1/* 2 * linux/fs/ext3/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000 23 */ 24 25#include <linux/highuid.h> 26#include <linux/quotaops.h> 27#include <linux/writeback.h> 28#include <linux/mpage.h> 29#include <linux/namei.h> 30#include <linux/uio.h> 31#include "ext3.h" 32#include "xattr.h" 33#include "acl.h" 34 35static int ext3_writepage_trans_blocks(struct inode *inode); 36static int ext3_block_truncate_page(struct inode *inode, loff_t from); 37 38/* 39 * Test whether an inode is a fast symlink. 40 */ 41static int ext3_inode_is_fast_symlink(struct inode *inode) 42{ 43 int ea_blocks = EXT3_I(inode)->i_file_acl ? 44 (inode->i_sb->s_blocksize >> 9) : 0; 45 46 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 47} 48 49/* 50 * The ext3 forget function must perform a revoke if we are freeing data 51 * which has been journaled. Metadata (eg. indirect blocks) must be 52 * revoked in all cases. 53 * 54 * "bh" may be NULL: a metadata block may have been freed from memory 55 * but there may still be a record of it in the journal, and that record 56 * still needs to be revoked. 57 */ 58int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode, 59 struct buffer_head *bh, ext3_fsblk_t blocknr) 60{ 61 int err; 62 63 might_sleep(); 64 65 trace_ext3_forget(inode, is_metadata, blocknr); 66 BUFFER_TRACE(bh, "enter"); 67 68 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 69 "data mode %lx\n", 70 bh, is_metadata, inode->i_mode, 71 test_opt(inode->i_sb, DATA_FLAGS)); 72 73 /* Never use the revoke function if we are doing full data 74 * journaling: there is no need to, and a V1 superblock won't 75 * support it. Otherwise, only skip the revoke on un-journaled 76 * data blocks. */ 77 78 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA || 79 (!is_metadata && !ext3_should_journal_data(inode))) { 80 if (bh) { 81 BUFFER_TRACE(bh, "call journal_forget"); 82 return ext3_journal_forget(handle, bh); 83 } 84 return 0; 85 } 86 87 /* 88 * data!=journal && (is_metadata || should_journal_data(inode)) 89 */ 90 BUFFER_TRACE(bh, "call ext3_journal_revoke"); 91 err = ext3_journal_revoke(handle, blocknr, bh); 92 if (err) 93 ext3_abort(inode->i_sb, __func__, 94 "error %d when attempting revoke", err); 95 BUFFER_TRACE(bh, "exit"); 96 return err; 97} 98 99/* 100 * Work out how many blocks we need to proceed with the next chunk of a 101 * truncate transaction. 102 */ 103static unsigned long blocks_for_truncate(struct inode *inode) 104{ 105 unsigned long needed; 106 107 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 108 109 /* Give ourselves just enough room to cope with inodes in which 110 * i_blocks is corrupt: we've seen disk corruptions in the past 111 * which resulted in random data in an inode which looked enough 112 * like a regular file for ext3 to try to delete it. Things 113 * will go a bit crazy if that happens, but at least we should 114 * try not to panic the whole kernel. */ 115 if (needed < 2) 116 needed = 2; 117 118 /* But we need to bound the transaction so we don't overflow the 119 * journal. */ 120 if (needed > EXT3_MAX_TRANS_DATA) 121 needed = EXT3_MAX_TRANS_DATA; 122 123 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 124} 125 126/* 127 * Truncate transactions can be complex and absolutely huge. So we need to 128 * be able to restart the transaction at a conventient checkpoint to make 129 * sure we don't overflow the journal. 130 * 131 * start_transaction gets us a new handle for a truncate transaction, 132 * and extend_transaction tries to extend the existing one a bit. If 133 * extend fails, we need to propagate the failure up and restart the 134 * transaction in the top-level truncate loop. --sct 135 */ 136static handle_t *start_transaction(struct inode *inode) 137{ 138 handle_t *result; 139 140 result = ext3_journal_start(inode, blocks_for_truncate(inode)); 141 if (!IS_ERR(result)) 142 return result; 143 144 ext3_std_error(inode->i_sb, PTR_ERR(result)); 145 return result; 146} 147 148/* 149 * Try to extend this transaction for the purposes of truncation. 150 * 151 * Returns 0 if we managed to create more room. If we can't create more 152 * room, and the transaction must be restarted we return 1. 153 */ 154static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 155{ 156 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS) 157 return 0; 158 if (!ext3_journal_extend(handle, blocks_for_truncate(inode))) 159 return 0; 160 return 1; 161} 162 163/* 164 * Restart the transaction associated with *handle. This does a commit, 165 * so before we call here everything must be consistently dirtied against 166 * this transaction. 167 */ 168static int truncate_restart_transaction(handle_t *handle, struct inode *inode) 169{ 170 int ret; 171 172 jbd_debug(2, "restarting handle %p\n", handle); 173 /* 174 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle 175 * At this moment, get_block can be called only for blocks inside 176 * i_size since page cache has been already dropped and writes are 177 * blocked by i_mutex. So we can safely drop the truncate_mutex. 178 */ 179 mutex_unlock(&EXT3_I(inode)->truncate_mutex); 180 ret = ext3_journal_restart(handle, blocks_for_truncate(inode)); 181 mutex_lock(&EXT3_I(inode)->truncate_mutex); 182 return ret; 183} 184 185/* 186 * Called at inode eviction from icache 187 */ 188void ext3_evict_inode (struct inode *inode) 189{ 190 struct ext3_inode_info *ei = EXT3_I(inode); 191 struct ext3_block_alloc_info *rsv; 192 handle_t *handle; 193 int want_delete = 0; 194 195 trace_ext3_evict_inode(inode); 196 if (!inode->i_nlink && !is_bad_inode(inode)) { 197 dquot_initialize(inode); 198 want_delete = 1; 199 } 200 201 /* 202 * When journalling data dirty buffers are tracked only in the journal. 203 * So although mm thinks everything is clean and ready for reaping the 204 * inode might still have some pages to write in the running 205 * transaction or waiting to be checkpointed. Thus calling 206 * journal_invalidatepage() (via truncate_inode_pages()) to discard 207 * these buffers can cause data loss. Also even if we did not discard 208 * these buffers, we would have no way to find them after the inode 209 * is reaped and thus user could see stale data if he tries to read 210 * them before the transaction is checkpointed. So be careful and 211 * force everything to disk here... We use ei->i_datasync_tid to 212 * store the newest transaction containing inode's data. 213 * 214 * Note that directories do not have this problem because they don't 215 * use page cache. 216 * 217 * The s_journal check handles the case when ext3_get_journal() fails 218 * and puts the journal inode. 219 */ 220 if (inode->i_nlink && ext3_should_journal_data(inode) && 221 EXT3_SB(inode->i_sb)->s_journal && 222 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 223 inode->i_ino != EXT3_JOURNAL_INO) { 224 tid_t commit_tid = atomic_read(&ei->i_datasync_tid); 225 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal; 226 227 log_start_commit(journal, commit_tid); 228 log_wait_commit(journal, commit_tid); 229 filemap_write_and_wait(&inode->i_data); 230 } 231 truncate_inode_pages_final(&inode->i_data); 232 233 ext3_discard_reservation(inode); 234 rsv = ei->i_block_alloc_info; 235 ei->i_block_alloc_info = NULL; 236 if (unlikely(rsv)) 237 kfree(rsv); 238 239 if (!want_delete) 240 goto no_delete; 241 242 handle = start_transaction(inode); 243 if (IS_ERR(handle)) { 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext3_orphan_del(NULL, inode); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 handle->h_sync = 1; 255 inode->i_size = 0; 256 if (inode->i_blocks) 257 ext3_truncate(inode); 258 /* 259 * Kill off the orphan record created when the inode lost the last 260 * link. Note that ext3_orphan_del() has to be able to cope with the 261 * deletion of a non-existent orphan - ext3_truncate() could 262 * have removed the record. 263 */ 264 ext3_orphan_del(handle, inode); 265 ei->i_dtime = get_seconds(); 266 267 /* 268 * One subtle ordering requirement: if anything has gone wrong 269 * (transaction abort, IO errors, whatever), then we can still 270 * do these next steps (the fs will already have been marked as 271 * having errors), but we can't free the inode if the mark_dirty 272 * fails. 273 */ 274 if (ext3_mark_inode_dirty(handle, inode)) { 275 /* If that failed, just dquot_drop() and be done with that */ 276 dquot_drop(inode); 277 clear_inode(inode); 278 } else { 279 ext3_xattr_delete_inode(handle, inode); 280 dquot_free_inode(inode); 281 dquot_drop(inode); 282 clear_inode(inode); 283 ext3_free_inode(handle, inode); 284 } 285 ext3_journal_stop(handle); 286 return; 287no_delete: 288 clear_inode(inode); 289 dquot_drop(inode); 290} 291 292typedef struct { 293 __le32 *p; 294 __le32 key; 295 struct buffer_head *bh; 296} Indirect; 297 298static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 299{ 300 p->key = *(p->p = v); 301 p->bh = bh; 302} 303 304static int verify_chain(Indirect *from, Indirect *to) 305{ 306 while (from <= to && from->key == *from->p) 307 from++; 308 return (from > to); 309} 310 311/** 312 * ext3_block_to_path - parse the block number into array of offsets 313 * @inode: inode in question (we are only interested in its superblock) 314 * @i_block: block number to be parsed 315 * @offsets: array to store the offsets in 316 * @boundary: set this non-zero if the referred-to block is likely to be 317 * followed (on disk) by an indirect block. 318 * 319 * To store the locations of file's data ext3 uses a data structure common 320 * for UNIX filesystems - tree of pointers anchored in the inode, with 321 * data blocks at leaves and indirect blocks in intermediate nodes. 322 * This function translates the block number into path in that tree - 323 * return value is the path length and @offsets[n] is the offset of 324 * pointer to (n+1)th node in the nth one. If @block is out of range 325 * (negative or too large) warning is printed and zero returned. 326 * 327 * Note: function doesn't find node addresses, so no IO is needed. All 328 * we need to know is the capacity of indirect blocks (taken from the 329 * inode->i_sb). 330 */ 331 332/* 333 * Portability note: the last comparison (check that we fit into triple 334 * indirect block) is spelled differently, because otherwise on an 335 * architecture with 32-bit longs and 8Kb pages we might get into trouble 336 * if our filesystem had 8Kb blocks. We might use long long, but that would 337 * kill us on x86. Oh, well, at least the sign propagation does not matter - 338 * i_block would have to be negative in the very beginning, so we would not 339 * get there at all. 340 */ 341 342static int ext3_block_to_path(struct inode *inode, 343 long i_block, int offsets[4], int *boundary) 344{ 345 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb); 346 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb); 347 const long direct_blocks = EXT3_NDIR_BLOCKS, 348 indirect_blocks = ptrs, 349 double_blocks = (1 << (ptrs_bits * 2)); 350 int n = 0; 351 int final = 0; 352 353 if (i_block < 0) { 354 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0"); 355 } else if (i_block < direct_blocks) { 356 offsets[n++] = i_block; 357 final = direct_blocks; 358 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 359 offsets[n++] = EXT3_IND_BLOCK; 360 offsets[n++] = i_block; 361 final = ptrs; 362 } else if ((i_block -= indirect_blocks) < double_blocks) { 363 offsets[n++] = EXT3_DIND_BLOCK; 364 offsets[n++] = i_block >> ptrs_bits; 365 offsets[n++] = i_block & (ptrs - 1); 366 final = ptrs; 367 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 368 offsets[n++] = EXT3_TIND_BLOCK; 369 offsets[n++] = i_block >> (ptrs_bits * 2); 370 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 371 offsets[n++] = i_block & (ptrs - 1); 372 final = ptrs; 373 } else { 374 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big"); 375 } 376 if (boundary) 377 *boundary = final - 1 - (i_block & (ptrs - 1)); 378 return n; 379} 380 381/** 382 * ext3_get_branch - read the chain of indirect blocks leading to data 383 * @inode: inode in question 384 * @depth: depth of the chain (1 - direct pointer, etc.) 385 * @offsets: offsets of pointers in inode/indirect blocks 386 * @chain: place to store the result 387 * @err: here we store the error value 388 * 389 * Function fills the array of triples <key, p, bh> and returns %NULL 390 * if everything went OK or the pointer to the last filled triple 391 * (incomplete one) otherwise. Upon the return chain[i].key contains 392 * the number of (i+1)-th block in the chain (as it is stored in memory, 393 * i.e. little-endian 32-bit), chain[i].p contains the address of that 394 * number (it points into struct inode for i==0 and into the bh->b_data 395 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 396 * block for i>0 and NULL for i==0. In other words, it holds the block 397 * numbers of the chain, addresses they were taken from (and where we can 398 * verify that chain did not change) and buffer_heads hosting these 399 * numbers. 400 * 401 * Function stops when it stumbles upon zero pointer (absent block) 402 * (pointer to last triple returned, *@err == 0) 403 * or when it gets an IO error reading an indirect block 404 * (ditto, *@err == -EIO) 405 * or when it notices that chain had been changed while it was reading 406 * (ditto, *@err == -EAGAIN) 407 * or when it reads all @depth-1 indirect blocks successfully and finds 408 * the whole chain, all way to the data (returns %NULL, *err == 0). 409 */ 410static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets, 411 Indirect chain[4], int *err) 412{ 413 struct super_block *sb = inode->i_sb; 414 Indirect *p = chain; 415 struct buffer_head *bh; 416 417 *err = 0; 418 /* i_data is not going away, no lock needed */ 419 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets); 420 if (!p->key) 421 goto no_block; 422 while (--depth) { 423 bh = sb_bread(sb, le32_to_cpu(p->key)); 424 if (!bh) 425 goto failure; 426 /* Reader: pointers */ 427 if (!verify_chain(chain, p)) 428 goto changed; 429 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 430 /* Reader: end */ 431 if (!p->key) 432 goto no_block; 433 } 434 return NULL; 435 436changed: 437 brelse(bh); 438 *err = -EAGAIN; 439 goto no_block; 440failure: 441 *err = -EIO; 442no_block: 443 return p; 444} 445 446/** 447 * ext3_find_near - find a place for allocation with sufficient locality 448 * @inode: owner 449 * @ind: descriptor of indirect block. 