1/*
2 * linux/fs/jbd/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates.  This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25#include <linux/module.h>
26#include <linux/time.h>
27#include <linux/fs.h>
28#include <linux/jbd.h>
29#include <linux/errno.h>
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/mm.h>
33#include <linux/freezer.h>
34#include <linux/pagemap.h>
35#include <linux/kthread.h>
36#include <linux/poison.h>
37#include <linux/proc_fs.h>
38#include <linux/debugfs.h>
39#include <linux/ratelimit.h>
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/jbd.h>
43
44#include <asm/uaccess.h>
45#include <asm/page.h>
46
47EXPORT_SYMBOL(journal_start);
48EXPORT_SYMBOL(journal_restart);
49EXPORT_SYMBOL(journal_extend);
50EXPORT_SYMBOL(journal_stop);
51EXPORT_SYMBOL(journal_lock_updates);
52EXPORT_SYMBOL(journal_unlock_updates);
53EXPORT_SYMBOL(journal_get_write_access);
54EXPORT_SYMBOL(journal_get_create_access);
55EXPORT_SYMBOL(journal_get_undo_access);
56EXPORT_SYMBOL(journal_dirty_data);
57EXPORT_SYMBOL(journal_dirty_metadata);
58EXPORT_SYMBOL(journal_release_buffer);
59EXPORT_SYMBOL(journal_forget);
60#if 0
61EXPORT_SYMBOL(journal_sync_buffer);
62#endif
63EXPORT_SYMBOL(journal_flush);
64EXPORT_SYMBOL(journal_revoke);
65
66EXPORT_SYMBOL(journal_init_dev);
67EXPORT_SYMBOL(journal_init_inode);
68EXPORT_SYMBOL(journal_update_format);
69EXPORT_SYMBOL(journal_check_used_features);
70EXPORT_SYMBOL(journal_check_available_features);
71EXPORT_SYMBOL(journal_set_features);
72EXPORT_SYMBOL(journal_create);
73EXPORT_SYMBOL(journal_load);
74EXPORT_SYMBOL(journal_destroy);
75EXPORT_SYMBOL(journal_abort);
76EXPORT_SYMBOL(journal_errno);
77EXPORT_SYMBOL(journal_ack_err);
78EXPORT_SYMBOL(journal_clear_err);
79EXPORT_SYMBOL(log_wait_commit);
80EXPORT_SYMBOL(log_start_commit);
81EXPORT_SYMBOL(journal_start_commit);
82EXPORT_SYMBOL(journal_force_commit_nested);
83EXPORT_SYMBOL(journal_wipe);
84EXPORT_SYMBOL(journal_blocks_per_page);
85EXPORT_SYMBOL(journal_invalidatepage);
86EXPORT_SYMBOL(journal_try_to_free_buffers);
87EXPORT_SYMBOL(journal_force_commit);
88
89static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90static void __journal_abort_soft (journal_t *journal, int errno);
91static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93#ifdef CONFIG_JBD_DEBUG
94void __jbd_debug(int level, const char *file, const char *func,
95		 unsigned int line, const char *fmt, ...)
96{
97	struct va_format vaf;
98	va_list args;
99
100	if (level > journal_enable_debug)
101		return;
102	va_start(args, fmt);
103	vaf.fmt = fmt;
104	vaf.va = &args;
105	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
106	va_end(args);
107}
108EXPORT_SYMBOL(__jbd_debug);
109#endif
110
111/*
112 * Helper function used to manage commit timeouts
113 */
114
115static void commit_timeout(unsigned long __data)
116{
117	struct task_struct * p = (struct task_struct *) __data;
118
119	wake_up_process(p);
120}
121
122/*
123 * kjournald: The main thread function used to manage a logging device
124 * journal.
125 *
126 * This kernel thread is responsible for two things:
127 *
128 * 1) COMMIT:  Every so often we need to commit the current state of the
129 *    filesystem to disk.  The journal thread is responsible for writing
130 *    all of the metadata buffers to disk.
131 *
132 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
133 *    of the data in that part of the log has been rewritten elsewhere on
134 *    the disk.  Flushing these old buffers to reclaim space in the log is
135 *    known as checkpointing, and this thread is responsible for that job.
136 */
137
138static int kjournald(void *arg)
139{
140	journal_t *journal = arg;
141	transaction_t *transaction;
142
143	/*
144	 * Set up an interval timer which can be used to trigger a commit wakeup
145	 * after the commit interval expires
146	 */
147	setup_timer(&journal->j_commit_timer, commit_timeout,
148			(unsigned long)current);
149
150	set_freezable();
151
152	/* Record that the journal thread is running */
153	journal->j_task = current;
154	wake_up(&journal->j_wait_done_commit);
155
156	printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
157			journal->j_commit_interval / HZ);
158
159	/*
160	 * And now, wait forever for commit wakeup events.
161	 */
162	spin_lock(&journal->j_state_lock);
163
164loop:
165	if (journal->j_flags & JFS_UNMOUNT)
166		goto end_loop;
167
168	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
169		journal->j_commit_sequence, journal->j_commit_request);
170
171	if (journal->j_commit_sequence != journal->j_commit_request) {
172		jbd_debug(1, "OK, requests differ\n");
173		spin_unlock(&journal->j_state_lock);
174		del_timer_sync(&journal->j_commit_timer);
175		journal_commit_transaction(journal);
176		spin_lock(&journal->j_state_lock);
177		goto loop;
178	}
179
180	wake_up(&journal->j_wait_done_commit);
181	if (freezing(current)) {
182		/*
183		 * The simpler the better. Flushing journal isn't a
184		 * good idea, because that depends on threads that may
185		 * be already stopped.
186		 */
187		jbd_debug(1, "Now suspending kjournald\n");
188		spin_unlock(&journal->j_state_lock);
189		try_to_freeze();
190		spin_lock(&journal->j_state_lock);
191	} else {
192		/*
193		 * We assume on resume that commits are already there,
194		 * so we don't sleep
195		 */
196		DEFINE_WAIT(wait);
197		int should_sleep = 1;
198
199		prepare_to_wait(&journal->j_wait_commit, &wait,
200				TASK_INTERRUPTIBLE);
201		if (journal->j_commit_sequence != journal->j_commit_request)
202			should_sleep = 0;
203		transaction = journal->j_running_transaction;
204		if (transaction && time_after_eq(jiffies,
205						transaction->t_expires))
206			should_sleep = 0;
207		if (journal->j_flags & JFS_UNMOUNT)
208			should_sleep = 0;
209		if (should_sleep) {
210			spin_unlock(&journal->j_state_lock);
211			schedule();
212			spin_lock(&journal->j_state_lock);
213		}
214		finish_wait(&journal->j_wait_commit, &wait);
215	}
216
217	jbd_debug(1, "kjournald wakes\n");
218
219	/*
220	 * Were we woken up by a commit wakeup event?
221	 */
222	transaction = journal->j_running_transaction;
223	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
224		journal->j_commit_request = transaction->t_tid;
225		jbd_debug(1, "woke because of timeout\n");
226	}
227	goto loop;
228
229end_loop:
230	spin_unlock(&journal->j_state_lock);
231	del_timer_sync(&journal->j_commit_timer);
232	journal->j_task = NULL;
233	wake_up(&journal->j_wait_done_commit);
234	jbd_debug(1, "Journal thread exiting.\n");
235	return 0;
236}
237
238static int journal_start_thread(journal_t *journal)
239{
240	struct task_struct *t;
241
242	t = kthread_run(kjournald, journal, "kjournald");
243	if (IS_ERR(t))
244		return PTR_ERR(t);
245
246	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
247	return 0;
248}
249
250static void journal_kill_thread(journal_t *journal)
251{
252	spin_lock(&journal->j_state_lock);
253	journal->j_flags |= JFS_UNMOUNT;
254
255	while (journal->j_task) {
256		wake_up(&journal->j_wait_commit);
257		spin_unlock(&journal->j_state_lock);
258		wait_event(journal->j_wait_done_commit,
259				journal->j_task == NULL);
260		spin_lock(&journal->j_state_lock);
261	}
262	spin_unlock(&journal->j_state_lock);
263}
264
265/*
266 * journal_write_metadata_buffer: write a metadata buffer to the journal.
267 *
268 * Writes a metadata buffer to a given disk block.  The actual IO is not
269 * performed but a new buffer_head is constructed which labels the data
270 * to be written with the correct destination disk block.
