1/*
2 *  linux/fs/exec.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19 * current->executable is only used by the procfs.  This allows a dispatch
20 * table to check for several different types  of binary formats.  We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/pagemap.h>
36#include <linux/perf_event.h>
37#include <linux/highmem.h>
38#include <linux/spinlock.h>
39#include <linux/key.h>
40#include <linux/personality.h>
41#include <linux/binfmts.h>
42#include <linux/utsname.h>
43#include <linux/pid_namespace.h>
44#include <linux/module.h>
45#include <linux/namei.h>
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
49#include <linux/tsacct_kern.h>
50#include <linux/cn_proc.h>
51#include <linux/audit.h>
52#include <linux/tracehook.h>
53#include <linux/kmod.h>
54#include <linux/fsnotify.h>
55#include <linux/fs_struct.h>
56#include <linux/pipe_fs_i.h>
57#include <linux/oom.h>
58#include <linux/compat.h>
59
60#include <asm/uaccess.h>
61#include <asm/mmu_context.h>
62#include <asm/tlb.h>
63
64#include <trace/events/task.h>
65#include "internal.h"
66
67#include <trace/events/sched.h>
68
69int suid_dumpable = 0;
70
71static LIST_HEAD(formats);
72static DEFINE_RWLOCK(binfmt_lock);
73
74void __register_binfmt(struct linux_binfmt * fmt, int insert)
75{
76	BUG_ON(!fmt);
77	if (WARN_ON(!fmt->load_binary))
78		return;
79	write_lock(&binfmt_lock);
80	insert ? list_add(&fmt->lh, &formats) :
81		 list_add_tail(&fmt->lh, &formats);
82	write_unlock(&binfmt_lock);
83}
84
85EXPORT_SYMBOL(__register_binfmt);
86
87void unregister_binfmt(struct linux_binfmt * fmt)
88{
89	write_lock(&binfmt_lock);
90	list_del(&fmt->lh);
91	write_unlock(&binfmt_lock);
92}
93
94EXPORT_SYMBOL(unregister_binfmt);
95
96static inline void put_binfmt(struct linux_binfmt * fmt)
97{
98	module_put(fmt->module);
99}
100
101#ifdef CONFIG_USELIB
102/*
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
105 *
106 * Also note that we take the address to load from from the file itself.
107 */
108SYSCALL_DEFINE1(uselib, const char __user *, library)
109{
110	struct linux_binfmt *fmt;
111	struct file *file;
112	struct filename *tmp = getname(library);
113	int error = PTR_ERR(tmp);
114	static const struct open_flags uselib_flags = {
115		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117		.intent = LOOKUP_OPEN,
118		.lookup_flags = LOOKUP_FOLLOW,
119	};
120
121	if (IS_ERR(tmp))
122		goto out;
123
124	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125	putname(tmp);
126	error = PTR_ERR(file);
127	if (IS_ERR(file))
128		goto out;
129
130	error = -EINVAL;
131	if (!S_ISREG(file_inode(file)->i_mode))
132		goto exit;
133
134	error = -EACCES;
135	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136		goto exit;
137
138	fsnotify_open(file);
139
140	error = -ENOEXEC;
141
142	read_lock(&binfmt_lock);
143	list_for_each_entry(fmt, &formats, lh) {
144		if (!fmt->load_shlib)
145			continue;
146		if (!try_module_get(fmt->module))
147			continue;
148		read_unlock(&binfmt_lock);
149		error = fmt->load_shlib(file);
150		read_lock(&binfmt_lock);
151		put_binfmt(fmt);
152		if (error != -ENOEXEC)
153			break;
154	}
155	read_unlock(&binfmt_lock);
156exit:
157	fput(file);
158out:
159  	return error;
160}
161#endif /* #ifdef CONFIG_USELIB */
162
163#ifdef CONFIG_MMU
164/*
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
169 */
170static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171{
172	struct mm_struct *mm = current->mm;
173	long diff = (long)(pages - bprm->vma_pages);
174
175	if (!mm || !diff)
176		return;
177
178	bprm->vma_pages = pages;
179	add_mm_counter(mm, MM_ANONPAGES, diff);
180}
181
182static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183		int write)
184{
185	struct page *page;
186	int ret;
187
188#ifdef CONFIG_STACK_GROWSUP
189	if (write) {
190		ret = expand_downwards(bprm->vma, pos);
191		if (ret < 0)
192			return NULL;
193	}
194#endif
195	ret = get_user_pages(current, bprm->mm, pos,
196			1, write, 1, &page, NULL);
197	if (ret <= 0)
198		return NULL;
199
200	if (write) {
201		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202		struct rlimit *rlim;
203
204		acct_arg_size(bprm, size / PAGE_SIZE);
205
206		/*
207		 * We've historically supported up to 32 pages (ARG_MAX)
208		 * of argument strings even with small stacks
209		 */
210		if (size <= ARG_MAX)
211			return page;
212
213		/*
214		 * Limit to 1/4-th the stack size for the argv+env strings.
215		 * This ensures that:
216		 *  - the remaining binfmt code will not run out of stack space,
217		 *  - the program will have a reasonable amount of stack left
218		 *    to work from.
219		 */
220		rlim = current->signal->rlim;
221		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222			put_page(page);
223			return NULL;
224		}
225	}
226
227	return page;
228}
229
230static void put_arg_page(struct page *page)
231{
232	put_page(page);
233}
234
235static void free_arg_page(struct linux_binprm *bprm, int i)
236{
237}
238
239static void free_arg_pages(struct linux_binprm *bprm)
240{
241}
242
243static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244		struct page *page)
245{
246	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247}
248
249static int __bprm_mm_init(struct linux_binprm *bprm)
250{
251	int err;
252	struct vm_area_struct *vma = NULL;
253	struct mm_struct *mm = bprm->mm;
254
255	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256	if (!vma)
257		return -ENOMEM;
258
259	down_write(&mm->mmap_sem);
260	vma->vm_mm = mm;
261
262	/*
263	 * Place the stack at the largest stack address the architecture
264	 * supports. Later, we'll move this to an appropriate place. We don't
265	 * use STACK_TOP because that can depend on attributes which aren't
266	 * configured yet.