450 * 451 * This function returns the preferred place for block allocation. 452 * It is used when heuristic for sequential allocation fails. 453 * Rules are: 454 * + if there is a block to the left of our position - allocate near it. 455 * + if pointer will live in indirect block - allocate near that block. 456 * + if pointer will live in inode - allocate in the same 457 * cylinder group. 458 * 459 * In the latter case we colour the starting block by the callers PID to 460 * prevent it from clashing with concurrent allocations for a different inode 461 * in the same block group. The PID is used here so that functionally related 462 * files will be close-by on-disk. 463 * 464 * Caller must make sure that @ind is valid and will stay that way. 465 */ 466static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind) 467{ 468 struct ext3_inode_info *ei = EXT3_I(inode); 469 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 470 __le32 *p; 471 ext3_fsblk_t bg_start; 472 ext3_grpblk_t colour; 473 474 /* Try to find previous block */ 475 for (p = ind->p - 1; p >= start; p--) { 476 if (*p) 477 return le32_to_cpu(*p); 478 } 479 480 /* No such thing, so let's try location of indirect block */ 481 if (ind->bh) 482 return ind->bh->b_blocknr; 483 484 /* 485 * It is going to be referred to from the inode itself? OK, just put it 486 * into the same cylinder group then. 487 */ 488 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group); 489 colour = (current->pid % 16) * 490 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16); 491 return bg_start + colour; 492} 493 494/** 495 * ext3_find_goal - find a preferred place for allocation. 496 * @inode: owner 497 * @block: block we want 498 * @partial: pointer to the last triple within a chain 499 * 500 * Normally this function find the preferred place for block allocation, 501 * returns it. 502 */ 503 504static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block, 505 Indirect *partial) 506{ 507 struct ext3_block_alloc_info *block_i; 508 509 block_i = EXT3_I(inode)->i_block_alloc_info; 510 511 /* 512 * try the heuristic for sequential allocation, 513 * failing that at least try to get decent locality. 514 */ 515 if (block_i && (block == block_i->last_alloc_logical_block + 1) 516 && (block_i->last_alloc_physical_block != 0)) { 517 return block_i->last_alloc_physical_block + 1; 518 } 519 520 return ext3_find_near(inode, partial); 521} 522 523/** 524 * ext3_blks_to_allocate - Look up the block map and count the number 525 * of direct blocks need to be allocated for the given branch. 526 * 527 * @branch: chain of indirect blocks 528 * @k: number of blocks need for indirect blocks 529 * @blks: number of data blocks to be mapped. 530 * @blocks_to_boundary: the offset in the indirect block 531 * 532 * return the total number of blocks to be allocate, including the 533 * direct and indirect blocks. 534 */ 535static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 536 int blocks_to_boundary) 537{ 538 unsigned long count = 0; 539 540 /* 541 * Simple case, [t,d]Indirect block(s) has not allocated yet 542 * then it's clear blocks on that path have not allocated 543 */ 544 if (k > 0) { 545 /* right now we don't handle cross boundary allocation */ 546 if (blks < blocks_to_boundary + 1) 547 count += blks; 548 else 549 count += blocks_to_boundary + 1; 550 return count; 551 } 552 553 count++; 554 while (count < blks && count <= blocks_to_boundary && 555 le32_to_cpu(*(branch[0].p + count)) == 0) { 556 count++; 557 } 558 return count; 559} 560 561/** 562 * ext3_alloc_blocks - multiple allocate blocks needed for a branch 563 * @handle: handle for this transaction 564 * @inode: owner 565 * @goal: preferred place for allocation 566 * @indirect_blks: the number of blocks need to allocate for indirect 567 * blocks 568 * @blks: number of blocks need to allocated for direct blocks 569 * @new_blocks: on return it will store the new block numbers for 570 * the indirect blocks(if needed) and the first direct block, 571 * @err: here we store the error value 572 * 573 * return the number of direct blocks allocated 574 */ 575static int ext3_alloc_blocks(handle_t *handle, struct inode *inode, 576 ext3_fsblk_t goal, int indirect_blks, int blks, 577 ext3_fsblk_t new_blocks[4], int *err) 578{ 579 int target, i; 580 unsigned long count = 0; 581 int index = 0; 582 ext3_fsblk_t current_block = 0; 583 int ret = 0; 584 585 /* 586 * Here we try to allocate the requested multiple blocks at once, 587 * on a best-effort basis. 588 * To build a branch, we should allocate blocks for 589 * the indirect blocks(if not allocated yet), and at least 590 * the first direct block of this branch. That's the 591 * minimum number of blocks need to allocate(required) 592 */ 593 target = blks + indirect_blks; 594 595 while (1) { 596 count = target; 597 /* allocating blocks for indirect blocks and direct blocks */ 598 current_block = ext3_new_blocks(handle,inode,goal,&count,err); 599 if (*err) 600 goto failed_out; 601 602 target -= count; 603 /* allocate blocks for indirect blocks */ 604 while (index < indirect_blks && count) { 605 new_blocks[index++] = current_block++; 606 count--; 607 } 608 609 if (count > 0) 610 break; 611 } 612 613 /* save the new block number for the first direct block */ 614 new_blocks[index] = current_block; 615 616 /* total number of blocks allocated for direct blocks */ 617 ret = count; 618 *err = 0; 619 return ret; 620failed_out: 621 for (i = 0; i <index; i++) 622 ext3_free_blocks(handle, inode, new_blocks[i], 1); 623 return ret; 624} 625 626/** 627 * ext3_alloc_branch - allocate and set up a chain of blocks. 628 * @handle: handle for this transaction 629 * @inode: owner 630 * @indirect_blks: number of allocated indirect blocks 631 * @blks: number of allocated direct blocks 632 * @goal: preferred place for allocation 633 * @offsets: offsets (in the blocks) to store the pointers to next. 634 * @branch: place to store the chain in. 635 * 636 * This function allocates blocks, zeroes out all but the last one, 637 * links them into chain and (if we are synchronous) writes them to disk. 638 * In other words, it prepares a branch that can be spliced onto the 639 * inode. It stores the information about that chain in the branch[], in 640 * the same format as ext3_get_branch() would do. We are calling it after 641 * we had read the existing part of chain and partial points to the last 642 * triple of that (one with zero ->key). Upon the exit we have the same 643 * picture as after the successful ext3_get_block(), except that in one 644 * place chain is disconnected - *branch->p is still zero (we did not 645 * set the last link), but branch->key contains the number that should 646 * be placed into *branch->p to fill that gap. 647 * 648 * If allocation fails we free all blocks we've allocated (and forget 649 * their buffer_heads) and return the error value the from failed 650 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain 651 * as described above and return 0. 652 */ 653static int ext3_alloc_branch(handle_t *handle, struct inode *inode, 654 int indirect_blks, int *blks, ext3_fsblk_t goal, 655 int *offsets, Indirect *branch) 656{ 657 int blocksize = inode->i_sb->s_blocksize; 658 int i, n = 0; 659 int err = 0; 660 struct buffer_head *bh; 661 int num; 662 ext3_fsblk_t new_blocks[4]; 663 ext3_fsblk_t current_block; 664 665 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks, 666 *blks, new_blocks, &err); 667 if (err) 668 return err; 669 670 branch[0].key = cpu_to_le32(new_blocks[0]); 671 /* 672 * metadata blocks and data blocks are allocated. 673 */ 674 for (n = 1; n <= indirect_blks; n++) { 675 /* 676 * Get buffer_head for parent block, zero it out 677 * and set the pointer to new one, then send 678 * parent to disk. 679 */ 680 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 681 if (unlikely(!bh)) { 682 err = -ENOMEM; 683 goto failed; 684 } 685 branch[n].bh = bh; 686 lock_buffer(bh); 687 BUFFER_TRACE(bh, "call get_create_access"); 688 err = ext3_journal_get_create_access(handle, bh); 689 if (err) { 690 unlock_buffer(bh); 691 brelse(bh); 692 goto failed; 693 } 694 695 memset(bh->b_data, 0, blocksize); 696 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 697 branch[n].key = cpu_to_le32(new_blocks[n]); 698 *branch[n].p = branch[n].key; 699 if ( n == indirect_blks) { 700 current_block = new_blocks[n]; 701 /* 702 * End of chain, update the last new metablock of 703 * the chain to point to the new allocated 704 * data blocks numbers 705 */ 706 for (i=1; i < num; i++) 707 *(branch[n].p + i) = cpu_to_le32(++current_block); 708 } 709 BUFFER_TRACE(bh, "marking uptodate"); 710 set_buffer_uptodate(bh); 711 unlock_buffer(bh); 712 713 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 714 err = ext3_journal_dirty_metadata(handle, bh); 715 if (err) 716 goto failed; 717 } 718 *blks = num; 719 return err; 720failed: 721 /* Allocation failed, free what we already allocated */ 722 for (i = 1; i <= n ; i++) { 723 BUFFER_TRACE(branch[i].bh, "call journal_forget"); 724 ext3_journal_forget(handle, branch[i].bh); 725 } 726 for (i = 0; i < indirect_blks; i++) 727 ext3_free_blocks(handle, inode, new_blocks[i], 1); 728 729 ext3_free_blocks(handle, inode, new_blocks[i], num); 730 731 return err; 732} 733 734/** 735 * ext3_splice_branch - splice the allocated branch onto inode. 736 * @handle: handle for this transaction 737 * @inode: owner 738 * @block: (logical) number of block we are adding 739 * @where: location of missing link 740 * @num: number of indirect blocks we are adding 741 * @blks: number of direct blocks we are adding 742 * 743 * This function fills the missing link and does all housekeeping needed in 744 * inode (->i_blocks, etc.). In case of success we end up with the full 745 * chain to new block and return 0. 746 */ 747static int ext3_splice_branch(handle_t *handle, struct inode *inode, 748 long block, Indirect *where, int num, int blks) 749{ 750 int i; 751 int err = 0; 752 struct ext3_block_alloc_info *block_i; 753 ext3_fsblk_t current_block; 754 struct ext3_inode_info *ei = EXT3_I(inode); 755 struct timespec now; 756 757 block_i = ei->i_block_alloc_info; 758 /* 759 * If we're splicing into a [td]indirect block (as opposed to the 760 * inode) then we need to get write access to the [td]indirect block 761 * before the splice. 762 */ 763 if (where->bh) { 764 BUFFER_TRACE(where->bh, "get_write_access"); 765 err = ext3_journal_get_write_access(handle, where->bh); 766 if (err) 767 goto err_out; 768 } 769 /* That's it */ 770 771 *where->p = where->key; 772 773 /* 774 * Update the host buffer_head or inode to point to more just allocated 775 * direct blocks blocks 776 */ 777 if (num == 0 && blks > 1) { 778 current_block = le32_to_cpu(where->key) + 1; 779 for (i = 1; i < blks; i++) 780 *(where->p + i ) = cpu_to_le32(current_block++); 781 } 782 783 /* 784 * update the most recently allocated logical & physical block 785 * in i_block_alloc_info, to assist find the proper goal block for next 786 * allocation 787 */ 788 if (block_i) { 789 block_i->last_alloc_logical_block = block + blks - 1; 790 block_i->last_alloc_physical_block = 791 le32_to_cpu(where[num].key) + blks - 1; 792 } 793 794 /* We are done with atomic stuff, now do the rest of housekeeping */ 795 now = CURRENT_TIME_SEC; 796 if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) { 797 inode->i_ctime = now; 798 ext3_mark_inode_dirty(handle, inode); 799 } 800 /* ext3_mark_inode_dirty already updated i_sync_tid */ 801 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 802 803 /* had we spliced it onto indirect block? */ 804 if (where->bh) { 805 /* 806 * If we spliced it onto an indirect block, we haven't 807 * altered the inode. Note however that if it is being spliced 808 * onto an indirect block at the very end of the file (the 809 * file is growing) then we *will* alter the inode to reflect 810 * the new i_size. But that is not done here - it is done in 811 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode. 812 */ 813 jbd_debug(5, "splicing indirect only\n"); 814 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata"); 815 err = ext3_journal_dirty_metadata(handle, where->bh); 816 if (err) 817 goto err_out; 818 } else { 819 /* 820 * OK, we spliced it into the inode itself on a direct block. 821 * Inode was dirtied above. 822 */ 823 jbd_debug(5, "splicing direct\n"); 824 } 825 return err; 826 827err_out: 828 for (i = 1; i <= num; i++) { 829 BUFFER_TRACE(where[i].bh, "call journal_forget"); 830 ext3_journal_forget(handle, where[i].bh); 831 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); 832 } 833 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); 834 835 return err; 836} 837 838/* 839 * Allocation strategy is simple: if we have to allocate something, we will 840 * have to go the whole way to leaf. So let's do it before attaching anything 841 * to tree, set linkage between the newborn blocks, write them if sync is 842 * required, recheck the path, free and repeat if check fails, otherwise 843 * set the last missing link (that will protect us from any truncate-generated 844 * removals - all blocks on the path are immune now) and possibly force the 845 * write on the parent block. 846 * That has a nice additional property: no special recovery from the failed 847 * allocations is needed - we simply release blocks and do not touch anything 848 * reachable from inode. 849 * 850 * `handle' can be NULL if create == 0. 851 * 852 * The BKL may not be held on entry here. Be sure to take it early. 853 * return > 0, # of blocks mapped or allocated. 854 * return = 0, if plain lookup failed. 855 * return < 0, error case. 856 */ 857int ext3_get_blocks_handle(handle_t *handle, struct inode *inode, 858 sector_t iblock, unsigned long maxblocks, 859 struct buffer_head *bh_result, 860 int create) 861{ 862 int err = -EIO; 863 int offsets[4]; 864 Indirect chain[4]; 865 Indirect *partial; 866 ext3_fsblk_t goal; 867 int indirect_blks; 868 int blocks_to_boundary = 0; 869 int depth; 870 struct ext3_inode_info *ei = EXT3_I(inode); 871 int count = 0; 872 ext3_fsblk_t first_block = 0; 873 874 875 trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create); 876 J_ASSERT(handle != NULL || create == 0); 877 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary); 878 879 if (depth == 0) 880 goto out; 881 882 partial = ext3_get_branch(inode, depth, offsets, chain, &err); 883 884 /* Simplest case - block found, no allocation needed */ 885 if (!partial) { 886 first_block = le32_to_cpu(chain[depth - 1].key); 887 clear_buffer_new(bh_result); 888 count++; 889 /*map more blocks*/ 890 while (count < maxblocks && count <= blocks_to_boundary) { 891 ext3_fsblk_t blk; 892 893 if (!verify_chain(chain, chain + depth - 1)) { 894 /* 895 * Indirect block might be removed by 896 * truncate while we were reading it. 897 * Handling of that case: forget what we've 898 * got now. Flag the err as EAGAIN, so it 899 * will reread. 