1/*
2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/fs.h>
13#include <linux/dlm.h>
14#include <linux/slab.h>
15#include <linux/types.h>
16#include <linux/delay.h>
17#include <linux/gfs2_ondisk.h>
18
19#include "incore.h"
20#include "glock.h"
21#include "util.h"
22#include "sys.h"
23#include "trace_gfs2.h"
24
25extern struct workqueue_struct *gfs2_control_wq;
26
27/**
28 * gfs2_update_stats - Update time based stats
29 * @mv: Pointer to mean/variance structure to update
30 * @sample: New data to include
31 *
32 * @delta is the difference between the current rtt sample and the
33 * running average srtt. We add 1/8 of that to the srtt in order to
34 * update the current srtt estimate. The varience estimate is a bit
35 * more complicated. We subtract the abs value of the @delta from
36 * the current variance estimate and add 1/4 of that to the running
37 * total.
38 *
39 * Note that the index points at the array entry containing the smoothed
40 * mean value, and the variance is always in the following entry
41 *
42 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
43 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
44 * they are not scaled fixed point.
45 */
46
47static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
48				     s64 sample)
49{
50	s64 delta = sample - s->stats[index];
51	s->stats[index] += (delta >> 3);
52	index++;
53	s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
54}
55
56/**
57 * gfs2_update_reply_times - Update locking statistics
58 * @gl: The glock to update
59 *
60 * This assumes that gl->gl_dstamp has been set earlier.
61 *
62 * The rtt (lock round trip time) is an estimate of the time
63 * taken to perform a dlm lock request. We update it on each
64 * reply from the dlm.
65 *
66 * The blocking flag is set on the glock for all dlm requests
67 * which may potentially block due to lock requests from other nodes.
68 * DLM requests where the current lock state is exclusive, the
69 * requested state is null (or unlocked) or where the TRY or
70 * TRY_1CB flags are set are classified as non-blocking. All
71 * other DLM requests are counted as (potentially) blocking.
72 */
73static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
74{
75	struct gfs2_pcpu_lkstats *lks;
76	const unsigned gltype = gl->gl_name.ln_type;
77	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
78			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
79	s64 rtt;
80
81	preempt_disable();
82	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
83	lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
84	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
85	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
86	preempt_enable();
87
88	trace_gfs2_glock_lock_time(gl, rtt);
89}
90
91/**
92 * gfs2_update_request_times - Update locking statistics
93 * @gl: The glock to update
94 *
95 * The irt (lock inter-request times) measures the average time
96 * between requests to the dlm. It is updated immediately before
97 * each dlm call.
98 */
99
100static inline void gfs2_update_request_times(struct gfs2_glock *gl)
101{
102	struct gfs2_pcpu_lkstats *lks;
103	const unsigned gltype = gl->gl_name.ln_type;
104	ktime_t dstamp;
105	s64 irt;
106
107	preempt_disable();
108	dstamp = gl->gl_dstamp;
109	gl->gl_dstamp = ktime_get_real();
110	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
111	lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
112	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
113	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
114	preempt_enable();
115}
116
117static void gdlm_ast(void *arg)
118{
119	struct gfs2_glock *gl = arg;
120	unsigned ret = gl->gl_state;
121
122	gfs2_update_reply_times(gl);
123	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
124
125	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
126		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
127
128	switch (gl->gl_lksb.sb_status) {
129	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
130		gfs2_glock_free(gl);
131		return;
132	case -DLM_ECANCEL: /* Cancel while getting lock */
133		ret |= LM_OUT_CANCELED;
134		goto out;
135	case -EAGAIN: /* Try lock fails */
136	case -EDEADLK: /* Deadlock detected */
137		goto out;
138	case -ETIMEDOUT: /* Canceled due to timeout */
139		ret |= LM_OUT_ERROR;
140		goto out;
141	case 0: /* Success */
142		break;
143	default: /* Something unexpected */
144		BUG();
145	}
146
147	ret = gl->gl_req;
148	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
149		if (gl->gl_req == LM_ST_SHARED)
150			ret = LM_ST_DEFERRED;
151		else if (gl->gl_req == LM_ST_DEFERRED)
152			ret = LM_ST_SHARED;
153		else
154			BUG();
155	}
156
157	set_bit(GLF_INITIAL, &gl->gl_flags);
158	gfs2_glock_complete(gl, ret);
159	return;
160out:
161	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
162		gl->gl_lksb.sb_lkid = 0;
163	gfs2_glock_complete(gl, ret);
164}
165
166static void gdlm_bast(void *arg, int mode)
167{
168	struct gfs2_glock *gl = arg;
169
170	switch (mode) {
171	case DLM_LOCK_EX:
172		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
173		break;
174	case DLM_LOCK_CW:
