1/* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9/* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17#include <linux/syscalls.h> 18#include <linux/string.h> 19#include <linux/mm.h> 20#include <linux/fs.h> 21#include <linux/fsnotify.h> 22#include <linux/slab.h> 23#include <linux/init.h> 24#include <linux/hash.h> 25#include <linux/cache.h> 26#include <linux/export.h> 27#include <linux/mount.h> 28#include <linux/file.h> 29#include <asm/uaccess.h> 30#include <linux/security.h> 31#include <linux/seqlock.h> 32#include <linux/swap.h> 33#include <linux/bootmem.h> 34#include <linux/fs_struct.h> 35#include <linux/hardirq.h> 36#include <linux/bit_spinlock.h> 37#include <linux/rculist_bl.h> 38#include <linux/prefetch.h> 39#include <linux/ratelimit.h> 40#include <linux/list_lru.h> 41#include <linux/kasan.h> 42 43#include "internal.h" 44#include "mount.h" 45 46/* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84int sysctl_vfs_cache_pressure __read_mostly = 100; 85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89EXPORT_SYMBOL(rename_lock); 90 91static struct kmem_cache *dentry_cache __read_mostly; 92 93/* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102static unsigned int d_hash_mask __read_mostly; 103static unsigned int d_hash_shift __read_mostly; 104 105static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109{ 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return dentry_hashtable + hash_32(hash, d_hash_shift); 112} 113 114/* Statistics gathering. */ 115struct dentry_stat_t dentry_stat = { 116 .age_limit = 45, 117}; 118 119static DEFINE_PER_CPU(long, nr_dentry); 120static DEFINE_PER_CPU(long, nr_dentry_unused); 121 122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 124/* 125 * Here we resort to our own counters instead of using generic per-cpu counters 126 * for consistency with what the vfs inode code does. We are expected to harvest 127 * better code and performance by having our own specialized counters. 128 * 129 * Please note that the loop is done over all possible CPUs, not over all online 130 * CPUs. The reason for this is that we don't want to play games with CPUs going 131 * on and off. If one of them goes off, we will just keep their counters. 132 * 133 * glommer: See cffbc8a for details, and if you ever intend to change this, 134 * please update all vfs counters to match. 135 */ 136static long get_nr_dentry(void) 137{ 138 int i; 139 long sum = 0; 140 for_each_possible_cpu(i) 141 sum += per_cpu(nr_dentry, i); 142 return sum < 0 ? 0 : sum; 143} 144 145static long get_nr_dentry_unused(void) 146{ 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry_unused, i); 151 return sum < 0 ? 0 : sum; 152} 153 154int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 155 size_t *lenp, loff_t *ppos) 156{ 157 dentry_stat.nr_dentry = get_nr_dentry(); 158 dentry_stat.nr_unused = get_nr_dentry_unused(); 159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 160} 161#endif 162 163/* 164 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 165 * The strings are both count bytes long, and count is non-zero. 166 */ 167#ifdef CONFIG_DCACHE_WORD_ACCESS 168 169#include <asm/word-at-a-time.h> 170/* 171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 172 * aligned allocation for this particular component. We don't 173 * strictly need the load_unaligned_zeropad() safety, but it 174 * doesn't hurt either. 175 * 176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 177 * need the careful unaligned handling. 178 */ 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180{ 181 unsigned long a,b,mask; 182 183 for (;;) { 184 a = *(unsigned long *)cs; 185 b = load_unaligned_zeropad(ct); 186 if (tcount < sizeof(unsigned long)) 187 break; 188 if (unlikely(a != b)) 189 return 1; 190 cs += sizeof(unsigned long); 191 ct += sizeof(unsigned long); 192 tcount -= sizeof(unsigned long); 193 if (!tcount) 194 return 0; 195 } 196 mask = bytemask_from_count(tcount); 197 return unlikely(!!((a ^ b) & mask)); 198} 199 200#else 201 202static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 203{ 204 do { 205 if (*cs != *ct) 206 return 1; 207 cs++; 208 ct++; 209 tcount--; 210 } while (tcount); 211 return 0; 212} 213 214#endif 215 216static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 217{ 218 const unsigned char *cs; 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use ACCESS_ONCE to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 cs = ACCESS_ONCE(dentry->d_name.name); 236 smp_read_barrier_depends(); 237 return dentry_string_cmp(cs, ct, tcount); 238} 239 240struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246}; 247 248static inline struct external_name *external_name(struct dentry *dentry) 249{ 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251} 252 253static void __d_free(struct rcu_head *head) 254{ 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258} 259 260static void __d_free_external(struct rcu_head *head) 261{ 262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 263 kfree(external_name(dentry)); 264 kmem_cache_free(dentry_cache, dentry); 265} 266 267static inline int dname_external(const struct dentry *dentry) 268{ 269 return dentry->d_name.name != dentry->d_iname; 270} 271 272static inline void __d_set_inode_and_type(struct dentry *dentry, 273 struct inode *inode, 274 unsigned type_flags) 275{ 276 unsigned flags; 277 278 dentry->d_inode = inode; 279 flags = READ_ONCE(dentry->d_flags); 280 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 281 flags |= type_flags; 282 WRITE_ONCE(dentry->d_flags, flags); 283} 284 285static inline void __d_clear_type_and_inode(struct dentry *dentry) 286{ 287 unsigned flags = READ_ONCE(dentry->d_flags); 288 289 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 290 WRITE_ONCE(dentry->d_flags, flags); 291 dentry->d_inode = NULL; 292} 293 294static void dentry_free(struct dentry *dentry) 295{ 296 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 297 if (unlikely(dname_external(dentry))) { 298 struct external_name *p = external_name(dentry); 299 if (likely(atomic_dec_and_test(&p->u.count))) { 300 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 301 return; 302 } 303 } 304 /* if dentry was never visible to RCU, immediate free is OK */ 305 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 306 __d_free(&dentry->d_u.d_rcu); 307 else 308 call_rcu(&dentry->d_u.d_rcu, __d_free); 309} 310 311/** 312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups 313 * @dentry: the target dentry 314 * After this call, in-progress rcu-walk path lookup will fail. This 315 * should be called after unhashing, and after changing d_inode (if 316 * the dentry has not already been unhashed). 317 */ 318static inline void dentry_rcuwalk_invalidate(struct dentry *dentry) 319{ 320 lockdep_assert_held(&dentry->d_lock); 321 /* Go through am invalidation barrier */ 322 write_seqcount_invalidate(&dentry->d_seq); 323} 324 325/* 326 * Release the dentry's inode, using the filesystem 327 * d_iput() operation if defined. Dentry has no refcount 328 * and is unhashed. 329 */ 330static void dentry_iput(struct dentry * dentry) 331 __releases(dentry->d_lock) 332 __releases(dentry->d_inode->i_lock) 333{ 334 struct inode *inode = dentry->d_inode; 335 if (inode) { 336 __d_clear_type_and_inode(dentry); 337 hlist_del_init(&dentry->d_u.d_alias); 338 spin_unlock(&dentry->d_lock); 339 spin_unlock(&inode->i_lock); 340 if (!inode->i_nlink) 341 fsnotify_inoderemove(inode); 342 if (dentry->d_op && dentry->d_op->d_iput) 343 dentry->d_op->d_iput(dentry, inode); 344 else 345 iput(inode); 346 } else { 347 spin_unlock(&dentry->d_lock); 348 } 349} 350 351/* 352 * Release the dentry's inode, using the filesystem 353 * d_iput() operation if defined. dentry remains in-use. 354 */ 355static void dentry_unlink_inode(struct dentry * dentry) 356 __releases(dentry->d_lock) 357 __releases(dentry->d_inode->i_lock) 358{ 359 struct inode *inode = dentry->d_inode; 360 361 raw_write_seqcount_begin(&dentry->d_seq); 362 __d_clear_type_and_inode(dentry); 363 hlist_del_init(&dentry->d_u.d_alias); 364 raw_write_seqcount_end(&dentry->d_seq); 365 spin_unlock(&dentry->d_lock); 366 spin_unlock(&inode->i_lock); 367 if (!inode->i_nlink) 368 fsnotify_inoderemove(inode); 369 if (dentry->d_op && dentry->d_op->d_iput) 370 dentry->d_op->d_iput(dentry, inode); 371 else 372 iput(inode); 373} 374 375/* 376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 377 * is in use - which includes both the "real" per-superblock 378 * LRU list _and_ the DCACHE_SHRINK_LIST use. 379 * 380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 381 * on the shrink list (ie not on the superblock LRU list). 382 * 383 * The per-cpu "nr_dentry_unused" counters are updated with 384 * the DCACHE_LRU_LIST bit. 385 * 386 * These helper functions make sure we always follow the 387 * rules. d_lock must be held by the caller. 