900 */ 901 err = -EAGAIN; 902 count = 0; 903 break; 904 } 905 blk = le32_to_cpu(*(chain[depth-1].p + count)); 906 907 if (blk == first_block + count) 908 count++; 909 else 910 break; 911 } 912 if (err != -EAGAIN) 913 goto got_it; 914 } 915 916 /* Next simple case - plain lookup or failed read of indirect block */ 917 if (!create || err == -EIO) 918 goto cleanup; 919 920 /* 921 * Block out ext3_truncate while we alter the tree 922 */ 923 mutex_lock(&ei->truncate_mutex); 924 925 /* 926 * If the indirect block is missing while we are reading 927 * the chain(ext3_get_branch() returns -EAGAIN err), or 928 * if the chain has been changed after we grab the semaphore, 929 * (either because another process truncated this branch, or 930 * another get_block allocated this branch) re-grab the chain to see if 931 * the request block has been allocated or not. 932 * 933 * Since we already block the truncate/other get_block 934 * at this point, we will have the current copy of the chain when we 935 * splice the branch into the tree. 936 */ 937 if (err == -EAGAIN || !verify_chain(chain, partial)) { 938 while (partial > chain) { 939 brelse(partial->bh); 940 partial--; 941 } 942 partial = ext3_get_branch(inode, depth, offsets, chain, &err); 943 if (!partial) { 944 count++; 945 mutex_unlock(&ei->truncate_mutex); 946 if (err) 947 goto cleanup; 948 clear_buffer_new(bh_result); 949 goto got_it; 950 } 951 } 952 953 /* 954 * Okay, we need to do block allocation. Lazily initialize the block 955 * allocation info here if necessary 956 */ 957 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 958 ext3_init_block_alloc_info(inode); 959 960 goal = ext3_find_goal(inode, iblock, partial); 961 962 /* the number of blocks need to allocate for [d,t]indirect blocks */ 963 indirect_blks = (chain + depth) - partial - 1; 964 965 /* 966 * Next look up the indirect map to count the totoal number of 967 * direct blocks to allocate for this branch. 968 */ 969 count = ext3_blks_to_allocate(partial, indirect_blks, 970 maxblocks, blocks_to_boundary); 971 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal, 972 offsets + (partial - chain), partial); 973 974 /* 975 * The ext3_splice_branch call will free and forget any buffers 976 * on the new chain if there is a failure, but that risks using 977 * up transaction credits, especially for bitmaps where the 978 * credits cannot be returned. Can we handle this somehow? We 979 * may need to return -EAGAIN upwards in the worst case. --sct 980 */ 981 if (!err) 982 err = ext3_splice_branch(handle, inode, iblock, 983 partial, indirect_blks, count); 984 mutex_unlock(&ei->truncate_mutex); 985 if (err) 986 goto cleanup; 987 988 set_buffer_new(bh_result); 989got_it: 990 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 991 if (count > blocks_to_boundary) 992 set_buffer_boundary(bh_result); 993 err = count; 994 /* Clean up and exit */ 995 partial = chain + depth - 1; /* the whole chain */ 996cleanup: 997 while (partial > chain) { 998 BUFFER_TRACE(partial->bh, "call brelse"); 999 brelse(partial->bh); 1000 partial--; 1001 } 1002 BUFFER_TRACE(bh_result, "returned"); 1003out: 1004 trace_ext3_get_blocks_exit(inode, iblock, 1005 depth ? le32_to_cpu(chain[depth-1].key) : 0, 1006 count, err); 1007 return err; 1008} 1009 1010/* Maximum number of blocks we map for direct IO at once. */ 1011#define DIO_MAX_BLOCKS 4096 1012/* 1013 * Number of credits we need for writing DIO_MAX_BLOCKS: 1014 * We need sb + group descriptor + bitmap + inode -> 4 1015 * For B blocks with A block pointers per block we need: 1016 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 1017 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 1018 */ 1019#define DIO_CREDITS 25 1020 1021static int ext3_get_block(struct inode *inode, sector_t iblock, 1022 struct buffer_head *bh_result, int create) 1023{ 1024 handle_t *handle = ext3_journal_current_handle(); 1025 int ret = 0, started = 0; 1026 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1027 1028 if (create && !handle) { /* Direct IO write... */ 1029 if (max_blocks > DIO_MAX_BLOCKS) 1030 max_blocks = DIO_MAX_BLOCKS; 1031 handle = ext3_journal_start(inode, DIO_CREDITS + 1032 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb)); 1033 if (IS_ERR(handle)) { 1034 ret = PTR_ERR(handle); 1035 goto out; 1036 } 1037 started = 1; 1038 } 1039 1040 ret = ext3_get_blocks_handle(handle, inode, iblock, 1041 max_blocks, bh_result, create); 1042 if (ret > 0) { 1043 bh_result->b_size = (ret << inode->i_blkbits); 1044 ret = 0; 1045 } 1046 if (started) 1047 ext3_journal_stop(handle); 1048out: 1049 return ret; 1050} 1051 1052int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1053 u64 start, u64 len) 1054{ 1055 return generic_block_fiemap(inode, fieinfo, start, len, 1056 ext3_get_block); 1057} 1058 1059/* 1060 * `handle' can be NULL if create is zero 1061 */ 1062struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode, 1063 long block, int create, int *errp) 1064{ 1065 struct buffer_head dummy; 1066 int fatal = 0, err; 1067 1068 J_ASSERT(handle != NULL || create == 0); 1069 1070 dummy.b_state = 0; 1071 dummy.b_blocknr = -1000; 1072 buffer_trace_init(&dummy.b_history); 1073 err = ext3_get_blocks_handle(handle, inode, block, 1, 1074 &dummy, create); 1075 /* 1076 * ext3_get_blocks_handle() returns number of blocks 1077 * mapped. 0 in case of a HOLE. 1078 */ 1079 if (err > 0) { 1080 WARN_ON(err > 1); 1081 err = 0; 1082 } 1083 *errp = err; 1084 if (!err && buffer_mapped(&dummy)) { 1085 struct buffer_head *bh; 1086 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1087 if (unlikely(!bh)) { 1088 *errp = -ENOMEM; 1089 goto err; 1090 } 1091 if (buffer_new(&dummy)) { 1092 J_ASSERT(create != 0); 1093 J_ASSERT(handle != NULL); 1094 1095 /* 1096 * Now that we do not always journal data, we should 1097 * keep in mind whether this should always journal the 1098 * new buffer as metadata. For now, regular file 1099 * writes use ext3_get_block instead, so it's not a 1100 * problem. 1101 */ 1102 lock_buffer(bh); 1103 BUFFER_TRACE(bh, "call get_create_access"); 1104 fatal = ext3_journal_get_create_access(handle, bh); 1105 if (!fatal && !buffer_uptodate(bh)) { 1106 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1107 set_buffer_uptodate(bh); 1108 } 1109 unlock_buffer(bh); 1110 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 1111 err = ext3_journal_dirty_metadata(handle, bh); 1112 if (!fatal) 1113 fatal = err; 1114 } else { 1115 BUFFER_TRACE(bh, "not a new buffer"); 1116 } 1117 if (fatal) { 1118 *errp = fatal; 1119 brelse(bh); 1120 bh = NULL; 1121 } 1122 return bh; 1123 } 1124err: 1125 return NULL; 1126} 1127 1128struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode, 1129 int block, int create, int *err) 1130{ 1131 struct buffer_head * bh; 1132 1133 bh = ext3_getblk(handle, inode, block, create, err); 1134 if (!bh) 1135 return bh; 1136 if (bh_uptodate_or_lock(bh)) 1137 return bh; 1138 get_bh(bh); 1139 bh->b_end_io = end_buffer_read_sync; 1140 submit_bh(READ | REQ_META | REQ_PRIO, bh); 1141 wait_on_buffer(bh); 1142 if (buffer_uptodate(bh)) 1143 return bh; 1144 put_bh(bh); 1145 *err = -EIO; 1146 return NULL; 1147} 1148 1149static int walk_page_buffers( handle_t *handle, 1150 struct buffer_head *head, 1151 unsigned from, 1152 unsigned to, 1153 int *partial, 1154 int (*fn)( handle_t *handle, 1155 struct buffer_head *bh)) 1156{ 1157 struct buffer_head *bh; 1158 unsigned block_start, block_end; 1159 unsigned blocksize = head->b_size; 1160 int err, ret = 0; 1161 struct buffer_head *next; 1162 1163 for ( bh = head, block_start = 0; 1164 ret == 0 && (bh != head || !block_start); 1165 block_start = block_end, bh = next) 1166 { 1167 next = bh->b_this_page; 1168 block_end = block_start + blocksize; 1169 if (block_end <= from || block_start >= to) { 1170 if (partial && !buffer_uptodate(bh)) 1171 *partial = 1; 1172 continue; 1173 } 1174 err = (*fn)(handle, bh); 1175 if (!ret) 1176 ret = err; 1177 } 1178 return ret; 1179} 1180 1181/* 1182 * To preserve ordering, it is essential that the hole instantiation and 1183 * the data write be encapsulated in a single transaction. We cannot 1184 * close off a transaction and start a new one between the ext3_get_block() 1185 * and the commit_write(). So doing the journal_start at the start of 1186 * prepare_write() is the right place. 1187 * 1188 * Also, this function can nest inside ext3_writepage() -> 1189 * block_write_full_page(). In that case, we *know* that ext3_writepage() 1190 * has generated enough buffer credits to do the whole page. So we won't 1191 * block on the journal in that case, which is good, because the caller may 1192 * be PF_MEMALLOC. 1193 * 1194 * By accident, ext3 can be reentered when a transaction is open via 1195 * quota file writes. If we were to commit the transaction while thus 1196 * reentered, there can be a deadlock - we would be holding a quota 1197 * lock, and the commit would never complete if another thread had a 1198 * transaction open and was blocking on the quota lock - a ranking 1199 * violation. 1200 * 1201 * So what we do is to rely on the fact that journal_stop/journal_start 1202 * will _not_ run commit under these circumstances because handle->h_ref 1203 * is elevated. We'll still have enough credits for the tiny quotafile 1204 * write. 1205 */ 1206static int do_journal_get_write_access(handle_t *handle, 1207 struct buffer_head *bh) 1208{ 1209 int dirty = buffer_dirty(bh); 1210 int ret; 1211 1212 if (!buffer_mapped(bh) || buffer_freed(bh)) 1213 return 0; 1214 /* 1215 * __block_prepare_write() could have dirtied some buffers. Clean 1216 * the dirty bit as jbd2_journal_get_write_access() could complain 1217 * otherwise about fs integrity issues. Setting of the dirty bit 1218 * by __block_prepare_write() isn't a real problem here as we clear 1219 * the bit before releasing a page lock and thus writeback cannot 1220 * ever write the buffer. 1221 */ 1222 if (dirty) 1223 clear_buffer_dirty(bh); 1224 ret = ext3_journal_get_write_access(handle, bh); 1225 if (!ret && dirty) 1226 ret = ext3_journal_dirty_metadata(handle, bh); 1227 return ret; 1228} 1229 1230/* 1231 * Truncate blocks that were not used by write. We have to truncate the 1232 * pagecache as well so that corresponding buffers get properly unmapped. 1233 */ 1234static void ext3_truncate_failed_write(struct inode *inode) 1235{ 1236 truncate_inode_pages(inode->i_mapping, inode->i_size); 1237 ext3_truncate(inode); 1238} 1239 1240/* 1241 * Truncate blocks that were not used by direct IO write. We have to zero out 1242 * the last file block as well because direct IO might have written to it. 1243 */ 1244static void ext3_truncate_failed_direct_write(struct inode *inode) 1245{ 1246 ext3_block_truncate_page(inode, inode->i_size); 1247 ext3_truncate(inode); 1248} 1249 1250static int ext3_write_begin(struct file *file, struct address_space *mapping, 1251 loff_t pos, unsigned len, unsigned flags, 1252 struct page **pagep, void **fsdata) 1253{ 1254 struct inode *inode = mapping->host; 1255 int ret; 1256 handle_t *handle; 1257 int retries = 0; 1258 struct page *page; 1259 pgoff_t index; 1260 unsigned from, to; 1261 /* Reserve one block more for addition to orphan list in case 1262 * we allocate blocks but write fails for some reason */ 1263 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1; 1264 1265 trace_ext3_write_begin(inode, pos, len, flags); 1266 1267 index = pos >> PAGE_CACHE_SHIFT; 1268 from = pos & (PAGE_CACHE_SIZE - 1); 1269 to = from + len; 1270 1271retry: 1272 page = grab_cache_page_write_begin(mapping, index, flags); 1273 if (!page) 1274 return -ENOMEM; 1275 *pagep = page; 1276 1277 handle = ext3_journal_start(inode, needed_blocks); 1278 if (IS_ERR(handle)) { 1279 unlock_page(page); 1280 page_cache_release(page); 1281 ret = PTR_ERR(handle); 1282 goto out; 1283 } 1284 ret = __block_write_begin(page, pos, len, ext3_get_block); 1285 if (ret) 1286 goto write_begin_failed; 1287 1288 if (ext3_should_journal_data(inode)) { 1289 ret = walk_page_buffers(handle, page_buffers(page), 1290 from, to, NULL, do_journal_get_write_access); 1291 } 1292write_begin_failed: 1293 if (ret) { 1294 /* 1295 * block_write_begin may have instantiated a few blocks 1296 * outside i_size. Trim these off again. Don't need 1297 * i_size_read because we hold i_mutex. 1298 * 1299 * Add inode to orphan list in case we crash before truncate 1300 * finishes. Do this only if ext3_can_truncate() agrees so 1301 * that orphan processing code is happy. 1302 */ 1303 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1304 ext3_orphan_add(handle, inode); 1305 ext3_journal_stop(handle); 1306 unlock_page(page); 1307 page_cache_release(page); 1308 if (pos + len > inode->i_size) 1309 ext3_truncate_failed_write(inode); 1310 } 1311 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) 1312 goto retry; 1313out: 1314 return ret; 1315} 1316 1317 1318int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1319{ 1320 int err = journal_dirty_data(handle, bh); 1321 if (err) 1322 ext3_journal_abort_handle(__func__, __func__, 1323 bh, handle, err); 1324 return err; 1325} 1326 1327/* For ordered writepage and write_end functions */ 1328static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1329{ 1330 /* 1331 * Write could have mapped the buffer but it didn't copy the data in 1332 * yet. So avoid filing such buffer into a transaction. 1333 */ 1334 if (buffer_mapped(bh) && buffer_uptodate(bh)) 1335 return ext3_journal_dirty_data(handle, bh); 1336 return 0; 1337} 1338 1339/* For write_end() in data=journal mode */ 1340static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1341{ 1342 if (!buffer_mapped(bh) || buffer_freed(bh)) 1343 return 0; 1344 set_buffer_uptodate(bh); 1345 return ext3_journal_dirty_metadata(handle, bh); 1346} 1347 1348/* 1349 * This is nasty and subtle: ext3_write_begin() could have allocated blocks 1350 * for the whole page but later we failed to copy the data in. Update inode 1351 * size according to what we managed to copy. The rest is going to be 1352 * truncated in write_end function. 