1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 *   		Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
36#include <linux/slab.h>
37#include <asm/unaligned.h>
38#include "ecryptfs_kernel.h"
39
40#define DECRYPT		0
41#define ENCRYPT		1
42
43/**
44 * ecryptfs_to_hex
45 * @dst: Buffer to take hex character representation of contents of
46 *       src; must be at least of size (src_size * 2)
47 * @src: Buffer to be converted to a hex string respresentation
48 * @src_size: number of bytes to convert
49 */
50void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
51{
52	int x;
53
54	for (x = 0; x < src_size; x++)
55		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
56}
57
58/**
59 * ecryptfs_from_hex
60 * @dst: Buffer to take the bytes from src hex; must be at least of
61 *       size (src_size / 2)
62 * @src: Buffer to be converted from a hex string respresentation to raw value
63 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
64 */
65void ecryptfs_from_hex(char *dst, char *src, int dst_size)
66{
67	int x;
68	char tmp[3] = { 0, };
69
70	for (x = 0; x < dst_size; x++) {
71		tmp[0] = src[x * 2];
72		tmp[1] = src[x * 2 + 1];
73		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
74	}
75}
76
77/**
78 * ecryptfs_calculate_md5 - calculates the md5 of @src
79 * @dst: Pointer to 16 bytes of allocated memory
80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
81 * @src: Data to be md5'd
82 * @len: Length of @src
83 *
84 * Uses the allocated crypto context that crypt_stat references to
85 * generate the MD5 sum of the contents of src.
86 */
87static int ecryptfs_calculate_md5(char *dst,
88				  struct ecryptfs_crypt_stat *crypt_stat,
89				  char *src, int len)
90{
91	struct scatterlist sg;
92	struct hash_desc desc = {
93		.tfm = crypt_stat->hash_tfm,
94		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
95	};
96	int rc = 0;
97
98	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99	sg_init_one(&sg, (u8 *)src, len);
100	if (!desc.tfm) {
101		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
102					     CRYPTO_ALG_ASYNC);
103		if (IS_ERR(desc.tfm)) {
104			rc = PTR_ERR(desc.tfm);
105			ecryptfs_printk(KERN_ERR, "Error attempting to "
106					"allocate crypto context; rc = [%d]\n",
107					rc);
108			goto out;
109		}
110		crypt_stat->hash_tfm = desc.tfm;
111	}
112	rc = crypto_hash_init(&desc);
113	if (rc) {
114		printk(KERN_ERR
115		       "%s: Error initializing crypto hash; rc = [%d]\n",
116		       __func__, rc);
117		goto out;
118	}
119	rc = crypto_hash_update(&desc, &sg, len);
120	if (rc) {
121		printk(KERN_ERR
122		       "%s: Error updating crypto hash; rc = [%d]\n",
123		       __func__, rc);
124		goto out;
125	}
126	rc = crypto_hash_final(&desc, dst);
127	if (rc) {
128		printk(KERN_ERR
129		       "%s: Error finalizing crypto hash; rc = [%d]\n",
130		       __func__, rc);
131		goto out;
132	}
133out:
134	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135	return rc;
136}
137
138static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
139						  char *cipher_name,
140						  char *chaining_modifier)
141{
142	int cipher_name_len = strlen(cipher_name);
143	int chaining_modifier_len = strlen(chaining_modifier);
144	int algified_name_len;
145	int rc;
146
147	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
148	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149	if (!(*algified_name)) {
150		rc = -ENOMEM;
151		goto out;
152	}
153	snprintf((*algified_name), algified_name_len, "%s(%s)",
154		 chaining_modifier, cipher_name);
155	rc = 0;
156out:
157	return rc;
158}
159
160/**
161 * ecryptfs_derive_iv
162 * @iv: destination for the derived iv vale
163 * @crypt_stat: Pointer to crypt_stat struct for the current inode
164 * @offset: Offset of the extent whose IV we are to derive
165 *
166 * Generate the initialization vector from the given root IV and page
167 * offset.
168 *
169 * Returns zero on success; non-zero on error.
170 */
171int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
172		       loff_t offset)
173{
174	int rc = 0;
175	char dst[MD5_DIGEST_SIZE];
176	char src[ECRYPTFS_MAX_IV_BYTES + 16];
177
178	if (unlikely(ecryptfs_verbosity > 0)) {
179		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
180		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
181	}
182	/* TODO: It is probably secure to just cast the least
183	 * significant bits of the root IV into an unsigned long and
184	 * add the offset to that rather than go through all this
185	 * hashing business. -Halcrow */
186	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
187	memset((src + crypt_stat->iv_bytes), 0, 16);
188	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189	if (unlikely(ecryptfs_verbosity > 0)) {
190		ecryptfs_printk(KERN_DEBUG, "source:\n");
191		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
192	}
193	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
194				    (crypt_stat->iv_bytes + 16));
195	if (rc) {
196		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
197				"MD5 while generating IV for a page\n");
198		goto out;
199	}
200	memcpy(iv, dst, crypt_stat->iv_bytes);
201	if (unlikely(ecryptfs_verbosity > 0)) {
202		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
203		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
204	}
205out:
206	return rc;
207}
208
209/**
210 * ecryptfs_init_crypt_stat
211 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212 *
213 * Initialize the crypt_stat structure.
214 */
215void
216ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
217{
218	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219	INIT_LIST_HEAD(&crypt_stat->keysig_list);
220	mutex_init(&crypt_stat->keysig_list_mutex);
221	mutex_init(&crypt_stat->cs_mutex);
222	mutex_init(&crypt_stat->cs_tfm_mutex);
223	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225}
226
227/**
228 * ecryptfs_destroy_crypt_stat
229 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
230 *
231 * Releases all memory associated with a crypt_stat struct.
232 */
233void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234{
235	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
236
237	if (crypt_stat->tfm)
238		crypto_free_ablkcipher(crypt_stat->tfm);
239	if (crypt_stat->hash_tfm)
240		crypto_free_hash(crypt_stat->hash_tfm);
241	list_for_each_entry_safe(key_sig, key_sig_tmp,
242				 &crypt_stat->keysig_list, crypt_stat_list) {
243		list_del(&key_sig->crypt_stat_list);
244		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
245	}
246	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
247}
248
249void ecryptfs_destroy_mount_crypt_stat(
250	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
251{
252	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
253
254	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
255		return;
256	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
257	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
258				 &mount_crypt_stat->global_auth_tok_list,
259				 mount_crypt_stat_list) {
260		list_del(&auth_tok->mount_crypt_stat_list);
261		if (auth_tok->global_auth_tok_key
262		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
263			key_put(auth_tok->global_auth_tok_key);
264		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
265	}
266	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
267	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
268}
269
270/**
271 * virt_to_scatterlist
272 * @addr: Virtual address
273 * @size: Size of data; should be an even multiple of the block size
274 * @sg: Pointer to scatterlist array; set to NULL to obtain only
275 *      the number of scatterlist structs required in array
276 * @sg_size: Max array size
277 *
278 * Fills in a scatterlist array with page references for a passed
279 * virtual address.
