1/* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22#include <linux/kernel.h> 23#include <linux/module.h> 24#include <linux/types.h> 25#include <linux/fs.h> 26#include <linux/mm.h> 27#include <linux/slab.h> 28#include <linux/highmem.h> 29#include <linux/pagemap.h> 30#include <linux/task_io_accounting_ops.h> 31#include <linux/bio.h> 32#include <linux/wait.h> 33#include <linux/err.h> 34#include <linux/blkdev.h> 35#include <linux/buffer_head.h> 36#include <linux/rwsem.h> 37#include <linux/uio.h> 38#include <linux/atomic.h> 39#include <linux/prefetch.h> 40 41/* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45#define DIO_PAGES 64 46 47/* 48 * This code generally works in units of "dio_blocks". A dio_block is 49 * somewhere between the hard sector size and the filesystem block size. it 50 * is determined on a per-invocation basis. When talking to the filesystem 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 53 * to bio_block quantities by shifting left by blkfactor. 54 * 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 56 * blocksize. 57 */ 58 59/* dio_state only used in the submission path */ 60 61struct dio_submit { 62 struct bio *bio; /* bio under assembly */ 63 unsigned blkbits; /* doesn't change */ 64 unsigned blkfactor; /* When we're using an alignment which 65 is finer than the filesystem's soft 66 blocksize, this specifies how much 67 finer. blkfactor=2 means 1/4-block 68 alignment. Does not change */ 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 70 been performed at the start of a 71 write */ 72 int pages_in_io; /* approximate total IO pages */ 73 sector_t block_in_file; /* Current offset into the underlying 74 file in dio_block units. */ 75 unsigned blocks_available; /* At block_in_file. changes */ 76 int reap_counter; /* rate limit reaping */ 77 sector_t final_block_in_request;/* doesn't change */ 78 int boundary; /* prev block is at a boundary */ 79 get_block_t *get_block; /* block mapping function */ 80 dio_submit_t *submit_io; /* IO submition function */ 81 82 loff_t logical_offset_in_bio; /* current first logical block in bio */ 83 sector_t final_block_in_bio; /* current final block in bio + 1 */ 84 sector_t next_block_for_io; /* next block to be put under IO, 85 in dio_blocks units */ 86 87 /* 88 * Deferred addition of a page to the dio. These variables are 89 * private to dio_send_cur_page(), submit_page_section() and 90 * dio_bio_add_page(). 91 */ 92 struct page *cur_page; /* The page */ 93 unsigned cur_page_offset; /* Offset into it, in bytes */ 94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 95 sector_t cur_page_block; /* Where it starts */ 96 loff_t cur_page_fs_offset; /* Offset in file */ 97 98 struct iov_iter *iter; 99 /* 100 * Page queue. These variables belong to dio_refill_pages() and 101 * dio_get_page(). 102 */ 103 unsigned head; /* next page to process */ 104 unsigned tail; /* last valid page + 1 */ 105 size_t from, to; 106}; 107 108/* dio_state communicated between submission path and end_io */ 109struct dio { 110 int flags; /* doesn't change */ 111 int rw; 112 struct inode *inode; 113 loff_t i_size; /* i_size when submitted */ 114 dio_iodone_t *end_io; /* IO completion function */ 115 116 void *private; /* copy from map_bh.b_private */ 117 118 /* BIO completion state */ 119 spinlock_t bio_lock; /* protects BIO fields below */ 120 int page_errors; /* errno from get_user_pages() */ 121 int is_async; /* is IO async ? */ 122 bool defer_completion; /* defer AIO completion to workqueue? */ 123 int io_error; /* IO error in completion path */ 124 unsigned long refcount; /* direct_io_worker() and bios */ 125 struct bio *bio_list; /* singly linked via bi_private */ 126 struct task_struct *waiter; /* waiting task (NULL if none) */ 127 128 /* AIO related stuff */ 129 struct kiocb *iocb; /* kiocb */ 130 ssize_t result; /* IO result */ 131 132 /* 133 * pages[] (and any fields placed after it) are not zeroed out at 134 * allocation time. Don't add new fields after pages[] unless you 135 * wish that they not be zeroed. 136 */ 137 union { 138 struct page *pages[DIO_PAGES]; /* page buffer */ 139 struct work_struct complete_work;/* deferred AIO completion */ 140 }; 141} ____cacheline_aligned_in_smp; 142 143static struct kmem_cache *dio_cache __read_mostly; 144 145/* 146 * How many pages are in the queue? 147 */ 148static inline unsigned dio_pages_present(struct dio_submit *sdio) 149{ 150 return sdio->tail - sdio->head; 151} 152 153/* 154 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 155 */ 156static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 157{ 158 ssize_t ret; 159 160 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 161 &sdio->from); 162 163 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) { 164 struct page *page = ZERO_PAGE(0); 165 /* 166 * A memory fault, but the filesystem has some outstanding 167 * mapped blocks. We need to use those blocks up to avoid 168 * leaking stale data in the file. 169 */ 170 if (dio->page_errors == 0) 171 dio->page_errors = ret; 172 page_cache_get(page); 173 dio->pages[0] = page; 174 sdio->head = 0; 175 sdio->tail = 1; 176 sdio->from = 0; 177 sdio->to = PAGE_SIZE; 178 return 0; 179 } 180 181 if (ret >= 0) { 182 iov_iter_advance(sdio->iter, ret); 183 ret += sdio->from; 184 sdio->head = 0; 185 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 186 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 187 return 0; 188 } 189 return ret; 190} 191 192/* 193 * Get another userspace page. Returns an ERR_PTR on error. Pages are 194 * buffered inside the dio so that we can call get_user_pages() against a 195 * decent number of pages, less frequently. To provide nicer use of the 196 * L1 cache. 