388 */ 389#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 390static void d_lru_add(struct dentry *dentry) 391{ 392 D_FLAG_VERIFY(dentry, 0); 393 dentry->d_flags |= DCACHE_LRU_LIST; 394 this_cpu_inc(nr_dentry_unused); 395 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 396} 397 398static void d_lru_del(struct dentry *dentry) 399{ 400 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 401 dentry->d_flags &= ~DCACHE_LRU_LIST; 402 this_cpu_dec(nr_dentry_unused); 403 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 404} 405 406static void d_shrink_del(struct dentry *dentry) 407{ 408 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 409 list_del_init(&dentry->d_lru); 410 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 411 this_cpu_dec(nr_dentry_unused); 412} 413 414static void d_shrink_add(struct dentry *dentry, struct list_head *list) 415{ 416 D_FLAG_VERIFY(dentry, 0); 417 list_add(&dentry->d_lru, list); 418 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 419 this_cpu_inc(nr_dentry_unused); 420} 421 422/* 423 * These can only be called under the global LRU lock, ie during the 424 * callback for freeing the LRU list. "isolate" removes it from the 425 * LRU lists entirely, while shrink_move moves it to the indicated 426 * private list. 427 */ 428static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 429{ 430 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 431 dentry->d_flags &= ~DCACHE_LRU_LIST; 432 this_cpu_dec(nr_dentry_unused); 433 list_lru_isolate(lru, &dentry->d_lru); 434} 435 436static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 437 struct list_head *list) 438{ 439 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 440 dentry->d_flags |= DCACHE_SHRINK_LIST; 441 list_lru_isolate_move(lru, &dentry->d_lru, list); 442} 443 444/* 445 * dentry_lru_(add|del)_list) must be called with d_lock held. 446 */ 447static void dentry_lru_add(struct dentry *dentry) 448{ 449 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 450 d_lru_add(dentry); 451} 452 453/** 454 * d_drop - drop a dentry 455 * @dentry: dentry to drop 456 * 457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 458 * be found through a VFS lookup any more. Note that this is different from 459 * deleting the dentry - d_delete will try to mark the dentry negative if 460 * possible, giving a successful _negative_ lookup, while d_drop will 461 * just make the cache lookup fail. 462 * 463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 464 * reason (NFS timeouts or autofs deletes). 465 * 466 * __d_drop requires dentry->d_lock. 467 */ 468void __d_drop(struct dentry *dentry) 469{ 470 if (!d_unhashed(dentry)) { 471 struct hlist_bl_head *b; 472 /* 473 * Hashed dentries are normally on the dentry hashtable, 474 * with the exception of those newly allocated by 475 * d_obtain_alias, which are always IS_ROOT: 476 */ 477 if (unlikely(IS_ROOT(dentry))) 478 b = &dentry->d_sb->s_anon; 479 else 480 b = d_hash(dentry->d_parent, dentry->d_name.hash); 481 482 hlist_bl_lock(b); 483 __hlist_bl_del(&dentry->d_hash); 484 dentry->d_hash.pprev = NULL; 485 hlist_bl_unlock(b); 486 dentry_rcuwalk_invalidate(dentry); 487 } 488} 489EXPORT_SYMBOL(__d_drop); 490 491void d_drop(struct dentry *dentry) 492{ 493 spin_lock(&dentry->d_lock); 494 __d_drop(dentry); 495 spin_unlock(&dentry->d_lock); 496} 497EXPORT_SYMBOL(d_drop); 498 499static void __dentry_kill(struct dentry *dentry) 500{ 501 struct dentry *parent = NULL; 502 bool can_free = true; 503 if (!IS_ROOT(dentry)) 504 parent = dentry->d_parent; 505 506 /* 507 * The dentry is now unrecoverably dead to the world. 508 */ 509 lockref_mark_dead(&dentry->d_lockref); 510 511 /* 512 * inform the fs via d_prune that this dentry is about to be 513 * unhashed and destroyed. 514 */ 515 if (dentry->d_flags & DCACHE_OP_PRUNE) 516 dentry->d_op->d_prune(dentry); 517 518 if (dentry->d_flags & DCACHE_LRU_LIST) { 519 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 520 d_lru_del(dentry); 521 } 522 /* if it was on the hash then remove it */ 523 __d_drop(dentry); 524 __list_del_entry(&dentry->d_child); 525 /* 526 * Inform d_walk() that we are no longer attached to the 527 * dentry tree 528 */ 529 dentry->d_flags |= DCACHE_DENTRY_KILLED; 530 if (parent) 531 spin_unlock(&parent->d_lock); 532 dentry_iput(dentry); 533 /* 534 * dentry_iput drops the locks, at which point nobody (except 535 * transient RCU lookups) can reach this dentry. 536 */ 537 BUG_ON(dentry->d_lockref.count > 0); 538 this_cpu_dec(nr_dentry); 539 if (dentry->d_op && dentry->d_op->d_release) 540 dentry->d_op->d_release(dentry); 541 542 spin_lock(&dentry->d_lock); 543 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 544 dentry->d_flags |= DCACHE_MAY_FREE; 545 can_free = false; 546 } 547 spin_unlock(&dentry->d_lock); 548 if (likely(can_free)) 549 dentry_free(dentry); 550} 551 552/* 553 * Finish off a dentry we've decided to kill. 554 * dentry->d_lock must be held, returns with it unlocked. 555 * If ref is non-zero, then decrement the refcount too. 556 * Returns dentry requiring refcount drop, or NULL if we're done. 557 */ 558static struct dentry *dentry_kill(struct dentry *dentry) 559 __releases(dentry->d_lock) 560{ 561 struct inode *inode = dentry->d_inode; 562 struct dentry *parent = NULL; 563 564 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 565 goto failed; 566 567 if (!IS_ROOT(dentry)) { 568 parent = dentry->d_parent; 569 if (unlikely(!spin_trylock(&parent->d_lock))) { 570 if (inode) 571 spin_unlock(&inode->i_lock); 572 goto failed; 573 } 574 } 575 576 __dentry_kill(dentry); 577 return parent; 578 579failed: 580 spin_unlock(&dentry->d_lock); 581 cpu_relax(); 582 return dentry; /* try again with same dentry */ 583} 584 585static inline struct dentry *lock_parent(struct dentry *dentry) 586{ 587 struct dentry *parent = dentry->d_parent; 588 if (IS_ROOT(dentry)) 589 return NULL; 590 if (unlikely(dentry->d_lockref.count < 0)) 591 return NULL; 592 if (likely(spin_trylock(&parent->d_lock))) 593 return parent; 594 rcu_read_lock(); 595 spin_unlock(&dentry->d_lock); 596again: 597 parent = ACCESS_ONCE(dentry->d_parent); 598 spin_lock(&parent->d_lock); 599 /* 600 * We can't blindly lock dentry until we are sure 601 * that we won't violate the locking order. 602 * Any changes of dentry->d_parent must have 603 * been done with parent->d_lock held, so 604 * spin_lock() above is enough of a barrier 605 * for checking if it's still our child. 606 */ 607 if (unlikely(parent != dentry->d_parent)) { 608 spin_unlock(&parent->d_lock); 609 goto again; 610 } 611 rcu_read_unlock(); 612 if (parent != dentry) 613 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 614 else 615 parent = NULL; 616 return parent; 617} 618 619/* 620 * Try to do a lockless dput(), and return whether that was successful. 621 * 622 * If unsuccessful, we return false, having already taken the dentry lock. 623 * 624 * The caller needs to hold the RCU read lock, so that the dentry is 625 * guaranteed to stay around even if the refcount goes down to zero! 626 */ 627static inline bool fast_dput(struct dentry *dentry) 628{ 629 int ret; 630 unsigned int d_flags; 631 632 /* 633 * If we have a d_op->d_delete() operation, we sould not 634 * let the dentry count go to zero, so use "put_or_lock". 635 */ 636 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 637 return lockref_put_or_lock(&dentry->d_lockref); 638 639 /* 640 * .. otherwise, we can try to just decrement the 641 * lockref optimistically. 642 */ 643 ret = lockref_put_return(&dentry->d_lockref); 644 645 /* 646 * If the lockref_put_return() failed due to the lock being held 647 * by somebody else, the fast path has failed. We will need to 648 * get the lock, and then check the count again. 649 */ 650 if (unlikely(ret < 0)) { 651 spin_lock(&dentry->d_lock); 652 if (dentry->d_lockref.count > 1) { 653 dentry->d_lockref.count--; 654 spin_unlock(&dentry->d_lock); 655 return 1; 656 } 657 return 0; 658 } 659 660 /* 661 * If we weren't the last ref, we're done. 662 */ 663 if (ret) 664 return 1; 665 666 /* 667 * Careful, careful. The reference count went down 668 * to zero, but we don't hold the dentry lock, so 669 * somebody else could get it again, and do another 670 * dput(), and we need to not race with that. 671 * 672 * However, there is a very special and common case 673 * where we don't care, because there is nothing to 674 * do: the dentry is still hashed, it does not have 675 * a 'delete' op, and it's referenced and already on 676 * the LRU list. 677 * 678 * NOTE! Since we aren't locked, these values are 679 * not "stable". However, it is sufficient that at 680 * some point after we dropped the reference the 681 * dentry was hashed and the flags had the proper 682 * value. Other dentry users may have re-gotten 683 * a reference to the dentry and change that, but 684 * our work is done - we can leave the dentry 685 * around with a zero refcount. 