280 *
281 * Returns the number of scatterlist structs in array used
282 */
283int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
284			int sg_size)
285{
286	int i = 0;
287	struct page *pg;
288	int offset;
289	int remainder_of_page;
290
291	sg_init_table(sg, sg_size);
292
293	while (size > 0 && i < sg_size) {
294		pg = virt_to_page(addr);
295		offset = offset_in_page(addr);
296		sg_set_page(&sg[i], pg, 0, offset);
297		remainder_of_page = PAGE_CACHE_SIZE - offset;
298		if (size >= remainder_of_page) {
299			sg[i].length = remainder_of_page;
300			addr += remainder_of_page;
301			size -= remainder_of_page;
302		} else {
303			sg[i].length = size;
304			addr += size;
305			size = 0;
306		}
307		i++;
308	}
309	if (size > 0)
310		return -ENOMEM;
311	return i;
312}
313
314struct extent_crypt_result {
315	struct completion completion;
316	int rc;
317};
318
319static void extent_crypt_complete(struct crypto_async_request *req, int rc)
320{
321	struct extent_crypt_result *ecr = req->data;
322
323	if (rc == -EINPROGRESS)
324		return;
325
326	ecr->rc = rc;
327	complete(&ecr->completion);
328}
329
330/**
331 * crypt_scatterlist
332 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
333 * @dst_sg: Destination of the data after performing the crypto operation
334 * @src_sg: Data to be encrypted or decrypted
335 * @size: Length of data
336 * @iv: IV to use
337 * @op: ENCRYPT or DECRYPT to indicate the desired operation
338 *
339 * Returns the number of bytes encrypted or decrypted; negative value on error
340 */
341static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
342			     struct scatterlist *dst_sg,
343			     struct scatterlist *src_sg, int size,
344			     unsigned char *iv, int op)
345{
346	struct ablkcipher_request *req = NULL;
347	struct extent_crypt_result ecr;
348	int rc = 0;
349
350	BUG_ON(!crypt_stat || !crypt_stat->tfm
351	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
352	if (unlikely(ecryptfs_verbosity > 0)) {
353		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
354				crypt_stat->key_size);
355		ecryptfs_dump_hex(crypt_stat->key,
356				  crypt_stat->key_size);
357	}
358
359	init_completion(&ecr.completion);
360
361	mutex_lock(&crypt_stat->cs_tfm_mutex);
362	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
363	if (!req) {
364		mutex_unlock(&crypt_stat->cs_tfm_mutex);
365		rc = -ENOMEM;
366		goto out;
367	}
368
369	ablkcipher_request_set_callback(req,
370			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
371			extent_crypt_complete, &ecr);
372	/* Consider doing this once, when the file is opened */
373	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
374		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
375					      crypt_stat->key_size);
376		if (rc) {
377			ecryptfs_printk(KERN_ERR,
378					"Error setting key; rc = [%d]\n",
379					rc);
380			mutex_unlock(&crypt_stat->cs_tfm_mutex);
381			rc = -EINVAL;
382			goto out;
383		}
384		crypt_stat->flags |= ECRYPTFS_KEY_SET;
385	}
386	mutex_unlock(&crypt_stat->cs_tfm_mutex);
387	ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
388	rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
389			     crypto_ablkcipher_decrypt(req);
390	if (rc == -EINPROGRESS || rc == -EBUSY) {
391		struct extent_crypt_result *ecr = req->base.data;
392
393		wait_for_completion(&ecr->completion);
394		rc = ecr->rc;
395		reinit_completion(&ecr->completion);
396	}
397out:
398	ablkcipher_request_free(req);
399	return rc;
400}
401
402/**
403 * lower_offset_for_page
404 *
405 * Convert an eCryptfs page index into a lower byte offset
406 */
407static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
408				    struct page *page)
409{
410	return ecryptfs_lower_header_size(crypt_stat) +
411	       ((loff_t)page->index << PAGE_CACHE_SHIFT);
412}
413
414/**
415 * crypt_extent
416 * @crypt_stat: crypt_stat containing cryptographic context for the
417 *              encryption operation
418 * @dst_page: The page to write the result into
419 * @src_page: The page to read from
420 * @extent_offset: Page extent offset for use in generating IV
421 * @op: ENCRYPT or DECRYPT to indicate the desired operation
422 *
423 * Encrypts or decrypts one extent of data.
424 *
425 * Return zero on success; non-zero otherwise
426 */
427static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
428			struct page *dst_page,
429			struct page *src_page,
430			unsigned long extent_offset, int op)
431{
432	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
433	loff_t extent_base;
434	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
435	struct scatterlist src_sg, dst_sg;
436	size_t extent_size = crypt_stat->extent_size;
437	int rc;
438
439	extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
440	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
441				(extent_base + extent_offset));
442	if (rc) {
443		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
444			"extent [0x%.16llx]; rc = [%d]\n",
445			(unsigned long long)(extent_base + extent_offset), rc);
446		goto out;
447	}
448
449	sg_init_table(&src_sg, 1);
450	sg_init_table(&dst_sg, 1);
451
452	sg_set_page(&src_sg, src_page, extent_size,
453		    extent_offset * extent_size);
454	sg_set_page(&dst_sg, dst_page, extent_size,
455		    extent_offset * extent_size);
456
457	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
458			       extent_iv, op);
459	if (rc < 0) {
460		printk(KERN_ERR "%s: Error attempting to crypt page with "
461		       "page_index = [%ld], extent_offset = [%ld]; "
462		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
463		goto out;
464	}
465	rc = 0;
466out:
467	return rc;
468}
469
470/**
471 * ecryptfs_encrypt_page
472 * @page: Page mapped from the eCryptfs inode for the file; contains
473 *        decrypted content that needs to be encrypted (to a temporary
474 *        page; not in place) and written out to the lower file
475 *
476 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
477 * that eCryptfs pages may straddle the lower pages -- for instance,
478 * if the file was created on a machine with an 8K page size
479 * (resulting in an 8K header), and then the file is copied onto a
480 * host with a 32K page size, then when reading page 0 of the eCryptfs
481 * file, 24K of page 0 of the lower file will be read and decrypted,
482 * and then 8K of page 1 of the lower file will be read and decrypted.
483 *
484 * Returns zero on success; negative on error
485 */
486int ecryptfs_encrypt_page(struct page *page)
487{
488	struct inode *ecryptfs_inode;
489	struct ecryptfs_crypt_stat *crypt_stat;
490	char *enc_extent_virt;
491	struct page *enc_extent_page = NULL;
492	loff_t extent_offset;
493	loff_t lower_offset;
494	int rc = 0;
495
496	ecryptfs_inode = page->mapping->host;
497	crypt_stat =
498		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
499	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
500	enc_extent_page = alloc_page(GFP_USER);
501	if (!enc_extent_page) {
502		rc = -ENOMEM;
503		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
504				"encrypted extent\n");
505		goto out;
506	}
507
508	for (extent_offset = 0;
509	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
510	     extent_offset++) {
511		rc = crypt_extent(crypt_stat, enc_extent_page, page,
512				  extent_offset, ENCRYPT);
513		if (rc) {
514			printk(KERN_ERR "%s: Error encrypting extent; "
515			       "rc = [%d]\n", __func__, rc);
516			goto out;
517		}
518	}
519
520	lower_offset = lower_offset_for_page(crypt_stat, page);
521	enc_extent_virt = kmap(enc_extent_page);
522	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
523				  PAGE_CACHE_SIZE);
524	kunmap(enc_extent_page);
525	if (rc < 0) {
526		ecryptfs_printk(KERN_ERR,
527			"Error attempting to write lower page; rc = [%d]\n",
528			rc);
529		goto out;
530	}
531	rc = 0;
532out:
533	if (enc_extent_page) {
534		__free_page(enc_extent_page);
535	}
536	return rc;
537}
538
539/**
540 * ecryptfs_decrypt_page
541 * @page: Page mapped from the eCryptfs inode for the file; data read
542 *        and decrypted from the lower file will be written into this
543 *        page
544 *
545 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
546 * that eCryptfs pages may straddle the lower pages -- for instance,
547 * if the file was created on a machine with an 8K page size
548 * (resulting in an 8K header), and then the file is copied onto a
549 * host with a 32K page size, then when reading page 0 of the eCryptfs
550 * file, 24K of page 0 of the lower file will be read and decrypted,
551 * and then 8K of page 1 of the lower file will be read and decrypted.
