1/* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19#include <linux/module.h> 20#include <linux/string.h> 21#include <linux/fs.h> 22#include <linux/time.h> 23#include <linux/vmalloc.h> 24#include <linux/slab.h> 25#include <linux/init.h> 26#include <linux/blkdev.h> 27#include <linux/parser.h> 28#include <linux/buffer_head.h> 29#include <linux/exportfs.h> 30#include <linux/vfs.h> 31#include <linux/random.h> 32#include <linux/mount.h> 33#include <linux/namei.h> 34#include <linux/quotaops.h> 35#include <linux/seq_file.h> 36#include <linux/proc_fs.h> 37#include <linux/ctype.h> 38#include <linux/log2.h> 39#include <linux/crc16.h> 40#include <linux/cleancache.h> 41#include <asm/uaccess.h> 42 43#include <linux/kthread.h> 44#include <linux/freezer.h> 45 46#include "ext4.h" 47#include "ext4_extents.h" /* Needed for trace points definition */ 48#include "ext4_jbd2.h" 49#include "xattr.h" 50#include "acl.h" 51#include "mballoc.h" 52 53#define CREATE_TRACE_POINTS 54#include <trace/events/ext4.h> 55 56static struct proc_dir_entry *ext4_proc_root; 57static struct kset *ext4_kset; 58static struct ext4_lazy_init *ext4_li_info; 59static struct mutex ext4_li_mtx; 60static struct ext4_features *ext4_feat; 61static int ext4_mballoc_ready; 62 63static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66static int ext4_commit_super(struct super_block *sb, int sync); 67static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71static int ext4_sync_fs(struct super_block *sb, int wait); 72static int ext4_remount(struct super_block *sb, int *flags, char *data); 73static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74static int ext4_unfreeze(struct super_block *sb); 75static int ext4_freeze(struct super_block *sb); 76static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78static inline int ext2_feature_set_ok(struct super_block *sb); 79static inline int ext3_feature_set_ok(struct super_block *sb); 80static int ext4_feature_set_ok(struct super_block *sb, int readonly); 81static void ext4_destroy_lazyinit_thread(void); 82static void ext4_unregister_li_request(struct super_block *sb); 83static void ext4_clear_request_list(void); 84static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 85 86#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 87static struct file_system_type ext2_fs_type = { 88 .owner = THIS_MODULE, 89 .name = "ext2", 90 .mount = ext4_mount, 91 .kill_sb = kill_block_super, 92 .fs_flags = FS_REQUIRES_DEV, 93}; 94MODULE_ALIAS_FS("ext2"); 95MODULE_ALIAS("ext2"); 96#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 97#else 98#define IS_EXT2_SB(sb) (0) 99#endif 100 101 102#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 103static struct file_system_type ext3_fs_type = { 104 .owner = THIS_MODULE, 105 .name = "ext3", 106 .mount = ext4_mount, 107 .kill_sb = kill_block_super, 108 .fs_flags = FS_REQUIRES_DEV, 109}; 110MODULE_ALIAS_FS("ext3"); 111MODULE_ALIAS("ext3"); 112#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 113#else 114#define IS_EXT3_SB(sb) (0) 115#endif 116 117static int ext4_verify_csum_type(struct super_block *sb, 118 struct ext4_super_block *es) 119{ 120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 122 return 1; 123 124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 125} 126 127static __le32 ext4_superblock_csum(struct super_block *sb, 128 struct ext4_super_block *es) 129{ 130 struct ext4_sb_info *sbi = EXT4_SB(sb); 131 int offset = offsetof(struct ext4_super_block, s_checksum); 132 __u32 csum; 133 134 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 135 136 return cpu_to_le32(csum); 137} 138 139static int ext4_superblock_csum_verify(struct super_block *sb, 140 struct ext4_super_block *es) 141{ 142 if (!ext4_has_metadata_csum(sb)) 143 return 1; 144 145 return es->s_checksum == ext4_superblock_csum(sb, es); 146} 147 148void ext4_superblock_csum_set(struct super_block *sb) 149{ 150 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 151 152 if (!ext4_has_metadata_csum(sb)) 153 return; 154 155 es->s_checksum = ext4_superblock_csum(sb, es); 156} 157 158void *ext4_kvmalloc(size_t size, gfp_t flags) 159{ 160 void *ret; 161 162 ret = kmalloc(size, flags | __GFP_NOWARN); 163 if (!ret) 164 ret = __vmalloc(size, flags, PAGE_KERNEL); 165 return ret; 166} 167 168void *ext4_kvzalloc(size_t size, gfp_t flags) 169{ 170 void *ret; 171 172 ret = kzalloc(size, flags | __GFP_NOWARN); 173 if (!ret) 174 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 175 return ret; 176} 177 178ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 179 struct ext4_group_desc *bg) 180{ 181 return le32_to_cpu(bg->bg_block_bitmap_lo) | 182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 183 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 184} 185 186ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 187 struct ext4_group_desc *bg) 188{ 189 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 192} 193 194ext4_fsblk_t ext4_inode_table(struct super_block *sb, 195 struct ext4_group_desc *bg) 196{ 197 return le32_to_cpu(bg->bg_inode_table_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 200} 201 202__u32 ext4_free_group_clusters(struct super_block *sb, 203 struct ext4_group_desc *bg) 204{ 205 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 208} 209 210__u32 ext4_free_inodes_count(struct super_block *sb, 211 struct ext4_group_desc *bg) 212{ 213 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 216} 217 218__u32 ext4_used_dirs_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220{ 221 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 224} 225 226__u32 ext4_itable_unused_count(struct super_block *sb, 227 struct ext4_group_desc *bg) 228{ 229 return le16_to_cpu(bg->bg_itable_unused_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 232} 233 234void ext4_block_bitmap_set(struct super_block *sb, 235 struct ext4_group_desc *bg, ext4_fsblk_t blk) 236{ 237 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 239 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 240} 241 242void ext4_inode_bitmap_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244{ 245 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 248} 249 250void ext4_inode_table_set(struct super_block *sb, 251 struct ext4_group_desc *bg, ext4_fsblk_t blk) 252{ 253 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 256} 257 258void ext4_free_group_clusters_set(struct super_block *sb, 259 struct ext4_group_desc *bg, __u32 count) 260{ 261 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 264} 265 266void ext4_free_inodes_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268{ 269 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 272} 273 274void ext4_used_dirs_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276{ 277 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 280} 281 282void ext4_itable_unused_set(struct super_block *sb, 283 struct ext4_group_desc *bg, __u32 count) 284{ 285 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 288} 289 290 291static void __save_error_info(struct super_block *sb, const char *func, 292 unsigned int line) 293{ 294 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 295 296 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 297 if (bdev_read_only(sb->s_bdev)) 298 return; 299 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 300 es->s_last_error_time = cpu_to_le32(get_seconds()); 301 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 302 es->s_last_error_line = cpu_to_le32(line); 303 if (!es->s_first_error_time) { 304 es->s_first_error_time = es->s_last_error_time; 305 strncpy(es->s_first_error_func, func, 306 sizeof(es->s_first_error_func)); 307 es->s_first_error_line = cpu_to_le32(line); 308 es->s_first_error_ino = es->s_last_error_ino; 309 es->s_first_error_block = es->s_last_error_block; 310 } 311 /* 312 * Start the daily error reporting function if it hasn't been 313 * started already 314 */ 315 if (!es->s_error_count) 316 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 317 le32_add_cpu(&es->s_error_count, 1); 318} 319 320static void save_error_info(struct super_block *sb, const char *func, 321 unsigned int line) 322{ 323 __save_error_info(sb, func, line); 324 ext4_commit_super(sb, 1); 325} 326 327/* 328 * The del_gendisk() function uninitializes the disk-specific data 329 * structures, including the bdi structure, without telling anyone 330 * else. Once this happens, any attempt to call mark_buffer_dirty() 331 * (for example, by ext4_commit_super), will cause a kernel OOPS. 332 * This is a kludge to prevent these oops until we can put in a proper 333 * hook in del_gendisk() to inform the VFS and file system layers. 334 */ 335static int block_device_ejected(struct super_block *sb) 336{ 337 struct inode *bd_inode = sb->s_bdev->bd_inode; 338 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 339 340 return bdi->dev == NULL; 341} 342 343static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 344{ 345 struct super_block *sb = journal->j_private; 346 struct ext4_sb_info *sbi = EXT4_SB(sb); 347 int error = is_journal_aborted(journal); 348 struct ext4_journal_cb_entry *jce; 349 350 BUG_ON(txn->t_state == T_FINISHED); 351 spin_lock(&sbi->s_md_lock); 352 while (!list_empty(&txn->t_private_list)) { 353 jce = list_entry(txn->t_private_list.next, 354 struct ext4_journal_cb_entry, jce_list); 355 list_del_init(&jce->jce_list); 356 spin_unlock(&sbi->s_md_lock); 357 jce->jce_func(sb, jce, error); 358 spin_lock(&sbi->s_md_lock); 359 } 360 spin_unlock(&sbi->s_md_lock); 361} 362 363/* Deal with the reporting of failure conditions on a filesystem such as 364 * inconsistencies detected or read IO failures. 365 * 366 * On ext2, we can store the error state of the filesystem in the 367 * superblock. That is not possible on ext4, because we may have other 368 * write ordering constraints on the superblock which prevent us from 369 * writing it out straight away; and given that the journal is about to 370 * be aborted, we can't rely on the current, or future, transactions to 371 * write out the superblock safely. 372 * 373 * We'll just use the jbd2_journal_abort() error code to record an error in 374 * the journal instead. On recovery, the journal will complain about 375 * that error until we've noted it down and cleared it. 376 */ 377 378static void ext4_handle_error(struct super_block *sb) 379{ 380 if (sb->s_flags & MS_RDONLY) 381 return; 382 383 if (!test_opt(sb, ERRORS_CONT)) { 384 journal_t *journal = EXT4_SB(sb)->s_journal; 385 386 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 387 if (journal) 388 jbd2_journal_abort(journal, -EIO); 389 } 390 if (test_opt(sb, ERRORS_RO)) { 391 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 392 /* 393 * Make sure updated value of ->s_mount_flags will be visible 394 * before ->s_flags update 395 */ 396 smp_wmb(); 397 sb->s_flags |= MS_RDONLY; 398 } 399 if (test_opt(sb, ERRORS_PANIC)) { 400 if (EXT4_SB(sb)->s_journal && 401 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 402 return; 403 panic("EXT4-fs (device %s): panic forced after error\n", 404 sb->s_id); 405 } 406} 407 408#define ext4_error_ratelimit(sb) \ 409 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 410 "EXT4-fs error") 411 412void __ext4_error(struct super_block *sb, const char *function, 413 unsigned int line, const char *fmt, ...) 414{ 415 struct va_format vaf; 416 va_list args; 417 418 if (ext4_error_ratelimit(sb)) { 419 va_start(args, fmt); 420 vaf.fmt = fmt; 421 vaf.va = &args; 422 printk(KERN_CRIT 423 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 424 sb->s_id, function, line, current->comm, &vaf); 425 va_end(args); 426 } 427 save_error_info(sb, function, line); 428 ext4_handle_error(sb); 429} 430 431void __ext4_error_inode(struct inode *inode, const char *function, 432 unsigned int line, ext4_fsblk_t block, 433 const char *fmt, ...) 434{ 435 va_list args; 436 struct va_format vaf; 437 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 438 439 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 440 es->s_last_error_block = cpu_to_le64(block); 441 if (ext4_error_ratelimit(inode->i_sb)) { 442 va_start(args, fmt); 443 vaf.fmt = fmt; 444 vaf.va = &args; 445 if (block) 446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 447 "inode #%lu: block %llu: comm %s: %pV\n", 448 inode->i_sb->s_id, function, line, inode->i_ino, 449 block, current->comm, &vaf); 450 else 451 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 452 "inode #%lu: comm %s: %pV\n", 453 inode->i_sb->s_id, function, line, inode->i_ino, 454 current->comm, &vaf); 455 va_end(args); 456 } 457 save_error_info(inode->i_sb, function, line); 458 ext4_handle_error(inode->i_sb); 459} 460 461void __ext4_error_file(struct file *file, const char *function, 462 unsigned int line, ext4_fsblk_t block, 463 const char *fmt, ...) 464{ 465 va_list args; 466 struct va_format vaf; 467 struct ext4_super_block *es; 468 struct inode *inode = file_inode(file); 469 char pathname[80], *path; 470 471 es = EXT4_SB(inode->i_sb)->s_es; 472 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 473 if (ext4_error_ratelimit(inode->i_sb)) { 474 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 475 if (IS_ERR(path)) 476 path = "(unknown)"; 477 va_start(args, fmt); 478 vaf.fmt = fmt; 479 vaf.va = &args; 480 if (block) 481 printk(KERN_CRIT 482 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 483 "block %llu: comm %s: path %s: %pV\n", 484 inode->i_sb->s_id, function, line, inode->i_ino, 485 block, current->comm, path, &vaf); 486 else 487 printk(KERN_CRIT 488 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 489 "comm %s: path %s: %pV\n", 490 inode->i_sb->s_id, function, line, inode->i_ino, 491 current->comm, path, &vaf); 492 va_end(args); 493 } 494 save_error_info(inode->i_sb, function, line); 495 ext4_handle_error(inode->i_sb); 496} 497 498const char *ext4_decode_error(struct super_block *sb, int errno, 499 char nbuf[16]) 500{ 501 char *errstr = NULL; 502 503 switch (errno) { 504 case -EIO: 505 errstr = "IO failure"; 506 break; 507 case -ENOMEM: 508 errstr = "Out of memory"; 509 break; 510 case -EROFS: 511 if (!sb || (EXT4_SB(sb)->s_journal && 512 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 513 errstr = "Journal has aborted"; 514 else 515 errstr = "Readonly filesystem"; 516 break; 517 default: 518 /* If the caller passed in an extra buffer for unknown 519 * errors, textualise them now. Else we just return 520 * NULL. */ 521 if (nbuf) { 522 /* Check for truncated error codes... */ 523 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 524 errstr = nbuf; 525 } 526 break; 527 } 528 529 return errstr; 530} 531 532/* __ext4_std_error decodes expected errors from journaling functions 533 * automatically and invokes the appropriate error response. */ 534 535void __ext4_std_error(struct super_block *sb, const char *function, 536 unsigned int line, int errno) 537{ 538 char nbuf[16]; 539 const char *errstr; 540 541 /* Special case: if the error is EROFS, and we're not already 542 * inside a transaction, then there's really no point in logging 543 * an error. */ 544 if (errno == -EROFS && journal_current_handle() == NULL && 545 (sb->s_flags & MS_RDONLY)) 546 return; 547 548 if (ext4_error_ratelimit(sb)) { 549 errstr = ext4_decode_error(sb, errno, nbuf); 550 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 551 sb->s_id, function, line, errstr); 552 } 553 554 save_error_info(sb, function, line); 555 ext4_handle_error(sb); 556} 557 558/* 559 * ext4_abort is a much stronger failure handler than ext4_error. The 560 * abort function may be used to deal with unrecoverable failures such 561 * as journal IO errors or ENOMEM at a critical moment in log management. 562 * 563 * We unconditionally force the filesystem into an ABORT|READONLY state, 564 * unless the error response on the fs has been set to panic in which 565 * case we take the easy way out and panic immediately. 566 */ 567 568void __ext4_abort(struct super_block *sb, const char *function, 569 unsigned int line, const char *fmt, ...) 570{ 571 va_list args; 572 573 save_error_info(sb, function, line); 574 va_start(args, fmt); 575 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 576 function, line); 577 vprintk(fmt, args); 578 printk("\n"); 579 va_end(args); 580 581 if ((sb->s_flags & MS_RDONLY) == 0) { 582 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 583 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 584 /* 585 * Make sure updated value of ->s_mount_flags will be visible 586 * before ->s_flags update 587 */ 588 smp_wmb(); 589 sb->s_flags |= MS_RDONLY; 590 if (EXT4_SB(sb)->s_journal) 591 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 592 save_error_info(sb, function, line); 593 } 594 if (test_opt(sb, ERRORS_PANIC)) { 595 if (EXT4_SB(sb)->s_journal && 596 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 597 return; 598 panic("EXT4-fs panic from previous error\n"); 599 } 600} 601 602void __ext4_msg(struct super_block *sb, 603 const char *prefix, const char *fmt, ...) 604{ 605 struct va_format vaf; 606 va_list args; 607 608 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 609 return; 610 611 va_start(args, fmt); 612 vaf.fmt = fmt; 613 vaf.va = &args; 614 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 615 va_end(args); 616} 617 618void __ext4_warning(struct super_block *sb, const char *function, 619 unsigned int line, const char *fmt, ...) 620{ 621 struct va_format vaf; 622 va_list args; 623 624 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 625 "EXT4-fs warning")) 626 return; 627 628 va_start(args, fmt); 629 vaf.fmt = fmt; 630 vaf.va = &args; 631 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 632 sb->s_id, function, line, &vaf); 633 va_end(args); 634} 635 636void __ext4_grp_locked_error(const char *function, unsigned int line, 637 struct super_block *sb, ext4_group_t grp, 638 unsigned long ino, ext4_fsblk_t block, 639 const char *fmt, ...) 640__releases(bitlock) 641__acquires(bitlock) 642{ 643 struct va_format vaf; 644 va_list args; 645 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 646 647 es->s_last_error_ino = cpu_to_le32(ino); 648 es->s_last_error_block = cpu_to_le64(block); 649 __save_error_info(sb, function, line); 650 651 if (ext4_error_ratelimit(sb)) { 652 va_start(args, fmt); 653 vaf.fmt = fmt; 654 vaf.va = &args; 655 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 656 sb->s_id, function, line, grp); 657 if (ino) 658 printk(KERN_CONT "inode %lu: ", ino); 659 if (block) 660 printk(KERN_CONT "block %llu:", 661 (unsigned long long) block); 662 printk(KERN_CONT "%pV\n", &vaf); 663 va_end(args); 664 } 665 666 if (test_opt(sb, ERRORS_CONT)) { 667 ext4_commit_super(sb, 0); 668 return; 669 } 670 671 ext4_unlock_group(sb, grp); 672 ext4_handle_error(sb); 673 /* 674 * We only get here in the ERRORS_RO case; relocking the group 675 * may be dangerous, but nothing bad will happen since the 676 * filesystem will have already been marked read/only and the 677 * journal has been aborted. We return 1 as a hint to callers 678 * who might what to use the return value from 679 * ext4_grp_locked_error() to distinguish between the 680 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 681 * aggressively from the ext4 function in question, with a 682 * more appropriate error code. 683 */ 684 ext4_lock_group(sb, grp); 685 return; 686} 687 688void ext4_update_dynamic_rev(struct super_block *sb) 689{ 690 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 691 692 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 693 return; 694 695 ext4_warning(sb, 696 "updating to rev %d because of new feature flag, " 697 "running e2fsck is recommended", 698 EXT4_DYNAMIC_REV); 699 700 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 701 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 702 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 703 /* leave es->s_feature_*compat flags alone */ 704 /* es->s_uuid will be set by e2fsck if empty */ 705 706 /* 707 * The rest of the superblock fields should be zero, and if not it 708 * means they are likely already in use, so leave them alone. We 709 * can leave it up to e2fsck to clean up any inconsistencies there. 710 */ 711} 712 713/* 714 * Open the external journal device 715 */ 716static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 717{ 718 struct block_device *bdev; 719 char b[BDEVNAME_SIZE]; 720 721 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 722 if (IS_ERR(bdev)) 723 goto fail; 724 return bdev; 725 726fail: 727 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 728 __bdevname(dev, b), PTR_ERR(bdev)); 729 return NULL; 730} 731 732/* 733 * Release the journal device 734 */ 735static void ext4_blkdev_put(struct block_device *bdev) 736{ 737 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 738} 739 740static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 741{ 742 struct block_device *bdev; 743 bdev = sbi->journal_bdev; 744 if (bdev) { 745 ext4_blkdev_put(bdev); 746 sbi->journal_bdev = NULL; 747 } 748} 749 750static inline struct inode *orphan_list_entry(struct list_head *l) 751{ 752 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 753} 754 755static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 756{ 757 struct list_head *l; 758 759 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 760 le32_to_cpu(sbi->s_es->s_last_orphan)); 761 762 printk(KERN_ERR "sb_info orphan list:\n"); 763 list_for_each(l, &sbi->s_orphan) { 764 struct inode *inode = orphan_list_entry(l); 765 printk(KERN_ERR " " 766 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 767 inode->i_sb->s_id, inode->i_ino, inode, 768 inode->i_mode, inode->i_nlink, 769 NEXT_ORPHAN(inode)); 770 } 771} 772 773static void ext4_put_super(struct super_block *sb) 774{ 775 struct ext4_sb_info *sbi = EXT4_SB(sb); 776 struct ext4_super_block *es = sbi->s_es; 777 int i, err; 778 779 ext4_unregister_li_request(sb); 780 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 781 782 flush_workqueue(sbi->rsv_conversion_wq); 783 destroy_workqueue(sbi->rsv_conversion_wq); 784 785 if (sbi->s_journal) { 786 err = jbd2_journal_destroy(sbi->s_journal); 787 sbi->s_journal = NULL; 788 if (err < 0) 789 ext4_abort(sb, "Couldn't clean up the journal"); 790 } 791 792 ext4_es_unregister_shrinker(sbi); 793 del_timer_sync(&sbi->s_err_report); 794 ext4_release_system_zone(sb); 795 ext4_mb_release(sb); 796 ext4_ext_release(sb); 797 ext4_xattr_put_super(sb); 798 799 if (!