271 *
272 * Any magic-number escaping which needs to be done will cause a
273 * copy-out here.  If the buffer happens to start with the
274 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
275 * magic number is only written to the log for descripter blocks.  In
276 * this case, we copy the data and replace the first word with 0, and we
277 * return a result code which indicates that this buffer needs to be
278 * marked as an escaped buffer in the corresponding log descriptor
279 * block.  The missing word can then be restored when the block is read
280 * during recovery.
281 *
282 * If the source buffer has already been modified by a new transaction
283 * since we took the last commit snapshot, we use the frozen copy of
284 * that data for IO.  If we end up using the existing buffer_head's data
285 * for the write, then we *have* to lock the buffer to prevent anyone
286 * else from using and possibly modifying it while the IO is in
287 * progress.
288 *
289 * The function returns a pointer to the buffer_heads to be used for IO.
290 *
291 * We assume that the journal has already been locked in this function.
292 *
293 * Return value:
294 *  <0: Error
295 * >=0: Finished OK
296 *
297 * On success:
298 * Bit 0 set == escape performed on the data
299 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
300 */
301
302int journal_write_metadata_buffer(transaction_t *transaction,
303				  struct journal_head  *jh_in,
304				  struct journal_head **jh_out,
305				  unsigned int blocknr)
306{
307	int need_copy_out = 0;
308	int done_copy_out = 0;
309	int do_escape = 0;
310	char *mapped_data;
311	struct buffer_head *new_bh;
312	struct journal_head *new_jh;
313	struct page *new_page;
314	unsigned int new_offset;
315	struct buffer_head *bh_in = jh2bh(jh_in);
316	journal_t *journal = transaction->t_journal;
317
318	/*
319	 * The buffer really shouldn't be locked: only the current committing
320	 * transaction is allowed to write it, so nobody else is allowed
321	 * to do any IO.
322	 *
323	 * akpm: except if we're journalling data, and write() output is
324	 * also part of a shared mapping, and another thread has
325	 * decided to launch a writepage() against this buffer.
326	 */
327	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
328
329	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
330	/* keep subsequent assertions sane */
331	atomic_set(&new_bh->b_count, 1);
332	new_jh = journal_add_journal_head(new_bh);	/* This sleeps */
333
334	/*
335	 * If a new transaction has already done a buffer copy-out, then
336	 * we use that version of the data for the commit.
337	 */
338	jbd_lock_bh_state(bh_in);
339repeat:
340	if (jh_in->b_frozen_data) {
341		done_copy_out = 1;
342		new_page = virt_to_page(jh_in->b_frozen_data);
343		new_offset = offset_in_page(jh_in->b_frozen_data);
344	} else {
345		new_page = jh2bh(jh_in)->b_page;
346		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
347	}
348
349	mapped_data = kmap_atomic(new_page);
350	/*
351	 * Check for escaping
352	 */
353	if (*((__be32 *)(mapped_data + new_offset)) ==
354				cpu_to_be32(JFS_MAGIC_NUMBER)) {
355		need_copy_out = 1;
356		do_escape = 1;
357	}
358	kunmap_atomic(mapped_data);
359
360	/*
361	 * Do we need to do a data copy?
362	 */
363	if (need_copy_out && !done_copy_out) {
364		char *tmp;
365
366		jbd_unlock_bh_state(bh_in);
367		tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
368		jbd_lock_bh_state(bh_in);
369		if (jh_in->b_frozen_data) {
370			jbd_free(tmp, bh_in->b_size);
371			goto repeat;
372		}
373
374		jh_in->b_frozen_data = tmp;
375		mapped_data = kmap_atomic(new_page);
376		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
377		kunmap_atomic(mapped_data);
378
379		new_page = virt_to_page(tmp);
380		new_offset = offset_in_page(tmp);
381		done_copy_out = 1;
382	}
383
384	/*
385	 * Did we need to do an escaping?  Now we've done all the
386	 * copying, we can finally do so.
387	 */
388	if (do_escape) {
389		mapped_data = kmap_atomic(new_page);
390		*((unsigned int *)(mapped_data + new_offset)) = 0;
391		kunmap_atomic(mapped_data);
392	}
393
394	set_bh_page(new_bh, new_page, new_offset);
395	new_jh->b_transaction = NULL;
396	new_bh->b_size = jh2bh(jh_in)->b_size;
397	new_bh->b_bdev = transaction->t_journal->j_dev;
398	new_bh->b_blocknr = blocknr;
399	set_buffer_mapped(new_bh);
400	set_buffer_dirty(new_bh);
401
402	*jh_out = new_jh;
403
404	/*
405	 * The to-be-written buffer needs to get moved to the io queue,
406	 * and the original buffer whose contents we are shadowing or
407	 * copying is moved to the transaction's shadow queue.
408	 */
409	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
410	spin_lock(&journal->j_list_lock);
411	__journal_file_buffer(jh_in, transaction, BJ_Shadow);
412	spin_unlock(&journal->j_list_lock);
413	jbd_unlock_bh_state(bh_in);
414
415	JBUFFER_TRACE(new_jh, "file as BJ_IO");
416	journal_file_buffer(new_jh, transaction, BJ_IO);
417
418	return do_escape | (done_copy_out << 1);
419}
420
421/*
422 * Allocation code for the journal file.  Manage the space left in the
423 * journal, so that we can begin checkpointing when appropriate.
424 */
425
426/*
427 * __log_space_left: Return the number of free blocks left in the journal.
428 *
429 * Called with the journal already locked.
430 *
431 * Called under j_state_lock
432 */
433
434int __log_space_left(journal_t *journal)
435{
436	int left = journal->j_free;
437
438	assert_spin_locked(&journal->j_state_lock);
439
440	/*
441	 * Be pessimistic here about the number of those free blocks which
442	 * might be required for log descriptor control blocks.
443	 */
444
445#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
446
447	left -= MIN_LOG_RESERVED_BLOCKS;
448
449	if (left <= 0)
450		return 0;
451	left -= (left >> 3);
452	return left;
453}
454
455/*
456 * Called under j_state_lock.  Returns true if a transaction commit was started.
457 */
458int __log_start_commit(journal_t *journal, tid_t target)
459{
460	/*
461	 * The only transaction we can possibly wait upon is the
462	 * currently running transaction (if it exists).  Otherwise,
463	 * the target tid must be an old one.
464	 */
465	if (journal->j_commit_request != target &&
466	    journal->j_running_transaction &&
467	    journal->j_running_transaction->t_tid == target) {
468		/*
469		 * We want a new commit: OK, mark the request and wakeup the
470		 * commit thread.  We do _not_ do the commit ourselves.
471		 */
472
473		journal->j_commit_request = target;
474		jbd_debug(1, "JBD: requesting commit %d/%d\n",
475			  journal->j_commit_request,
476			  journal->j_commit_sequence);
477		wake_up(&journal->j_wait_commit);
478		return 1;
479	} else if (!tid_geq(journal->j_commit_request, target))
480		/* This should never happen, but if it does, preserve
481		   the evidence before kjournald goes into a loop and
482		   increments j_commit_sequence beyond all recognition. */
483		WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
484		    journal->j_commit_request, journal->j_commit_sequence,
485		    target, journal->j_running_transaction ?
486		    journal->j_running_transaction->t_tid : 0);
487	return 0;
488}
489
490int log_start_commit(journal_t *journal, tid_t tid)
491{
492	int ret;
493
494	spin_lock(&journal->j_state_lock);
495	ret = __log_start_commit(journal, tid);
496	spin_unlock(&journal->j_state_lock);
497	return ret;
498}
499
500/*
501 * Force and wait upon a commit if the calling process is not within
502 * transaction.  This is used for forcing out undo-protected data which contains
503 * bitmaps, when the fs is running out of space.
504 *
505 * We can only force the running transaction if we don't have an active handle;
506 * otherwise, we will deadlock.
507 *
508 * Returns true if a transaction was started.