267	 */
268	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269	vma->vm_end = STACK_TOP_MAX;
270	vma->vm_start = vma->vm_end - PAGE_SIZE;
271	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273	INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275	err = insert_vm_struct(mm, vma);
276	if (err)
277		goto err;
278
279	mm->stack_vm = mm->total_vm = 1;
280	arch_bprm_mm_init(mm, vma);
281	up_write(&mm->mmap_sem);
282	bprm->p = vma->vm_end - sizeof(void *);
283	return 0;
284err:
285	up_write(&mm->mmap_sem);
286	bprm->vma = NULL;
287	kmem_cache_free(vm_area_cachep, vma);
288	return err;
289}
290
291static bool valid_arg_len(struct linux_binprm *bprm, long len)
292{
293	return len <= MAX_ARG_STRLEN;
294}
295
296#else
297
298static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299{
300}
301
302static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303		int write)
304{
305	struct page *page;
306
307	page = bprm->page[pos / PAGE_SIZE];
308	if (!page && write) {
309		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310		if (!page)
311			return NULL;
312		bprm->page[pos / PAGE_SIZE] = page;
313	}
314
315	return page;
316}
317
318static void put_arg_page(struct page *page)
319{
320}
321
322static void free_arg_page(struct linux_binprm *bprm, int i)
323{
324	if (bprm->page[i]) {
325		__free_page(bprm->page[i]);
326		bprm->page[i] = NULL;
327	}
328}
329
330static void free_arg_pages(struct linux_binprm *bprm)
331{
332	int i;
333
334	for (i = 0; i < MAX_ARG_PAGES; i++)
335		free_arg_page(bprm, i);
336}
337
338static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339		struct page *page)
340{
341}
342
343static int __bprm_mm_init(struct linux_binprm *bprm)
344{
345	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346	return 0;
347}
348
349static bool valid_arg_len(struct linux_binprm *bprm, long len)
350{
351	return len <= bprm->p;
352}
353
354#endif /* CONFIG_MMU */
355
356/*
357 * Create a new mm_struct and populate it with a temporary stack
358 * vm_area_struct.  We don't have enough context at this point to set the stack
359 * flags, permissions, and offset, so we use temporary values.  We'll update
360 * them later in setup_arg_pages().
361 */
362static int bprm_mm_init(struct linux_binprm *bprm)
363{
364	int err;
365	struct mm_struct *mm = NULL;
366
367	bprm->mm = mm = mm_alloc();
368	err = -ENOMEM;
369	if (!mm)
370		goto err;
371
372	err = __bprm_mm_init(bprm);
373	if (err)
374		goto err;
375
376	return 0;
377
378err:
379	if (mm) {
380		bprm->mm = NULL;
381		mmdrop(mm);
382	}
383
384	return err;
385}
386
387struct user_arg_ptr {
388#ifdef CONFIG_COMPAT
389	bool is_compat;
390#endif
391	union {
392		const char __user *const __user *native;
393#ifdef CONFIG_COMPAT
394		const compat_uptr_t __user *compat;
395#endif
396	} ptr;
397};
398
399static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400{
401	const char __user *native;
402
403#ifdef CONFIG_COMPAT
404	if (unlikely(argv.is_compat)) {
405		compat_uptr_t compat;
406
407		if (get_user(compat, argv.ptr.compat + nr))
408			return ERR_PTR(-EFAULT);
409
410		return compat_ptr(compat);
411	}
412#endif
413
414	if (get_user(native, argv.ptr.native + nr))
415		return ERR_PTR(-EFAULT);
416
417	return native;
418}
419
420/*
421 * count() counts the number of strings in array ARGV.
422 */
423static int count(struct user_arg_ptr argv, int max)
424{
425	int i = 0;
426
427	if (argv.ptr.native != NULL) {
428		for (;;) {
429			const char __user *p = get_user_arg_ptr(argv, i);
430
431			if (!p)
432				break;
433
434			if (IS_ERR(p))
435				return -EFAULT;
436
437			if (i >= max)
438				return -E2BIG;
439			++i;
440
441			if (fatal_signal_pending(current))
442				return -ERESTARTNOHAND;
443			cond_resched();
444		}
445	}
446	return i;
447}
448
449/*
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack.  The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
453 */
454static int copy_strings(int argc, struct user_arg_ptr argv,
455			struct linux_binprm *bprm)
456{
457	struct page *kmapped_page = NULL;
458	char *kaddr = NULL;
459	unsigned long kpos = 0;
460	int ret;
461
462	while (argc-- > 0) {
463		const char __user *str;
464		int len;
465		unsigned long pos;
466
467		ret = -EFAULT;
468		str = get_user_arg_ptr(argv, argc);
469		if (IS_ERR(str))
470			goto out;
471
472		len = strnlen_user(str, MAX_ARG_STRLEN);
473		if (!len)
474			goto out;
475
476		ret = -E2BIG;
477		if (!valid_arg_len(bprm, len))
478			goto out;
479
480		/* We're going to work our way backwords. */
481		pos = bprm->p;
482		str += len;
483		bprm->p -= len;
484
485		while (len > 0) {
486			int offset, bytes_to_copy;
487
488			if (fatal_signal_pending(current)) {
489				ret = -ERESTARTNOHAND;
490				goto out;
491			}
492			cond_resched();
493
494			offset = pos % PAGE_SIZE;
495			if (offset == 0)
496				offset = PAGE_SIZE;
497
498			bytes_to_copy = offset;
499			if (bytes_to_copy > len)
500				bytes_to_copy = len;
501
502			offset -= bytes_to_copy;
503			pos -= bytes_to_copy;
504			str -= bytes_to_copy;
505			len -= bytes_to_copy;
506
507			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508				struct page *page;
509
510				page = get_arg_page(bprm, pos, 1);
511				if (!page) {
512					ret = -E2BIG;
513					goto out;
514				}
515
516				if (kmapped_page) {
517					flush_kernel_dcache_page(kmapped_page);
518					kunmap(kmapped_page);
519					put_arg_page(kmapped_page);
520				}
521				kmapped_page = page;
522				kaddr = kmap(kmapped_page);
523				kpos = pos & PAGE_MASK;
524				flush_arg_page(bprm, kpos, kmapped_page);
525			}
526			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527				ret = -EFAULT;
528				goto out;
529			}
530		}
531	}
532	ret = 0;
533out:
534	if (kmapped_page) {
535		flush_kernel_dcache_page(kmapped_page);
536		kunmap(kmapped_page);
537		put_arg_page(kmapped_page);
538	}
539	return ret;
540}
541
542/*
543 * Like copy_strings, but get argv and its values from kernel memory.
