1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002	Andrew Morton
9 *		Initial version
10 * 11Sep2002	janetinc@us.ibm.com
11 * 		added readv/writev support.
12 * 29Oct2002	Andrew Morton
13 *		rewrote bio_add_page() support.
14 * 30Oct2002	pbadari@us.ibm.com
15 *		added support for non-aligned IO.
16 * 06Nov2002	pbadari@us.ibm.com
17 *		added asynchronous IO support.
18 * 21Jul2003	nathans@sgi.com
19 *		added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
30#include <linux/task_io_accounting_ops.h>
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
38#include <linux/atomic.h>
39#include <linux/prefetch.h>
40
41/*
42 * How many user pages to map in one call to get_user_pages().  This determines
43 * the size of a structure in the slab cache
44 */
45#define DIO_PAGES	64
46
47/*
48 * This code generally works in units of "dio_blocks".  A dio_block is
49 * somewhere between the hard sector size and the filesystem block size.  it
50 * is determined on a per-invocation basis.   When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
57 */
58
59/* dio_state only used in the submission path */
60
61struct dio_submit {
62	struct bio *bio;		/* bio under assembly */
63	unsigned blkbits;		/* doesn't change */
64	unsigned blkfactor;		/* When we're using an alignment which
65					   is finer than the filesystem's soft
66					   blocksize, this specifies how much
67					   finer.  blkfactor=2 means 1/4-block
68					   alignment.  Does not change */
69	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70					   been performed at the start of a
71					   write */
72	int pages_in_io;		/* approximate total IO pages */
73	sector_t block_in_file;		/* Current offset into the underlying
74					   file in dio_block units. */
75	unsigned blocks_available;	/* At block_in_file.  changes */
76	int reap_counter;		/* rate limit reaping */
77	sector_t final_block_in_request;/* doesn't change */
78	int boundary;			/* prev block is at a boundary */
79	get_block_t *get_block;		/* block mapping function */
80	dio_submit_t *submit_io;	/* IO submition function */
81
82	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84	sector_t next_block_for_io;	/* next block to be put under IO,
85					   in dio_blocks units */
86
87	/*
88	 * Deferred addition of a page to the dio.  These variables are
89	 * private to dio_send_cur_page(), submit_page_section() and
90	 * dio_bio_add_page().
91	 */
92	struct page *cur_page;		/* The page */
93	unsigned cur_page_offset;	/* Offset into it, in bytes */
94	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95	sector_t cur_page_block;	/* Where it starts */
96	loff_t cur_page_fs_offset;	/* Offset in file */
97
98	struct iov_iter *iter;
99	/*
100	 * Page queue.  These variables belong to dio_refill_pages() and
101	 * dio_get_page().
102	 */
103	unsigned head;			/* next page to process */
104	unsigned tail;			/* last valid page + 1 */
105	size_t from, to;
106};
107
108/* dio_state communicated between submission path and end_io */
109struct dio {
110	int flags;			/* doesn't change */
111	int rw;
112	struct inode *inode;
113	loff_t i_size;			/* i_size when submitted */
114	dio_iodone_t *end_io;		/* IO completion function */
115
116	void *private;			/* copy from map_bh.b_private */
117
118	/* BIO completion state */
119	spinlock_t bio_lock;		/* protects BIO fields below */
120	int page_errors;		/* errno from get_user_pages() */
121	int is_async;			/* is IO async ? */
122	bool defer_completion;		/* defer AIO completion to workqueue? */
123	int io_error;			/* IO error in completion path */
124	unsigned long refcount;		/* direct_io_worker() and bios */
125	struct bio *bio_list;		/* singly linked via bi_private */
126	struct task_struct *waiter;	/* waiting task (NULL if none) */
127
128	/* AIO related stuff */
129	struct kiocb *iocb;		/* kiocb */
130	ssize_t result;                 /* IO result */
131
132	/*
133	 * pages[] (and any fields placed after it) are not zeroed out at
134	 * allocation time.  Don't add new fields after pages[] unless you
135	 * wish that they not be zeroed.
136	 */
137	union {
138		struct page *pages[DIO_PAGES];	/* page buffer */
139		struct work_struct complete_work;/* deferred AIO completion */
140	};
141} ____cacheline_aligned_in_smp;
142
143static struct kmem_cache *dio_cache __read_mostly;
144
145/*
146 * How many pages are in the queue?
147 */
148static inline unsigned dio_pages_present(struct dio_submit *sdio)
149{
150	return sdio->tail - sdio->head;
151}
152
153/*
154 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
155 */
156static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
157{
158	ssize_t ret;
159
160	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
161				&sdio->from);
162
163	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
164		struct page *page = ZERO_PAGE(0);
165		/*
166		 * A memory fault, but the filesystem has some outstanding
167		 * mapped blocks.  We need to use those blocks up to avoid
168		 * leaking stale data in the file.