686 */ 687 smp_rmb(); 688 d_flags = ACCESS_ONCE(dentry->d_flags); 689 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 690 691 /* Nothing to do? Dropping the reference was all we needed? */ 692 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 693 return 1; 694 695 /* 696 * Not the fast normal case? Get the lock. We've already decremented 697 * the refcount, but we'll need to re-check the situation after 698 * getting the lock. 699 */ 700 spin_lock(&dentry->d_lock); 701 702 /* 703 * Did somebody else grab a reference to it in the meantime, and 704 * we're no longer the last user after all? Alternatively, somebody 705 * else could have killed it and marked it dead. Either way, we 706 * don't need to do anything else. 707 */ 708 if (dentry->d_lockref.count) { 709 spin_unlock(&dentry->d_lock); 710 return 1; 711 } 712 713 /* 714 * Re-get the reference we optimistically dropped. We hold the 715 * lock, and we just tested that it was zero, so we can just 716 * set it to 1. 717 */ 718 dentry->d_lockref.count = 1; 719 return 0; 720} 721 722 723/* 724 * This is dput 725 * 726 * This is complicated by the fact that we do not want to put 727 * dentries that are no longer on any hash chain on the unused 728 * list: we'd much rather just get rid of them immediately. 729 * 730 * However, that implies that we have to traverse the dentry 731 * tree upwards to the parents which might _also_ now be 732 * scheduled for deletion (it may have been only waiting for 733 * its last child to go away). 734 * 735 * This tail recursion is done by hand as we don't want to depend 736 * on the compiler to always get this right (gcc generally doesn't). 737 * Real recursion would eat up our stack space. 738 */ 739 740/* 741 * dput - release a dentry 742 * @dentry: dentry to release 743 * 744 * Release a dentry. This will drop the usage count and if appropriate 745 * call the dentry unlink method as well as removing it from the queues and 746 * releasing its resources. If the parent dentries were scheduled for release 747 * they too may now get deleted. 748 */ 749void dput(struct dentry *dentry) 750{ 751 if (unlikely(!dentry)) 752 return; 753 754repeat: 755 rcu_read_lock(); 756 if (likely(fast_dput(dentry))) { 757 rcu_read_unlock(); 758 return; 759 } 760 761 /* Slow case: now with the dentry lock held */ 762 rcu_read_unlock(); 763 764 /* Unreachable? Get rid of it */ 765 if (unlikely(d_unhashed(dentry))) 766 goto kill_it; 767 768 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 769 goto kill_it; 770 771 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 772 if (dentry->d_op->d_delete(dentry)) 773 goto kill_it; 774 } 775 776 if (!(dentry->d_flags & DCACHE_REFERENCED)) 777 dentry->d_flags |= DCACHE_REFERENCED; 778 dentry_lru_add(dentry); 779 780 dentry->d_lockref.count--; 781 spin_unlock(&dentry->d_lock); 782 return; 783 784kill_it: 785 dentry = dentry_kill(dentry); 786 if (dentry) 787 goto repeat; 788} 789EXPORT_SYMBOL(dput); 790 791 792/* This must be called with d_lock held */ 793static inline void __dget_dlock(struct dentry *dentry) 794{ 795 dentry->d_lockref.count++; 796} 797 798static inline void __dget(struct dentry *dentry) 799{ 800 lockref_get(&dentry->d_lockref); 801} 802 803struct dentry *dget_parent(struct dentry *dentry) 804{ 805 int gotref; 806 struct dentry *ret; 807 808 /* 809 * Do optimistic parent lookup without any 810 * locking. 811 */ 812 rcu_read_lock(); 813 ret = ACCESS_ONCE(dentry->d_parent); 814 gotref = lockref_get_not_zero(&ret->d_lockref); 815 rcu_read_unlock(); 816 if (likely(gotref)) { 817 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 818 return ret; 819 dput(ret); 820 } 821 822repeat: 823 /* 824 * Don't need rcu_dereference because we re-check it was correct under 825 * the lock. 826 */ 827 rcu_read_lock(); 828 ret = dentry->d_parent; 829 spin_lock(&ret->d_lock); 830 if (unlikely(ret != dentry->d_parent)) { 831 spin_unlock(&ret->d_lock); 832 rcu_read_unlock(); 833 goto repeat; 834 } 835 rcu_read_unlock(); 836 BUG_ON(!ret->d_lockref.count); 837 ret->d_lockref.count++; 838 spin_unlock(&ret->d_lock); 839 return ret; 840} 841EXPORT_SYMBOL(dget_parent); 842 843/** 844 * d_find_alias - grab a hashed alias of inode 845 * @inode: inode in question 846 * 847 * If inode has a hashed alias, or is a directory and has any alias, 848 * acquire the reference to alias and return it. Otherwise return NULL. 849 * Notice that if inode is a directory there can be only one alias and 850 * it can be unhashed only if it has no children, or if it is the root 851 * of a filesystem, or if the directory was renamed and d_revalidate 852 * was the first vfs operation to notice. 853 * 854 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 855 * any other hashed alias over that one. 856 */ 857static struct dentry *__d_find_alias(struct inode *inode) 858{ 859 struct dentry *alias, *discon_alias; 860 861again: 862 discon_alias = NULL; 863 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 864 spin_lock(&alias->d_lock); 865 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 866 if (IS_ROOT(alias) && 867 (alias->d_flags & DCACHE_DISCONNECTED)) { 868 discon_alias = alias; 869 } else { 870 __dget_dlock(alias); 871 spin_unlock(&alias->d_lock); 872 return alias; 873 } 874 } 875 spin_unlock(&alias->d_lock); 876 } 877 if (discon_alias) { 878 alias = discon_alias; 879 spin_lock(&alias->d_lock); 880 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 881 __dget_dlock(alias); 882 spin_unlock(&alias->d_lock); 883 return alias; 884 } 885 spin_unlock(&alias->d_lock); 886 goto again; 887 } 888 return NULL; 889} 890 891struct dentry *d_find_alias(struct inode *inode) 892{ 893 struct dentry *de = NULL; 894 895 if (!hlist_empty(&inode->i_dentry)) { 896 spin_lock(&inode->i_lock); 897 de = __d_find_alias(inode); 898 spin_unlock(&inode->i_lock); 899 } 900 return de; 901} 902EXPORT_SYMBOL(d_find_alias); 903 904/* 905 * Try to kill dentries associated with this inode. 906 * WARNING: you must own a reference to inode. 907 */ 908void d_prune_aliases(struct inode *inode) 909{ 910 struct dentry *dentry; 911restart: 912 spin_lock(&inode->i_lock); 913 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 914 spin_lock(&dentry->d_lock); 915 if (!dentry->d_lockref.count) { 916 struct dentry *parent = lock_parent(dentry); 917 if (likely(!dentry->d_lockref.count)) { 918 __dentry_kill(dentry); 919 dput(parent); 920 goto restart; 921 } 922 if (parent) 923 spin_unlock(&parent->d_lock); 924 } 925 spin_unlock(&dentry->d_lock); 926 } 927 spin_unlock(&inode->i_lock); 928} 929EXPORT_SYMBOL(d_prune_aliases); 930 931static void shrink_dentry_list(struct list_head *list) 932{ 933 struct dentry *dentry, *parent; 934 935 while (!list_empty(list)) { 936 struct inode *inode; 937 dentry = list_entry(list->prev, struct dentry, d_lru); 938 spin_lock(&dentry->d_lock); 939 parent = lock_parent(dentry); 940 941 /* 942 * The dispose list is isolated and dentries are not accounted 943 * to the LRU here, so we can simply remove it from the list 944 * here regardless of whether it is referenced or not. 945 */ 946 d_shrink_del(dentry); 947 948 /* 949 * We found an inuse dentry which was not removed from 950 * the LRU because of laziness during lookup. Do not free it. 951 */ 952 if (dentry->d_lockref.count > 0) { 953 spin_unlock(&dentry->d_lock); 954 if (parent) 955 spin_unlock(&parent->d_lock); 956 continue; 957 } 958 959 960 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 961 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 962 spin_unlock(&dentry->d_lock); 963 if (parent) 964 spin_unlock(&parent->d_lock); 965 if (can_free) 966 dentry_free(dentry); 967 continue; 968 } 969 970 inode = dentry->d_inode; 971 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 972 d_shrink_add(dentry, list); 973 spin_unlock(&dentry->d_lock); 974 if (parent) 975 spin_unlock(&parent->d_lock); 976 continue; 977 } 978 979 __dentry_kill(dentry); 980 981 /* 982 * We need to prune ancestors too. This is necessary to prevent 983 * quadratic behavior of shrink_dcache_parent(), but is also 984 * expected to be beneficial in reducing dentry cache 985 * fragmentation. 