544 */
545int copy_strings_kernel(int argc, const char *const *__argv,
546			struct linux_binprm *bprm)
547{
548	int r;
549	mm_segment_t oldfs = get_fs();
550	struct user_arg_ptr argv = {
551		.ptr.native = (const char __user *const  __user *)__argv,
552	};
553
554	set_fs(KERNEL_DS);
555	r = copy_strings(argc, argv, bprm);
556	set_fs(oldfs);
557
558	return r;
559}
560EXPORT_SYMBOL(copy_strings_kernel);
561
562#ifdef CONFIG_MMU
563
564/*
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location.  The process proceeds as follows:
568 *
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges.  This ensures the
571 *    arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
575 */
576static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577{
578	struct mm_struct *mm = vma->vm_mm;
579	unsigned long old_start = vma->vm_start;
580	unsigned long old_end = vma->vm_end;
581	unsigned long length = old_end - old_start;
582	unsigned long new_start = old_start - shift;
583	unsigned long new_end = old_end - shift;
584	struct mmu_gather tlb;
585
586	BUG_ON(new_start > new_end);
587
588	/*
589	 * ensure there are no vmas between where we want to go
590	 * and where we are
591	 */
592	if (vma != find_vma(mm, new_start))
593		return -EFAULT;
594
595	/*
596	 * cover the whole range: [new_start, old_end)
597	 */
598	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599		return -ENOMEM;
600
601	/*
602	 * move the page tables downwards, on failure we rely on
603	 * process cleanup to remove whatever mess we made.
604	 */
605	if (length != move_page_tables(vma, old_start,
606				       vma, new_start, length, false))
607		return -ENOMEM;
608
609	lru_add_drain();
610	tlb_gather_mmu(&tlb, mm, old_start, old_end);
611	if (new_end > old_start) {
612		/*
613		 * when the old and new regions overlap clear from new_end.
614		 */
615		free_pgd_range(&tlb, new_end, old_end, new_end,
616			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617	} else {
618		/*
619		 * otherwise, clean from old_start; this is done to not touch
620		 * the address space in [new_end, old_start) some architectures
621		 * have constraints on va-space that make this illegal (IA64) -
622		 * for the others its just a little faster.
623		 */
624		free_pgd_range(&tlb, old_start, old_end, new_end,
625			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626	}
627	tlb_finish_mmu(&tlb, old_start, old_end);
628
629	/*
630	 * Shrink the vma to just the new range.  Always succeeds.
631	 */
632	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634	return 0;
635}
636
637/*
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
640 */
641int setup_arg_pages(struct linux_binprm *bprm,
642		    unsigned long stack_top,
643		    int executable_stack)
644{
645	unsigned long ret;
646	unsigned long stack_shift;
647	struct mm_struct *mm = current->mm;
648	struct vm_area_struct *vma = bprm->vma;
649	struct vm_area_struct *prev = NULL;
650	unsigned long vm_flags;
651	unsigned long stack_base;
652	unsigned long stack_size;
653	unsigned long stack_expand;
654	unsigned long rlim_stack;
655
656#ifdef CONFIG_STACK_GROWSUP
657	/* Limit stack size */
658	stack_base = rlimit_max(RLIMIT_STACK);
659	if (stack_base > STACK_SIZE_MAX)
660		stack_base = STACK_SIZE_MAX;
661
662	/* Add space for stack randomization. */
663	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
664
665	/* Make sure we didn't let the argument array grow too large. */
666	if (vma->vm_end - vma->vm_start > stack_base)
667		return -ENOMEM;
668
669	stack_base = PAGE_ALIGN(stack_top - stack_base);
670
671	stack_shift = vma->vm_start - stack_base;
672	mm->arg_start = bprm->p - stack_shift;
673	bprm->p = vma->vm_end - stack_shift;
674#else
675	stack_top = arch_align_stack(stack_top);
676	stack_top = PAGE_ALIGN(stack_top);
677
678	if (unlikely(stack_top < mmap_min_addr) ||
679	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680		return -ENOMEM;
681
682	stack_shift = vma->vm_end - stack_top;
683
684	bprm->p -= stack_shift;
685	mm->arg_start = bprm->p;
686#endif
687
688	if (bprm->loader)
689		bprm->loader -= stack_shift;
690	bprm->exec -= stack_shift;
691
692	down_write(&mm->mmap_sem);
693	vm_flags = VM_STACK_FLAGS;
694
695	/*
696	 * Adjust stack execute permissions; explicitly enable for
697	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698	 * (arch default) otherwise.
699	 */
700	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701		vm_flags |= VM_EXEC;
702	else if (executable_stack == EXSTACK_DISABLE_X)
703		vm_flags &= ~VM_EXEC;
704	vm_flags |= mm->def_flags;
705	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706
707	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708			vm_flags);
709	if (ret)
710		goto out_unlock;
711	BUG_ON(prev != vma);
712
713	/* Move stack pages down in memory. */
714	if (stack_shift) {
715		ret = shift_arg_pages(vma, stack_shift);
716		if (ret)
717			goto out_unlock;
718	}
719
720	/* mprotect_fixup is overkill to remove the temporary stack flags */
721	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722
723	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724	stack_size = vma->vm_end - vma->vm_start;
725	/*
726	 * Align this down to a page boundary as expand_stack
727	 * will align it up.