175		gfs2_glock_cb(gl, LM_ST_DEFERRED);
176		break;
177	case DLM_LOCK_PR:
178		gfs2_glock_cb(gl, LM_ST_SHARED);
179		break;
180	default:
181		pr_err("unknown bast mode %d\n", mode);
182		BUG();
183	}
184}
185
186/* convert gfs lock-state to dlm lock-mode */
187
188static int make_mode(const unsigned int lmstate)
189{
190	switch (lmstate) {
191	case LM_ST_UNLOCKED:
192		return DLM_LOCK_NL;
193	case LM_ST_EXCLUSIVE:
194		return DLM_LOCK_EX;
195	case LM_ST_DEFERRED:
196		return DLM_LOCK_CW;
197	case LM_ST_SHARED:
198		return DLM_LOCK_PR;
199	}
200	pr_err("unknown LM state %d\n", lmstate);
201	BUG();
202	return -1;
203}
204
205static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
206		      const int req)
207{
208	u32 lkf = 0;
209
210	if (gl->gl_lksb.sb_lvbptr)
211		lkf |= DLM_LKF_VALBLK;
212
213	if (gfs_flags & LM_FLAG_TRY)
214		lkf |= DLM_LKF_NOQUEUE;
215
216	if (gfs_flags & LM_FLAG_TRY_1CB) {
217		lkf |= DLM_LKF_NOQUEUE;
218		lkf |= DLM_LKF_NOQUEUEBAST;
219	}
220
221	if (gfs_flags & LM_FLAG_PRIORITY) {
222		lkf |= DLM_LKF_NOORDER;
223		lkf |= DLM_LKF_HEADQUE;
224	}
225
226	if (gfs_flags & LM_FLAG_ANY) {
227		if (req == DLM_LOCK_PR)
228			lkf |= DLM_LKF_ALTCW;
229		else if (req == DLM_LOCK_CW)
230			lkf |= DLM_LKF_ALTPR;
231		else
232			BUG();
233	}
234
235	if (gl->gl_lksb.sb_lkid != 0) {
236		lkf |= DLM_LKF_CONVERT;
237		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
238			lkf |= DLM_LKF_QUECVT;
239	}
240
241	return lkf;
242}
243
244static void gfs2_reverse_hex(char *c, u64 value)
245{
246	*c = '0';
247	while (value) {
248		*c-- = hex_asc[value & 0x0f];
249		value >>= 4;
250	}
251}
252
253static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
254		     unsigned int flags)
255{
256	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
257	int req;
258	u32 lkf;
259	char strname[GDLM_STRNAME_BYTES] = "";
260
261	req = make_mode(req_state);
262	lkf = make_flags(gl, flags, req);
263	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
264	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
265	if (gl->gl_lksb.sb_lkid) {
266		gfs2_update_request_times(gl);
267	} else {
268		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
269		strname[GDLM_STRNAME_BYTES - 1] = '\0';
270		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
271		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
272		gl->gl_dstamp = ktime_get_real();
273	}
274	/*
275	 * Submit the actual lock request.
276	 */
277
278	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
279			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
280}
281
282static void gdlm_put_lock(struct gfs2_glock *gl)
283{
284	struct gfs2_sbd *sdp = gl->gl_sbd;
285	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
286	int lvb_needs_unlock = 0;
287	int error;
288
289	if (gl->gl_lksb.sb_lkid == 0) {
290		gfs2_glock_free(gl);
291		return;
292	}
293
294	clear_bit(GLF_BLOCKING, &gl->gl_flags);
295	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
296	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
297	gfs2_update_request_times(gl);
298
299	/* don't want to skip dlm_unlock writing the lvb when lock is ex */
300
301	if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
302		lvb_needs_unlock = 1;
303
304	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
305	    !lvb_needs_unlock) {
306		gfs2_glock_free(gl);
307		return;
308	}
309
310	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
311			   NULL, gl);
312	if (error) {
313		pr_err("gdlm_unlock %x,%llx err=%d\n",
314		       gl->gl_name.ln_type,
315		       (unsigned long long)gl->gl_name.ln_number, error);
316		return;
317	}
318}
319
320static void gdlm_cancel(struct gfs2_glock *gl)
321{
322	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
323	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
324}
325
326/*
327 * dlm/gfs2 recovery coordination using dlm_recover callbacks
328 *
329 *  1. dlm_controld sees lockspace members change
330 *  2. dlm_controld blocks dlm-kernel locking activity
331 *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
332 *  4. dlm_controld starts and finishes its own user level recovery
333 *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
334 *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
335 *  7. dlm_recoverd does its own lock recovery
336 *  8. dlm_recoverd unblocks dlm-kernel locking activity
337 *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
338 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
339 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
340 * 12. gfs2_recover dequeues and recovers journals of failed nodes
341 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
342 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
343 * 15. gfs2_control unblocks normal locking when all journals are recovered
344 *
345 * - failures during recovery
346 *
347 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
348 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
349 * recovering for a prior failure.  gfs2_control needs a way to detect
350 * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
351 * the recover_block and recover_start values.
