1/******************************************************************************
2*******************************************************************************
3**
4**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5**  Copyright (C) 2004-2005 Red Hat, Inc.  All rights reserved.
6**
7**  This copyrighted material is made available to anyone wishing to use,
8**  modify, copy, or redistribute it subject to the terms and conditions
9**  of the GNU General Public License v.2.
10**
11*******************************************************************************
12******************************************************************************/
13
14#include "dlm_internal.h"
15#include "lockspace.h"
16#include "dir.h"
17#include "config.h"
18#include "ast.h"
19#include "memory.h"
20#include "rcom.h"
21#include "lock.h"
22#include "lowcomms.h"
23#include "member.h"
24#include "recover.h"
25
26
27/*
28 * Recovery waiting routines: these functions wait for a particular reply from
29 * a remote node, or for the remote node to report a certain status.  They need
30 * to abort if the lockspace is stopped indicating a node has failed (perhaps
31 * the one being waited for).
32 */
33
34/*
35 * Wait until given function returns non-zero or lockspace is stopped
36 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes).  When another
37 * function thinks it could have completed the waited-on task, they should wake
38 * up ls_wait_general to get an immediate response rather than waiting for the
39 * timeout.  This uses a timeout so it can check periodically if the wait
40 * should abort due to node failure (which doesn't cause a wake_up).
41 * This should only be called by the dlm_recoverd thread.
42 */
43
44int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
45{
46	int error = 0;
47	int rv;
48
49	while (1) {
50		rv = wait_event_timeout(ls->ls_wait_general,
51					testfn(ls) || dlm_recovery_stopped(ls),
52					dlm_config.ci_recover_timer * HZ);
53		if (rv)
54			break;
55	}
56
57	if (dlm_recovery_stopped(ls)) {
58		log_debug(ls, "dlm_wait_function aborted");
59		error = -EINTR;
60	}
61	return error;
62}
63
64/*
65 * An efficient way for all nodes to wait for all others to have a certain
66 * status.  The node with the lowest nodeid polls all the others for their
67 * status (wait_status_all) and all the others poll the node with the low id
68 * for its accumulated result (wait_status_low).  When all nodes have set
69 * status flag X, then status flag X_ALL will be set on the low nodeid.
70 */
71
72uint32_t dlm_recover_status(struct dlm_ls *ls)
73{
74	uint32_t status;
75	spin_lock(&ls->ls_recover_lock);
76	status = ls->ls_recover_status;
77	spin_unlock(&ls->ls_recover_lock);
78	return status;
79}
80
81static void _set_recover_status(struct dlm_ls *ls, uint32_t status)
82{
83	ls->ls_recover_status |= status;
84}
85
86void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
87{
88	spin_lock(&ls->ls_recover_lock);
89	_set_recover_status(ls, status);
90	spin_unlock(&ls->ls_recover_lock);
91}
92
93static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status,
94			   int save_slots)
95{
96	struct dlm_rcom *rc = ls->ls_recover_buf;
97	struct dlm_member *memb;
98	int error = 0, delay;
99
100	list_for_each_entry(memb, &ls->ls_nodes, list) {
101		delay = 0;
102		for (;;) {
103			if (dlm_recovery_stopped(ls)) {
104				error = -EINTR;
105				goto out;
106			}
107
108			error = dlm_rcom_status(ls, memb->nodeid, 0);
109			if (error)
110				goto out;
111
112			if (save_slots)
113				dlm_slot_save(ls, rc, memb);
114
115			if (rc->rc_result & wait_status)
116				break;
117			if (delay < 1000)
118				delay += 20;
119			msleep(delay);
120		}
121	}
122 out:
123	return error;
124}
125
126static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status,