(sb->s_flags & MS_RDONLY)) { 800 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 801 es->s_state = cpu_to_le16(sbi->s_mount_state); 802 } 803 if (!(sb->s_flags & MS_RDONLY)) 804 ext4_commit_super(sb, 1); 805 806 if (sbi->s_proc) { 807 remove_proc_entry("options", sbi->s_proc); 808 remove_proc_entry(sb->s_id, ext4_proc_root); 809 } 810 kobject_del(&sbi->s_kobj); 811 812 for (i = 0; i < sbi->s_gdb_count; i++) 813 brelse(sbi->s_group_desc[i]); 814 kvfree(sbi->s_group_desc); 815 kvfree(sbi->s_flex_groups); 816 percpu_counter_destroy(&sbi->s_freeclusters_counter); 817 percpu_counter_destroy(&sbi->s_freeinodes_counter); 818 percpu_counter_destroy(&sbi->s_dirs_counter); 819 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 820 brelse(sbi->s_sbh); 821#ifdef CONFIG_QUOTA 822 for (i = 0; i < EXT4_MAXQUOTAS; i++) 823 kfree(sbi->s_qf_names[i]); 824#endif 825 826 /* Debugging code just in case the in-memory inode orphan list 827 * isn't empty. The on-disk one can be non-empty if we've 828 * detected an error and taken the fs readonly, but the 829 * in-memory list had better be clean by this point. */ 830 if (!list_empty(&sbi->s_orphan)) 831 dump_orphan_list(sb, sbi); 832 J_ASSERT(list_empty(&sbi->s_orphan)); 833 834 sync_blockdev(sb->s_bdev); 835 invalidate_bdev(sb->s_bdev); 836 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 837 /* 838 * Invalidate the journal device's buffers. We don't want them 839 * floating about in memory - the physical journal device may 840 * hotswapped, and it breaks the `ro-after' testing code. 841 */ 842 sync_blockdev(sbi->journal_bdev); 843 invalidate_bdev(sbi->journal_bdev); 844 ext4_blkdev_remove(sbi); 845 } 846 if (sbi->s_mb_cache) { 847 ext4_xattr_destroy_cache(sbi->s_mb_cache); 848 sbi->s_mb_cache = NULL; 849 } 850 if (sbi->s_mmp_tsk) 851 kthread_stop(sbi->s_mmp_tsk); 852 sb->s_fs_info = NULL; 853 /* 854 * Now that we are completely done shutting down the 855 * superblock, we need to actually destroy the kobject. 856 */ 857 kobject_put(&sbi->s_kobj); 858 wait_for_completion(&sbi->s_kobj_unregister); 859 if (sbi->s_chksum_driver) 860 crypto_free_shash(sbi->s_chksum_driver); 861 kfree(sbi->s_blockgroup_lock); 862 kfree(sbi); 863} 864 865static struct kmem_cache *ext4_inode_cachep; 866 867/* 868 * Called inside transaction, so use GFP_NOFS 869 */ 870static struct inode *ext4_alloc_inode(struct super_block *sb) 871{ 872 struct ext4_inode_info *ei; 873 874 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 875 if (!ei) 876 return NULL; 877 878 ei->vfs_inode.i_version = 1; 879 spin_lock_init(&ei->i_raw_lock); 880 INIT_LIST_HEAD(&ei->i_prealloc_list); 881 spin_lock_init(&ei->i_prealloc_lock); 882 ext4_es_init_tree(&ei->i_es_tree); 883 rwlock_init(&ei->i_es_lock); 884 INIT_LIST_HEAD(&ei->i_es_list); 885 ei->i_es_all_nr = 0; 886 ei->i_es_shk_nr = 0; 887 ei->i_es_shrink_lblk = 0; 888 ei->i_reserved_data_blocks = 0; 889 ei->i_reserved_meta_blocks = 0; 890 ei->i_allocated_meta_blocks = 0; 891 ei->i_da_metadata_calc_len = 0; 892 ei->i_da_metadata_calc_last_lblock = 0; 893 spin_lock_init(&(ei->i_block_reservation_lock)); 894#ifdef CONFIG_QUOTA 895 ei->i_reserved_quota = 0; 896 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 897#endif 898 ei->jinode = NULL; 899 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 900 spin_lock_init(&ei->i_completed_io_lock); 901 ei->i_sync_tid = 0; 902 ei->i_datasync_tid = 0; 903 atomic_set(&ei->i_ioend_count, 0); 904 atomic_set(&ei->i_unwritten, 0); 905 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 906#ifdef CONFIG_EXT4_FS_ENCRYPTION 907 ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID; 908#endif 909 910 return &ei->vfs_inode; 911} 912 913static int ext4_drop_inode(struct inode *inode) 914{ 915 int drop = generic_drop_inode(inode); 916 917 trace_ext4_drop_inode(inode, drop); 918 return drop; 919} 920 921static void ext4_i_callback(struct rcu_head *head) 922{ 923 struct inode *inode = container_of(head, struct inode, i_rcu); 924 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 925} 926 927static void ext4_destroy_inode(struct inode *inode) 928{ 929 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 930 ext4_msg(inode->i_sb, KERN_ERR, 931 "Inode %lu (%p): orphan list check failed!", 932 inode->i_ino, EXT4_I(inode)); 933 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 934 EXT4_I(inode), sizeof(struct ext4_inode_info), 935 true); 936 dump_stack(); 937 } 938 call_rcu(&inode->i_rcu, ext4_i_callback); 939} 940 941static void init_once(void *foo) 942{ 943 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 944 945 INIT_LIST_HEAD(&ei->i_orphan); 946 init_rwsem(&ei->xattr_sem); 947 init_rwsem(&ei->i_data_sem); 948 init_rwsem(&ei->i_mmap_sem); 949 inode_init_once(&ei->vfs_inode); 950} 951 952static int __init init_inodecache(void) 953{ 954 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 955 sizeof(struct ext4_inode_info), 956 0, (SLAB_RECLAIM_ACCOUNT| 957 SLAB_MEM_SPREAD), 958 init_once); 959 if (ext4_inode_cachep == NULL) 960 return -ENOMEM; 961 return 0; 962} 963 964static void destroy_inodecache(void) 965{ 966 /* 967 * Make sure all delayed rcu free inodes are flushed before we 968 * destroy cache. 969 */ 970 rcu_barrier(); 971 kmem_cache_destroy(ext4_inode_cachep); 972} 973 974void ext4_clear_inode(struct inode *inode) 975{ 976 invalidate_inode_buffers(inode); 977 clear_inode(inode); 978 dquot_drop(inode); 979 ext4_discard_preallocations(inode); 980 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 981 if (EXT4_I(inode)->jinode) { 982 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 983 EXT4_I(inode)->jinode); 984 jbd2_free_inode(EXT4_I(inode)->jinode); 985 EXT4_I(inode)->jinode = NULL; 986 } 987} 988 989static struct inode *ext4_nfs_get_inode(struct super_block *sb, 990 u64 ino, u32 generation) 991{ 992 struct inode *inode; 993 994 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 995 return ERR_PTR(-ESTALE); 996 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 997 return ERR_PTR(-ESTALE); 998 999 /* iget isn't really right if the inode is currently unallocated!! 1000 * 1001 * ext4_read_inode will return a bad_inode if the inode had been 1002 * deleted, so we should be safe. 1003 * 1004 * Currently we don't know the generation for parent directory, so 1005 * a generation of 0 means "accept any" 1006 */ 1007 inode = ext4_iget_normal(sb, ino); 1008 if (IS_ERR(inode)) 1009 return ERR_CAST(inode); 1010 if (generation && inode->i_generation != generation) { 1011 iput(inode); 1012 return ERR_PTR(-ESTALE); 1013 } 1014 1015 return inode; 1016} 1017 1018static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1019 int fh_len, int fh_type) 1020{ 1021 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1022 ext4_nfs_get_inode); 1023} 1024 1025static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1026 int fh_len, int fh_type) 1027{ 1028 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1029 ext4_nfs_get_inode); 1030} 1031 1032/* 1033 * Try to release metadata pages (indirect blocks, directories) which are 1034 * mapped via the block device. Since these pages could have journal heads 1035 * which would prevent try_to_free_buffers() from freeing them, we must use 1036 * jbd2 layer's try_to_free_buffers() function to release them. 1037 */ 1038static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1039 gfp_t wait) 1040{ 1041 journal_t *journal = EXT4_SB(sb)->s_journal; 1042 1043 WARN_ON(PageChecked(page)); 1044 if (!page_has_buffers(page)) 1045 return 0; 1046 if (journal) 1047 return jbd2_journal_try_to_free_buffers(journal, page, 1048 wait & ~__GFP_WAIT); 1049 return try_to_free_buffers(page); 1050} 1051 1052#ifdef CONFIG_QUOTA 1053#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1054#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1055 1056static int ext4_write_dquot(struct dquot *dquot); 1057static int ext4_acquire_dquot(struct dquot *dquot); 1058static int ext4_release_dquot(struct dquot *dquot); 1059static int ext4_mark_dquot_dirty(struct dquot *dquot); 1060static int ext4_write_info(struct super_block *sb, int type); 1061static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1062 struct path *path); 1063static int ext4_quota_off(struct super_block *sb, int type); 1064static int ext4_quota_on_mount(struct super_block *sb, int type); 1065static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1066 size_t len, loff_t off); 1067static ssize_t ext4_quota_write(struct super_block *sb, int type, 1068 const char *data, size_t len, loff_t off); 1069static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1070 unsigned int flags); 1071static int ext4_enable_quotas(struct super_block *sb); 1072 1073static struct dquot **ext4_get_dquots(struct inode *inode) 1074{ 1075 return EXT4_I(inode)->i_dquot; 1076} 1077 1078static const struct dquot_operations ext4_quota_operations = { 1079 .get_reserved_space = ext4_get_reserved_space, 1080 .write_dquot = ext4_write_dquot, 1081 .acquire_dquot = ext4_acquire_dquot, 1082 .release_dquot = ext4_release_dquot, 1083 .mark_dirty = ext4_mark_dquot_dirty, 1084 .write_info = ext4_write_info, 1085 .alloc_dquot = dquot_alloc, 1086 .destroy_dquot = dquot_destroy, 1087}; 1088 1089static const struct quotactl_ops ext4_qctl_operations = { 1090 .quota_on = ext4_quota_on, 1091 .quota_off = ext4_quota_off, 1092 .quota_sync = dquot_quota_sync, 1093 .get_state = dquot_get_state, 1094 .set_info = dquot_set_dqinfo, 1095 .get_dqblk = dquot_get_dqblk, 1096 .set_dqblk = dquot_set_dqblk 1097}; 1098#endif 1099 1100static const struct super_operations ext4_sops = { 1101 .alloc_inode = ext4_alloc_inode, 1102 .destroy_inode = ext4_destroy_inode, 1103 .write_inode = ext4_write_inode, 1104 .dirty_inode = ext4_dirty_inode, 1105 .drop_inode = ext4_drop_inode, 1106 .evict_inode = ext4_evict_inode, 1107 .put_super = ext4_put_super, 1108 .sync_fs = ext4_sync_fs, 1109 .freeze_fs = ext4_freeze, 1110 .unfreeze_fs = ext4_unfreeze, 1111 .statfs = ext4_statfs, 1112 .remount_fs = ext4_remount, 1113 .show_options = ext4_show_options, 1114#ifdef CONFIG_QUOTA 1115 .quota_read = ext4_quota_read, 1116 .quota_write = ext4_quota_write, 1117 .get_dquots = ext4_get_dquots, 1118#endif 1119 .bdev_try_to_free_page = bdev_try_to_free_page, 1120}; 1121 1122static const struct export_operations ext4_export_ops = { 1123 .fh_to_dentry = ext4_fh_to_dentry, 1124 .fh_to_parent = ext4_fh_to_parent, 1125 .get_parent = ext4_get_parent, 1126}; 1127 1128enum { 1129 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1130 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1131 Opt_nouid32, Opt_debug, Opt_removed, 1132 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1133 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1134 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1135 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1136 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1137 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1138 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1139 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1140 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1141 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1142 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1143 Opt_lazytime, Opt_nolazytime, 1144 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1145 Opt_inode_readahead_blks, Opt_journal_ioprio, 1146 Opt_dioread_nolock, Opt_dioread_lock, 1147 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1148 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1149}; 1150 1151static const match_table_t tokens = { 1152 {Opt_bsd_df, "bsddf"}, 1153 {Opt_minix_df, "minixdf"}, 1154 {Opt_grpid, "grpid"}, 1155 {Opt_grpid, "bsdgroups"}, 1156 {Opt_nogrpid, "nogrpid"}, 1157 {Opt_nogrpid, "sysvgroups"}, 1158 {Opt_resgid, "resgid=%u"}, 1159 {Opt_resuid, "resuid=%u"}, 1160 {Opt_sb, "sb=%u"}, 1161 {Opt_err_cont, "errors=continue"}, 1162 {Opt_err_panic, "errors=panic"}, 1163 {Opt_err_ro, "errors=remount-ro"}, 1164 {Opt_nouid32, "nouid32"}, 1165 {Opt_debug, "debug"}, 1166 {Opt_removed, "oldalloc"}, 1167 {Opt_removed, "orlov"}, 1168 {Opt_user_xattr, "user_xattr"}, 1169 {Opt_nouser_xattr, "nouser_xattr"}, 1170 {Opt_acl, "acl"}, 1171 {Opt_noacl, "noacl"}, 1172 {Opt_noload, "norecovery"}, 1173 {Opt_noload, "noload"}, 1174 {Opt_removed, "nobh"}, 1175 {Opt_removed, "bh"}, 1176 {Opt_commit, "commit=%u"}, 1177 {Opt_min_batch_time, "min_batch_time=%u"}, 1178 {Opt_max_batch_time, "max_batch_time=%u"}, 1179 {Opt_journal_dev, "journal_dev=%u"}, 1180 {Opt_journal_path, "journal_path=%s"}, 1181 {Opt_journal_checksum, "journal_checksum"}, 1182 {Opt_nojournal_checksum, "nojournal_checksum"}, 1183 {Opt_journal_async_commit, "journal_async_commit"}, 1184 {Opt_abort, "abort"}, 1185 {Opt_data_journal, "data=journal"}, 1186 {Opt_data_ordered, "data=ordered"}, 1187 {Opt_data_writeback, "data=writeback"}, 1188 {Opt_data_err_abort, "data_err=abort"}, 1189 {Opt_data_err_ignore, "data_err=ignore"}, 1190 {Opt_offusrjquota, "usrjquota="}, 1191 {Opt_usrjquota, "usrjquota=%s"}, 1192 {Opt_offgrpjquota, "grpjquota="}, 1193 {Opt_grpjquota, "grpjquota=%s"}, 1194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1197 {Opt_grpquota, "grpquota"}, 1198 {Opt_noquota, "noquota"}, 1199 {Opt_quota, "quota"}, 1200 {Opt_usrquota, "usrquota"}, 1201 {Opt_barrier, "barrier=%u"}, 1202 {Opt_barrier, "barrier"}, 1203 {Opt_nobarrier, "nobarrier"}, 1204 {Opt_i_version, "i_version"}, 1205 {Opt_dax, "dax"}, 1206 {Opt_stripe, "stripe=%u"}, 1207 {Opt_delalloc, "delalloc"}, 1208 {Opt_lazytime, "lazytime"}, 1209 {Opt_nolazytime, "nolazytime"}, 1210 {Opt_nodelalloc, "nodelalloc"}, 1211 {Opt_removed, "mblk_io_submit"}, 1212 {Opt_removed, "nomblk_io_submit"}, 1213 {Opt_block_validity, "block_validity"}, 1214 {Opt_noblock_validity, "noblock_validity"}, 1215 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1216 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1217 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1218 {Opt_auto_da_alloc, "auto_da_alloc"}, 1219 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1220 {Opt_dioread_nolock, "dioread_nolock"}, 1221 {Opt_dioread_lock, "dioread_lock"}, 1222 {Opt_discard, "discard"}, 1223 {Opt_nodiscard, "nodiscard"}, 1224 {Opt_init_itable, "init_itable=%u"}, 1225 {Opt_init_itable, "init_itable"}, 1226 {Opt_noinit_itable, "noinit_itable"}, 1227 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1228 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1229 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1230 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1231 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1232 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1233 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1234 {Opt_err, NULL}, 1235}; 1236 1237static ext4_fsblk_t get_sb_block(void **data) 1238{ 1239 ext4_fsblk_t sb_block; 1240 char *options = (char *) *data; 1241 1242 if (!options || strncmp(options, "sb=", 3) != 0) 1243 return 1; /* Default location */ 1244 1245 options += 3; 1246 /* TODO: use simple_strtoll with >32bit ext4 */ 1247 sb_block = simple_strtoul(options, &options, 0); 1248 if (*options && *options != ',') { 1249 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1250 (char *) *data); 1251 return 1; 1252 } 1253 if (*options == ',') 1254 options++; 1255 *data = (void *) options; 1256 1257 return sb_block; 1258} 1259 1260#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1261static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1262 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1263 1264#ifdef CONFIG_QUOTA 1265static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1266{ 1267 struct ext4_sb_info *sbi = EXT4_SB(sb); 1268 char *qname; 1269 int ret = -1; 1270 1271 if (sb_any_quota_loaded(sb) && 1272 !sbi->s_qf_names[qtype]) { 1273 ext4_msg(sb, KERN_ERR, 1274 "Cannot change journaled " 1275 "quota options when quota turned on"); 1276 return -1; 1277 } 1278 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1279 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1280 "ignored when QUOTA feature is enabled"); 1281 return 1; 1282 } 1283 qname = match_strdup(args); 1284 if (!qname) { 1285 ext4_msg(sb, KERN_ERR, 1286 "Not enough memory for storing quotafile name"); 1287 return -1; 1288 } 1289 if (sbi->s_qf_names[qtype]) { 1290 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1291 ret = 1; 1292 else 1293 ext4_msg(sb, KERN_ERR, 1294 "%s quota file already specified", 1295 QTYPE2NAME(qtype)); 1296 goto errout; 1297 } 1298 if (strchr(qname, '/')) { 1299 ext4_msg(sb, KERN_ERR, 1300 "quotafile must be on filesystem root"); 1301 goto errout; 1302 } 1303 sbi->s_qf_names[qtype] = qname; 1304 set_opt(sb, QUOTA); 1305 return 1; 1306errout: 1307 kfree(qname); 1308 return ret; 1309} 1310 1311static int clear_qf_name(struct super_block *sb, int qtype) 1312{ 1313 1314 struct ext4_sb_info *sbi = EXT4_SB(sb); 1315 1316 if (sb_any_quota_loaded(sb) && 1317 sbi->s_qf_names[qtype]) { 1318 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1319 " when quota turned on"); 1320 return -1; 1321 } 1322 kfree(sbi->s_qf_names[qtype]); 1323 sbi->s_qf_names[qtype] = NULL; 1324 return 1; 1325} 1326#endif 1327 1328#define MOPT_SET 0x0001 1329#define MOPT_CLEAR 0x0002 1330#define MOPT_NOSUPPORT 0x0004 1331#define MOPT_EXPLICIT 0x0008 1332#define MOPT_CLEAR_ERR 0x0010 1333#define MOPT_GTE0 0x0020 1334#ifdef CONFIG_QUOTA 1335#define MOPT_Q 0 1336#define MOPT_QFMT 0x0040 1337#else 1338#define MOPT_Q MOPT_NOSUPPORT 1339#define MOPT_QFMT MOPT_NOSUPPORT 1340#endif 1341#define MOPT_DATAJ 0x0080 1342#define MOPT_NO_EXT2 0x0100 1343#define MOPT_NO_EXT3 0x0200 1344#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1345#define MOPT_STRING 0x0400 1346 1347static const struct mount_opts { 1348 int token; 1349 int mount_opt; 1350 int flags; 1351} ext4_mount_opts[] = { 1352 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1353 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1354 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1355 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1356 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1357 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1358 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1359 MOPT_EXT4_ONLY | MOPT_SET}, 1360 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1361 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1362 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1363 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1364 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1365 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1366 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1367 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1368 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1369 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1370 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1371 MOPT_EXT4_ONLY | MOPT_SET}, 1372 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1373 EXT4_MOUNT_JOURNAL_CHECKSUM), 1374 MOPT_EXT4_ONLY | MOPT_SET}, 1375 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1376 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1377 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1378 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1379 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1380 MOPT_NO_EXT2 | MOPT_SET}, 1381 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1382 MOPT_NO_EXT2 | MOPT_CLEAR}, 1383 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1384 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1385 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1386 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1387 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1388 {Opt_commit, 0, MOPT_GTE0}, 1389 {Opt_max_batch_time, 0, MOPT_GTE0}, 1390 {Opt_min_batch_time, 0, MOPT_GTE0}, 1391 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1392 {Opt_init_itable, 0, MOPT_GTE0}, 1393 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1394 {Opt_stripe, 0, MOPT_GTE0}, 1395 {Opt_resuid, 0, MOPT_GTE0}, 1396 {Opt_resgid, 0, MOPT_GTE0}, 1397 {Opt_journal_dev, 0, MOPT_GTE0}, 1398 {Opt_journal_path, 0, MOPT_STRING}, 1399 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1400 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1401 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1402 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1403 MOPT_NO_EXT2 | MOPT_DATAJ}, 1404 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1405 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1406#ifdef CONFIG_EXT4_FS_POSIX_ACL 1407 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1408 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1409#else 1410 {Opt_acl, 0, MOPT_NOSUPPORT}, 1411 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1412#endif 1413 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1414 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1415 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1416 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1417 MOPT_SET | MOPT_Q}, 1418 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1419 MOPT_SET | MOPT_Q}, 1420 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1421 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1422 {Opt_usrjquota, 0, MOPT_Q}, 1423 {Opt_grpjquota, 0, MOPT_Q}, 1424 {Opt_offusrjquota, 0, MOPT_Q}, 1425 {Opt_offgrpjquota, 0, MOPT_Q}, 1426 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1427 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1428 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1429 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1430 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1431 {Opt_err, 0, 0} 1432}; 1433 1434static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1435 substring_t *args, unsigned long *journal_devnum, 1436 unsigned int *journal_ioprio, int is_remount) 1437{ 1438 struct ext4_sb_info *sbi = EXT4_SB(sb); 1439 const struct mount_opts *m; 1440 kuid_t uid; 1441 kgid_t gid; 1442 int arg = 0; 1443 1444#ifdef CONFIG_QUOTA 1445 if (token == Opt_usrjquota) 1446 return set_qf_name(sb, USRQUOTA, &args[0]); 1447 else if (token == Opt_grpjquota) 1448 return set_qf_name(sb, GRPQUOTA, &args[0]); 1449 else if (token == Opt_offusrjquota) 1450 return clear_qf_name(sb, USRQUOTA); 1451 else if (token == Opt_offgrpjquota) 1452 return clear_qf_name(sb, GRPQUOTA); 1453#endif 1454 switch (token) { 1455 case Opt_noacl: 1456 case Opt_nouser_xattr: 1457 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1458 break; 1459 case Opt_sb: 1460 return 1; /* handled by get_sb_block() */ 1461 case Opt_removed: 1462 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1463 return 1; 1464 case Opt_abort: 1465 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1466 return 1; 1467 case Opt_i_version: 1468 sb->s_flags |= MS_I_VERSION; 1469 return 1; 1470 case Opt_lazytime: 1471 sb->s_flags |= MS_LAZYTIME; 1472 return 1; 1473 case Opt_nolazytime: 1474 sb->s_flags &= ~MS_LAZYTIME; 1475 return 1; 1476 } 1477 1478 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1479 if (token == m->token) 1480 break; 1481 1482 if (m->token == Opt_err) { 1483 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1484 "or missing value", opt); 1485 return -1; 1486 } 1487 1488 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1489 ext4_msg(sb, KERN_ERR, 1490 "Mount option \"%s\" incompatible with ext2", opt); 1491 return -1; 1492 } 1493 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1494 ext4_msg(sb, KERN_ERR, 1495 "Mount option \"%s\" incompatible with ext3", opt); 1496 return -1; 1497 } 1498 1499 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1500 return -1; 1501 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1502 return -1; 1503 if (m->flags & MOPT_EXPLICIT) 1504 set_opt2(sb, EXPLICIT_DELALLOC); 1505 if (m->flags & MOPT_CLEAR_ERR) 1506 clear_opt(sb, ERRORS_MASK); 1507 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1508 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1509 "options when quota turned on"); 1510 return -1; 1511 } 1512 1513 if (m->flags & MOPT_NOSUPPORT) { 1514 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1515 } else if (token == Opt_commit) { 1516 if (arg == 0) 1517 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1518 sbi->s_commit_interval = HZ * arg; 1519 } else if (token == Opt_max_batch_time) { 1520 sbi->s_max_batch_time = arg; 1521 } else if (token == Opt_min_batch_time) { 1522 sbi->s_min_batch_time = arg; 1523 } else if (token == Opt_inode_readahead_blks) { 1524 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1525 ext4_msg(sb, KERN_ERR, 1526 "EXT4-fs: inode_readahead_blks must be " 1527 "0 or a power of 2 smaller than 2^31"); 1528 return -1; 1529 } 1530 sbi->s_inode_readahead_blks = arg; 1531 } else if (token == Opt_init_itable) { 1532 set_opt(sb, INIT_INODE_TABLE); 1533 if (!args->from) 1534 arg = EXT4_DEF_LI_WAIT_MULT; 1535 sbi->s_li_wait_mult = arg; 1536 } else if (token == Opt_max_dir_size_kb) { 1537 sbi->s_max_dir_size_kb = arg; 1538 } else if (token == Opt_stripe) { 1539 sbi->s_stripe = arg; 1540 } else if (token == Opt_resuid) { 1541 uid = make_kuid(current_user_ns(), arg); 1542 if (!uid_valid(uid)) { 1543 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1544 return -1; 1545 } 1546 sbi->s_resuid = uid; 1547 } else if (token == Opt_resgid) { 1548 gid = make_kgid(current_user_ns(), arg); 1549 if (!gid_valid(gid)) { 1550 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1551 return -1; 1552 } 1553 sbi->s_resgid = gid; 1554 } else if (token == Opt_journal_dev) { 1555 if (is_remount) { 1556 ext4_msg(sb, KERN_ERR, 1557 "Cannot specify journal on remount"); 1558 return -1; 1559 } 1560 *journal_devnum = arg; 1561 } else if (token == Opt_journal_path) { 1562 char *journal_path; 1563 struct inode *journal_inode; 1564 struct path path; 1565 int error; 1566 1567 if (is_remount) { 1568 ext4_msg(sb, KERN_ERR, 1569 "Cannot specify journal on remount"); 1570 return -1; 1571 } 1572 journal_path = match_strdup(&args[0]); 1573 if (!journal_path) { 1574 ext4_msg(sb, KERN_ERR, "error: could not dup " 1575 "journal device string"); 1576 return -1; 1577 } 1578 1579 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1580 if (error) { 1581 ext4_msg(sb, KERN_ERR, "error: could not find " 1582 "journal device path: error %d", error); 1583 kfree(journal_path); 1584 return -1; 1585 } 1586 1587 journal_inode = d_inode(path.dentry); 1588 if (!S_ISBLK(journal_inode->i_mode)) { 1589 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1590 "is not a block device", journal_path); 1591 path_put(&path); 1592 kfree(journal_path); 1593 return -1; 1594 } 1595 1596 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1597 path_put(&path); 1598 kfree(journal_path); 1599 } else if (token == Opt_journal_ioprio) { 1600 if (arg > 7) { 1601 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1602 " (must be 0-7)"); 1603 return -1; 1604 } 1605 *journal_ioprio = 1606 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1607 } else if (token == Opt_test_dummy_encryption) { 1608#ifdef CONFIG_EXT4_FS_ENCRYPTION 1609 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1610 ext4_msg(sb, KERN_WARNING, 1611 "Test dummy encryption mode enabled"); 1612#else 1613 ext4_msg(sb, KERN_WARNING, 1614 "Test dummy encryption mount option ignored"); 1615#endif 1616 } else if (m->flags & MOPT_DATAJ) { 1617 if (is_remount) { 1618 if (!sbi->s_journal) 1619 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1620 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1621 ext4_msg(sb, KERN_ERR, 1622 "Cannot change data mode on remount"); 1623 return -1; 1624 } 1625 } else { 1626 clear_opt(sb, DATA_FLAGS); 1627 sbi->s_mount_opt |= m->mount_opt; 1628 } 1629#ifdef CONFIG_QUOTA 1630 } else if (m->flags & MOPT_QFMT) { 1631 if (sb_any_quota_loaded(sb) && 1632 sbi->s_jquota_fmt != m->mount_opt) { 1633 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1634 "quota options when quota turned on"); 1635 return -1; 1636 } 1637 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1638 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1639 ext4_msg(sb, KERN_INFO, 1640 "Quota format mount options ignored " 1641 "when QUOTA feature is enabled"); 1642 return 1; 1643 } 1644 sbi->s_jquota_fmt = m->mount_opt; 1645#endif 1646#ifndef CONFIG_FS_DAX 1647 } else if (token == Opt_dax) { 1648 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1649 return -1; 1650#endif 1651 } else { 1652 if (!args->from) 1653 arg = 1; 1654 if (m->flags & MOPT_CLEAR) 1655 arg = !arg; 1656 else if (unlikely(!(m->flags & MOPT_SET))) { 1657 ext4_msg(sb, KERN_WARNING, 1658 "buggy handling of option %s", opt); 1659 WARN_ON(1); 1660 return -1; 1661 } 1662 if (arg != 0) 1663 sbi->s_mount_opt |= m->mount_opt; 1664 else 1665 sbi->s_mount_opt &= ~m->mount_opt; 1666 } 1667 return 1; 1668} 1669 1670static int parse_options(char *options, struct super_block *sb, 1671 unsigned long *journal_devnum, 1672 unsigned int *journal_ioprio, 1673 int is_remount) 1674{ 1675 struct ext4_sb_info *sbi = EXT4_SB(sb); 1676 char *p; 1677 substring_t args[MAX_OPT_ARGS]; 1678 int token; 1679 1680 if (!options) 1681 return 1; 1682 1683 while ((p = strsep(&options, ",")) != NULL) { 1684 if (!*p) 1685 continue; 1686 /* 1687 * Initialize args struct so we know whether arg was 1688 * found; some options take optional arguments. 1689 */ 1690 args[0].to = args[0].from = NULL; 1691 token = match_token(p, tokens, args); 1692 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1693 journal_ioprio, is_remount) < 0) 1694 return 0; 1695 } 1696#ifdef CONFIG_QUOTA 1697 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1698 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1699 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota " 1700 "mount options ignored."); 1701 clear_opt(sb, USRQUOTA); 1702 clear_opt(sb, GRPQUOTA); 1703 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1704 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1705 clear_opt(sb, USRQUOTA); 1706 1707 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1708 clear_opt(sb, GRPQUOTA); 1709 1710 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1711 ext4_msg(sb, KERN_ERR, "old and new quota " 1712 "format mixing"); 1713 return 0; 1714 } 1715 1716 if (!sbi->s_jquota_fmt) { 1717 ext4_msg(sb, KERN_ERR, "journaled quota format " 1718 "not specified"); 1719 return 0; 1720 } 1721 } 1722#endif 1723 if (test_opt(sb, DIOREAD_NOLOCK)) { 1724 int blocksize = 1725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1726 1727 if (blocksize < PAGE_CACHE_SIZE) { 1728 ext4_msg(sb, KERN_ERR, "can't mount with " 1729 "dioread_nolock if block size != PAGE_SIZE"); 1730 return 0; 1731 } 1732 } 1733 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1734 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1735 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1736 "in data=ordered mode"); 1737 return 0; 1738 } 1739 return 1; 1740} 1741 1742static inline void ext4_show_quota_options(struct seq_file *seq, 1743 struct super_block *sb) 1744{ 1745#if defined(CONFIG_QUOTA) 1746 struct ext4_sb_info *sbi = EXT4_SB(sb); 1747 1748 if (sbi->s_jquota_fmt) { 1749 char *fmtname = ""; 1750 1751 switch (sbi->s_jquota_fmt) { 1752 case QFMT_VFS_OLD: 1753 fmtname = "vfsold"; 1754 break; 1755 case QFMT_VFS_V0: 1756 fmtname = "vfsv0"; 1757 break; 1758 case QFMT_VFS_V1: 1759 fmtname = "vfsv1"; 1760 break; 1761 } 1762 seq_printf(seq, ",jqfmt=%s", fmtname); 1763 } 1764 1765 if (sbi->s_qf_names[USRQUOTA]) 1766 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1767 1768 if (sbi->s_qf_names[GRPQUOTA]) 1769 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1770#endif 1771} 1772 1773static const char *token2str(int token) 1774{ 1775 const struct match_token *t; 1776 1777 for (t = tokens; t->token != Opt_err; t++) 1778 if (t->token == token && !strchr(t->pattern, '=')) 1779 break; 1780 return t->pattern; 1781} 1782 1783/* 1784 * Show an option if 1785 * - it's set to a non-default value OR 1786 * - if the per-sb default is different from the global default 1787 */ 1788static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1789 int nodefs) 1790{ 1791 struct ext4_sb_info *sbi = EXT4_SB(sb); 1792 struct ext4_super_block *es = sbi->s_es; 1793 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1794 const struct mount_opts *m; 1795 char sep = nodefs ? '\n' : ','; 1796 1797#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1798#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1799 1800 if (sbi->s_sb_block != 1) 1801 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1802 1803 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1804 int want_set = m->flags & MOPT_SET; 1805 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1806 (m->flags & MOPT_CLEAR_ERR)) 1807 continue; 1808 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1809 continue; /* skip if same as the default */ 1810 if ((want_set && 1811 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1812 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1813 continue; /* select Opt_noFoo vs Opt_Foo */ 1814 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1815 } 1816 1817 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1818 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1819 SEQ_OPTS_PRINT("resuid=%u", 1820 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1821 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1822 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1823 SEQ_OPTS_PRINT("resgid=%u", 1824 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1825 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1826 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1827 SEQ_OPTS_PUTS("errors=remount-ro"); 1828 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1829 SEQ_OPTS_PUTS("errors=continue"); 1830 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1831 SEQ_OPTS_PUTS("errors=panic"); 1832 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1833 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1834 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1835 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1836 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1837 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1838 if (sb->s_flags & MS_I_VERSION) 1839 SEQ_OPTS_PUTS("i_version"); 1840 if (nodefs || sbi->s_stripe) 1841 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1842 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1843 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1844 SEQ_OPTS_PUTS("data=journal"); 1845 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1846 SEQ_OPTS_PUTS("data=ordered"); 1847 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1848 SEQ_OPTS_PUTS("data=writeback"); 1849 } 1850 if (nodefs || 1851 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1852 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1853 sbi->s_inode_readahead_blks); 1854 1855 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1856 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1857 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1858 if (nodefs || sbi->s_max_dir_size_kb) 1859 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1860 1861 ext4_show_quota_options(seq, sb); 1862 return 0; 1863} 1864 1865static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1866{ 1867 return _ext4_show_options(seq, root->d_sb, 0); 1868} 1869 1870static int options_seq_show(struct seq_file *seq, void *offset) 1871{ 1872 struct super_block *sb = seq->private; 1873 int rc; 1874 1875 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1876 rc = _ext4_show_options(seq, sb, 1); 1877 seq_puts(seq, "\n"); 1878 return rc; 1879} 1880 1881static int options_open_fs(struct inode *inode, struct file *file) 1882{ 1883 return single_open(file, options_seq_show, PDE_DATA(inode)); 1884} 1885 1886static const struct file_operations ext4_seq_options_fops = { 1887 .owner = THIS_MODULE, 1888 .open = options_open_fs, 1889 .read = seq_read, 1890 .llseek = seq_lseek, 1891 .release = single_release, 1892}; 1893 1894static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1895 int read_only) 1896{ 1897 struct ext4_sb_info *sbi = EXT4_SB(sb); 1898 int res = 0; 1899 1900 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1901 ext4_msg(sb, KERN_ERR, "revision level too high, " 1902 "forcing read-only mode"); 1903 res = MS_RDONLY; 1904 } 1905 if (read_only) 1906 goto done; 1907 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1908 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1909 "running e2fsck is recommended"); 1910 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1911 ext4_msg(sb, KERN_WARNING, 1912 "warning: mounting fs with errors, " 1913 "running e2fsck is recommended"); 1914 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1915 le16_to_cpu(es->s_mnt_count) >= 1916 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1917 ext4_msg(sb, KERN_WARNING, 1918 "warning: maximal mount count reached, " 1919 "running e2fsck is recommended"); 1920 else if (le32_to_cpu(es->s_checkinterval) && 1921 (le32_to_cpu(es->s_lastcheck) + 1922 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1923 ext4_msg(sb, KERN_WARNING, 1924 "warning: checktime reached, " 1925 "running e2fsck is recommended"); 1926 if (!sbi->s_journal) 1927 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1928 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1929 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1930 le16_add_cpu(&es->s_mnt_count, 1); 1931 es->s_mtime = cpu_to_le32(get_seconds()); 1932 ext4_update_dynamic_rev(sb); 1933 if (sbi->s_journal) 1934 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1935 1936 ext4_commit_super(sb, 1); 1937done: 1938 if (test_opt(sb, DEBUG)) 1939 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1940 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1941 sb->s_blocksize, 1942 sbi->s_groups_count, 1943 EXT4_BLOCKS_PER_GROUP(sb), 1944 EXT4_INODES_PER_GROUP(sb), 1945 sbi->s_mount_opt, sbi->s_mount_opt2); 1946 1947 cleancache_init_fs(sb); 1948 return res; 1949} 1950 1951int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1952{ 1953 struct ext4_sb_info *sbi = EXT4_SB(sb); 1954 struct flex_groups *new_groups; 1955 int size; 1956 1957 if (!sbi->s_log_groups_per_flex) 1958 return 0; 1959 1960 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1961 if (size <= sbi->s_flex_groups_allocated) 1962 return 0; 1963 1964 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1965 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1966 if (!new_groups) { 1967 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1968 size / (int) sizeof(struct flex_groups)); 1969 return -ENOMEM; 1970 } 1971 1972 if (sbi->s_flex_groups) { 1973 memcpy(new_groups, sbi->s_flex_groups, 1974 (sbi->s_flex_groups_allocated * 1975 sizeof(struct flex_groups))); 1976 kvfree(sbi->s_flex_groups); 1977 } 1978 sbi->s_flex_groups = new_groups; 1979 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1980 return 0; 1981} 1982 1983static int ext4_fill_flex_info(struct super_block *sb) 1984{ 1985 struct ext4_sb_info *sbi = EXT4_SB(sb); 1986 struct ext4_group_desc *gdp = NULL; 1987 ext4_group_t flex_group; 1988 int i, err; 1989 1990 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1991 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1992 sbi->s_log_groups_per_flex = 0; 1993 return 1; 1994 } 1995 1996 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1997 if (err) 1998 goto failed; 1999 2000 for (i = 0; i < sbi->s_groups_count; i++) { 2001 gdp = ext4_get_group_desc(sb, i, NULL); 2002 2003 flex_group = ext4_flex_group(sbi, i); 2004 atomic_add(ext4_free_inodes_count(sb, gdp), 2005 &sbi->s_flex_groups[flex_group].free_inodes); 2006 atomic64_add(ext4_free_group_clusters(sb, gdp), 2007 &sbi->s_flex_groups[flex_group].free_clusters); 2008 atomic_add(ext4_used_dirs_count(sb, gdp), 2009 &sbi->s_flex_groups[flex_group].used_dirs); 2010 } 2011 2012 return 1; 2013failed: 2014 return 0; 2015} 2016 2017static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 2018 struct ext4_group_desc *gdp) 2019{ 2020 int offset; 2021 __u16 crc = 0; 2022 __le32 le_group = cpu_to_le32(block_group); 2023 2024 if (ext4_has_metadata_csum(sbi->s_sb)) { 2025 /* Use new metadata_csum algorithm */ 2026 __le16 save_csum; 2027 __u32 csum32; 2028 2029 save_csum = gdp->bg_checksum; 2030 gdp->bg_checksum = 0; 2031 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2032 sizeof(le_group)); 2033 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2034 sbi->s_desc_size); 2035 gdp->bg_checksum = save_csum; 2036 2037 crc = csum32 & 0xFFFF; 2038 goto out; 2039 } 2040 2041 /* old crc16 code */ 2042 if (!(sbi->s_es->s_feature_ro_compat & 2043 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM))) 2044 return 0; 2045 2046 offset = offsetof(struct ext4_group_desc, bg_checksum); 2047 2048 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2049 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2050 crc = crc16(crc, (__u8 *)gdp, offset); 2051 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2052 /* for checksum of struct ext4_group_desc do the rest...*/ 2053 if ((sbi->s_es->s_feature_incompat & 2054 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2055 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2056 crc = crc16(crc, (__u8 *)gdp + offset, 2057 le16_to_cpu(sbi->s_es->s_desc_size) - 2058 offset); 2059 2060out: 2061 return cpu_to_le16(crc); 2062} 2063 2064int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2065 struct ext4_group_desc *gdp) 2066{ 2067 if (ext4_has_group_desc_csum(sb) && 2068 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2069 block_group, gdp))) 2070 return 0; 2071 2072 return 1; 2073} 2074 2075void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2076 struct ext4_group_desc *gdp) 2077{ 2078 if (!ext4_has_group_desc_csum(sb)) 2079 return; 2080 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2081} 2082 2083/* Called at mount-time, super-block is locked */ 2084static int ext4_check_descriptors(struct super_block *sb, 2085 ext4_group_t *first_not_zeroed) 2086{ 2087 struct ext4_sb_info *sbi = EXT4_SB(sb); 2088 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2089 ext4_fsblk_t last_block; 2090 ext4_fsblk_t block_bitmap; 2091 ext4_fsblk_t inode_bitmap; 2092 ext4_fsblk_t inode_table; 2093 int flexbg_flag = 0; 2094 ext4_group_t i, grp = sbi->s_groups_count; 2095 2096 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2097 flexbg_flag = 1; 2098 2099 ext4_debug("Checking group descriptors"); 2100 2101 for (i = 0; i < sbi->s_groups_count; i++) { 2102 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2103 2104 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2105 last_block = ext4_blocks_count(sbi->s_es) - 1; 2106 else 2107 last_block = first_block + 2108 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2109 2110 if ((grp == sbi->s_groups_count) && 2111 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2112 grp = i; 2113 2114 block_bitmap = ext4_block_bitmap(sb, gdp); 2115 if (block_bitmap < first_block || block_bitmap > last_block) { 2116 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2117 "Block bitmap for group %u not in group " 2118 "(block %llu)!", i, block_bitmap); 2119 return 0; 2120 } 2121 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2122 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2123 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2124 "Inode bitmap for group %u not in group " 2125 "(block %llu)!", i, inode_bitmap); 2126 return 0; 2127 } 2128 inode_table = ext4_inode_table(sb, gdp); 2129 if (inode_table < first_block || 2130 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2131 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2132 "Inode table for group %u not in group " 2133 "(block %llu)!", i, inode_table); 2134 return 0; 2135 } 2136 ext4_lock_group(sb, i); 2137 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2138 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2139 "Checksum for group %u failed (%u!=%u)", 2140 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2141 gdp)), le16_to_cpu(gdp->bg_checksum)); 2142 if (!