197 */ 198static inline struct page *dio_get_page(struct dio *dio, 199 struct dio_submit *sdio) 200{ 201 if (dio_pages_present(sdio) == 0) { 202 int ret; 203 204 ret = dio_refill_pages(dio, sdio); 205 if (ret) 206 return ERR_PTR(ret); 207 BUG_ON(dio_pages_present(sdio) == 0); 208 } 209 return dio->pages[sdio->head]; 210} 211 212/** 213 * dio_complete() - called when all DIO BIO I/O has been completed 214 * @offset: the byte offset in the file of the completed operation 215 * 216 * This drops i_dio_count, lets interested parties know that a DIO operation 217 * has completed, and calculates the resulting return code for the operation. 218 * 219 * It lets the filesystem know if it registered an interest earlier via 220 * get_block. Pass the private field of the map buffer_head so that 221 * filesystems can use it to hold additional state between get_block calls and 222 * dio_complete. 223 */ 224static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, 225 bool is_async) 226{ 227 ssize_t transferred = 0; 228 229 /* 230 * AIO submission can race with bio completion to get here while 231 * expecting to have the last io completed by bio completion. 232 * In that case -EIOCBQUEUED is in fact not an error we want 233 * to preserve through this call. 234 */ 235 if (ret == -EIOCBQUEUED) 236 ret = 0; 237 238 if (dio->result) { 239 transferred = dio->result; 240 241 /* Check for short read case */ 242 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 243 transferred = dio->i_size - offset; 244 } 245 246 if (ret == 0) 247 ret = dio->page_errors; 248 if (ret == 0) 249 ret = dio->io_error; 250 if (ret == 0) 251 ret = transferred; 252 253 if (dio->end_io && dio->result) 254 dio->end_io(dio->iocb, offset, transferred, dio->private); 255 256 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 257 inode_dio_end(dio->inode); 258 259 if (is_async) { 260 if (dio->rw & WRITE) { 261 int err; 262 263 err = generic_write_sync(dio->iocb->ki_filp, offset, 264 transferred); 265 if (err < 0 && ret > 0) 266 ret = err; 267 } 268 269 dio->iocb->ki_complete(dio->iocb, ret, 0); 270 } 271 272 kmem_cache_free(dio_cache, dio); 273 return ret; 274} 275 276static void dio_aio_complete_work(struct work_struct *work) 277{ 278 struct dio *dio = container_of(work, struct dio, complete_work); 279 280 dio_complete(dio, dio->iocb->ki_pos, 0, true); 281} 282 283static int dio_bio_complete(struct dio *dio, struct bio *bio); 284 285/* 286 * Asynchronous IO callback. 287 */ 288static void dio_bio_end_aio(struct bio *bio, int error) 289{ 290 struct dio *dio = bio->bi_private; 291 unsigned long remaining; 292 unsigned long flags; 293 294 /* cleanup the bio */ 295 dio_bio_complete(dio, bio); 296 297 spin_lock_irqsave(&dio->bio_lock, flags); 298 remaining = --dio->refcount; 299 if (remaining == 1 && dio->waiter) 300 wake_up_process(dio->waiter); 301 spin_unlock_irqrestore(&dio->bio_lock, flags); 302 303 if (remaining == 0) { 304 if (dio->result && dio->defer_completion) { 305 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 306 queue_work(dio->inode->i_sb->s_dio_done_wq, 307 &dio->complete_work); 308 } else { 309 dio_complete(dio, dio->iocb->ki_pos, 0, true); 310 } 311 } 312} 313 314/* 315 * The BIO completion handler simply queues the BIO up for the process-context 316 * handler. 317 * 318 * During I/O bi_private points at the dio. After I/O, bi_private is used to 319 * implement a singly-linked list of completed BIOs, at dio->bio_list. 320 */ 321static void dio_bio_end_io(struct bio *bio, int error) 322{ 323 struct dio *dio = bio->bi_private; 324 unsigned long flags; 325 326 spin_lock_irqsave(&dio->bio_lock, flags); 327 bio->bi_private = dio->bio_list; 328 dio->bio_list = bio; 329 if (--dio->refcount == 1 && dio->waiter) 330 wake_up_process(dio->waiter); 331 spin_unlock_irqrestore(&dio->bio_lock, flags); 332} 333 334/** 335 * dio_end_io - handle the end io action for the given bio 336 * @bio: The direct io bio thats being completed 337 * @error: Error if there was one 338 * 339 * This is meant to be called by any filesystem that uses their own dio_submit_t 340 * so that the DIO specific endio actions are dealt with after the filesystem 341 * has done it's completion work. 342 */ 343void dio_end_io(struct bio *bio, int error) 344{ 345 struct dio *dio = bio->bi_private; 346 347 if (dio->is_async) 348 dio_bio_end_aio(bio, error); 349 else 350 dio_bio_end_io(bio, error); 351} 352EXPORT_SYMBOL_GPL(dio_end_io); 353 354static inline void 355dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 356 struct block_device *bdev, 357 sector_t first_sector, int nr_vecs) 358{ 359 struct bio *bio; 360 361 /* 362 * bio_alloc() is guaranteed to return a bio when called with 363 * __GFP_WAIT and we request a valid number of vectors. 