509 */
510int journal_force_commit_nested(journal_t *journal)
511{
512	transaction_t *transaction = NULL;
513	tid_t tid;
514
515	spin_lock(&journal->j_state_lock);
516	if (journal->j_running_transaction && !current->journal_info) {
517		transaction = journal->j_running_transaction;
518		__log_start_commit(journal, transaction->t_tid);
519	} else if (journal->j_committing_transaction)
520		transaction = journal->j_committing_transaction;
521
522	if (!transaction) {
523		spin_unlock(&journal->j_state_lock);
524		return 0;	/* Nothing to retry */
525	}
526
527	tid = transaction->t_tid;
528	spin_unlock(&journal->j_state_lock);
529	log_wait_commit(journal, tid);
530	return 1;
531}
532
533/*
534 * Start a commit of the current running transaction (if any).  Returns true
535 * if a transaction is going to be committed (or is currently already
536 * committing), and fills its tid in at *ptid
537 */
538int journal_start_commit(journal_t *journal, tid_t *ptid)
539{
540	int ret = 0;
541
542	spin_lock(&journal->j_state_lock);
543	if (journal->j_running_transaction) {
544		tid_t tid = journal->j_running_transaction->t_tid;
545
546		__log_start_commit(journal, tid);
547		/* There's a running transaction and we've just made sure
548		 * it's commit has been scheduled. */
549		if (ptid)
550			*ptid = tid;
551		ret = 1;
552	} else if (journal->j_committing_transaction) {
553		/*
554		 * If commit has been started, then we have to wait for
555		 * completion of that transaction.
556		 */
557		if (ptid)
558			*ptid = journal->j_committing_transaction->t_tid;
559		ret = 1;
560	}
561	spin_unlock(&journal->j_state_lock);
562	return ret;
563}
564
565/*
566 * Wait for a specified commit to complete.
567 * The caller may not hold the journal lock.
568 */
569int log_wait_commit(journal_t *journal, tid_t tid)
570{
571	int err = 0;
572
573#ifdef CONFIG_JBD_DEBUG
574	spin_lock(&journal->j_state_lock);
575	if (!tid_geq(journal->j_commit_request, tid)) {
576		printk(KERN_ERR
577		       "%s: error: j_commit_request=%d, tid=%d\n",
578		       __func__, journal->j_commit_request, tid);
579	}
580	spin_unlock(&journal->j_state_lock);
581#endif
582	spin_lock(&journal->j_state_lock);
583	/*
584	 * Not running or committing trans? Must be already committed. This
585	 * saves us from waiting for a *long* time when tid overflows.
586	 */
587	if (!((journal->j_running_transaction &&
588	       journal->j_running_transaction->t_tid == tid) ||
589	      (journal->j_committing_transaction &&
590	       journal->j_committing_transaction->t_tid == tid)))
591		goto out_unlock;
592
593	if (!tid_geq(journal->j_commit_waited, tid))
594		journal->j_commit_waited = tid;
595	while (tid_gt(tid, journal->j_commit_sequence)) {
596		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
597				  tid, journal->j_commit_sequence);
598		wake_up(&journal->j_wait_commit);
599		spin_unlock(&journal->j_state_lock);
600		wait_event(journal->j_wait_done_commit,
601				!tid_gt(tid, journal->j_commit_sequence));
602		spin_lock(&journal->j_state_lock);
603	}
604out_unlock:
605	spin_unlock(&journal->j_state_lock);
606
607	if (unlikely(is_journal_aborted(journal)))
608		err = -EIO;
609	return err;
610}
611
612/*
613 * Return 1 if a given transaction has not yet sent barrier request
614 * connected with a transaction commit. If 0 is returned, transaction
615 * may or may not have sent the barrier. Used to avoid sending barrier
616 * twice in common cases.
617 */
618int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
619{
620	int ret = 0;
621	transaction_t *commit_trans;
622
623	if (!(journal->j_flags & JFS_BARRIER))
624		return 0;
625	spin_lock(&journal->j_state_lock);
626	/* Transaction already committed? */
627	if (tid_geq(journal->j_commit_sequence, tid))
628		goto out;
629	/*
630	 * Transaction is being committed and we already proceeded to
631	 * writing commit record?
632	 */
633	commit_trans = journal->j_committing_transaction;
634	if (commit_trans && commit_trans->t_tid == tid &&
635	    commit_trans->t_state >= T_COMMIT_RECORD)
636		goto out;
637	ret = 1;
638out:
639	spin_unlock(&journal->j_state_lock);
640	return ret;
641}
642EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
643
644/*
645 * Log buffer allocation routines:
646 */
647
648int journal_next_log_block(journal_t *journal, unsigned int *retp)
649{
650	unsigned int blocknr;
651
652	spin_lock(&journal->j_state_lock);
653	J_ASSERT(journal->j_free > 1);
654
655	blocknr = journal->j_head;
656	journal->j_head++;
657	journal->j_free--;
658	if (journal->j_head == journal->j_last)
659		journal->j_head = journal->j_first;
660	spin_unlock(&journal->j_state_lock);
661	return journal_bmap(journal, blocknr, retp);
662}
663
664/*
665 * Conversion of logical to physical block numbers for the journal
666 *
667 * On external journals the journal blocks are identity-mapped, so
668 * this is a no-op.  If needed, we can use j_blk_offset - everything is
669 * ready.
670 */
671int journal_bmap(journal_t *journal, unsigned int blocknr,
672		 unsigned int *retp)
673{
674	int err = 0;
675	unsigned int ret;
676
677	if (journal->j_inode) {
678		ret = bmap(journal->j_inode, blocknr);
679		if (ret)
680			*retp = ret;
681		else {
682			char b[BDEVNAME_SIZE];
683
684			printk(KERN_ALERT "%s: journal block not found "
685					"at offset %u on %s\n",
686				__func__,
687				blocknr,
688				bdevname(journal->j_dev, b));
689			err = -EIO;
690			__journal_abort_soft(journal, err);
691		}
692	} else {
693		*retp = blocknr; /* +journal->j_blk_offset */
694	}
695	return err;
696}
697
698/*
699 * We play buffer_head aliasing tricks to write data/metadata blocks to
700 * the journal without copying their contents, but for journal
701 * descriptor blocks we do need to generate bona fide buffers.
702 *
703 * After the caller of journal_get_descriptor_buffer() has finished modifying
704 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
705 * But we don't bother doing that, so there will be coherency problems with
706 * mmaps of blockdevs which hold live JBD-controlled filesystems.
707 */
708struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
709{
710	struct buffer_head *bh;
711	unsigned int blocknr;
712	int err;
713
714	err = journal_next_log_block(journal, &blocknr);
715
716	if (err)
717		return NULL;
718
719	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
720	if (!bh)
721		return NULL;
722	lock_buffer(bh);
723	memset(bh->b_data, 0, journal->j_blocksize);
724	set_buffer_uptodate(bh);
725	unlock_buffer(bh);
726	BUFFER_TRACE(bh, "return this buffer");
727	return journal_add_journal_head(bh);
728}
729
730/*
731 * Management for journal control blocks: functions to create and
732 * destroy journal_t structures, and to initialise and read existing
733 * journal blocks from disk.  */
734
735/* First: create and setup a journal_t object in memory.  We initialise
736 * very few fields yet: that has to wait until we have created the
737 * journal structures from from scratch, or loaded them from disk. */
738
739static journal_t * journal_init_common (void)
740{
741	journal_t *journal;
742	int err;
743
744	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
745	if (!journal)
746		goto fail;
747
748	init_waitqueue_head(&journal->j_wait_transaction_locked);
749	init_waitqueue_head(&journal->j_wait_logspace);
750	init_waitqueue_head(&journal->j_wait_done_commit);
751	init_waitqueue_head(&journal->j_wait_checkpoint);
752	init_waitqueue_head(&journal->j_wait_commit);
753	init_waitqueue_head(&journal->j_wait_updates);
754	mutex_init(&journal->j_checkpoint_mutex);
755	spin_lock_init(&journal->j_revoke_lock);
756	spin_lock_init(&journal->j_list_lock);
757	spin_lock_init(&journal->j_state_lock);
758
759	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
760
761	/* The journal is marked for error until we succeed with recovery! */
762	journal->j_flags = JFS_ABORT;
763
764	/* Set up a default-sized revoke table for the new mount. */
765	err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
766	if (err) {
767		kfree(journal);
768		goto fail;
769	}
770	return journal;
771fail:
772	return NULL;
773}
774
775/* journal_init_dev and journal_init_inode:
776 *
777 * Create a journal structure assigned some fixed set of disk blocks to
778 * the journal.  We don't actually touch those disk blocks yet, but we
779 * need to set up all of the mapping information to tell the journaling
780 * system where the journal blocks are.
781 *
782 */
783
784/**
785 *  journal_t * journal_init_dev() - creates and initialises a journal structure
786 *  @bdev: Block device on which to create the journal
787 *  @fs_dev: Device which hold journalled filesystem for this journal.
788 *  @start: Block nr Start of journal.
789 *  @len:  Length of the journal in blocks.