552 *
553 * Returns zero on success; negative on error
554 */
555int ecryptfs_decrypt_page(struct page *page)
556{
557	struct inode *ecryptfs_inode;
558	struct ecryptfs_crypt_stat *crypt_stat;
559	char *page_virt;
560	unsigned long extent_offset;
561	loff_t lower_offset;
562	int rc = 0;
563
564	ecryptfs_inode = page->mapping->host;
565	crypt_stat =
566		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
567	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
568
569	lower_offset = lower_offset_for_page(crypt_stat, page);
570	page_virt = kmap(page);
571	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
572				 ecryptfs_inode);
573	kunmap(page);
574	if (rc < 0) {
575		ecryptfs_printk(KERN_ERR,
576			"Error attempting to read lower page; rc = [%d]\n",
577			rc);
578		goto out;
579	}
580
581	for (extent_offset = 0;
582	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583	     extent_offset++) {
584		rc = crypt_extent(crypt_stat, page, page,
585				  extent_offset, DECRYPT);
586		if (rc) {
587			printk(KERN_ERR "%s: Error encrypting extent; "
588			       "rc = [%d]\n", __func__, rc);
589			goto out;
590		}
591	}
592out:
593	return rc;
594}
595
596#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
597
598/**
599 * ecryptfs_init_crypt_ctx
600 * @crypt_stat: Uninitialized crypt stats structure
601 *
602 * Initialize the crypto context.
603 *
604 * TODO: Performance: Keep a cache of initialized cipher contexts;
605 * only init if needed
606 */
607int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
608{
609	char *full_alg_name;
610	int rc = -EINVAL;
611
612	ecryptfs_printk(KERN_DEBUG,
613			"Initializing cipher [%s]; strlen = [%d]; "
614			"key_size_bits = [%zd]\n",
615			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
616			crypt_stat->key_size << 3);
617	mutex_lock(&crypt_stat->cs_tfm_mutex);
618	if (crypt_stat->tfm) {
619		rc = 0;
620		goto out_unlock;
621	}
622	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
623						    crypt_stat->cipher, "cbc");
624	if (rc)
625		goto out_unlock;
626	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
627	if (IS_ERR(crypt_stat->tfm)) {
628		rc = PTR_ERR(crypt_stat->tfm);
629		crypt_stat->tfm = NULL;
630		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
631				"Error initializing cipher [%s]\n",
632				full_alg_name);
633		goto out_free;
634	}
635	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
636	rc = 0;
637out_free:
638	kfree(full_alg_name);
639out_unlock:
640	mutex_unlock(&crypt_stat->cs_tfm_mutex);
641	return rc;
642}
643
644static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
645{
646	int extent_size_tmp;
647
648	crypt_stat->extent_mask = 0xFFFFFFFF;
649	crypt_stat->extent_shift = 0;
650	if (crypt_stat->extent_size == 0)
651		return;
652	extent_size_tmp = crypt_stat->extent_size;
653	while ((extent_size_tmp & 0x01) == 0) {
654		extent_size_tmp >>= 1;
655		crypt_stat->extent_mask <<= 1;
656		crypt_stat->extent_shift++;
657	}
658}
659
660void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
661{
662	/* Default values; may be overwritten as we are parsing the
663	 * packets. */
664	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
665	set_extent_mask_and_shift(crypt_stat);
666	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
667	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
668		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
669	else {
670		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
671			crypt_stat->metadata_size =
672				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
673		else
674			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
675	}
676}
677
678/**
679 * ecryptfs_compute_root_iv
680 * @crypt_stats
681 *
682 * On error, sets the root IV to all 0's.
683 */
684int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
685{
686	int rc = 0;
687	char dst[MD5_DIGEST_SIZE];
688
689	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
690	BUG_ON(crypt_stat->iv_bytes <= 0);
691	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
692		rc = -EINVAL;
693		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
694				"cannot generate root IV\n");
695		goto out;
696	}
697	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
698				    crypt_stat->key_size);
699	if (rc) {
700		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
701				"MD5 while generating root IV\n");
702		goto out;
703	}
704	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
705out:
706	if (rc) {
707		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
708		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
709	}
710	return rc;
711}
712
713static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
714{
715	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
716	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
717	ecryptfs_compute_root_iv(crypt_stat);
718	if (unlikely(ecryptfs_verbosity > 0)) {
719		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
720		ecryptfs_dump_hex(crypt_stat->key,
721				  crypt_stat->key_size);
722	}
723}
724
725/**
726 * ecryptfs_copy_mount_wide_flags_to_inode_flags
727 * @crypt_stat: The inode's cryptographic context
728 * @mount_crypt_stat: The mount point's cryptographic context
729 *
730 * This function propagates the mount-wide flags to individual inode
731 * flags.
732 */
733static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
734	struct ecryptfs_crypt_stat *crypt_stat,
735	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
736{
737	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
738		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
739	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
740		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
741	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
742		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
743		if (mount_crypt_stat->flags
744		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
745			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
746		else if (mount_crypt_stat->flags
747			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
748			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
749	}
750}
751
752static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
753	struct ecryptfs_crypt_stat *crypt_stat,
754	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
755{
756	struct ecryptfs_global_auth_tok *global_auth_tok;
757	int rc = 0;
758
759	mutex_lock(&crypt_stat->keysig_list_mutex);
760	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
761
762	list_for_each_entry(global_auth_tok,
763			    &mount_crypt_stat->global_auth_tok_list,
764			    mount_crypt_stat_list) {
765		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
766			continue;
767		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
768		if (rc) {
769			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
770			goto out;
771		}
772	}
773
774out:
775	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
776	mutex_unlock(&crypt_stat->keysig_list_mutex);
777	return rc;
778}
779
780/**
781 * ecryptfs_set_default_crypt_stat_vals
782 * @crypt_stat: The inode's cryptographic context
783 * @mount_crypt_stat: The mount point's cryptographic context
784 *
785 * Default values in the event that policy does not override them.
786 */
787static void ecryptfs_set_default_crypt_stat_vals(
788	struct ecryptfs_crypt_stat *crypt_stat,
789	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
790{
791	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
792						      mount_crypt_stat);
793	ecryptfs_set_default_sizes(crypt_stat);
794	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
795	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
796	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
797	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
798	crypt_stat->mount_crypt_stat = mount_crypt_stat;
799}
800
801/**
802 * ecryptfs_new_file_context
803 * @ecryptfs_inode: The eCryptfs inode
804 *
805 * If the crypto context for the file has not yet been established,
806 * this is where we do that.  Establishing a new crypto context
807 * involves the following decisions:
808 *  - What cipher to use?
809 *  - What set of authentication tokens to use?
810 * Here we just worry about getting enough information into the
811 * authentication tokens so that we know that they are available.
812 * We associate the available authentication tokens with the new file
813 * via the set of signatures in the crypt_stat struct.  Later, when
814 * the headers are actually written out, we may again defer to
815 * userspace to perform the encryption of the session key; for the
816 * foreseeable future, this will be the case with public key packets.