352 *
353 * recover_done() provides a new lockspace generation number each time it
354 * is called (step 9).  This generation number is saved as recover_start.
355 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
356 * recover_block = recover_start.  So, while recover_block is equal to
357 * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
358 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
359 *
360 * - more specific gfs2 steps in sequence above
361 *
362 *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
363 *  6. recover_slot records any failed jids (maybe none)
364 *  9. recover_done sets recover_start = new generation number
365 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
366 * 12. gfs2_recover does journal recoveries for failed jids identified above
367 * 14. gfs2_control clears control_lock lvb bits for recovered jids
368 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
369 *     again) then do nothing, otherwise if recover_start > recover_block
370 *     then clear BLOCK_LOCKS.
371 *
372 * - parallel recovery steps across all nodes
373 *
374 * All nodes attempt to update the control_lock lvb with the new generation
375 * number and jid bits, but only the first to get the control_lock EX will
376 * do so; others will see that it's already done (lvb already contains new
377 * generation number.)
378 *
379 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
380 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
381 * . One node gets control_lock first and writes the lvb, others see it's done
382 * . All nodes attempt to recover jids for which they see control_lock bits set
383 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
384 * . All nodes will eventually see all lvb bits clear and unblock locks
385 *
386 * - is there a problem with clearing an lvb bit that should be set
387 *   and missing a journal recovery?
388 *
389 * 1. jid fails
390 * 2. lvb bit set for step 1
391 * 3. jid recovered for step 1
392 * 4. jid taken again (new mount)
393 * 5. jid fails (for step 4)
394 * 6. lvb bit set for step 5 (will already be set)
395 * 7. lvb bit cleared for step 3
396 *
397 * This is not a problem because the failure in step 5 does not
398 * require recovery, because the mount in step 4 could not have
399 * progressed far enough to unblock locks and access the fs.  The
400 * control_mount() function waits for all recoveries to be complete
401 * for the latest lockspace generation before ever unblocking locks
402 * and returning.  The mount in step 4 waits until the recovery in
403 * step 1 is done.
404 *
405 * - special case of first mounter: first node to mount the fs
406 *
407 * The first node to mount a gfs2 fs needs to check all the journals
408 * and recover any that need recovery before other nodes are allowed
409 * to mount the fs.  (Others may begin mounting, but they must wait
410 * for the first mounter to be done before taking locks on the fs
411 * or accessing the fs.)  This has two parts:
412 *
413 * 1. The mounted_lock tells a node it's the first to mount the fs.
414 * Each node holds the mounted_lock in PR while it's mounted.
415 * Each node tries to acquire the mounted_lock in EX when it mounts.
416 * If a node is granted the mounted_lock EX it means there are no
417 * other mounted nodes (no PR locks exist), and it is the first mounter.
418 * The mounted_lock is demoted to PR when first recovery is done, so
419 * others will fail to get an EX lock, but will get a PR lock.
420 *
421 * 2. The control_lock blocks others in control_mount() while the first
422 * mounter is doing first mount recovery of all journals.
423 * A mounting node needs to acquire control_lock in EX mode before
424 * it can proceed.  The first mounter holds control_lock in EX while doing
425 * the first mount recovery, blocking mounts from other nodes, then demotes
426 * control_lock to NL when it's done (others_may_mount/first_done),
427 * allowing other nodes to continue mounting.
428 *
429 * first mounter:
430 * control_lock EX/NOQUEUE success
431 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
432 * set first=1
433 * do first mounter recovery
434 * mounted_lock EX->PR
435 * control_lock EX->NL, write lvb generation
436 *
437 * other mounter:
438 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
439 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
440 * mounted_lock PR/NOQUEUE success
441 * read lvb generation
442 * control_lock EX->NL
443 * set first=0
444 *
445 * - mount during recovery
446 *
447 * If a node mounts while others are doing recovery (not first mounter),
448 * the mounting node will get its initial recover_done() callback without
449 * having seen any previous failures/callbacks.
450 *
451 * It must wait for all recoveries preceding its mount to be finished
452 * before it unblocks locks.  It does this by repeating the "other mounter"
453 * steps above until the lvb generation number is >= its mount generation
454 * number (from initial recover_done) and all lvb bits are clear.
455 *
456 * - control_lock lvb format
457 *
458 * 4 bytes generation number: the latest dlm lockspace generation number
459 * from recover_done callback.  Indicates the jid bitmap has been updated
460 * to reflect all slot failures through that generation.
461 * 4 bytes unused.
462 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
463 * that jid N needs recovery.
