err(journal_t *journal) 1796{ 1797 int err = 0; 1798 1799 spin_lock(&journal->j_state_lock); 1800 if (journal->j_flags & JFS_ABORT) 1801 err = -EROFS; 1802 else 1803 journal->j_errno = 0; 1804 spin_unlock(&journal->j_state_lock); 1805 return err; 1806} 1807 1808/** 1809 * void journal_ack_err() - Ack journal err. 1810 * @journal: journal to act on. 1811 * 1812 * An error must be cleared or Acked to take a FS out of readonly 1813 * mode. 1814 */ 1815void journal_ack_err(journal_t *journal) 1816{ 1817 spin_lock(&journal->j_state_lock); 1818 if (journal->j_errno) 1819 journal->j_flags |= JFS_ACK_ERR; 1820 spin_unlock(&journal->j_state_lock); 1821} 1822 1823int journal_blocks_per_page(struct inode *inode) 1824{ 1825 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1826} 1827 1828/* 1829 * Journal_head storage management 1830 */ 1831static struct kmem_cache *journal_head_cache; 1832#ifdef CONFIG_JBD_DEBUG 1833static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1834#endif 1835 1836static int journal_init_journal_head_cache(void) 1837{ 1838 int retval; 1839 1840 J_ASSERT(journal_head_cache == NULL); 1841 journal_head_cache = kmem_cache_create("journal_head", 1842 sizeof(struct journal_head), 1843 0, /* offset */ 1844 SLAB_TEMPORARY, /* flags */ 1845 NULL); /* ctor */ 1846 retval = 0; 1847 if (!journal_head_cache) { 1848 retval = -ENOMEM; 1849 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1850 } 1851 return retval; 1852} 1853 1854static void journal_destroy_journal_head_cache(void) 1855{ 1856 if (journal_head_cache) { 1857 kmem_cache_destroy(journal_head_cache); 1858 journal_head_cache = NULL; 1859 } 1860} 1861 1862/* 1863 * journal_head splicing and dicing 1864 */ 1865static struct journal_head *journal_alloc_journal_head(void) 1866{ 1867 struct journal_head *ret; 1868 1869#ifdef CONFIG_JBD_DEBUG 1870 atomic_inc(&nr_journal_heads); 1871#endif 1872 ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS); 1873 if (ret == NULL) { 1874 jbd_debug(1, "out of memory for journal_head\n"); 1875 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n", 1876 __func__); 1877 1878 while (ret == NULL) { 1879 yield(); 1880 ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS); 1881 } 1882 } 1883 return ret; 1884} 1885 1886static void journal_free_journal_head(struct journal_head *jh) 1887{ 1888#ifdef CONFIG_JBD_DEBUG 1889 atomic_dec(&nr_journal_heads); 1890 memset(jh, JBD_POISON_FREE, sizeof(*jh)); 1891#endif 1892 kmem_cache_free(journal_head_cache, jh); 1893} 1894 1895/* 1896 * A journal_head is attached to a buffer_head whenever JBD has an 1897 * interest in the buffer. 1898 * 1899 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 1900 * is set. This bit is tested in core kernel code where we need to take 1901 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 1902 * there. 1903 * 1904 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 1905 * 1906 * When a buffer has its BH_JBD bit set it is immune from being released by 1907 * core kernel code, mainly via ->b_count. 1908 * 1909 * A journal_head is detached from its buffer_head when the journal_head's 1910 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 1911 * transaction (b_cp_transaction) hold their references to b_jcount. 1912 * 1913 * Various places in the kernel want to attach a journal_head to a buffer_head 1914 * _before_ attaching the journal_head to a transaction. To protect the 1915 * journal_head in this situation, journal_add_journal_head elevates the 1916 * journal_head's b_jcount refcount by one. The caller must call 1917 * journal_put_journal_head() to undo this. 1918 * 1919 * So the typical usage would be: 1920 * 1921 * (Attach a journal_head if needed. Increments b_jcount) 1922 * struct journal_head *jh = journal_add_journal_head(bh); 1923 * ... 1924 * (Get another reference for transaction) 1925 * journal_grab_journal_head(bh); 1926 * jh->b_transaction = xxx; 1927 * (Put original reference) 1928 * journal_put_journal_head(jh); 1929 */ 1930 1931/* 1932 * Give a buffer_head a journal_head. 1933 * 1934 * May sleep. 