986 */ 987 dentry = parent; 988 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 989 parent = lock_parent(dentry); 990 if (dentry->d_lockref.count != 1) { 991 dentry->d_lockref.count--; 992 spin_unlock(&dentry->d_lock); 993 if (parent) 994 spin_unlock(&parent->d_lock); 995 break; 996 } 997 inode = dentry->d_inode; /* can't be NULL */ 998 if (unlikely(!spin_trylock(&inode->i_lock))) { 999 spin_unlock(&dentry->d_lock); 1000 if (parent) 1001 spin_unlock(&parent->d_lock); 1002 cpu_relax(); 1003 continue; 1004 } 1005 __dentry_kill(dentry); 1006 dentry = parent; 1007 } 1008 } 1009} 1010 1011static enum lru_status dentry_lru_isolate(struct list_head *item, 1012 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1013{ 1014 struct list_head *freeable = arg; 1015 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1016 1017 1018 /* 1019 * we are inverting the lru lock/dentry->d_lock here, 1020 * so use a trylock. If we fail to get the lock, just skip 1021 * it 1022 */ 1023 if (!spin_trylock(&dentry->d_lock)) 1024 return LRU_SKIP; 1025 1026 /* 1027 * Referenced dentries are still in use. If they have active 1028 * counts, just remove them from the LRU. Otherwise give them 1029 * another pass through the LRU. 1030 */ 1031 if (dentry->d_lockref.count) { 1032 d_lru_isolate(lru, dentry); 1033 spin_unlock(&dentry->d_lock); 1034 return LRU_REMOVED; 1035 } 1036 1037 if (dentry->d_flags & DCACHE_REFERENCED) { 1038 dentry->d_flags &= ~DCACHE_REFERENCED; 1039 spin_unlock(&dentry->d_lock); 1040 1041 /* 1042 * The list move itself will be made by the common LRU code. At 1043 * this point, we've dropped the dentry->d_lock but keep the 1044 * lru lock. This is safe to do, since every list movement is 1045 * protected by the lru lock even if both locks are held. 1046 * 1047 * This is guaranteed by the fact that all LRU management 1048 * functions are intermediated by the LRU API calls like 1049 * list_lru_add and list_lru_del. List movement in this file 1050 * only ever occur through this functions or through callbacks 1051 * like this one, that are called from the LRU API. 1052 * 1053 * The only exceptions to this are functions like 1054 * shrink_dentry_list, and code that first checks for the 1055 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1056 * operating only with stack provided lists after they are 1057 * properly isolated from the main list. It is thus, always a 1058 * local access. 1059 */ 1060 return LRU_ROTATE; 1061 } 1062 1063 d_lru_shrink_move(lru, dentry, freeable); 1064 spin_unlock(&dentry->d_lock); 1065 1066 return LRU_REMOVED; 1067} 1068 1069/** 1070 * prune_dcache_sb - shrink the dcache 1071 * @sb: superblock 1072 * @sc: shrink control, passed to list_lru_shrink_walk() 1073 * 1074 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1075 * is done when we need more memory and called from the superblock shrinker 1076 * function. 1077 * 1078 * This function may fail to free any resources if all the dentries are in 1079 * use. 1080 */ 1081long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1082{ 1083 LIST_HEAD(dispose); 1084 long freed; 1085 1086 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1087 dentry_lru_isolate, &dispose); 1088 shrink_dentry_list(&dispose); 1089 return freed; 1090} 1091 1092static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1093 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1094{ 1095 struct list_head *freeable = arg; 1096 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1097 1098 /* 1099 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1102 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1105 1106 d_lru_shrink_move(lru, dentry, freeable); 1107 spin_unlock(&dentry->d_lock); 1108 1109 return LRU_REMOVED; 1110} 1111 1112 1113/** 1114 * shrink_dcache_sb - shrink dcache for a superblock 1115 * @sb: superblock 1116 * 1117 * Shrink the dcache for the specified super block. This is used to free 1118 * the dcache before unmounting a file system. 1119 */ 1120void shrink_dcache_sb(struct super_block *sb) 1121{ 1122 long freed; 1123 1124 do { 1125 LIST_HEAD(dispose); 1126 1127 freed = list_lru_walk(&sb->s_dentry_lru, 1128 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1129 1130 this_cpu_sub(nr_dentry_unused, freed); 1131 shrink_dentry_list(&dispose); 1132 } while (freed > 0); 1133} 1134EXPORT_SYMBOL(shrink_dcache_sb); 1135 1136/** 1137 * enum d_walk_ret - action to talke during tree walk 1138 * @D_WALK_CONTINUE: contrinue walk 1139 * @D_WALK_QUIT: quit walk 1140 * @D_WALK_NORETRY: quit when retry is needed 1141 * @D_WALK_SKIP: skip this dentry and its children 1142 */ 1143enum d_walk_ret { 1144 D_WALK_CONTINUE, 1145 D_WALK_QUIT, 1146 D_WALK_NORETRY, 1147 D_WALK_SKIP, 1148}; 1149 1150/** 1151 * d_walk - walk the dentry tree 1152 * @parent: start of walk 1153 * @data: data passed to @enter() and @finish() 1154 * @enter: callback when first entering the dentry 1155 * @finish: callback when successfully finished the walk 1156 * 1157 * The @enter() and @finish() callbacks are called with d_lock held. 1158 */ 1159static void d_walk(struct dentry *parent, void *data, 1160 enum d_walk_ret (*enter)(void *, struct dentry *), 1161 void (*finish)(void *)) 1162{ 1163 struct dentry *this_parent; 1164 struct list_head *next; 1165 unsigned seq = 0; 1166 enum d_walk_ret ret; 1167 bool retry = true; 1168 1169again: 1170 read_seqbegin_or_lock(&rename_lock, &seq); 1171 this_parent = parent; 1172 spin_lock(&this_parent->d_lock); 1173 1174 ret = enter(data, this_parent); 1175 switch (ret) { 1176 case D_WALK_CONTINUE: 1177 break; 1178 case D_WALK_QUIT: 1179 case D_WALK_SKIP: 1180 goto out_unlock; 1181 case D_WALK_NORETRY: 1182 retry = false; 1183 break; 1184 } 1185repeat: 1186 next = this_parent->d_subdirs.next; 1187resume: 1188 while (next != &this_parent->d_subdirs) { 1189 struct list_head *tmp = next; 1190 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1191 next = tmp->next; 1192 1193 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1194 1195 ret = enter(data, dentry); 1196 switch (ret) { 1197 case D_WALK_CONTINUE: 1198 break; 1199 case D_WALK_QUIT: 1200 spin_unlock(&dentry->d_lock); 1201 goto out_unlock; 1202 case D_WALK_NORETRY: 1203 retry = false; 1204 break; 1205 case D_WALK_SKIP: 1206 spin_unlock(&dentry->d_lock); 1207 continue; 1208 } 1209 1210 if (!list_empty(&dentry->d_subdirs)) { 1211 spin_unlock(&this_parent->d_lock); 1212 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1213 this_parent = dentry; 1214 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1215 goto repeat; 1216 } 1217 spin_unlock(&dentry->d_lock); 1218 } 1219 /* 1220 * All done at this level ... ascend and resume the search. 1221 */ 1222 rcu_read_lock(); 1223ascend: 1224 if (this_parent != parent) { 1225 struct dentry *child = this_parent; 1226 this_parent = child->d_parent; 1227 1228 spin_unlock(&child->d_lock); 1229 spin_lock(&this_parent->d_lock); 1230 1231 /* might go back up the wrong parent if we have had a rename. */ 1232 if (need_seqretry(&rename_lock, seq)) 1233 goto rename_retry; 1234 /* go into the first sibling still alive */ 1235 do { 1236 next = child->d_child.next; 1237 if (next == &this_parent->d_subdirs) 1238 goto ascend; 1239 child = list_entry(next, struct dentry, d_child); 1240 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1241 rcu_read_unlock(); 1242 goto resume; 1243 } 1244 if (need_seqretry(&rename_lock, seq)) 1245 goto rename_retry; 1246 rcu_read_unlock(); 1247 if (finish) 1248 finish(data); 1249 1250out_unlock: 1251 spin_unlock(&this_parent->d_lock); 1252 done_seqretry(&rename_lock, seq); 1253 return; 1254 1255rename_retry: 1256 spin_unlock(&this_parent->d_lock); 1257 rcu_read_unlock(); 1258 BUG_ON(seq & 1); 1259 if (!retry) 1260 return; 1261 seq = 1; 1262 goto again; 1263} 1264 1265/* 1266 * Search for at least 1 mount point in the dentry's subdirs. 1267 * We descend to the next level whenever the d_subdirs 1268 * list is non-empty and continue searching. 1269 */ 1270 1271static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1272{ 1273 int *ret = data; 1274 if (d_mountpoint(dentry)) { 1275 *ret = 1; 1276 return D_WALK_QUIT; 1277 } 1278 return D_WALK_CONTINUE; 1279} 1280 1281/** 1282 * have_submounts - check for mounts over a dentry 1283 * @parent: dentry to check. 1284 * 1285 * Return true if the parent or its subdirectories contain 1286 * a mount point 1287 */ 1288int have_submounts(struct dentry *parent) 1289{ 1290 int ret = 0; 1291 1292 d_walk(parent, &ret, check_mount, NULL); 1293 1294 return ret; 1295} 1296EXPORT_SYMBOL(have_submounts); 1297 1298/* 1299 * Called by mount code to set a mountpoint and check if the mountpoint is 1300 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1301 * subtree can become unreachable). 1302 * 1303 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1304 * this reason take rename_lock and d_lock on dentry and ancestors. 1305 */ 1306int d_set_mounted(struct dentry *dentry) 1307{ 1308 struct dentry *p; 1309 int ret = -ENOENT; 1310 write_seqlock(&rename_lock); 1311 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1312 /* Need exclusion wrt. d_invalidate() */ 1313 spin_lock(&p->d_lock); 1314 if (unlikely(d_unhashed(p))) { 1315 spin_unlock(&p->d_lock); 1316 goto out; 1317 } 1318 spin_unlock(&p->d_lock); 1319 } 1320 spin_lock(&dentry->d_lock); 1321 if (!d_unlinked(dentry)) { 1322 dentry->d_flags |= DCACHE_MOUNTED; 1323 ret = 0; 1324 } 1325 spin_unlock(&dentry->d_lock); 1326out: 1327 write_sequnlock(&rename_lock); 1328 return ret; 1329} 1330 1331/* 1332 * Search the dentry child list of the specified parent, 1333 * and move any unused dentries to the end of the unused 1334 * list for prune_dcache(). We descend to the next level 1335 * whenever the d_subdirs list is non-empty and continue 1336 * searching. 