464 */
465
466#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
467
468static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
469			     char *lvb_bits)
470{
471	__le32 gen;
472	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
473	memcpy(&gen, lvb_bits, sizeof(__le32));
474	*lvb_gen = le32_to_cpu(gen);
475}
476
477static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
478			      char *lvb_bits)
479{
480	__le32 gen;
481	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
482	gen = cpu_to_le32(lvb_gen);
483	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
484}
485
486static int all_jid_bits_clear(char *lvb)
487{
488	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
489			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
490}
491
492static void sync_wait_cb(void *arg)
493{
494	struct lm_lockstruct *ls = arg;
495	complete(&ls->ls_sync_wait);
496}
497
498static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
499{
500	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
501	int error;
502
503	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
504	if (error) {
505		fs_err(sdp, "%s lkid %x error %d\n",
506		       name, lksb->sb_lkid, error);
507		return error;
508	}
509
510	wait_for_completion(&ls->ls_sync_wait);
511
512	if (lksb->sb_status != -DLM_EUNLOCK) {
513		fs_err(sdp, "%s lkid %x status %d\n",
514		       name, lksb->sb_lkid, lksb->sb_status);
515		return -1;
516	}
517	return 0;
518}
519
520static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
521		     unsigned int num, struct dlm_lksb *lksb, char *name)
522{
523	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
524	char strname[GDLM_STRNAME_BYTES];
525	int error, status;
526
527	memset(strname, 0, GDLM_STRNAME_BYTES);
528	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
529
530	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
531			 strname, GDLM_STRNAME_BYTES - 1,
532			 0, sync_wait_cb, ls, NULL);
533	if (error) {
534		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
535		       name, lksb->sb_lkid, flags, mode, error);
536		return error;
537	}
538
539	wait_for_completion(&ls->ls_sync_wait);
540
541	status = lksb->sb_status;
542
543	if (status && status != -EAGAIN) {
544		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
545		       name, lksb->sb_lkid, flags, mode, status);
546	}
547
548	return status;
549}
550
551static int mounted_unlock(struct gfs2_sbd *sdp)
552{
553	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
554	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
555}
556
557static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
558{
559	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
560	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
561			 &ls->ls_mounted_lksb, "mounted_lock");
562}
563
564static int control_unlock(struct gfs2_sbd *sdp)
565{
566	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
567	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
568}
569
570static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
571{
572	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
573	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
574			 &ls->ls_control_lksb, "control_lock");
575}
576
577static void gfs2_control_func(struct work_struct *work)
578{
579	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
580	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
581	uint32_t block_gen, start_gen, lvb_gen, flags;
582	int recover_set = 0;
583	int write_lvb = 0;
584	int recover_size;
585	int i, error;
586
587	spin_lock(&ls->ls_recover_spin);
588	/*
589	 * No MOUNT_DONE means we're still mounting; control_mount()
590	 * will set this flag, after which this thread will take over
591	 * all further clearing of BLOCK_LOCKS.
592	 *
593	 * FIRST_MOUNT means this node is doing first mounter recovery,
594	 * for which recovery control is handled by
595	 * control_mount()/control_first_done(), not this thread.
596	 */
597	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
598	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
599		spin_unlock(&ls->ls_recover_spin);
600		return;
601	}
602	block_gen = ls->ls_recover_block;
603	start_gen = ls->ls_recover_start;
604	spin_unlock(&ls->ls_recover_spin);
605
606	/*
607	 * Equal block_gen and start_gen implies we are between
608	 * recover_prep and recover_done callbacks, which means
609	 * dlm recovery is in progress and dlm locking is blocked.
610	 * There's no point trying to do any work until recover_done.
611	 */
612
613	if (block_gen == start_gen)
614		return;
615
616	/*
617	 * Propagate recover_submit[] and recover_result[] to lvb:
618	 * dlm_recoverd adds to recover_submit[] jids needing recovery
619	 * gfs2_recover adds to recover_result[] journal recovery results
620	 *
621	 * set lvb bit for jids in recover_submit[] if the lvb has not
622	 * yet been updated for the generation of the failure
623	 *
624	 * clear lvb bit for jids in recover_result[] if the result of
625	 * the journal recovery is SUCCESS
626	 */
627
628	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
629	if (error) {
630		fs_err(sdp, "control lock EX error %d\n", error);
631		return;
632	}
633
634	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
635
636	spin_lock(&ls->ls_recover_spin);
637	if (block_gen != ls->ls_recover_block ||
638	    start_gen != ls->ls_recover_start) {
639		fs_info(sdp, "recover generation %u block1 %u %u\n",
640			start_gen, block_gen, ls->ls_recover_block);
641		spin_unlock(&ls->ls_recover_spin);
642		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
643		return;
644	}
645
646	recover_size = ls->ls_recover_size;
647
648	if (lvb_gen <= start_gen) {
649		/*
650		 * Clear lvb bits for jids we've successfully recovered.