790 *  @blocksize: blocksize of journalling device
791 *
792 *  Returns: a newly created journal_t *
793 *
794 *  journal_init_dev creates a journal which maps a fixed contiguous
795 *  range of blocks on an arbitrary block device.
796 *
797 */
798journal_t * journal_init_dev(struct block_device *bdev,
799			struct block_device *fs_dev,
800			int start, int len, int blocksize)
801{
802	journal_t *journal = journal_init_common();
803	struct buffer_head *bh;
804	int n;
805
806	if (!journal)
807		return NULL;
808
809	/* journal descriptor can store up to n blocks -bzzz */
810	journal->j_blocksize = blocksize;
811	n = journal->j_blocksize / sizeof(journal_block_tag_t);
812	journal->j_wbufsize = n;
813	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
814	if (!journal->j_wbuf) {
815		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
816			__func__);
817		goto out_err;
818	}
819	journal->j_dev = bdev;
820	journal->j_fs_dev = fs_dev;
821	journal->j_blk_offset = start;
822	journal->j_maxlen = len;
823
824	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
825	if (!bh) {
826		printk(KERN_ERR
827		       "%s: Cannot get buffer for journal superblock\n",
828		       __func__);
829		goto out_err;
830	}
831	journal->j_sb_buffer = bh;
832	journal->j_superblock = (journal_superblock_t *)bh->b_data;
833
834	return journal;
835out_err:
836	kfree(journal->j_wbuf);
837	kfree(journal);
838	return NULL;
839}
840
841/**
842 *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
843 *  @inode: An inode to create the journal in
844 *
845 * journal_init_inode creates a journal which maps an on-disk inode as
846 * the journal.  The inode must exist already, must support bmap() and
847 * must have all data blocks preallocated.
848 */
849journal_t * journal_init_inode (struct inode *inode)
850{
851	struct buffer_head *bh;
852	journal_t *journal = journal_init_common();
853	int err;
854	int n;
855	unsigned int blocknr;
856
857	if (!journal)
858		return NULL;
859
860	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
861	journal->j_inode = inode;
862	jbd_debug(1,
863		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
864		  journal, inode->i_sb->s_id, inode->i_ino,
865		  (long long) inode->i_size,
866		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
867
868	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
869	journal->j_blocksize = inode->i_sb->s_blocksize;
870
871	/* journal descriptor can store up to n blocks -bzzz */
872	n = journal->j_blocksize / sizeof(journal_block_tag_t);
873	journal->j_wbufsize = n;
874	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
875	if (!journal->j_wbuf) {
876		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
877			__func__);
878		goto out_err;
879	}
880
881	err = journal_bmap(journal, 0, &blocknr);
882	/* If that failed, give up */
883	if (err) {
884		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
885		       __func__);
886		goto out_err;
887	}
888
889	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
890	if (!bh) {
891		printk(KERN_ERR
892		       "%s: Cannot get buffer for journal superblock\n",
893		       __func__);
894		goto out_err;
895	}
896	journal->j_sb_buffer = bh;
897	journal->j_superblock = (journal_superblock_t *)bh->b_data;
898
899	return journal;
900out_err:
901	kfree(journal->j_wbuf);
902	kfree(journal);
903	return NULL;
904}
905
906/*
907 * If the journal init or create aborts, we need to mark the journal
908 * superblock as being NULL to prevent the journal destroy from writing
909 * back a bogus superblock.
910 */
911static void journal_fail_superblock (journal_t *journal)
912{
913	struct buffer_head *bh = journal->j_sb_buffer;
914	brelse(bh);
915	journal->j_sb_buffer = NULL;
916}
917
918/*
919 * Given a journal_t structure, initialise the various fields for
920 * startup of a new journaling session.  We use this both when creating
921 * a journal, and after recovering an old journal to reset it for
922 * subsequent use.
923 */
924
925static int journal_reset(journal_t *journal)
926{
927	journal_superblock_t *sb = journal->j_superblock;
928	unsigned int first, last;
929
930	first = be32_to_cpu(sb->s_first);
931	last = be32_to_cpu(sb->s_maxlen);
932	if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
933		printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
934		       first, last);
935		journal_fail_superblock(journal);
936		return -EINVAL;
937	}
938
939	journal->j_first = first;
940	journal->j_last = last;
941
942	journal->j_head = first;
943	journal->j_tail = first;
944	journal->j_free = last - first;
945
946	journal->j_tail_sequence = journal->j_transaction_sequence;
947	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
948	journal->j_commit_request = journal->j_commit_sequence;
949
950	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
951
952	/*
953	 * As a special case, if the on-disk copy is already marked as needing
954	 * no recovery (s_start == 0), then we can safely defer the superblock
955	 * update until the next commit by setting JFS_FLUSHED.  This avoids
956	 * attempting a write to a potential-readonly device.
957	 */
958	if (sb->s_start == 0) {
959		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
960			"(start %u, seq %d, errno %d)\n",
961			journal->j_tail, journal->j_tail_sequence,
962			journal->j_errno);
963		journal->j_flags |= JFS_FLUSHED;
964	} else {
965		/* Lock here to make assertions happy... */
966		mutex_lock(&journal->j_checkpoint_mutex);
967		/*
968		 * Update log tail information. We use WRITE_FUA since new
969		 * transaction will start reusing journal space and so we
970		 * must make sure information about current log tail is on
971		 * disk before that.
972		 */
973		journal_update_sb_log_tail(journal,
974					   journal->j_tail_sequence,
975					   journal->j_tail,
976					   WRITE_FUA);
977		mutex_unlock(&journal->j_checkpoint_mutex);
978	}
979	return journal_start_thread(journal);
980}
981
982/**
983 * int journal_create() - Initialise the new journal file
984 * @journal: Journal to create. This structure must have been initialised
985 *
986 * Given a journal_t structure which tells us which disk blocks we can
987 * use, create a new journal superblock and initialise all of the
988 * journal fields from scratch.
989 **/
990int journal_create(journal_t *journal)
991{
992	unsigned int blocknr;
993	struct buffer_head *bh;
994	journal_superblock_t *sb;
995	int i, err;
996
997	if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
998		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
999			journal->j_maxlen);
1000		journal_fail_superblock(journal);
1001		return -EINVAL;
1002	}
1003
1004	if (journal->j_inode == NULL) {
1005		/*
1006		 * We don't know what block to start at!
1007		 */
1008		printk(KERN_EMERG
1009		       "%s: creation of journal on external device!\n",
1010		       __func__);
1011		BUG();
1012	}
1013
1014	/* Zero out the entire journal on disk.  We cannot afford to
1015	   have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
1016	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
1017	for (i = 0; i < journal->j_maxlen; i++) {
1018		err = journal_bmap(journal, i, &blocknr);
1019		if (err)
1020			return err;
1021		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1022		if (unlikely(!bh))
1023			return -ENOMEM;
1024		lock_buffer(bh);
1025		memset (bh->b_data, 0, journal->j_blocksize);
1026		BUFFER_TRACE(bh, "marking dirty");
1027		mark_buffer_dirty(bh);
1028		BUFFER_TRACE(bh, "marking uptodate");
1029		set_buffer_uptodate(bh);
1030		unlock_buffer(bh);
1031		__brelse(bh);
1032	}
1033
1034	sync_blockdev(journal->j_dev);
1035	jbd_debug(1, "JBD: journal cleared.\n");
1036
1037	/* OK, fill in the initial static fields in the new superblock */
1038	sb = journal->j_superblock;
1039
1040	sb->s_header.h_magic	 = cpu_to_be32(JFS_MAGIC_NUMBER);
1041	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1042
1043	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
1044	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
1045	sb->s_first	= cpu_to_be32(1);
1046
1047	journal->j_transaction_sequence = 1;
1048
1049	journal->j_flags &= ~JFS_ABORT;
1050	journal->j_format_version = 2;
1051
1052	return journal_reset(journal);
1053}
1054
1055static void journal_write_superblock(journal_t *journal, int write_op)
1056{
1057	struct buffer_head *bh = journal->j_sb_buffer;
1058	int ret;
1059
1060	trace_journal_write_superblock(journal, write_op);
1061	if (!(journal->j_flags & JFS_BARRIER))
1062		write_op &= ~(REQ_FUA | REQ_FLUSH);
1063	lock_buffer(bh);
1064	if (buffer_write_io_error(bh)) {
1065		char b[BDEVNAME_SIZE];
1066		/*
1067		 * Oh, dear.  A previous attempt to write the journal
1068		 * superblock failed.  This could happen because the
1069		 * USB device was yanked out.  Or it could happen to
1070		 * be a transient write error and maybe the block will
1071		 * be remapped.  Nothing we can do but to retry the
1072		 * write and hope for the best.