364 */ 365 bio = bio_alloc(GFP_KERNEL, nr_vecs); 366 367 bio->bi_bdev = bdev; 368 bio->bi_iter.bi_sector = first_sector; 369 if (dio->is_async) 370 bio->bi_end_io = dio_bio_end_aio; 371 else 372 bio->bi_end_io = dio_bio_end_io; 373 374 sdio->bio = bio; 375 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 376} 377 378/* 379 * In the AIO read case we speculatively dirty the pages before starting IO. 380 * During IO completion, any of these pages which happen to have been written 381 * back will be redirtied by bio_check_pages_dirty(). 382 * 383 * bios hold a dio reference between submit_bio and ->end_io. 384 */ 385static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 386{ 387 struct bio *bio = sdio->bio; 388 unsigned long flags; 389 390 bio->bi_private = dio; 391 392 spin_lock_irqsave(&dio->bio_lock, flags); 393 dio->refcount++; 394 spin_unlock_irqrestore(&dio->bio_lock, flags); 395 396 if (dio->is_async && dio->rw == READ) 397 bio_set_pages_dirty(bio); 398 399 if (sdio->submit_io) 400 sdio->submit_io(dio->rw, bio, dio->inode, 401 sdio->logical_offset_in_bio); 402 else 403 submit_bio(dio->rw, bio); 404 405 sdio->bio = NULL; 406 sdio->boundary = 0; 407 sdio->logical_offset_in_bio = 0; 408} 409 410/* 411 * Release any resources in case of a failure 412 */ 413static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 414{ 415 while (sdio->head < sdio->tail) 416 page_cache_release(dio->pages[sdio->head++]); 417} 418 419/* 420 * Wait for the next BIO to complete. Remove it and return it. NULL is 421 * returned once all BIOs have been completed. This must only be called once 422 * all bios have been issued so that dio->refcount can only decrease. This 423 * requires that that the caller hold a reference on the dio. 424 */ 425static struct bio *dio_await_one(struct dio *dio) 426{ 427 unsigned long flags; 428 struct bio *bio = NULL; 429 430 spin_lock_irqsave(&dio->bio_lock, flags); 431 432 /* 433 * Wait as long as the list is empty and there are bios in flight. bio 434 * completion drops the count, maybe adds to the list, and wakes while 435 * holding the bio_lock so we don't need set_current_state()'s barrier 436 * and can call it after testing our condition. 437 */ 438 while (dio->refcount > 1 && dio->bio_list == NULL) { 439 __set_current_state(TASK_UNINTERRUPTIBLE); 440 dio->waiter = current; 441 spin_unlock_irqrestore(&dio->bio_lock, flags); 442 io_schedule(); 443 /* wake up sets us TASK_RUNNING */ 444 spin_lock_irqsave(&dio->bio_lock, flags); 445 dio->waiter = NULL; 446 } 447 if (dio->bio_list) { 448 bio = dio->bio_list; 449 dio->bio_list = bio->bi_private; 450 } 451 spin_unlock_irqrestore(&dio->bio_lock, flags); 452 return bio; 453} 454 455/* 456 * Process one completed BIO. No locks are held. 457 */ 458static int dio_bio_complete(struct dio *dio, struct bio *bio) 459{ 460 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 461 struct bio_vec *bvec; 462 unsigned i; 463 464 if (!uptodate) 465 dio->io_error = -EIO; 466 467 if (dio->is_async && dio->rw == READ) { 468 bio_check_pages_dirty(bio); /* transfers ownership */ 469 } else { 470 bio_for_each_segment_all(bvec, bio, i) { 471 struct page *page = bvec->bv_page; 472 473 if (dio->rw == READ && !PageCompound(page)) 474 set_page_dirty_lock(page); 475 page_cache_release(page); 476 } 477 bio_put(bio); 478 } 479 return uptodate ? 0 : -EIO; 480} 481 482/* 483 * Wait on and process all in-flight BIOs. This must only be called once 484 * all bios have been issued so that the refcount can only decrease. 485 * This just waits for all bios to make it through dio_bio_complete. IO 486 * errors are propagated through dio->io_error and should be propagated via 487 * dio_complete(). 488 */ 489static void dio_await_completion(struct dio *dio) 490{ 491 struct bio *bio; 492 do { 493 bio = dio_await_one(dio); 494 if (bio) 495 dio_bio_complete(dio, bio); 496 } while (bio); 497} 498 499/* 500 * A really large O_DIRECT read or write can generate a lot of BIOs. So 501 * to keep the memory consumption sane we periodically reap any completed BIOs 502 * during the BIO generation phase. 503 * 504 * This also helps to limit the peak amount of pinned userspace memory. 505 */ 506static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 507{ 508 int ret = 0; 509 510 if (sdio->reap_counter++ >= 64) { 511 while (dio->bio_list) { 512 unsigned long flags; 513 struct bio *bio; 514 int ret2; 515 516 spin_lock_irqsave(&dio->bio_lock, flags); 517 bio = dio->bio_list; 518 dio->bio_list = bio->bi_private; 519 spin_unlock_irqrestore(&dio->bio_lock, flags); 520 ret2 = dio_bio_complete(dio, bio); 521 if (ret == 0) 522 ret = ret2; 523 } 524 sdio->reap_counter = 0; 525 } 526 return ret; 527} 528 529/* 530 * Create workqueue for deferred direct IO completions. We allocate the 531 * workqueue when it's first needed. This avoids creating workqueue for 532 * filesystems that don't need it and also allows us to create the workqueue 533 * late enough so the we can include s_id in the name of the workqueue. 