(sb->s_flags & MS_RDONLY)) { 2143 ext4_unlock_group(sb, i); 2144 return 0; 2145 } 2146 } 2147 ext4_unlock_group(sb, i); 2148 if (!flexbg_flag) 2149 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2150 } 2151 if (NULL != first_not_zeroed) 2152 *first_not_zeroed = grp; 2153 return 1; 2154} 2155 2156/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2157 * the superblock) which were deleted from all directories, but held open by 2158 * a process at the time of a crash. We walk the list and try to delete these 2159 * inodes at recovery time (only with a read-write filesystem). 2160 * 2161 * In order to keep the orphan inode chain consistent during traversal (in 2162 * case of crash during recovery), we link each inode into the superblock 2163 * orphan list_head and handle it the same way as an inode deletion during 2164 * normal operation (which journals the operations for us). 2165 * 2166 * We only do an iget() and an iput() on each inode, which is very safe if we 2167 * accidentally point at an in-use or already deleted inode. The worst that 2168 * can happen in this case is that we get a "bit already cleared" message from 2169 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2170 * e2fsck was run on this filesystem, and it must have already done the orphan 2171 * inode cleanup for us, so we can safely abort without any further action. 2172 */ 2173static void ext4_orphan_cleanup(struct super_block *sb, 2174 struct ext4_super_block *es) 2175{ 2176 unsigned int s_flags = sb->s_flags; 2177 int nr_orphans = 0, nr_truncates = 0; 2178#ifdef CONFIG_QUOTA 2179 int i; 2180#endif 2181 if (!es->s_last_orphan) { 2182 jbd_debug(4, "no orphan inodes to clean up\n"); 2183 return; 2184 } 2185 2186 if (bdev_read_only(sb->s_bdev)) { 2187 ext4_msg(sb, KERN_ERR, "write access " 2188 "unavailable, skipping orphan cleanup"); 2189 return; 2190 } 2191 2192 /* Check if feature set would not allow a r/w mount */ 2193 if (!ext4_feature_set_ok(sb, 0)) { 2194 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2195 "unknown ROCOMPAT features"); 2196 return; 2197 } 2198 2199 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2200 /* don't clear list on RO mount w/ errors */ 2201 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2202 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2203 "clearing orphan list.\n"); 2204 es->s_last_orphan = 0; 2205 } 2206 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2207 return; 2208 } 2209 2210 if (s_flags & MS_RDONLY) { 2211 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2212 sb->s_flags &= ~MS_RDONLY; 2213 } 2214#ifdef CONFIG_QUOTA 2215 /* Needed for iput() to work correctly and not trash data */ 2216 sb->s_flags |= MS_ACTIVE; 2217 /* Turn on quotas so that they are updated correctly */ 2218 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2219 if (EXT4_SB(sb)->s_qf_names[i]) { 2220 int ret = ext4_quota_on_mount(sb, i); 2221 if (ret < 0) 2222 ext4_msg(sb, KERN_ERR, 2223 "Cannot turn on journaled " 2224 "quota: error %d", ret); 2225 } 2226 } 2227#endif 2228 2229 while (es->s_last_orphan) { 2230 struct inode *inode; 2231 2232 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2233 if (IS_ERR(inode)) { 2234 es->s_last_orphan = 0; 2235 break; 2236 } 2237 2238 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2239 dquot_initialize(inode); 2240 if (inode->i_nlink) { 2241 if (test_opt(sb, DEBUG)) 2242 ext4_msg(sb, KERN_DEBUG, 2243 "%s: truncating inode %lu to %lld bytes", 2244 __func__, inode->i_ino, inode->i_size); 2245 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2246 inode->i_ino, inode->i_size); 2247 mutex_lock(&inode->i_mutex); 2248 truncate_inode_pages(inode->i_mapping, inode->i_size); 2249 ext4_truncate(inode); 2250 mutex_unlock(&inode->i_mutex); 2251 nr_truncates++; 2252 } else { 2253 if (test_opt(sb, DEBUG)) 2254 ext4_msg(sb, KERN_DEBUG, 2255 "%s: deleting unreferenced inode %lu", 2256 __func__, inode->i_ino); 2257 jbd_debug(2, "deleting unreferenced inode %lu\n", 2258 inode->i_ino); 2259 nr_orphans++; 2260 } 2261 iput(inode); /* The delete magic happens here! */ 2262 } 2263 2264#define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2265 2266 if (nr_orphans) 2267 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2268 PLURAL(nr_orphans)); 2269 if (nr_truncates) 2270 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2271 PLURAL(nr_truncates)); 2272#ifdef CONFIG_QUOTA 2273 /* Turn quotas off */ 2274 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2275 if (sb_dqopt(sb)->files[i]) 2276 dquot_quota_off(sb, i); 2277 } 2278#endif 2279 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2280} 2281 2282/* 2283 * Maximal extent format file size. 2284 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2285 * extent format containers, within a sector_t, and within i_blocks 2286 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2287 * so that won't be a limiting factor. 2288 * 2289 * However there is other limiting factor. We do store extents in the form 2290 * of starting block and length, hence the resulting length of the extent 2291 * covering maximum file size must fit into on-disk format containers as 2292 * well. Given that length is always by 1 unit bigger than max unit (because 2293 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2294 * 2295 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2296 */ 2297static loff_t ext4_max_size(int blkbits, int has_huge_files) 2298{ 2299 loff_t res; 2300 loff_t upper_limit = MAX_LFS_FILESIZE; 2301 2302 /* small i_blocks in vfs inode? */ 2303 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2304 /* 2305 * CONFIG_LBDAF is not enabled implies the inode 2306 * i_block represent total blocks in 512 bytes 2307 * 32 == size of vfs inode i_blocks * 8 2308 */ 2309 upper_limit = (1LL << 32) - 1; 2310 2311 /* total blocks in file system block size */ 2312 upper_limit >>= (blkbits - 9); 2313 upper_limit <<= blkbits; 2314 } 2315 2316 /* 2317 * 32-bit extent-start container, ee_block. We lower the maxbytes 2318 * by one fs block, so ee_len can cover the extent of maximum file 2319 * size 2320 */ 2321 res = (1LL << 32) - 1; 2322 res <<= blkbits; 2323 2324 /* Sanity check against vm- & vfs- imposed limits */ 2325 if (res > upper_limit) 2326 res = upper_limit; 2327 2328 return res; 2329} 2330 2331/* 2332 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2333 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2334 * We need to be 1 filesystem block less than the 2^48 sector limit. 2335 */ 2336static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2337{ 2338 loff_t res = EXT4_NDIR_BLOCKS; 2339 int meta_blocks; 2340 loff_t upper_limit; 2341 /* This is calculated to be the largest file size for a dense, block 2342 * mapped file such that the file's total number of 512-byte sectors, 2343 * including data and all indirect blocks, does not exceed (2^48 - 1). 2344 * 2345 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2346 * number of 512-byte sectors of the file. 2347 */ 2348 2349 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2350 /* 2351 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2352 * the inode i_block field represents total file blocks in 2353 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2354 */ 2355 upper_limit = (1LL << 32) - 1; 2356 2357 /* total blocks in file system block size */ 2358 upper_limit >>= (bits - 9); 2359 2360 } else { 2361 /* 2362 * We use 48 bit ext4_inode i_blocks 2363 * With EXT4_HUGE_FILE_FL set the i_blocks 2364 * represent total number of blocks in 2365 * file system block size 2366 */ 2367 upper_limit = (1LL << 48) - 1; 2368 2369 } 2370 2371 /* indirect blocks */ 2372 meta_blocks = 1; 2373 /* double indirect blocks */ 2374 meta_blocks += 1 + (1LL << (bits-2)); 2375 /* tripple indirect blocks */ 2376 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2377 2378 upper_limit -= meta_blocks; 2379 upper_limit <<= bits; 2380 2381 res += 1LL << (bits-2); 2382 res += 1LL << (2*(bits-2)); 2383 res += 1LL << (3*(bits-2)); 2384 res <<= bits; 2385 if (res > upper_limit) 2386 res = upper_limit; 2387 2388 if (res > MAX_LFS_FILESIZE) 2389 res = MAX_LFS_FILESIZE; 2390 2391 return res; 2392} 2393 2394static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2395 ext4_fsblk_t logical_sb_block, int nr) 2396{ 2397 struct ext4_sb_info *sbi = EXT4_SB(sb); 2398 ext4_group_t bg, first_meta_bg; 2399 int has_super = 0; 2400 2401 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2402 2403 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2404 nr < first_meta_bg) 2405 return logical_sb_block + nr + 1; 2406 bg = sbi->s_desc_per_block * nr; 2407 if (ext4_bg_has_super(sb, bg)) 2408 has_super = 1; 2409 2410 /* 2411 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2412 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2413 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2414 * compensate. 2415 */ 2416 if (sb->s_blocksize == 1024 && nr == 0 && 2417 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2418 has_super++; 2419 2420 return (has_super + ext4_group_first_block_no(sb, bg)); 2421} 2422 2423/** 2424 * ext4_get_stripe_size: Get the stripe size. 2425 * @sbi: In memory super block info 2426 * 2427 * If we have specified it via mount option, then 2428 * use the mount option value. If the value specified at mount time is 2429 * greater than the blocks per group use the super block value. 2430 * If the super block value is greater than blocks per group return 0. 2431 * Allocator needs it be less than blocks per group. 2432 * 2433 */ 2434static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2435{ 2436 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2437 unsigned long stripe_width = 2438 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2439 int ret; 2440 2441 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2442 ret = sbi->s_stripe; 2443 else if (stripe_width <= sbi->s_blocks_per_group) 2444 ret = stripe_width; 2445 else if (stride <= sbi->s_blocks_per_group) 2446 ret = stride; 2447 else 2448 ret = 0; 2449 2450 /* 2451 * If the stripe width is 1, this makes no sense and 2452 * we set it to 0 to turn off stripe handling code. 2453 */ 2454 if (ret <= 1) 2455 ret = 0; 2456 2457 return ret; 2458} 2459 2460/* sysfs supprt */ 2461 2462struct ext4_attr { 2463 struct attribute attr; 2464 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2465 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2466 const char *, size_t); 2467 union { 2468 int offset; 2469 int deprecated_val; 2470 } u; 2471}; 2472 2473static int parse_strtoull(const char *buf, 2474 unsigned long long max, unsigned long long *value) 2475{ 2476 int ret; 2477 2478 ret = kstrtoull(skip_spaces(buf), 0, value); 2479 if (!ret && *value > max) 2480 ret = -EINVAL; 2481 return ret; 2482} 2483 2484static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2485 struct ext4_sb_info *sbi, 2486 char *buf) 2487{ 2488 return snprintf(buf, PAGE_SIZE, "%llu\n", 2489 (s64) EXT4_C2B(sbi, 2490 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2491} 2492 2493static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2494 struct ext4_sb_info *sbi, char *buf) 2495{ 2496 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2497 2498 if (!sb->s_bdev->bd_part) 2499 return snprintf(buf, PAGE_SIZE, "0\n"); 2500 return snprintf(buf, PAGE_SIZE, "%lu\n", 2501 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2502 sbi->s_sectors_written_start) >> 1); 2503} 2504 2505static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2506 struct ext4_sb_info *sbi, char *buf) 2507{ 2508 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2509 2510 if (!sb->s_bdev->bd_part) 2511 return snprintf(buf, PAGE_SIZE, "0\n"); 2512 return snprintf(buf, PAGE_SIZE, "%llu\n", 2513 (unsigned long long)(sbi->s_kbytes_written + 2514 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2515 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2516} 2517 2518static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2519 struct ext4_sb_info *sbi, 2520 const char *buf, size_t count) 2521{ 2522 unsigned long t; 2523 int ret; 2524 2525 ret = kstrtoul(skip_spaces(buf), 0, &t); 2526 if (ret) 2527 return ret; 2528 2529 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2530 return -EINVAL; 2531 2532 sbi->s_inode_readahead_blks = t; 2533 return count; 2534} 2535 2536static ssize_t sbi_ui_show(struct ext4_attr *a, 2537 struct ext4_sb_info *sbi, char *buf) 2538{ 2539 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2540 2541 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2542} 2543 2544static ssize_t sbi_ui_store(struct ext4_attr *a, 2545 struct ext4_sb_info *sbi, 2546 const char *buf, size_t count) 2547{ 2548 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2549 unsigned long t; 2550 int ret; 2551 2552 ret = kstrtoul(skip_spaces(buf), 0, &t); 2553 if (ret) 2554 return ret; 2555 *ui = t; 2556 return count; 2557} 2558 2559static ssize_t es_ui_show(struct ext4_attr *a, 2560 struct ext4_sb_info *sbi, char *buf) 2561{ 2562 2563 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) + 2564 a->u.offset); 2565 2566 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2567} 2568 2569static ssize_t reserved_clusters_show(struct ext4_attr *a, 2570 struct ext4_sb_info *sbi, char *buf) 2571{ 2572 return snprintf(buf, PAGE_SIZE, "%llu\n", 2573 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2574} 2575 2576static ssize_t reserved_clusters_store(struct ext4_attr *a, 2577 struct ext4_sb_info *sbi, 2578 const char *buf, size_t count) 2579{ 2580 unsigned long long val; 2581 int ret; 2582 2583 if (parse_strtoull(buf, -1ULL, &val)) 2584 return -EINVAL; 2585 ret = ext4_reserve_clusters(sbi, val); 2586 2587 return ret ? ret : count; 2588} 2589 2590static ssize_t trigger_test_error(struct ext4_attr *a, 2591 struct ext4_sb_info *sbi, 2592 const char *buf, size_t count) 2593{ 2594 int len = count; 2595 2596 if (!capable(CAP_SYS_ADMIN)) 2597 return -EPERM; 2598 2599 if (len && buf[len-1] == '\n') 2600 len--; 2601 2602 if (len) 2603 ext4_error(sbi->s_sb, "%.*s", len, buf); 2604 return count; 2605} 2606 2607static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2608 struct ext4_sb_info *sbi, char *buf) 2609{ 2610 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2611} 2612 2613#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2614static struct ext4_attr ext4_attr_##_name = { \ 2615 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2616 .show = _show, \ 2617 .store = _store, \ 2618 .u = { \ 2619 .offset = offsetof(struct ext4_sb_info, _elname),\ 2620 }, \ 2621} 2622 2623#define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \ 2624static struct ext4_attr ext4_attr_##_name = { \ 2625 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2626 .show = _show, \ 2627 .store = _store, \ 2628 .u = { \ 2629 .offset = offsetof(struct ext4_super_block, _elname), \ 2630 }, \ 2631} 2632 2633#define EXT4_ATTR(name, mode, show, store) \ 2634static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2635 2636#define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2637#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2638#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2639 2640#define EXT4_RO_ATTR_ES_UI(name, elname) \ 2641 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname) 2642#define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2643 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2644 2645#define ATTR_LIST(name) &ext4_attr_##name.attr 2646#define EXT4_DEPRECATED_ATTR(_name, _val) \ 2647static struct ext4_attr ext4_attr_##_name = { \ 2648 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2649 .show = sbi_deprecated_show, \ 2650 .u = { \ 2651 .deprecated_val = _val, \ 2652 }, \ 2653} 2654 2655EXT4_RO_ATTR(delayed_allocation_blocks); 2656EXT4_RO_ATTR(session_write_kbytes); 2657EXT4_RO_ATTR(lifetime_write_kbytes); 2658EXT4_RW_ATTR(reserved_clusters); 2659EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2660 inode_readahead_blks_store, s_inode_readahead_blks); 2661EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2662EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2663EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2664EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2665EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2666EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2667EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2668EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2669EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2670EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2671EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2672EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2673EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2674EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2675EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2676EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2677EXT4_RO_ATTR_ES_UI(errors_count, s_error_count); 2678EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time); 2679EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time); 2680 2681static struct attribute *ext4_attrs[] = { 2682 ATTR_LIST(delayed_allocation_blocks), 2683 ATTR_LIST(session_write_kbytes), 2684 ATTR_LIST(lifetime_write_kbytes), 2685 ATTR_LIST(reserved_clusters), 2686 ATTR_LIST(inode_readahead_blks), 2687 ATTR_LIST(inode_goal), 2688 ATTR_LIST(mb_stats), 2689 ATTR_LIST(mb_max_to_scan), 2690 ATTR_LIST(mb_min_to_scan), 2691 ATTR_LIST(mb_order2_req), 2692 ATTR_LIST(mb_stream_req), 2693 ATTR_LIST(mb_group_prealloc), 2694 ATTR_LIST(max_writeback_mb_bump), 2695 ATTR_LIST(extent_max_zeroout_kb), 2696 ATTR_LIST(trigger_fs_error), 2697 ATTR_LIST(err_ratelimit_interval_ms), 2698 ATTR_LIST(err_ratelimit_burst), 2699 ATTR_LIST(warning_ratelimit_interval_ms), 2700 ATTR_LIST(warning_ratelimit_burst), 2701 ATTR_LIST(msg_ratelimit_interval_ms), 2702 ATTR_LIST(msg_ratelimit_burst), 2703 ATTR_LIST(errors_count), 2704 ATTR_LIST(first_error_time), 2705 ATTR_LIST(last_error_time), 2706 NULL, 2707}; 2708 2709/* Features this copy of ext4 supports */ 2710EXT4_INFO_ATTR(lazy_itable_init); 2711EXT4_INFO_ATTR(batched_discard); 2712EXT4_INFO_ATTR(meta_bg_resize); 2713EXT4_INFO_ATTR(encryption); 2714 2715static struct attribute *ext4_feat_attrs[] = { 2716 ATTR_LIST(lazy_itable_init), 2717 ATTR_LIST(batched_discard), 2718 ATTR_LIST(meta_bg_resize), 2719 ATTR_LIST(encryption), 2720 NULL, 2721}; 2722 2723static ssize_t ext4_attr_show(struct kobject *kobj, 2724 struct attribute *attr, char *buf) 2725{ 2726 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2727 s_kobj); 2728 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2729 2730 return a->show ? a->show(a, sbi, buf) : 0; 2731} 2732 2733static ssize_t ext4_attr_store(struct kobject *kobj, 2734 struct attribute *attr, 2735 const char *buf, size_t len) 2736{ 2737 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2738 s_kobj); 2739 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2740 2741 return a->store ? a->store(a, sbi, buf, len) : 0; 2742} 2743 2744static void ext4_sb_release(struct kobject *kobj) 2745{ 2746 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2747 s_kobj); 2748 complete(&sbi->s_kobj_unregister); 2749} 2750 2751static const struct sysfs_ops ext4_attr_ops = { 2752 .show = ext4_attr_show, 2753 .store = ext4_attr_store, 2754}; 2755 2756static struct kobj_type ext4_ktype = { 2757 .default_attrs = ext4_attrs, 2758 .sysfs_ops = &ext4_attr_ops, 2759 .release = ext4_sb_release, 2760}; 2761 2762static void ext4_feat_release(struct kobject *kobj) 2763{ 2764 complete(&ext4_feat->f_kobj_unregister); 2765} 2766 2767static ssize_t ext4_feat_show(struct kobject *kobj, 2768 struct attribute *attr, char *buf) 2769{ 2770 return snprintf(buf, PAGE_SIZE, "supported\n"); 2771} 2772 2773/* 2774 * We can not use ext4_attr_show/store because it relies on the kobject 2775 * being embedded in the ext4_sb_info structure which is definitely not 2776 * true in this case. 2777 */ 2778static const struct sysfs_ops ext4_feat_ops = { 2779 .show = ext4_feat_show, 2780 .store = NULL, 2781}; 2782 2783static struct kobj_type ext4_feat_ktype = { 2784 .default_attrs = ext4_feat_attrs, 2785 .sysfs_ops = &ext4_feat_ops, 2786 .release = ext4_feat_release, 2787}; 2788 2789/* 2790 * Check whether this filesystem can be mounted based on 2791 * the features present and the RDONLY/RDWR mount requested. 