127			   uint32_t status_flags)
128{
129	struct dlm_rcom *rc = ls->ls_recover_buf;
130	int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
131
132	for (;;) {
133		if (dlm_recovery_stopped(ls)) {
134			error = -EINTR;
135			goto out;
136		}
137
138		error = dlm_rcom_status(ls, nodeid, status_flags);
139		if (error)
140			break;
141
142		if (rc->rc_result & wait_status)
143			break;
144		if (delay < 1000)
145			delay += 20;
146		msleep(delay);
147	}
148 out:
149	return error;
150}
151
152static int wait_status(struct dlm_ls *ls, uint32_t status)
153{
154	uint32_t status_all = status << 1;
155	int error;
156
157	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
158		error = wait_status_all(ls, status, 0);
159		if (!error)
160			dlm_set_recover_status(ls, status_all);
161	} else
162		error = wait_status_low(ls, status_all, 0);
163
164	return error;
165}
166
167int dlm_recover_members_wait(struct dlm_ls *ls)
168{
169	struct dlm_member *memb;
170	struct dlm_slot *slots;
171	int num_slots, slots_size;
172	int error, rv;
173	uint32_t gen;
174
175	list_for_each_entry(memb, &ls->ls_nodes, list) {
176		memb->slot = -1;
177		memb->generation = 0;
178	}
179
180	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
181		error = wait_status_all(ls, DLM_RS_NODES, 1);
182		if (error)
183			goto out;
184
185		/* slots array is sparse, slots_size may be > num_slots */
186
187		rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen);
188		if (!rv) {
189			spin_lock(&ls->ls_recover_lock);
190			_set_recover_status(ls, DLM_RS_NODES_ALL);
191			ls->ls_num_slots = num_slots;
192			ls->ls_slots_size = slots_size;
193			ls->ls_slots = slots;
194			ls->ls_generation = gen;
195			spin_unlock(&ls->ls_recover_lock);
196		} else {
197			dlm_set_recover_status(ls, DLM_RS_NODES_ALL);
198		}
199	} else {
200		error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS);
201		if (error)
202			goto out;
203
204		dlm_slots_copy_in(ls);
205	}
206 out:
207	return error;
208}
209
210int dlm_recover_directory_wait(struct dlm_ls *ls)
211{
212	return wait_status(ls, DLM_RS_DIR);
213}
214
215int dlm_recover_locks_wait(struct dlm_ls *ls)
216{
217	return wait_status(ls, DLM_RS_LOCKS);
218}
219
220int dlm_recover_done_wait(struct dlm_ls *ls)
221{
222	return wait_status(ls, DLM_RS_DONE);
223}
224
225/*
226 * The recover_list contains all the rsb's for which we've requested the new
227 * master nodeid.  As replies are returned from the resource directories the
228 * rsb's are removed from the list.  When the list is empty we're done.
229 *
230 * The recover_list is later similarly used for all rsb's for which we've sent
231 * new lkb's and need to receive new corresponding lkid's.
232 *
233 * We use the address of the rsb struct as a simple local identifier for the
234 * rsb so we can match an rcom reply with the rsb it was sent for.
235 */
236
237static int recover_list_empty(struct dlm_ls *ls)
238{
239	int empty;
240
241	spin_lock(&ls->ls_recover_list_lock);
242	empty = list_empty(&ls->ls_recover_list);
243	spin_unlock(&ls->ls_recover_list_lock);
244
245	return empty;
246}
247
248static void recover_list_add(struct dlm_rsb *r)
249{
250	struct dlm_ls *ls = r->res_ls;
251
252	spin_lock(&ls->ls_recover_list_lock);
253	if (list_empty(&r->res_recover_list)) {
254		list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
255		ls->ls_recover_list_count++;
256		dlm_hold_rsb(r);
257	}
258	spin_unlock(&ls->ls_recover_list_lock);
259}
260
261static void recover_list_del(struct dlm_rsb *r)
262{
263	struct dlm_ls *ls = r->res_ls;
264
265	spin_lock(&ls->ls_recover_list_lock);
266	list_del_init(&r->res_recover_list);
267	ls->ls_recover_list_count--;
268	spin_unlock(&ls->ls_recover_list_lock);
269
270	dlm_put_rsb(r);
271}
272
273static void recover_list_clear(struct dlm_ls *ls)
274{
275	struct dlm_rsb *r, *s;