1353 */ 1354static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied) 1355{ 1356 /* What matters to us is i_disksize. We don't write i_size anywhere */ 1357 if (pos + copied > inode->i_size) 1358 i_size_write(inode, pos + copied); 1359 if (pos + copied > EXT3_I(inode)->i_disksize) { 1360 EXT3_I(inode)->i_disksize = pos + copied; 1361 mark_inode_dirty(inode); 1362 } 1363} 1364 1365/* 1366 * We need to pick up the new inode size which generic_commit_write gave us 1367 * `file' can be NULL - eg, when called from page_symlink(). 1368 * 1369 * ext3 never places buffers on inode->i_mapping->private_list. metadata 1370 * buffers are managed internally. 1371 */ 1372static int ext3_ordered_write_end(struct file *file, 1373 struct address_space *mapping, 1374 loff_t pos, unsigned len, unsigned copied, 1375 struct page *page, void *fsdata) 1376{ 1377 handle_t *handle = ext3_journal_current_handle(); 1378 struct inode *inode = file->f_mapping->host; 1379 unsigned from, to; 1380 int ret = 0, ret2; 1381 1382 trace_ext3_ordered_write_end(inode, pos, len, copied); 1383 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1384 1385 from = pos & (PAGE_CACHE_SIZE - 1); 1386 to = from + copied; 1387 ret = walk_page_buffers(handle, page_buffers(page), 1388 from, to, NULL, journal_dirty_data_fn); 1389 1390 if (ret == 0) 1391 update_file_sizes(inode, pos, copied); 1392 /* 1393 * There may be allocated blocks outside of i_size because 1394 * we failed to copy some data. Prepare for truncate. 1395 */ 1396 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1397 ext3_orphan_add(handle, inode); 1398 ret2 = ext3_journal_stop(handle); 1399 if (!ret) 1400 ret = ret2; 1401 unlock_page(page); 1402 page_cache_release(page); 1403 1404 if (pos + len > inode->i_size) 1405 ext3_truncate_failed_write(inode); 1406 return ret ? ret : copied; 1407} 1408 1409static int ext3_writeback_write_end(struct file *file, 1410 struct address_space *mapping, 1411 loff_t pos, unsigned len, unsigned copied, 1412 struct page *page, void *fsdata) 1413{ 1414 handle_t *handle = ext3_journal_current_handle(); 1415 struct inode *inode = file->f_mapping->host; 1416 int ret; 1417 1418 trace_ext3_writeback_write_end(inode, pos, len, copied); 1419 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1420 update_file_sizes(inode, pos, copied); 1421 /* 1422 * There may be allocated blocks outside of i_size because 1423 * we failed to copy some data. Prepare for truncate. 1424 */ 1425 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1426 ext3_orphan_add(handle, inode); 1427 ret = ext3_journal_stop(handle); 1428 unlock_page(page); 1429 page_cache_release(page); 1430 1431 if (pos + len > inode->i_size) 1432 ext3_truncate_failed_write(inode); 1433 return ret ? ret : copied; 1434} 1435 1436static int ext3_journalled_write_end(struct file *file, 1437 struct address_space *mapping, 1438 loff_t pos, unsigned len, unsigned copied, 1439 struct page *page, void *fsdata) 1440{ 1441 handle_t *handle = ext3_journal_current_handle(); 1442 struct inode *inode = mapping->host; 1443 struct ext3_inode_info *ei = EXT3_I(inode); 1444 int ret = 0, ret2; 1445 int partial = 0; 1446 unsigned from, to; 1447 1448 trace_ext3_journalled_write_end(inode, pos, len, copied); 1449 from = pos & (PAGE_CACHE_SIZE - 1); 1450 to = from + len; 1451 1452 if (copied < len) { 1453 if (!PageUptodate(page)) 1454 copied = 0; 1455 page_zero_new_buffers(page, from + copied, to); 1456 to = from + copied; 1457 } 1458 1459 ret = walk_page_buffers(handle, page_buffers(page), from, 1460 to, &partial, write_end_fn); 1461 if (!partial) 1462 SetPageUptodate(page); 1463 1464 if (pos + copied > inode->i_size) 1465 i_size_write(inode, pos + copied); 1466 /* 1467 * There may be allocated blocks outside of i_size because 1468 * we failed to copy some data. Prepare for truncate. 1469 */ 1470 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1471 ext3_orphan_add(handle, inode); 1472 ext3_set_inode_state(inode, EXT3_STATE_JDATA); 1473 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 1474 if (inode->i_size > ei->i_disksize) { 1475 ei->i_disksize = inode->i_size; 1476 ret2 = ext3_mark_inode_dirty(handle, inode); 1477 if (!ret) 1478 ret = ret2; 1479 } 1480 1481 ret2 = ext3_journal_stop(handle); 1482 if (!ret) 1483 ret = ret2; 1484 unlock_page(page); 1485 page_cache_release(page); 1486 1487 if (pos + len > inode->i_size) 1488 ext3_truncate_failed_write(inode); 1489 return ret ? ret : copied; 1490} 1491 1492/* 1493 * bmap() is special. It gets used by applications such as lilo and by 1494 * the swapper to find the on-disk block of a specific piece of data. 1495 * 1496 * Naturally, this is dangerous if the block concerned is still in the 1497 * journal. If somebody makes a swapfile on an ext3 data-journaling 1498 * filesystem and enables swap, then they may get a nasty shock when the 1499 * data getting swapped to that swapfile suddenly gets overwritten by 1500 * the original zero's written out previously to the journal and 1501 * awaiting writeback in the kernel's buffer cache. 1502 * 1503 * So, if we see any bmap calls here on a modified, data-journaled file, 1504 * take extra steps to flush any blocks which might be in the cache. 1505 */ 1506static sector_t ext3_bmap(struct address_space *mapping, sector_t block) 1507{ 1508 struct inode *inode = mapping->host; 1509 journal_t *journal; 1510 int err; 1511 1512 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) { 1513 /* 1514 * This is a REALLY heavyweight approach, but the use of 1515 * bmap on dirty files is expected to be extremely rare: 1516 * only if we run lilo or swapon on a freshly made file 1517 * do we expect this to happen. 1518 * 1519 * (bmap requires CAP_SYS_RAWIO so this does not 1520 * represent an unprivileged user DOS attack --- we'd be 1521 * in trouble if mortal users could trigger this path at 1522 * will.) 1523 * 1524 * NB. EXT3_STATE_JDATA is not set on files other than 1525 * regular files. If somebody wants to bmap a directory 1526 * or symlink and gets confused because the buffer 1527 * hasn't yet been flushed to disk, they deserve 1528 * everything they get. 1529 */ 1530 1531 ext3_clear_inode_state(inode, EXT3_STATE_JDATA); 1532 journal = EXT3_JOURNAL(inode); 1533 journal_lock_updates(journal); 1534 err = journal_flush(journal); 1535 journal_unlock_updates(journal); 1536 1537 if (err) 1538 return 0; 1539 } 1540 1541 return generic_block_bmap(mapping,block,ext3_get_block); 1542} 1543 1544static int bget_one(handle_t *handle, struct buffer_head *bh) 1545{ 1546 get_bh(bh); 1547 return 0; 1548} 1549 1550static int bput_one(handle_t *handle, struct buffer_head *bh) 1551{ 1552 put_bh(bh); 1553 return 0; 1554} 1555 1556static int buffer_unmapped(handle_t *handle, struct buffer_head *bh) 1557{ 1558 return !buffer_mapped(bh); 1559} 1560 1561/* 1562 * Note that whenever we need to map blocks we start a transaction even if 1563 * we're not journalling data. This is to preserve ordering: any hole 1564 * instantiation within __block_write_full_page -> ext3_get_block() should be 1565 * journalled along with the data so we don't crash and then get metadata which 1566 * refers to old data. 1567 * 1568 * In all journalling modes block_write_full_page() will start the I/O. 1569 * 1570 * We don't honour synchronous mounts for writepage(). That would be 1571 * disastrous. Any write() or metadata operation will sync the fs for 1572 * us. 1573 */ 1574static int ext3_ordered_writepage(struct page *page, 1575 struct writeback_control *wbc) 1576{ 1577 struct inode *inode = page->mapping->host; 1578 struct buffer_head *page_bufs; 1579 handle_t *handle = NULL; 1580 int ret = 0; 1581 int err; 1582 1583 J_ASSERT(PageLocked(page)); 1584 /* 1585 * We don't want to warn for emergency remount. The condition is 1586 * ordered to avoid dereferencing inode->i_sb in non-error case to 1587 * avoid slow-downs. 1588 */ 1589 WARN_ON_ONCE(IS_RDONLY(inode) && 1590 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1591 1592 /* 1593 * We give up here if we're reentered, because it might be for a 1594 * different filesystem. 1595 */ 1596 if (ext3_journal_current_handle()) 1597 goto out_fail; 1598 1599 trace_ext3_ordered_writepage(page); 1600 if (!page_has_buffers(page)) { 1601 create_empty_buffers(page, inode->i_sb->s_blocksize, 1602 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1603 page_bufs = page_buffers(page); 1604 } else { 1605 page_bufs = page_buffers(page); 1606 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE, 1607 NULL, buffer_unmapped)) { 1608 /* Provide NULL get_block() to catch bugs if buffers 1609 * weren't really mapped */ 1610 return block_write_full_page(page, NULL, wbc); 1611 } 1612 } 1613 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1614 1615 if (IS_ERR(handle)) { 1616 ret = PTR_ERR(handle); 1617 goto out_fail; 1618 } 1619 1620 walk_page_buffers(handle, page_bufs, 0, 1621 PAGE_CACHE_SIZE, NULL, bget_one); 1622 1623 ret = block_write_full_page(page, ext3_get_block, wbc); 1624 1625 /* 1626 * The page can become unlocked at any point now, and 1627 * truncate can then come in and change things. So we 1628 * can't touch *page from now on. But *page_bufs is 1629 * safe due to elevated refcount. 1630 */ 1631 1632 /* 1633 * And attach them to the current transaction. But only if 1634 * block_write_full_page() succeeded. Otherwise they are unmapped, 1635 * and generally junk. 1636 */ 1637 if (ret == 0) 1638 ret = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1639 NULL, journal_dirty_data_fn); 1640 walk_page_buffers(handle, page_bufs, 0, 1641 PAGE_CACHE_SIZE, NULL, bput_one); 1642 err = ext3_journal_stop(handle); 1643 if (!ret) 1644 ret = err; 1645 return ret; 1646 1647out_fail: 1648 redirty_page_for_writepage(wbc, page); 1649 unlock_page(page); 1650 return ret; 1651} 1652 1653static int ext3_writeback_writepage(struct page *page, 1654 struct writeback_control *wbc) 1655{ 1656 struct inode *inode = page->mapping->host; 1657 handle_t *handle = NULL; 1658 int ret = 0; 1659 int err; 1660 1661 J_ASSERT(PageLocked(page)); 1662 /* 1663 * We don't want to warn for emergency remount. The condition is 1664 * ordered to avoid dereferencing inode->i_sb in non-error case to 1665 * avoid slow-downs. 1666 */ 1667 WARN_ON_ONCE(IS_RDONLY(inode) && 1668 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1669 1670 if (ext3_journal_current_handle()) 1671 goto out_fail; 1672 1673 trace_ext3_writeback_writepage(page); 1674 if (page_has_buffers(page)) { 1675 if (!walk_page_buffers(NULL, page_buffers(page), 0, 1676 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) { 1677 /* Provide NULL get_block() to catch bugs if buffers 1678 * weren't really mapped */ 1679 return block_write_full_page(page, NULL, wbc); 1680 } 1681 } 1682 1683 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1684 if (IS_ERR(handle)) { 1685 ret = PTR_ERR(handle); 1686 goto out_fail; 1687 } 1688 1689 ret = block_write_full_page(page, ext3_get_block, wbc); 1690 1691 err = ext3_journal_stop(handle); 1692 if (!ret) 1693 ret = err; 1694 return ret; 1695 1696out_fail: 1697 redirty_page_for_writepage(wbc, page); 1698 unlock_page(page); 1699 return ret; 1700} 1701 1702static int ext3_journalled_writepage(struct page *page, 1703 struct writeback_control *wbc) 1704{ 1705 struct inode *inode = page->mapping->host; 1706 handle_t *handle = NULL; 1707 int ret = 0; 1708 int err; 1709 1710 J_ASSERT(PageLocked(page)); 1711 /* 1712 * We don't want to warn for emergency remount. The condition is 1713 * ordered to avoid dereferencing inode->i_sb in non-error case to 1714 * avoid slow-downs. 1715 */ 1716 WARN_ON_ONCE(IS_RDONLY(inode) && 1717 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1718 1719 trace_ext3_journalled_writepage(page); 1720 if (!page_has_buffers(page) || PageChecked(page)) { 1721 if (ext3_journal_current_handle()) 1722 goto no_write; 1723 1724 handle = ext3_journal_start(inode, 1725 ext3_writepage_trans_blocks(inode)); 1726 if (IS_ERR(handle)) { 1727 ret = PTR_ERR(handle); 1728 goto no_write; 1729 } 1730 /* 1731 * It's mmapped pagecache. Add buffers and journal it. There 1732 * doesn't seem much point in redirtying the page here. 1733 */ 1734 ClearPageChecked(page); 1735 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE, 1736 ext3_get_block); 1737 if (ret != 0) { 1738 ext3_journal_stop(handle); 1739 goto out_unlock; 1740 } 1741 ret = walk_page_buffers(handle, page_buffers(page), 0, 1742 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1743 1744 err = walk_page_buffers(handle, page_buffers(page), 0, 1745 PAGE_CACHE_SIZE, NULL, write_end_fn); 1746 if (ret == 0) 1747 ret = err; 1748 ext3_set_inode_state(inode, EXT3_STATE_JDATA); 1749 atomic_set(&EXT3_I(inode)->i_datasync_tid, 1750 handle->h_transaction->t_tid); 1751 unlock_page(page); 1752 err = ext3_journal_stop(handle); 1753 if (!ret) 1754 ret = err; 1755 } else { 1756 /* 1757 * It is a page full of checkpoint-mode buffers. Go and write 1758 * them. They should have been already mapped when they went 1759 * to the journal so provide NULL get_block function to catch 1760 * errors. 1761 */ 1762 ret = block_write_full_page(page, NULL, wbc); 1763 } 1764out: 1765 return ret; 1766 1767no_write: 1768 redirty_page_for_writepage(wbc, page); 1769out_unlock: 1770 unlock_page(page); 1771 goto out; 1772} 1773 1774static int ext3_readpage(struct file *file, struct page *page) 1775{ 1776 trace_ext3_readpage(page); 1777 return mpage_readpage(page, ext3_get_block); 1778} 1779 1780static int 1781ext3_readpages(struct file *file, struct address_space *mapping, 1782 struct list_head *pages, unsigned nr_pages) 1783{ 1784 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block); 1785} 1786 1787static void ext3_invalidatepage(struct page *page, unsigned int offset, 1788 unsigned int length) 1789{ 1790 journal_t *journal = EXT3_JOURNAL(page->mapping->host); 1791 1792 trace_ext3_invalidatepage(page, offset, length); 1793 1794 /* 1795 * If it's a full truncate we just forget about the pending dirtying 1796 */ 1797 if (offset == 0 && length == PAGE_CACHE_SIZE) 1798 ClearPageChecked(page); 1799 1800 journal_invalidatepage(journal, page, offset, length); 1801} 1802 1803static int ext3_releasepage(struct page *page, gfp_t wait) 1804{ 1805 journal_t *journal = EXT3_JOURNAL(page->mapping->host); 1806 1807 trace_ext3_releasepage(page); 1808 WARN_ON(PageChecked(page)); 1809 if (!page_has_buffers(page)) 1810 return 0; 1811 return journal_try_to_free_buffers(journal, page, wait); 1812} 1813 1814/* 1815 * If the O_DIRECT write will extend the file then add this inode to the 1816 * orphan list. So recovery will truncate it back to the original size 1817 * if the machine crashes during the write. 