169		 */
170		if (dio->page_errors == 0)
171			dio->page_errors = ret;
172		page_cache_get(page);
173		dio->pages[0] = page;
174		sdio->head = 0;
175		sdio->tail = 1;
176		sdio->from = 0;
177		sdio->to = PAGE_SIZE;
178		return 0;
179	}
180
181	if (ret >= 0) {
182		iov_iter_advance(sdio->iter, ret);
183		ret += sdio->from;
184		sdio->head = 0;
185		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
186		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
187		return 0;
188	}
189	return ret;
190}
191
192/*
193 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
194 * buffered inside the dio so that we can call get_user_pages() against a
195 * decent number of pages, less frequently.  To provide nicer use of the
196 * L1 cache.
197 */
198static inline struct page *dio_get_page(struct dio *dio,
199					struct dio_submit *sdio)
200{
201	if (dio_pages_present(sdio) == 0) {
202		int ret;
203
204		ret = dio_refill_pages(dio, sdio);
205		if (ret)
206			return ERR_PTR(ret);
207		BUG_ON(dio_pages_present(sdio) == 0);
208	}
209	return dio->pages[sdio->head];
210}
211
212/**
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
215 *
216 * This drops i_dio_count, lets interested parties know that a DIO operation
217 * has completed, and calculates the resulting return code for the operation.
218 *
219 * It lets the filesystem know if it registered an interest earlier via
220 * get_block.  Pass the private field of the map buffer_head so that
221 * filesystems can use it to hold additional state between get_block calls and
222 * dio_complete.
223 */
224static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
225		bool is_async)
226{
227	ssize_t transferred = 0;
228
229	/*
230	 * AIO submission can race with bio completion to get here while
231	 * expecting to have the last io completed by bio completion.
232	 * In that case -EIOCBQUEUED is in fact not an error we want
233	 * to preserve through this call.
234	 */
235	if (ret == -EIOCBQUEUED)
236		ret = 0;
237
238	if (dio->result) {
239		transferred = dio->result;
240
241		/* Check for short read case */
242		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243			transferred = dio->i_size - offset;
244	}
245
246	if (ret == 0)
247		ret = dio->page_errors;
248	if (ret == 0)
249		ret = dio->io_error;
250	if (ret == 0)
251		ret = transferred;
252
253	if (dio->end_io && dio->result)
254		dio->end_io(dio->iocb, offset, transferred, dio->private);
255
256	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
257		inode_dio_end(dio->inode);
258
259	if (is_async) {
260		if (dio->rw & WRITE) {
261			int err;
262
263			err = generic_write_sync(dio->iocb->ki_filp, offset,
264						 transferred);
265			if (err < 0 && ret > 0)
266				ret = err;
267		}
268
269		dio->iocb->ki_complete(dio->iocb, ret, 0);
270	}
271
272	kmem_cache_free(dio_cache, dio);
273	return ret;
274}
275
276static void dio_aio_complete_work(struct work_struct *work)
277{
278	struct dio *dio = container_of(work, struct dio, complete_work);
279
280	dio_complete(dio, dio->iocb->ki_pos, 0, true);
281}
282
283static int dio_bio_complete(struct dio *dio, struct bio *bio);
284
285/*
286 * Asynchronous IO callback.
287 */
288static void dio_bio_end_aio(struct bio *bio, int error)
289{
290	struct dio *dio = bio->bi_private;
291	unsigned long remaining;
292	unsigned long flags;
293
294	/* cleanup the bio */
295	dio_bio_complete(dio, bio);
296
297	spin_lock_irqsave(&dio->bio_lock, flags);
298	remaining = --dio->refcount;
299	if (remaining == 1 && dio->waiter)
300		wake_up_process(dio->waiter);
301	spin_unlock_irqrestore(&dio->bio_lock, flags);
302
303	if (remaining == 0) {
304		if (dio->result && dio->defer_completion) {
305			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
306			queue_work(dio->inode->i_sb->s_dio_done_wq,
307				   &dio->complete_work);
308		} else {
309			dio_complete(dio, dio->iocb->ki_pos, 0, true);
310		}
311	}
312}
313
314/*
315 * The BIO completion handler simply queues the BIO up for the process-context
316 * handler.
317 *
318 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
319 * implement a singly-linked list of completed BIOs, at dio->bio_list.
320 */
321static void dio_bio_end_io(struct bio *bio, int error)
322{
323	struct dio *dio = bio->bi_private;
324	unsigned long flags;
325
326	spin_lock_irqsave(&dio->bio_lock, flags);
327	bio->bi_private = dio->bio_list;
328	dio->bio_list = bio;
329	if (--dio->refcount == 1 && dio->waiter)
330		wake_up_process(dio->waiter);
331	spin_unlock_irqrestore(&dio->bio_lock, flags);
332}
333
334/**
335 * dio_end_io - handle the end io action for the given bio
336 * @bio: The direct io bio thats being completed
337 * @error: Error if there was one
338 *
339 * This is meant to be called by any filesystem that uses their own dio_submit_t
340 * so that the DIO specific endio actions are dealt with after the filesystem
341 * has done it's completion work.
342 */
343void dio_end_io(struct bio *bio, int error)
344{
345	struct dio *dio = bio->bi_private;
346
347	if (dio->is_async)
348		dio_bio_end_aio(bio, error);
349	else
350		dio_bio_end_io(bio, error);
351}
352EXPORT_SYMBOL_GPL(dio_end_io);
353
354static inline void
355dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
356	      struct block_device *bdev,
357	      sector_t first_sector, int nr_vecs)
358{
359	struct bio *bio;
360
361	/*
362	 * bio_alloc() is guaranteed to return a bio when called with
363	 * __GFP_WAIT and we request a valid number of vectors.