276
277	spin_lock(&ls->ls_recover_list_lock);
278	list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
279		list_del_init(&r->res_recover_list);
280		r->res_recover_locks_count = 0;
281		dlm_put_rsb(r);
282		ls->ls_recover_list_count--;
283	}
284
285	if (ls->ls_recover_list_count != 0) {
286		log_error(ls, "warning: recover_list_count %d",
287			  ls->ls_recover_list_count);
288		ls->ls_recover_list_count = 0;
289	}
290	spin_unlock(&ls->ls_recover_list_lock);
291}
292
293static int recover_idr_empty(struct dlm_ls *ls)
294{
295	int empty = 1;
296
297	spin_lock(&ls->ls_recover_idr_lock);
298	if (ls->ls_recover_list_count)
299		empty = 0;
300	spin_unlock(&ls->ls_recover_idr_lock);
301
302	return empty;
303}
304
305static int recover_idr_add(struct dlm_rsb *r)
306{
307	struct dlm_ls *ls = r->res_ls;
308	int rv;
309
310	idr_preload(GFP_NOFS);
311	spin_lock(&ls->ls_recover_idr_lock);
312	if (r->res_id) {
313		rv = -1;
314		goto out_unlock;
315	}
316	rv = idr_alloc(&ls->ls_recover_idr, r, 1, 0, GFP_NOWAIT);
317	if (rv < 0)
318		goto out_unlock;
319
320	r->res_id = rv;
321	ls->ls_recover_list_count++;
322	dlm_hold_rsb(r);
323	rv = 0;
324out_unlock:
325	spin_unlock(&ls->ls_recover_idr_lock);
326	idr_preload_end();
327	return rv;
328}
329
330static void recover_idr_del(struct dlm_rsb *r)
331{
332	struct dlm_ls *ls = r->res_ls;
333
334	spin_lock(&ls->ls_recover_idr_lock);
335	idr_remove(&ls->ls_recover_idr, r->res_id);
336	r->res_id = 0;
337	ls->ls_recover_list_count--;
338	spin_unlock(&ls->ls_recover_idr_lock);
339
340	dlm_put_rsb(r);
341}
342
343static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id)
344{
345	struct dlm_rsb *r;
346
347	spin_lock(&ls->ls_recover_idr_lock);
348	r = idr_find(&ls->ls_recover_idr, (int)id);
349	spin_unlock(&ls->ls_recover_idr_lock);
350	return r;
351}
352
353static void recover_idr_clear(struct dlm_ls *ls)
354{
355	struct dlm_rsb *r;
356	int id;
357
358	spin_lock(&ls->ls_recover_idr_lock);
359
360	idr_for_each_entry(&ls->ls_recover_idr, r, id) {
361		idr_remove(&ls->ls_recover_idr, id);
362		r->res_id = 0;
363		r->res_recover_locks_count = 0;
364		ls->ls_recover_list_count--;
365
366		dlm_put_rsb(r);
367	}
368
369	if (ls->ls_recover_list_count != 0) {
370		log_error(ls, "warning: recover_list_count %d",
371			  ls->ls_recover_list_count);
372		ls->ls_recover_list_count = 0;
373	}
374	spin_unlock(&ls->ls_recover_idr_lock);
375}
376
377
378/* Master recovery: find new master node for rsb's that were
379   mastered on nodes that have been removed.
380
381   dlm_recover_masters
382   recover_master
383   dlm_send_rcom_lookup            ->  receive_rcom_lookup
384                                       dlm_dir_lookup
385   receive_rcom_lookup_reply       <-
386   dlm_recover_master_reply
387   set_new_master
388   set_master_lkbs
389   set_lock_master
390*/
391
392/*
393 * Set the lock master for all LKBs in a lock queue
394 * If we are the new master of the rsb, we may have received new
395 * MSTCPY locks from other nodes already which we need to ignore
396 * when setting the new nodeid.
397 */
398
399static void set_lock_master(struct list_head *queue, int nodeid)
400{
401	struct dlm_lkb *lkb;
402
403	list_for_each_entry(lkb, queue, lkb_statequeue) {
404		if (!(lkb->lkb_flags & DLM_IFL_MSTCPY)) {
405			lkb->lkb_nodeid = nodeid;
406			lkb->lkb_remid = 0;
407		}
408	}
409}
410
411static void set_master_lkbs(struct dlm_rsb *r)
412{
413	set_lock_master(&r->res_grantqueue, r->res_nodeid);
414	set_lock_master(&r->res_convertqueue, r->res_nodeid);
415	set_lock_master(&r->res_waitqueue, r->res_nodeid);
416}
417
418/*
419 * Propagate the new master nodeid to locks
420 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
421 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which
422 * rsb's to consider.