1818 * 1819 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1820 * crashes then stale disk data _may_ be exposed inside the file. But current 1821 * VFS code falls back into buffered path in that case so we are safe. 1822 */ 1823static ssize_t ext3_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 1824 loff_t offset) 1825{ 1826 struct file *file = iocb->ki_filp; 1827 struct inode *inode = file->f_mapping->host; 1828 struct ext3_inode_info *ei = EXT3_I(inode); 1829 handle_t *handle; 1830 ssize_t ret; 1831 int orphan = 0; 1832 size_t count = iov_iter_count(iter); 1833 int retries = 0; 1834 1835 trace_ext3_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 1836 1837 if (iov_iter_rw(iter) == WRITE) { 1838 loff_t final_size = offset + count; 1839 1840 if (final_size > inode->i_size) { 1841 /* Credits for sb + inode write */ 1842 handle = ext3_journal_start(inode, 2); 1843 if (IS_ERR(handle)) { 1844 ret = PTR_ERR(handle); 1845 goto out; 1846 } 1847 ret = ext3_orphan_add(handle, inode); 1848 if (ret) { 1849 ext3_journal_stop(handle); 1850 goto out; 1851 } 1852 orphan = 1; 1853 ei->i_disksize = inode->i_size; 1854 ext3_journal_stop(handle); 1855 } 1856 } 1857 1858retry: 1859 ret = blockdev_direct_IO(iocb, inode, iter, offset, ext3_get_block); 1860 /* 1861 * In case of error extending write may have instantiated a few 1862 * blocks outside i_size. Trim these off again. 1863 */ 1864 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 1865 loff_t isize = i_size_read(inode); 1866 loff_t end = offset + count; 1867 1868 if (end > isize) 1869 ext3_truncate_failed_direct_write(inode); 1870 } 1871 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) 1872 goto retry; 1873 1874 if (orphan) { 1875 int err; 1876 1877 /* Credits for sb + inode write */ 1878 handle = ext3_journal_start(inode, 2); 1879 if (IS_ERR(handle)) { 1880 /* This is really bad luck. We've written the data 1881 * but cannot extend i_size. Truncate allocated blocks 1882 * and pretend the write failed... */ 1883 ext3_truncate_failed_direct_write(inode); 1884 ret = PTR_ERR(handle); 1885 if (inode->i_nlink) 1886 ext3_orphan_del(NULL, inode); 1887 goto out; 1888 } 1889 if (inode->i_nlink) 1890 ext3_orphan_del(handle, inode); 1891 if (ret > 0) { 1892 loff_t end = offset + ret; 1893 if (end > inode->i_size) { 1894 ei->i_disksize = end; 1895 i_size_write(inode, end); 1896 /* 1897 * We're going to return a positive `ret' 1898 * here due to non-zero-length I/O, so there's 1899 * no way of reporting error returns from 1900 * ext3_mark_inode_dirty() to userspace. So 1901 * ignore it. 1902 */ 1903 ext3_mark_inode_dirty(handle, inode); 1904 } 1905 } 1906 err = ext3_journal_stop(handle); 1907 if (ret == 0) 1908 ret = err; 1909 } 1910out: 1911 trace_ext3_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 1912 return ret; 1913} 1914 1915/* 1916 * Pages can be marked dirty completely asynchronously from ext3's journalling 1917 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1918 * much here because ->set_page_dirty is called under VFS locks. The page is 1919 * not necessarily locked. 1920 * 1921 * We cannot just dirty the page and leave attached buffers clean, because the 1922 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1923 * or jbddirty because all the journalling code will explode. 1924 * 1925 * So what we do is to mark the page "pending dirty" and next time writepage 1926 * is called, propagate that into the buffers appropriately. 1927 */ 1928static int ext3_journalled_set_page_dirty(struct page *page) 1929{ 1930 SetPageChecked(page); 1931 return __set_page_dirty_nobuffers(page); 1932} 1933 1934static const struct address_space_operations ext3_ordered_aops = { 1935 .readpage = ext3_readpage, 1936 .readpages = ext3_readpages, 1937 .writepage = ext3_ordered_writepage, 1938 .write_begin = ext3_write_begin, 1939 .write_end = ext3_ordered_write_end, 1940 .bmap = ext3_bmap, 1941 .invalidatepage = ext3_invalidatepage, 1942 .releasepage = ext3_releasepage, 1943 .direct_IO = ext3_direct_IO, 1944 .migratepage = buffer_migrate_page, 1945 .is_partially_uptodate = block_is_partially_uptodate, 1946 .is_dirty_writeback = buffer_check_dirty_writeback, 1947 .error_remove_page = generic_error_remove_page, 1948}; 1949 1950static const struct address_space_operations ext3_writeback_aops = { 1951 .readpage = ext3_readpage, 1952 .readpages = ext3_readpages, 1953 .writepage = ext3_writeback_writepage, 1954 .write_begin = ext3_write_begin, 1955 .write_end = ext3_writeback_write_end, 1956 .bmap = ext3_bmap, 1957 .invalidatepage = ext3_invalidatepage, 1958 .releasepage = ext3_releasepage, 1959 .direct_IO = ext3_direct_IO, 1960 .migratepage = buffer_migrate_page, 1961 .is_partially_uptodate = block_is_partially_uptodate, 1962 .error_remove_page = generic_error_remove_page, 1963}; 1964 1965static const struct address_space_operations ext3_journalled_aops = { 1966 .readpage = ext3_readpage, 1967 .readpages = ext3_readpages, 1968 .writepage = ext3_journalled_writepage, 1969 .write_begin = ext3_write_begin, 1970 .write_end = ext3_journalled_write_end, 1971 .set_page_dirty = ext3_journalled_set_page_dirty, 1972 .bmap = ext3_bmap, 1973 .invalidatepage = ext3_invalidatepage, 1974 .releasepage = ext3_releasepage, 1975 .is_partially_uptodate = block_is_partially_uptodate, 1976 .error_remove_page = generic_error_remove_page, 1977}; 1978 1979void ext3_set_aops(struct inode *inode) 1980{ 1981 if (ext3_should_order_data(inode)) 1982 inode->i_mapping->a_ops = &ext3_ordered_aops; 1983 else if (ext3_should_writeback_data(inode)) 1984 inode->i_mapping->a_ops = &ext3_writeback_aops; 1985 else 1986 inode->i_mapping->a_ops = &ext3_journalled_aops; 1987} 1988 1989/* 1990 * ext3_block_truncate_page() zeroes out a mapping from file offset `from' 1991 * up to the end of the block which corresponds to `from'. 1992 * This required during truncate. We need to physically zero the tail end 1993 * of that block so it doesn't yield old data if the file is later grown. 1994 */ 1995static int ext3_block_truncate_page(struct inode *inode, loff_t from) 1996{ 1997 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT; 1998 unsigned offset = from & (PAGE_CACHE_SIZE - 1); 1999 unsigned blocksize, iblock, length, pos; 2000 struct page *page; 2001 handle_t *handle = NULL; 2002 struct buffer_head *bh; 2003 int err = 0; 2004 2005 /* Truncated on block boundary - nothing to do */ 2006 blocksize = inode->i_sb->s_blocksize; 2007 if ((from & (blocksize - 1)) == 0) 2008 return 0; 2009 2010 page = grab_cache_page(inode->i_mapping, index); 2011 if (!page) 2012 return -ENOMEM; 2013 length = blocksize - (offset & (blocksize - 1)); 2014 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2015 2016 if (!page_has_buffers(page)) 2017 create_empty_buffers(page, blocksize, 0); 2018 2019 /* Find the buffer that contains "offset" */ 2020 bh = page_buffers(page); 2021 pos = blocksize; 2022 while (offset >= pos) { 2023 bh = bh->b_this_page; 2024 iblock++; 2025 pos += blocksize; 2026 } 2027 2028 err = 0; 2029 if (buffer_freed(bh)) { 2030 BUFFER_TRACE(bh, "freed: skip"); 2031 goto unlock; 2032 } 2033 2034 if (!buffer_mapped(bh)) { 2035 BUFFER_TRACE(bh, "unmapped"); 2036 ext3_get_block(inode, iblock, bh, 0); 2037 /* unmapped? It's a hole - nothing to do */ 2038 if (!buffer_mapped(bh)) { 2039 BUFFER_TRACE(bh, "still unmapped"); 2040 goto unlock; 2041 } 2042 } 2043 2044 /* Ok, it's mapped. Make sure it's up-to-date */ 2045 if (PageUptodate(page)) 2046 set_buffer_uptodate(bh); 2047 2048 if (!bh_uptodate_or_lock(bh)) { 2049 err = bh_submit_read(bh); 2050 /* Uhhuh. Read error. Complain and punt. */ 2051 if (err) 2052 goto unlock; 2053 } 2054 2055 /* data=writeback mode doesn't need transaction to zero-out data */ 2056 if (!ext3_should_writeback_data(inode)) { 2057 /* We journal at most one block */ 2058 handle = ext3_journal_start(inode, 1); 2059 if (IS_ERR(handle)) { 2060 clear_highpage(page); 2061 flush_dcache_page(page); 2062 err = PTR_ERR(handle); 2063 goto unlock; 2064 } 2065 } 2066 2067 if (ext3_should_journal_data(inode)) { 2068 BUFFER_TRACE(bh, "get write access"); 2069 err = ext3_journal_get_write_access(handle, bh); 2070 if (err) 2071 goto stop; 2072 } 2073 2074 zero_user(page, offset, length); 2075 BUFFER_TRACE(bh, "zeroed end of block"); 2076 2077 err = 0; 2078 if (ext3_should_journal_data(inode)) { 2079 err = ext3_journal_dirty_metadata(handle, bh); 2080 } else { 2081 if (ext3_should_order_data(inode)) 2082 err = ext3_journal_dirty_data(handle, bh); 2083 mark_buffer_dirty(bh); 2084 } 2085stop: 2086 if (handle) 2087 ext3_journal_stop(handle); 2088 2089unlock: 2090 unlock_page(page); 2091 page_cache_release(page); 2092 return err; 2093} 2094 2095/* 2096 * Probably it should be a library function... search for first non-zero word 2097 * or memcmp with zero_page, whatever is better for particular architecture. 2098 * Linus? 2099 */ 2100static inline int all_zeroes(__le32 *p, __le32 *q) 2101{ 2102 while (p < q) 2103 if (*p++) 2104 return 0; 2105 return 1; 2106} 2107 2108/** 2109 * ext3_find_shared - find the indirect blocks for partial truncation. 2110 * @inode: inode in question 2111 * @depth: depth of the affected branch 2112 * @offsets: offsets of pointers in that branch (see ext3_block_to_path) 2113 * @chain: place to store the pointers to partial indirect blocks 2114 * @top: place to the (detached) top of branch 2115 * 2116 * This is a helper function used by ext3_truncate(). 2117 * 2118 * When we do truncate() we may have to clean the ends of several 2119 * indirect blocks but leave the blocks themselves alive. Block is 2120 * partially truncated if some data below the new i_size is referred 2121 * from it (and it is on the path to the first completely truncated 2122 * data block, indeed). We have to free the top of that path along 2123 * with everything to the right of the path. Since no allocation 2124 * past the truncation point is possible until ext3_truncate() 2125 * finishes, we may safely do the latter, but top of branch may 2126 * require special attention - pageout below the truncation point 2127 * might try to populate it. 2128 * 2129 * We atomically detach the top of branch from the tree, store the 2130 * block number of its root in *@top, pointers to buffer_heads of 2131 * partially truncated blocks - in @chain[].bh and pointers to 2132 * their last elements that should not be removed - in 2133 * @chain[].p. Return value is the pointer to last filled element 2134 * of @chain. 2135 * 2136 * The work left to caller to do the actual freeing of subtrees: 2137 * a) free the subtree starting from *@top 2138 * b) free the subtrees whose roots are stored in 2139 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 2140 * c) free the subtrees growing from the inode past the @chain[0]. 2141 * (no partially truncated stuff there). */ 2142 2143static Indirect *ext3_find_shared(struct inode *inode, int depth, 2144 int offsets[4], Indirect chain[4], __le32 *top) 2145{ 2146 Indirect *partial, *p; 2147 int k, err; 2148 2149 *top = 0; 2150 /* Make k index the deepest non-null offset + 1 */ 2151 for (k = depth; k > 1 && !offsets[k-1]; k--) 2152 ; 2153 partial = ext3_get_branch(inode, k, offsets, chain, &err); 2154 /* Writer: pointers */ 2155 if (!partial) 2156 partial = chain + k-1; 2157 /* 2158 * If the branch acquired continuation since we've looked at it - 2159 * fine, it should all survive and (new) top doesn't belong to us. 2160 */ 2161 if (!partial->key && *partial->p) 2162 /* Writer: end */ 2163 goto no_top; 2164 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 2165 ; 2166 /* 2167 * OK, we've found the last block that must survive. The rest of our 2168 * branch should be detached before unlocking. However, if that rest 2169 * of branch is all ours and does not grow immediately from the inode 2170 * it's easier to cheat and just decrement partial->p. 2171 */ 2172 if (p == chain + k - 1 && p > chain) { 2173 p->p--; 2174 } else { 2175 *top = *p->p; 2176 /* Nope, don't do this in ext3. Must leave the tree intact */ 2177#if 0 2178 *p->p = 0; 2179#endif 2180 } 2181 /* Writer: end */ 2182 2183 while(partial > p) { 2184 brelse(partial->bh); 2185 partial--; 2186 } 2187no_top: 2188 return partial; 2189} 2190 2191/* 2192 * Zero a number of block pointers in either an inode or an indirect block. 2193 * If we restart the transaction we must again get write access to the 2194 * indirect block for further modification. 2195 * 2196 * We release `count' blocks on disk, but (last - first) may be greater 2197 * than `count' because there can be holes in there. 2198 */ 2199static void ext3_clear_blocks(handle_t *handle, struct inode *inode, 2200 struct buffer_head *bh, ext3_fsblk_t block_to_free, 2201 unsigned long count, __le32 *first, __le32 *last) 2202{ 2203 __le32 *p; 2204 if (try_to_extend_transaction(handle, inode)) { 2205 if (bh) { 2206 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 2207 if (ext3_journal_dirty_metadata(handle, bh)) 2208 return; 2209 } 2210 ext3_mark_inode_dirty(handle, inode); 2211 truncate_restart_transaction(handle, inode); 2212 if (bh) { 2213 BUFFER_TRACE(bh, "retaking write access"); 2214 if (ext3_journal_get_write_access(handle, bh)) 2215 return; 2216 } 2217 } 2218 2219 /* 2220 * Any buffers which are on the journal will be in memory. We find 2221 * them on the hash table so journal_revoke() will run journal_forget() 2222 * on them. We've already detached each block from the file, so 2223 * bforget() in journal_forget() should be safe. 2224 * 2225 * AKPM: turn on bforget in journal_forget()!!! 2226 */ 2227 for (p = first; p < last; p++) { 2228 u32 nr = le32_to_cpu(*p); 2229 if (nr) { 2230 struct buffer_head *bh; 2231 2232 *p = 0; 2233 bh = sb_find_get_block(inode->i_sb, nr); 2234 ext3_forget(handle, 0, inode, bh, nr); 2235 } 2236 } 2237 2238 ext3_free_blocks(handle, inode, block_to_free, count); 2239} 2240 2241/** 2242 * ext3_free_data - free a list of data blocks 2243 * @handle: handle for this transaction 2244 * @inode: inode we are dealing with 2245 * @this_bh: indirect buffer_head which contains *@first and *@last 2246 * @first: array of block numbers 2247 * @last: points immediately past the end of array 2248 * 2249 * We are freeing all blocks referred from that array (numbers are stored as 2250 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2251 * 2252 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2253 * blocks are contiguous then releasing them at one time will only affect one 2254 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2255 * actually use a lot of journal space. 