2792 * Returns 1 if this filesystem can be mounted as requested, 2793 * 0 if it cannot be. 2794 */ 2795static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2796{ 2797 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2798 ext4_msg(sb, KERN_ERR, 2799 "Couldn't mount because of " 2800 "unsupported optional features (%x)", 2801 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2802 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2803 return 0; 2804 } 2805 2806 if (readonly) 2807 return 1; 2808 2809 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) { 2810 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2811 sb->s_flags |= MS_RDONLY; 2812 return 1; 2813 } 2814 2815 /* Check that feature set is OK for a read-write mount */ 2816 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2817 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2818 "unsupported optional features (%x)", 2819 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2820 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2821 return 0; 2822 } 2823 /* 2824 * Large file size enabled file system can only be mounted 2825 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2826 */ 2827 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2828 if (sizeof(blkcnt_t) < sizeof(u64)) { 2829 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2830 "cannot be mounted RDWR without " 2831 "CONFIG_LBDAF"); 2832 return 0; 2833 } 2834 } 2835 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2836 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2837 ext4_msg(sb, KERN_ERR, 2838 "Can't support bigalloc feature without " 2839 "extents feature\n"); 2840 return 0; 2841 } 2842 2843#ifndef CONFIG_QUOTA 2844 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2845 !readonly) { 2846 ext4_msg(sb, KERN_ERR, 2847 "Filesystem with quota feature cannot be mounted RDWR " 2848 "without CONFIG_QUOTA"); 2849 return 0; 2850 } 2851#endif /* CONFIG_QUOTA */ 2852 return 1; 2853} 2854 2855/* 2856 * This function is called once a day if we have errors logged 2857 * on the file system 2858 */ 2859static void print_daily_error_info(unsigned long arg) 2860{ 2861 struct super_block *sb = (struct super_block *) arg; 2862 struct ext4_sb_info *sbi; 2863 struct ext4_super_block *es; 2864 2865 sbi = EXT4_SB(sb); 2866 es = sbi->s_es; 2867 2868 if (es->s_error_count) 2869 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2870 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2871 le32_to_cpu(es->s_error_count)); 2872 if (es->s_first_error_time) { 2873 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2874 sb->s_id, le32_to_cpu(es->s_first_error_time), 2875 (int) sizeof(es->s_first_error_func), 2876 es->s_first_error_func, 2877 le32_to_cpu(es->s_first_error_line)); 2878 if (es->s_first_error_ino) 2879 printk(": inode %u", 2880 le32_to_cpu(es->s_first_error_ino)); 2881 if (es->s_first_error_block) 2882 printk(": block %llu", (unsigned long long) 2883 le64_to_cpu(es->s_first_error_block)); 2884 printk("\n"); 2885 } 2886 if (es->s_last_error_time) { 2887 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2888 sb->s_id, le32_to_cpu(es->s_last_error_time), 2889 (int) sizeof(es->s_last_error_func), 2890 es->s_last_error_func, 2891 le32_to_cpu(es->s_last_error_line)); 2892 if (es->s_last_error_ino) 2893 printk(": inode %u", 2894 le32_to_cpu(es->s_last_error_ino)); 2895 if (es->s_last_error_block) 2896 printk(": block %llu", (unsigned long long) 2897 le64_to_cpu(es->s_last_error_block)); 2898 printk("\n"); 2899 } 2900 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2901} 2902 2903/* Find next suitable group and run ext4_init_inode_table */ 2904static int ext4_run_li_request(struct ext4_li_request *elr) 2905{ 2906 struct ext4_group_desc *gdp = NULL; 2907 ext4_group_t group, ngroups; 2908 struct super_block *sb; 2909 unsigned long timeout = 0; 2910 int ret = 0; 2911 2912 sb = elr->lr_super; 2913 ngroups = EXT4_SB(sb)->s_groups_count; 2914 2915 sb_start_write(sb); 2916 for (group = elr->lr_next_group; group < ngroups; group++) { 2917 gdp = ext4_get_group_desc(sb, group, NULL); 2918 if (!gdp) { 2919 ret = 1; 2920 break; 2921 } 2922 2923 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2924 break; 2925 } 2926 2927 if (group >= ngroups) 2928 ret = 1; 2929 2930 if (!ret) { 2931 timeout = jiffies; 2932 ret = ext4_init_inode_table(sb, group, 2933 elr->lr_timeout ? 0 : 1); 2934 if (elr->lr_timeout == 0) { 2935 timeout = (jiffies - timeout) * 2936 elr->lr_sbi->s_li_wait_mult; 2937 elr->lr_timeout = timeout; 2938 } 2939 elr->lr_next_sched = jiffies + elr->lr_timeout; 2940 elr->lr_next_group = group + 1; 2941 } 2942 sb_end_write(sb); 2943 2944 return ret; 2945} 2946 2947/* 2948 * Remove lr_request from the list_request and free the 2949 * request structure. Should be called with li_list_mtx held 2950 */ 2951static void ext4_remove_li_request(struct ext4_li_request *elr) 2952{ 2953 struct ext4_sb_info *sbi; 2954 2955 if (!elr) 2956 return; 2957 2958 sbi = elr->lr_sbi; 2959 2960 list_del(&elr->lr_request); 2961 sbi->s_li_request = NULL; 2962 kfree(elr); 2963} 2964 2965static void ext4_unregister_li_request(struct super_block *sb) 2966{ 2967 mutex_lock(&ext4_li_mtx); 2968 if (!ext4_li_info) { 2969 mutex_unlock(&ext4_li_mtx); 2970 return; 2971 } 2972 2973 mutex_lock(&ext4_li_info->li_list_mtx); 2974 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2975 mutex_unlock(&ext4_li_info->li_list_mtx); 2976 mutex_unlock(&ext4_li_mtx); 2977} 2978 2979static struct task_struct *ext4_lazyinit_task; 2980 2981/* 2982 * This is the function where ext4lazyinit thread lives. It walks 2983 * through the request list searching for next scheduled filesystem. 2984 * When such a fs is found, run the lazy initialization request 2985 * (ext4_rn_li_request) and keep track of the time spend in this 2986 * function. Based on that time we compute next schedule time of 2987 * the request. When walking through the list is complete, compute 2988 * next waking time and put itself into sleep. 2989 */ 2990static int ext4_lazyinit_thread(void *arg) 2991{ 2992 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2993 struct list_head *pos, *n; 2994 struct ext4_li_request *elr; 2995 unsigned long next_wakeup, cur; 2996 2997 BUG_ON(NULL == eli); 2998 2999cont_thread: 3000 while (true) { 3001 next_wakeup = MAX_JIFFY_OFFSET; 3002 3003 mutex_lock(&eli->li_list_mtx); 3004 if (list_empty(&eli->li_request_list)) { 3005 mutex_unlock(&eli->li_list_mtx); 3006 goto exit_thread; 3007 } 3008 3009 list_for_each_safe(pos, n, &eli->li_request_list) { 3010 elr = list_entry(pos, struct ext4_li_request, 3011 lr_request); 3012 3013 if (time_after_eq(jiffies, elr->lr_next_sched)) { 3014 if (ext4_run_li_request(elr) != 0) { 3015 /* error, remove the lazy_init job */ 3016 ext4_remove_li_request(elr); 3017 continue; 3018 } 3019 } 3020 3021 if (time_before(elr->lr_next_sched, next_wakeup)) 3022 next_wakeup = elr->lr_next_sched; 3023 } 3024 mutex_unlock(&eli->li_list_mtx); 3025 3026 try_to_freeze(); 3027 3028 cur = jiffies; 3029 if ((time_after_eq(cur, next_wakeup)) || 3030 (MAX_JIFFY_OFFSET == next_wakeup)) { 3031 cond_resched(); 3032 continue; 3033 } 3034 3035 schedule_timeout_interruptible(next_wakeup - cur); 3036 3037 if (kthread_should_stop()) { 3038 ext4_clear_request_list(); 3039 goto exit_thread; 3040 } 3041 } 3042 3043exit_thread: 3044 /* 3045 * It looks like the request list is empty, but we need 3046 * to check it under the li_list_mtx lock, to prevent any 3047 * additions into it, and of course we should lock ext4_li_mtx 3048 * to atomically free the list and ext4_li_info, because at 3049 * this point another ext4 filesystem could be registering 3050 * new one. 3051 */ 3052 mutex_lock(&ext4_li_mtx); 3053 mutex_lock(&eli->li_list_mtx); 3054 if (!list_empty(&eli->li_request_list)) { 3055 mutex_unlock(&eli->li_list_mtx); 3056 mutex_unlock(&ext4_li_mtx); 3057 goto cont_thread; 3058 } 3059 mutex_unlock(&eli->li_list_mtx); 3060 kfree(ext4_li_info); 3061 ext4_li_info = NULL; 3062 mutex_unlock(&ext4_li_mtx); 3063 3064 return 0; 3065} 3066 3067static void ext4_clear_request_list(void) 3068{ 3069 struct list_head *pos, *n; 3070 struct ext4_li_request *elr; 3071 3072 mutex_lock(&ext4_li_info->li_list_mtx); 3073 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3074 elr = list_entry(pos, struct ext4_li_request, 3075 lr_request); 3076 ext4_remove_li_request(elr); 3077 } 3078 mutex_unlock(&ext4_li_info->li_list_mtx); 3079} 3080 3081static int ext4_run_lazyinit_thread(void) 3082{ 3083 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3084 ext4_li_info, "ext4lazyinit"); 3085 if (IS_ERR(ext4_lazyinit_task)) { 3086 int err = PTR_ERR(ext4_lazyinit_task); 3087 ext4_clear_request_list(); 3088 kfree(ext4_li_info); 3089 ext4_li_info = NULL; 3090 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3091 "initialization thread\n", 3092 err); 3093 return err; 3094 } 3095 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3096 return 0; 3097} 3098 3099/* 3100 * Check whether it make sense to run itable init. thread or not. 3101 * If there is at least one uninitialized inode table, return 3102 * corresponding group number, else the loop goes through all 3103 * groups and return total number of groups. 3104 */ 3105static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3106{ 3107 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3108 struct ext4_group_desc *gdp = NULL; 3109 3110 for (group = 0; group < ngroups; group++) { 3111 gdp = ext4_get_group_desc(sb, group, NULL); 3112 if (!gdp) 3113 continue; 3114 3115 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3116 break; 3117 } 3118 3119 return group; 3120} 3121 3122static int ext4_li_info_new(void) 3123{ 3124 struct ext4_lazy_init *eli = NULL; 3125 3126 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3127 if (!eli) 3128 return -ENOMEM; 3129 3130 INIT_LIST_HEAD(&eli->li_request_list); 3131 mutex_init(&eli->li_list_mtx); 3132 3133 eli->li_state |= EXT4_LAZYINIT_QUIT; 3134 3135 ext4_li_info = eli; 3136 3137 return 0; 3138} 3139 3140static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3141 ext4_group_t start) 3142{ 3143 struct ext4_sb_info *sbi = EXT4_SB(sb); 3144 struct ext4_li_request *elr; 3145 3146 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3147 if (!elr) 3148 return NULL; 3149 3150 elr->lr_super = sb; 3151 elr->lr_sbi = sbi; 3152 elr->lr_next_group = start; 3153 3154 /* 3155 * Randomize first schedule time of the request to 3156 * spread the inode table initialization requests 3157 * better. 3158 */ 3159 elr->lr_next_sched = jiffies + (prandom_u32() % 3160 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3161 return elr; 3162} 3163 3164int ext4_register_li_request(struct super_block *sb, 3165 ext4_group_t first_not_zeroed) 3166{ 3167 struct ext4_sb_info *sbi = EXT4_SB(sb); 3168 struct ext4_li_request *elr = NULL; 3169 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3170 int ret = 0; 3171 3172 mutex_lock(&ext4_li_mtx); 3173 if (sbi->s_li_request != NULL) { 3174 /* 3175 * Reset timeout so it can be computed again, because 3176 * s_li_wait_mult might have changed. 3177 */ 3178 sbi->s_li_request->lr_timeout = 0; 3179 goto out; 3180 } 3181 3182 if (first_not_zeroed == ngroups || 3183 (sb->s_flags & MS_RDONLY) || 3184 !test_opt(sb, INIT_INODE_TABLE)) 3185 goto out; 3186 3187 elr = ext4_li_request_new(sb, first_not_zeroed); 3188 if (!elr) { 3189 ret = -ENOMEM; 3190 goto out; 3191 } 3192 3193 if (NULL == ext4_li_info) { 3194 ret = ext4_li_info_new(); 3195 if (ret) 3196 goto out; 3197 } 3198 3199 mutex_lock(&ext4_li_info->li_list_mtx); 3200 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3201 mutex_unlock(&ext4_li_info->li_list_mtx); 3202 3203 sbi->s_li_request = elr; 3204 /* 3205 * set elr to NULL here since it has been inserted to 3206 * the request_list and the removal and free of it is 3207 * handled by ext4_clear_request_list from now on. 3208 */ 3209 elr = NULL; 3210 3211 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3212 ret = ext4_run_lazyinit_thread(); 3213 if (ret) 3214 goto out; 3215 } 3216out: 3217 mutex_unlock(&ext4_li_mtx); 3218 if (ret) 3219 kfree(elr); 3220 return ret; 3221} 3222 3223/* 3224 * We do not need to lock anything since this is called on 3225 * module unload. 3226 */ 3227static void ext4_destroy_lazyinit_thread(void) 3228{ 3229 /* 3230 * If thread exited earlier 3231 * there's nothing to be done. 3232 */ 3233 if (!ext4_li_info || !ext4_lazyinit_task) 3234 return; 3235 3236 kthread_stop(ext4_lazyinit_task); 3237} 3238 3239static int set_journal_csum_feature_set(struct super_block *sb) 3240{ 3241 int ret = 1; 3242 int compat, incompat; 3243 struct ext4_sb_info *sbi = EXT4_SB(sb); 3244 3245 if (ext4_has_metadata_csum(sb)) { 3246 /* journal checksum v3 */ 3247 compat = 0; 3248 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3249 } else { 3250 /* journal checksum v1 */ 3251 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3252 incompat = 0; 3253 } 3254 3255 jbd2_journal_clear_features(sbi->s_journal, 3256 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3257 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3258 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3259 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3260 ret = jbd2_journal_set_features(sbi->s_journal, 3261 compat, 0, 3262 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3263 incompat); 3264 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3265 ret = jbd2_journal_set_features(sbi->s_journal, 3266 compat, 0, 3267 incompat); 3268 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3269 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3270 } else { 3271 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3272 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3273 } 3274 3275 return ret; 3276} 3277 3278/* 3279 * Note: calculating the overhead so we can be compatible with 3280 * historical BSD practice is quite difficult in the face of 3281 * clusters/bigalloc. This is because multiple metadata blocks from 3282 * different block group can end up in the same allocation cluster. 3283 * Calculating the exact overhead in the face of clustered allocation 3284 * requires either O(all block bitmaps) in memory or O(number of block 3285 * groups**2) in time. We will still calculate the superblock for 3286 * older file systems --- and if we come across with a bigalloc file 3287 * system with zero in s_overhead_clusters the estimate will be close to 3288 * correct especially for very large cluster sizes --- but for newer 3289 * file systems, it's better to calculate this figure once at mkfs 3290 * time, and store it in the superblock. If the superblock value is 3291 * present (even for non-bigalloc file systems), we will use it. 3292 */ 3293static int count_overhead(struct super_block *sb, ext4_group_t grp, 3294 char *buf) 3295{ 3296 struct ext4_sb_info *sbi = EXT4_SB(sb); 3297 struct ext4_group_desc *gdp; 3298 ext4_fsblk_t first_block, last_block, b; 3299 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3300 int s, j, count = 0; 3301 3302 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3303 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3304 sbi->s_itb_per_group + 2); 3305 3306 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3307 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3308 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3309 for (i = 0; i < ngroups; i++) { 3310 gdp = ext4_get_group_desc(sb, i, NULL); 3311 b = ext4_block_bitmap(sb, gdp); 3312 if (b >= first_block && b <= last_block) { 3313 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3314 count++; 3315 } 3316 b = ext4_inode_bitmap(sb, gdp); 3317 if (b >= first_block && b <= last_block) { 3318 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3319 count++; 3320 } 3321 b = ext4_inode_table(sb, gdp); 3322 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3323 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3324 int c = EXT4_B2C(sbi, b - first_block); 3325 ext4_set_bit(c, buf); 3326 count++; 3327 } 3328 if (i != grp) 3329 continue; 3330 s = 0; 3331 if (ext4_bg_has_super(sb, grp)) { 3332 ext4_set_bit(s++, buf); 3333 count++; 3334 } 3335 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3336 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3337 count++; 3338 } 3339 } 3340 if (!count) 3341 return 0; 3342 return EXT4_CLUSTERS_PER_GROUP(sb) - 3343 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3344} 3345 3346/* 3347 * Compute the overhead and stash it in sbi->s_overhead 3348 */ 3349int ext4_calculate_overhead(struct super_block *sb) 3350{ 3351 struct ext4_sb_info *sbi = EXT4_SB(sb); 3352 struct ext4_super_block *es = sbi->s_es; 3353 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3354 ext4_fsblk_t overhead = 0; 3355 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3356 3357 if (!buf) 3358 return -ENOMEM; 3359 3360 /* 3361 * Compute the overhead (FS structures). This is constant 3362 * for a given filesystem unless the number of block groups 3363 * changes so we cache the previous value until it does. 3364 */ 3365 3366 /* 3367 * All of the blocks before first_data_block are overhead 3368 */ 3369 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3370 3371 /* 3372 * Add the overhead found in each block group 3373 */ 3374 for (i = 0; i < ngroups; i++) { 3375 int blks; 3376 3377 blks = count_overhead(sb, i, buf); 3378 overhead += blks; 3379 if (blks) 3380 memset(buf, 0, PAGE_SIZE); 3381 cond_resched(); 3382 } 3383 /* Add the internal journal blocks as well */ 3384 if (sbi->s_journal && !sbi->journal_bdev) 3385 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3386 3387 sbi->s_overhead = overhead; 3388 smp_wmb(); 3389 free_page((unsigned long) buf); 3390 return 0; 3391} 3392 3393 3394static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3395{ 3396 ext4_fsblk_t resv_clusters; 3397 3398 /* 3399 * There's no need to reserve anything when we aren't using extents. 3400 * The space estimates are exact, there are no unwritten extents, 3401 * hole punching doesn't need new metadata... This is needed especially 3402 * to keep ext2/3 backward compatibility. 3403 */ 3404 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3405 return 0; 3406 /* 3407 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3408 * This should cover the situations where we can not afford to run 3409 * out of space like for example punch hole, or converting 3410 * unwritten extents in delalloc path. In most cases such 3411 * allocation would require 1, or 2 blocks, higher numbers are 3412 * very rare. 3413 */ 3414 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3415 EXT4_SB(sb)->s_cluster_bits; 3416 3417 do_div(resv_clusters, 50); 3418 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3419 3420 return resv_clusters; 3421} 3422 3423 3424static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3425{ 3426 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3427 sbi->s_cluster_bits; 3428 3429 if (count >= clusters) 3430 return -EINVAL; 3431 3432 atomic64_set(&sbi->s_resv_clusters, count); 3433 return 0; 3434} 3435 3436static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3437{ 3438 char *orig_data = kstrdup(data, GFP_KERNEL); 3439 struct buffer_head *bh; 3440 struct ext4_super_block *es = NULL; 3441 struct ext4_sb_info *sbi; 3442 ext4_fsblk_t block; 3443 ext4_fsblk_t sb_block = get_sb_block(&data); 3444 ext4_fsblk_t logical_sb_block; 3445 unsigned long offset = 0; 3446 unsigned long journal_devnum = 0; 3447 unsigned long def_mount_opts; 3448 struct inode *root; 3449 char *cp; 3450 const char *descr; 3451 int ret = -ENOMEM; 3452 int blocksize, clustersize; 3453 unsigned int db_count; 3454 unsigned int i; 3455 int needs_recovery, has_huge_files, has_bigalloc; 3456 __u64 blocks_count; 3457 int err = 0; 3458 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3459 ext4_group_t first_not_zeroed; 3460 3461 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3462 if (!sbi) 3463 goto out_free_orig; 3464 3465 sbi->s_blockgroup_lock = 3466 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3467 if (!sbi->s_blockgroup_lock) { 3468 kfree(sbi); 3469 goto out_free_orig; 3470 } 3471 sb->s_fs_info = sbi; 3472 sbi->s_sb = sb; 3473 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3474 sbi->s_sb_block = sb_block; 3475 if (sb->s_bdev->bd_part) 3476 sbi->s_sectors_written_start = 3477 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3478#ifdef CONFIG_EXT4_FS_ENCRYPTION 3479 /* Modes of operations for file and directory encryption. */ 3480 sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS; 3481 sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID; 3482#endif 3483 3484 /* Cleanup superblock name */ 3485 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3486 *cp = '!'; 3487 3488 /* -EINVAL is default */ 3489 ret = -EINVAL; 3490 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3491 if (!blocksize) { 3492 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3493 goto out_fail; 3494 } 3495 3496 /* 3497 * The ext4 superblock will not be buffer aligned for other than 1kB 3498 * block sizes. We need to calculate the offset from buffer start. 3499 */ 3500 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3501 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3502 offset = do_div(logical_sb_block, blocksize); 3503 } else { 3504 logical_sb_block = sb_block; 3505 } 3506 3507 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3508 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3509 goto out_fail; 3510 } 3511 /* 3512 * Note: s_es must be initialized as soon as possible because 3513 * some ext4 macro-instructions depend on its value 3514 */ 3515 es = (struct ext4_super_block *) (bh->b_data + offset); 3516 sbi->s_es = es; 3517 sb->s_magic = le16_to_cpu(es->s_magic); 3518 if (sb->s_magic != EXT4_SUPER_MAGIC) 3519 goto cantfind_ext4; 3520 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3521 3522 /* Warn if metadata_csum and gdt_csum are both set. */ 3523 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3524 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3525 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3526 ext4_warning(sb, "metadata_csum and uninit_bg are " 3527 "redundant flags; please run fsck."); 3528 3529 /* Check for a known checksum algorithm */ 3530 if (!ext4_verify_csum_type(sb, es)) { 3531 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3532 "unknown checksum algorithm."); 3533 silent = 1; 3534 goto cantfind_ext4; 3535 } 3536 3537 /* Load the checksum driver */ 3538 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3539 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3540 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3541 if (IS_ERR(sbi->s_chksum_driver)) { 3542 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3543 ret = PTR_ERR(sbi->s_chksum_driver); 3544 sbi->s_chksum_driver = NULL; 3545 goto failed_mount; 3546 } 3547 } 3548 3549 /* Check superblock checksum */ 3550 if (!ext4_superblock_csum_verify(sb, es)) { 3551 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3552 "invalid superblock checksum. Run e2fsck?"); 3553 silent = 1; 3554 goto cantfind_ext4; 3555 } 3556 3557 /* Precompute checksum seed for all metadata */ 3558 if (ext4_has_metadata_csum(sb)) 3559 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3560 sizeof(es->s_uuid)); 3561 3562 /* Set defaults before we parse the mount options */ 3563 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3564 set_opt(sb, INIT_INODE_TABLE); 3565 if (def_mount_opts & EXT4_DEFM_DEBUG) 3566 set_opt(sb, DEBUG); 3567 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3568 set_opt(sb, GRPID); 3569 if (def_mount_opts & EXT4_DEFM_UID16) 3570 set_opt(sb, NO_UID32); 3571 /* xattr user namespace & acls are now defaulted on */ 3572 set_opt(sb, XATTR_USER); 3573#ifdef CONFIG_EXT4_FS_POSIX_ACL 3574 set_opt(sb, POSIX_ACL); 3575#endif 3576 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3577 if (ext4_has_metadata_csum(sb)) 3578 set_opt(sb, JOURNAL_CHECKSUM); 3579 3580 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3581 set_opt(sb, JOURNAL_DATA); 3582 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3583 set_opt(sb, ORDERED_DATA); 3584 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3585 set_opt(sb, WRITEBACK_DATA); 3586 3587 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3588 set_opt(sb, ERRORS_PANIC); 3589 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3590 set_opt(sb, ERRORS_CONT); 3591 else 3592 set_opt(sb, ERRORS_RO); 3593 /* block_validity enabled by default; disable with noblock_validity */ 3594 set_opt(sb, BLOCK_VALIDITY); 3595 if (def_mount_opts & EXT4_DEFM_DISCARD) 3596 set_opt(sb, DISCARD); 3597 3598 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3599 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3600 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3601 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3602 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3603 3604 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3605 set_opt(sb, BARRIER); 3606 3607 /* 3608 * enable delayed allocation by default 3609 * Use -o nodelalloc to turn it off 3610 */ 3611 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3612 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3613 set_opt(sb, DELALLOC); 3614 3615 /* 3616 * set default s_li_wait_mult for lazyinit, for the case there is 3617 * no mount option specified. 