1337 * 1338 * It returns zero iff there are no unused children, 1339 * otherwise it returns the number of children moved to 1340 * the end of the unused list. This may not be the total 1341 * number of unused children, because select_parent can 1342 * drop the lock and return early due to latency 1343 * constraints. 1344 */ 1345 1346struct select_data { 1347 struct dentry *start; 1348 struct list_head dispose; 1349 int found; 1350}; 1351 1352static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1353{ 1354 struct select_data *data = _data; 1355 enum d_walk_ret ret = D_WALK_CONTINUE; 1356 1357 if (data->start == dentry) 1358 goto out; 1359 1360 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1361 data->found++; 1362 } else { 1363 if (dentry->d_flags & DCACHE_LRU_LIST) 1364 d_lru_del(dentry); 1365 if (!dentry->d_lockref.count) { 1366 d_shrink_add(dentry, &data->dispose); 1367 data->found++; 1368 } 1369 } 1370 /* 1371 * We can return to the caller if we have found some (this 1372 * ensures forward progress). We'll be coming back to find 1373 * the rest. 1374 */ 1375 if (!list_empty(&data->dispose)) 1376 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1377out: 1378 return ret; 1379} 1380 1381/** 1382 * shrink_dcache_parent - prune dcache 1383 * @parent: parent of entries to prune 1384 * 1385 * Prune the dcache to remove unused children of the parent dentry. 1386 */ 1387void shrink_dcache_parent(struct dentry *parent) 1388{ 1389 for (;;) { 1390 struct select_data data; 1391 1392 INIT_LIST_HEAD(&data.dispose); 1393 data.start = parent; 1394 data.found = 0; 1395 1396 d_walk(parent, &data, select_collect, NULL); 1397 if (!data.found) 1398 break; 1399 1400 shrink_dentry_list(&data.dispose); 1401 cond_resched(); 1402 } 1403} 1404EXPORT_SYMBOL(shrink_dcache_parent); 1405 1406static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1407{ 1408 /* it has busy descendents; complain about those instead */ 1409 if (!list_empty(&dentry->d_subdirs)) 1410 return D_WALK_CONTINUE; 1411 1412 /* root with refcount 1 is fine */ 1413 if (dentry == _data && dentry->d_lockref.count == 1) 1414 return D_WALK_CONTINUE; 1415 1416 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1417 " still in use (%d) [unmount of %s %s]\n", 1418 dentry, 1419 dentry->d_inode ? 1420 dentry->d_inode->i_ino : 0UL, 1421 dentry, 1422 dentry->d_lockref.count, 1423 dentry->d_sb->s_type->name, 1424 dentry->d_sb->s_id); 1425 WARN_ON(1); 1426 return D_WALK_CONTINUE; 1427} 1428 1429static void do_one_tree(struct dentry *dentry) 1430{ 1431 shrink_dcache_parent(dentry); 1432 d_walk(dentry, dentry, umount_check, NULL); 1433 d_drop(dentry); 1434 dput(dentry); 1435} 1436 1437/* 1438 * destroy the dentries attached to a superblock on unmounting 1439 */ 1440void shrink_dcache_for_umount(struct super_block *sb) 1441{ 1442 struct dentry *dentry; 1443 1444 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1445 1446 dentry = sb->s_root; 1447 sb->s_root = NULL; 1448 do_one_tree(dentry); 1449 1450 while (!hlist_bl_empty(&sb->s_anon)) { 1451 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1452 do_one_tree(dentry); 1453 } 1454} 1455 1456struct detach_data { 1457 struct select_data select; 1458 struct dentry *mountpoint; 1459}; 1460static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1461{ 1462 struct detach_data *data = _data; 1463 1464 if (d_mountpoint(dentry)) { 1465 __dget_dlock(dentry); 1466 data->mountpoint = dentry; 1467 return D_WALK_QUIT; 1468 } 1469 1470 return select_collect(&data->select, dentry); 1471} 1472 1473static void check_and_drop(void *_data) 1474{ 1475 struct detach_data *data = _data; 1476 1477 if (!data->mountpoint && !data->select.found) 1478 __d_drop(data->select.start); 1479} 1480 1481/** 1482 * d_invalidate - detach submounts, prune dcache, and drop 1483 * @dentry: dentry to invalidate (aka detach, prune and drop) 1484 * 1485 * no dcache lock. 1486 * 1487 * The final d_drop is done as an atomic operation relative to 1488 * rename_lock ensuring there are no races with d_set_mounted. This 1489 * ensures there are no unhashed dentries on the path to a mountpoint. 1490 */ 1491void d_invalidate(struct dentry *dentry) 1492{ 1493 /* 1494 * If it's already been dropped, return OK. 1495 */ 1496 spin_lock(&dentry->d_lock); 1497 if (d_unhashed(dentry)) { 1498 spin_unlock(&dentry->d_lock); 1499 return; 1500 } 1501 spin_unlock(&dentry->d_lock); 1502 1503 /* Negative dentries can be dropped without further checks */ 1504 if (!dentry->d_inode) { 1505 d_drop(dentry); 1506 return; 1507 } 1508 1509 for (;;) { 1510 struct detach_data data; 1511 1512 data.mountpoint = NULL; 1513 INIT_LIST_HEAD(&data.select.dispose); 1514 data.select.start = dentry; 1515 data.select.found = 0; 1516 1517 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1518 1519 if (data.select.found) 1520 shrink_dentry_list(&data.select.dispose); 1521 1522 if (data.mountpoint) { 1523 detach_mounts(data.mountpoint); 1524 dput(data.mountpoint); 1525 } 1526 1527 if (!data.mountpoint && !data.select.found) 1528 break; 1529 1530 cond_resched(); 1531 } 1532} 1533EXPORT_SYMBOL(d_invalidate); 1534 1535/** 1536 * __d_alloc - allocate a dcache entry 1537 * @sb: filesystem it will belong to 1538 * @name: qstr of the name 1539 * 1540 * Allocates a dentry. It returns %NULL if there is insufficient memory 1541 * available. On a success the dentry is returned. The name passed in is 1542 * copied and the copy passed in may be reused after this call. 1543 */ 1544 1545struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1546{ 1547 struct dentry *dentry; 1548 char *dname; 1549 1550 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1551 if (!dentry) 1552 return NULL; 1553 1554 /* 1555 * We guarantee that the inline name is always NUL-terminated. 1556 * This way the memcpy() done by the name switching in rename 1557 * will still always have a NUL at the end, even if we might 1558 * be overwriting an internal NUL character 1559 */ 1560 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1561 if (name->len > DNAME_INLINE_LEN-1) { 1562 size_t size = offsetof(struct external_name, name[1]); 1563 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL); 1564 if (!p) { 1565 kmem_cache_free(dentry_cache, dentry); 1566 return NULL; 1567 } 1568 atomic_set(&p->u.count, 1); 1569 dname = p->name; 1570 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1571 kasan_unpoison_shadow(dname, 1572 round_up(name->len + 1, sizeof(unsigned long))); 1573 } else { 1574 dname = dentry->d_iname; 1575 } 1576 1577 dentry->d_name.len = name->len; 1578 dentry->d_name.hash = name->hash; 1579 memcpy(dname, name->name, name->len); 1580 dname[name->len] = 0; 1581 1582 /* Make sure we always see the terminating NUL character */ 1583 smp_wmb(); 1584 dentry->d_name.name = dname; 1585 1586 dentry->d_lockref.count = 1; 1587 dentry->d_flags = 0; 1588 spin_lock_init(&dentry->d_lock); 1589 seqcount_init(&dentry->d_seq); 1590 dentry->d_inode = NULL; 1591 dentry->d_parent = dentry; 1592 dentry->d_sb = sb; 1593 dentry->d_op = NULL; 1594 dentry->d_fsdata = NULL; 1595 INIT_HLIST_BL_NODE(&dentry->d_hash); 1596 INIT_LIST_HEAD(&dentry->d_lru); 1597 INIT_LIST_HEAD(&dentry->d_subdirs); 1598 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1599 INIT_LIST_HEAD(&dentry->d_child); 1600 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1601 1602 this_cpu_inc(nr_dentry); 1603 1604 return dentry; 1605} 1606 1607/** 1608 * d_alloc - allocate a dcache entry 1609 * @parent: parent of entry to allocate 1610 * @name: qstr of the name 1611 * 1612 * Allocates a dentry. It returns %NULL if there is insufficient memory 1613 * available. On a success the dentry is returned. The name passed in is 1614 * copied and the copy passed in may be reused after this call. 1615 */ 1616struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1617{ 1618 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1619 if (!dentry) 1620 return NULL; 1621 dentry->d_flags |= DCACHE_RCUACCESS; 1622 spin_lock(&parent->d_lock); 1623 /* 1624 * don't need child lock because it is not subject 1625 * to concurrency here 1626 */ 1627 __dget_dlock(parent); 1628 dentry->d_parent = parent; 1629 list_add(&dentry->d_child, &parent->d_subdirs); 1630 spin_unlock(&parent->d_lock); 1631 1632 return dentry; 1633} 1634EXPORT_SYMBOL(d_alloc); 1635 1636/** 1637 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1638 * @sb: the superblock 1639 * @name: qstr of the name 1640 * 1641 * For a filesystem that just pins its dentries in memory and never 1642 * performs lookups at all, return an unhashed IS_ROOT dentry. 