2256 * 2257 * @this_bh will be %NULL if @first and @last point into the inode's direct 2258 * block pointers. 2259 */ 2260static void ext3_free_data(handle_t *handle, struct inode *inode, 2261 struct buffer_head *this_bh, 2262 __le32 *first, __le32 *last) 2263{ 2264 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2265 unsigned long count = 0; /* Number of blocks in the run */ 2266 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2267 corresponding to 2268 block_to_free */ 2269 ext3_fsblk_t nr; /* Current block # */ 2270 __le32 *p; /* Pointer into inode/ind 2271 for current block */ 2272 int err; 2273 2274 if (this_bh) { /* For indirect block */ 2275 BUFFER_TRACE(this_bh, "get_write_access"); 2276 err = ext3_journal_get_write_access(handle, this_bh); 2277 /* Important: if we can't update the indirect pointers 2278 * to the blocks, we can't free them. */ 2279 if (err) 2280 return; 2281 } 2282 2283 for (p = first; p < last; p++) { 2284 nr = le32_to_cpu(*p); 2285 if (nr) { 2286 /* accumulate blocks to free if they're contiguous */ 2287 if (count == 0) { 2288 block_to_free = nr; 2289 block_to_free_p = p; 2290 count = 1; 2291 } else if (nr == block_to_free + count) { 2292 count++; 2293 } else { 2294 ext3_clear_blocks(handle, inode, this_bh, 2295 block_to_free, 2296 count, block_to_free_p, p); 2297 block_to_free = nr; 2298 block_to_free_p = p; 2299 count = 1; 2300 } 2301 } 2302 } 2303 2304 if (count > 0) 2305 ext3_clear_blocks(handle, inode, this_bh, block_to_free, 2306 count, block_to_free_p, p); 2307 2308 if (this_bh) { 2309 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata"); 2310 2311 /* 2312 * The buffer head should have an attached journal head at this 2313 * point. However, if the data is corrupted and an indirect 2314 * block pointed to itself, it would have been detached when 2315 * the block was cleared. Check for this instead of OOPSing. 2316 */ 2317 if (bh2jh(this_bh)) 2318 ext3_journal_dirty_metadata(handle, this_bh); 2319 else 2320 ext3_error(inode->i_sb, "ext3_free_data", 2321 "circular indirect block detected, " 2322 "inode=%lu, block=%llu", 2323 inode->i_ino, 2324 (unsigned long long)this_bh->b_blocknr); 2325 } 2326} 2327 2328/** 2329 * ext3_free_branches - free an array of branches 2330 * @handle: JBD handle for this transaction 2331 * @inode: inode we are dealing with 2332 * @parent_bh: the buffer_head which contains *@first and *@last 2333 * @first: array of block numbers 2334 * @last: pointer immediately past the end of array 2335 * @depth: depth of the branches to free 2336 * 2337 * We are freeing all blocks referred from these branches (numbers are 2338 * stored as little-endian 32-bit) and updating @inode->i_blocks 2339 * appropriately. 2340 */ 2341static void ext3_free_branches(handle_t *handle, struct inode *inode, 2342 struct buffer_head *parent_bh, 2343 __le32 *first, __le32 *last, int depth) 2344{ 2345 ext3_fsblk_t nr; 2346 __le32 *p; 2347 2348 if (is_handle_aborted(handle)) 2349 return; 2350 2351 if (depth--) { 2352 struct buffer_head *bh; 2353 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); 2354 p = last; 2355 while (--p >= first) { 2356 nr = le32_to_cpu(*p); 2357 if (!nr) 2358 continue; /* A hole */ 2359 2360 /* Go read the buffer for the next level down */ 2361 bh = sb_bread(inode->i_sb, nr); 2362 2363 /* 2364 * A read failure? Report error and clear slot 2365 * (should be rare). 2366 */ 2367 if (!bh) { 2368 ext3_error(inode->i_sb, "ext3_free_branches", 2369 "Read failure, inode=%lu, block="E3FSBLK, 2370 inode->i_ino, nr); 2371 continue; 2372 } 2373 2374 /* This zaps the entire block. Bottom up. */ 2375 BUFFER_TRACE(bh, "free child branches"); 2376 ext3_free_branches(handle, inode, bh, 2377 (__le32*)bh->b_data, 2378 (__le32*)bh->b_data + addr_per_block, 2379 depth); 2380 2381 /* 2382 * Everything below this this pointer has been 2383 * released. Now let this top-of-subtree go. 2384 * 2385 * We want the freeing of this indirect block to be 2386 * atomic in the journal with the updating of the 2387 * bitmap block which owns it. So make some room in 2388 * the journal. 2389 * 2390 * We zero the parent pointer *after* freeing its 2391 * pointee in the bitmaps, so if extend_transaction() 2392 * for some reason fails to put the bitmap changes and 2393 * the release into the same transaction, recovery 2394 * will merely complain about releasing a free block, 2395 * rather than leaking blocks. 2396 */ 2397 if (is_handle_aborted(handle)) 2398 return; 2399 if (try_to_extend_transaction(handle, inode)) { 2400 ext3_mark_inode_dirty(handle, inode); 2401 truncate_restart_transaction(handle, inode); 2402 } 2403 2404 /* 2405 * We've probably journalled the indirect block several 2406 * times during the truncate. But it's no longer 2407 * needed and we now drop it from the transaction via 2408 * journal_revoke(). 2409 * 2410 * That's easy if it's exclusively part of this 2411 * transaction. But if it's part of the committing 2412 * transaction then journal_forget() will simply 2413 * brelse() it. That means that if the underlying 2414 * block is reallocated in ext3_get_block(), 2415 * unmap_underlying_metadata() will find this block 2416 * and will try to get rid of it. damn, damn. Thus 2417 * we don't allow a block to be reallocated until 2418 * a transaction freeing it has fully committed. 2419 * 2420 * We also have to make sure journal replay after a 2421 * crash does not overwrite non-journaled data blocks 2422 * with old metadata when the block got reallocated for 2423 * data. Thus we have to store a revoke record for a 2424 * block in the same transaction in which we free the 2425 * block. 2426 */ 2427 ext3_forget(handle, 1, inode, bh, bh->b_blocknr); 2428 2429 ext3_free_blocks(handle, inode, nr, 1); 2430 2431 if (parent_bh) { 2432 /* 2433 * The block which we have just freed is 2434 * pointed to by an indirect block: journal it 2435 */ 2436 BUFFER_TRACE(parent_bh, "get_write_access"); 2437 if (!ext3_journal_get_write_access(handle, 2438 parent_bh)){ 2439 *p = 0; 2440 BUFFER_TRACE(parent_bh, 2441 "call ext3_journal_dirty_metadata"); 2442 ext3_journal_dirty_metadata(handle, 2443 parent_bh); 2444 } 2445 } 2446 } 2447 } else { 2448 /* We have reached the bottom of the tree. */ 2449 BUFFER_TRACE(parent_bh, "free data blocks"); 2450 ext3_free_data(handle, inode, parent_bh, first, last); 2451 } 2452} 2453 2454int ext3_can_truncate(struct inode *inode) 2455{ 2456 if (S_ISREG(inode->i_mode)) 2457 return 1; 2458 if (S_ISDIR(inode->i_mode)) 2459 return 1; 2460 if (S_ISLNK(inode->i_mode)) 2461 return !ext3_inode_is_fast_symlink(inode); 2462 return 0; 2463} 2464 2465/* 2466 * ext3_truncate() 2467 * 2468 * We block out ext3_get_block() block instantiations across the entire 2469 * transaction, and VFS/VM ensures that ext3_truncate() cannot run 2470 * simultaneously on behalf of the same inode. 2471 * 2472 * As we work through the truncate and commit bits of it to the journal there 2473 * is one core, guiding principle: the file's tree must always be consistent on 2474 * disk. We must be able to restart the truncate after a crash. 2475 * 2476 * The file's tree may be transiently inconsistent in memory (although it 2477 * probably isn't), but whenever we close off and commit a journal transaction, 2478 * the contents of (the filesystem + the journal) must be consistent and 2479 * restartable. It's pretty simple, really: bottom up, right to left (although 2480 * left-to-right works OK too). 2481 * 2482 * Note that at recovery time, journal replay occurs *before* the restart of 2483 * truncate against the orphan inode list. 2484 * 2485 * The committed inode has the new, desired i_size (which is the same as 2486 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see 2487 * that this inode's truncate did not complete and it will again call 2488 * ext3_truncate() to have another go. So there will be instantiated blocks 2489 * to the right of the truncation point in a crashed ext3 filesystem. But 2490 * that's fine - as long as they are linked from the inode, the post-crash 2491 * ext3_truncate() run will find them and release them. 2492 */ 2493void ext3_truncate(struct inode *inode) 2494{ 2495 handle_t *handle; 2496 struct ext3_inode_info *ei = EXT3_I(inode); 2497 __le32 *i_data = ei->i_data; 2498 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); 2499 int offsets[4]; 2500 Indirect chain[4]; 2501 Indirect *partial; 2502 __le32 nr = 0; 2503 int n; 2504 long last_block; 2505 unsigned blocksize = inode->i_sb->s_blocksize; 2506 2507 trace_ext3_truncate_enter(inode); 2508 2509 if (!ext3_can_truncate(inode)) 2510 goto out_notrans; 2511 2512 if (inode->i_size == 0 && ext3_should_writeback_data(inode)) 2513 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE); 2514 2515 handle = start_transaction(inode); 2516 if (IS_ERR(handle)) 2517 goto out_notrans; 2518 2519 last_block = (inode->i_size + blocksize-1) 2520 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb); 2521 n = ext3_block_to_path(inode, last_block, offsets, NULL); 2522 if (n == 0) 2523 goto out_stop; /* error */ 2524 2525 /* 2526 * OK. This truncate is going to happen. We add the inode to the 2527 * orphan list, so that if this truncate spans multiple transactions, 2528 * and we crash, we will resume the truncate when the filesystem 2529 * recovers. It also marks the inode dirty, to catch the new size. 2530 * 2531 * Implication: the file must always be in a sane, consistent 2532 * truncatable state while each transaction commits. 2533 */ 2534 if (ext3_orphan_add(handle, inode)) 2535 goto out_stop; 2536 2537 /* 2538 * The orphan list entry will now protect us from any crash which 2539 * occurs before the truncate completes, so it is now safe to propagate 2540 * the new, shorter inode size (held for now in i_size) into the 2541 * on-disk inode. We do this via i_disksize, which is the value which 2542 * ext3 *really* writes onto the disk inode. 2543 */ 2544 ei->i_disksize = inode->i_size; 2545 2546 /* 2547 * From here we block out all ext3_get_block() callers who want to 2548 * modify the block allocation tree. 2549 */ 2550 mutex_lock(&ei->truncate_mutex); 2551 2552 if (n == 1) { /* direct blocks */ 2553 ext3_free_data(handle, inode, NULL, i_data+offsets[0], 2554 i_data + EXT3_NDIR_BLOCKS); 2555 goto do_indirects; 2556 } 2557 2558 partial = ext3_find_shared(inode, n, offsets, chain, &nr); 2559 /* Kill the top of shared branch (not detached) */ 2560 if (nr) { 2561 if (partial == chain) { 2562 /* Shared branch grows from the inode */ 2563 ext3_free_branches(handle, inode, NULL, 2564 &nr, &nr+1, (chain+n-1) - partial); 2565 *partial->p = 0; 2566 /* 2567 * We mark the inode dirty prior to restart, 2568 * and prior to stop. No need for it here. 2569 */ 2570 } else { 2571 /* Shared branch grows from an indirect block */ 2572 ext3_free_branches(handle, inode, partial->bh, 2573 partial->p, 2574 partial->p+1, (chain+n-1) - partial); 2575 } 2576 } 2577 /* Clear the ends of indirect blocks on the shared branch */ 2578 while (partial > chain) { 2579 ext3_free_branches(handle, inode, partial->bh, partial->p + 1, 2580 (__le32*)partial->bh->b_data+addr_per_block, 2581 (chain+n-1) - partial); 2582 BUFFER_TRACE(partial->bh, "call brelse"); 2583 brelse (partial->bh); 2584 partial--; 2585 } 2586do_indirects: 2587 /* Kill the remaining (whole) subtrees */ 2588 switch (offsets[0]) { 2589 default: 2590 nr = i_data[EXT3_IND_BLOCK]; 2591 if (nr) { 2592 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2593 i_data[EXT3_IND_BLOCK] = 0; 2594 } 2595 case EXT3_IND_BLOCK: 2596 nr = i_data[EXT3_DIND_BLOCK]; 2597 if (nr) { 2598 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2599 i_data[EXT3_DIND_BLOCK] = 0; 2600 } 2601 case EXT3_DIND_BLOCK: 2602 nr = i_data[EXT3_TIND_BLOCK]; 2603 if (nr) { 2604 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2605 i_data[EXT3_TIND_BLOCK] = 0; 2606 } 2607 case EXT3_TIND_BLOCK: 2608 ; 2609 } 2610 2611 ext3_discard_reservation(inode); 2612 2613 mutex_unlock(&ei->truncate_mutex); 2614 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; 2615 ext3_mark_inode_dirty(handle, inode); 2616 2617 /* 2618 * In a multi-transaction truncate, we only make the final transaction 2619 * synchronous 2620 */ 2621 if (IS_SYNC(inode)) 2622 handle->h_sync = 1; 2623out_stop: 2624 /* 2625 * If this was a simple ftruncate(), and the file will remain alive 2626 * then we need to clear up the orphan record which we created above. 2627 * However, if this was a real unlink then we were called by 2628 * ext3_evict_inode(), and we allow that function to clean up the 2629 * orphan info for us. 2630 */ 2631 if (inode->i_nlink) 2632 ext3_orphan_del(handle, inode); 2633 2634 ext3_journal_stop(handle); 2635 trace_ext3_truncate_exit(inode); 2636 return; 2637out_notrans: 2638 /* 2639 * Delete the inode from orphan list so that it doesn't stay there 2640 * forever and trigger assertion on umount. 2641 */ 2642 if (inode->i_nlink) 2643 ext3_orphan_del(NULL, inode); 2644 trace_ext3_truncate_exit(inode); 2645} 2646 2647static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb, 2648 unsigned long ino, struct ext3_iloc *iloc) 2649{ 2650 unsigned long block_group; 2651 unsigned long offset; 2652 ext3_fsblk_t block; 2653 struct ext3_group_desc *gdp; 2654 2655 if (!ext3_valid_inum(sb, ino)) { 2656 /* 2657 * This error is already checked for in namei.c unless we are 2658 * looking at an NFS filehandle, in which case no error 2659 * report is needed 2660 */ 2661 return 0; 2662 } 2663 2664 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb); 2665 gdp = ext3_get_group_desc(sb, block_group, NULL); 2666 if (!gdp) 2667 return 0; 2668 /* 2669 * Figure out the offset within the block group inode table 2670 */ 2671 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) * 2672 EXT3_INODE_SIZE(sb); 2673 block = le32_to_cpu(gdp->bg_inode_table) + 2674 (offset >> EXT3_BLOCK_SIZE_BITS(sb)); 2675 2676 iloc->block_group = block_group; 2677 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1); 2678 return block; 2679} 2680 2681/* 2682 * ext3_get_inode_loc returns with an extra refcount against the inode's 2683 * underlying buffer_head on success. If 'in_mem' is true, we have all 2684 * data in memory that is needed to recreate the on-disk version of this 2685 * inode. 