423 */
424
425static void set_new_master(struct dlm_rsb *r)
426{
427	set_master_lkbs(r);
428	rsb_set_flag(r, RSB_NEW_MASTER);
429	rsb_set_flag(r, RSB_NEW_MASTER2);
430}
431
432/*
433 * We do async lookups on rsb's that need new masters.  The rsb's
434 * waiting for a lookup reply are kept on the recover_list.
435 *
436 * Another node recovering the master may have sent us a rcom lookup,
437 * and our dlm_master_lookup() set it as the new master, along with
438 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid
439 * equals our_nodeid below).
440 */
441
442static int recover_master(struct dlm_rsb *r, unsigned int *count)
443{
444	struct dlm_ls *ls = r->res_ls;
445	int our_nodeid, dir_nodeid;
446	int is_removed = 0;
447	int error;
448
449	if (is_master(r))
450		return 0;
451
452	is_removed = dlm_is_removed(ls, r->res_nodeid);
453
454	if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER))
455		return 0;
456
457	our_nodeid = dlm_our_nodeid();
458	dir_nodeid = dlm_dir_nodeid(r);
459
460	if (dir_nodeid == our_nodeid) {
461		if (is_removed) {
462			r->res_master_nodeid = our_nodeid;
463			r->res_nodeid = 0;
464		}
465
466		/* set master of lkbs to ourself when is_removed, or to
467		   another new master which we set along with NEW_MASTER
468		   in dlm_master_lookup */
469		set_new_master(r);
470		error = 0;
471	} else {
472		recover_idr_add(r);
473		error = dlm_send_rcom_lookup(r, dir_nodeid);
474	}
475
476	(*count)++;
477	return error;
478}
479
480/*
481 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same.
482 * This is necessary because recovery can be started, aborted and restarted,
483 * causing the master nodeid to briefly change during the aborted recovery, and
484 * change back to the original value in the second recovery.  The MSTCPY locks
485 * may or may not have been purged during the aborted recovery.  Another node
486 * with an outstanding request in waiters list and a request reply saved in the
487 * requestqueue, cannot know whether it should ignore the reply and resend the
488 * request, or accept the reply and complete the request.  It must do the
489 * former if the remote node purged MSTCPY locks, and it must do the later if
490 * the remote node did not.  This is solved by always purging MSTCPY locks, in
491 * which case, the request reply would always be ignored and the request
492 * resent.
493 */
494
495static int recover_master_static(struct dlm_rsb *r, unsigned int *count)
496{
497	int dir_nodeid = dlm_dir_nodeid(r);
498	int new_master = dir_nodeid;
499
500	if (dir_nodeid == dlm_our_nodeid())
501		new_master = 0;
502
503	dlm_purge_mstcpy_locks(r);
504	r->res_master_nodeid = dir_nodeid;
505	r->res_nodeid = new_master;
506	set_new_master(r);
507	(*count)++;
508	return 0;
509}
510
511/*
512 * Go through local root resources and for each rsb which has a master which
513 * has departed, get the new master nodeid from the directory.  The dir will
514 * assign mastery to the first node to look up the new master.  That means
515 * we'll discover in this lookup if we're the new master of any rsb's.
516 *
517 * We fire off all the dir lookup requests individually and asynchronously to
518 * the correct dir node.