817 *
818 * Returns zero on success; non-zero otherwise
819 */
820int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
821{
822	struct ecryptfs_crypt_stat *crypt_stat =
823	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
824	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
825	    &ecryptfs_superblock_to_private(
826		    ecryptfs_inode->i_sb)->mount_crypt_stat;
827	int cipher_name_len;
828	int rc = 0;
829
830	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
831	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
832	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
833						      mount_crypt_stat);
834	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
835							 mount_crypt_stat);
836	if (rc) {
837		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
838		       "to the inode key sigs; rc = [%d]\n", rc);
839		goto out;
840	}
841	cipher_name_len =
842		strlen(mount_crypt_stat->global_default_cipher_name);
843	memcpy(crypt_stat->cipher,
844	       mount_crypt_stat->global_default_cipher_name,
845	       cipher_name_len);
846	crypt_stat->cipher[cipher_name_len] = '\0';
847	crypt_stat->key_size =
848		mount_crypt_stat->global_default_cipher_key_size;
849	ecryptfs_generate_new_key(crypt_stat);
850	rc = ecryptfs_init_crypt_ctx(crypt_stat);
851	if (rc)
852		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
853				"context for cipher [%s]: rc = [%d]\n",
854				crypt_stat->cipher, rc);
855out:
856	return rc;
857}
858
859/**
860 * ecryptfs_validate_marker - check for the ecryptfs marker
861 * @data: The data block in which to check
862 *
863 * Returns zero if marker found; -EINVAL if not found
864 */
865static int ecryptfs_validate_marker(char *data)
866{
867	u32 m_1, m_2;
868
869	m_1 = get_unaligned_be32(data);
870	m_2 = get_unaligned_be32(data + 4);
871	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
872		return 0;
873	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
874			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
875			MAGIC_ECRYPTFS_MARKER);
876	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
877			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
878	return -EINVAL;
879}
880
881struct ecryptfs_flag_map_elem {
882	u32 file_flag;
883	u32 local_flag;
884};
885
886/* Add support for additional flags by adding elements here. */
887static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
888	{0x00000001, ECRYPTFS_ENABLE_HMAC},
889	{0x00000002, ECRYPTFS_ENCRYPTED},
890	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
891	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
892};
893
894/**
895 * ecryptfs_process_flags
896 * @crypt_stat: The cryptographic context
897 * @page_virt: Source data to be parsed
898 * @bytes_read: Updated with the number of bytes read
899 *
900 * Returns zero on success; non-zero if the flag set is invalid
901 */
902static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
903				  char *page_virt, int *bytes_read)
904{
905	int rc = 0;
906	int i;
907	u32 flags;
908
909	flags = get_unaligned_be32(page_virt);
910	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
911			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
912		if (flags & ecryptfs_flag_map[i].file_flag) {
913			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
914		} else
915			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
916	/* Version is in top 8 bits of the 32-bit flag vector */
917	crypt_stat->file_version = ((flags >> 24) & 0xFF);
918	(*bytes_read) = 4;
919	return rc;
920}
921
922/**
923 * write_ecryptfs_marker
924 * @page_virt: The pointer to in a page to begin writing the marker
925 * @written: Number of bytes written
926 *
927 * Marker = 0x3c81b7f5
928 */
929static void write_ecryptfs_marker(char *page_virt, size_t *written)
930{
931	u32 m_1, m_2;
932
933	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
934	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
935	put_unaligned_be32(m_1, page_virt);
936	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
937	put_unaligned_be32(m_2, page_virt);
938	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
939}
940
941void ecryptfs_write_crypt_stat_flags(char *page_virt,
942				     struct ecryptfs_crypt_stat *crypt_stat,
943				     size_t *written)
944{
945	u32 flags = 0;
946	int i;
947
948	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
949			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
950		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
951			flags |= ecryptfs_flag_map[i].file_flag;
952	/* Version is in top 8 bits of the 32-bit flag vector */
953	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
954	put_unaligned_be32(flags, page_virt);
955	(*written) = 4;
956}
957
958struct ecryptfs_cipher_code_str_map_elem {
959	char cipher_str[16];
960	u8 cipher_code;
961};
962
963/* Add support for additional ciphers by adding elements here. The
964 * cipher_code is whatever OpenPGP applicatoins use to identify the
965 * ciphers. List in order of probability. */
966static struct ecryptfs_cipher_code_str_map_elem
967ecryptfs_cipher_code_str_map[] = {
968	{"aes",RFC2440_CIPHER_AES_128 },
969	{"blowfish", RFC2440_CIPHER_BLOWFISH},
970	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
971	{"cast5", RFC2440_CIPHER_CAST_5},
972	{"twofish", RFC2440_CIPHER_TWOFISH},
973	{"cast6", RFC2440_CIPHER_CAST_6},
974	{"aes", RFC2440_CIPHER_AES_192},
975	{"aes", RFC2440_CIPHER_AES_256}
976};
977
978/**
979 * ecryptfs_code_for_cipher_string
980 * @cipher_name: The string alias for the cipher
981 * @key_bytes: Length of key in bytes; used for AES code selection
982 *
983 * Returns zero on no match, or the cipher code on match
984 */
985u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
986{
987	int i;
988	u8 code = 0;
989	struct ecryptfs_cipher_code_str_map_elem *map =
990		ecryptfs_cipher_code_str_map;
991
992	if (strcmp(cipher_name, "aes") == 0) {
993		switch (key_bytes) {
994		case 16:
995			code = RFC2440_CIPHER_AES_128;
996			break;
997		case 24:
998			code = RFC2440_CIPHER_AES_192;
999			break;
1000		case 32:
1001			code = RFC2440_CIPHER_AES_256;
1002		}
1003	} else {
1004		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1005			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1006				code = map[i].cipher_code;
1007				break;
1008			}
1009	}
1010	return code;
1011}
1012
1013/**
1014 * ecryptfs_cipher_code_to_string
1015 * @str: Destination to write out the cipher name
1016 * @cipher_code: The code to convert to cipher name string
1017 *
1018 * Returns zero on success
1019 */
1020int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1021{
1022	int rc = 0;
1023	int i;
1024
1025	str[0] = '\0';
1026	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1027		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1028			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1029	if (str[0] == '\0') {
1030		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1031				"[%d]\n", cipher_code);
1032		rc = -EINVAL;
1033	}
1034	return rc;
1035}
1036
1037int ecryptfs_read_and_validate_header_region(struct inode *inode)
1038{
1039	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1040	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1041	int rc;
1042
1043	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1044				 inode);
1045	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1046		return rc >= 0 ? -EINVAL : rc;
1047	rc = ecryptfs_validate_marker(marker);
1048	if (!rc)
1049		ecryptfs_i_size_init(file_size, inode);
1050	return rc;
1051}
1052
1053void
1054ecryptfs_write_header_metadata(char *virt,
1055			       struct ecryptfs_crypt_stat *crypt_stat,
1056			       size_t *written)
1057{
1058	u32 header_extent_size;
1059	u16 num_header_extents_at_front;
1060
1061	header_extent_size = (u32)crypt_stat->extent_size;
1062	num_header_extents_at_front =
1063		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1064	put_unaligned_be32(header_extent_size, virt);
1065	virt += 4;
1066	put_unaligned_be16(num_header_extents_at_front, virt);
1067	(*written) = 6;
1068}
1069
1070struct kmem_cache *ecryptfs_header_cache;
1071
1072/**
1073 * ecryptfs_write_headers_virt
1074 * @page_virt: The virtual address to write the headers to
1075 * @max: The size of memory allocated at page_virt
1076 * @size: Set to the number of bytes written by this function
1077 * @crypt_stat: The cryptographic context
1078 * @ecryptfs_dentry: The eCryptfs dentry
1079 *
1080 * Format version: 1
1081 *
1082 *   Header Extent:
1083 *     Octets 0-7:        Unencrypted file size (big-endian)
1084 *     Octets 8-15:       eCryptfs special marker
1085 *     Octets 16-19:      Flags
1086 *      Octet 16:         File format version number (between 0 and 255)
1087 *      Octets 17-18:     Reserved
1088 *      Octet 19:         Bit 1 (lsb): Reserved
1089 *                        Bit 2: Encrypted?