534 */ 535static int sb_init_dio_done_wq(struct super_block *sb) 536{ 537 struct workqueue_struct *old; 538 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 539 WQ_MEM_RECLAIM, 0, 540 sb->s_id); 541 if (!wq) 542 return -ENOMEM; 543 /* 544 * This has to be atomic as more DIOs can race to create the workqueue 545 */ 546 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 547 /* Someone created workqueue before us? Free ours... */ 548 if (old) 549 destroy_workqueue(wq); 550 return 0; 551} 552 553static int dio_set_defer_completion(struct dio *dio) 554{ 555 struct super_block *sb = dio->inode->i_sb; 556 557 if (dio->defer_completion) 558 return 0; 559 dio->defer_completion = true; 560 if (!sb->s_dio_done_wq) 561 return sb_init_dio_done_wq(sb); 562 return 0; 563} 564 565/* 566 * Call into the fs to map some more disk blocks. We record the current number 567 * of available blocks at sdio->blocks_available. These are in units of the 568 * fs blocksize, (1 << inode->i_blkbits). 569 * 570 * The fs is allowed to map lots of blocks at once. If it wants to do that, 571 * it uses the passed inode-relative block number as the file offset, as usual. 572 * 573 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 574 * has remaining to do. The fs should not map more than this number of blocks. 575 * 576 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 577 * indicate how much contiguous disk space has been made available at 578 * bh->b_blocknr. 579 * 580 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 581 * This isn't very efficient... 582 * 583 * In the case of filesystem holes: the fs may return an arbitrarily-large 584 * hole by returning an appropriate value in b_size and by clearing 585 * buffer_mapped(). However the direct-io code will only process holes one 586 * block at a time - it will repeatedly call get_block() as it walks the hole. 587 */ 588static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 589 struct buffer_head *map_bh) 590{ 591 int ret; 592 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 593 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 594 unsigned long fs_count; /* Number of filesystem-sized blocks */ 595 int create; 596 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 597 598 /* 599 * If there was a memory error and we've overwritten all the 600 * mapped blocks then we can now return that memory error 601 */ 602 ret = dio->page_errors; 603 if (ret == 0) { 604 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 605 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 606 fs_endblk = (sdio->final_block_in_request - 1) >> 607 sdio->blkfactor; 608 fs_count = fs_endblk - fs_startblk + 1; 609 610 map_bh->b_state = 0; 611 map_bh->b_size = fs_count << i_blkbits; 612 613 /* 614 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 615 * forbid block creations: only overwrites are permitted. 616 * We will return early to the caller once we see an 617 * unmapped buffer head returned, and the caller will fall 618 * back to buffered I/O. 619 * 620 * Otherwise the decision is left to the get_blocks method, 621 * which may decide to handle it or also return an unmapped 622 * buffer head. 623 */ 624 create = dio->rw & WRITE; 625 if (dio->flags & DIO_SKIP_HOLES) { 626 if (sdio->block_in_file < (i_size_read(dio->inode) >> 627 sdio->blkbits)) 628 create = 0; 629 } 630 631 ret = (*sdio->get_block)(dio->inode, fs_startblk, 632 map_bh, create); 633 634 /* Store for completion */ 635 dio->private = map_bh->b_private; 636 637 if (ret == 0 && buffer_defer_completion(map_bh)) 638 ret = dio_set_defer_completion(dio); 639 } 640 return ret; 641} 642 643/* 644 * There is no bio. Make one now. 645 */ 646static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 647 sector_t start_sector, struct buffer_head *map_bh) 648{ 649 sector_t sector; 650 int ret, nr_pages; 651 652 ret = dio_bio_reap(dio, sdio); 653 if (ret) 654 goto out; 655 sector = start_sector << (sdio->blkbits - 9); 656 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev)); 657 BUG_ON(nr_pages <= 0); 658 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 659 sdio->boundary = 0; 660out: 661 return ret; 662} 663 664/* 665 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 666 * that was successful then update final_block_in_bio and take a ref against 667 * the just-added page. 668 * 669 * Return zero on success. Non-zero means the caller needs to start a new BIO. 670 */ 671static inline int dio_bio_add_page(struct dio_submit *sdio) 672{ 673 int ret; 674 675 ret = bio_add_page(sdio->bio, sdio->cur_page, 676 sdio->cur_page_len, sdio->cur_page_offset); 677 if (ret == sdio->cur_page_len) { 678 /* 679 * Decrement count only, if we are done with this page 680 */ 681 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 682 sdio->pages_in_io--; 683 page_cache_get(sdio->cur_page); 684 sdio->final_block_in_bio = sdio->cur_page_block + 685 (sdio->cur_page_len >> sdio->blkbits); 686 ret = 0; 687 } else { 688 ret = 1; 689 } 690 return ret; 691} 692 693/* 694 * Put cur_page under IO. The section of cur_page which is described by 695 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 696 * starts on-disk at cur_page_block. 