651		 * Because all nodes attempt to recover failed journals,
652		 * a journal can be recovered multiple times successfully
653		 * in succession.  Only the first will really do recovery,
654		 * the others find it clean, but still report a successful
655		 * recovery.  So, another node may have already recovered
656		 * the jid and cleared the lvb bit for it.
657		 */
658		for (i = 0; i < recover_size; i++) {
659			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
660				continue;
661
662			ls->ls_recover_result[i] = 0;
663
664			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
665				continue;
666
667			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
668			write_lvb = 1;
669		}
670	}
671
672	if (lvb_gen == start_gen) {
673		/*
674		 * Failed slots before start_gen are already set in lvb.
675		 */
676		for (i = 0; i < recover_size; i++) {
677			if (!ls->ls_recover_submit[i])
678				continue;
679			if (ls->ls_recover_submit[i] < lvb_gen)
680				ls->ls_recover_submit[i] = 0;
681		}
682	} else if (lvb_gen < start_gen) {
683		/*
684		 * Failed slots before start_gen are not yet set in lvb.
685		 */
686		for (i = 0; i < recover_size; i++) {
687			if (!ls->ls_recover_submit[i])
688				continue;
689			if (ls->ls_recover_submit[i] < start_gen) {
690				ls->ls_recover_submit[i] = 0;
691				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
692			}
693		}
694		/* even if there are no bits to set, we need to write the
695		   latest generation to the lvb */
696		write_lvb = 1;
697	} else {
698		/*
699		 * we should be getting a recover_done() for lvb_gen soon
700		 */
701	}
702	spin_unlock(&ls->ls_recover_spin);
703
704	if (write_lvb) {
705		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
706		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
707	} else {
708		flags = DLM_LKF_CONVERT;
709	}
710
711	error = control_lock(sdp, DLM_LOCK_NL, flags);
712	if (error) {
713		fs_err(sdp, "control lock NL error %d\n", error);
714		return;
715	}
716
717	/*
718	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
719	 * and clear a jid bit in the lvb if the recovery is a success.
720	 * Eventually all journals will be recovered, all jid bits will
721	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
722	 */
723
724	for (i = 0; i < recover_size; i++) {
725		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
726			fs_info(sdp, "recover generation %u jid %d\n",
727				start_gen, i);
728			gfs2_recover_set(sdp, i);
729			recover_set++;
730		}
731	}
732	if (recover_set)
733		return;
734
735	/*
736	 * No more jid bits set in lvb, all recovery is done, unblock locks
737	 * (unless a new recover_prep callback has occured blocking locks
738	 * again while working above)
739	 */
740
741	spin_lock(&ls->ls_recover_spin);
742	if (ls->ls_recover_block == block_gen &&
743	    ls->ls_recover_start == start_gen) {
744		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
745		spin_unlock(&ls->ls_recover_spin);
746		fs_info(sdp, "recover generation %u done\n", start_gen);
747		gfs2_glock_thaw(sdp);
748	} else {
749		fs_info(sdp, "recover generation %u block2 %u %u\n",
750			start_gen, block_gen, ls->ls_recover_block);
751		spin_unlock(&ls->ls_recover_spin);
752	}
753}
754
755static int control_mount(struct gfs2_sbd *sdp)
756{
757	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
758	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
759	int mounted_mode;
760	int retries = 0;
761	int error;
762
763	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
764	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
765	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
766	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
767	init_completion(&ls->ls_sync_wait);
768
769	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
770
771	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
772	if (error) {
773		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
774		return error;
775	}
776
777	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
778	if (error) {
779		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
780		control_unlock(sdp);
781		return error;
782	}
783	mounted_mode = DLM_LOCK_NL;
784
785restart:
786	if (retries++ && signal_pending(current)) {
787		error = -EINTR;
788		goto fail;
789	}
790
791	/*
792	 * We always start with both locks in NL. control_lock is
793	 * demoted to NL below so we don't need to do it here.
794	 */
795
796	if (mounted_mode != DLM_LOCK_NL) {
797		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
798		if (error)
799			goto fail;
800		mounted_mode = DLM_LOCK_NL;
801	}
802
803	/*
804	 * Other nodes need to do some work in dlm recovery and gfs2_control
805	 * before the recover_done and control_lock will be ready for us below.
806	 * A delay here is not required but often avoids having to retry.
807	 */
808
809	msleep_interruptible(500);
810
811	/*
812	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
813	 * control_lock lvb keeps track of any pending journal recoveries.
814	 * mounted_lock indicates if any other nodes have the fs mounted.