1073		 */
1074		printk(KERN_ERR "JBD: previous I/O error detected "
1075		       "for journal superblock update for %s.\n",
1076		       journal_dev_name(journal, b));
1077		clear_buffer_write_io_error(bh);
1078		set_buffer_uptodate(bh);
1079	}
1080
1081	get_bh(bh);
1082	bh->b_end_io = end_buffer_write_sync;
1083	ret = submit_bh(write_op, bh);
1084	wait_on_buffer(bh);
1085	if (buffer_write_io_error(bh)) {
1086		clear_buffer_write_io_error(bh);
1087		set_buffer_uptodate(bh);
1088		ret = -EIO;
1089	}
1090	if (ret) {
1091		char b[BDEVNAME_SIZE];
1092		printk(KERN_ERR "JBD: Error %d detected "
1093		       "when updating journal superblock for %s.\n",
1094		       ret, journal_dev_name(journal, b));
1095	}
1096}
1097
1098/**
1099 * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1100 * @journal: The journal to update.
1101 * @tail_tid: TID of the new transaction at the tail of the log
1102 * @tail_block: The first block of the transaction at the tail of the log
1103 * @write_op: With which operation should we write the journal sb
1104 *
1105 * Update a journal's superblock information about log tail and write it to
1106 * disk, waiting for the IO to complete.
1107 */
1108void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1109				unsigned int tail_block, int write_op)
1110{
1111	journal_superblock_t *sb = journal->j_superblock;
1112
1113	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1114	jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1115		  tail_block, tail_tid);
1116
1117	sb->s_sequence = cpu_to_be32(tail_tid);
1118	sb->s_start    = cpu_to_be32(tail_block);
1119
1120	journal_write_superblock(journal, write_op);
1121
1122	/* Log is no longer empty */
1123	spin_lock(&journal->j_state_lock);
1124	WARN_ON(!sb->s_sequence);
1125	journal->j_flags &= ~JFS_FLUSHED;
1126	spin_unlock(&journal->j_state_lock);
1127}
1128
1129/**
1130 * mark_journal_empty() - Mark on disk journal as empty.
1131 * @journal: The journal to update.
1132 *
1133 * Update a journal's dynamic superblock fields to show that journal is empty.
1134 * Write updated superblock to disk waiting for IO to complete.
1135 */
1136static void mark_journal_empty(journal_t *journal)
1137{
1138	journal_superblock_t *sb = journal->j_superblock;
1139
1140	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1141	spin_lock(&journal->j_state_lock);
1142	/* Is it already empty? */
1143	if (sb->s_start == 0) {
1144		spin_unlock(&journal->j_state_lock);
1145		return;
1146	}
1147	jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1148        	  journal->j_tail_sequence);
1149
1150	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1151	sb->s_start    = cpu_to_be32(0);
1152	spin_unlock(&journal->j_state_lock);
1153
1154	journal_write_superblock(journal, WRITE_FUA);
1155
1156	spin_lock(&journal->j_state_lock);
1157	/* Log is empty */
1158	journal->j_flags |= JFS_FLUSHED;
1159	spin_unlock(&journal->j_state_lock);
1160}
1161
1162/**
1163 * journal_update_sb_errno() - Update error in the journal.
1164 * @journal: The journal to update.
1165 *
1166 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1167 * to complete.
1168 */
1169static void journal_update_sb_errno(journal_t *journal)
1170{
1171	journal_superblock_t *sb = journal->j_superblock;
1172
1173	spin_lock(&journal->j_state_lock);
1174	jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1175        	  journal->j_errno);
1176	sb->s_errno = cpu_to_be32(journal->j_errno);
1177	spin_unlock(&journal->j_state_lock);
1178
1179	journal_write_superblock(journal, WRITE_SYNC);
1180}
1181
1182/*
1183 * Read the superblock for a given journal, performing initial
1184 * validation of the format.
1185 */
1186
1187static int journal_get_superblock(journal_t *journal)
1188{
1189	struct buffer_head *bh;
1190	journal_superblock_t *sb;
1191	int err = -EIO;
1192
1193	bh = journal->j_sb_buffer;
1194
1195	J_ASSERT(bh != NULL);
1196	if (!buffer_uptodate(bh)) {
1197		ll_rw_block(READ, 1, &bh);
1198		wait_on_buffer(bh);
1199		if (!buffer_uptodate(bh)) {
1200			printk (KERN_ERR
1201				"JBD: IO error reading journal superblock\n");
1202			goto out;
1203		}
1204	}
1205
1206	sb = journal->j_superblock;
1207
1208	err = -EINVAL;
1209
1210	if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1211	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1212		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1213		goto out;
1214	}
1215
1216	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1217	case JFS_SUPERBLOCK_V1:
1218		journal->j_format_version = 1;
1219		break;
1220	case JFS_SUPERBLOCK_V2:
1221		journal->j_format_version = 2;
1222		break;
1223	default:
1224		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1225		goto out;
1226	}
1227
1228	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1229		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1230	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1231		printk (KERN_WARNING "JBD: journal file too short\n");
1232		goto out;
1233	}
1234
1235	if (be32_to_cpu(sb->s_first) == 0 ||
1236	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1237		printk(KERN_WARNING
1238			"JBD: Invalid start block of journal: %u\n",
1239			be32_to_cpu(sb->s_first));
1240		goto out;
1241	}
1242
1243	return 0;
1244
1245out:
1246	journal_fail_superblock(journal);
1247	return err;
1248}
1249
1250/*
1251 * Load the on-disk journal superblock and read the key fields into the
1252 * journal_t.
1253 */
1254
1255static int load_superblock(journal_t *journal)
1256{
1257	int err;
1258	journal_superblock_t *sb;
1259
1260	err = journal_get_superblock(journal);
1261	if (err)
1262		return err;
1263
1264	sb = journal->j_superblock;
1265
1266	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1267	journal->j_tail = be32_to_cpu(sb->s_start);
1268	journal->j_first = be32_to_cpu(sb->s_first);
1269	journal->j_last = be32_to_cpu(sb->s_maxlen);
1270	journal->j_errno = be32_to_cpu(sb->s_errno);
1271
1272	return 0;
1273}
1274
1275
1276/**
1277 * int journal_load() - Read journal from disk.
1278 * @journal: Journal to act on.
1279 *
1280 * Given a journal_t structure which tells us which disk blocks contain
1281 * a journal, read the journal from disk to initialise the in-memory
1282 * structures.
1283 */
1284int journal_load(journal_t *journal)
1285{
1286	int err;
1287	journal_superblock_t *sb;
1288
1289	err = load_superblock(journal);
1290	if (err)
1291		return err;
1292
1293	sb = journal->j_superblock;
1294	/* If this is a V2 superblock, then we have to check the
1295	 * features flags on it. */
1296
1297	if (journal->j_format_version >= 2) {
1298		if ((sb->s_feature_ro_compat &
1299		     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1300		    (sb->s_feature_incompat &
1301		     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1302			printk (KERN_WARNING
1303				"JBD: Unrecognised features on journal\n");
1304			return -EINVAL;
1305		}
1306	}
1307
1308	/* Let the recovery code check whether it needs to recover any
1309	 * data from the journal. */
1310	if (journal_recover(journal))
1311		goto recovery_error;
1312
1313	/* OK, we've finished with the dynamic journal bits:
1314	 * reinitialise the dynamic contents of the superblock in memory
1315	 * and reset them on disk. */
1316	if (journal_reset(journal))
1317		goto recovery_error;
1318
1319	journal->j_flags &= ~JFS_ABORT;
1320	journal->j_flags |= JFS_LOADED;
1321	return 0;
1322
1323recovery_error:
1324	printk (KERN_WARNING "JBD: recovery failed\n");
1325	return -EIO;
1326}
1327
1328/**
1329 * void journal_destroy() - Release a journal_t structure.
1330 * @journal: Journal to act on.
1331 *
1332 * Release a journal_t structure once it is no longer in use by the
1333 * journaled object.
1334 * Return <0 if we couldn't clean up the journal.