697 * 698 * We take a ref against the page here (on behalf of its presence in the bio). 699 * 700 * The caller of this function is responsible for removing cur_page from the 701 * dio, and for dropping the refcount which came from that presence. 702 */ 703static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 704 struct buffer_head *map_bh) 705{ 706 int ret = 0; 707 708 if (sdio->bio) { 709 loff_t cur_offset = sdio->cur_page_fs_offset; 710 loff_t bio_next_offset = sdio->logical_offset_in_bio + 711 sdio->bio->bi_iter.bi_size; 712 713 /* 714 * See whether this new request is contiguous with the old. 715 * 716 * Btrfs cannot handle having logically non-contiguous requests 717 * submitted. For example if you have 718 * 719 * Logical: [0-4095][HOLE][8192-12287] 720 * Physical: [0-4095] [4096-8191] 721 * 722 * We cannot submit those pages together as one BIO. So if our 723 * current logical offset in the file does not equal what would 724 * be the next logical offset in the bio, submit the bio we 725 * have. 726 */ 727 if (sdio->final_block_in_bio != sdio->cur_page_block || 728 cur_offset != bio_next_offset) 729 dio_bio_submit(dio, sdio); 730 } 731 732 if (sdio->bio == NULL) { 733 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 734 if (ret) 735 goto out; 736 } 737 738 if (dio_bio_add_page(sdio) != 0) { 739 dio_bio_submit(dio, sdio); 740 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 741 if (ret == 0) { 742 ret = dio_bio_add_page(sdio); 743 BUG_ON(ret != 0); 744 } 745 } 746out: 747 return ret; 748} 749 750/* 751 * An autonomous function to put a chunk of a page under deferred IO. 752 * 753 * The caller doesn't actually know (or care) whether this piece of page is in 754 * a BIO, or is under IO or whatever. We just take care of all possible 755 * situations here. The separation between the logic of do_direct_IO() and 756 * that of submit_page_section() is important for clarity. Please don't break. 757 * 758 * The chunk of page starts on-disk at blocknr. 759 * 760 * We perform deferred IO, by recording the last-submitted page inside our 761 * private part of the dio structure. If possible, we just expand the IO 762 * across that page here. 763 * 764 * If that doesn't work out then we put the old page into the bio and add this 765 * page to the dio instead. 766 */ 767static inline int 768submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 769 unsigned offset, unsigned len, sector_t blocknr, 770 struct buffer_head *map_bh) 771{ 772 int ret = 0; 773 774 if (dio->rw & WRITE) { 775 /* 776 * Read accounting is performed in submit_bio() 777 */ 778 task_io_account_write(len); 779 } 780 781 /* 782 * Can we just grow the current page's presence in the dio? 783 */ 784 if (sdio->cur_page == page && 785 sdio->cur_page_offset + sdio->cur_page_len == offset && 786 sdio->cur_page_block + 787 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 788 sdio->cur_page_len += len; 789 goto out; 790 } 791 792 /* 793 * If there's a deferred page already there then send it. 794 */ 795 if (sdio->cur_page) { 796 ret = dio_send_cur_page(dio, sdio, map_bh); 797 page_cache_release(sdio->cur_page); 798 sdio->cur_page = NULL; 799 if (ret) 800 return ret; 801 } 802 803 page_cache_get(page); /* It is in dio */ 804 sdio->cur_page = page; 805 sdio->cur_page_offset = offset; 806 sdio->cur_page_len = len; 807 sdio->cur_page_block = blocknr; 808 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 809out: 810 /* 811 * If sdio->boundary then we want to schedule the IO now to 812 * avoid metadata seeks. 813 */ 814 if (sdio->boundary) { 815 ret = dio_send_cur_page(dio, sdio, map_bh); 816 dio_bio_submit(dio, sdio); 817 page_cache_release(sdio->cur_page); 818 sdio->cur_page = NULL; 819 } 820 return ret; 821} 822 823/* 824 * Clean any dirty buffers in the blockdev mapping which alias newly-created 825 * file blocks. Only called for S_ISREG files - blockdevs do not set 826 * buffer_new 827 */ 828static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 829{ 830 unsigned i; 831 unsigned nblocks; 832 833 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 834 835 for (i = 0; i < nblocks; i++) { 836 unmap_underlying_metadata(map_bh->b_bdev, 837 map_bh->b_blocknr + i); 838 } 839} 840 841/* 842 * If we are not writing the entire block and get_block() allocated 843 * the block for us, we need to fill-in the unused portion of the 844 * block with zeros. This happens only if user-buffer, fileoffset or 845 * io length is not filesystem block-size multiple. 