364	 */
365	bio = bio_alloc(GFP_KERNEL, nr_vecs);
366
367	bio->bi_bdev = bdev;
368	bio->bi_iter.bi_sector = first_sector;
369	if (dio->is_async)
370		bio->bi_end_io = dio_bio_end_aio;
371	else
372		bio->bi_end_io = dio_bio_end_io;
373
374	sdio->bio = bio;
375	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
376}
377
378/*
379 * In the AIO read case we speculatively dirty the pages before starting IO.
380 * During IO completion, any of these pages which happen to have been written
381 * back will be redirtied by bio_check_pages_dirty().
382 *
383 * bios hold a dio reference between submit_bio and ->end_io.
384 */
385static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
386{
387	struct bio *bio = sdio->bio;
388	unsigned long flags;
389
390	bio->bi_private = dio;
391
392	spin_lock_irqsave(&dio->bio_lock, flags);
393	dio->refcount++;
394	spin_unlock_irqrestore(&dio->bio_lock, flags);
395
396	if (dio->is_async && dio->rw == READ)
397		bio_set_pages_dirty(bio);
398
399	if (sdio->submit_io)
400		sdio->submit_io(dio->rw, bio, dio->inode,
401			       sdio->logical_offset_in_bio);
402	else
403		submit_bio(dio->rw, bio);
404
405	sdio->bio = NULL;
406	sdio->boundary = 0;
407	sdio->logical_offset_in_bio = 0;
408}
409
410/*
411 * Release any resources in case of a failure
412 */
413static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
414{
415	while (sdio->head < sdio->tail)
416		page_cache_release(dio->pages[sdio->head++]);
417}
418
419/*
420 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
421 * returned once all BIOs have been completed.  This must only be called once
422 * all bios have been issued so that dio->refcount can only decrease.  This
423 * requires that that the caller hold a reference on the dio.
424 */
425static struct bio *dio_await_one(struct dio *dio)
426{
427	unsigned long flags;
428	struct bio *bio = NULL;
429
430	spin_lock_irqsave(&dio->bio_lock, flags);
431
432	/*
433	 * Wait as long as the list is empty and there are bios in flight.  bio
434	 * completion drops the count, maybe adds to the list, and wakes while
435	 * holding the bio_lock so we don't need set_current_state()'s barrier
436	 * and can call it after testing our condition.
437	 */
438	while (dio->refcount > 1 && dio->bio_list == NULL) {
439		__set_current_state(TASK_UNINTERRUPTIBLE);
440		dio->waiter = current;
441		spin_unlock_irqrestore(&dio->bio_lock, flags);
442		io_schedule();
443		/* wake up sets us TASK_RUNNING */
444		spin_lock_irqsave(&dio->bio_lock, flags);
445		dio->waiter = NULL;
446	}
447	if (dio->bio_list) {
448		bio = dio->bio_list;
449		dio->bio_list = bio->bi_private;
450	}
451	spin_unlock_irqrestore(&dio->bio_lock, flags);
452	return bio;
453}
454
455/*
456 * Process one completed BIO.  No locks are held.
457 */
458static int dio_bio_complete(struct dio *dio, struct bio *bio)
459{
460	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
461	struct bio_vec *bvec;
462	unsigned i;
463
464	if (!uptodate)
465		dio->io_error = -EIO;
466
467	if (dio->is_async && dio->rw == READ) {
468		bio_check_pages_dirty(bio);	/* transfers ownership */
469	} else {
470		bio_for_each_segment_all(bvec, bio, i) {
471			struct page *page = bvec->bv_page;
472
473			if (dio->rw == READ && !PageCompound(page))
474				set_page_dirty_lock(page);
475			page_cache_release(page);
476		}
477		bio_put(bio);
478	}
479	return uptodate ? 0 : -EIO;
480}
481
482/*
483 * Wait on and process all in-flight BIOs.  This must only be called once
484 * all bios have been issued so that the refcount can only decrease.
485 * This just waits for all bios to make it through dio_bio_complete.  IO
486 * errors are propagated through dio->io_error and should be propagated via
487 * dio_complete().
488 */
489static void dio_await_completion(struct dio *dio)
490{
491	struct bio *bio;
492	do {
493		bio = dio_await_one(dio);
494		if (bio)
495			dio_bio_complete(dio, bio);
496	} while (bio);
497}
498
499/*
500 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
501 * to keep the memory consumption sane we periodically reap any completed BIOs
502 * during the BIO generation phase.
503 *
504 * This also helps to limit the peak amount of pinned userspace memory.
505 */
506static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
507{
508	int ret = 0;
509
510	if (sdio->reap_counter++ >= 64) {
511		while (dio->bio_list) {
512			unsigned long flags;
513			struct bio *bio;
514			int ret2;
515
516			spin_lock_irqsave(&dio->bio_lock, flags);
517			bio = dio->bio_list;
518			dio->bio_list = bio->bi_private;
519			spin_unlock_irqrestore(&dio->bio_lock, flags);
520			ret2 = dio_bio_complete(dio, bio);
521			if (ret == 0)
522				ret = ret2;
523		}
524		sdio->reap_counter = 0;
525	}
526	return ret;
527}
528
529/*
530 * Create workqueue for deferred direct IO completions. We allocate the
531 * workqueue when it's first needed. This avoids creating workqueue for
532 * filesystems that don't need it and also allows us to create the workqueue
533 * late enough so the we can include s_id in the name of the workqueue.