519 */
520
521int dlm_recover_masters(struct dlm_ls *ls)
522{
523	struct dlm_rsb *r;
524	unsigned int total = 0;
525	unsigned int count = 0;
526	int nodir = dlm_no_directory(ls);
527	int error;
528
529	log_rinfo(ls, "dlm_recover_masters");
530
531	down_read(&ls->ls_root_sem);
532	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
533		if (dlm_recovery_stopped(ls)) {
534			up_read(&ls->ls_root_sem);
535			error = -EINTR;
536			goto out;
537		}
538
539		lock_rsb(r);
540		if (nodir)
541			error = recover_master_static(r, &count);
542		else
543			error = recover_master(r, &count);
544		unlock_rsb(r);
545		cond_resched();
546		total++;
547
548		if (error) {
549			up_read(&ls->ls_root_sem);
550			goto out;
551		}
552	}
553	up_read(&ls->ls_root_sem);
554
555	log_rinfo(ls, "dlm_recover_masters %u of %u", count, total);
556
557	error = dlm_wait_function(ls, &recover_idr_empty);
558 out:
559	if (error)
560		recover_idr_clear(ls);
561	return error;
562}
563
564int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc)
565{
566	struct dlm_rsb *r;
567	int ret_nodeid, new_master;
568
569	r = recover_idr_find(ls, rc->rc_id);
570	if (!r) {
571		log_error(ls, "dlm_recover_master_reply no id %llx",
572			  (unsigned long long)rc->rc_id);
573		goto out;
574	}
575
576	ret_nodeid = rc->rc_result;
577
578	if (ret_nodeid == dlm_our_nodeid())
579		new_master = 0;
580	else
581		new_master = ret_nodeid;
582
583	lock_rsb(r);
584	r->res_master_nodeid = ret_nodeid;
585	r->res_nodeid = new_master;
586	set_new_master(r);
587	unlock_rsb(r);
588	recover_idr_del(r);
589
590	if (recover_idr_empty(ls))
591		wake_up(&ls->ls_wait_general);
592 out:
593	return 0;
594}
595
596
597/* Lock recovery: rebuild the process-copy locks we hold on a
598   remastered rsb on the new rsb master.
599
600   dlm_recover_locks
601   recover_locks
602   recover_locks_queue
603   dlm_send_rcom_lock              ->  receive_rcom_lock
604                                       dlm_recover_master_copy
605   receive_rcom_lock_reply         <-
606   dlm_recover_process_copy
607*/
608
609
610/*
611 * keep a count of the number of lkb's we send to the new master; when we get
612 * an equal number of replies then recovery for the rsb is done
613 */
614
615static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head)
616{
617	struct dlm_lkb *lkb;
618	int error = 0;
619
620	list_for_each_entry(lkb, head, lkb_statequeue) {
621	   	error = dlm_send_rcom_lock(r, lkb);
622		if (error)
623			break;
624		r->res_recover_locks_count++;
625	}
626
627	return error;
628}
629
630static int recover_locks(struct dlm_rsb *r)
631{
632	int error = 0;
633
634	lock_rsb(r);
635
636	DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
637
638	error = recover_locks_queue(r, &r->res_grantqueue);
639	if (error)
640		goto out;
641	error = recover_locks_queue(r, &r->res_convertqueue);
642	if (error)
643		goto out;
644	error = recover_locks_queue(r, &r->res_waitqueue);
645	if (error)
646		goto out;
647
648	if (r->res_recover_locks_count)
649		recover_list_add(r);
650	else
651		rsb_clear_flag(r, RSB_NEW_MASTER);
652 out:
653	unlock_rsb(r);
654	return error;
655}
656
657int dlm_recover_locks(struct dlm_ls *ls)
658{
659	struct dlm_rsb *r;
660	int error, count = 0;
661
662	down_read(&ls->ls_root_sem);
663	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
664		if (is_master(r)) {
665			rsb_clear_flag(r, RSB_NEW_MASTER);
666			continue;
667		}
668
669		if (!rsb_flag(r, RSB_NEW_MASTER))
670			continue;
671
672		if (dlm_recovery_stopped(ls)) {
673			error = -EINTR;
674			up_read(&ls->ls_root_sem);
675			goto out;
676		}
677
678		error = recover_locks(r);
679		if (error) {
680			up_read(&ls->ls_root_sem);
681			goto out;
682		}
683
684		count += r->res_recover_locks_count;
685	}
686	up_read(&ls->ls_root_sem);
687
688	log_rinfo(ls, "dlm_recover_locks %d out", count);
689
690	error = dlm_wait_function(ls, &recover_list_empty);
691 out:
692	if (error)
693		recover_list_clear(ls);
694	return error;
695}
696
697void dlm_recovered_lock(struct dlm_rsb *r)
698{
699	DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
700
701	r->res_recover_locks_count--;
702	if (!r->res_recover_locks_count) {
703		rsb_clear_flag(r, RSB_NEW_MASTER);
704		recover_list_del(r);
705	}
706
707	if (recover_list_empty(r->res_ls))
708		wake_up(&r->res_ls->ls_wait_general);
709}
710
711/*
712 * The lvb needs to be recovered on all master rsb's.  This includes setting
713 * the VALNOTVALID flag if necessary, and determining the correct lvb contents
714 * based on the lvb's of the locks held on the rsb.