1090 *                        Bits 3-8: Reserved
1091 *     Octets 20-23:      Header extent size (big-endian)
1092 *     Octets 24-25:      Number of header extents at front of file
1093 *                        (big-endian)
1094 *     Octet  26:         Begin RFC 2440 authentication token packet set
1095 *   Data Extent 0:
1096 *     Lower data (CBC encrypted)
1097 *   Data Extent 1:
1098 *     Lower data (CBC encrypted)
1099 *   ...
1100 *
1101 * Returns zero on success
1102 */
1103static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1104				       size_t *size,
1105				       struct ecryptfs_crypt_stat *crypt_stat,
1106				       struct dentry *ecryptfs_dentry)
1107{
1108	int rc;
1109	size_t written;
1110	size_t offset;
1111
1112	offset = ECRYPTFS_FILE_SIZE_BYTES;
1113	write_ecryptfs_marker((page_virt + offset), &written);
1114	offset += written;
1115	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1116					&written);
1117	offset += written;
1118	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1119				       &written);
1120	offset += written;
1121	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1122					      ecryptfs_dentry, &written,
1123					      max - offset);
1124	if (rc)
1125		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1126				"set; rc = [%d]\n", rc);
1127	if (size) {
1128		offset += written;
1129		*size = offset;
1130	}
1131	return rc;
1132}
1133
1134static int
1135ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1136				    char *virt, size_t virt_len)
1137{
1138	int rc;
1139
1140	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1141				  0, virt_len);
1142	if (rc < 0)
1143		printk(KERN_ERR "%s: Error attempting to write header "
1144		       "information to lower file; rc = [%d]\n", __func__, rc);
1145	else
1146		rc = 0;
1147	return rc;
1148}
1149
1150static int
1151ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1152				 char *page_virt, size_t size)
1153{
1154	int rc;
1155
1156	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1157			       size, 0);
1158	return rc;
1159}
1160
1161static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1162					       unsigned int order)
1163{
1164	struct page *page;
1165
1166	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1167	if (page)
1168		return (unsigned long) page_address(page);
1169	return 0;
1170}
1171
1172/**
1173 * ecryptfs_write_metadata
1174 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1175 * @ecryptfs_inode: The newly created eCryptfs inode
1176 *
1177 * Write the file headers out.  This will likely involve a userspace
1178 * callout, in which the session key is encrypted with one or more
1179 * public keys and/or the passphrase necessary to do the encryption is
1180 * retrieved via a prompt.  Exactly what happens at this point should
1181 * be policy-dependent.
1182 *
1183 * Returns zero on success; non-zero on error
1184 */
1185int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1186			    struct inode *ecryptfs_inode)
1187{
1188	struct ecryptfs_crypt_stat *crypt_stat =
1189		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1190	unsigned int order;
1191	char *virt;
1192	size_t virt_len;
1193	size_t size = 0;
1194	int rc = 0;
1195
1196	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1197		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1198			printk(KERN_ERR "Key is invalid; bailing out\n");
1199			rc = -EINVAL;
1200			goto out;
1201		}
1202	} else {
1203		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1204		       __func__);
1205		rc = -EINVAL;
1206		goto out;
1207	}
1208	virt_len = crypt_stat->metadata_size;
1209	order = get_order(virt_len);
1210	/* Released in this function */
1211	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1212	if (!virt) {
1213		printk(KERN_ERR "%s: Out of memory\n", __func__);
1214		rc = -ENOMEM;
1215		goto out;
1216	}
1217	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1218	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1219					 ecryptfs_dentry);
1220	if (unlikely(rc)) {
1221		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1222		       __func__, rc);
1223		goto out_free;
1224	}
1225	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1226		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1227						      size);
1228	else
1229		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1230							 virt_len);
1231	if (rc) {
1232		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1233		       "rc = [%d]\n", __func__, rc);
1234		goto out_free;
1235	}
1236out_free:
1237	free_pages((unsigned long)virt, order);
1238out:
1239	return rc;
1240}
1241
1242#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1243#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1244static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1245				 char *virt, int *bytes_read,
1246				 int validate_header_size)
1247{
1248	int rc = 0;
1249	u32 header_extent_size;
1250	u16 num_header_extents_at_front;
1251
1252	header_extent_size = get_unaligned_be32(virt);
1253	virt += sizeof(__be32);
1254	num_header_extents_at_front = get_unaligned_be16(virt);
1255	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1256				     * (size_t)header_extent_size));
1257	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1258	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1259	    && (crypt_stat->metadata_size
1260		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1261		rc = -EINVAL;
1262		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1263		       crypt_stat->metadata_size);
1264	}
1265	return rc;
1266}
1267
1268/**
1269 * set_default_header_data
1270 * @crypt_stat: The cryptographic context
1271 *
1272 * For version 0 file format; this function is only for backwards
1273 * compatibility for files created with the prior versions of
1274 * eCryptfs.
1275 */
1276static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1277{
1278	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1279}
1280
1281void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1282{
1283	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1284	struct ecryptfs_crypt_stat *crypt_stat;
1285	u64 file_size;
1286
1287	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1288	mount_crypt_stat =
1289		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1290	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1291		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1292		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1293			file_size += crypt_stat->metadata_size;
1294	} else
1295		file_size = get_unaligned_be64(page_virt);
1296	i_size_write(inode, (loff_t)file_size);
1297	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1298}
1299
1300/**
1301 * ecryptfs_read_headers_virt
1302 * @page_virt: The virtual address into which to read the headers
1303 * @crypt_stat: The cryptographic context
1304 * @ecryptfs_dentry: The eCryptfs dentry
1305 * @validate_header_size: Whether to validate the header size while reading
1306 *
1307 * Read/parse the header data. The header format is detailed in the
1308 * comment block for the ecryptfs_write_headers_virt() function.
1309 *
1310 * Returns zero on success
1311 */
1312static int ecryptfs_read_headers_virt(char *page_virt,
1313				      struct ecryptfs_crypt_stat *crypt_stat,
1314				      struct dentry *ecryptfs_dentry,
1315				      int validate_header_size)
1316{
1317	int rc = 0;
1318	int offset;
1319	int bytes_read;
1320
1321	ecryptfs_set_default_sizes(crypt_stat);
1322	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1323		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1324	offset = ECRYPTFS_FILE_SIZE_BYTES;
1325	rc = ecryptfs_validate_marker(page_virt + offset);
1326	if (rc)
1327		goto out;
1328	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1329		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1330	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1331	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1332				    &bytes_read);
1333	if (rc) {
1334		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1335		goto out;
1336	}
1337	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1338		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1339				"file version [%d] is supported by this "
1340				"version of eCryptfs\n",
1341				crypt_stat->file_version,
1342				ECRYPTFS_SUPPORTED_FILE_VERSION);
1343		rc = -EINVAL;
1344		goto out;
1345	}
1346	offset += bytes_read;
1347	if (crypt_stat->file_version >= 1) {
1348		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1349					   &bytes_read, validate_header_size);
1350		if (rc) {
1351			ecryptfs_printk(KERN_WARNING, "Error reading header "
1352					"metadata; rc = [%d]\n", rc);
1353		}
1354		offset += bytes_read;
1355	} else
1356		set_default_header_data(crypt_stat);
1357	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1358				       ecryptfs_dentry);
1359out:
1360	return rc;
1361}
1362
1363/**
1364 * ecryptfs_read_xattr_region
1365 * @page_virt: The vitual address into which to read the xattr data
1366 * @ecryptfs_inode: The eCryptfs inode
1367 *
1368 * Attempts to read the crypto metadata from the extended attribute
1369 * region of the lower file.