2686 */ 2687static int __ext3_get_inode_loc(struct inode *inode, 2688 struct ext3_iloc *iloc, int in_mem) 2689{ 2690 ext3_fsblk_t block; 2691 struct buffer_head *bh; 2692 2693 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2694 if (!block) 2695 return -EIO; 2696 2697 bh = sb_getblk(inode->i_sb, block); 2698 if (unlikely(!bh)) { 2699 ext3_error (inode->i_sb, "ext3_get_inode_loc", 2700 "unable to read inode block - " 2701 "inode=%lu, block="E3FSBLK, 2702 inode->i_ino, block); 2703 return -ENOMEM; 2704 } 2705 if (!buffer_uptodate(bh)) { 2706 lock_buffer(bh); 2707 2708 /* 2709 * If the buffer has the write error flag, we have failed 2710 * to write out another inode in the same block. In this 2711 * case, we don't have to read the block because we may 2712 * read the old inode data successfully. 2713 */ 2714 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 2715 set_buffer_uptodate(bh); 2716 2717 if (buffer_uptodate(bh)) { 2718 /* someone brought it uptodate while we waited */ 2719 unlock_buffer(bh); 2720 goto has_buffer; 2721 } 2722 2723 /* 2724 * If we have all information of the inode in memory and this 2725 * is the only valid inode in the block, we need not read the 2726 * block. 2727 */ 2728 if (in_mem) { 2729 struct buffer_head *bitmap_bh; 2730 struct ext3_group_desc *desc; 2731 int inodes_per_buffer; 2732 int inode_offset, i; 2733 int block_group; 2734 int start; 2735 2736 block_group = (inode->i_ino - 1) / 2737 EXT3_INODES_PER_GROUP(inode->i_sb); 2738 inodes_per_buffer = bh->b_size / 2739 EXT3_INODE_SIZE(inode->i_sb); 2740 inode_offset = ((inode->i_ino - 1) % 2741 EXT3_INODES_PER_GROUP(inode->i_sb)); 2742 start = inode_offset & ~(inodes_per_buffer - 1); 2743 2744 /* Is the inode bitmap in cache? */ 2745 desc = ext3_get_group_desc(inode->i_sb, 2746 block_group, NULL); 2747 if (!desc) 2748 goto make_io; 2749 2750 bitmap_bh = sb_getblk(inode->i_sb, 2751 le32_to_cpu(desc->bg_inode_bitmap)); 2752 if (unlikely(!bitmap_bh)) 2753 goto make_io; 2754 2755 /* 2756 * If the inode bitmap isn't in cache then the 2757 * optimisation may end up performing two reads instead 2758 * of one, so skip it. 2759 */ 2760 if (!buffer_uptodate(bitmap_bh)) { 2761 brelse(bitmap_bh); 2762 goto make_io; 2763 } 2764 for (i = start; i < start + inodes_per_buffer; i++) { 2765 if (i == inode_offset) 2766 continue; 2767 if (ext3_test_bit(i, bitmap_bh->b_data)) 2768 break; 2769 } 2770 brelse(bitmap_bh); 2771 if (i == start + inodes_per_buffer) { 2772 /* all other inodes are free, so skip I/O */ 2773 memset(bh->b_data, 0, bh->b_size); 2774 set_buffer_uptodate(bh); 2775 unlock_buffer(bh); 2776 goto has_buffer; 2777 } 2778 } 2779 2780make_io: 2781 /* 2782 * There are other valid inodes in the buffer, this inode 2783 * has in-inode xattrs, or we don't have this inode in memory. 2784 * Read the block from disk. 2785 */ 2786 trace_ext3_load_inode(inode); 2787 get_bh(bh); 2788 bh->b_end_io = end_buffer_read_sync; 2789 submit_bh(READ | REQ_META | REQ_PRIO, bh); 2790 wait_on_buffer(bh); 2791 if (!buffer_uptodate(bh)) { 2792 ext3_error(inode->i_sb, "ext3_get_inode_loc", 2793 "unable to read inode block - " 2794 "inode=%lu, block="E3FSBLK, 2795 inode->i_ino, block); 2796 brelse(bh); 2797 return -EIO; 2798 } 2799 } 2800has_buffer: 2801 iloc->bh = bh; 2802 return 0; 2803} 2804 2805int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc) 2806{ 2807 /* We have all inode data except xattrs in memory here. */ 2808 return __ext3_get_inode_loc(inode, iloc, 2809 !ext3_test_inode_state(inode, EXT3_STATE_XATTR)); 2810} 2811 2812void ext3_set_inode_flags(struct inode *inode) 2813{ 2814 unsigned int flags = EXT3_I(inode)->i_flags; 2815 2816 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2817 if (flags & EXT3_SYNC_FL) 2818 inode->i_flags |= S_SYNC; 2819 if (flags & EXT3_APPEND_FL) 2820 inode->i_flags |= S_APPEND; 2821 if (flags & EXT3_IMMUTABLE_FL) 2822 inode->i_flags |= S_IMMUTABLE; 2823 if (flags & EXT3_NOATIME_FL) 2824 inode->i_flags |= S_NOATIME; 2825 if (flags & EXT3_DIRSYNC_FL) 2826 inode->i_flags |= S_DIRSYNC; 2827} 2828 2829/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */ 2830void ext3_get_inode_flags(struct ext3_inode_info *ei) 2831{ 2832 unsigned int flags = ei->vfs_inode.i_flags; 2833 2834 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL| 2835 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL); 2836 if (flags & S_SYNC) 2837 ei->i_flags |= EXT3_SYNC_FL; 2838 if (flags & S_APPEND) 2839 ei->i_flags |= EXT3_APPEND_FL; 2840 if (flags & S_IMMUTABLE) 2841 ei->i_flags |= EXT3_IMMUTABLE_FL; 2842 if (flags & S_NOATIME) 2843 ei->i_flags |= EXT3_NOATIME_FL; 2844 if (flags & S_DIRSYNC) 2845 ei->i_flags |= EXT3_DIRSYNC_FL; 2846} 2847 2848struct inode *ext3_iget(struct super_block *sb, unsigned long ino) 2849{ 2850 struct ext3_iloc iloc; 2851 struct ext3_inode *raw_inode; 2852 struct ext3_inode_info *ei; 2853 struct buffer_head *bh; 2854 struct inode *inode; 2855 journal_t *journal = EXT3_SB(sb)->s_journal; 2856 transaction_t *transaction; 2857 long ret; 2858 int block; 2859 uid_t i_uid; 2860 gid_t i_gid; 2861 2862 inode = iget_locked(sb, ino); 2863 if (!inode) 2864 return ERR_PTR(-ENOMEM); 2865 if (!(inode->i_state & I_NEW)) 2866 return inode; 2867 2868 ei = EXT3_I(inode); 2869 ei->i_block_alloc_info = NULL; 2870 2871 ret = __ext3_get_inode_loc(inode, &iloc, 0); 2872 if (ret < 0) 2873 goto bad_inode; 2874 bh = iloc.bh; 2875 raw_inode = ext3_raw_inode(&iloc); 2876 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2877 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2878 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2879 if(!(test_opt (inode->i_sb, NO_UID32))) { 2880 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2881 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2882 } 2883 i_uid_write(inode, i_uid); 2884 i_gid_write(inode, i_gid); 2885 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 2886 inode->i_size = le32_to_cpu(raw_inode->i_size); 2887 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime); 2888 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime); 2889 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime); 2890 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0; 2891 2892 ei->i_state_flags = 0; 2893 ei->i_dir_start_lookup = 0; 2894 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2895 /* We now have enough fields to check if the inode was active or not. 2896 * This is needed because nfsd might try to access dead inodes 2897 * the test is that same one that e2fsck uses 2898 * NeilBrown 1999oct15 2899 */ 2900 if (inode->i_nlink == 0) { 2901 if (inode->i_mode == 0 || 2902 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) { 2903 /* this inode is deleted */ 2904 brelse (bh); 2905 ret = -ESTALE; 2906 goto bad_inode; 2907 } 2908 /* The only unlinked inodes we let through here have 2909 * valid i_mode and are being read by the orphan 2910 * recovery code: that's fine, we're about to complete 2911 * the process of deleting those. */ 2912 } 2913 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 2914 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2915#ifdef EXT3_FRAGMENTS 2916 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 2917 ei->i_frag_no = raw_inode->i_frag; 2918 ei->i_frag_size = raw_inode->i_fsize; 2919#endif 2920 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 2921 if (!S_ISREG(inode->i_mode)) { 2922 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 2923 } else { 2924 inode->i_size |= 2925 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 2926 } 2927 ei->i_disksize = inode->i_size; 2928 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2929 ei->i_block_group = iloc.block_group; 2930 /* 2931 * NOTE! The in-memory inode i_data array is in little-endian order 2932 * even on big-endian machines: we do NOT byteswap the block numbers! 2933 */ 2934 for (block = 0; block < EXT3_N_BLOCKS; block++) 2935 ei->i_data[block] = raw_inode->i_block[block]; 2936 INIT_LIST_HEAD(&ei->i_orphan); 2937 2938 /* 2939 * Set transaction id's of transactions that have to be committed 2940 * to finish f[data]sync. We set them to currently running transaction 2941 * as we cannot be sure that the inode or some of its metadata isn't 2942 * part of the transaction - the inode could have been reclaimed and 2943 * now it is reread from disk. 2944 */ 2945 if (journal) { 2946 tid_t tid; 2947 2948 spin_lock(&journal->j_state_lock); 2949 if (journal->j_running_transaction) 2950 transaction = journal->j_running_transaction; 2951 else 2952 transaction = journal->j_committing_transaction; 2953 if (transaction) 2954 tid = transaction->t_tid; 2955 else 2956 tid = journal->j_commit_sequence; 2957 spin_unlock(&journal->j_state_lock); 2958 atomic_set(&ei->i_sync_tid, tid); 2959 atomic_set(&ei->i_datasync_tid, tid); 2960 } 2961 2962 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 && 2963 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) { 2964 /* 2965 * When mke2fs creates big inodes it does not zero out 2966 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE, 2967 * so ignore those first few inodes. 2968 */ 2969 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 2970 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 2971 EXT3_INODE_SIZE(inode->i_sb)) { 2972 brelse (bh); 2973 ret = -EIO; 2974 goto bad_inode; 2975 } 2976 if (ei->i_extra_isize == 0) { 2977 /* The extra space is currently unused. Use it. */ 2978 ei->i_extra_isize = sizeof(struct ext3_inode) - 2979 EXT3_GOOD_OLD_INODE_SIZE; 2980 } else { 2981 __le32 *magic = (void *)raw_inode + 2982 EXT3_GOOD_OLD_INODE_SIZE + 2983 ei->i_extra_isize; 2984 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC)) 2985 ext3_set_inode_state(inode, EXT3_STATE_XATTR); 2986 } 2987 } else 2988 ei->i_extra_isize = 0; 2989 2990 if (S_ISREG(inode->i_mode)) { 2991 inode->i_op = &ext3_file_inode_operations; 2992 inode->i_fop = &ext3_file_operations; 2993 ext3_set_aops(inode); 2994 } else if (S_ISDIR(inode->i_mode)) { 2995 inode->i_op = &ext3_dir_inode_operations; 2996 inode->i_fop = &ext3_dir_operations; 2997 } else if (S_ISLNK(inode->i_mode)) { 2998 if (ext3_inode_is_fast_symlink(inode)) { 2999 inode->i_op = &ext3_fast_symlink_inode_operations; 3000 nd_terminate_link(ei->i_data, inode->i_size, 3001 sizeof(ei->i_data) - 1); 3002 } else { 3003 inode->i_op = &ext3_symlink_inode_operations; 3004 ext3_set_aops(inode); 3005 } 3006 } else { 3007 inode->i_op = &ext3_special_inode_operations; 3008 if (raw_inode->i_block[0]) 3009 init_special_inode(inode, inode->i_mode, 3010 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3011 else 3012 init_special_inode(inode, inode->i_mode, 3013 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3014 } 3015 brelse (iloc.bh); 3016 ext3_set_inode_flags(inode); 3017 unlock_new_inode(inode); 3018 return inode; 3019 3020bad_inode: 3021 iget_failed(inode); 3022 return ERR_PTR(ret); 3023} 3024 3025/* 3026 * Post the struct inode info into an on-disk inode location in the 3027 * buffer-cache. This gobbles the caller's reference to the 3028 * buffer_head in the inode location struct. 3029 * 3030 * The caller must have write access to iloc->bh. 3031 */ 3032static int ext3_do_update_inode(handle_t *handle, 3033 struct inode *inode, 3034 struct ext3_iloc *iloc) 3035{ 3036 struct ext3_inode *raw_inode = ext3_raw_inode(iloc); 3037 struct ext3_inode_info *ei = EXT3_I(inode); 3038 struct buffer_head *bh = iloc->bh; 3039 int err = 0, rc, block; 3040 int need_datasync = 0; 3041 __le32 disksize; 3042 uid_t i_uid; 3043 gid_t i_gid; 3044 3045again: 3046 /* we can't allow multiple procs in here at once, its a bit racey */ 3047 lock_buffer(bh); 3048 3049 /* For fields not not tracking in the in-memory inode, 3050 * initialise them to zero for new inodes. */ 3051 if (ext3_test_inode_state(inode, EXT3_STATE_NEW)) 3052 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size); 3053 3054 ext3_get_inode_flags(ei); 3055 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3056 i_uid = i_uid_read(inode); 3057 i_gid = i_gid_read(inode); 3058 if(!(test_opt(inode->i_sb, NO_UID32))) { 3059 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 3060 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 3061/* 3062 * Fix up interoperability with old kernels. Otherwise, old inodes get 3063 * re-used with the upper 16 bits of the uid/gid intact 3064 */ 3065 if(!ei->i_dtime) { 3066 raw_inode->i_uid_high = 3067 cpu_to_le16(high_16_bits(i_uid)); 3068 raw_inode->i_gid_high = 3069 cpu_to_le16(high_16_bits(i_gid)); 3070 } else { 3071 raw_inode->i_uid_high = 0; 3072 raw_inode->i_gid_high = 0; 3073 } 3074 } else { 3075 raw_inode->i_uid_low = 3076 cpu_to_le16(fs_high2lowuid(i_uid)); 3077 raw_inode->i_gid_low = 3078 cpu_to_le16(fs_high2lowgid(i_gid)); 3079 raw_inode->i_uid_high = 0; 3080 raw_inode->i_gid_high = 0; 3081 } 3082 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3083 disksize = cpu_to_le32(ei->i_disksize); 3084 if (disksize != raw_inode->i_size) { 3085 need_datasync = 1; 3086 raw_inode->i_size = disksize; 3087 } 3088 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 3089 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 3090 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 3091 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 3092 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3093 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 3094#ifdef EXT3_FRAGMENTS 3095 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 3096 raw_inode->i_frag = ei->i_frag_no; 3097 raw_inode->i_fsize = ei->i_frag_size; 3098#endif 3099 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 3100 if (!S_ISREG(inode->i_mode)) { 3101 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 3102 } else { 3103 disksize = cpu_to_le32(ei->i_disksize >> 32); 3104 if (disksize != raw_inode->i_size_high) { 3105 raw_inode->i_size_high = disksize; 3106 need_datasync = 1; 3107 } 3108 if (ei->i_disksize > 0x7fffffffULL) { 3109 struct super_block *sb = inode->i_sb; 3110 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb, 3111 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) || 3112 EXT3_SB(sb)->s_es->s_rev_level == 3113 cpu_to_le32(EXT3_GOOD_OLD_REV)) { 3114 /* If this is the first large file 3115 * created, add a flag to the superblock. 