1335 */
1336int journal_destroy(journal_t *journal)
1337{
1338	int err = 0;
1339
1340
1341	/* Wait for the commit thread to wake up and die. */
1342	journal_kill_thread(journal);
1343
1344	/* Force a final log commit */
1345	if (journal->j_running_transaction)
1346		journal_commit_transaction(journal);
1347
1348	/* Force any old transactions to disk */
1349
1350	/* We cannot race with anybody but must keep assertions happy */
1351	mutex_lock(&journal->j_checkpoint_mutex);
1352	/* Totally anal locking here... */
1353	spin_lock(&journal->j_list_lock);
1354	while (journal->j_checkpoint_transactions != NULL) {
1355		spin_unlock(&journal->j_list_lock);
1356		log_do_checkpoint(journal);
1357		spin_lock(&journal->j_list_lock);
1358	}
1359
1360	J_ASSERT(journal->j_running_transaction == NULL);
1361	J_ASSERT(journal->j_committing_transaction == NULL);
1362	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1363	spin_unlock(&journal->j_list_lock);
1364
1365	if (journal->j_sb_buffer) {
1366		if (!is_journal_aborted(journal)) {
1367			journal->j_tail_sequence =
1368				++journal->j_transaction_sequence;
1369			mark_journal_empty(journal);
1370		} else
1371			err = -EIO;
1372		brelse(journal->j_sb_buffer);
1373	}
1374	mutex_unlock(&journal->j_checkpoint_mutex);
1375
1376	iput(journal->j_inode);
1377	if (journal->j_revoke)
1378		journal_destroy_revoke(journal);
1379	kfree(journal->j_wbuf);
1380	kfree(journal);
1381
1382	return err;
1383}
1384
1385
1386/**
1387 *int journal_check_used_features () - Check if features specified are used.
1388 * @journal: Journal to check.
1389 * @compat: bitmask of compatible features
1390 * @ro: bitmask of features that force read-only mount
1391 * @incompat: bitmask of incompatible features
1392 *
1393 * Check whether the journal uses all of a given set of
1394 * features.  Return true (non-zero) if it does.
1395 **/
1396
1397int journal_check_used_features (journal_t *journal, unsigned long compat,
1398				 unsigned long ro, unsigned long incompat)
1399{
1400	journal_superblock_t *sb;
1401
1402	if (!compat && !ro && !incompat)
1403		return 1;
1404	if (journal->j_format_version == 1)
1405		return 0;
1406
1407	sb = journal->j_superblock;
1408
1409	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1410	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1411	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1412		return 1;
1413
1414	return 0;
1415}
1416
1417/**
1418 * int journal_check_available_features() - Check feature set in journalling layer
1419 * @journal: Journal to check.
1420 * @compat: bitmask of compatible features
1421 * @ro: bitmask of features that force read-only mount
1422 * @incompat: bitmask of incompatible features
1423 *
1424 * Check whether the journaling code supports the use of
1425 * all of a given set of features on this journal.  Return true
1426 * (non-zero) if it can. */
1427
1428int journal_check_available_features (journal_t *journal, unsigned long compat,
1429				      unsigned long ro, unsigned long incompat)
1430{
1431	if (!compat && !ro && !incompat)
1432		return 1;
1433
1434	/* We can support any known requested features iff the
1435	 * superblock is in version 2.  Otherwise we fail to support any
1436	 * extended sb features. */
1437
1438	if (journal->j_format_version != 2)
1439		return 0;
1440
1441	if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1442	    (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1443	    (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1444		return 1;
1445
1446	return 0;
1447}
1448
1449/**
1450 * int journal_set_features () - Mark a given journal feature in the superblock
1451 * @journal: Journal to act on.
1452 * @compat: bitmask of compatible features
1453 * @ro: bitmask of features that force read-only mount
1454 * @incompat: bitmask of incompatible features
1455 *
1456 * Mark a given journal feature as present on the
1457 * superblock.  Returns true if the requested features could be set.
1458 *
1459 */
1460
1461int journal_set_features (journal_t *journal, unsigned long compat,
1462			  unsigned long ro, unsigned long incompat)
1463{
1464	journal_superblock_t *sb;
1465
1466	if (journal_check_used_features(journal, compat, ro, incompat))
1467		return 1;
1468
1469	if (!journal_check_available_features(journal, compat, ro, incompat))
1470		return 0;
1471
1472	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1473		  compat, ro, incompat);
1474
1475	sb = journal->j_superblock;
1476
1477	sb->s_feature_compat    |= cpu_to_be32(compat);
1478	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1479	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1480
1481	return 1;
1482}
1483
1484
1485/**
1486 * int journal_update_format () - Update on-disk journal structure.
1487 * @journal: Journal to act on.
1488 *
1489 * Given an initialised but unloaded journal struct, poke about in the
1490 * on-disk structure to update it to the most recent supported version.
1491 */
1492int journal_update_format (journal_t *journal)
1493{
1494	journal_superblock_t *sb;
1495	int err;
1496
1497	err = journal_get_superblock(journal);
1498	if (err)
1499		return err;
1500
1501	sb = journal->j_superblock;
1502
1503	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1504	case JFS_SUPERBLOCK_V2:
1505		return 0;
1506	case JFS_SUPERBLOCK_V1:
1507		return journal_convert_superblock_v1(journal, sb);
1508	default:
1509		break;
1510	}
1511	return -EINVAL;
1512}
1513
1514static int journal_convert_superblock_v1(journal_t *journal,
1515					 journal_superblock_t *sb)
1516{
1517	int offset, blocksize;
1518	struct buffer_head *bh;
1519
1520	printk(KERN_WARNING
1521		"JBD: Converting superblock from version 1 to 2.\n");
1522
1523	/* Pre-initialise new fields to zero */
1524	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1525	blocksize = be32_to_cpu(sb->s_blocksize);
1526	memset(&sb->s_feature_compat, 0, blocksize-offset);
1527
1528	sb->s_nr_users = cpu_to_be32(1);
1529	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1530	journal->j_format_version = 2;
1531
1532	bh = journal->j_sb_buffer;
1533	BUFFER_TRACE(bh, "marking dirty");
1534	mark_buffer_dirty(bh);
1535	sync_dirty_buffer(bh);
1536	return 0;
1537}
1538
1539
1540/**
1541 * int journal_flush () - Flush journal
1542 * @journal: Journal to act on.
1543 *
1544 * Flush all data for a given journal to disk and empty the journal.
1545 * Filesystems can use this when remounting readonly to ensure that
1546 * recovery does not need to happen on remount.
1547 */
1548
1549int journal_flush(journal_t *journal)
1550{
1551	int err = 0;
1552	transaction_t *transaction = NULL;
1553
1554	spin_lock(&journal->j_state_lock);
1555
1556	/* Force everything buffered to the log... */
1557	if (journal->j_running_transaction) {
1558		transaction = journal->j_running_transaction;
1559		__log_start_commit(journal, transaction->t_tid);
1560	} else if (journal->j_committing_transaction)
1561		transaction = journal->j_committing_transaction;
1562
1563	/* Wait for the log commit to complete... */
1564	if (transaction) {
1565		tid_t tid = transaction->t_tid;
1566
1567		spin_unlock(&journal->j_state_lock);
1568		log_wait_commit(journal, tid);
1569	} else {
1570		spin_unlock(&journal->j_state_lock);
1571	}
1572
1573	/* ...and flush everything in the log out to disk. */
1574	spin_lock(&journal->j_list_lock);
1575	while (!err && journal->j_checkpoint_transactions != NULL) {
1576		spin_unlock(&journal->j_list_lock);
1577		mutex_lock(&journal->j_checkpoint_mutex);
1578		err = log_do_checkpoint(journal);
1579		mutex_unlock(&journal->j_checkpoint_mutex);
1580		spin_lock(&journal->j_list_lock);
1581	}
1582	spin_unlock(&journal->j_list_lock);
1583
1584	if (is_journal_aborted(journal))
1585		return -EIO;
1586
1587	mutex_lock(&journal->j_checkpoint_mutex);
1588	cleanup_journal_tail(journal);
1589
1590	/* Finally, mark the journal as really needing no recovery.
1591	 * This sets s_start==0 in the underlying superblock, which is
1592	 * the magic code for a fully-recovered superblock.  Any future
1593	 * commits of data to the journal will restore the current
1594	 * s_start value. */
1595	mark_journal_empty(journal);
1596	mutex_unlock(&journal->j_checkpoint_mutex);
1597	spin_lock(&journal->j_state_lock);
1598	J_ASSERT(!journal->j_running_transaction);
1599	J_ASSERT(!journal->j_committing_transaction);
1600	J_ASSERT(!journal->j_checkpoint_transactions);
1601	J_ASSERT(journal->j_head == journal->j_tail);
1602	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1603	spin_unlock(&journal->j_state_lock);
1604	return 0;
1605}
1606
1607/**
1608 * int journal_wipe() - Wipe journal contents
1609 * @journal: Journal to act on.