846 * 847 * `end' is zero if we're doing the start of the IO, 1 at the end of the 848 * IO. 849 */ 850static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 851 int end, struct buffer_head *map_bh) 852{ 853 unsigned dio_blocks_per_fs_block; 854 unsigned this_chunk_blocks; /* In dio_blocks */ 855 unsigned this_chunk_bytes; 856 struct page *page; 857 858 sdio->start_zero_done = 1; 859 if (!sdio->blkfactor || !buffer_new(map_bh)) 860 return; 861 862 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 863 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 864 865 if (!this_chunk_blocks) 866 return; 867 868 /* 869 * We need to zero out part of an fs block. It is either at the 870 * beginning or the end of the fs block. 871 */ 872 if (end) 873 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 874 875 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 876 877 page = ZERO_PAGE(0); 878 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 879 sdio->next_block_for_io, map_bh)) 880 return; 881 882 sdio->next_block_for_io += this_chunk_blocks; 883} 884 885/* 886 * Walk the user pages, and the file, mapping blocks to disk and generating 887 * a sequence of (page,offset,len,block) mappings. These mappings are injected 888 * into submit_page_section(), which takes care of the next stage of submission 889 * 890 * Direct IO against a blockdev is different from a file. Because we can 891 * happily perform page-sized but 512-byte aligned IOs. It is important that 892 * blockdev IO be able to have fine alignment and large sizes. 893 * 894 * So what we do is to permit the ->get_block function to populate bh.b_size 895 * with the size of IO which is permitted at this offset and this i_blkbits. 896 * 897 * For best results, the blockdev should be set up with 512-byte i_blkbits and 898 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 899 * fine alignment but still allows this function to work in PAGE_SIZE units. 900 */ 901static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 902 struct buffer_head *map_bh) 903{ 904 const unsigned blkbits = sdio->blkbits; 905 int ret = 0; 906 907 while (sdio->block_in_file < sdio->final_block_in_request) { 908 struct page *page; 909 size_t from, to; 910 911 page = dio_get_page(dio, sdio); 912 if (IS_ERR(page)) { 913 ret = PTR_ERR(page); 914 goto out; 915 } 916 from = sdio->head ? 0 : sdio->from; 917 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 918 sdio->head++; 919 920 while (from < to) { 921 unsigned this_chunk_bytes; /* # of bytes mapped */ 922 unsigned this_chunk_blocks; /* # of blocks */ 923 unsigned u; 924 925 if (sdio->blocks_available == 0) { 926 /* 927 * Need to go and map some more disk 928 */ 929 unsigned long blkmask; 930 unsigned long dio_remainder; 931 932 ret = get_more_blocks(dio, sdio, map_bh); 933 if (ret) { 934 page_cache_release(page); 935 goto out; 936 } 937 if (!buffer_mapped(map_bh)) 938 goto do_holes; 939 940 sdio->blocks_available = 941 map_bh->b_size >> sdio->blkbits; 942 sdio->next_block_for_io = 943 map_bh->b_blocknr << sdio->blkfactor; 944 if (buffer_new(map_bh)) 945 clean_blockdev_aliases(dio, map_bh); 946 947 if (!sdio->blkfactor) 948 goto do_holes; 949 950 blkmask = (1 << sdio->blkfactor) - 1; 951 dio_remainder = (sdio->block_in_file & blkmask); 952 953 /* 954 * If we are at the start of IO and that IO 955 * starts partway into a fs-block, 956 * dio_remainder will be non-zero. If the IO 957 * is a read then we can simply advance the IO 958 * cursor to the first block which is to be 959 * read. But if the IO is a write and the 960 * block was newly allocated we cannot do that; 961 * the start of the fs block must be zeroed out 962 * on-disk 963 */ 964 if (!buffer_new(map_bh)) 965 sdio->next_block_for_io += dio_remainder; 966 sdio->blocks_available -= dio_remainder; 967 } 968do_holes: 969 /* Handle holes */ 970 if (!buffer_mapped(map_bh)) { 971 loff_t i_size_aligned; 972 973 /* AKPM: eargh, -ENOTBLK is a hack */ 974 if (dio->rw & WRITE) { 975 page_cache_release(page); 976 return -ENOTBLK; 977 } 978 979 /* 980 * Be sure to account for a partial block as the 981 * last block in the file 982 */ 983 i_size_aligned = ALIGN(i_size_read(dio->inode), 984 1 << blkbits); 985 if (sdio->block_in_file >= 986 i_size_aligned >> blkbits) { 987 /* We hit eof */ 988 page_cache_release(page); 989 goto out; 990 } 991 zero_user(page, from, 1 << blkbits); 992 sdio->block_in_file++; 993 from += 1 << blkbits; 994 dio->result += 1 << blkbits; 995 goto next_block; 996 } 997 998 /* 999 * If we're performing IO which has an alignment which 1000 * is finer than the underlying fs, go check to see if 1001 * we must zero out the start of this block. 