715 *
716 * RSB_VALNOTVALID is set in two cases:
717 *
718 * 1. we are master, but not new, and we purged an EX/PW lock held by a
719 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL)
720 *
721 * 2. we are a new master, and there are only NL/CR locks left.
722 * (We could probably improve this by only invaliding in this way when
723 * the previous master left uncleanly.  VMS docs mention that.)
724 *
725 * The LVB contents are only considered for changing when this is a new master
726 * of the rsb (NEW_MASTER2).  Then, the rsb's lvb is taken from any lkb with
727 * mode > CR.  If no lkb's exist with mode above CR, the lvb contents are taken
728 * from the lkb with the largest lvb sequence number.
729 */
730
731static void recover_lvb(struct dlm_rsb *r)
732{
733	struct dlm_lkb *lkb, *high_lkb = NULL;
734	uint32_t high_seq = 0;
735	int lock_lvb_exists = 0;
736	int big_lock_exists = 0;
737	int lvblen = r->res_ls->ls_lvblen;
738
739	if (!rsb_flag(r, RSB_NEW_MASTER2) &&
740	    rsb_flag(r, RSB_RECOVER_LVB_INVAL)) {
741		/* case 1 above */
742		rsb_set_flag(r, RSB_VALNOTVALID);
743		return;
744	}
745
746	if (!rsb_flag(r, RSB_NEW_MASTER2))
747		return;
748
749	/* we are the new master, so figure out if VALNOTVALID should
750	   be set, and set the rsb lvb from the best lkb available. */
751
752	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
753		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
754			continue;
755
756		lock_lvb_exists = 1;
757
758		if (lkb->lkb_grmode > DLM_LOCK_CR) {
759			big_lock_exists = 1;
760			goto setflag;
761		}
762
763		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
764			high_lkb = lkb;
765			high_seq = lkb->lkb_lvbseq;
766		}
767	}
768
769	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
770		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
771			continue;
772
773		lock_lvb_exists = 1;
774
775		if (lkb->lkb_grmode > DLM_LOCK_CR) {
776			big_lock_exists = 1;
777			goto setflag;
778		}
779
780		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
781			high_lkb = lkb;
782			high_seq = lkb->lkb_lvbseq;
783		}
784	}
785
786 setflag:
787	if (!lock_lvb_exists)
788		goto out;
789
790	/* lvb is invalidated if only NL/CR locks remain */
791	if (!big_lock_exists)
792		rsb_set_flag(r, RSB_VALNOTVALID);
793
794	if (!r->res_lvbptr) {
795		r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
796		if (!r->res_lvbptr)
797			goto out;
798	}
799
800	if (big_lock_exists) {
801		r->res_lvbseq = lkb->lkb_lvbseq;
802		memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen);
803	} else if (high_lkb) {
804		r->res_lvbseq = high_lkb->lkb_lvbseq;
805		memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
806	} else {
807		r->res_lvbseq = 0;
808		memset(r->res_lvbptr, 0, lvblen);
809	}
810 out:
811	return;
812}
813
814/* All master rsb's flagged RECOVER_CONVERT need to be looked at.  The locks
815   converting PR->CW or CW->PR need to have their lkb_grmode set. */
816
817static void recover_conversion(struct dlm_rsb *r)
818{
819	struct dlm_ls *ls = r->res_ls;
820	struct dlm_lkb *lkb;
821	int grmode = -1;
822
823	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
824		if (lkb->lkb_grmode == DLM_LOCK_PR ||
825		    lkb->lkb_grmode == DLM_LOCK_CW) {
826			grmode = lkb->lkb_grmode;
827			break;
828		}
829	}
830
831	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
832		if (lkb->lkb_grmode != DLM_LOCK_IV)