815	 */
816
817	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
818	if (error == -EAGAIN) {
819		goto restart;
820	} else if (error) {
821		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
822		goto fail;
823	}
824
825	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
826	if (!error) {
827		mounted_mode = DLM_LOCK_EX;
828		goto locks_done;
829	} else if (error != -EAGAIN) {
830		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
831		goto fail;
832	}
833
834	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
835	if (!error) {
836		mounted_mode = DLM_LOCK_PR;
837		goto locks_done;
838	} else {
839		/* not even -EAGAIN should happen here */
840		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
841		goto fail;
842	}
843
844locks_done:
845	/*
846	 * If we got both locks above in EX, then we're the first mounter.
847	 * If not, then we need to wait for the control_lock lvb to be
848	 * updated by other mounted nodes to reflect our mount generation.
849	 *
850	 * In simple first mounter cases, first mounter will see zero lvb_gen,
851	 * but in cases where all existing nodes leave/fail before mounting
852	 * nodes finish control_mount, then all nodes will be mounting and
853	 * lvb_gen will be non-zero.
854	 */
855
856	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
857
858	if (lvb_gen == 0xFFFFFFFF) {
859		/* special value to force mount attempts to fail */
860		fs_err(sdp, "control_mount control_lock disabled\n");
861		error = -EINVAL;
862		goto fail;
863	}
864
865	if (mounted_mode == DLM_LOCK_EX) {
866		/* first mounter, keep both EX while doing first recovery */
867		spin_lock(&ls->ls_recover_spin);
868		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
869		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
870		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
871		spin_unlock(&ls->ls_recover_spin);
872		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
873		return 0;
874	}
875
876	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
877	if (error)
878		goto fail;
879
880	/*
881	 * We are not first mounter, now we need to wait for the control_lock
882	 * lvb generation to be >= the generation from our first recover_done
883	 * and all lvb bits to be clear (no pending journal recoveries.)
884	 */
885
886	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
887		/* journals need recovery, wait until all are clear */
888		fs_info(sdp, "control_mount wait for journal recovery\n");
889		goto restart;
890	}
891
892	spin_lock(&ls->ls_recover_spin);
893	block_gen = ls->ls_recover_block;
894	start_gen = ls->ls_recover_start;
895	mount_gen = ls->ls_recover_mount;
896
897	if (lvb_gen < mount_gen) {
898		/* wait for mounted nodes to update control_lock lvb to our
899		   generation, which might include new recovery bits set */
900		fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
901			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
902			lvb_gen, ls->ls_recover_flags);
903		spin_unlock(&ls->ls_recover_spin);
904		goto restart;
905	}
906
907	if (lvb_gen != start_gen) {
908		/* wait for mounted nodes to update control_lock lvb to the
909		   latest recovery generation */
910		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
911			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
912			lvb_gen, ls->ls_recover_flags);
913		spin_unlock(&ls->ls_recover_spin);
914		goto restart;
915	}
916
917	if (block_gen == start_gen) {
918		/* dlm recovery in progress, wait for it to finish */
919		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
920			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
921			lvb_gen, ls->ls_recover_flags);
922		spin_unlock(&ls->ls_recover_spin);
923		goto restart;
924	}
925
926	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
927	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
928	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
929	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
930	spin_unlock(&ls->ls_recover_spin);
931	return 0;
932
933fail:
934	mounted_unlock(sdp);
935	control_unlock(sdp);
936	return error;
937}
938
939static int control_first_done(struct gfs2_sbd *sdp)
940{
941	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
942	uint32_t start_gen, block_gen;
943	int error;
944
945restart:
946	spin_lock(&ls->ls_recover_spin);
947	start_gen = ls->ls_recover_start;
948	block_gen = ls->ls_recover_block;
949
950	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
951	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
952	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
953		/* sanity check, should not happen */
954		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
955		       start_gen, block_gen, ls->ls_recover_flags);
956		spin_unlock(&ls->ls_recover_spin);
957		control_unlock(sdp);
958		return -1;
959	}
960
961	if (start_gen == block_gen) {
962		/*
963		 * Wait for the end of a dlm recovery cycle to switch from
964		 * first mounter recovery.  We can ignore any recover_slot
965		 * callbacks between the recover_prep and next recover_done
966		 * because we are still the first mounter and any failed nodes
967		 * have not fully mounted, so they don't need recovery.