1370 *
1371 * Returns zero on success; non-zero on error
1372 */
1373int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1374{
1375	struct dentry *lower_dentry =
1376		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1377	ssize_t size;
1378	int rc = 0;
1379
1380	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1381				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1382	if (size < 0) {
1383		if (unlikely(ecryptfs_verbosity > 0))
1384			printk(KERN_INFO "Error attempting to read the [%s] "
1385			       "xattr from the lower file; return value = "
1386			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1387		rc = -EINVAL;
1388		goto out;
1389	}
1390out:
1391	return rc;
1392}
1393
1394int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1395					    struct inode *inode)
1396{
1397	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1398	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1399	int rc;
1400
1401	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1402				     ECRYPTFS_XATTR_NAME, file_size,
1403				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1404	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1405		return rc >= 0 ? -EINVAL : rc;
1406	rc = ecryptfs_validate_marker(marker);
1407	if (!rc)
1408		ecryptfs_i_size_init(file_size, inode);
1409	return rc;
1410}
1411
1412/**
1413 * ecryptfs_read_metadata
1414 *
1415 * Common entry point for reading file metadata. From here, we could
1416 * retrieve the header information from the header region of the file,
1417 * the xattr region of the file, or some other repostory that is
1418 * stored separately from the file itself. The current implementation
1419 * supports retrieving the metadata information from the file contents
1420 * and from the xattr region.
1421 *
1422 * Returns zero if valid headers found and parsed; non-zero otherwise
1423 */
1424int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1425{
1426	int rc;
1427	char *page_virt;
1428	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1429	struct ecryptfs_crypt_stat *crypt_stat =
1430	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1431	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1432		&ecryptfs_superblock_to_private(
1433			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1434
1435	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1436						      mount_crypt_stat);
1437	/* Read the first page from the underlying file */
1438	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1439	if (!page_virt) {
1440		rc = -ENOMEM;
1441		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1442		       __func__);
1443		goto out;
1444	}
1445	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1446				 ecryptfs_inode);
1447	if (rc >= 0)
1448		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1449						ecryptfs_dentry,
1450						ECRYPTFS_VALIDATE_HEADER_SIZE);
1451	if (rc) {
1452		/* metadata is not in the file header, so try xattrs */
1453		memset(page_virt, 0, PAGE_CACHE_SIZE);
1454		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1455		if (rc) {
1456			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1457			       "file header region or xattr region, inode %lu\n",
1458				ecryptfs_inode->i_ino);
1459			rc = -EINVAL;
1460			goto out;
1461		}
1462		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1463						ecryptfs_dentry,
1464						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1465		if (rc) {
1466			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1467			       "file xattr region either, inode %lu\n",
1468				ecryptfs_inode->i_ino);
1469			rc = -EINVAL;
1470		}
1471		if (crypt_stat->mount_crypt_stat->flags
1472		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1473			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1474		} else {
1475			printk(KERN_WARNING "Attempt to access file with "
1476			       "crypto metadata only in the extended attribute "
1477			       "region, but eCryptfs was mounted without "
1478			       "xattr support enabled. eCryptfs will not treat "
1479			       "this like an encrypted file, inode %lu\n",
1480				ecryptfs_inode->i_ino);
1481			rc = -EINVAL;
1482		}
1483	}
1484out:
1485	if (page_virt) {
1486		memset(page_virt, 0, PAGE_CACHE_SIZE);
1487		kmem_cache_free(ecryptfs_header_cache, page_virt);
1488	}
1489	return rc;
1490}
1491
1492/**
1493 * ecryptfs_encrypt_filename - encrypt filename
1494 *
1495 * CBC-encrypts the filename. We do not want to encrypt the same
1496 * filename with the same key and IV, which may happen with hard
1497 * links, so we prepend random bits to each filename.
1498 *
1499 * Returns zero on success; non-zero otherwise
1500 */
1501static int
1502ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1503			  struct ecryptfs_crypt_stat *crypt_stat,
1504			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1505{
1506	int rc = 0;
1507
1508	filename->encrypted_filename = NULL;
1509	filename->encrypted_filename_size = 0;
1510	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1511	    || (mount_crypt_stat && (mount_crypt_stat->flags
1512				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1513		size_t packet_size;
1514		size_t remaining_bytes;
1515
1516		rc = ecryptfs_write_tag_70_packet(
1517			NULL, NULL,
1518			&filename->encrypted_filename_size,
1519			mount_crypt_stat, NULL,
1520			filename->filename_size);
1521		if (rc) {
1522			printk(KERN_ERR "%s: Error attempting to get packet "
1523			       "size for tag 72; rc = [%d]\n", __func__,
1524			       rc);
1525			filename->encrypted_filename_size = 0;
1526			goto out;
1527		}
1528		filename->encrypted_filename =
1529			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1530		if (!filename->encrypted_filename) {
1531			printk(KERN_ERR "%s: Out of memory whilst attempting "
1532			       "to kmalloc [%zd] bytes\n", __func__,
1533			       filename->encrypted_filename_size);
1534			rc = -ENOMEM;
1535			goto out;
1536		}
1537		remaining_bytes = filename->encrypted_filename_size;
1538		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1539						  &remaining_bytes,
1540						  &packet_size,
1541						  mount_crypt_stat,
1542						  filename->filename,
1543						  filename->filename_size);
1544		if (rc) {
1545			printk(KERN_ERR "%s: Error attempting to generate "
1546			       "tag 70 packet; rc = [%d]\n", __func__,
1547			       rc);
1548			kfree(filename->encrypted_filename);
1549			filename->encrypted_filename = NULL;
1550			filename->encrypted_filename_size = 0;
1551			goto out;
1552		}
1553		filename->encrypted_filename_size = packet_size;
1554	} else {
1555		printk(KERN_ERR "%s: No support for requested filename "
1556		       "encryption method in this release\n", __func__);
1557		rc = -EOPNOTSUPP;
1558		goto out;
1559	}
1560out:
1561	return rc;
1562}
1563
1564static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1565				  const char *name, size_t name_size)
1566{
1567	int rc = 0;
1568
1569	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1570	if (!(*copied_name)) {
1571		rc = -ENOMEM;
1572		goto out;
1573	}
1574	memcpy((void *)(*copied_name), (void *)name, name_size);
1575	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1576						 * in printing out the
1577						 * string in debug
1578						 * messages */
1579	(*copied_name_size) = name_size;
1580out:
1581	return rc;
1582}
1583
1584/**
1585 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1586 * @key_tfm: Crypto context for key material, set by this function
1587 * @cipher_name: Name of the cipher
1588 * @key_size: Size of the key in bytes
1589 *
1590 * Returns zero on success. Any crypto_tfm structs allocated here
1591 * should be released by other functions, such as on a superblock put
1592 * event, regardless of whether this function succeeds for fails.