3618 */ 3619 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3620 3621 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3622 &journal_devnum, &journal_ioprio, 0)) { 3623 ext4_msg(sb, KERN_WARNING, 3624 "failed to parse options in superblock: %s", 3625 sbi->s_es->s_mount_opts); 3626 } 3627 sbi->s_def_mount_opt = sbi->s_mount_opt; 3628 if (!parse_options((char *) data, sb, &journal_devnum, 3629 &journal_ioprio, 0)) 3630 goto failed_mount; 3631 3632 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3633 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3634 "with data=journal disables delayed " 3635 "allocation and O_DIRECT support!\n"); 3636 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3637 ext4_msg(sb, KERN_ERR, "can't mount with " 3638 "both data=journal and delalloc"); 3639 goto failed_mount; 3640 } 3641 if (test_opt(sb, DIOREAD_NOLOCK)) { 3642 ext4_msg(sb, KERN_ERR, "can't mount with " 3643 "both data=journal and dioread_nolock"); 3644 goto failed_mount; 3645 } 3646 if (test_opt(sb, DAX)) { 3647 ext4_msg(sb, KERN_ERR, "can't mount with " 3648 "both data=journal and dax"); 3649 goto failed_mount; 3650 } 3651 if (test_opt(sb, DELALLOC)) 3652 clear_opt(sb, DELALLOC); 3653 } 3654 3655 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3656 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3657 3658 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3659 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3660 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3661 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3662 ext4_msg(sb, KERN_WARNING, 3663 "feature flags set on rev 0 fs, " 3664 "running e2fsck is recommended"); 3665 3666 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3667 set_opt2(sb, HURD_COMPAT); 3668 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3669 EXT4_FEATURE_INCOMPAT_64BIT)) { 3670 ext4_msg(sb, KERN_ERR, 3671 "The Hurd can't support 64-bit file systems"); 3672 goto failed_mount; 3673 } 3674 } 3675 3676 if (IS_EXT2_SB(sb)) { 3677 if (ext2_feature_set_ok(sb)) 3678 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3679 "using the ext4 subsystem"); 3680 else { 3681 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3682 "to feature incompatibilities"); 3683 goto failed_mount; 3684 } 3685 } 3686 3687 if (IS_EXT3_SB(sb)) { 3688 if (ext3_feature_set_ok(sb)) 3689 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3690 "using the ext4 subsystem"); 3691 else { 3692 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3693 "to feature incompatibilities"); 3694 goto failed_mount; 3695 } 3696 } 3697 3698 /* 3699 * Check feature flags regardless of the revision level, since we 3700 * previously didn't change the revision level when setting the flags, 3701 * so there is a chance incompat flags are set on a rev 0 filesystem. 3702 */ 3703 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3704 goto failed_mount; 3705 3706 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3707 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3708 blocksize > EXT4_MAX_BLOCK_SIZE) { 3709 ext4_msg(sb, KERN_ERR, 3710 "Unsupported filesystem blocksize %d", blocksize); 3711 goto failed_mount; 3712 } 3713 3714 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3715 if (blocksize != PAGE_SIZE) { 3716 ext4_msg(sb, KERN_ERR, 3717 "error: unsupported blocksize for dax"); 3718 goto failed_mount; 3719 } 3720 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3721 ext4_msg(sb, KERN_ERR, 3722 "error: device does not support dax"); 3723 goto failed_mount; 3724 } 3725 } 3726 3727 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) && 3728 es->s_encryption_level) { 3729 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3730 es->s_encryption_level); 3731 goto failed_mount; 3732 } 3733 3734 if (sb->s_blocksize != blocksize) { 3735 /* Validate the filesystem blocksize */ 3736 if (!sb_set_blocksize(sb, blocksize)) { 3737 ext4_msg(sb, KERN_ERR, "bad block size %d", 3738 blocksize); 3739 goto failed_mount; 3740 } 3741 3742 brelse(bh); 3743 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3744 offset = do_div(logical_sb_block, blocksize); 3745 bh = sb_bread_unmovable(sb, logical_sb_block); 3746 if (!bh) { 3747 ext4_msg(sb, KERN_ERR, 3748 "Can't read superblock on 2nd try"); 3749 goto failed_mount; 3750 } 3751 es = (struct ext4_super_block *)(bh->b_data + offset); 3752 sbi->s_es = es; 3753 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3754 ext4_msg(sb, KERN_ERR, 3755 "Magic mismatch, very weird!"); 3756 goto failed_mount; 3757 } 3758 } 3759 3760 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3761 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3762 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3763 has_huge_files); 3764 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3765 3766 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3767 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3768 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3769 } else { 3770 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3771 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3772 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3773 (!is_power_of_2(sbi->s_inode_size)) || 3774 (sbi->s_inode_size > blocksize)) { 3775 ext4_msg(sb, KERN_ERR, 3776 "unsupported inode size: %d", 3777 sbi->s_inode_size); 3778 goto failed_mount; 3779 } 3780 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3781 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3782 } 3783 3784 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3785 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3786 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3787 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3788 !is_power_of_2(sbi->s_desc_size)) { 3789 ext4_msg(sb, KERN_ERR, 3790 "unsupported descriptor size %lu", 3791 sbi->s_desc_size); 3792 goto failed_mount; 3793 } 3794 } else 3795 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3796 3797 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3798 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3799 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3800 goto cantfind_ext4; 3801 3802 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3803 if (sbi->s_inodes_per_block == 0) 3804 goto cantfind_ext4; 3805 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3806 sbi->s_inodes_per_block; 3807 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3808 sbi->s_sbh = bh; 3809 sbi->s_mount_state = le16_to_cpu(es->s_state); 3810 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3811 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3812 3813 for (i = 0; i < 4; i++) 3814 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3815 sbi->s_def_hash_version = es->s_def_hash_version; 3816 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3817 i = le32_to_cpu(es->s_flags); 3818 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3819 sbi->s_hash_unsigned = 3; 3820 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3821#ifdef __CHAR_UNSIGNED__ 3822 if (!(sb->s_flags & MS_RDONLY)) 3823 es->s_flags |= 3824 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3825 sbi->s_hash_unsigned = 3; 3826#else 3827 if (!(sb->s_flags & MS_RDONLY)) 3828 es->s_flags |= 3829 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3830#endif 3831 } 3832 } 3833 3834 /* Handle clustersize */ 3835 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3836 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3837 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3838 if (has_bigalloc) { 3839 if (clustersize < blocksize) { 3840 ext4_msg(sb, KERN_ERR, 3841 "cluster size (%d) smaller than " 3842 "block size (%d)", clustersize, blocksize); 3843 goto failed_mount; 3844 } 3845 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3846 le32_to_cpu(es->s_log_block_size); 3847 sbi->s_clusters_per_group = 3848 le32_to_cpu(es->s_clusters_per_group); 3849 if (sbi->s_clusters_per_group > blocksize * 8) { 3850 ext4_msg(sb, KERN_ERR, 3851 "#clusters per group too big: %lu", 3852 sbi->s_clusters_per_group); 3853 goto failed_mount; 3854 } 3855 if (sbi->s_blocks_per_group != 3856 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3857 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3858 "clusters per group (%lu) inconsistent", 3859 sbi->s_blocks_per_group, 3860 sbi->s_clusters_per_group); 3861 goto failed_mount; 3862 } 3863 } else { 3864 if (clustersize != blocksize) { 3865 ext4_warning(sb, "fragment/cluster size (%d) != " 3866 "block size (%d)", clustersize, 3867 blocksize); 3868 clustersize = blocksize; 3869 } 3870 if (sbi->s_blocks_per_group > blocksize * 8) { 3871 ext4_msg(sb, KERN_ERR, 3872 "#blocks per group too big: %lu", 3873 sbi->s_blocks_per_group); 3874 goto failed_mount; 3875 } 3876 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3877 sbi->s_cluster_bits = 0; 3878 } 3879 sbi->s_cluster_ratio = clustersize / blocksize; 3880 3881 if (sbi->s_inodes_per_group > blocksize * 8) { 3882 ext4_msg(sb, KERN_ERR, 3883 "#inodes per group too big: %lu", 3884 sbi->s_inodes_per_group); 3885 goto failed_mount; 3886 } 3887 3888 /* Do we have standard group size of clustersize * 8 blocks ? */ 3889 if (sbi->s_blocks_per_group == clustersize << 3) 3890 set_opt2(sb, STD_GROUP_SIZE); 3891 3892 /* 3893 * Test whether we have more sectors than will fit in sector_t, 3894 * and whether the max offset is addressable by the page cache. 3895 */ 3896 err = generic_check_addressable(sb->s_blocksize_bits, 3897 ext4_blocks_count(es)); 3898 if (err) { 3899 ext4_msg(sb, KERN_ERR, "filesystem" 3900 " too large to mount safely on this system"); 3901 if (sizeof(sector_t) < 8) 3902 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3903 goto failed_mount; 3904 } 3905 3906 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3907 goto cantfind_ext4; 3908 3909 /* check blocks count against device size */ 3910 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3911 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3912 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3913 "exceeds size of device (%llu blocks)", 3914 ext4_blocks_count(es), blocks_count); 3915 goto failed_mount; 3916 } 3917 3918 /* 3919 * It makes no sense for the first data block to be beyond the end 3920 * of the filesystem. 3921 */ 3922 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3923 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3924 "block %u is beyond end of filesystem (%llu)", 3925 le32_to_cpu(es->s_first_data_block), 3926 ext4_blocks_count(es)); 3927 goto failed_mount; 3928 } 3929 blocks_count = (ext4_blocks_count(es) - 3930 le32_to_cpu(es->s_first_data_block) + 3931 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3932 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3933 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3934 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3935 "(block count %llu, first data block %u, " 3936 "blocks per group %lu)", sbi->s_groups_count, 3937 ext4_blocks_count(es), 3938 le32_to_cpu(es->s_first_data_block), 3939 EXT4_BLOCKS_PER_GROUP(sb)); 3940 goto failed_mount; 3941 } 3942 sbi->s_groups_count = blocks_count; 3943 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3944 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3945 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3946 EXT4_DESC_PER_BLOCK(sb); 3947 sbi->s_group_desc = ext4_kvmalloc(db_count * 3948 sizeof(struct buffer_head *), 3949 GFP_KERNEL); 3950 if (sbi->s_group_desc == NULL) { 3951 ext4_msg(sb, KERN_ERR, "not enough memory"); 3952 ret = -ENOMEM; 3953 goto failed_mount; 3954 } 3955 3956 if (ext4_proc_root) 3957 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3958 3959 if (sbi->s_proc) 3960 proc_create_data("options", S_IRUGO, sbi->s_proc, 3961 &ext4_seq_options_fops, sb); 3962 3963 bgl_lock_init(sbi->s_blockgroup_lock); 3964 3965 for (i = 0; i < db_count; i++) { 3966 block = descriptor_loc(sb, logical_sb_block, i); 3967 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3968 if (!sbi->s_group_desc[i]) { 3969 ext4_msg(sb, KERN_ERR, 3970 "can't read group descriptor %d", i); 3971 db_count = i; 3972 goto failed_mount2; 3973 } 3974 } 3975 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3976 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3977 goto failed_mount2; 3978 } 3979 3980 sbi->s_gdb_count = db_count; 3981 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3982 spin_lock_init(&sbi->s_next_gen_lock); 3983 3984 setup_timer(&sbi->s_err_report, print_daily_error_info, 3985 (unsigned long) sb); 3986 3987 /* Register extent status tree shrinker */ 3988 if (ext4_es_register_shrinker(sbi)) 3989 goto failed_mount3; 3990 3991 sbi->s_stripe = ext4_get_stripe_size(sbi); 3992 sbi->s_extent_max_zeroout_kb = 32; 3993 3994 /* 3995 * set up enough so that it can read an inode 3996 */ 3997 sb->s_op = &ext4_sops; 3998 sb->s_export_op = &ext4_export_ops; 3999 sb->s_xattr = ext4_xattr_handlers; 4000#ifdef CONFIG_QUOTA 4001 sb->dq_op = &ext4_quota_operations; 4002 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 4003 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4004 else 4005 sb->s_qcop = &ext4_qctl_operations; 4006 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4007#endif 4008 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4009 4010 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4011 mutex_init(&sbi->s_orphan_lock); 4012 4013 sb->s_root = NULL; 4014 4015 needs_recovery = (es->s_last_orphan != 0 || 4016 EXT4_HAS_INCOMPAT_FEATURE(sb, 4017 EXT4_FEATURE_INCOMPAT_RECOVER)); 4018 4019 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 4020 !(sb->s_flags & MS_RDONLY)) 4021 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4022 goto failed_mount3a; 4023 4024 /* 4025 * The first inode we look at is the journal inode. Don't try 4026 * root first: it may be modified in the journal! 4027 */ 4028 if (!test_opt(sb, NOLOAD) && 4029 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4030 if (ext4_load_journal(sb, es, journal_devnum)) 4031 goto failed_mount3a; 4032 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 4033 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4034 ext4_msg(sb, KERN_ERR, "required journal recovery " 4035 "suppressed and not mounted read-only"); 4036 goto failed_mount_wq; 4037 } else { 4038 clear_opt(sb, DATA_FLAGS); 4039 sbi->s_journal = NULL; 4040 needs_recovery = 0; 4041 goto no_journal; 4042 } 4043 4044 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 4045 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4046 JBD2_FEATURE_INCOMPAT_64BIT)) { 4047 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4048 goto failed_mount_wq; 4049 } 4050 4051 if (!set_journal_csum_feature_set(sb)) { 4052 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4053 "feature set"); 4054 goto failed_mount_wq; 4055 } 4056 4057 /* We have now updated the journal if required, so we can 4058 * validate the data journaling mode. */ 4059 switch (test_opt(sb, DATA_FLAGS)) { 4060 case 0: 4061 /* No mode set, assume a default based on the journal 4062 * capabilities: ORDERED_DATA if the journal can 4063 * cope, else JOURNAL_DATA 4064 */ 4065 if (jbd2_journal_check_available_features 4066 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4067 set_opt(sb, ORDERED_DATA); 4068 else 4069 set_opt(sb, JOURNAL_DATA); 4070 break; 4071 4072 case EXT4_MOUNT_ORDERED_DATA: 4073 case EXT4_MOUNT_WRITEBACK_DATA: 4074 if (!jbd2_journal_check_available_features 4075 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4076 ext4_msg(sb, KERN_ERR, "Journal does not support " 4077 "requested data journaling mode"); 4078 goto failed_mount_wq; 4079 } 4080 default: 4081 break; 4082 } 4083 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4084 4085 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4086 4087no_journal: 4088 if (ext4_mballoc_ready) { 4089 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4090 if (!sbi->s_mb_cache) { 4091 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4092 goto failed_mount_wq; 4093 } 4094 } 4095 4096 if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) && 4097 !(sb->s_flags & MS_RDONLY) && 4098 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) { 4099 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT); 4100 ext4_commit_super(sb, 1); 4101 } 4102 4103 /* 4104 * Get the # of file system overhead blocks from the 4105 * superblock if present. 4106 */ 4107 if (es->s_overhead_clusters) 4108 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4109 else { 4110 err = ext4_calculate_overhead(sb); 4111 if (err) 4112 goto failed_mount_wq; 4113 } 4114 4115 /* 4116 * The maximum number of concurrent works can be high and 4117 * concurrency isn't really necessary. Limit it to 1. 4118 */ 4119 EXT4_SB(sb)->rsv_conversion_wq = 4120 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4121 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4122 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4123 ret = -ENOMEM; 4124 goto failed_mount4; 4125 } 4126 4127 /* 4128 * The jbd2_journal_load will have done any necessary log recovery, 4129 * so we can safely mount the rest of the filesystem now. 4130 */ 4131 4132 root = ext4_iget(sb, EXT4_ROOT_INO); 4133 if (IS_ERR(root)) { 4134 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4135 ret = PTR_ERR(root); 4136 root = NULL; 4137 goto failed_mount4; 4138 } 4139 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4140 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4141 iput(root); 4142 goto failed_mount4; 4143 } 4144 sb->s_root = d_make_root(root); 4145 if (!sb->s_root) { 4146 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4147 ret = -ENOMEM; 4148 goto failed_mount4; 4149 } 4150 4151 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4152 sb->s_flags |= MS_RDONLY; 4153 4154 /* determine the minimum size of new large inodes, if present */ 4155 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4156 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4157 EXT4_GOOD_OLD_INODE_SIZE; 4158 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4159 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4160 if (sbi->s_want_extra_isize < 4161 le16_to_cpu(es->s_want_extra_isize)) 4162 sbi->s_want_extra_isize = 4163 le16_to_cpu(es->s_want_extra_isize); 4164 if (sbi->s_want_extra_isize < 4165 le16_to_cpu(es->s_min_extra_isize)) 4166 sbi->s_want_extra_isize = 4167 le16_to_cpu(es->s_min_extra_isize); 4168 } 4169 } 4170 /* Check if enough inode space is available */ 4171 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4172 sbi->s_inode_size) { 4173 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4174 EXT4_GOOD_OLD_INODE_SIZE; 4175 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4176 "available"); 4177 } 4178 4179 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4180 if (err) { 4181 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4182 "reserved pool", ext4_calculate_resv_clusters(sb)); 4183 goto failed_mount4a; 4184 } 4185 4186 err = ext4_setup_system_zone(sb); 4187 if (err) { 4188 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4189 "zone (%d)", err); 4190 goto failed_mount4a; 4191 } 4192 4193 ext4_ext_init(sb); 4194 err = ext4_mb_init(sb); 4195 if (err) { 4196 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4197 err); 4198 goto failed_mount5; 4199 } 4200 4201 block = ext4_count_free_clusters(sb); 4202 ext4_free_blocks_count_set(sbi->s_es, 4203 EXT4_C2B(sbi, block)); 4204 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4205 GFP_KERNEL); 4206 if (!err) { 4207 unsigned long freei = ext4_count_free_inodes(sb); 4208 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4209 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4210 GFP_KERNEL); 4211 } 4212 if (!err) 4213 err = percpu_counter_init(&sbi->s_dirs_counter, 4214 ext4_count_dirs(sb), GFP_KERNEL); 4215 if (!err) 4216 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4217 GFP_KERNEL); 4218 if (err) { 4219 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4220 goto failed_mount6; 4221 } 4222 4223 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4224 if (!ext4_fill_flex_info(sb)) { 4225 ext4_msg(sb, KERN_ERR, 4226 "unable to initialize " 4227 "flex_bg meta info!"); 4228 goto failed_mount6; 4229 } 4230 4231 err = ext4_register_li_request(sb, first_not_zeroed); 4232 if (err) 4233 goto failed_mount6; 4234 4235 sbi->s_kobj.kset = ext4_kset; 4236 init_completion(&sbi->s_kobj_unregister); 4237 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4238 "%s", sb->s_id); 4239 if (err) 4240 goto failed_mount7; 4241 4242#ifdef CONFIG_QUOTA 4243 /* Enable quota usage during mount. */ 4244 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4245 !