968		 */
969		spin_unlock(&ls->ls_recover_spin);
970		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
971
972		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
973			    TASK_UNINTERRUPTIBLE);
974		goto restart;
975	}
976
977	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
978	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
979	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
980	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
981	spin_unlock(&ls->ls_recover_spin);
982
983	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
984	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
985
986	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
987	if (error)
988		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
989
990	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
991	if (error)
992		fs_err(sdp, "control_first_done control NL error %d\n", error);
993
994	return error;
995}
996
997/*
998 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
999 * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1000 * gfs2 jids start at 0, so jid = slot - 1)
1001 */
1002
1003#define RECOVER_SIZE_INC 16
1004
1005static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1006			    int num_slots)
1007{
1008	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1009	uint32_t *submit = NULL;
1010	uint32_t *result = NULL;
1011	uint32_t old_size, new_size;
1012	int i, max_jid;
1013
1014	if (!ls->ls_lvb_bits) {
1015		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1016		if (!ls->ls_lvb_bits)
1017			return -ENOMEM;
1018	}
1019
1020	max_jid = 0;
1021	for (i = 0; i < num_slots; i++) {
1022		if (max_jid < slots[i].slot - 1)
1023			max_jid = slots[i].slot - 1;
1024	}
1025
1026	old_size = ls->ls_recover_size;
1027
1028	if (old_size >= max_jid + 1)
1029		return 0;
1030
1031	new_size = old_size + RECOVER_SIZE_INC;
1032
1033	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1034	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1035	if (!submit || !result) {
1036		kfree(submit);
1037		kfree(result);
1038		return -ENOMEM;
1039	}
1040
1041	spin_lock(&ls->ls_recover_spin);
1042	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1043	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1044	kfree(ls->ls_recover_submit);
1045	kfree(ls->ls_recover_result);
1046	ls->ls_recover_submit = submit;
1047	ls->ls_recover_result = result;
1048	ls->ls_recover_size = new_size;
1049	spin_unlock(&ls->ls_recover_spin);
1050	return 0;
1051}
1052
1053static void free_recover_size(struct lm_lockstruct *ls)
1054{
1055	kfree(ls->ls_lvb_bits);
1056	kfree(ls->ls_recover_submit);
1057	kfree(ls->ls_recover_result);
1058	ls->ls_recover_submit = NULL;
1059	ls->ls_recover_result = NULL;
1060	ls->ls_recover_size = 0;
1061}
1062
1063/* dlm calls before it does lock recovery */
1064
1065static void gdlm_recover_prep(void *arg)
1066{
1067	struct gfs2_sbd *sdp = arg;
1068	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1069
1070	spin_lock(&ls->ls_recover_spin);
1071	ls->ls_recover_block = ls->ls_recover_start;
1072	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1073
1074	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1075	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1076		spin_unlock(&ls->ls_recover_spin);
1077		return;
1078	}
1079	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1080	spin_unlock(&ls->ls_recover_spin);
1081}
1082
1083/* dlm calls after recover_prep has been completed on all lockspace members;
1084   identifies slot/jid of failed member */
1085
1086static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1087{
1088	struct gfs2_sbd *sdp = arg;
1089	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1090	int jid = slot->slot - 1;
1091
1092	spin_lock(&ls->ls_recover_spin);
1093	if (ls->ls_recover_size < jid + 1) {
1094		fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1095		       jid, ls->ls_recover_block, ls->ls_recover_size);
1096		spin_unlock(&ls->ls_recover_spin);
1097		return;
1098	}
1099
1100	if (ls->ls_recover_submit[jid]) {
1101		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1102			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1103	}
1104	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1105	spin_unlock(&ls->ls_recover_spin);
1106}
1107
1108/* dlm calls after recover_slot and after it completes lock recovery */
1109
1110static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1111			      int our_slot, uint32_t generation)
1112{
1113	struct gfs2_sbd *sdp = arg;
1114	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1115
1116	/* ensure the ls jid arrays are large enough */
1117	set_recover_size(sdp, slots, num_slots);
1118
1119	spin_lock(&ls->ls_recover_spin);
1120	ls->ls_recover_start = generation;
1121
1122	if (!ls->ls_recover_mount) {
1123		ls->ls_recover_mount = generation;
1124		ls->ls_jid = our_slot - 1;
1125	}
1126
1127	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1128		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1129
1130	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1131	smp_mb__after_atomic();
1132	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1133	spin_unlock(&ls->ls_recover_spin);
1134}
1135
1136/* gfs2_recover thread has a journal recovery result */
1137
1138static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1139				 unsigned int result)
1140{
1141	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1142