728	 */
729	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730#ifdef CONFIG_STACK_GROWSUP
731	if (stack_size + stack_expand > rlim_stack)
732		stack_base = vma->vm_start + rlim_stack;
733	else
734		stack_base = vma->vm_end + stack_expand;
735#else
736	if (stack_size + stack_expand > rlim_stack)
737		stack_base = vma->vm_end - rlim_stack;
738	else
739		stack_base = vma->vm_start - stack_expand;
740#endif
741	current->mm->start_stack = bprm->p;
742	ret = expand_stack(vma, stack_base);
743	if (ret)
744		ret = -EFAULT;
745
746out_unlock:
747	up_write(&mm->mmap_sem);
748	return ret;
749}
750EXPORT_SYMBOL(setup_arg_pages);
751
752#endif /* CONFIG_MMU */
753
754static struct file *do_open_execat(int fd, struct filename *name, int flags)
755{
756	struct file *file;
757	int err;
758	struct open_flags open_exec_flags = {
759		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
760		.acc_mode = MAY_EXEC | MAY_OPEN,
761		.intent = LOOKUP_OPEN,
762		.lookup_flags = LOOKUP_FOLLOW,
763	};
764
765	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
766		return ERR_PTR(-EINVAL);
767	if (flags & AT_SYMLINK_NOFOLLOW)
768		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
769	if (flags & AT_EMPTY_PATH)
770		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
771
772	file = do_filp_open(fd, name, &open_exec_flags);
773	if (IS_ERR(file))
774		goto out;
775
776	err = -EACCES;
777	if (!S_ISREG(file_inode(file)->i_mode))
778		goto exit;
779
780	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
781		goto exit;
782
783	err = deny_write_access(file);
784	if (err)
785		goto exit;
786
787	if (name->name[0] != '\0')
788		fsnotify_open(file);
789
790out:
791	return file;
792
793exit:
794	fput(file);
795	return ERR_PTR(err);
796}
797
798struct file *open_exec(const char *name)
799{
800	struct filename *filename = getname_kernel(name);
801	struct file *f = ERR_CAST(filename);
802
803	if (!IS_ERR(filename)) {
804		f = do_open_execat(AT_FDCWD, filename, 0);
805		putname(filename);
806	}
807	return f;
808}
809EXPORT_SYMBOL(open_exec);
810
811int kernel_read(struct file *file, loff_t offset,
812		char *addr, unsigned long count)
813{
814	mm_segment_t old_fs;
815	loff_t pos = offset;
816	int result;
817
818	old_fs = get_fs();
819	set_fs(get_ds());
820	/* The cast to a user pointer is valid due to the set_fs() */
821	result = vfs_read(file, (void __user *)addr, count, &pos);
822	set_fs(old_fs);
823	return result;
824}
825
826EXPORT_SYMBOL(kernel_read);
827
828ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
829{
830	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
831	if (res > 0)
832		flush_icache_range(addr, addr + len);
833	return res;
834}
835EXPORT_SYMBOL(read_code);
836
837static int exec_mmap(struct mm_struct *mm)
838{
839	struct task_struct *tsk;
840	struct mm_struct *old_mm, *active_mm;
841
842	/* Notify parent that we're no longer interested in the old VM */
843	tsk = current;
844	old_mm = current->mm;
845	mm_release(tsk, old_mm);
846
847	if (old_mm) {
848		sync_mm_rss(old_mm);
849		/*
850		 * Make sure that if there is a core dump in progress
851		 * for the old mm, we get out and die instead of going
852		 * through with the exec.  We must hold mmap_sem around
853		 * checking core_state and changing tsk->mm.
854		 */
855		down_read(&old_mm->mmap_sem);
856		if (unlikely(old_mm->core_state)) {
857			up_read(&old_mm->mmap_sem);
858			return -EINTR;
859		}
860	}
861	task_lock(tsk);
862	active_mm = tsk->active_mm;
863	tsk->mm = mm;
864	tsk->active_mm = mm;
865	activate_mm(active_mm, mm);
866	tsk->mm->vmacache_seqnum = 0;
867	vmacache_flush(tsk);
868	task_unlock(tsk);
869	if (old_mm) {
870		up_read(&old_mm->mmap_sem);
871		BUG_ON(active_mm != old_mm);
872		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
873		mm_update_next_owner(old_mm);
874		mmput(old_mm);
875		return 0;
876	}
877	mmdrop(active_mm);
878	return 0;
879}
880
881/*
882 * This function makes sure the current process has its own signal table,
883 * so that flush_signal_handlers can later reset the handlers without
884 * disturbing other processes.  (Other processes might share the signal
885 * table via the CLONE_SIGHAND option to clone().)
886 */
887static int de_thread(struct task_struct *tsk)
888{
889	struct signal_struct *sig = tsk->signal;
890	struct sighand_struct *oldsighand = tsk->sighand;
891	spinlock_t *lock = &oldsighand->siglock;
892
893	if (thread_group_empty(tsk))
894		goto no_thread_group;
895
896	/*
897	 * Kill all other threads in the thread group.
898	 */
899	spin_lock_irq(lock);
900	if (signal_group_exit(sig)) {
901		/*
902		 * Another group action in progress, just
903		 * return so that the signal is processed.
904		 */
905		spin_unlock_irq(lock);
906		return -EAGAIN;
907	}
908
909	sig->group_exit_task = tsk;
910	sig->notify_count = zap_other_threads(tsk);
911	if (!thread_group_leader(tsk))
912		sig->notify_count--;
913
914	while (sig->notify_count) {
915		__set_current_state(TASK_KILLABLE);
916		spin_unlock_irq(lock);
917		schedule();
918		if (unlikely(__fatal_signal_pending(tsk)))
919			goto killed;
920		spin_lock_irq(lock);
921	}
922	spin_unlock_irq(lock);
923
924	/*
925	 * At this point all other threads have exited, all we have to
926	 * do is to wait for the thread group leader to become inactive,
927	 * and to assume its PID:
928	 */
929	if (!thread_group_leader(tsk)) {
930		struct task_struct *leader = tsk->group_leader;
931
932		for (;;) {
933			threadgroup_change_begin(tsk);
934			write_lock_irq(&tasklist_lock);
935			/*
936			 * Do this under tasklist_lock to ensure that
937			 * exit_notify() can't miss ->group_exit_task
938			 */
939			sig->notify_count = -1;
940			if (likely(leader->exit_state))
941				break;
942			__set_current_state(TASK_KILLABLE);
943			write_unlock_irq(&tasklist_lock);
944			threadgroup_change_end(tsk);
945			schedule();
946			if (unlikely(__fatal_signal_pending(tsk)))
947				goto killed;
948		}
949
950		/*
951		 * The only record we have of the real-time age of a
952		 * process, regardless of execs it's done, is start_time.