(sb->s_flags & MS_RDONLY)) { 4246 err = ext4_enable_quotas(sb); 4247 if (err) 4248 goto failed_mount8; 4249 } 4250#endif /* CONFIG_QUOTA */ 4251 4252 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4253 ext4_orphan_cleanup(sb, es); 4254 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4255 if (needs_recovery) { 4256 ext4_msg(sb, KERN_INFO, "recovery complete"); 4257 ext4_mark_recovery_complete(sb, es); 4258 } 4259 if (EXT4_SB(sb)->s_journal) { 4260 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4261 descr = " journalled data mode"; 4262 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4263 descr = " ordered data mode"; 4264 else 4265 descr = " writeback data mode"; 4266 } else 4267 descr = "out journal"; 4268 4269 if (test_opt(sb, DISCARD)) { 4270 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4271 if (!blk_queue_discard(q)) 4272 ext4_msg(sb, KERN_WARNING, 4273 "mounting with \"discard\" option, but " 4274 "the device does not support discard"); 4275 } 4276 4277 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4278 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4279 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4280 4281 if (es->s_error_count) 4282 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4283 4284 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4285 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4286 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4287 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4288 4289 kfree(orig_data); 4290 return 0; 4291 4292cantfind_ext4: 4293 if (!silent) 4294 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4295 goto failed_mount; 4296 4297#ifdef CONFIG_QUOTA 4298failed_mount8: 4299 kobject_del(&sbi->s_kobj); 4300#endif 4301failed_mount7: 4302 ext4_unregister_li_request(sb); 4303failed_mount6: 4304 ext4_mb_release(sb); 4305 if (sbi->s_flex_groups) 4306 kvfree(sbi->s_flex_groups); 4307 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4308 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4309 percpu_counter_destroy(&sbi->s_dirs_counter); 4310 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4311failed_mount5: 4312 ext4_ext_release(sb); 4313 ext4_release_system_zone(sb); 4314failed_mount4a: 4315 dput(sb->s_root); 4316 sb->s_root = NULL; 4317failed_mount4: 4318 ext4_msg(sb, KERN_ERR, "mount failed"); 4319 if (EXT4_SB(sb)->rsv_conversion_wq) 4320 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4321failed_mount_wq: 4322 if (sbi->s_journal) { 4323 jbd2_journal_destroy(sbi->s_journal); 4324 sbi->s_journal = NULL; 4325 } 4326failed_mount3a: 4327 ext4_es_unregister_shrinker(sbi); 4328failed_mount3: 4329 del_timer_sync(&sbi->s_err_report); 4330 if (sbi->s_mmp_tsk) 4331 kthread_stop(sbi->s_mmp_tsk); 4332failed_mount2: 4333 for (i = 0; i < db_count; i++) 4334 brelse(sbi->s_group_desc[i]); 4335 kvfree(sbi->s_group_desc); 4336failed_mount: 4337 if (sbi->s_chksum_driver) 4338 crypto_free_shash(sbi->s_chksum_driver); 4339 if (sbi->s_proc) { 4340 remove_proc_entry("options", sbi->s_proc); 4341 remove_proc_entry(sb->s_id, ext4_proc_root); 4342 } 4343#ifdef CONFIG_QUOTA 4344 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4345 kfree(sbi->s_qf_names[i]); 4346#endif 4347 ext4_blkdev_remove(sbi); 4348 brelse(bh); 4349out_fail: 4350 sb->s_fs_info = NULL; 4351 kfree(sbi->s_blockgroup_lock); 4352 kfree(sbi); 4353out_free_orig: 4354 kfree(orig_data); 4355 return err ? err : ret; 4356} 4357 4358/* 4359 * Setup any per-fs journal parameters now. We'll do this both on 4360 * initial mount, once the journal has been initialised but before we've 4361 * done any recovery; and again on any subsequent remount. 4362 */ 4363static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4364{ 4365 struct ext4_sb_info *sbi = EXT4_SB(sb); 4366 4367 journal->j_commit_interval = sbi->s_commit_interval; 4368 journal->j_min_batch_time = sbi->s_min_batch_time; 4369 journal->j_max_batch_time = sbi->s_max_batch_time; 4370 4371 write_lock(&journal->j_state_lock); 4372 if (test_opt(sb, BARRIER)) 4373 journal->j_flags |= JBD2_BARRIER; 4374 else 4375 journal->j_flags &= ~JBD2_BARRIER; 4376 if (test_opt(sb, DATA_ERR_ABORT)) 4377 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4378 else 4379 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4380 write_unlock(&journal->j_state_lock); 4381} 4382 4383static journal_t *ext4_get_journal(struct super_block *sb, 4384 unsigned int journal_inum) 4385{ 4386 struct inode *journal_inode; 4387 journal_t *journal; 4388 4389 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4390 4391 /* First, test for the existence of a valid inode on disk. Bad 4392 * things happen if we iget() an unused inode, as the subsequent 4393 * iput() will try to delete it. */ 4394 4395 journal_inode = ext4_iget(sb, journal_inum); 4396 if (IS_ERR(journal_inode)) { 4397 ext4_msg(sb, KERN_ERR, "no journal found"); 4398 return NULL; 4399 } 4400 if (!journal_inode->i_nlink) { 4401 make_bad_inode(journal_inode); 4402 iput(journal_inode); 4403 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4404 return NULL; 4405 } 4406 4407 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4408 journal_inode, journal_inode->i_size); 4409 if (!S_ISREG(journal_inode->i_mode)) { 4410 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4411 iput(journal_inode); 4412 return NULL; 4413 } 4414 4415 journal = jbd2_journal_init_inode(journal_inode); 4416 if (!journal) { 4417 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4418 iput(journal_inode); 4419 return NULL; 4420 } 4421 journal->j_private = sb; 4422 ext4_init_journal_params(sb, journal); 4423 return journal; 4424} 4425 4426static journal_t *ext4_get_dev_journal(struct super_block *sb, 4427 dev_t j_dev) 4428{ 4429 struct buffer_head *bh; 4430 journal_t *journal; 4431 ext4_fsblk_t start; 4432 ext4_fsblk_t len; 4433 int hblock, blocksize; 4434 ext4_fsblk_t sb_block; 4435 unsigned long offset; 4436 struct ext4_super_block *es; 4437 struct block_device *bdev; 4438 4439 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4440 4441 bdev = ext4_blkdev_get(j_dev, sb); 4442 if (bdev == NULL) 4443 return NULL; 4444 4445 blocksize = sb->s_blocksize; 4446 hblock = bdev_logical_block_size(bdev); 4447 if (blocksize < hblock) { 4448 ext4_msg(sb, KERN_ERR, 4449 "blocksize too small for journal device"); 4450 goto out_bdev; 4451 } 4452 4453 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4454 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4455 set_blocksize(bdev, blocksize); 4456 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4457 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4458 "external journal"); 4459 goto out_bdev; 4460 } 4461 4462 es = (struct ext4_super_block *) (bh->b_data + offset); 4463 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4464 !(le32_to_cpu(es->s_feature_incompat) & 4465 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4466 ext4_msg(sb, KERN_ERR, "external journal has " 4467 "bad superblock"); 4468 brelse(bh); 4469 goto out_bdev; 4470 } 4471 4472 if ((le32_to_cpu(es->s_feature_ro_compat) & 4473 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4474 es->s_checksum != ext4_superblock_csum(sb, es)) { 4475 ext4_msg(sb, KERN_ERR, "external journal has " 4476 "corrupt superblock"); 4477 brelse(bh); 4478 goto out_bdev; 4479 } 4480 4481 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4482 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4483 brelse(bh); 4484 goto out_bdev; 4485 } 4486 4487 len = ext4_blocks_count(es); 4488 start = sb_block + 1; 4489 brelse(bh); /* we're done with the superblock */ 4490 4491 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4492 start, len, blocksize); 4493 if (!journal) { 4494 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4495 goto out_bdev; 4496 } 4497 journal->j_private = sb; 4498 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4499 wait_on_buffer(journal->j_sb_buffer); 4500 if (!buffer_uptodate(journal->j_sb_buffer)) { 4501 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4502 goto out_journal; 4503 } 4504 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4505 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4506 "user (unsupported) - %d", 4507 be32_to_cpu(journal->j_superblock->s_nr_users)); 4508 goto out_journal; 4509 } 4510 EXT4_SB(sb)->journal_bdev = bdev; 4511 ext4_init_journal_params(sb, journal); 4512 return journal; 4513 4514out_journal: 4515 jbd2_journal_destroy(journal); 4516out_bdev: 4517 ext4_blkdev_put(bdev); 4518 return NULL; 4519} 4520 4521static int ext4_load_journal(struct super_block *sb, 4522 struct ext4_super_block *es, 4523 unsigned long journal_devnum) 4524{ 4525 journal_t *journal; 4526 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4527 dev_t journal_dev; 4528 int err = 0; 4529 int really_read_only; 4530 4531 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4532 4533 if (journal_devnum && 4534 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4535 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4536 "numbers have changed"); 4537 journal_dev = new_decode_dev(journal_devnum); 4538 } else 4539 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4540 4541 really_read_only = bdev_read_only(sb->s_bdev); 4542 4543 /* 4544 * Are we loading a blank journal or performing recovery after a 4545 * crash? For recovery, we need to check in advance whether we 4546 * can get read-write access to the device. 4547 */ 4548 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4549 if (sb->s_flags & MS_RDONLY) { 4550 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4551 "required on readonly filesystem"); 4552 if (really_read_only) { 4553 ext4_msg(sb, KERN_ERR, "write access " 4554 "unavailable, cannot proceed"); 4555 return -EROFS; 4556 } 4557 ext4_msg(sb, KERN_INFO, "write access will " 4558 "be enabled during recovery"); 4559 } 4560 } 4561 4562 if (journal_inum && journal_dev) { 4563 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4564 "and inode journals!"); 4565 return -EINVAL; 4566 } 4567 4568 if (journal_inum) { 4569 if (!(journal = ext4_get_journal(sb, journal_inum))) 4570 return -EINVAL; 4571 } else { 4572 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4573 return -EINVAL; 4574 } 4575 4576 if (!(journal->j_flags & JBD2_BARRIER)) 4577 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4578 4579 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4580 err = jbd2_journal_wipe(journal, !really_read_only); 4581 if (!err) { 4582 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4583 if (save) 4584 memcpy(save, ((char *) es) + 4585 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4586 err = jbd2_journal_load(journal); 4587 if (save) 4588 memcpy(((char *) es) + EXT4_S_ERR_START, 4589 save, EXT4_S_ERR_LEN); 4590 kfree(save); 4591 } 4592 4593 if (err) { 4594 ext4_msg(sb, KERN_ERR, "error loading journal"); 4595 jbd2_journal_destroy(journal); 4596 return err; 4597 } 4598 4599 EXT4_SB(sb)->s_journal = journal; 4600 ext4_clear_journal_err(sb, es); 4601 4602 if (!really_read_only && journal_devnum && 4603 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4604 es->s_journal_dev = cpu_to_le32(journal_devnum); 4605 4606 /* Make sure we flush the recovery flag to disk. */ 4607 ext4_commit_super(sb, 1); 4608 } 4609 4610 return 0; 4611} 4612 4613static int ext4_commit_super(struct super_block *sb, int sync) 4614{ 4615 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4616 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4617 int error = 0; 4618 4619 if (!sbh || block_device_ejected(sb)) 4620 return error; 4621 if (buffer_write_io_error(sbh)) { 4622 /* 4623 * Oh, dear. A previous attempt to write the 4624 * superblock failed. This could happen because the 4625 * USB device was yanked out. Or it could happen to 4626 * be a transient write error and maybe the block will 4627 * be remapped. Nothing we can do but to retry the 4628 * write and hope for the best. 4629 */ 4630 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4631 "superblock detected"); 4632 clear_buffer_write_io_error(sbh); 4633 set_buffer_uptodate(sbh); 4634 } 4635 /* 4636 * If the file system is mounted read-only, don't update the 4637 * superblock write time. This avoids updating the superblock 4638 * write time when we are mounting the root file system 4639 * read/only but we need to replay the journal; at that point, 4640 * for people who are east of GMT and who make their clock 4641 * tick in localtime for Windows bug-for-bug compatibility, 4642 * the clock is set in the future, and this will cause e2fsck 4643 * to complain and force a full file system check. 4644 */ 4645 if (!(sb->s_flags & MS_RDONLY)) 4646 es->s_wtime = cpu_to_le32(get_seconds()); 4647 if (sb->s_bdev->bd_part) 4648 es->s_kbytes_written = 4649 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4650 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4651 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4652 else 4653 es->s_kbytes_written = 4654 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4655 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4656 ext4_free_blocks_count_set(es, 4657 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4658 &EXT4_SB(sb)->s_freeclusters_counter))); 4659 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4660 es->s_free_inodes_count = 4661 cpu_to_le32(percpu_counter_sum_positive( 4662 &EXT4_SB(sb)->s_freeinodes_counter)); 4663 BUFFER_TRACE(sbh, "marking dirty"); 4664 ext4_superblock_csum_set(sb); 4665 mark_buffer_dirty(sbh); 4666 if (sync) { 4667 error = sync_dirty_buffer(sbh); 4668 if (error) 4669 return error; 4670 4671 error = buffer_write_io_error(sbh); 4672 if (error) { 4673 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4674 "superblock"); 4675 clear_buffer_write_io_error(sbh); 4676 set_buffer_uptodate(sbh); 4677 } 4678 } 4679 return error; 4680} 4681 4682/* 4683 * Have we just finished recovery? If so, and if we are mounting (or 4684 * remounting) the filesystem readonly, then we will end up with a 4685 * consistent fs on disk. Record that fact. 4686 */ 4687static void ext4_mark_recovery_complete(struct super_block *sb, 4688 struct ext4_super_block *es) 4689{ 4690 journal_t *journal = EXT4_SB(sb)->s_journal; 4691 4692 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4693 BUG_ON(journal != NULL); 4694 return; 4695 } 4696 jbd2_journal_lock_updates(journal); 4697 if (jbd2_journal_flush(journal) < 0) 4698 goto out; 4699 4700 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4701 sb->s_flags & MS_RDONLY) { 4702 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4703 ext4_commit_super(sb, 1); 4704 } 4705 4706out: 4707 jbd2_journal_unlock_updates(journal); 4708} 4709 4710/* 4711 * If we are mounting (or read-write remounting) a filesystem whose journal 4712 * has recorded an error from a previous lifetime, move that error to the 4713 * main filesystem now. 4714 */ 4715static void ext4_clear_journal_err(struct super_block *sb, 4716 struct ext4_super_block *es) 4717{ 4718 journal_t *journal; 4719 int j_errno; 4720 const char *errstr; 4721 4722 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4723 4724 journal = EXT4_SB(sb)->s_journal; 4725 4726 /* 4727 * Now check for any error status which may have been recorded in the 4728 * journal by a prior ext4_error() or ext4_abort() 4729 */ 4730 4731 j_errno = jbd2_journal_errno(journal); 4732 if (j_errno) { 4733 char nbuf[16]; 4734 4735 errstr = ext4_decode_error(sb, j_errno, nbuf); 4736 ext4_warning(sb, "Filesystem error recorded " 4737 "from previous mount: %s", errstr); 4738 ext4_warning(sb, "Marking fs in need of filesystem check."); 4739 4740 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4741 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4742 ext4_commit_super(sb, 1); 4743 4744 jbd2_journal_clear_err(journal); 4745 jbd2_journal_update_sb_errno(journal); 4746 } 4747} 4748 4749/* 4750 * Force the running and committing transactions to commit, 4751 * and wait on the commit. 4752 */ 4753int ext4_force_commit(struct super_block *sb) 4754{ 4755 journal_t *journal; 4756 4757 if (sb->s_flags & MS_RDONLY) 4758 return 0; 4759 4760 journal = EXT4_SB(sb)->s_journal; 4761 return ext4_journal_force_commit(journal); 4762} 4763 4764static int ext4_sync_fs(struct super_block *sb, int wait) 4765{ 4766 int ret = 0; 4767 tid_t target; 4768 bool needs_barrier = false; 4769 struct ext4_sb_info *sbi = EXT4_SB(sb); 4770 4771 trace_ext4_sync_fs(sb, wait); 4772 flush_workqueue(sbi->rsv_conversion_wq); 4773 /* 4774 * Writeback quota in non-journalled quota case - journalled quota has 4775 * no dirty dquots 4776 */ 4777 dquot_writeback_dquots(sb, -1); 4778 /* 4779 * Data writeback is possible w/o journal transaction, so barrier must 4780 * being sent at the end of the function. But we can skip it if 4781 * transaction_commit will do it for us. 4782 */ 4783 if (sbi->s_journal) { 4784 target = jbd2_get_latest_transaction(sbi->s_journal); 4785 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4786 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4787 needs_barrier = true; 4788 4789 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4790 if (wait) 4791 ret = jbd2_log_wait_commit(sbi->s_journal, 4792 target); 4793 } 4794 } else if (wait && test_opt(sb, BARRIER)) 4795 needs_barrier = true; 4796 if (needs_barrier) { 4797 int err; 4798 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4799 if (!ret) 4800 ret = err; 4801 } 4802 4803 return ret; 4804} 4805 4806/* 4807 * LVM calls this function before a (read-only) snapshot is created. This 4808 * gives us a chance to flush the journal completely and mark the fs clean. 4809 * 4810 * Note that only this function cannot bring a filesystem to be in a clean 4811 * state independently. It relies on upper layer to stop all data & metadata 4812 * modifications. 4813 */ 4814static int ext4_freeze(struct super_block *sb) 4815{ 4816 int error = 0; 4817 journal_t *journal; 4818 4819 if (sb->s_flags & MS_RDONLY) 4820 return 0; 4821 4822 journal = EXT4_SB(sb)->s_journal; 4823 4824 if (journal) { 4825 /* Now we set up the journal barrier. */ 4826 jbd2_journal_lock_updates(journal); 4827 4828 /* 4829 * Don't clear the needs_recovery flag if we failed to 4830 * flush the journal. 4831 */ 4832 error = jbd2_journal_flush(journal); 4833 if (error < 0) 4834 goto out; 4835 4836 /* Journal blocked and flushed, clear needs_recovery flag. */ 4837 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4838 } 4839 4840 error = ext4_commit_super(sb, 1); 4841out: 4842 if (journal) 4843 /* we rely on upper layer to stop further updates */ 4844 jbd2_journal_unlock_updates(journal); 4845 return error; 4846} 4847 4848/* 4849 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4850 * flag here, even though the filesystem is not technically dirty yet. 4851 */ 4852static int ext4_unfreeze(struct super_block *sb) 4853{ 4854 if (sb->s_flags & MS_RDONLY) 4855 return 0; 4856 4857 if (EXT4_SB(sb)->s_journal) { 4858 /* Reset the needs_recovery flag before the fs is unlocked. */ 4859 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4860 } 4861 4862 ext4_commit_super(sb, 1); 4863 return 0; 4864} 4865 4866/* 4867 * Structure to save mount options for ext4_remount's benefit 4868 */ 4869struct ext4_mount_options { 4870 unsigned long s_mount_opt; 4871 unsigned long s_mount_opt2; 4872 kuid_t s_resuid; 4873 kgid_t s_resgid; 4874 unsigned long s_commit_interval; 4875 u32 s_min_batch_time, s_max_batch_time; 4876#ifdef CONFIG_QUOTA 4877 int s_jquota_fmt; 4878 char *s_qf_names[EXT4_MAXQUOTAS]; 4879#endif 4880}; 4881 4882static int ext4_remount(struct super_block *sb, int *flags, char *data) 4883{ 4884 struct ext4_super_block *es; 4885 struct ext4_sb_info *sbi = EXT4_SB(sb); 4886 unsigned long old_sb_flags; 4887 struct ext4_mount_options old_opts; 4888 int enable_quota = 0; 4889 ext4_group_t g; 4890 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4891 int err = 0; 4892#ifdef CONFIG_QUOTA 4893 int i, j; 4894#endif 4895 char *orig_data = kstrdup(data, GFP_KERNEL); 4896 4897 /* Store the original options */ 4898 old_sb_flags = sb->s_flags; 4899 old_opts.s_mount_opt = sbi->s_mount_opt; 4900 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4901 old_opts.s_resuid = sbi->s_resuid; 4902 old_opts.s_resgid = sbi->s_resgid; 4903 old_opts.s_commit_interval = sbi->s_commit_interval; 4904 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4905 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4906#ifdef CONFIG_QUOTA 4907 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4908 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4909 if (sbi->s_qf_names[i]) { 4910 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4911 GFP_KERNEL); 4912 if (!old_opts.s_qf_names[i]) { 4913 for (j = 0; j < i; j++) 4914 kfree(old_opts.s_qf_names[j]); 4915 kfree(orig_data); 4916 return -ENOMEM; 4917 } 4918 } else 4919 old_opts.s_qf_names[i] = NULL; 4920#endif 4921 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4922 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4923 4924 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4925 err = -EINVAL; 4926 goto restore_opts; 4927 } 4928 4929 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4930 test_opt(sb, JOURNAL_CHECKSUM)) { 4931 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4932 "during remount not supported; ignoring"); 4933 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4934 } 4935 4936 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4937 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4938 ext4_msg(sb, KERN_ERR, "can't mount with " 4939 "both data=journal and delalloc"); 4940 err = -EINVAL; 4941 goto restore_opts; 4942 } 4943 if (test_opt(sb, DIOREAD_NOLOCK)) { 4944 ext4_msg(sb, KERN_ERR, "can't mount with " 4945 "both data=journal and dioread_nolock"); 4946 err = -EINVAL; 4947 goto restore_opts; 4948 } 4949 if (test_opt(sb, DAX)) { 4950 ext4_msg(sb, KERN_ERR, "can't mount with " 4951 "both data=journal and dax"); 4952 err = -EINVAL; 4953 goto restore_opts; 4954 } 4955 } 4956 4957 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4958 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4959 "dax flag with busy inodes while remounting"); 4960 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4961 } 4962 4963 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4964 ext4_abort(sb, "Abort forced by user"); 4965 4966 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4967 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4968 4969 es = sbi->s_es; 4970 4971 if (sbi->s_journal) { 4972 ext4_init_journal_params(sb, sbi->s_journal); 4973 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4974 } 4975 4976 if (*flags & MS_LAZYTIME) 4977 sb->s_flags |= MS_LAZYTIME; 4978 4979 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4980 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4981 err = -EROFS; 4982 goto restore_opts; 4983 } 4984 4985 if (*flags & MS_RDONLY) { 4986 err = sync_filesystem(sb); 4987 if (err < 0) 4988 goto restore_opts; 4989 err = dquot_suspend(sb, -1); 4990 if (err < 0) 4991 goto restore_opts; 4992 4993 /* 4994 * First of all, the unconditional stuff we have to do 4995 * to disable replay of the journal when we next remount 4996 */ 4997 sb->s_flags |= MS_RDONLY; 4998 4999 /* 5000 * OK, test if we are remounting a valid rw partition 5001 * readonly, and if so set the rdonly flag and then 5002 * mark the partition as valid again. 