833			continue;
834		if (grmode == -1) {
835			log_debug(ls, "recover_conversion %x set gr to rq %d",
836				  lkb->lkb_id, lkb->lkb_rqmode);
837			lkb->lkb_grmode = lkb->lkb_rqmode;
838		} else {
839			log_debug(ls, "recover_conversion %x set gr %d",
840				  lkb->lkb_id, grmode);
841			lkb->lkb_grmode = grmode;
842		}
843	}
844}
845
846/* We've become the new master for this rsb and waiting/converting locks may
847   need to be granted in dlm_recover_grant() due to locks that may have
848   existed from a removed node. */
849
850static void recover_grant(struct dlm_rsb *r)
851{
852	if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
853		rsb_set_flag(r, RSB_RECOVER_GRANT);
854}
855
856void dlm_recover_rsbs(struct dlm_ls *ls)
857{
858	struct dlm_rsb *r;
859	unsigned int count = 0;
860
861	down_read(&ls->ls_root_sem);
862	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
863		lock_rsb(r);
864		if (is_master(r)) {
865			if (rsb_flag(r, RSB_RECOVER_CONVERT))
866				recover_conversion(r);
867
868			/* recover lvb before granting locks so the updated
869			   lvb/VALNOTVALID is presented in the completion */
870			recover_lvb(r);
871
872			if (rsb_flag(r, RSB_NEW_MASTER2))
873				recover_grant(r);
874			count++;
875		} else {
876			rsb_clear_flag(r, RSB_VALNOTVALID);
877		}
878		rsb_clear_flag(r, RSB_RECOVER_CONVERT);
879		rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL);
880		rsb_clear_flag(r, RSB_NEW_MASTER2);
881		unlock_rsb(r);
882	}
883	up_read(&ls->ls_root_sem);
884
885	if (count)
886		log_rinfo(ls, "dlm_recover_rsbs %d done", count);
887}
888
889/* Create a single list of all root rsb's to be used during recovery */
890
891int dlm_create_root_list(struct dlm_ls *ls)
892{
893	struct rb_node *n;
894	struct dlm_rsb *r;
895	int i, error = 0;
896
897	down_write(&ls->ls_root_sem);
898	if (!list_empty(&ls->ls_root_list)) {
899		log_error(ls, "root list not empty");
900		error = -EINVAL;
901		goto out;
902	}
903
904	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
905		spin_lock(&ls->ls_rsbtbl[i].lock);
906		for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) {
907			r = rb_entry(n, struct dlm_rsb, res_hashnode);
908			list_add(&r->res_root_list, &ls->ls_root_list);
909			dlm_hold_rsb(r);
910		}
911
912		if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss))
913			log_error(ls, "dlm_create_root_list toss not empty");
914		spin_unlock(&ls->ls_rsbtbl[i].lock);
915	}
916 out:
917	up_write(&ls->ls_root_sem);
918	return error;
919}
920
921void dlm_release_root_list(struct dlm_ls *ls)
922{
923	struct dlm_rsb *r, *safe;
924
925	down_write(&ls->ls_root_sem);
926	list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) {
927		list_del_init(&r->res_root_list);
928		dlm_put_rsb(r);
929	}
930	up_write(&ls->ls_root_sem);
931}
932
933void dlm_clear_toss(struct dlm_ls *ls)
934{
935	struct rb_node *n, *next;
936	struct dlm_rsb *r;
937	unsigned int count = 0;
938	int i;
939
940	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
941		spin_lock(&ls->ls_rsbtbl[i].lock);
942		for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) {
943			next = rb_next(n);
944			r = rb_entry(n, struct dlm_rsb, res_hashnode);
945			rb_erase(n, &ls->ls_rsbtbl[i].toss);
946			dlm_free_rsb(r);
947			count++;
948		}
949		spin_unlock(&ls->ls_rsbtbl[i].lock);
950	}
951
952	if (count)
953		log_rinfo(ls, "dlm_clear_toss %u done", count);
954}
955
956