1643 */ 1644struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1645{ 1646 return __d_alloc(sb, name); 1647} 1648EXPORT_SYMBOL(d_alloc_pseudo); 1649 1650struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1651{ 1652 struct qstr q; 1653 1654 q.name = name; 1655 q.len = strlen(name); 1656 q.hash = full_name_hash(q.name, q.len); 1657 return d_alloc(parent, &q); 1658} 1659EXPORT_SYMBOL(d_alloc_name); 1660 1661void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1662{ 1663 WARN_ON_ONCE(dentry->d_op); 1664 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1665 DCACHE_OP_COMPARE | 1666 DCACHE_OP_REVALIDATE | 1667 DCACHE_OP_WEAK_REVALIDATE | 1668 DCACHE_OP_DELETE | 1669 DCACHE_OP_SELECT_INODE)); 1670 dentry->d_op = op; 1671 if (!op) 1672 return; 1673 if (op->d_hash) 1674 dentry->d_flags |= DCACHE_OP_HASH; 1675 if (op->d_compare) 1676 dentry->d_flags |= DCACHE_OP_COMPARE; 1677 if (op->d_revalidate) 1678 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1679 if (op->d_weak_revalidate) 1680 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1681 if (op->d_delete) 1682 dentry->d_flags |= DCACHE_OP_DELETE; 1683 if (op->d_prune) 1684 dentry->d_flags |= DCACHE_OP_PRUNE; 1685 if (op->d_select_inode) 1686 dentry->d_flags |= DCACHE_OP_SELECT_INODE; 1687 1688} 1689EXPORT_SYMBOL(d_set_d_op); 1690 1691 1692/* 1693 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1694 * @dentry - The dentry to mark 1695 * 1696 * Mark a dentry as falling through to the lower layer (as set with 1697 * d_pin_lower()). This flag may be recorded on the medium. 1698 */ 1699void d_set_fallthru(struct dentry *dentry) 1700{ 1701 spin_lock(&dentry->d_lock); 1702 dentry->d_flags |= DCACHE_FALLTHRU; 1703 spin_unlock(&dentry->d_lock); 1704} 1705EXPORT_SYMBOL(d_set_fallthru); 1706 1707static unsigned d_flags_for_inode(struct inode *inode) 1708{ 1709 unsigned add_flags = DCACHE_REGULAR_TYPE; 1710 1711 if (!inode) 1712 return DCACHE_MISS_TYPE; 1713 1714 if (S_ISDIR(inode->i_mode)) { 1715 add_flags = DCACHE_DIRECTORY_TYPE; 1716 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1717 if (unlikely(!inode->i_op->lookup)) 1718 add_flags = DCACHE_AUTODIR_TYPE; 1719 else 1720 inode->i_opflags |= IOP_LOOKUP; 1721 } 1722 goto type_determined; 1723 } 1724 1725 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1726 if (unlikely(inode->i_op->follow_link)) { 1727 add_flags = DCACHE_SYMLINK_TYPE; 1728 goto type_determined; 1729 } 1730 inode->i_opflags |= IOP_NOFOLLOW; 1731 } 1732 1733 if (unlikely(!S_ISREG(inode->i_mode))) 1734 add_flags = DCACHE_SPECIAL_TYPE; 1735 1736type_determined: 1737 if (unlikely(IS_AUTOMOUNT(inode))) 1738 add_flags |= DCACHE_NEED_AUTOMOUNT; 1739 return add_flags; 1740} 1741 1742static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1743{ 1744 unsigned add_flags = d_flags_for_inode(inode); 1745 1746 spin_lock(&dentry->d_lock); 1747 if (inode) 1748 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1749 raw_write_seqcount_begin(&dentry->d_seq); 1750 __d_set_inode_and_type(dentry, inode, add_flags); 1751 raw_write_seqcount_end(&dentry->d_seq); 1752 spin_unlock(&dentry->d_lock); 1753 fsnotify_d_instantiate(dentry, inode); 1754} 1755 1756/** 1757 * d_instantiate - fill in inode information for a dentry 1758 * @entry: dentry to complete 1759 * @inode: inode to attach to this dentry 1760 * 1761 * Fill in inode information in the entry. 1762 * 1763 * This turns negative dentries into productive full members 1764 * of society. 1765 * 1766 * NOTE! This assumes that the inode count has been incremented 1767 * (or otherwise set) by the caller to indicate that it is now 1768 * in use by the dcache. 1769 */ 1770 1771void d_instantiate(struct dentry *entry, struct inode * inode) 1772{ 1773 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1774 if (inode) 1775 spin_lock(&inode->i_lock); 1776 __d_instantiate(entry, inode); 1777 if (inode) 1778 spin_unlock(&inode->i_lock); 1779 security_d_instantiate(entry, inode); 1780} 1781EXPORT_SYMBOL(d_instantiate); 1782 1783/** 1784 * d_instantiate_unique - instantiate a non-aliased dentry 1785 * @entry: dentry to instantiate 1786 * @inode: inode to attach to this dentry 1787 * 1788 * Fill in inode information in the entry. On success, it returns NULL. 1789 * If an unhashed alias of "entry" already exists, then we return the 1790 * aliased dentry instead and drop one reference to inode. 1791 * 1792 * Note that in order to avoid conflicts with rename() etc, the caller 1793 * had better be holding the parent directory semaphore. 1794 * 1795 * This also assumes that the inode count has been incremented 1796 * (or otherwise set) by the caller to indicate that it is now 1797 * in use by the dcache. 1798 */ 1799static struct dentry *__d_instantiate_unique(struct dentry *entry, 1800 struct inode *inode) 1801{ 1802 struct dentry *alias; 1803 int len = entry->d_name.len; 1804 const char *name = entry->d_name.name; 1805 unsigned int hash = entry->d_name.hash; 1806 1807 if (!inode) { 1808 __d_instantiate(entry, NULL); 1809 return NULL; 1810 } 1811 1812 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1813 /* 1814 * Don't need alias->d_lock here, because aliases with 1815 * d_parent == entry->d_parent are not subject to name or 1816 * parent changes, because the parent inode i_mutex is held. 1817 */ 1818 if (alias->d_name.hash != hash) 1819 continue; 1820 if (alias->d_parent != entry->d_parent) 1821 continue; 1822 if (alias->d_name.len != len) 1823 continue; 1824 if (dentry_cmp(alias, name, len)) 1825 continue; 1826 __dget(alias); 1827 return alias; 1828 } 1829 1830 __d_instantiate(entry, inode); 1831 return NULL; 1832} 1833 1834struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1835{ 1836 struct dentry *result; 1837 1838 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1839 1840 if (inode) 1841 spin_lock(&inode->i_lock); 1842 result = __d_instantiate_unique(entry, inode); 1843 if (inode) 1844 spin_unlock(&inode->i_lock); 1845 1846 if (!result) { 1847 security_d_instantiate(entry, inode); 1848 return NULL; 1849 } 1850 1851 BUG_ON(!d_unhashed(result)); 1852 iput(inode); 1853 return result; 1854} 1855 1856EXPORT_SYMBOL(d_instantiate_unique); 1857 1858/** 1859 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1860 * @entry: dentry to complete 1861 * @inode: inode to attach to this dentry 1862 * 1863 * Fill in inode information in the entry. If a directory alias is found, then 1864 * return an error (and drop inode). Together with d_materialise_unique() this 1865 * guarantees that a directory inode may never have more than one alias. 1866 */ 1867int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1868{ 1869 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1870 1871 spin_lock(&inode->i_lock); 1872 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1873 spin_unlock(&inode->i_lock); 1874 iput(inode); 1875 return -EBUSY; 1876 } 1877 __d_instantiate(entry, inode); 1878 spin_unlock(&inode->i_lock); 1879 security_d_instantiate(entry, inode); 1880 1881 return 0; 1882} 1883EXPORT_SYMBOL(d_instantiate_no_diralias); 1884 1885struct dentry *d_make_root(struct inode *root_inode) 1886{ 1887 struct dentry *res = NULL; 1888 1889 if (root_inode) { 1890 static const struct qstr name = QSTR_INIT("/", 1); 1891 1892 res = __d_alloc(root_inode->i_sb, &name); 1893 if (res) 1894 d_instantiate(res, root_inode); 1895 else 1896 iput(root_inode); 1897 } 1898 return res; 1899} 1900EXPORT_SYMBOL(d_make_root); 1901 1902static struct dentry * __d_find_any_alias(struct inode *inode) 1903{ 1904 struct dentry *alias; 1905 1906 if (hlist_empty(&inode->i_dentry)) 1907 return NULL; 1908 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1909 __dget(alias); 1910 return alias; 1911} 1912 1913/** 1914 * d_find_any_alias - find any alias for a given inode 1915 * @inode: inode to find an alias for 1916 * 1917 * If any aliases exist for the given inode, take and return a 1918 * reference for one of them. If no aliases exist, return %NULL. 1919 */ 1920struct dentry *d_find_any_alias(struct inode *inode) 1921{ 1922 struct dentry *de; 1923 1924 spin_lock(&inode->i_lock); 1925 de = __d_find_any_alias(inode); 1926 spin_unlock(&inode->i_lock); 1927 return de; 1928} 1929EXPORT_SYMBOL(d_find_any_alias); 1930 1931static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1932{ 1933 static const struct qstr anonstring = QSTR_INIT("/", 1); 1934 struct dentry *tmp; 1935 struct dentry *res; 1936 unsigned add_flags; 1937 1938 if (!inode) 1939 return ERR_PTR(-ESTALE); 1940 if (IS_ERR(inode)) 1941 return ERR_CAST(inode); 1942 1943 res = d_find_any_alias(inode); 1944 if (res) 1945 goto out_iput; 1946 1947 tmp = __d_alloc(inode->i_sb, &anonstring); 1948 if (!tmp) { 1949 res = ERR_PTR(-ENOMEM); 1950 goto out_iput; 1951 } 1952 1953 spin_lock(&inode->i_lock); 1954 res = __d_find_any_alias(inode); 1955 if (res) { 1956 spin_unlock(&inode->i_lock); 1957 dput(tmp); 1958 goto out_iput; 1959 } 1960 1961 /* attach a disconnected dentry */ 1962 add_flags = d_flags_for_inode(inode); 1963 1964 if (disconnected) 1965 add_flags |= DCACHE_DISCONNECTED; 1966 1967 spin_lock(&tmp->d_lock); 1968 __d_set_inode_and_type(tmp, inode, add_flags); 1969 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1970 hlist_bl_lock(&tmp->d_sb->s_anon); 1971 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1972 hlist_bl_unlock(&tmp->d_sb->s_anon); 1973 spin_unlock(&tmp->d_lock); 1974 spin_unlock(&inode->i_lock); 1975 security_d_instantiate(tmp, inode); 1976 1977 return tmp; 1978 1979 out_iput: 1980 if (res && !IS_ERR(res)) 1981 security_d_instantiate(res, inode); 1982 iput(inode); 1983 return res; 1984} 1985 1986/** 1987 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1988 * @inode: inode to allocate the dentry for 1989 * 1990 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1991 * similar open by handle operations. The returned dentry may be anonymous, 1992 * or may have a full name (if the inode was already in the cache). 