1002 */ 1003 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1004 dio_zero_block(dio, sdio, 0, map_bh); 1005 1006 /* 1007 * Work out, in this_chunk_blocks, how much disk we 1008 * can add to this page 1009 */ 1010 this_chunk_blocks = sdio->blocks_available; 1011 u = (to - from) >> blkbits; 1012 if (this_chunk_blocks > u) 1013 this_chunk_blocks = u; 1014 u = sdio->final_block_in_request - sdio->block_in_file; 1015 if (this_chunk_blocks > u) 1016 this_chunk_blocks = u; 1017 this_chunk_bytes = this_chunk_blocks << blkbits; 1018 BUG_ON(this_chunk_bytes == 0); 1019 1020 if (this_chunk_blocks == sdio->blocks_available) 1021 sdio->boundary = buffer_boundary(map_bh); 1022 ret = submit_page_section(dio, sdio, page, 1023 from, 1024 this_chunk_bytes, 1025 sdio->next_block_for_io, 1026 map_bh); 1027 if (ret) { 1028 page_cache_release(page); 1029 goto out; 1030 } 1031 sdio->next_block_for_io += this_chunk_blocks; 1032 1033 sdio->block_in_file += this_chunk_blocks; 1034 from += this_chunk_bytes; 1035 dio->result += this_chunk_bytes; 1036 sdio->blocks_available -= this_chunk_blocks; 1037next_block: 1038 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1039 if (sdio->block_in_file == sdio->final_block_in_request) 1040 break; 1041 } 1042 1043 /* Drop the ref which was taken in get_user_pages() */ 1044 page_cache_release(page); 1045 } 1046out: 1047 return ret; 1048} 1049 1050static inline int drop_refcount(struct dio *dio) 1051{ 1052 int ret2; 1053 unsigned long flags; 1054 1055 /* 1056 * Sync will always be dropping the final ref and completing the 1057 * operation. AIO can if it was a broken operation described above or 1058 * in fact if all the bios race to complete before we get here. In 1059 * that case dio_complete() translates the EIOCBQUEUED into the proper 1060 * return code that the caller will hand to ->complete(). 1061 * 1062 * This is managed by the bio_lock instead of being an atomic_t so that 1063 * completion paths can drop their ref and use the remaining count to 1064 * decide to wake the submission path atomically. 1065 */ 1066 spin_lock_irqsave(&dio->bio_lock, flags); 1067 ret2 = --dio->refcount; 1068 spin_unlock_irqrestore(&dio->bio_lock, flags); 1069 return ret2; 1070} 1071 1072/* 1073 * This is a library function for use by filesystem drivers. 1074 * 1075 * The locking rules are governed by the flags parameter: 1076 * - if the flags value contains DIO_LOCKING we use a fancy locking 1077 * scheme for dumb filesystems. 1078 * For writes this function is called under i_mutex and returns with 1079 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1080 * taken and dropped again before returning. 1081 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1082 * internal locking but rather rely on the filesystem to synchronize 1083 * direct I/O reads/writes versus each other and truncate. 1084 * 1085 * To help with locking against truncate we incremented the i_dio_count 1086 * counter before starting direct I/O, and decrement it once we are done. 1087 * Truncate can wait for it to reach zero to provide exclusion. It is 1088 * expected that filesystem provide exclusion between new direct I/O 1089 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1090 * but other filesystems need to take care of this on their own. 1091 * 1092 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1093 * is always inlined. Otherwise gcc is unable to split the structure into 1094 * individual fields and will generate much worse code. This is important 1095 * for the whole file. 1096 */ 1097static inline ssize_t 1098do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1099 struct block_device *bdev, struct iov_iter *iter, 1100 loff_t offset, get_block_t get_block, dio_iodone_t end_io, 1101 dio_submit_t submit_io, int flags) 1102{ 1103 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1104 unsigned blkbits = i_blkbits; 1105 unsigned blocksize_mask = (1 << blkbits) - 1; 1106 ssize_t retval = -EINVAL; 1107 size_t count = iov_iter_count(iter); 1108 loff_t end = offset + count; 1109 struct dio *dio; 1110 struct dio_submit sdio = { 0, }; 1111 struct buffer_head map_bh = { 0, }; 1112 struct blk_plug plug; 1113 unsigned long align = offset | iov_iter_alignment(iter); 1114 1115 /* 1116 * Avoid references to bdev if not absolutely needed to give 1117 * the early prefetch in the caller enough time. 1118 */ 1119 1120 if (align & blocksize_mask) { 1121 if (bdev) 1122 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1123 blocksize_mask = (1 << blkbits) - 1; 1124 if (align & blocksize_mask) 1125 goto out; 1126 } 1127 1128 /* watch out for a 0 len io from a tricksy fs */ 1129 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1130 return 0; 1131 1132 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1133 retval = -ENOMEM; 1134 if (!dio) 1135 goto out; 1136 /* 1137 * Believe it or not, zeroing out the page array caused a .5% 1138 * performance regression in a database benchmark. So, we take 1139 * care to only zero out what's needed. 1140 */ 1141 memset(dio, 0, offsetof(struct dio, pages)); 1142 1143 dio->flags = flags; 1144 if (dio->flags & DIO_LOCKING) { 1145 if (iov_iter_rw(iter) == READ) { 1146 struct address_space *mapping = 1147 iocb->ki_filp->f_mapping; 1148 1149 /* will be released by direct_io_worker */ 1150 mutex_lock(&inode->i_mutex); 1151 1152 retval = filemap_write_and_wait_range(mapping, offset, 1153 end - 1); 1154 if (retval) { 1155 mutex_unlock(&inode->i_mutex); 1156 kmem_cache_free(dio_cache, dio); 1157 goto out; 1158 } 1159 } 1160 } 1161 1162 /* Once we sampled i_size check for reads beyond EOF */ 1163 dio->i_size = i_size_read(inode); 1164 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1165 if (dio->flags & DIO_LOCKING) 1166 mutex_unlock(&inode->i_mutex); 1167 kmem_cache_free(dio_cache, dio); 1168 retval = 0; 1169 goto out; 1170 } 1171 1172 /* 1173 * For file extending writes updating i_size before data writeouts 1174 * complete can expose uninitialized blocks in dumb filesystems. 