1935 */ 1936struct journal_head *journal_add_journal_head(struct buffer_head *bh) 1937{ 1938 struct journal_head *jh; 1939 struct journal_head *new_jh = NULL; 1940 1941repeat: 1942 if (!buffer_jbd(bh)) 1943 new_jh = journal_alloc_journal_head(); 1944 1945 jbd_lock_bh_journal_head(bh); 1946 if (buffer_jbd(bh)) { 1947 jh = bh2jh(bh); 1948 } else { 1949 J_ASSERT_BH(bh, 1950 (atomic_read(&bh->b_count) > 0) || 1951 (bh->b_page && bh->b_page->mapping)); 1952 1953 if (!new_jh) { 1954 jbd_unlock_bh_journal_head(bh); 1955 goto repeat; 1956 } 1957 1958 jh = new_jh; 1959 new_jh = NULL; /* We consumed it */ 1960 set_buffer_jbd(bh); 1961 bh->b_private = jh; 1962 jh->b_bh = bh; 1963 get_bh(bh); 1964 BUFFER_TRACE(bh, "added journal_head"); 1965 } 1966 jh->b_jcount++; 1967 jbd_unlock_bh_journal_head(bh); 1968 if (new_jh) 1969 journal_free_journal_head(new_jh); 1970 return bh->b_private; 1971} 1972 1973/* 1974 * Grab a ref against this buffer_head's journal_head. If it ended up not 1975 * having a journal_head, return NULL 1976 */ 1977struct journal_head *journal_grab_journal_head(struct buffer_head *bh) 1978{ 1979 struct journal_head *jh = NULL; 1980 1981 jbd_lock_bh_journal_head(bh); 1982 if (buffer_jbd(bh)) { 1983 jh = bh2jh(bh); 1984 jh->b_jcount++; 1985 } 1986 jbd_unlock_bh_journal_head(bh); 1987 return jh; 1988} 1989 1990static void __journal_remove_journal_head(struct buffer_head *bh) 1991{ 1992 struct journal_head *jh = bh2jh(bh); 1993 1994 J_ASSERT_JH(jh, jh->b_jcount >= 0); 1995 J_ASSERT_JH(jh, jh->b_transaction == NULL); 1996 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1997 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 1998 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 1999 J_ASSERT_BH(bh, buffer_jbd(bh)); 2000 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2001 BUFFER_TRACE(bh, "remove journal_head"); 2002 if (jh->b_frozen_data) { 2003 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2004 jbd_free(jh->b_frozen_data, bh->b_size); 2005 } 2006 if (jh->b_committed_data) { 2007 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2008 jbd_free(jh->b_committed_data, bh->b_size); 2009 } 2010 bh->b_private = NULL; 2011 jh->b_bh = NULL; /* debug, really */ 2012 clear_buffer_jbd(bh); 2013 journal_free_journal_head(jh); 2014} 2015 2016/* 2017 * Drop a reference on the passed journal_head. If it fell to zero then 2018 * release the journal_head from the buffer_head. 2019 */ 2020void journal_put_journal_head(struct journal_head *jh) 2021{ 2022 struct buffer_head *bh = jh2bh(jh); 2023 2024 jbd_lock_bh_journal_head(bh); 2025 J_ASSERT_JH(jh, jh->b_jcount > 0); 2026 --jh->b_jcount; 2027 if (!jh->b_jcount) { 2028 __journal_remove_journal_head(bh); 2029 jbd_unlock_bh_journal_head(bh); 2030 __brelse(bh); 2031 } else 2032 jbd_unlock_bh_journal_head(bh); 2033} 2034 2035/* 2036 * debugfs tunables 2037 */ 2038#ifdef CONFIG_JBD_DEBUG 2039 2040u8 journal_enable_debug __read_mostly; 2041EXPORT_SYMBOL(journal_enable_debug); 2042 2043static struct dentry *jbd_debugfs_dir; 2044static struct dentry *jbd_debug; 2045 2046static void __init jbd_create_debugfs_entry(void) 2047{ 2048 jbd_debugfs_dir = debugfs_create_dir("jbd", NULL); 2049 if (jbd_debugfs_dir) 2050 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR, 2051 jbd_debugfs_dir, 2052 &journal_enable_debug); 2053} 2054 2055static void __exit jbd_remove_debugfs_entry(void) 2056{ 2057 debugfs_remove(jbd_debug); 2058 debugfs_remove(jbd_debugfs_dir); 2059} 2060 2061#else 2062 2063static inline void jbd_create_debugfs_entry(void) 2064{ 2065} 2066 2067static inline void jbd_remove_debugfs_entry(void) 2068{ 2069} 2070 2071#endif 2072 2073struct kmem_cache *jbd_handle_cache; 2074 2075static int __init journal_init_handle_cache(void) 2076{ 2077 jbd_handle_cache = kmem_cache_create("journal_handle", 2078 sizeof(handle_t), 2079 0, /* offset */ 2080 SLAB_TEMPORARY, /* flags */ 2081 NULL); /* ctor */ 2082 if (jbd_handle_cache == NULL) { 2083 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2084 return -ENOMEM; 2085 } 2086 return 0; 2087} 2088 2089static void journal_destroy_handle_cache(void) 2090{ 2091 if (jbd_handle_cache) 2092 kmem_cache_destroy(jbd_handle_cache); 2093} 2094 2095/* 2096 * Module startup and shutdown 2097 */ 2098 2099static int __init journal_init_caches(void) 2100{ 2101 int ret; 2102 2103 ret = journal_init_revoke_caches(); 2104 if (ret == 0) 2105 ret = journal_init_journal_head_cache(); 2106 if (ret == 0) 2107 ret = journal_init_handle_cache(); 2108 return ret; 2109} 2110 2111static void journal_destroy_caches(void) 2112{ 2113 journal_destroy_revoke_caches(); 2114 journal_destroy_journal_head_cache(); 2115 journal_destroy_handle_cache(); 2116} 2117 2118static int __init journal_init(void) 2119{ 2120 int ret; 2121 2122 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2123 2124 ret = journal_init_caches(); 2125 if (ret != 0) 2126 journal_destroy_caches(); 2127 jbd_create_debugfs_entry(); 2128 return ret; 2129} 2130 2131static void __exit journal_exit(void) 2132{ 2133#ifdef CONFIG_JBD_DEBUG 2134 int n = atomic_read(&nr_journal_heads); 2135 if (n) 2136 printk(KERN_ERR "JBD: leaked %d journal_heads!\n", n); 2137#endif 2138 jbd_remove_debugfs_entry(); 2139 journal_destroy_caches(); 2140} 2141 2142MODULE_LICENSE("GPL"); 2143module_init(journal_init); 2144module_exit(journal_exit); 2145 2146