534 */
535static int sb_init_dio_done_wq(struct super_block *sb)
536{
537	struct workqueue_struct *old;
538	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
539						      WQ_MEM_RECLAIM, 0,
540						      sb->s_id);
541	if (!wq)
542		return -ENOMEM;
543	/*
544	 * This has to be atomic as more DIOs can race to create the workqueue
545	 */
546	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
547	/* Someone created workqueue before us? Free ours... */
548	if (old)
549		destroy_workqueue(wq);
550	return 0;
551}
552
553static int dio_set_defer_completion(struct dio *dio)
554{
555	struct super_block *sb = dio->inode->i_sb;
556
557	if (dio->defer_completion)
558		return 0;
559	dio->defer_completion = true;
560	if (!sb->s_dio_done_wq)
561		return sb_init_dio_done_wq(sb);
562	return 0;
563}
564
565/*
566 * Call into the fs to map some more disk blocks.  We record the current number
567 * of available blocks at sdio->blocks_available.  These are in units of the
568 * fs blocksize, (1 << inode->i_blkbits).
569 *
570 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
571 * it uses the passed inode-relative block number as the file offset, as usual.
572 *
573 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
574 * has remaining to do.  The fs should not map more than this number of blocks.
575 *
576 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
577 * indicate how much contiguous disk space has been made available at
578 * bh->b_blocknr.
579 *
580 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
581 * This isn't very efficient...
582 *
583 * In the case of filesystem holes: the fs may return an arbitrarily-large
584 * hole by returning an appropriate value in b_size and by clearing
585 * buffer_mapped().  However the direct-io code will only process holes one
586 * block at a time - it will repeatedly call get_block() as it walks the hole.
587 */
588static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
589			   struct buffer_head *map_bh)
590{
591	int ret;
592	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
593	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
594	unsigned long fs_count;	/* Number of filesystem-sized blocks */
595	int create;
596	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
597
598	/*
599	 * If there was a memory error and we've overwritten all the
600	 * mapped blocks then we can now return that memory error
601	 */
602	ret = dio->page_errors;
603	if (ret == 0) {
604		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
605		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
606		fs_endblk = (sdio->final_block_in_request - 1) >>
607					sdio->blkfactor;
608		fs_count = fs_endblk - fs_startblk + 1;
609
610		map_bh->b_state = 0;
611		map_bh->b_size = fs_count << i_blkbits;
612
613		/*
614		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
615		 * forbid block creations: only overwrites are permitted.
616		 * We will return early to the caller once we see an
617		 * unmapped buffer head returned, and the caller will fall
618		 * back to buffered I/O.
619		 *
620		 * Otherwise the decision is left to the get_blocks method,
621		 * which may decide to handle it or also return an unmapped
622		 * buffer head.
623		 */
624		create = dio->rw & WRITE;
625		if (dio->flags & DIO_SKIP_HOLES) {
626			if (sdio->block_in_file < (i_size_read(dio->inode) >>
627							sdio->blkbits))
628				create = 0;
629		}
630
631		ret = (*sdio->get_block)(dio->inode, fs_startblk,
632						map_bh, create);
633
634		/* Store for completion */
635		dio->private = map_bh->b_private;
636
637		if (ret == 0 && buffer_defer_completion(map_bh))
638			ret = dio_set_defer_completion(dio);
639	}
640	return ret;
641}
642
643/*
644 * There is no bio.  Make one now.
645 */
646static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
647		sector_t start_sector, struct buffer_head *map_bh)
648{
649	sector_t sector;
650	int ret, nr_pages;
651
652	ret = dio_bio_reap(dio, sdio);
653	if (ret)
654		goto out;
655	sector = start_sector << (sdio->blkbits - 9);
656	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
657	BUG_ON(nr_pages <= 0);
658	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
659	sdio->boundary = 0;
660out:
661	return ret;
662}
663
664/*
665 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
666 * that was successful then update final_block_in_bio and take a ref against
667 * the just-added page.
668 *
669 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
670 */
671static inline int dio_bio_add_page(struct dio_submit *sdio)
672{
673	int ret;
674
675	ret = bio_add_page(sdio->bio, sdio->cur_page,
676			sdio->cur_page_len, sdio->cur_page_offset);
677	if (ret == sdio->cur_page_len) {
678		/*
679		 * Decrement count only, if we are done with this page
680		 */
681		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
682			sdio->pages_in_io--;
683		page_cache_get(sdio->cur_page);
684		sdio->final_block_in_bio = sdio->cur_page_block +
685			(sdio->cur_page_len >> sdio->blkbits);
686		ret = 0;
687	} else {
688		ret = 1;
689	}
690	return ret;
691}
692
693/*
694 * Put cur_page under IO.  The section of cur_page which is described by
695 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
696 * starts on-disk at cur_page_block.