1175 * In that case we need to wait for I/O completion even if asked 1176 * for an asynchronous write. 1177 */ 1178 if (is_sync_kiocb(iocb)) 1179 dio->is_async = false; 1180 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1181 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1182 dio->is_async = false; 1183 else 1184 dio->is_async = true; 1185 1186 dio->inode = inode; 1187 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ; 1188 1189 /* 1190 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1191 * so that we can call ->fsync. 1192 */ 1193 if (dio->is_async && iov_iter_rw(iter) == WRITE && 1194 ((iocb->ki_filp->f_flags & O_DSYNC) || 1195 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1196 retval = dio_set_defer_completion(dio); 1197 if (retval) { 1198 /* 1199 * We grab i_mutex only for reads so we don't have 1200 * to release it here 1201 */ 1202 kmem_cache_free(dio_cache, dio); 1203 goto out; 1204 } 1205 } 1206 1207 /* 1208 * Will be decremented at I/O completion time. 1209 */ 1210 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 1211 inode_dio_begin(inode); 1212 1213 retval = 0; 1214 sdio.blkbits = blkbits; 1215 sdio.blkfactor = i_blkbits - blkbits; 1216 sdio.block_in_file = offset >> blkbits; 1217 1218 sdio.get_block = get_block; 1219 dio->end_io = end_io; 1220 sdio.submit_io = submit_io; 1221 sdio.final_block_in_bio = -1; 1222 sdio.next_block_for_io = -1; 1223 1224 dio->iocb = iocb; 1225 1226 spin_lock_init(&dio->bio_lock); 1227 dio->refcount = 1; 1228 1229 sdio.iter = iter; 1230 sdio.final_block_in_request = 1231 (offset + iov_iter_count(iter)) >> blkbits; 1232 1233 /* 1234 * In case of non-aligned buffers, we may need 2 more 1235 * pages since we need to zero out first and last block. 1236 */ 1237 if (unlikely(sdio.blkfactor)) 1238 sdio.pages_in_io = 2; 1239 1240 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1241 1242 blk_start_plug(&plug); 1243 1244 retval = do_direct_IO(dio, &sdio, &map_bh); 1245 if (retval) 1246 dio_cleanup(dio, &sdio); 1247 1248 if (retval == -ENOTBLK) { 1249 /* 1250 * The remaining part of the request will be 1251 * be handled by buffered I/O when we return 1252 */ 1253 retval = 0; 1254 } 1255 /* 1256 * There may be some unwritten disk at the end of a part-written 1257 * fs-block-sized block. Go zero that now. 1258 */ 1259 dio_zero_block(dio, &sdio, 1, &map_bh); 1260 1261 if (sdio.cur_page) { 1262 ssize_t ret2; 1263 1264 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1265 if (retval == 0) 1266 retval = ret2; 1267 page_cache_release(sdio.cur_page); 1268 sdio.cur_page = NULL; 1269 } 1270 if (sdio.bio) 1271 dio_bio_submit(dio, &sdio); 1272 1273 blk_finish_plug(&plug); 1274 1275 /* 1276 * It is possible that, we return short IO due to end of file. 1277 * In that case, we need to release all the pages we got hold on. 1278 */ 1279 dio_cleanup(dio, &sdio); 1280 1281 /* 1282 * All block lookups have been performed. For READ requests 1283 * we can let i_mutex go now that its achieved its purpose 1284 * of protecting us from looking up uninitialized blocks. 1285 */ 1286 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1287 mutex_unlock(&dio->inode->i_mutex); 1288 1289 /* 1290 * The only time we want to leave bios in flight is when a successful 1291 * partial aio read or full aio write have been setup. In that case 1292 * bio completion will call aio_complete. The only time it's safe to 1293 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1294 * This had *better* be the only place that raises -EIOCBQUEUED. 1295 */ 1296 BUG_ON(retval == -EIOCBQUEUED); 1297 if (dio->is_async && retval == 0 && dio->result && 1298 (iov_iter_rw(iter) == READ || dio->result == count)) 1299 retval = -EIOCBQUEUED; 1300 else 1301 dio_await_completion(dio); 1302 1303 if (drop_refcount(dio) == 0) { 1304 retval = dio_complete(dio, offset, retval, false); 1305 } else 1306 BUG_ON(retval != -EIOCBQUEUED); 1307 1308out: 1309 return retval; 1310} 1311 1312ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1313 struct block_device *bdev, struct iov_iter *iter, 1314 loff_t offset, get_block_t get_block, 1315 dio_iodone_t end_io, dio_submit_t submit_io, 1316 int flags) 1317{ 1318 /* 1319 * The block device state is needed in the end to finally 1320 * submit everything. Since it's likely to be cache cold 1321 * prefetch it here as first thing to hide some of the 1322 * latency. 1323 * 1324 * Attempt to prefetch the pieces we likely need later. 1325 */ 1326 prefetch(&bdev->bd_disk->part_tbl); 1327 prefetch(bdev->bd_queue); 1328 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1329 1330 return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block, 1331 end_io, submit_io, flags); 1332} 1333 1334EXPORT_SYMBOL(__blockdev_direct_IO); 1335 1336static __init int dio_init(void) 1337{ 1338 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1339 return 0; 1340} 1341module_init(dio_init) 1342