5003 */ 5004 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5005 (sbi->s_mount_state & EXT4_VALID_FS)) 5006 es->s_state = cpu_to_le16(sbi->s_mount_state); 5007 5008 if (sbi->s_journal) 5009 ext4_mark_recovery_complete(sb, es); 5010 } else { 5011 /* Make sure we can mount this feature set readwrite */ 5012 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5013 EXT4_FEATURE_RO_COMPAT_READONLY) || 5014 !ext4_feature_set_ok(sb, 0)) { 5015 err = -EROFS; 5016 goto restore_opts; 5017 } 5018 /* 5019 * Make sure the group descriptor checksums 5020 * are sane. If they aren't, refuse to remount r/w. 5021 */ 5022 for (g = 0; g < sbi->s_groups_count; g++) { 5023 struct ext4_group_desc *gdp = 5024 ext4_get_group_desc(sb, g, NULL); 5025 5026 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5027 ext4_msg(sb, KERN_ERR, 5028 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5029 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 5030 le16_to_cpu(gdp->bg_checksum)); 5031 err = -EINVAL; 5032 goto restore_opts; 5033 } 5034 } 5035 5036 /* 5037 * If we have an unprocessed orphan list hanging 5038 * around from a previously readonly bdev mount, 5039 * require a full umount/remount for now. 5040 */ 5041 if (es->s_last_orphan) { 5042 ext4_msg(sb, KERN_WARNING, "Couldn't " 5043 "remount RDWR because of unprocessed " 5044 "orphan inode list. Please " 5045 "umount/remount instead"); 5046 err = -EINVAL; 5047 goto restore_opts; 5048 } 5049 5050 /* 5051 * Mounting a RDONLY partition read-write, so reread 5052 * and store the current valid flag. (It may have 5053 * been changed by e2fsck since we originally mounted 5054 * the partition.) 5055 */ 5056 if (sbi->s_journal) 5057 ext4_clear_journal_err(sb, es); 5058 sbi->s_mount_state = le16_to_cpu(es->s_state); 5059 if (!ext4_setup_super(sb, es, 0)) 5060 sb->s_flags &= ~MS_RDONLY; 5061 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 5062 EXT4_FEATURE_INCOMPAT_MMP)) 5063 if (ext4_multi_mount_protect(sb, 5064 le64_to_cpu(es->s_mmp_block))) { 5065 err = -EROFS; 5066 goto restore_opts; 5067 } 5068 enable_quota = 1; 5069 } 5070 } 5071 5072 /* 5073 * Reinitialize lazy itable initialization thread based on 5074 * current settings 5075 */ 5076 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5077 ext4_unregister_li_request(sb); 5078 else { 5079 ext4_group_t first_not_zeroed; 5080 first_not_zeroed = ext4_has_uninit_itable(sb); 5081 ext4_register_li_request(sb, first_not_zeroed); 5082 } 5083 5084 ext4_setup_system_zone(sb); 5085 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5086 ext4_commit_super(sb, 1); 5087 5088#ifdef CONFIG_QUOTA 5089 /* Release old quota file names */ 5090 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5091 kfree(old_opts.s_qf_names[i]); 5092 if (enable_quota) { 5093 if (sb_any_quota_suspended(sb)) 5094 dquot_resume(sb, -1); 5095 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5096 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 5097 err = ext4_enable_quotas(sb); 5098 if (err) 5099 goto restore_opts; 5100 } 5101 } 5102#endif 5103 5104 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5105 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5106 kfree(orig_data); 5107 return 0; 5108 5109restore_opts: 5110 sb->s_flags = old_sb_flags; 5111 sbi->s_mount_opt = old_opts.s_mount_opt; 5112 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5113 sbi->s_resuid = old_opts.s_resuid; 5114 sbi->s_resgid = old_opts.s_resgid; 5115 sbi->s_commit_interval = old_opts.s_commit_interval; 5116 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5117 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5118#ifdef CONFIG_QUOTA 5119 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5120 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5121 kfree(sbi->s_qf_names[i]); 5122 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5123 } 5124#endif 5125 kfree(orig_data); 5126 return err; 5127} 5128 5129static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5130{ 5131 struct super_block *sb = dentry->d_sb; 5132 struct ext4_sb_info *sbi = EXT4_SB(sb); 5133 struct ext4_super_block *es = sbi->s_es; 5134 ext4_fsblk_t overhead = 0, resv_blocks; 5135 u64 fsid; 5136 s64 bfree; 5137 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5138 5139 if (!test_opt(sb, MINIX_DF)) 5140 overhead = sbi->s_overhead; 5141 5142 buf->f_type = EXT4_SUPER_MAGIC; 5143 buf->f_bsize = sb->s_blocksize; 5144 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5145 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5146 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5147 /* prevent underflow in case that few free space is available */ 5148 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5149 buf->f_bavail = buf->f_bfree - 5150 (ext4_r_blocks_count(es) + resv_blocks); 5151 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5152 buf->f_bavail = 0; 5153 buf->f_files = le32_to_cpu(es->s_inodes_count); 5154 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5155 buf->f_namelen = EXT4_NAME_LEN; 5156 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5157 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5158 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5159 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5160 5161 return 0; 5162} 5163 5164/* Helper function for writing quotas on sync - we need to start transaction 5165 * before quota file is locked for write. Otherwise the are possible deadlocks: 5166 * Process 1 Process 2 5167 * ext4_create() quota_sync() 5168 * jbd2_journal_start() write_dquot() 5169 * dquot_initialize() down(dqio_mutex) 5170 * down(dqio_mutex) jbd2_journal_start() 5171 * 5172 */ 5173 5174#ifdef CONFIG_QUOTA 5175 5176static inline struct inode *dquot_to_inode(struct dquot *dquot) 5177{ 5178 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5179} 5180 5181static int ext4_write_dquot(struct dquot *dquot) 5182{ 5183 int ret, err; 5184 handle_t *handle; 5185 struct inode *inode; 5186 5187 inode = dquot_to_inode(dquot); 5188 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5189 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5190 if (IS_ERR(handle)) 5191 return PTR_ERR(handle); 5192 ret = dquot_commit(dquot); 5193 err = ext4_journal_stop(handle); 5194 if (!ret) 5195 ret = err; 5196 return ret; 5197} 5198 5199static int ext4_acquire_dquot(struct dquot *dquot) 5200{ 5201 int ret, err; 5202 handle_t *handle; 5203 5204 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5205 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5206 if (IS_ERR(handle)) 5207 return PTR_ERR(handle); 5208 ret = dquot_acquire(dquot); 5209 err = ext4_journal_stop(handle); 5210 if (!ret) 5211 ret = err; 5212 return ret; 5213} 5214 5215static int ext4_release_dquot(struct dquot *dquot) 5216{ 5217 int ret, err; 5218 handle_t *handle; 5219 5220 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5221 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5222 if (IS_ERR(handle)) { 5223 /* Release dquot anyway to avoid endless cycle in dqput() */ 5224 dquot_release(dquot); 5225 return PTR_ERR(handle); 5226 } 5227 ret = dquot_release(dquot); 5228 err = ext4_journal_stop(handle); 5229 if (!ret) 5230 ret = err; 5231 return ret; 5232} 5233 5234static int ext4_mark_dquot_dirty(struct dquot *dquot) 5235{ 5236 struct super_block *sb = dquot->dq_sb; 5237 struct ext4_sb_info *sbi = EXT4_SB(sb); 5238 5239 /* Are we journaling quotas? */ 5240 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5241 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5242 dquot_mark_dquot_dirty(dquot); 5243 return ext4_write_dquot(dquot); 5244 } else { 5245 return dquot_mark_dquot_dirty(dquot); 5246 } 5247} 5248 5249static int ext4_write_info(struct super_block *sb, int type) 5250{ 5251 int ret, err; 5252 handle_t *handle; 5253 5254 /* Data block + inode block */ 5255 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5256 if (IS_ERR(handle)) 5257 return PTR_ERR(handle); 5258 ret = dquot_commit_info(sb, type); 5259 err = ext4_journal_stop(handle); 5260 if (!ret) 5261 ret = err; 5262 return ret; 5263} 5264 5265/* 5266 * Turn on quotas during mount time - we need to find 5267 * the quota file and such... 5268 */ 5269static int ext4_quota_on_mount(struct super_block *sb, int type) 5270{ 5271 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5272 EXT4_SB(sb)->s_jquota_fmt, type); 5273} 5274 5275static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5276{ 5277 struct ext4_inode_info *ei = EXT4_I(inode); 5278 5279 /* The first argument of lockdep_set_subclass has to be 5280 * *exactly* the same as the argument to init_rwsem() --- in 5281 * this case, in init_once() --- or lockdep gets unhappy 5282 * because the name of the lock is set using the 5283 * stringification of the argument to init_rwsem(). 5284 */ 5285 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5286 lockdep_set_subclass(&ei->i_data_sem, subclass); 5287} 5288 5289/* 5290 * Standard function to be called on quota_on 5291 */ 5292static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5293 struct path *path) 5294{ 5295 int err; 5296 5297 if (!test_opt(sb, QUOTA)) 5298 return -EINVAL; 5299 5300 /* Quotafile not on the same filesystem? */ 5301 if (path->dentry->d_sb != sb) 5302 return -EXDEV; 5303 /* Journaling quota? */ 5304 if (EXT4_SB(sb)->s_qf_names[type]) { 5305 /* Quotafile not in fs root? */ 5306 if (path->dentry->d_parent != sb->s_root) 5307 ext4_msg(sb, KERN_WARNING, 5308 "Quota file not on filesystem root. " 5309 "Journaled quota will not work"); 5310 } 5311 5312 /* 5313 * When we journal data on quota file, we have to flush journal to see 5314 * all updates to the file when we bypass pagecache... 5315 */ 5316 if (EXT4_SB(sb)->s_journal && 5317 ext4_should_journal_data(d_inode(path->dentry))) { 5318 /* 5319 * We don't need to lock updates but journal_flush() could 5320 * otherwise be livelocked... 5321 */ 5322 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5323 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5324 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5325 if (err) 5326 return err; 5327 } 5328 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5329 err = dquot_quota_on(sb, type, format_id, path); 5330 if (err) 5331 lockdep_set_quota_inode(path->dentry->d_inode, 5332 I_DATA_SEM_NORMAL); 5333 return err; 5334} 5335 5336static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5337 unsigned int flags) 5338{ 5339 int err; 5340 struct inode *qf_inode; 5341 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5342 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5343 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5344 }; 5345 5346 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5347 5348 if (!qf_inums[type]) 5349 return -EPERM; 5350 5351 qf_inode = ext4_iget(sb, qf_inums[type]); 5352 if (IS_ERR(qf_inode)) { 5353 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5354 return PTR_ERR(qf_inode); 5355 } 5356 5357 /* Don't account quota for quota files to avoid recursion */ 5358 qf_inode->i_flags |= S_NOQUOTA; 5359 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5360 err = dquot_enable(qf_inode, type, format_id, flags); 5361 iput(qf_inode); 5362 if (err) 5363 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5364 5365 return err; 5366} 5367 5368/* Enable usage tracking for all quota types. */ 5369static int ext4_enable_quotas(struct super_block *sb) 5370{ 5371 int type, err = 0; 5372 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5373 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5374 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5375 }; 5376 5377 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5378 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5379 if (qf_inums[type]) { 5380 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5381 DQUOT_USAGE_ENABLED); 5382 if (err) { 5383 ext4_warning(sb, 5384 "Failed to enable quota tracking " 5385 "(type=%d, err=%d). Please run " 5386 "e2fsck to fix.", type, err); 5387 return err; 5388 } 5389 } 5390 } 5391 return 0; 5392} 5393 5394static int ext4_quota_off(struct super_block *sb, int type) 5395{ 5396 struct inode *inode = sb_dqopt(sb)->files[type]; 5397 handle_t *handle; 5398 5399 /* Force all delayed allocation blocks to be allocated. 5400 * Caller already holds s_umount sem */ 5401 if (test_opt(sb, DELALLOC)) 5402 sync_filesystem(sb); 5403 5404 if (!inode) 5405 goto out; 5406 5407 /* Update modification times of quota files when userspace can 5408 * start looking at them */ 5409 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5410 if (IS_ERR(handle)) 5411 goto out; 5412 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5413 ext4_mark_inode_dirty(handle, inode); 5414 ext4_journal_stop(handle); 5415 5416out: 5417 return dquot_quota_off(sb, type); 5418} 5419 5420/* Read data from quotafile - avoid pagecache and such because we cannot afford 5421 * acquiring the locks... As quota files are never truncated and quota code 5422 * itself serializes the operations (and no one else should touch the files) 5423 * we don't have to be afraid of races */ 5424static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5425 size_t len, loff_t off) 5426{ 5427 struct inode *inode = sb_dqopt(sb)->files[type]; 5428 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5429 int offset = off & (sb->s_blocksize - 1); 5430 int tocopy; 5431 size_t toread; 5432 struct buffer_head *bh; 5433 loff_t i_size = i_size_read(inode); 5434 5435 if (off > i_size) 5436 return 0; 5437 if (off+len > i_size) 5438 len = i_size-off; 5439 toread = len; 5440 while (toread > 0) { 5441 tocopy = sb->s_blocksize - offset < toread ? 5442 sb->s_blocksize - offset : toread; 5443 bh = ext4_bread(NULL, inode, blk, 0); 5444 if (IS_ERR(bh)) 5445 return PTR_ERR(bh); 5446 if (!bh) /* A hole? */ 5447 memset(data, 0, tocopy); 5448 else 5449 memcpy(data, bh->b_data+offset, tocopy); 5450 brelse(bh); 5451 offset = 0; 5452 toread -= tocopy; 5453 data += tocopy; 5454 blk++; 5455 } 5456 return len; 5457} 5458 5459/* Write to quotafile (we know the transaction is already started and has 5460 * enough credits) */ 5461static ssize_t ext4_quota_write(struct super_block *sb, int type, 5462 const char *data, size_t len, loff_t off) 5463{ 5464 struct inode *inode = sb_dqopt(sb)->files[type]; 5465 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5466 int err, offset = off & (sb->s_blocksize - 1); 5467 struct buffer_head *bh; 5468 handle_t *handle = journal_current_handle(); 5469 5470 if (EXT4_SB(sb)->s_journal && !handle) { 5471 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5472 " cancelled because transaction is not started", 5473 (unsigned long long)off, (unsigned long long)len); 5474 return -EIO; 5475 } 5476 /* 5477 * Since we account only one data block in transaction credits, 5478 * then it is impossible to cross a block boundary. 5479 */ 5480 if (sb->s_blocksize - offset < len) { 5481 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5482 " cancelled because not block aligned", 5483 (unsigned long long)off, (unsigned long long)len); 5484 return -EIO; 5485 } 5486 5487 bh = ext4_bread(handle, inode, blk, 1); 5488 if (IS_ERR(bh)) 5489 return PTR_ERR(bh); 5490 if (!bh) 5491 goto out; 5492 BUFFER_TRACE(bh, "get write access"); 5493 err = ext4_journal_get_write_access(handle, bh); 5494 if (err) { 5495 brelse(bh); 5496 return err; 5497 } 5498 lock_buffer(bh); 5499 memcpy(bh->b_data+offset, data, len); 5500 flush_dcache_page(bh->b_page); 5501 unlock_buffer(bh); 5502 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5503 brelse(bh); 5504out: 5505 if (inode->i_size < off + len) { 5506 i_size_write(inode, off + len); 5507 EXT4_I(inode)->i_disksize = inode->i_size; 5508 ext4_mark_inode_dirty(handle, inode); 5509 } 5510 return len; 5511} 5512 5513#endif 5514 5515static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5516 const char *dev_name, void *data) 5517{ 5518 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5519} 5520 5521#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5522static inline void register_as_ext2(void) 5523{ 5524 int err = register_filesystem(&ext2_fs_type); 5525 if (err) 5526 printk(KERN_WARNING 5527 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5528} 5529 5530static inline void unregister_as_ext2(void) 5531{ 5532 unregister_filesystem(&ext2_fs_type); 5533} 5534 5535static inline int ext2_feature_set_ok(struct super_block *sb) 5536{ 5537 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5538 return 0; 5539 if (sb->s_flags & MS_RDONLY) 5540 return 1; 5541 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5542 return 0; 5543 return 1; 5544} 5545#else 5546static inline void register_as_ext2(void) { } 5547static inline void unregister_as_ext2(void) { } 5548static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5549#endif 5550 5551#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5552static inline void register_as_ext3(void) 5553{ 5554 int err = register_filesystem(&ext3_fs_type); 5555 if (err) 5556 printk(KERN_WARNING 5557 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5558} 5559 5560static inline void unregister_as_ext3(void) 5561{ 5562 unregister_filesystem(&ext3_fs_type); 5563} 5564 5565static inline int ext3_feature_set_ok(struct super_block *sb) 5566{ 5567 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5568 return 0; 5569 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5570 return 0; 5571 if (sb->s_flags & MS_RDONLY) 5572 return 1; 5573 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5574 return 0; 5575 return 1; 5576} 5577#else 5578static inline void register_as_ext3(void) { } 5579static inline void unregister_as_ext3(void) { } 5580static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5581#endif 5582 5583static struct file_system_type ext4_fs_type = { 5584 .owner = THIS_MODULE, 5585 .name = "ext4", 5586 .mount = ext4_mount, 5587 .kill_sb = kill_block_super, 5588 .fs_flags = FS_REQUIRES_DEV, 5589}; 5590MODULE_ALIAS_FS("ext4"); 5591 5592static int __init ext4_init_feat_adverts(void) 5593{ 5594 struct ext4_features *ef; 5595 int ret = -ENOMEM; 5596 5597 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5598 if (!ef) 5599 goto out; 5600 5601 ef->f_kobj.kset = ext4_kset; 5602 init_completion(&ef->f_kobj_unregister); 5603 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5604 "features"); 5605 if (ret) { 5606 kfree(ef); 5607 goto out; 5608 } 5609 5610 ext4_feat = ef; 5611 ret = 0; 5612out: 5613 return ret; 5614} 5615 5616static void ext4_exit_feat_adverts(void) 5617{ 5618 kobject_put(&ext4_feat->f_kobj); 5619 wait_for_completion(&ext4_feat->f_kobj_unregister); 5620 kfree(ext4_feat); 5621} 5622 5623/* Shared across all ext4 file systems */ 5624wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5625struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5626 5627static int __init ext4_init_fs(void) 5628{ 5629 int i, err; 5630 5631 ext4_li_info = NULL; 5632 mutex_init(&ext4_li_mtx); 5633 5634 /* Build-time check for flags consistency */ 5635 ext4_check_flag_values(); 5636 5637 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5638 mutex_init(&ext4__aio_mutex[i]); 5639 init_waitqueue_head(&ext4__ioend_wq[i]); 5640 } 5641 5642 err = ext4_init_es(); 5643 if (err) 5644 return err; 5645 5646 err = ext4_init_pageio(); 5647 if (err) 5648 goto out7; 5649 5650 err = ext4_init_system_zone(); 5651 if (err) 5652 goto out6; 5653 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5654 if (!ext4_kset) { 5655 err = -ENOMEM; 5656 goto out5; 5657 } 5658 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5659 5660 err = ext4_init_feat_adverts(); 5661 if (err) 5662 goto out4; 5663 5664 err = ext4_init_mballoc(); 5665 if (err) 5666 goto out2; 5667 else 5668 ext4_mballoc_ready = 1; 5669 err = init_inodecache(); 5670 if (err) 5671 goto out1; 5672 register_as_ext3(); 5673 register_as_ext2(); 5674 err = register_filesystem(&ext4_fs_type); 5675 if (err) 5676 goto out; 5677 5678 return 0; 5679out: 5680 unregister_as_ext2(); 5681 unregister_as_ext3(); 5682 destroy_inodecache(); 5683out1: 5684 ext4_mballoc_ready = 0; 5685 ext4_exit_mballoc(); 5686out2: 5687 ext4_exit_feat_adverts(); 5688out4: 5689 if (ext4_proc_root) 5690 remove_proc_entry("fs/ext4", NULL); 5691 kset_unregister(ext4_kset); 5692out5: 5693 ext4_exit_system_zone(); 5694out6: 5695 ext4_exit_pageio(); 5696out7: 5697 ext4_exit_es(); 5698 5699 return err; 5700} 5701 5702static void __exit ext4_exit_fs(void) 5703{ 5704 ext4_destroy_lazyinit_thread(); 5705 unregister_as_ext2(); 5706 unregister_as_ext3(); 5707 unregister_filesystem(&ext4_fs_type); 5708 destroy_inodecache(); 5709 ext4_exit_mballoc(); 5710 ext4_exit_feat_adverts(); 5711 remove_proc_entry("fs/ext4", NULL); 5712 kset_unregister(ext4_kset); 5713 ext4_exit_system_zone(); 5714 ext4_exit_pageio(); 5715 ext4_exit_es(); 5716} 5717 5718MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5719MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5720MODULE_LICENSE("GPL"); 5721module_init(ext4_init_fs) 5722module_exit(ext4_exit_fs) 5723