953		 * All the past CPU time is accumulated in signal_struct
954		 * from sister threads now dead.  But in this non-leader
955		 * exec, nothing survives from the original leader thread,
956		 * whose birth marks the true age of this process now.
957		 * When we take on its identity by switching to its PID, we
958		 * also take its birthdate (always earlier than our own).
959		 */
960		tsk->start_time = leader->start_time;
961		tsk->real_start_time = leader->real_start_time;
962
963		BUG_ON(!same_thread_group(leader, tsk));
964		BUG_ON(has_group_leader_pid(tsk));
965		/*
966		 * An exec() starts a new thread group with the
967		 * TGID of the previous thread group. Rehash the
968		 * two threads with a switched PID, and release
969		 * the former thread group leader:
970		 */
971
972		/* Become a process group leader with the old leader's pid.
973		 * The old leader becomes a thread of the this thread group.
974		 * Note: The old leader also uses this pid until release_task
975		 *       is called.  Odd but simple and correct.
976		 */
977		tsk->pid = leader->pid;
978		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
979		transfer_pid(leader, tsk, PIDTYPE_PGID);
980		transfer_pid(leader, tsk, PIDTYPE_SID);
981
982		list_replace_rcu(&leader->tasks, &tsk->tasks);
983		list_replace_init(&leader->sibling, &tsk->sibling);
984
985		tsk->group_leader = tsk;
986		leader->group_leader = tsk;
987
988		tsk->exit_signal = SIGCHLD;
989		leader->exit_signal = -1;
990
991		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
992		leader->exit_state = EXIT_DEAD;
993
994		/*
995		 * We are going to release_task()->ptrace_unlink() silently,
996		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
997		 * the tracer wont't block again waiting for this thread.
998		 */
999		if (unlikely(leader->ptrace))
1000			__wake_up_parent(leader, leader->parent);
1001		write_unlock_irq(&tasklist_lock);
1002		threadgroup_change_end(tsk);
1003
1004		release_task(leader);
1005	}
1006
1007	sig->group_exit_task = NULL;
1008	sig->notify_count = 0;
1009
1010no_thread_group:
1011	/* we have changed execution domain */
1012	tsk->exit_signal = SIGCHLD;
1013
1014	exit_itimers(sig);
1015	flush_itimer_signals();
1016
1017	if (atomic_read(&oldsighand->count) != 1) {
1018		struct sighand_struct *newsighand;
1019		/*
1020		 * This ->sighand is shared with the CLONE_SIGHAND
1021		 * but not CLONE_THREAD task, switch to the new one.
1022		 */
1023		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1024		if (!newsighand)
1025			return -ENOMEM;
1026
1027		atomic_set(&newsighand->count, 1);
1028		memcpy(newsighand->action, oldsighand->action,
1029		       sizeof(newsighand->action));
1030
1031		write_lock_irq(&tasklist_lock);
1032		spin_lock(&oldsighand->siglock);
1033		rcu_assign_pointer(tsk->sighand, newsighand);
1034		spin_unlock(&oldsighand->siglock);
1035		write_unlock_irq(&tasklist_lock);
1036
1037		__cleanup_sighand(oldsighand);
1038	}
1039
1040	BUG_ON(!thread_group_leader(tsk));
1041	return 0;
1042
1043killed:
1044	/* protects against exit_notify() and __exit_signal() */
1045	read_lock(&tasklist_lock);
1046	sig->group_exit_task = NULL;
1047	sig->notify_count = 0;
1048	read_unlock(&tasklist_lock);
1049	return -EAGAIN;
1050}
1051
1052char *get_task_comm(char *buf, struct task_struct *tsk)
1053{
1054	/* buf must be at least sizeof(tsk->comm) in size */
1055	task_lock(tsk);
1056	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1057	task_unlock(tsk);
1058	return buf;
1059}
1060EXPORT_SYMBOL_GPL(get_task_comm);
1061
1062/*
1063 * These functions flushes out all traces of the currently running executable
1064 * so that a new one can be started
1065 */
1066
1067void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1068{
1069	task_lock(tsk);
1070	trace_task_rename(tsk, buf);
1071	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1072	task_unlock(tsk);
1073	perf_event_comm(tsk, exec);
1074}
1075
1076int flush_old_exec(struct linux_binprm * bprm)
1077{
1078	int retval;
1079
1080	/*
1081	 * Make sure we have a private signal table and that
1082	 * we are unassociated from the previous thread group.
1083	 */
1084	retval = de_thread(current);
1085	if (retval)
1086		goto out;
1087
1088	/*
1089	 * Must be called _before_ exec_mmap() as bprm->mm is
1090	 * not visibile until then. This also enables the update
1091	 * to be lockless.
1092	 */
1093	set_mm_exe_file(bprm->mm, bprm->file);
1094
1095	/*
1096	 * Release all of the old mmap stuff
1097	 */
1098	acct_arg_size(bprm, 0);
1099	retval = exec_mmap(bprm->mm);
1100	if (retval)
1101		goto out;
1102
1103	bprm->mm = NULL;		/* We're using it now */
1104
1105	set_fs(USER_DS);
1106	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1107					PF_NOFREEZE | PF_NO_SETAFFINITY);
1108	flush_thread();
1109	current->personality &= ~bprm->per_clear;
1110
1111	return 0;
1112
1113out:
1114	return retval;
1115}
1116EXPORT_SYMBOL(flush_old_exec);
1117
1118void would_dump(struct linux_binprm *bprm, struct file *file)
1119{
1120	if (inode_permission(file_inode(file), MAY_READ) < 0)
1121		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1122}
1123EXPORT_SYMBOL(would_dump);
1124
1125void setup_new_exec(struct linux_binprm * bprm)
1126{
1127	arch_pick_mmap_layout(current->mm);
1128
1129	/* This is the point of no return */
1130	current->sas_ss_sp = current->sas_ss_size = 0;
1131
1132	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1133		set_dumpable(current->mm, SUID_DUMP_USER);
1134	else
1135		set_dumpable(current->mm, suid_dumpable);
1136
1137	perf_event_exec();
1138	__set_task_comm(current, kbasename(bprm->filename), true);
1139
1140	/* Set the new mm task size. We have to do that late because it may
1141	 * depend on TIF_32BIT which is only updated in flush_thread() on
1142	 * some architectures like powerpc
1143	 */
1144	current->mm->task_size = TASK_SIZE;
1145
1146	/* install the new credentials */
1147	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1148	    !gid_eq(bprm->cred->gid, current_egid())) {
1149		current->pdeath_signal = 0;
1150	} else {
1151		would_dump(bprm, bprm->file);
1152		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1153			set_dumpable(current->mm, suid_dumpable);
1154	}
1155
1156	/* An exec changes our domain. We are no longer part of the thread
1157	   group */
1158	current->self_exec_id++;
1159	flush_signal_handlers(current, 0);
1160	do_close_on_exec(current->files);
1161}
1162EXPORT_SYMBOL(setup_new_exec);
1163
1164/*
1165 * Prepare credentials and lock ->cred_guard_mutex.