697 *
698 * We take a ref against the page here (on behalf of its presence in the bio).
699 *
700 * The caller of this function is responsible for removing cur_page from the
701 * dio, and for dropping the refcount which came from that presence.
702 */
703static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
704		struct buffer_head *map_bh)
705{
706	int ret = 0;
707
708	if (sdio->bio) {
709		loff_t cur_offset = sdio->cur_page_fs_offset;
710		loff_t bio_next_offset = sdio->logical_offset_in_bio +
711			sdio->bio->bi_iter.bi_size;
712
713		/*
714		 * See whether this new request is contiguous with the old.
715		 *
716		 * Btrfs cannot handle having logically non-contiguous requests
717		 * submitted.  For example if you have
718		 *
719		 * Logical:  [0-4095][HOLE][8192-12287]
720		 * Physical: [0-4095]      [4096-8191]
721		 *
722		 * We cannot submit those pages together as one BIO.  So if our
723		 * current logical offset in the file does not equal what would
724		 * be the next logical offset in the bio, submit the bio we
725		 * have.
726		 */
727		if (sdio->final_block_in_bio != sdio->cur_page_block ||
728		    cur_offset != bio_next_offset)
729			dio_bio_submit(dio, sdio);
730	}
731
732	if (sdio->bio == NULL) {
733		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
734		if (ret)
735			goto out;
736	}
737
738	if (dio_bio_add_page(sdio) != 0) {
739		dio_bio_submit(dio, sdio);
740		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
741		if (ret == 0) {
742			ret = dio_bio_add_page(sdio);
743			BUG_ON(ret != 0);
744		}
745	}
746out:
747	return ret;
748}
749
750/*
751 * An autonomous function to put a chunk of a page under deferred IO.
752 *
753 * The caller doesn't actually know (or care) whether this piece of page is in
754 * a BIO, or is under IO or whatever.  We just take care of all possible
755 * situations here.  The separation between the logic of do_direct_IO() and
756 * that of submit_page_section() is important for clarity.  Please don't break.
757 *
758 * The chunk of page starts on-disk at blocknr.
759 *
760 * We perform deferred IO, by recording the last-submitted page inside our
761 * private part of the dio structure.  If possible, we just expand the IO
762 * across that page here.
763 *
764 * If that doesn't work out then we put the old page into the bio and add this
765 * page to the dio instead.
766 */
767static inline int
768submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
769		    unsigned offset, unsigned len, sector_t blocknr,
770		    struct buffer_head *map_bh)
771{
772	int ret = 0;
773
774	if (dio->rw & WRITE) {
775		/*
776		 * Read accounting is performed in submit_bio()
777		 */
778		task_io_account_write(len);
779	}
780
781	/*
782	 * Can we just grow the current page's presence in the dio?
783	 */
784	if (sdio->cur_page == page &&
785	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
786	    sdio->cur_page_block +
787	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
788		sdio->cur_page_len += len;
789		goto out;
790	}
791
792	/*
793	 * If there's a deferred page already there then send it.
794	 */
795	if (sdio->cur_page) {
796		ret = dio_send_cur_page(dio, sdio, map_bh);
797		page_cache_release(sdio->cur_page);
798		sdio->cur_page = NULL;
799		if (ret)
800			return ret;
801	}
802
803	page_cache_get(page);		/* It is in dio */
804	sdio->cur_page = page;
805	sdio->cur_page_offset = offset;
806	sdio->cur_page_len = len;
807	sdio->cur_page_block = blocknr;
808	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
809out:
810	/*
811	 * If sdio->boundary then we want to schedule the IO now to
812	 * avoid metadata seeks.
813	 */
814	if (sdio->boundary) {
815		ret = dio_send_cur_page(dio, sdio, map_bh);
816		dio_bio_submit(dio, sdio);
817		page_cache_release(sdio->cur_page);
818		sdio->cur_page = NULL;
819	}
820	return ret;
821}
822
823/*
824 * Clean any dirty buffers in the blockdev mapping which alias newly-created
825 * file blocks.  Only called for S_ISREG files - blockdevs do not set
826 * buffer_new
827 */
828static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
829{
830	unsigned i;
831	unsigned nblocks;
832
833	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
834
835	for (i = 0; i < nblocks; i++) {
836		unmap_underlying_metadata(map_bh->b_bdev,
837					  map_bh->b_blocknr + i);
838	}
839}
840
841/*
842 * If we are not writing the entire block and get_block() allocated
843 * the block for us, we need to fill-in the unused portion of the
844 * block with zeros. This happens only if user-buffer, fileoffset or
845 * io length is not filesystem block-size multiple.
846 *
847 * `end' is zero if we're doing the start of the IO, 1 at the end of the
848 * IO.
849 */
850static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
851		int end, struct buffer_head *map_bh)
852{
853	unsigned dio_blocks_per_fs_block;
854	unsigned this_chunk_blocks;	/* In dio_blocks */
855	unsigned this_chunk_bytes;
856	struct page *page;
857
858	sdio->start_zero_done = 1;
859	if (!sdio->blkfactor || !buffer_new(map_bh))
860		return;
861
862	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
863	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
864
865	if (!this_chunk_blocks)
866		return;
867
868	/*
869	 * We need to zero out part of an fs block.  It is either at the
870	 * beginning or the end of the fs block.