1593 */
1594static int
1595ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1596			    char *cipher_name, size_t *key_size)
1597{
1598	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1599	char *full_alg_name = NULL;
1600	int rc;
1601
1602	*key_tfm = NULL;
1603	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1604		rc = -EINVAL;
1605		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1606		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1607		goto out;
1608	}
1609	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1610						    "ecb");
1611	if (rc)
1612		goto out;
1613	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1614	if (IS_ERR(*key_tfm)) {
1615		rc = PTR_ERR(*key_tfm);
1616		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1617		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1618		goto out;
1619	}
1620	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1621	if (*key_size == 0) {
1622		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1623
1624		*key_size = alg->max_keysize;
1625	}
1626	get_random_bytes(dummy_key, *key_size);
1627	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1628	if (rc) {
1629		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1630		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1631		       rc);
1632		rc = -EINVAL;
1633		goto out;
1634	}
1635out:
1636	kfree(full_alg_name);
1637	return rc;
1638}
1639
1640struct kmem_cache *ecryptfs_key_tfm_cache;
1641static struct list_head key_tfm_list;
1642struct mutex key_tfm_list_mutex;
1643
1644int __init ecryptfs_init_crypto(void)
1645{
1646	mutex_init(&key_tfm_list_mutex);
1647	INIT_LIST_HEAD(&key_tfm_list);
1648	return 0;
1649}
1650
1651/**
1652 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1653 *
1654 * Called only at module unload time
1655 */
1656int ecryptfs_destroy_crypto(void)
1657{
1658	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1659
1660	mutex_lock(&key_tfm_list_mutex);
1661	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1662				 key_tfm_list) {
1663		list_del(&key_tfm->key_tfm_list);
1664		if (key_tfm->key_tfm)
1665			crypto_free_blkcipher(key_tfm->key_tfm);
1666		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1667	}
1668	mutex_unlock(&key_tfm_list_mutex);
1669	return 0;
1670}
1671
1672int
1673ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1674			 size_t key_size)
1675{
1676	struct ecryptfs_key_tfm *tmp_tfm;
1677	int rc = 0;
1678
1679	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1680
1681	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1682	if (key_tfm != NULL)
1683		(*key_tfm) = tmp_tfm;
1684	if (!tmp_tfm) {
1685		rc = -ENOMEM;
1686		printk(KERN_ERR "Error attempting to allocate from "
1687		       "ecryptfs_key_tfm_cache\n");
1688		goto out;
1689	}
1690	mutex_init(&tmp_tfm->key_tfm_mutex);
1691	strncpy(tmp_tfm->cipher_name, cipher_name,
1692		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1693	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1694	tmp_tfm->key_size = key_size;
1695	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1696					 tmp_tfm->cipher_name,
1697					 &tmp_tfm->key_size);
1698	if (rc) {
1699		printk(KERN_ERR "Error attempting to initialize key TFM "
1700		       "cipher with name = [%s]; rc = [%d]\n",
1701		       tmp_tfm->cipher_name, rc);
1702		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1703		if (key_tfm != NULL)
1704			(*key_tfm) = NULL;
1705		goto out;
1706	}
1707	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1708out:
1709	return rc;
1710}
1711
1712/**
1713 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1714 * @cipher_name: the name of the cipher to search for
1715 * @key_tfm: set to corresponding tfm if found
1716 *
1717 * Searches for cached key_tfm matching @cipher_name
1718 * Must be called with &key_tfm_list_mutex held
1719 * Returns 1 if found, with @key_tfm set
1720 * Returns 0 if not found, with @key_tfm set to NULL
1721 */
1722int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1723{
1724	struct ecryptfs_key_tfm *tmp_key_tfm;
1725
1726	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1727
1728	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1729		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1730			if (key_tfm)
1731				(*key_tfm) = tmp_key_tfm;
1732			return 1;
1733		}
1734	}
1735	if (key_tfm)
1736		(*key_tfm) = NULL;
1737	return 0;
1738}
1739
1740/**
1741 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1742 *
1743 * @tfm: set to cached tfm found, or new tfm created
1744 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1745 * @cipher_name: the name of the cipher to search for and/or add
1746 *
1747 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1748 * Searches for cached item first, and creates new if not found.
1749 * Returns 0 on success, non-zero if adding new cipher failed
1750 */
1751int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1752					       struct mutex **tfm_mutex,
1753					       char *cipher_name)
1754{
1755	struct ecryptfs_key_tfm *key_tfm;
1756	int rc = 0;
1757
1758	(*tfm) = NULL;
1759	(*tfm_mutex) = NULL;
1760
1761	mutex_lock(&key_tfm_list_mutex);
1762	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1763		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1764		if (rc) {
1765			printk(KERN_ERR "Error adding new key_tfm to list; "
1766					"rc = [%d]\n", rc);
1767			goto out;
1768		}
1769	}
1770	(*tfm) = key_tfm->key_tfm;
1771	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1772out:
1773	mutex_unlock(&key_tfm_list_mutex);
1774	return rc;
1775}
1776
1777/* 64 characters forming a 6-bit target field */
1778static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1779						 "EFGHIJKLMNOPQRST"
1780						 "UVWXYZabcdefghij"
1781						 "klmnopqrstuvwxyz");
1782
1783/* We could either offset on every reverse map or just pad some 0x00's
1784 * at the front here */
1785static const unsigned char filename_rev_map[256] = {
1786	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1787	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1788	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1789	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1790	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1791	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1792	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1793	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1794	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1795	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1796	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1797	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1798	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1799	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1800	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1801	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1802};
1803
1804/**
1805 * ecryptfs_encode_for_filename
1806 * @dst: Destination location for encoded filename
1807 * @dst_size: Size of the encoded filename in bytes
1808 * @src: Source location for the filename to encode
1809 * @src_size: Size of the source in bytes
1810 */
1811static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1812				  unsigned char *src, size_t src_size)
1813{
1814	size_t num_blocks;
1815	size_t block_num = 0;
1816	size_t dst_offset = 0;
1817	unsigned char last_block[3];
1818
1819	if (src_size == 0) {
1820		(*dst_size) = 0;
1821		goto out;
1822	}
1823	num_blocks = (src_size / 3);
1824	if ((src_size % 3) == 0) {
1825		memcpy(last_block, (&src[src_size - 3]), 3);
1826	} else {
1827		num_blocks++;
1828		last_block[2] = 0x00;
1829		switch (src_size % 3) {
1830		case 1:
1831			last_block[0] = src[src_size - 1];
1832			last_block[1] = 0x00;
1833			break;
1834		case 2:
1835			last_block[0] = src[src_size - 2];
1836			last_block[1] = src[src_size - 1];
1837		}
1838	}
1839	(*dst_size) = (num_blocks * 4);
1840	if (!dst)
1841		goto out;
1842	while (block_num < num_blocks) {
1843		unsigned char *src_block;
1844		unsigned char dst_block[4];
1845
1846		if (block_num == (num_blocks - 1))
1847			src_block = last_block;
1848		else
1849			src_block = &src[block_num * 3];
1850		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1851		dst_block[1] = (((src_block[0] << 4) & 0x30)
1852				| ((src_block[1] >> 4) & 0x0F));
1853		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1854				| ((src_block[2] >> 6) & 0x03));
1855		dst_block[3] = (src_block[2] & 0x3F);
1856		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1857		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1858		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1859		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1860		block_num++;
1861	}
1862out:
1863	return;
1864}
1865
1866static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1867{
1868	/* Not exact; conservatively long. Every block of 4
1869	 * encoded characters decodes into a block of 3
1870	 * decoded characters. This segment of code provides
1871	 * the caller with the maximum amount of allocated
1872	 * space that @dst will need to point to in a
1873	 * subsequent call. */
1874	return ((encoded_size + 1) * 3) / 4;
1875}
1876
1877/**
1878 * ecryptfs_decode_from_filename
1879 * @dst: If NULL, this function only sets @dst_size and returns. If
1880 *       non-NULL, this function decodes the encoded octets in @src
1881 *       into the memory that @dst points to.
1882 * @dst_size: Set to the size of the decoded string.
1883 * @src: The encoded set of octets to decode.
1884 * @src_size: The size of the encoded set of octets to decode.