1166 * install_exec_creds() commits the new creds and drops the lock.
1167 * Or, if exec fails before, free_bprm() should release ->cred and
1168 * and unlock.
1169 */
1170int prepare_bprm_creds(struct linux_binprm *bprm)
1171{
1172	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1173		return -ERESTARTNOINTR;
1174
1175	bprm->cred = prepare_exec_creds();
1176	if (likely(bprm->cred))
1177		return 0;
1178
1179	mutex_unlock(&current->signal->cred_guard_mutex);
1180	return -ENOMEM;
1181}
1182
1183static void free_bprm(struct linux_binprm *bprm)
1184{
1185	free_arg_pages(bprm);
1186	if (bprm->cred) {
1187		mutex_unlock(&current->signal->cred_guard_mutex);
1188		abort_creds(bprm->cred);
1189	}
1190	if (bprm->file) {
1191		allow_write_access(bprm->file);
1192		fput(bprm->file);
1193	}
1194	/* If a binfmt changed the interp, free it. */
1195	if (bprm->interp != bprm->filename)
1196		kfree(bprm->interp);
1197	kfree(bprm);
1198}
1199
1200int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1201{
1202	/* If a binfmt changed the interp, free it first. */
1203	if (bprm->interp != bprm->filename)
1204		kfree(bprm->interp);
1205	bprm->interp = kstrdup(interp, GFP_KERNEL);
1206	if (!bprm->interp)
1207		return -ENOMEM;
1208	return 0;
1209}
1210EXPORT_SYMBOL(bprm_change_interp);
1211
1212/*
1213 * install the new credentials for this executable
1214 */
1215void install_exec_creds(struct linux_binprm *bprm)
1216{
1217	security_bprm_committing_creds(bprm);
1218
1219	commit_creds(bprm->cred);
1220	bprm->cred = NULL;
1221
1222	/*
1223	 * Disable monitoring for regular users
1224	 * when executing setuid binaries. Must
1225	 * wait until new credentials are committed
1226	 * by commit_creds() above
1227	 */
1228	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1229		perf_event_exit_task(current);
1230	/*
1231	 * cred_guard_mutex must be held at least to this point to prevent
1232	 * ptrace_attach() from altering our determination of the task's
1233	 * credentials; any time after this it may be unlocked.
1234	 */
1235	security_bprm_committed_creds(bprm);
1236	mutex_unlock(&current->signal->cred_guard_mutex);
1237}
1238EXPORT_SYMBOL(install_exec_creds);
1239
1240/*
1241 * determine how safe it is to execute the proposed program
1242 * - the caller must hold ->cred_guard_mutex to protect against
1243 *   PTRACE_ATTACH or seccomp thread-sync
1244 */
1245static void check_unsafe_exec(struct linux_binprm *bprm)
1246{
1247	struct task_struct *p = current, *t;
1248	unsigned n_fs;
1249
1250	if (p->ptrace) {
1251		if (p->ptrace & PT_PTRACE_CAP)
1252			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1253		else
1254			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1255	}
1256
1257	/*
1258	 * This isn't strictly necessary, but it makes it harder for LSMs to
1259	 * mess up.
1260	 */
1261	if (task_no_new_privs(current))
1262		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1263
1264	t = p;
1265	n_fs = 1;
1266	spin_lock(&p->fs->lock);
1267	rcu_read_lock();
1268	while_each_thread(p, t) {
1269		if (t->fs == p->fs)
1270			n_fs++;
1271	}
1272	rcu_read_unlock();
1273
1274	if (p->fs->users > n_fs)
1275		bprm->unsafe |= LSM_UNSAFE_SHARE;
1276	else
1277		p->fs->in_exec = 1;
1278	spin_unlock(&p->fs->lock);
1279}
1280
1281static void bprm_fill_uid(struct linux_binprm *bprm)
1282{
1283	struct inode *inode;
1284	unsigned int mode;
1285	kuid_t uid;
1286	kgid_t gid;
1287
1288	/* clear any previous set[ug]id data from a previous binary */
1289	bprm->cred->euid = current_euid();
1290	bprm->cred->egid = current_egid();
1291
1292	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1293		return;
1294
1295	if (task_no_new_privs(current))
1296		return;
1297
1298	inode = file_inode(bprm->file);
1299	mode = READ_ONCE(inode->i_mode);
1300	if (!(mode & (S_ISUID|S_ISGID)))
1301		return;
1302
1303	/* Be careful if suid/sgid is set */
1304	mutex_lock(&inode->i_mutex);
1305
1306	/* reload atomically mode/uid/gid now that lock held */
1307	mode = inode->i_mode;
1308	uid = inode->i_uid;
1309	gid = inode->i_gid;
1310	mutex_unlock(&inode->i_mutex);
1311
1312	/* We ignore suid/sgid if there are no mappings for them in the ns */
1313	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1314		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1315		return;
1316
1317	if (mode & S_ISUID) {
1318		bprm->per_clear |= PER_CLEAR_ON_SETID;
1319		bprm->cred->euid = uid;
1320	}
1321
1322	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1323		bprm->per_clear |= PER_CLEAR_ON_SETID;
1324		bprm->cred->egid = gid;
1325	}
1326}
1327
1328/*
1329 * Fill the binprm structure from the inode.