871	 */
872	if (end)
873		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
874
875	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
876
877	page = ZERO_PAGE(0);
878	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
879				sdio->next_block_for_io, map_bh))
880		return;
881
882	sdio->next_block_for_io += this_chunk_blocks;
883}
884
885/*
886 * Walk the user pages, and the file, mapping blocks to disk and generating
887 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
888 * into submit_page_section(), which takes care of the next stage of submission
889 *
890 * Direct IO against a blockdev is different from a file.  Because we can
891 * happily perform page-sized but 512-byte aligned IOs.  It is important that
892 * blockdev IO be able to have fine alignment and large sizes.
893 *
894 * So what we do is to permit the ->get_block function to populate bh.b_size
895 * with the size of IO which is permitted at this offset and this i_blkbits.
896 *
897 * For best results, the blockdev should be set up with 512-byte i_blkbits and
898 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
899 * fine alignment but still allows this function to work in PAGE_SIZE units.
900 */
901static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
902			struct buffer_head *map_bh)
903{
904	const unsigned blkbits = sdio->blkbits;
905	int ret = 0;
906
907	while (sdio->block_in_file < sdio->final_block_in_request) {
908		struct page *page;
909		size_t from, to;
910
911		page = dio_get_page(dio, sdio);
912		if (IS_ERR(page)) {
913			ret = PTR_ERR(page);
914			goto out;
915		}
916		from = sdio->head ? 0 : sdio->from;
917		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
918		sdio->head++;
919
920		while (from < to) {
921			unsigned this_chunk_bytes;	/* # of bytes mapped */
922			unsigned this_chunk_blocks;	/* # of blocks */
923			unsigned u;
924
925			if (sdio->blocks_available == 0) {
926				/*
927				 * Need to go and map some more disk
928				 */
929				unsigned long blkmask;
930				unsigned long dio_remainder;
931
932				ret = get_more_blocks(dio, sdio, map_bh);
933				if (ret) {
934					page_cache_release(page);
935					goto out;
936				}
937				if (!buffer_mapped(map_bh))
938					goto do_holes;
939
940				sdio->blocks_available =
941						map_bh->b_size >> sdio->blkbits;
942				sdio->next_block_for_io =
943					map_bh->b_blocknr << sdio->blkfactor;
944				if (buffer_new(map_bh))
945					clean_blockdev_aliases(dio, map_bh);
946
947				if (!sdio->blkfactor)
948					goto do_holes;
949
950				blkmask = (1 << sdio->blkfactor) - 1;
951				dio_remainder = (sdio->block_in_file & blkmask);
952
953				/*
954				 * If we are at the start of IO and that IO
955				 * starts partway into a fs-block,
956				 * dio_remainder will be non-zero.  If the IO
957				 * is a read then we can simply advance the IO
958				 * cursor to the first block which is to be
959				 * read.  But if the IO is a write and the
960				 * block was newly allocated we cannot do that;
961				 * the start of the fs block must be zeroed out
962				 * on-disk
963				 */
964				if (!buffer_new(map_bh))
965					sdio->next_block_for_io += dio_remainder;
966				sdio->blocks_available -= dio_remainder;
967			}
968do_holes:
969			/* Handle holes */
970			if (!buffer_mapped(map_bh)) {
971				loff_t i_size_aligned;
972
973				/* AKPM: eargh, -ENOTBLK is a hack */
974				if (dio->rw & WRITE) {
975					page_cache_release(page);
976					return -ENOTBLK;
977				}
978
979				/*
980				 * Be sure to account for a partial block as the
981				 * last block in the file
982				 */
983				i_size_aligned = ALIGN(i_size_read(dio->inode),
984							1 << blkbits);
985				if (sdio->block_in_file >=
986						i_size_aligned >> blkbits) {
987					/* We hit eof */
988					page_cache_release(page);
989					goto out;
990				}
991				zero_user(page, from, 1 << blkbits);
992				sdio->block_in_file++;
993				from += 1 << blkbits;
994				dio->result += 1 << blkbits;
995				goto next_block;
996			}
997
998			/*
999			 * If we're performing IO which has an alignment which
1000			 * is finer than the underlying fs, go check to see if
1001			 * we must zero out the start of this block.