1143	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1144		return;
1145
1146	/* don't care about the recovery of own journal during mount */
1147	if (jid == ls->ls_jid)
1148		return;
1149
1150	spin_lock(&ls->ls_recover_spin);
1151	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1152		spin_unlock(&ls->ls_recover_spin);
1153		return;
1154	}
1155	if (ls->ls_recover_size < jid + 1) {
1156		fs_err(sdp, "recovery_result jid %d short size %d",
1157		       jid, ls->ls_recover_size);
1158		spin_unlock(&ls->ls_recover_spin);
1159		return;
1160	}
1161
1162	fs_info(sdp, "recover jid %d result %s\n", jid,
1163		result == LM_RD_GAVEUP ? "busy" : "success");
1164
1165	ls->ls_recover_result[jid] = result;
1166
1167	/* GAVEUP means another node is recovering the journal; delay our
1168	   next attempt to recover it, to give the other node a chance to
1169	   finish before trying again */
1170
1171	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1172		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1173				   result == LM_RD_GAVEUP ? HZ : 0);
1174	spin_unlock(&ls->ls_recover_spin);
1175}
1176
1177const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1178	.recover_prep = gdlm_recover_prep,
1179	.recover_slot = gdlm_recover_slot,
1180	.recover_done = gdlm_recover_done,
1181};
1182
1183static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1184{
1185	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1186	char cluster[GFS2_LOCKNAME_LEN];
1187	const char *fsname;
1188	uint32_t flags;
1189	int error, ops_result;
1190
1191	/*
1192	 * initialize everything
1193	 */
1194
1195	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1196	spin_lock_init(&ls->ls_recover_spin);
1197	ls->ls_recover_flags = 0;
1198	ls->ls_recover_mount = 0;
1199	ls->ls_recover_start = 0;
1200	ls->ls_recover_block = 0;
1201	ls->ls_recover_size = 0;
1202	ls->ls_recover_submit = NULL;
1203	ls->ls_recover_result = NULL;
1204	ls->ls_lvb_bits = NULL;
1205
1206	error = set_recover_size(sdp, NULL, 0);
1207	if (error)
1208		goto fail;
1209
1210	/*
1211	 * prepare dlm_new_lockspace args
1212	 */
1213
1214	fsname = strchr(table, ':');
1215	if (!fsname) {
1216		fs_info(sdp, "no fsname found\n");
1217		error = -EINVAL;
1218		goto fail_free;
1219	}
1220	memset(cluster, 0, sizeof(cluster));
1221	memcpy(cluster, table, strlen(table) - strlen(fsname));
1222	fsname++;
1223
1224	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1225
1226	/*
1227	 * create/join lockspace
1228	 */
1229
1230	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1231				  &gdlm_lockspace_ops, sdp, &ops_result,
1232				  &ls->ls_dlm);
1233	if (error) {
1234		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1235		goto fail_free;
1236	}
1237
1238	if (ops_result < 0) {
1239		/*
1240		 * dlm does not support ops callbacks,
1241		 * old dlm_controld/gfs_controld are used, try without ops.
1242		 */
1243		fs_info(sdp, "dlm lockspace ops not used\n");
1244		free_recover_size(ls);
1245		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1246		return 0;
1247	}
1248
1249	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1250		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1251		error = -EINVAL;
1252		goto fail_release;
1253	}
1254
1255	/*
1256	 * control_mount() uses control_lock to determine first mounter,
1257	 * and for later mounts, waits for any recoveries to be cleared.
1258	 */
1259
1260	error = control_mount(sdp);
1261	if (error) {
1262		fs_err(sdp, "mount control error %d\n", error);
1263		goto fail_release;
1264	}
1265
1266	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1267	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1268	smp_mb__after_atomic();
1269	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1270	return 0;
1271
1272fail_release:
1273	dlm_release_lockspace(ls->ls_dlm, 2);
1274fail_free:
1275	free_recover_size(ls);
1276fail:
1277	return error;
1278}
1279
1280static void gdlm_first_done(struct gfs2_sbd *sdp)
1281{
1282	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1283	int error;
1284
1285	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1286		return;
1287
1288	error = control_first_done(sdp);
1289	if (error)
1290		fs_err(sdp, "mount first_done error %d\n", error);
1291}
1292
1293static void gdlm_unmount(struct gfs2_sbd *sdp)
1294{
1295	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1296
1297	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1298		goto release;
1299
1300	/* wait for gfs2_control_wq to be done with this mount */
1301
1302	spin_lock(&ls->ls_recover_spin);
1303	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1304	spin_unlock(&ls->ls_recover_spin);
1305	flush_delayed_work(&sdp->sd_control_work);
1306
1307	/* mounted_lock and control_lock will be purged in dlm recovery */
1308release:
1309	if (ls->ls_dlm) {
1310		dlm_release_lockspace(ls->ls_dlm, 2);
1311		ls->ls_dlm = NULL;
1312	}
1313
1314	free_recover_size(ls);
1315}
1316
1317static const match_table_t dlm_tokens = {
1318	{ Opt_jid, "jid=%d"},
1319	{ Opt_id, "id=%d"},
1320	{ Opt_first, "first=%d"},
1321	{ Opt_nodir, "nodir=%d"},
1322	{ Opt_err, NULL },
1323};
1324
1325const struct lm_lockops gfs2_dlm_ops = {
1326	.lm_proto_name = "lock_dlm",
1327	.lm_mount = gdlm_mount,
1328	.lm_first_done = gdlm_first_done,
1329	.lm_recovery_result = gdlm_recovery_result,
1330	.lm_unmount = gdlm_unmount,
1331	.lm_put_lock = gdlm_put_lock,
1332	.lm_lock = gdlm_lock,
1333	.lm_cancel = gdlm_cancel,
1334	.lm_tokens = &dlm_tokens,
1335};
1336
1337