1993 * 1994 * When called on a directory inode, we must ensure that the inode only ever 1995 * has one dentry. If a dentry is found, that is returned instead of 1996 * allocating a new one. 1997 * 1998 * On successful return, the reference to the inode has been transferred 1999 * to the dentry. In case of an error the reference on the inode is released. 2000 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2001 * be passed in and the error will be propagated to the return value, 2002 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2003 */ 2004struct dentry *d_obtain_alias(struct inode *inode) 2005{ 2006 return __d_obtain_alias(inode, 1); 2007} 2008EXPORT_SYMBOL(d_obtain_alias); 2009 2010/** 2011 * d_obtain_root - find or allocate a dentry for a given inode 2012 * @inode: inode to allocate the dentry for 2013 * 2014 * Obtain an IS_ROOT dentry for the root of a filesystem. 2015 * 2016 * We must ensure that directory inodes only ever have one dentry. If a 2017 * dentry is found, that is returned instead of allocating a new one. 2018 * 2019 * On successful return, the reference to the inode has been transferred 2020 * to the dentry. In case of an error the reference on the inode is 2021 * released. A %NULL or IS_ERR inode may be passed in and will be the 2022 * error will be propagate to the return value, with a %NULL @inode 2023 * replaced by ERR_PTR(-ESTALE). 2024 */ 2025struct dentry *d_obtain_root(struct inode *inode) 2026{ 2027 return __d_obtain_alias(inode, 0); 2028} 2029EXPORT_SYMBOL(d_obtain_root); 2030 2031/** 2032 * d_add_ci - lookup or allocate new dentry with case-exact name 2033 * @inode: the inode case-insensitive lookup has found 2034 * @dentry: the negative dentry that was passed to the parent's lookup func 2035 * @name: the case-exact name to be associated with the returned dentry 2036 * 2037 * This is to avoid filling the dcache with case-insensitive names to the 2038 * same inode, only the actual correct case is stored in the dcache for 2039 * case-insensitive filesystems. 2040 * 2041 * For a case-insensitive lookup match and if the the case-exact dentry 2042 * already exists in in the dcache, use it and return it. 2043 * 2044 * If no entry exists with the exact case name, allocate new dentry with 2045 * the exact case, and return the spliced entry. 2046 */ 2047struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2048 struct qstr *name) 2049{ 2050 struct dentry *found; 2051 struct dentry *new; 2052 2053 /* 2054 * First check if a dentry matching the name already exists, 2055 * if not go ahead and create it now. 2056 */ 2057 found = d_hash_and_lookup(dentry->d_parent, name); 2058 if (!found) { 2059 new = d_alloc(dentry->d_parent, name); 2060 if (!new) { 2061 found = ERR_PTR(-ENOMEM); 2062 } else { 2063 found = d_splice_alias(inode, new); 2064 if (found) { 2065 dput(new); 2066 return found; 2067 } 2068 return new; 2069 } 2070 } 2071 iput(inode); 2072 return found; 2073} 2074EXPORT_SYMBOL(d_add_ci); 2075 2076/* 2077 * Do the slow-case of the dentry name compare. 2078 * 2079 * Unlike the dentry_cmp() function, we need to atomically 2080 * load the name and length information, so that the 2081 * filesystem can rely on them, and can use the 'name' and 2082 * 'len' information without worrying about walking off the 2083 * end of memory etc. 2084 * 2085 * Thus the read_seqcount_retry() and the "duplicate" info 2086 * in arguments (the low-level filesystem should not look 2087 * at the dentry inode or name contents directly, since 2088 * rename can change them while we're in RCU mode). 2089 */ 2090enum slow_d_compare { 2091 D_COMP_OK, 2092 D_COMP_NOMATCH, 2093 D_COMP_SEQRETRY, 2094}; 2095 2096static noinline enum slow_d_compare slow_dentry_cmp( 2097 const struct dentry *parent, 2098 struct dentry *dentry, 2099 unsigned int seq, 2100 const struct qstr *name) 2101{ 2102 int tlen = dentry->d_name.len; 2103 const char *tname = dentry->d_name.name; 2104 2105 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2106 cpu_relax(); 2107 return D_COMP_SEQRETRY; 2108 } 2109 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2110 return D_COMP_NOMATCH; 2111 return D_COMP_OK; 2112} 2113 2114/** 2115 * __d_lookup_rcu - search for a dentry (racy, store-free) 2116 * @parent: parent dentry 2117 * @name: qstr of name we wish to find 2118 * @seqp: returns d_seq value at the point where the dentry was found 2119 * Returns: dentry, or NULL 2120 * 2121 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2122 * resolution (store-free path walking) design described in 2123 * Documentation/filesystems/path-lookup.txt. 2124 * 2125 * This is not to be used outside core vfs. 2126 * 2127 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2128 * held, and rcu_read_lock held. The returned dentry must not be stored into 2129 * without taking d_lock and checking d_seq sequence count against @seq 2130 * returned here. 2131 * 2132 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2133 * function. 2134 * 2135 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2136 * the returned dentry, so long as its parent's seqlock is checked after the 2137 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2138 * is formed, giving integrity down the path walk. 2139 * 2140 * NOTE! The caller *has* to check the resulting dentry against the sequence 2141 * number we've returned before using any of the resulting dentry state! 2142 */ 2143struct dentry *__d_lookup_rcu(const struct dentry *parent, 2144 const struct qstr *name, 2145 unsigned *seqp) 2146{ 2147 u64 hashlen = name->hash_len; 2148 const unsigned char *str = name->name; 2149 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2150 struct hlist_bl_node *node; 2151 struct dentry *dentry; 2152 2153 /* 2154 * Note: There is significant duplication with __d_lookup_rcu which is 2155 * required to prevent single threaded performance regressions 2156 * especially on architectures where smp_rmb (in seqcounts) are costly. 2157 * Keep the two functions in sync. 2158 */ 2159 2160 /* 2161 * The hash list is protected using RCU. 2162 * 2163 * Carefully use d_seq when comparing a candidate dentry, to avoid 2164 * races with d_move(). 2165 * 2166 * It is possible that concurrent renames can mess up our list 2167 * walk here and result in missing our dentry, resulting in the 2168 * false-negative result. d_lookup() protects against concurrent 2169 * renames using rename_lock seqlock. 2170 * 2171 * See Documentation/filesystems/path-lookup.txt for more details. 2172 */ 2173 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2174 unsigned seq; 2175 2176seqretry: 2177 /* 2178 * The dentry sequence count protects us from concurrent 2179 * renames, and thus protects parent and name fields. 2180 * 2181 * The caller must perform a seqcount check in order 2182 * to do anything useful with the returned dentry. 2183 * 2184 * NOTE! We do a "raw" seqcount_begin here. That means that 2185 * we don't wait for the sequence count to stabilize if it 2186 * is in the middle of a sequence change. If we do the slow 2187 * dentry compare, we will do seqretries until it is stable, 2188 * and if we end up with a successful lookup, we actually 2189 * want to exit RCU lookup anyway. 2190 */ 2191 seq = raw_seqcount_begin(&dentry->d_seq); 2192 if (dentry->d_parent != parent) 2193 continue; 2194 if (d_unhashed(dentry)) 2195 continue; 2196 2197 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2198 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2199 continue; 2200 *seqp = seq; 2201 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2202 case D_COMP_OK: 2203 return dentry; 2204 case D_COMP_NOMATCH: 2205 continue; 2206 default: 2207 goto seqretry; 2208 } 2209 } 2210 2211 if (dentry->d_name.hash_len != hashlen) 2212 continue; 2213 *seqp = seq; 2214 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2215 return dentry; 2216 } 2217 return NULL; 2218} 2219 2220/** 2221 * d_lookup - search for a dentry 2222 * @parent: parent dentry 2223 * @name: qstr of name we wish to find 2224 * Returns: dentry, or NULL 2225 * 2226 * d_lookup searches the children of the parent dentry for the name in 2227 * question. If the dentry is found its reference count is incremented and the 2228 * dentry is returned. The caller must use dput to free the entry when it has 2229 * finished using it. %NULL is returned if the dentry does not exist. 