1002			 */
1003			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1004				dio_zero_block(dio, sdio, 0, map_bh);
1005
1006			/*
1007			 * Work out, in this_chunk_blocks, how much disk we
1008			 * can add to this page
1009			 */
1010			this_chunk_blocks = sdio->blocks_available;
1011			u = (to - from) >> blkbits;
1012			if (this_chunk_blocks > u)
1013				this_chunk_blocks = u;
1014			u = sdio->final_block_in_request - sdio->block_in_file;
1015			if (this_chunk_blocks > u)
1016				this_chunk_blocks = u;
1017			this_chunk_bytes = this_chunk_blocks << blkbits;
1018			BUG_ON(this_chunk_bytes == 0);
1019
1020			if (this_chunk_blocks == sdio->blocks_available)
1021				sdio->boundary = buffer_boundary(map_bh);
1022			ret = submit_page_section(dio, sdio, page,
1023						  from,
1024						  this_chunk_bytes,
1025						  sdio->next_block_for_io,
1026						  map_bh);
1027			if (ret) {
1028				page_cache_release(page);
1029				goto out;
1030			}
1031			sdio->next_block_for_io += this_chunk_blocks;
1032
1033			sdio->block_in_file += this_chunk_blocks;
1034			from += this_chunk_bytes;
1035			dio->result += this_chunk_bytes;
1036			sdio->blocks_available -= this_chunk_blocks;
1037next_block:
1038			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1039			if (sdio->block_in_file == sdio->final_block_in_request)
1040				break;
1041		}
1042
1043		/* Drop the ref which was taken in get_user_pages() */
1044		page_cache_release(page);
1045	}
1046out:
1047	return ret;
1048}
1049
1050static inline int drop_refcount(struct dio *dio)
1051{
1052	int ret2;
1053	unsigned long flags;
1054
1055	/*
1056	 * Sync will always be dropping the final ref and completing the
1057	 * operation.  AIO can if it was a broken operation described above or
1058	 * in fact if all the bios race to complete before we get here.  In
1059	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1060	 * return code that the caller will hand to ->complete().
1061	 *
1062	 * This is managed by the bio_lock instead of being an atomic_t so that
1063	 * completion paths can drop their ref and use the remaining count to
1064	 * decide to wake the submission path atomically.
1065	 */
1066	spin_lock_irqsave(&dio->bio_lock, flags);
1067	ret2 = --dio->refcount;
1068	spin_unlock_irqrestore(&dio->bio_lock, flags);
1069	return ret2;
1070}
1071
1072/*
1073 * This is a library function for use by filesystem drivers.
1074 *
1075 * The locking rules are governed by the flags parameter:
1076 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1077 *    scheme for dumb filesystems.
1078 *    For writes this function is called under i_mutex and returns with
1079 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1080 *    taken and dropped again before returning.
1081 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1082 *    internal locking but rather rely on the filesystem to synchronize
1083 *    direct I/O reads/writes versus each other and truncate.
1084 *
1085 * To help with locking against truncate we incremented the i_dio_count
1086 * counter before starting direct I/O, and decrement it once we are done.
1087 * Truncate can wait for it to reach zero to provide exclusion.  It is
1088 * expected that filesystem provide exclusion between new direct I/O
1089 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1090 * but other filesystems need to take care of this on their own.
1091 *
1092 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1093 * is always inlined. Otherwise gcc is unable to split the structure into
1094 * individual fields and will generate much worse code. This is important
1095 * for the whole file.
1096 */
1097static inline ssize_t
1098do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1099		      struct block_device *bdev, struct iov_iter *iter,
1100		      loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1101		      dio_submit_t submit_io, int flags)
1102{
1103	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1104	unsigned blkbits = i_blkbits;
1105	unsigned blocksize_mask = (1 << blkbits) - 1;
1106	ssize_t retval = -EINVAL;
1107	size_t count = iov_iter_count(iter);
1108	loff_t end = offset + count;
1109	struct dio *dio;
1110	struct dio_submit sdio = { 0, };
1111	struct buffer_head map_bh = { 0, };
1112	struct blk_plug plug;
1113	unsigned long align = offset | iov_iter_alignment(iter);
1114
1115	/*
1116	 * Avoid references to bdev if not absolutely needed to give
1117	 * the early prefetch in the caller enough time.
1118	 */
1119
1120	if (align & blocksize_mask) {
1121		if (bdev)
1122			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1123		blocksize_mask = (1 << blkbits) - 1;
1124		if (align & blocksize_mask)
1125			goto out;
1126	}
1127
1128	/* watch out for a 0 len io from a tricksy fs */
1129	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1130		return 0;
1131
1132	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1133	retval = -ENOMEM;
1134	if (!dio)
1135		goto out;
1136	/*
1137	 * Believe it or not, zeroing out the page array caused a .5%
1138	 * performance regression in a database benchmark.  So, we take
1139	 * care to only zero out what's needed.
1140	 */
1141	memset(dio, 0, offsetof(struct dio, pages));
1142
1143	dio->flags = flags;
1144	if (dio->flags & DIO_LOCKING) {
1145		if (iov_iter_rw(iter) == READ) {
1146			struct address_space *mapping =
1147					iocb->ki_filp->f_mapping;
1148
1149			/* will be released by direct_io_worker */
1150			mutex_lock(&inode->i_mutex);
1151
1152			retval = filemap_write_and_wait_range(mapping, offset,
1153							      end - 1);
1154			if (retval) {
1155				mutex_unlock(&inode->i_mutex);
1156				kmem_cache_free(dio_cache, dio);
1157				goto out;
1158			}
1159		}
1160	}
1161
1162	/* Once we sampled i_size check for reads beyond EOF */
1163	dio->i_size = i_size_read(inode);
1164	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1165		if (dio->flags & DIO_LOCKING)
1166			mutex_unlock(&inode->i_mutex);
1167		kmem_cache_free(dio_cache, dio);
1168		retval = 0;
1169		goto out;
1170	}
1171
1172	/*
1173	 * For file extending writes updating i_size before data writeouts
1174	 * complete can expose uninitialized blocks in dumb filesystems.