1330 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1331 *
1332 * This may be called multiple times for binary chains (scripts for example).
1333 */
1334int prepare_binprm(struct linux_binprm *bprm)
1335{
1336	int retval;
1337
1338	bprm_fill_uid(bprm);
1339
1340	/* fill in binprm security blob */
1341	retval = security_bprm_set_creds(bprm);
1342	if (retval)
1343		return retval;
1344	bprm->cred_prepared = 1;
1345
1346	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1347	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1348}
1349
1350EXPORT_SYMBOL(prepare_binprm);
1351
1352/*
1353 * Arguments are '\0' separated strings found at the location bprm->p
1354 * points to; chop off the first by relocating brpm->p to right after
1355 * the first '\0' encountered.
1356 */
1357int remove_arg_zero(struct linux_binprm *bprm)
1358{
1359	int ret = 0;
1360	unsigned long offset;
1361	char *kaddr;
1362	struct page *page;
1363
1364	if (!bprm->argc)
1365		return 0;
1366
1367	do {
1368		offset = bprm->p & ~PAGE_MASK;
1369		page = get_arg_page(bprm, bprm->p, 0);
1370		if (!page) {
1371			ret = -EFAULT;
1372			goto out;
1373		}
1374		kaddr = kmap_atomic(page);
1375
1376		for (; offset < PAGE_SIZE && kaddr[offset];
1377				offset++, bprm->p++)
1378			;
1379
1380		kunmap_atomic(kaddr);
1381		put_arg_page(page);
1382
1383		if (offset == PAGE_SIZE)
1384			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1385	} while (offset == PAGE_SIZE);
1386
1387	bprm->p++;
1388	bprm->argc--;
1389	ret = 0;
1390
1391out:
1392	return ret;
1393}
1394EXPORT_SYMBOL(remove_arg_zero);
1395
1396#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1397/*
1398 * cycle the list of binary formats handler, until one recognizes the image
1399 */
1400int search_binary_handler(struct linux_binprm *bprm)
1401{
1402	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1403	struct linux_binfmt *fmt;
1404	int retval;
1405
1406	/* This allows 4 levels of binfmt rewrites before failing hard. */
1407	if (bprm->recursion_depth > 5)
1408		return -ELOOP;
1409
1410	retval = security_bprm_check(bprm);
1411	if (retval)
1412		return retval;
1413
1414	retval = -ENOENT;
1415 retry:
1416	read_lock(&binfmt_lock);
1417	list_for_each_entry(fmt, &formats, lh) {
1418		if (!try_module_get(fmt->module))
1419			continue;
1420		read_unlock(&binfmt_lock);
1421		bprm->recursion_depth++;
1422		retval = fmt->load_binary(bprm);
1423		read_lock(&binfmt_lock);
1424		put_binfmt(fmt);
1425		bprm->recursion_depth--;
1426		if (retval < 0 && !bprm->mm) {
1427			/* we got to flush_old_exec() and failed after it */
1428			read_unlock(&binfmt_lock);
1429			force_sigsegv(SIGSEGV, current);
1430			return retval;
1431		}
1432		if (retval != -ENOEXEC || !bprm->file) {
1433			read_unlock(&binfmt_lock);
1434			return retval;
1435		}
1436	}
1437	read_unlock(&binfmt_lock);
1438
1439	if (need_retry) {
1440		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1441		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1442			return retval;
1443		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1444			return retval;
1445		need_retry = false;
1446		goto retry;
1447	}
1448
1449	return retval;
1450}
1451EXPORT_SYMBOL(search_binary_handler);
1452
1453static int exec_binprm(struct linux_binprm *bprm)
1454{
1455	pid_t old_pid, old_vpid;
1456	int ret;
1457
1458	/* Need to fetch pid before load_binary changes it */
1459	old_pid = current->pid;
1460	rcu_read_lock();
1461	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1462	rcu_read_unlock();
1463
1464	ret = search_binary_handler(bprm);
1465	if (ret >= 0) {
1466		audit_bprm(bprm);
1467		trace_sched_process_exec(current, old_pid, bprm);
1468		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1469		proc_exec_connector(current);
1470	}
1471
1472	return ret;
1473}
1474
1475/*
1476 * sys_execve() executes a new program.
1477 */
1478static int do_execveat_common(int fd, struct filename *filename,
1479			      struct user_arg_ptr argv,
1480			      struct user_arg_ptr envp,
1481			      int flags)
1482{
1483	char *pathbuf = NULL;
1484	struct linux_binprm *bprm;
1485	struct file *file;
1486	struct files_struct *displaced;
1487	int retval;
1488
1489	if (IS_ERR(filename))
1490		return PTR_ERR(filename);
1491
1492	/*
1493	 * We move the actual failure in case of RLIMIT_NPROC excess from
1494	 * set*uid() to execve() because too many poorly written programs
1495	 * don't check setuid() return code.  Here we additionally recheck
1496	 * whether NPROC limit is still exceeded.
1497	 */
1498	if ((current->flags & PF_NPROC_EXCEEDED) &&
1499	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1500		retval = -EAGAIN;
1501		goto out_ret;
1502	}
1503
1504	/* We're below the limit (still or again), so we don't want to make
1505	 * further execve() calls fail. */
1506	current->flags &= ~PF_NPROC_EXCEEDED;
1507
1508	retval = unshare_files(&displaced);
1509	if (retval)
1510		goto out_ret;
1511
1512	retval = -ENOMEM;
1513	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1514	if (!bprm)
1515		goto out_files;
1516
1517	retval = prepare_bprm_creds(bprm);
1518	if (retval)
1519		goto out_free;
1520
1521	check_unsafe_exec(bprm);
1522	current->in_execve = 1;
1523
1524	file = do_open_execat(fd, filename, flags);
1525	retval = PTR_ERR(file);
1526	if (IS_ERR(file))
1527		goto out_unmark;
1528
1529	sched_exec();
1530
1531	bprm->file = file;
1532	if (fd == AT_FDCWD || filename->name[0] == '/') {
1533		bprm->filename = filename->name;
1534	} else {
1535		if (filename->name[0] == '\0')
1536			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1537		else
1538			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1539					    fd, filename->name);
1540		if (!pathbuf) {
1541			retval = -ENOMEM;
1542			goto out_unmark;
1543		}
1544		/*
1545		 * Record that a name derived from an O_CLOEXEC fd will be
1546		 * inaccessible after exec. Relies on having exclusive access to
1547		 * current->files (due to unshare_files above).