1610 * @write: flag (see below)
1611 *
1612 * Wipe out all of the contents of a journal, safely.  This will produce
1613 * a warning if the journal contains any valid recovery information.
1614 * Must be called between journal_init_*() and journal_load().
1615 *
1616 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1617 * we merely suppress recovery.
1618 */
1619
1620int journal_wipe(journal_t *journal, int write)
1621{
1622	int err = 0;
1623
1624	J_ASSERT (!(journal->j_flags & JFS_LOADED));
1625
1626	err = load_superblock(journal);
1627	if (err)
1628		return err;
1629
1630	if (!journal->j_tail)
1631		goto no_recovery;
1632
1633	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1634		write ? "Clearing" : "Ignoring");
1635
1636	err = journal_skip_recovery(journal);
1637	if (write) {
1638		/* Lock to make assertions happy... */
1639		mutex_lock(&journal->j_checkpoint_mutex);
1640		mark_journal_empty(journal);
1641		mutex_unlock(&journal->j_checkpoint_mutex);
1642	}
1643
1644 no_recovery:
1645	return err;
1646}
1647
1648/*
1649 * journal_dev_name: format a character string to describe on what
1650 * device this journal is present.
1651 */
1652
1653static const char *journal_dev_name(journal_t *journal, char *buffer)
1654{
1655	struct block_device *bdev;
1656
1657	if (journal->j_inode)
1658		bdev = journal->j_inode->i_sb->s_bdev;
1659	else
1660		bdev = journal->j_dev;
1661
1662	return bdevname(bdev, buffer);
1663}
1664
1665/*
1666 * Journal abort has very specific semantics, which we describe
1667 * for journal abort.
1668 *
1669 * Two internal function, which provide abort to te jbd layer
1670 * itself are here.
1671 */
1672
1673/*
1674 * Quick version for internal journal use (doesn't lock the journal).
1675 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1676 * and don't attempt to make any other journal updates.
1677 */
1678static void __journal_abort_hard(journal_t *journal)
1679{
1680	transaction_t *transaction;
1681	char b[BDEVNAME_SIZE];
1682
1683	if (journal->j_flags & JFS_ABORT)
1684		return;
1685
1686	printk(KERN_ERR "Aborting journal on device %s.\n",
1687		journal_dev_name(journal, b));
1688
1689	spin_lock(&journal->j_state_lock);
1690	journal->j_flags |= JFS_ABORT;
1691	transaction = journal->j_running_transaction;
1692	if (transaction)
1693		__log_start_commit(journal, transaction->t_tid);
1694	spin_unlock(&journal->j_state_lock);
1695}
1696
1697/* Soft abort: record the abort error status in the journal superblock,
1698 * but don't do any other IO. */
1699static void __journal_abort_soft (journal_t *journal, int errno)
1700{
1701	if (journal->j_flags & JFS_ABORT)
1702		return;
1703
1704	if (!journal->j_errno)
1705		journal->j_errno = errno;
1706
1707	__journal_abort_hard(journal);
1708
1709	if (errno)
1710		journal_update_sb_errno(journal);
1711}
1712
1713/**
1714 * void journal_abort () - Shutdown the journal immediately.
1715 * @journal: the journal to shutdown.
1716 * @errno:   an error number to record in the journal indicating
1717 *           the reason for the shutdown.
1718 *
1719 * Perform a complete, immediate shutdown of the ENTIRE
1720 * journal (not of a single transaction).  This operation cannot be
1721 * undone without closing and reopening the journal.
1722 *
1723 * The journal_abort function is intended to support higher level error
1724 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1725 * mode.
1726 *
1727 * Journal abort has very specific semantics.  Any existing dirty,
1728 * unjournaled buffers in the main filesystem will still be written to
1729 * disk by bdflush, but the journaling mechanism will be suspended
1730 * immediately and no further transaction commits will be honoured.
1731 *
1732 * Any dirty, journaled buffers will be written back to disk without
1733 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1734 * filesystem, but we _do_ attempt to leave as much data as possible
1735 * behind for fsck to use for cleanup.
1736 *
1737 * Any attempt to get a new transaction handle on a journal which is in
1738 * ABORT state will just result in an -EROFS error return.  A
1739 * journal_stop on an existing handle will return -EIO if we have
1740 * entered abort state during the update.
1741 *
1742 * Recursive transactions are not disturbed by journal abort until the
1743 * final journal_stop, which will receive the -EIO error.
1744 *
1745 * Finally, the journal_abort call allows the caller to supply an errno
1746 * which will be recorded (if possible) in the journal superblock.  This
1747 * allows a client to record failure conditions in the middle of a
1748 * transaction without having to complete the transaction to record the
1749 * failure to disk.  ext3_error, for example, now uses this
1750 * functionality.
1751 *
1752 * Errors which originate from within the journaling layer will NOT
1753 * supply an errno; a null errno implies that absolutely no further
1754 * writes are done to the journal (unless there are any already in
1755 * progress).
1756 *
1757 */
1758
1759void journal_abort(journal_t *journal, int errno)
1760{
1761	__journal_abort_soft(journal, errno);
1762}
1763
1764/**
1765 * int journal_errno () - returns the journal's error state.
1766 * @journal: journal to examine.
1767 *
1768 * This is the errno numbet set with journal_abort(), the last
1769 * time the journal was mounted - if the journal was stopped
1770 * without calling abort this will be 0.
1771 *
1772 * If the journal has been aborted on this mount time -EROFS will
1773 * be returned.
1774 */
1775int journal_errno(journal_t *journal)
1776{
1777	int err;
1778
1779	spin_lock(&journal->j_state_lock);
1780	if (journal->j_flags & JFS_ABORT)
1781		err = -EROFS;
1782	else
1783		err = journal->j_errno;
1784	spin_unlock(&journal->j_state_lock);
1785	return err;
1786}
1787
1788/**
1789 * int journal_clear_err () - clears the journal's error state
1790 * @journal: journal to act on.
1791 *
1792 * An error must be cleared or Acked to take a FS out of readonly
1793 * mode.
1794 */
1795int journal_clear_err(journal_t *journal)
1796{
1797	int err = 0;
1798
1799	spin_lock(&journal->j_state_lock);
1800	if (journal->j_flags & JFS_ABORT)
1801		err = -EROFS;
1802	else
1803		journal->j_errno = 0;
1804	spin_unlock(&journal->j_state_lock);
1805	return err;
1806}
1807
1808/**
1809 * void journal_ack_err() - Ack journal err.
1810 * @journal: journal to act on.
1811 *
1812 * An error must be cleared or Acked to take a FS out of readonly
1813 * mode.
1814 */
1815void journal_ack_err(journal_t *journal)
1816{
1817	spin_lock(&journal->j_state_lock);
1818	if (journal->j_errno)
1819		journal->j_flags |= JFS_ACK_ERR;
1820	spin_unlock(&journal->j_state_lock);
1821}
1822
1823int journal_blocks_per_page(struct inode *inode)
1824{
1825	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1826}
1827
1828/*
1829 * Journal_head storage management
1830 */
1831static struct kmem_cache *journal_head_cache;
1832#ifdef CONFIG_JBD_DEBUG
1833static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1834#endif
1835
1836static int journal_init_journal_head_cache(void)
1837{
1838	int retval;
1839
1840	J_ASSERT(journal_head_cache == NULL);
1841	journal_head_cache = kmem_cache_create("journal_head",
1842				sizeof(struct journal_head),
1843				0,		/* offset */
1844				SLAB_TEMPORARY,	/* flags */
1845				NULL);		/* ctor */
1846	retval = 0;
1847	if (!journal_head_cache) {
1848		retval = -ENOMEM;
1849		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1850	}
1851	return retval;
1852}
1853
1854static void journal_destroy_journal_head_cache(void)
1855{
1856	if (journal_head_cache) {
1857		kmem_cache_destroy(journal_head_cache);
1858		journal_head_cache = NULL;
1859	}
1860}
1861
1862/*
1863 * journal_head splicing and dicing
1864 */
1865static struct journal_head *journal_alloc_journal_head(void)
1866{
1867	struct journal_head *ret;
1868
1869#ifdef CONFIG_JBD_DEBUG
1870	atomic_inc(&nr_journal_heads);
1871#endif
1872	ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1873	if (ret == NULL) {
1874		jbd_debug(1, "out of memory for journal_head\n");
1875		printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1876				   __func__);
1877
1878		while (ret == NULL) {
1879			yield();
1880			ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1881		}
1882	}
1883	return ret;
1884}
1885
1886static void journal_free_journal_head(struct journal_head *jh)
1887{
1888#ifdef CONFIG_JBD_DEBUG
1889	atomic_dec(&nr_journal_heads);
1890	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1891#endif
1892	kmem_cache_free(journal_head_cache, jh);
1893}
1894
1895/*
1896 * A journal_head is attached to a buffer_head whenever JBD has an
1897 * interest in the buffer.