1175	 * In that case we need to wait for I/O completion even if asked
1176	 * for an asynchronous write.
1177	 */
1178	if (is_sync_kiocb(iocb))
1179		dio->is_async = false;
1180	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1181		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1182		dio->is_async = false;
1183	else
1184		dio->is_async = true;
1185
1186	dio->inode = inode;
1187	dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1188
1189	/*
1190	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1191	 * so that we can call ->fsync.
1192	 */
1193	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1194	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1195	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1196		retval = dio_set_defer_completion(dio);
1197		if (retval) {
1198			/*
1199			 * We grab i_mutex only for reads so we don't have
1200			 * to release it here
1201			 */
1202			kmem_cache_free(dio_cache, dio);
1203			goto out;
1204		}
1205	}
1206
1207	/*
1208	 * Will be decremented at I/O completion time.
1209	 */
1210	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1211		inode_dio_begin(inode);
1212
1213	retval = 0;
1214	sdio.blkbits = blkbits;
1215	sdio.blkfactor = i_blkbits - blkbits;
1216	sdio.block_in_file = offset >> blkbits;
1217
1218	sdio.get_block = get_block;
1219	dio->end_io = end_io;
1220	sdio.submit_io = submit_io;
1221	sdio.final_block_in_bio = -1;
1222	sdio.next_block_for_io = -1;
1223
1224	dio->iocb = iocb;
1225
1226	spin_lock_init(&dio->bio_lock);
1227	dio->refcount = 1;
1228
1229	sdio.iter = iter;
1230	sdio.final_block_in_request =
1231		(offset + iov_iter_count(iter)) >> blkbits;
1232
1233	/*
1234	 * In case of non-aligned buffers, we may need 2 more
1235	 * pages since we need to zero out first and last block.
1236	 */
1237	if (unlikely(sdio.blkfactor))
1238		sdio.pages_in_io = 2;
1239
1240	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1241
1242	blk_start_plug(&plug);
1243
1244	retval = do_direct_IO(dio, &sdio, &map_bh);
1245	if (retval)
1246		dio_cleanup(dio, &sdio);
1247
1248	if (retval == -ENOTBLK) {
1249		/*
1250		 * The remaining part of the request will be
1251		 * be handled by buffered I/O when we return
1252		 */
1253		retval = 0;
1254	}
1255	/*
1256	 * There may be some unwritten disk at the end of a part-written
1257	 * fs-block-sized block.  Go zero that now.
1258	 */
1259	dio_zero_block(dio, &sdio, 1, &map_bh);
1260
1261	if (sdio.cur_page) {
1262		ssize_t ret2;
1263
1264		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1265		if (retval == 0)
1266			retval = ret2;
1267		page_cache_release(sdio.cur_page);
1268		sdio.cur_page = NULL;
1269	}
1270	if (sdio.bio)
1271		dio_bio_submit(dio, &sdio);
1272
1273	blk_finish_plug(&plug);
1274
1275	/*
1276	 * It is possible that, we return short IO due to end of file.
1277	 * In that case, we need to release all the pages we got hold on.
1278	 */
1279	dio_cleanup(dio, &sdio);
1280
1281	/*
1282	 * All block lookups have been performed. For READ requests
1283	 * we can let i_mutex go now that its achieved its purpose
1284	 * of protecting us from looking up uninitialized blocks.
1285	 */
1286	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1287		mutex_unlock(&dio->inode->i_mutex);
1288
1289	/*
1290	 * The only time we want to leave bios in flight is when a successful
1291	 * partial aio read or full aio write have been setup.  In that case
1292	 * bio completion will call aio_complete.  The only time it's safe to
1293	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1294	 * This had *better* be the only place that raises -EIOCBQUEUED.
1295	 */
1296	BUG_ON(retval == -EIOCBQUEUED);
1297	if (dio->is_async && retval == 0 && dio->result &&
1298	    (iov_iter_rw(iter) == READ || dio->result == count))
1299		retval = -EIOCBQUEUED;
1300	else
1301		dio_await_completion(dio);
1302
1303	if (drop_refcount(dio) == 0) {
1304		retval = dio_complete(dio, offset, retval, false);
1305	} else
1306		BUG_ON(retval != -EIOCBQUEUED);
1307
1308out:
1309	return retval;
1310}
1311
1312ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1313			     struct block_device *bdev, struct iov_iter *iter,
1314			     loff_t offset, get_block_t get_block,
1315			     dio_iodone_t end_io, dio_submit_t submit_io,
1316			     int flags)
1317{
1318	/*
1319	 * The block device state is needed in the end to finally
1320	 * submit everything.  Since it's likely to be cache cold
1321	 * prefetch it here as first thing to hide some of the
1322	 * latency.
1323	 *
1324	 * Attempt to prefetch the pieces we likely need later.
1325	 */
1326	prefetch(&bdev->bd_disk->part_tbl);
1327	prefetch(bdev->bd_queue);
1328	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1329
1330	return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1331				     end_io, submit_io, flags);
1332}
1333
1334EXPORT_SYMBOL(__blockdev_direct_IO);
1335
1336static __init int dio_init(void)
1337{
1338	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1339	return 0;
1340}
1341module_init(dio_init)
1342