1548		 */
1549		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1550			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1551		bprm->filename = pathbuf;
1552	}
1553	bprm->interp = bprm->filename;
1554
1555	retval = bprm_mm_init(bprm);
1556	if (retval)
1557		goto out_unmark;
1558
1559	bprm->argc = count(argv, MAX_ARG_STRINGS);
1560	if ((retval = bprm->argc) < 0)
1561		goto out;
1562
1563	bprm->envc = count(envp, MAX_ARG_STRINGS);
1564	if ((retval = bprm->envc) < 0)
1565		goto out;
1566
1567	retval = prepare_binprm(bprm);
1568	if (retval < 0)
1569		goto out;
1570
1571	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1572	if (retval < 0)
1573		goto out;
1574
1575	bprm->exec = bprm->p;
1576	retval = copy_strings(bprm->envc, envp, bprm);
1577	if (retval < 0)
1578		goto out;
1579
1580	retval = copy_strings(bprm->argc, argv, bprm);
1581	if (retval < 0)
1582		goto out;
1583
1584	retval = exec_binprm(bprm);
1585	if (retval < 0)
1586		goto out;
1587
1588	/* execve succeeded */
1589	current->fs->in_exec = 0;
1590	current->in_execve = 0;
1591	acct_update_integrals(current);
1592	task_numa_free(current);
1593	free_bprm(bprm);
1594	kfree(pathbuf);
1595	putname(filename);
1596	if (displaced)
1597		put_files_struct(displaced);
1598	return retval;
1599
1600out:
1601	if (bprm->mm) {
1602		acct_arg_size(bprm, 0);
1603		mmput(bprm->mm);
1604	}
1605
1606out_unmark:
1607	current->fs->in_exec = 0;
1608	current->in_execve = 0;
1609
1610out_free:
1611	free_bprm(bprm);
1612	kfree(pathbuf);
1613
1614out_files:
1615	if (displaced)
1616		reset_files_struct(displaced);
1617out_ret:
1618	putname(filename);
1619	return retval;
1620}
1621
1622int do_execve(struct filename *filename,
1623	const char __user *const __user *__argv,
1624	const char __user *const __user *__envp)
1625{
1626	struct user_arg_ptr argv = { .ptr.native = __argv };
1627	struct user_arg_ptr envp = { .ptr.native = __envp };
1628	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1629}
1630
1631int do_execveat(int fd, struct filename *filename,
1632		const char __user *const __user *__argv,
1633		const char __user *const __user *__envp,
1634		int flags)
1635{
1636	struct user_arg_ptr argv = { .ptr.native = __argv };
1637	struct user_arg_ptr envp = { .ptr.native = __envp };
1638
1639	return do_execveat_common(fd, filename, argv, envp, flags);
1640}
1641
1642#ifdef CONFIG_COMPAT
1643static int compat_do_execve(struct filename *filename,
1644	const compat_uptr_t __user *__argv,
1645	const compat_uptr_t __user *__envp)
1646{
1647	struct user_arg_ptr argv = {
1648		.is_compat = true,
1649		.ptr.compat = __argv,
1650	};
1651	struct user_arg_ptr envp = {
1652		.is_compat = true,
1653		.ptr.compat = __envp,
1654	};
1655	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1656}
1657
1658static int compat_do_execveat(int fd, struct filename *filename,
1659			      const compat_uptr_t __user *__argv,
1660			      const compat_uptr_t __user *__envp,
1661			      int flags)
1662{
1663	struct user_arg_ptr argv = {
1664		.is_compat = true,
1665		.ptr.compat = __argv,
1666	};
1667	struct user_arg_ptr envp = {
1668		.is_compat = true,
1669		.ptr.compat = __envp,
1670	};
1671	return do_execveat_common(fd, filename, argv, envp, flags);
1672}
1673#endif
1674
1675void set_binfmt(struct linux_binfmt *new)
1676{
1677	struct mm_struct *mm = current->mm;
1678
1679	if (mm->binfmt)
1680		module_put(mm->binfmt->module);
1681
1682	mm->binfmt = new;
1683	if (new)
1684		__module_get(new->module);
1685}
1686EXPORT_SYMBOL(set_binfmt);
1687
1688/*
1689 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1690 */
1691void set_dumpable(struct mm_struct *mm, int value)
1692{
1693	unsigned long old, new;
1694
1695	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1696		return;
1697
1698	do {
1699		old = ACCESS_ONCE(mm->flags);
1700		new = (old & ~MMF_DUMPABLE_MASK) | value;
1701	} while (cmpxchg(&mm->flags, old, new) != old);
1702}
1703
1704SYSCALL_DEFINE3(execve,
1705		const char __user *, filename,
1706		const char __user *const __user *, argv,
1707		const char __user *const __user *, envp)
1708{
1709	return do_execve(getname(filename), argv, envp);
1710}
1711
1712SYSCALL_DEFINE5(execveat,
1713		int, fd, const char __user *, filename,
1714		const char __user *const __user *, argv,
1715		const char __user *const __user *, envp,
1716		int, flags)
1717{
1718	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1719
1720	return do_execveat(fd,
1721			   getname_flags(filename, lookup_flags, NULL),
1722			   argv, envp, flags);
1723}
1724
1725#ifdef CONFIG_COMPAT
1726COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1727	const compat_uptr_t __user *, argv,
1728	const compat_uptr_t __user *, envp)
1729{
1730	return compat_do_execve(getname(filename), argv, envp);
1731}
1732
1733COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1734		       const char __user *, filename,
1735		       const compat_uptr_t __user *, argv,
1736		       const compat_uptr_t __user *, envp,
1737		       int,  flags)
1738{
1739	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1740
1741	return compat_do_execveat(fd,
1742				  getname_flags(filename, lookup_flags, NULL),
1743				  argv, envp, flags);
1744}
1745#endif
1746