1898 *
1899 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1900 * is set.  This bit is tested in core kernel code where we need to take
1901 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1902 * there.
1903 *
1904 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1905 *
1906 * When a buffer has its BH_JBD bit set it is immune from being released by
1907 * core kernel code, mainly via ->b_count.
1908 *
1909 * A journal_head is detached from its buffer_head when the journal_head's
1910 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1911 * transaction (b_cp_transaction) hold their references to b_jcount.
1912 *
1913 * Various places in the kernel want to attach a journal_head to a buffer_head
1914 * _before_ attaching the journal_head to a transaction.  To protect the
1915 * journal_head in this situation, journal_add_journal_head elevates the
1916 * journal_head's b_jcount refcount by one.  The caller must call
1917 * journal_put_journal_head() to undo this.
1918 *
1919 * So the typical usage would be:
1920 *
1921 *	(Attach a journal_head if needed.  Increments b_jcount)
1922 *	struct journal_head *jh = journal_add_journal_head(bh);
1923 *	...
1924 *      (Get another reference for transaction)
1925 *      journal_grab_journal_head(bh);
1926 *      jh->b_transaction = xxx;
1927 *      (Put original reference)
1928 *      journal_put_journal_head(jh);
1929 */
1930
1931/*
1932 * Give a buffer_head a journal_head.
1933 *
1934 * May sleep.
1935 */
1936struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1937{
1938	struct journal_head *jh;
1939	struct journal_head *new_jh = NULL;
1940
1941repeat:
1942	if (!buffer_jbd(bh))
1943		new_jh = journal_alloc_journal_head();
1944
1945	jbd_lock_bh_journal_head(bh);
1946	if (buffer_jbd(bh)) {
1947		jh = bh2jh(bh);
1948	} else {
1949		J_ASSERT_BH(bh,
1950			(atomic_read(&bh->b_count) > 0) ||
1951			(bh->b_page && bh->b_page->mapping));
1952
1953		if (!new_jh) {
1954			jbd_unlock_bh_journal_head(bh);
1955			goto repeat;
1956		}
1957
1958		jh = new_jh;
1959		new_jh = NULL;		/* We consumed it */
1960		set_buffer_jbd(bh);
1961		bh->b_private = jh;
1962		jh->b_bh = bh;
1963		get_bh(bh);
1964		BUFFER_TRACE(bh, "added journal_head");
1965	}
1966	jh->b_jcount++;
1967	jbd_unlock_bh_journal_head(bh);
1968	if (new_jh)
1969		journal_free_journal_head(new_jh);
1970	return bh->b_private;
1971}
1972
1973/*
1974 * Grab a ref against this buffer_head's journal_head.  If it ended up not
1975 * having a journal_head, return NULL
1976 */
1977struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1978{
1979	struct journal_head *jh = NULL;
1980
1981	jbd_lock_bh_journal_head(bh);
1982	if (buffer_jbd(bh)) {
1983		jh = bh2jh(bh);
1984		jh->b_jcount++;
1985	}
1986	jbd_unlock_bh_journal_head(bh);
1987	return jh;
1988}
1989
1990static void __journal_remove_journal_head(struct buffer_head *bh)
1991{
1992	struct journal_head *jh = bh2jh(bh);
1993
1994	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1995	J_ASSERT_JH(jh, jh->b_transaction == NULL);
1996	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1997	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1998	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1999	J_ASSERT_BH(bh, buffer_jbd(bh));
2000	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2001	BUFFER_TRACE(bh, "remove journal_head");
2002	if (jh->b_frozen_data) {
2003		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2004		jbd_free(jh->b_frozen_data, bh->b_size);
2005	}
2006	if (jh->b_committed_data) {
2007		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2008		jbd_free(jh->b_committed_data, bh->b_size);
2009	}
2010	bh->b_private = NULL;
2011	jh->b_bh = NULL;	/* debug, really */
2012	clear_buffer_jbd(bh);
2013	journal_free_journal_head(jh);
2014}
2015
2016/*
2017 * Drop a reference on the passed journal_head.  If it fell to zero then
2018 * release the journal_head from the buffer_head.
2019 */
2020void journal_put_journal_head(struct journal_head *jh)
2021{
2022	struct buffer_head *bh = jh2bh(jh);
2023
2024	jbd_lock_bh_journal_head(bh);
2025	J_ASSERT_JH(jh, jh->b_jcount > 0);
2026	--jh->b_jcount;
2027	if (!jh->b_jcount) {
2028		__journal_remove_journal_head(bh);
2029		jbd_unlock_bh_journal_head(bh);
2030		__brelse(bh);
2031	} else
2032		jbd_unlock_bh_journal_head(bh);
2033}
2034
2035/*
2036 * debugfs tunables
2037 */
2038#ifdef CONFIG_JBD_DEBUG
2039
2040u8 journal_enable_debug __read_mostly;
2041EXPORT_SYMBOL(journal_enable_debug);
2042
2043static struct dentry *jbd_debugfs_dir;
2044static struct dentry *jbd_debug;
2045
2046static void __init jbd_create_debugfs_entry(void)
2047{
2048	jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2049	if (jbd_debugfs_dir)
2050		jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2051					       jbd_debugfs_dir,
2052					       &journal_enable_debug);
2053}
2054
2055static void __exit jbd_remove_debugfs_entry(void)
2056{
2057	debugfs_remove(jbd_debug);
2058	debugfs_remove(jbd_debugfs_dir);
2059}
2060
2061#else
2062
2063static inline void jbd_create_debugfs_entry(void)
2064{
2065}
2066
2067static inline void jbd_remove_debugfs_entry(void)
2068{
2069}
2070
2071#endif
2072
2073struct kmem_cache *jbd_handle_cache;
2074
2075static int __init journal_init_handle_cache(void)
2076{
2077	jbd_handle_cache = kmem_cache_create("journal_handle",
2078				sizeof(handle_t),
2079				0,		/* offset */
2080				SLAB_TEMPORARY,	/* flags */
2081				NULL);		/* ctor */
2082	if (jbd_handle_cache == NULL) {
2083		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2084		return -ENOMEM;
2085	}
2086	return 0;
2087}
2088
2089static void journal_destroy_handle_cache(void)
2090{
2091	if (jbd_handle_cache)
2092		kmem_cache_destroy(jbd_handle_cache);
2093}
2094
2095/*
2096 * Module startup and shutdown
2097 */
2098
2099static int __init journal_init_caches(void)
2100{
2101	int ret;
2102
2103	ret = journal_init_revoke_caches();
2104	if (ret == 0)
2105		ret = journal_init_journal_head_cache();
2106	if (ret == 0)
2107		ret = journal_init_handle_cache();
2108	return ret;
2109}
2110
2111static void journal_destroy_caches(void)
2112{
2113	journal_destroy_revoke_caches();
2114	journal_destroy_journal_head_cache();
2115	journal_destroy_handle_cache();
2116}
2117
2118static int __init journal_init(void)
2119{
2120	int ret;
2121
2122	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2123
2124	ret = journal_init_caches();
2125	if (ret != 0)
2126		journal_destroy_caches();
2127	jbd_create_debugfs_entry();
2128	return ret;
2129}
2130
2131static void __exit journal_exit(void)
2132{
2133#ifdef CONFIG_JBD_DEBUG
2134	int n = atomic_read(&nr_journal_heads);
2135	if (n)
2136		printk(KERN_ERR "JBD: leaked %d journal_heads!\n", n);
2137#endif
2138	jbd_remove_debugfs_entry();
2139	journal_destroy_caches();
2140}
2141
2142MODULE_LICENSE("GPL");
2143module_init(journal_init);
2144module_exit(journal_exit);
2145
2146