3116 */ 3117 unlock_buffer(bh); 3118 err = ext3_journal_get_write_access(handle, 3119 EXT3_SB(sb)->s_sbh); 3120 if (err) 3121 goto out_brelse; 3122 3123 ext3_update_dynamic_rev(sb); 3124 EXT3_SET_RO_COMPAT_FEATURE(sb, 3125 EXT3_FEATURE_RO_COMPAT_LARGE_FILE); 3126 handle->h_sync = 1; 3127 err = ext3_journal_dirty_metadata(handle, 3128 EXT3_SB(sb)->s_sbh); 3129 /* get our lock and start over */ 3130 goto again; 3131 } 3132 } 3133 } 3134 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3135 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3136 if (old_valid_dev(inode->i_rdev)) { 3137 raw_inode->i_block[0] = 3138 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3139 raw_inode->i_block[1] = 0; 3140 } else { 3141 raw_inode->i_block[0] = 0; 3142 raw_inode->i_block[1] = 3143 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3144 raw_inode->i_block[2] = 0; 3145 } 3146 } else for (block = 0; block < EXT3_N_BLOCKS; block++) 3147 raw_inode->i_block[block] = ei->i_data[block]; 3148 3149 if (ei->i_extra_isize) 3150 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3151 3152 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 3153 unlock_buffer(bh); 3154 rc = ext3_journal_dirty_metadata(handle, bh); 3155 if (!err) 3156 err = rc; 3157 ext3_clear_inode_state(inode, EXT3_STATE_NEW); 3158 3159 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid); 3160 if (need_datasync) 3161 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 3162out_brelse: 3163 brelse (bh); 3164 ext3_std_error(inode->i_sb, err); 3165 return err; 3166} 3167 3168/* 3169 * ext3_write_inode() 3170 * 3171 * We are called from a few places: 3172 * 3173 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 3174 * Here, there will be no transaction running. We wait for any running 3175 * transaction to commit. 3176 * 3177 * - Within flush work (for sys_sync(), kupdate and such). 3178 * We wait on commit, if told to. 3179 * 3180 * - Within iput_final() -> write_inode_now() 3181 * We wait on commit, if told to. 3182 * 3183 * In all cases it is actually safe for us to return without doing anything, 3184 * because the inode has been copied into a raw inode buffer in 3185 * ext3_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 3186 * writeback. 3187 * 3188 * Note that we are absolutely dependent upon all inode dirtiers doing the 3189 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3190 * which we are interested. 3191 * 3192 * It would be a bug for them to not do this. The code: 3193 * 3194 * mark_inode_dirty(inode) 3195 * stuff(); 3196 * inode->i_size = expr; 3197 * 3198 * is in error because write_inode() could occur while `stuff()' is running, 3199 * and the new i_size will be lost. Plus the inode will no longer be on the 3200 * superblock's dirty inode list. 3201 */ 3202int ext3_write_inode(struct inode *inode, struct writeback_control *wbc) 3203{ 3204 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 3205 return 0; 3206 3207 if (ext3_journal_current_handle()) { 3208 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3209 dump_stack(); 3210 return -EIO; 3211 } 3212 3213 /* 3214 * No need to force transaction in WB_SYNC_NONE mode. Also 3215 * ext3_sync_fs() will force the commit after everything is 3216 * written. 3217 */ 3218 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 3219 return 0; 3220 3221 return ext3_force_commit(inode->i_sb); 3222} 3223 3224/* 3225 * ext3_setattr() 3226 * 3227 * Called from notify_change. 3228 * 3229 * We want to trap VFS attempts to truncate the file as soon as 3230 * possible. In particular, we want to make sure that when the VFS 3231 * shrinks i_size, we put the inode on the orphan list and modify 3232 * i_disksize immediately, so that during the subsequent flushing of 3233 * dirty pages and freeing of disk blocks, we can guarantee that any 3234 * commit will leave the blocks being flushed in an unused state on 3235 * disk. (On recovery, the inode will get truncated and the blocks will 3236 * be freed, so we have a strong guarantee that no future commit will 3237 * leave these blocks visible to the user.) 3238 * 3239 * Called with inode->sem down. 3240 */ 3241int ext3_setattr(struct dentry *dentry, struct iattr *attr) 3242{ 3243 struct inode *inode = d_inode(dentry); 3244 int error, rc = 0; 3245 const unsigned int ia_valid = attr->ia_valid; 3246 3247 error = inode_change_ok(inode, attr); 3248 if (error) 3249 return error; 3250 3251 if (is_quota_modification(inode, attr)) 3252 dquot_initialize(inode); 3253 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3254 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3255 handle_t *handle; 3256 3257 /* (user+group)*(old+new) structure, inode write (sb, 3258 * inode block, ? - but truncate inode update has it) */ 3259 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 3260 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3); 3261 if (IS_ERR(handle)) { 3262 error = PTR_ERR(handle); 3263 goto err_out; 3264 } 3265 error = dquot_transfer(inode, attr); 3266 if (error) { 3267 ext3_journal_stop(handle); 3268 return error; 3269 } 3270 /* Update corresponding info in inode so that everything is in 3271 * one transaction */ 3272 if (attr->ia_valid & ATTR_UID) 3273 inode->i_uid = attr->ia_uid; 3274 if (attr->ia_valid & ATTR_GID) 3275 inode->i_gid = attr->ia_gid; 3276 error = ext3_mark_inode_dirty(handle, inode); 3277 ext3_journal_stop(handle); 3278 } 3279 3280 if (attr->ia_valid & ATTR_SIZE) 3281 inode_dio_wait(inode); 3282 3283 if (S_ISREG(inode->i_mode) && 3284 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3285 handle_t *handle; 3286 3287 handle = ext3_journal_start(inode, 3); 3288 if (IS_ERR(handle)) { 3289 error = PTR_ERR(handle); 3290 goto err_out; 3291 } 3292 3293 error = ext3_orphan_add(handle, inode); 3294 if (error) { 3295 ext3_journal_stop(handle); 3296 goto err_out; 3297 } 3298 EXT3_I(inode)->i_disksize = attr->ia_size; 3299 error = ext3_mark_inode_dirty(handle, inode); 3300 ext3_journal_stop(handle); 3301 if (error) { 3302 /* Some hard fs error must have happened. Bail out. */ 3303 ext3_orphan_del(NULL, inode); 3304 goto err_out; 3305 } 3306 rc = ext3_block_truncate_page(inode, attr->ia_size); 3307 if (rc) { 3308 /* Cleanup orphan list and exit */ 3309 handle = ext3_journal_start(inode, 3); 3310 if (IS_ERR(handle)) { 3311 ext3_orphan_del(NULL, inode); 3312 goto err_out; 3313 } 3314 ext3_orphan_del(handle, inode); 3315 ext3_journal_stop(handle); 3316 goto err_out; 3317 } 3318 } 3319 3320 if ((attr->ia_valid & ATTR_SIZE) && 3321 attr->ia_size != i_size_read(inode)) { 3322 truncate_setsize(inode, attr->ia_size); 3323 ext3_truncate(inode); 3324 } 3325 3326 setattr_copy(inode, attr); 3327 mark_inode_dirty(inode); 3328 3329 if (ia_valid & ATTR_MODE) 3330 rc = posix_acl_chmod(inode, inode->i_mode); 3331 3332err_out: 3333 ext3_std_error(inode->i_sb, error); 3334 if (!error) 3335 error = rc; 3336 return error; 3337} 3338 3339 3340/* 3341 * How many blocks doth make a writepage()? 3342 * 3343 * With N blocks per page, it may be: 3344 * N data blocks 3345 * 2 indirect block 3346 * 2 dindirect 3347 * 1 tindirect 3348 * N+5 bitmap blocks (from the above) 3349 * N+5 group descriptor summary blocks 3350 * 1 inode block 3351 * 1 superblock. 3352 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files 3353 * 3354 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS 3355 * 3356 * With ordered or writeback data it's the same, less the N data blocks. 3357 * 3358 * If the inode's direct blocks can hold an integral number of pages then a 3359 * page cannot straddle two indirect blocks, and we can only touch one indirect 3360 * and dindirect block, and the "5" above becomes "3". 3361 * 3362 * This still overestimates under most circumstances. If we were to pass the 3363 * start and end offsets in here as well we could do block_to_path() on each 3364 * block and work out the exact number of indirects which are touched. Pah. 3365 */ 3366 3367static int ext3_writepage_trans_blocks(struct inode *inode) 3368{ 3369 int bpp = ext3_journal_blocks_per_page(inode); 3370 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3; 3371 int ret; 3372 3373 if (ext3_should_journal_data(inode)) 3374 ret = 3 * (bpp + indirects) + 2; 3375 else 3376 ret = 2 * (bpp + indirects) + indirects + 2; 3377 3378#ifdef CONFIG_QUOTA 3379 /* We know that structure was already allocated during dquot_initialize so 3380 * we will be updating only the data blocks + inodes */ 3381 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 3382#endif 3383 3384 return ret; 3385} 3386 3387/* 3388 * The caller must have previously called ext3_reserve_inode_write(). 3389 * Give this, we know that the caller already has write access to iloc->bh. 3390 */ 3391int ext3_mark_iloc_dirty(handle_t *handle, 3392 struct inode *inode, struct ext3_iloc *iloc) 3393{ 3394 int err = 0; 3395 3396 /* the do_update_inode consumes one bh->b_count */ 3397 get_bh(iloc->bh); 3398 3399 /* ext3_do_update_inode() does journal_dirty_metadata */ 3400 err = ext3_do_update_inode(handle, inode, iloc); 3401 put_bh(iloc->bh); 3402 return err; 3403} 3404 3405/* 3406 * On success, We end up with an outstanding reference count against 3407 * iloc->bh. This _must_ be cleaned up later. 3408 */ 3409 3410int 3411ext3_reserve_inode_write(handle_t *handle, struct inode *inode, 3412 struct ext3_iloc *iloc) 3413{ 3414 int err = 0; 3415 if (handle) { 3416 err = ext3_get_inode_loc(inode, iloc); 3417 if (!err) { 3418 BUFFER_TRACE(iloc->bh, "get_write_access"); 3419 err = ext3_journal_get_write_access(handle, iloc->bh); 3420 if (err) { 3421 brelse(iloc->bh); 3422 iloc->bh = NULL; 3423 } 3424 } 3425 } 3426 ext3_std_error(inode->i_sb, err); 3427 return err; 3428} 3429 3430/* 3431 * What we do here is to mark the in-core inode as clean with respect to inode 3432 * dirtiness (it may still be data-dirty). 3433 * This means that the in-core inode may be reaped by prune_icache 3434 * without having to perform any I/O. This is a very good thing, 3435 * because *any* task may call prune_icache - even ones which 3436 * have a transaction open against a different journal. 3437 * 3438 * Is this cheating? Not really. Sure, we haven't written the 3439 * inode out, but prune_icache isn't a user-visible syncing function. 3440 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3441 * we start and wait on commits. 3442 */ 3443int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode) 3444{ 3445 struct ext3_iloc iloc; 3446 int err; 3447 3448 might_sleep(); 3449 trace_ext3_mark_inode_dirty(inode, _RET_IP_); 3450 err = ext3_reserve_inode_write(handle, inode, &iloc); 3451 if (!err) 3452 err = ext3_mark_iloc_dirty(handle, inode, &iloc); 3453 return err; 3454} 3455 3456/* 3457 * ext3_dirty_inode() is called from __mark_inode_dirty() 3458 * 3459 * We're really interested in the case where a file is being extended. 3460 * i_size has been changed by generic_commit_write() and we thus need 3461 * to include the updated inode in the current transaction. 3462 * 3463 * Also, dquot_alloc_space() will always dirty the inode when blocks 3464 * are allocated to the file. 3465 * 3466 * If the inode is marked synchronous, we don't honour that here - doing 3467 * so would cause a commit on atime updates, which we don't bother doing. 3468 * We handle synchronous inodes at the highest possible level. 3469 */ 3470void ext3_dirty_inode(struct inode *inode, int flags) 3471{ 3472 handle_t *current_handle = ext3_journal_current_handle(); 3473 handle_t *handle; 3474 3475 handle = ext3_journal_start(inode, 2); 3476 if (IS_ERR(handle)) 3477 goto out; 3478 if (current_handle && 3479 current_handle->h_transaction != handle->h_transaction) { 3480 /* This task has a transaction open against a different fs */ 3481 printk(KERN_EMERG "%s: transactions do not match!\n", 3482 __func__); 3483 } else { 3484 jbd_debug(5, "marking dirty. outer handle=%p\n", 3485 current_handle); 3486 ext3_mark_inode_dirty(handle, inode); 3487 } 3488 ext3_journal_stop(handle); 3489out: 3490 return; 3491} 3492 3493#if 0 3494/* 3495 * Bind an inode's backing buffer_head into this transaction, to prevent 3496 * it from being flushed to disk early. Unlike 3497 * ext3_reserve_inode_write, this leaves behind no bh reference and 3498 * returns no iloc structure, so the caller needs to repeat the iloc 3499 * lookup to mark the inode dirty later. 3500 */ 3501static int ext3_pin_inode(handle_t *handle, struct inode *inode) 3502{ 3503 struct ext3_iloc iloc; 3504 3505 int err = 0; 3506 if (handle) { 3507 err = ext3_get_inode_loc(inode, &iloc); 3508 if (!err) { 3509 BUFFER_TRACE(iloc.bh, "get_write_access"); 3510 err = journal_get_write_access(handle, iloc.bh); 3511 if (!err) 3512 err = ext3_journal_dirty_metadata(handle, 3513 iloc.bh); 3514 brelse(iloc.bh); 3515 } 3516 } 3517 ext3_std_error(inode->i_sb, err); 3518 return err; 3519} 3520#endif 3521 3522int ext3_change_inode_journal_flag(struct inode *inode, int val) 3523{ 3524 journal_t *journal; 3525 handle_t *handle; 3526 int err; 3527 3528 /* 3529 * We have to be very careful here: changing a data block's 3530 * journaling status dynamically is dangerous. If we write a 3531 * data block to the journal, change the status and then delete 3532 * that block, we risk forgetting to revoke the old log record 3533 * from the journal and so a subsequent replay can corrupt data. 3534 * So, first we make sure that the journal is empty and that 3535 * nobody is changing anything. 3536 */ 3537 3538 journal = EXT3_JOURNAL(inode); 3539 if (is_journal_aborted(journal)) 3540 return -EROFS; 3541 3542 journal_lock_updates(journal); 3543 journal_flush(journal); 3544 3545 /* 3546 * OK, there are no updates running now, and all cached data is 3547 * synced to disk. We are now in a completely consistent state 3548 * which doesn't have anything in the journal, and we know that 3549 * no filesystem updates are running, so it is safe to modify 3550 * the inode's in-core data-journaling state flag now. 3551 */ 3552 3553 if (val) 3554 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL; 3555 else 3556 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL; 3557 ext3_set_aops(inode); 3558 3559 journal_unlock_updates(journal); 3560 3561 /* Finally we can mark the inode as dirty. */ 3562 3563 handle = ext3_journal_start(inode, 1); 3564 if (IS_ERR(handle)) 3565 return PTR_ERR(handle); 3566 3567 err = ext3_mark_inode_dirty(handle, inode); 3568 handle->h_sync = 1; 3569 ext3_journal_stop(handle); 3570 ext3_std_error(inode->i_sb, err); 3571 3572 return err; 3573} 3574