1885 */
1886static void
1887ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1888			      const unsigned char *src, size_t src_size)
1889{
1890	u8 current_bit_offset = 0;
1891	size_t src_byte_offset = 0;
1892	size_t dst_byte_offset = 0;
1893
1894	if (dst == NULL) {
1895		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1896		goto out;
1897	}
1898	while (src_byte_offset < src_size) {
1899		unsigned char src_byte =
1900				filename_rev_map[(int)src[src_byte_offset]];
1901
1902		switch (current_bit_offset) {
1903		case 0:
1904			dst[dst_byte_offset] = (src_byte << 2);
1905			current_bit_offset = 6;
1906			break;
1907		case 6:
1908			dst[dst_byte_offset++] |= (src_byte >> 4);
1909			dst[dst_byte_offset] = ((src_byte & 0xF)
1910						 << 4);
1911			current_bit_offset = 4;
1912			break;
1913		case 4:
1914			dst[dst_byte_offset++] |= (src_byte >> 2);
1915			dst[dst_byte_offset] = (src_byte << 6);
1916			current_bit_offset = 2;
1917			break;
1918		case 2:
1919			dst[dst_byte_offset++] |= (src_byte);
1920			current_bit_offset = 0;
1921			break;
1922		}
1923		src_byte_offset++;
1924	}
1925	(*dst_size) = dst_byte_offset;
1926out:
1927	return;
1928}
1929
1930/**
1931 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1932 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1933 * @name: The plaintext name
1934 * @length: The length of the plaintext
1935 * @encoded_name: The encypted name
1936 *
1937 * Encrypts and encodes a filename into something that constitutes a
1938 * valid filename for a filesystem, with printable characters.
1939 *
1940 * We assume that we have a properly initialized crypto context,
1941 * pointed to by crypt_stat->tfm.
1942 *
1943 * Returns zero on success; non-zero on otherwise
1944 */
1945int ecryptfs_encrypt_and_encode_filename(
1946	char **encoded_name,
1947	size_t *encoded_name_size,
1948	struct ecryptfs_crypt_stat *crypt_stat,
1949	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1950	const char *name, size_t name_size)
1951{
1952	size_t encoded_name_no_prefix_size;
1953	int rc = 0;
1954
1955	(*encoded_name) = NULL;
1956	(*encoded_name_size) = 0;
1957	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1958	    || (mount_crypt_stat && (mount_crypt_stat->flags
1959				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1960		struct ecryptfs_filename *filename;
1961
1962		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1963		if (!filename) {
1964			printk(KERN_ERR "%s: Out of memory whilst attempting "
1965			       "to kzalloc [%zd] bytes\n", __func__,
1966			       sizeof(*filename));
1967			rc = -ENOMEM;
1968			goto out;
1969		}
1970		filename->filename = (char *)name;
1971		filename->filename_size = name_size;
1972		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1973					       mount_crypt_stat);
1974		if (rc) {
1975			printk(KERN_ERR "%s: Error attempting to encrypt "
1976			       "filename; rc = [%d]\n", __func__, rc);
1977			kfree(filename);
1978			goto out;
1979		}
1980		ecryptfs_encode_for_filename(
1981			NULL, &encoded_name_no_prefix_size,
1982			filename->encrypted_filename,
1983			filename->encrypted_filename_size);
1984		if ((crypt_stat && (crypt_stat->flags
1985				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1986		    || (mount_crypt_stat
1987			&& (mount_crypt_stat->flags
1988			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1989			(*encoded_name_size) =
1990				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1991				 + encoded_name_no_prefix_size);
1992		else
1993			(*encoded_name_size) =
1994				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1995				 + encoded_name_no_prefix_size);
1996		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1997		if (!(*encoded_name)) {
1998			printk(KERN_ERR "%s: Out of memory whilst attempting "
1999			       "to kzalloc [%zd] bytes\n", __func__,
2000			       (*encoded_name_size));
2001			rc = -ENOMEM;
2002			kfree(filename->encrypted_filename);
2003			kfree(filename);
2004			goto out;
2005		}
2006		if ((crypt_stat && (crypt_stat->flags
2007				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2008		    || (mount_crypt_stat
2009			&& (mount_crypt_stat->flags
2010			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2011			memcpy((*encoded_name),
2012			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2013			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2014			ecryptfs_encode_for_filename(
2015			    ((*encoded_name)
2016			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2017			    &encoded_name_no_prefix_size,
2018			    filename->encrypted_filename,
2019			    filename->encrypted_filename_size);
2020			(*encoded_name_size) =
2021				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2022				 + encoded_name_no_prefix_size);
2023			(*encoded_name)[(*encoded_name_size)] = '\0';
2024		} else {
2025			rc = -EOPNOTSUPP;
2026		}
2027		if (rc) {
2028			printk(KERN_ERR "%s: Error attempting to encode "
2029			       "encrypted filename; rc = [%d]\n", __func__,
2030			       rc);
2031			kfree((*encoded_name));
2032			(*encoded_name) = NULL;
2033			(*encoded_name_size) = 0;
2034		}
2035		kfree(filename->encrypted_filename);
2036		kfree(filename);
2037	} else {
2038		rc = ecryptfs_copy_filename(encoded_name,
2039					    encoded_name_size,
2040					    name, name_size);
2041	}
2042out:
2043	return rc;
2044}
2045
2046/**
2047 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2048 * @plaintext_name: The plaintext name
2049 * @plaintext_name_size: The plaintext name size
2050 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2051 * @name: The filename in cipher text
2052 * @name_size: The cipher text name size
2053 *
2054 * Decrypts and decodes the filename.
2055 *
2056 * Returns zero on error; non-zero otherwise
2057 */
2058int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2059					 size_t *plaintext_name_size,
2060					 struct super_block *sb,
2061					 const char *name, size_t name_size)
2062{
2063	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2064		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2065	char *decoded_name;
2066	size_t decoded_name_size;
2067	size_t packet_size;
2068	int rc = 0;
2069
2070	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2071	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2072	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2073	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2074			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2075		const char *orig_name = name;
2076		size_t orig_name_size = name_size;
2077
2078		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2079		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2080		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2081					      name, name_size);
2082		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2083		if (!decoded_name) {
2084			printk(KERN_ERR "%s: Out of memory whilst attempting "
2085			       "to kmalloc [%zd] bytes\n", __func__,
2086			       decoded_name_size);
2087			rc = -ENOMEM;
2088			goto out;
2089		}
2090		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2091					      name, name_size);
2092		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2093						  plaintext_name_size,
2094						  &packet_size,
2095						  mount_crypt_stat,
2096						  decoded_name,
2097						  decoded_name_size);
2098		if (rc) {
2099			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2100			       "from filename; copying through filename "
2101			       "as-is\n", __func__);
2102			rc = ecryptfs_copy_filename(plaintext_name,
2103						    plaintext_name_size,
2104						    orig_name, orig_name_size);
2105			goto out_free;
2106		}
2107	} else {
2108		rc = ecryptfs_copy_filename(plaintext_name,
2109					    plaintext_name_size,
2110					    name, name_size);
2111		goto out;
2112	}
2113out_free:
2114	kfree(decoded_name);
2115out:
2116	return rc;
2117}
2118
2119#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2120
2121int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2122			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2123{
2124	struct blkcipher_desc desc;
2125	struct mutex *tfm_mutex;
2126	size_t cipher_blocksize;
2127	int rc;
2128
2129	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2130		(*namelen) = lower_namelen;
2131		return 0;
2132	}
2133
2134	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2135			mount_crypt_stat->global_default_fn_cipher_name);
2136	if (unlikely(rc)) {
2137		(*namelen) = 0;
2138		return rc;
2139	}
2140
2141	mutex_lock(tfm_mutex);
2142	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2143	mutex_unlock(tfm_mutex);
2144
2145	/* Return an exact amount for the common cases */
2146	if (lower_namelen == NAME_MAX
2147	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2148		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2149		return 0;
2150	}
2151
2152	/* Return a safe estimate for the uncommon cases */
2153	(*namelen) = lower_namelen;
2154	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2155	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2156	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2157	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2158	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2159	/* Worst case is that the filename is padded nearly a full block size */
2160	(*namelen) -= cipher_blocksize - 1;
2161
2162	if ((*namelen) < 0)
2163		(*namelen) = 0;
2164
2165	return 0;
2166}
2167