2230 */ 2231struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2232{ 2233 struct dentry *dentry; 2234 unsigned seq; 2235 2236 do { 2237 seq = read_seqbegin(&rename_lock); 2238 dentry = __d_lookup(parent, name); 2239 if (dentry) 2240 break; 2241 } while (read_seqretry(&rename_lock, seq)); 2242 return dentry; 2243} 2244EXPORT_SYMBOL(d_lookup); 2245 2246/** 2247 * __d_lookup - search for a dentry (racy) 2248 * @parent: parent dentry 2249 * @name: qstr of name we wish to find 2250 * Returns: dentry, or NULL 2251 * 2252 * __d_lookup is like d_lookup, however it may (rarely) return a 2253 * false-negative result due to unrelated rename activity. 2254 * 2255 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2256 * however it must be used carefully, eg. with a following d_lookup in 2257 * the case of failure. 2258 * 2259 * __d_lookup callers must be commented. 2260 */ 2261struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2262{ 2263 unsigned int len = name->len; 2264 unsigned int hash = name->hash; 2265 const unsigned char *str = name->name; 2266 struct hlist_bl_head *b = d_hash(parent, hash); 2267 struct hlist_bl_node *node; 2268 struct dentry *found = NULL; 2269 struct dentry *dentry; 2270 2271 /* 2272 * Note: There is significant duplication with __d_lookup_rcu which is 2273 * required to prevent single threaded performance regressions 2274 * especially on architectures where smp_rmb (in seqcounts) are costly. 2275 * Keep the two functions in sync. 2276 */ 2277 2278 /* 2279 * The hash list is protected using RCU. 2280 * 2281 * Take d_lock when comparing a candidate dentry, to avoid races 2282 * with d_move(). 2283 * 2284 * It is possible that concurrent renames can mess up our list 2285 * walk here and result in missing our dentry, resulting in the 2286 * false-negative result. d_lookup() protects against concurrent 2287 * renames using rename_lock seqlock. 2288 * 2289 * See Documentation/filesystems/path-lookup.txt for more details. 2290 */ 2291 rcu_read_lock(); 2292 2293 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2294 2295 if (dentry->d_name.hash != hash) 2296 continue; 2297 2298 spin_lock(&dentry->d_lock); 2299 if (dentry->d_parent != parent) 2300 goto next; 2301 if (d_unhashed(dentry)) 2302 goto next; 2303 2304 /* 2305 * It is safe to compare names since d_move() cannot 2306 * change the qstr (protected by d_lock). 2307 */ 2308 if (parent->d_flags & DCACHE_OP_COMPARE) { 2309 int tlen = dentry->d_name.len; 2310 const char *tname = dentry->d_name.name; 2311 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2312 goto next; 2313 } else { 2314 if (dentry->d_name.len != len) 2315 goto next; 2316 if (dentry_cmp(dentry, str, len)) 2317 goto next; 2318 } 2319 2320 dentry->d_lockref.count++; 2321 found = dentry; 2322 spin_unlock(&dentry->d_lock); 2323 break; 2324next: 2325 spin_unlock(&dentry->d_lock); 2326 } 2327 rcu_read_unlock(); 2328 2329 return found; 2330} 2331 2332/** 2333 * d_hash_and_lookup - hash the qstr then search for a dentry 2334 * @dir: Directory to search in 2335 * @name: qstr of name we wish to find 2336 * 2337 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2338 */ 2339struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2340{ 2341 /* 2342 * Check for a fs-specific hash function. Note that we must 2343 * calculate the standard hash first, as the d_op->d_hash() 2344 * routine may choose to leave the hash value unchanged. 2345 */ 2346 name->hash = full_name_hash(name->name, name->len); 2347 if (dir->d_flags & DCACHE_OP_HASH) { 2348 int err = dir->d_op->d_hash(dir, name); 2349 if (unlikely(err < 0)) 2350 return ERR_PTR(err); 2351 } 2352 return d_lookup(dir, name); 2353} 2354EXPORT_SYMBOL(d_hash_and_lookup); 2355 2356/* 2357 * When a file is deleted, we have two options: 2358 * - turn this dentry into a negative dentry 2359 * - unhash this dentry and free it. 2360 * 2361 * Usually, we want to just turn this into 2362 * a negative dentry, but if anybody else is 2363 * currently using the dentry or the inode 2364 * we can't do that and we fall back on removing 2365 * it from the hash queues and waiting for 2366 * it to be deleted later when it has no users 2367 */ 2368 2369/** 2370 * d_delete - delete a dentry 2371 * @dentry: The dentry to delete 2372 * 2373 * Turn the dentry into a negative dentry if possible, otherwise 2374 * remove it from the hash queues so it can be deleted later 2375 */ 2376 2377void d_delete(struct dentry * dentry) 2378{ 2379 struct inode *inode; 2380 int isdir = 0; 2381 /* 2382 * Are we the only user? 2383 */ 2384again: 2385 spin_lock(&dentry->d_lock); 2386 inode = dentry->d_inode; 2387 isdir = S_ISDIR(inode->i_mode); 2388 if (dentry->d_lockref.count == 1) { 2389 if (!spin_trylock(&inode->i_lock)) { 2390 spin_unlock(&dentry->d_lock); 2391 cpu_relax(); 2392 goto again; 2393 } 2394 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2395 dentry_unlink_inode(dentry); 2396 fsnotify_nameremove(dentry, isdir); 2397 return; 2398 } 2399 2400 if (!d_unhashed(dentry)) 2401 __d_drop(dentry); 2402 2403 spin_unlock(&dentry->d_lock); 2404 2405 fsnotify_nameremove(dentry, isdir); 2406} 2407EXPORT_SYMBOL(d_delete); 2408 2409static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2410{ 2411 BUG_ON(!d_unhashed(entry)); 2412 hlist_bl_lock(b); 2413 hlist_bl_add_head_rcu(&entry->d_hash, b); 2414 hlist_bl_unlock(b); 2415} 2416 2417static void _d_rehash(struct dentry * entry) 2418{ 2419 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2420} 2421 2422/** 2423 * d_rehash - add an entry back to the hash 2424 * @entry: dentry to add to the hash 2425 * 2426 * Adds a dentry to the hash according to its name. 2427 */ 2428 2429void d_rehash(struct dentry * entry) 2430{ 2431 spin_lock(&entry->d_lock); 2432 _d_rehash(entry); 2433 spin_unlock(&entry->d_lock); 2434} 2435EXPORT_SYMBOL(d_rehash); 2436 2437/** 2438 * dentry_update_name_case - update case insensitive dentry with a new name 2439 * @dentry: dentry to be updated 2440 * @name: new name 2441 * 2442 * Update a case insensitive dentry with new case of name. 2443 * 2444 * dentry must have been returned by d_lookup with name @name. Old and new 2445 * name lengths must match (ie. no d_compare which allows mismatched name 2446 * lengths). 2447 * 2448 * Parent inode i_mutex must be held over d_lookup and into this call (to 2449 * keep renames and concurrent inserts, and readdir(2) away). 2450 */ 2451void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2452{ 2453 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2454 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2455 2456 spin_lock(&dentry->d_lock); 2457 write_seqcount_begin(&dentry->d_seq); 2458 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2459 write_seqcount_end(&dentry->d_seq); 2460 spin_unlock(&dentry->d_lock); 2461} 2462EXPORT_SYMBOL(dentry_update_name_case); 2463 2464static void swap_names(struct dentry *dentry, struct dentry *target) 2465{ 2466 if (unlikely(dname_external(target))) { 2467 if (unlikely(dname_external(dentry))) { 2468 /* 2469 * Both external: swap the pointers 2470 */ 2471 swap(target->d_name.name, dentry->d_name.name); 2472 } else { 2473 /* 2474 * dentry:internal, target:external. Steal target's 2475 * storage and make target internal. 2476 */ 2477 memcpy(target->d_iname, dentry->d_name.name, 2478 dentry->d_name.len + 1); 2479 dentry->d_name.name = target->d_name.name; 2480 target->d_name.name = target->d_iname; 2481 } 2482 } else { 2483 if (unlikely(dname_external(dentry))) { 2484 /* 2485 * dentry:external, target:internal. Give dentry's 2486 * storage to target and make dentry internal 2487 */ 2488 memcpy(dentry->d_iname, target->d_name.name, 2489 target->d_name.len + 1); 2490 target->d_name.name = dentry->d_name.name; 2491 dentry->d_name.name = dentry->d_iname; 2492 } else { 2493 /* 2494 * Both are internal. 2495 */ 2496 unsigned int i; 2497 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2498 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2499 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2500 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2501 swap(((long *) &dentry->d_iname)[i], 2502 ((long *) &target->d_iname)[i]); 2503 } 2504 } 2505 } 2506 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2507} 2508 2509static void copy_name(struct dentry *dentry, struct dentry *target) 2510{ 2511 struct external_name *old_name = NULL; 2512 if (unlikely(dname_external(dentry))) 2513 old_name = external_name(dentry); 2514 if (unlikely(dname_external(target))) { 2515 atomic_inc(&external_name(target)->u.count); 2516 dentry->d_name = target->d_name; 2517 } else { 2518 memcpy(dentry->d_iname, target->d_name.name, 2519 target->d_name.len + 1); 2520 dentry->d_name.name = dentry->d_iname; 2521 dentry->d_name.hash_len = target->d_name.hash_len; 2522 } 2523 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2524 kfree_rcu(old_name, u.head); 2525} 2526 2527static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2528{ 2529 /* 2530 * XXXX: do we really need to take target->d_lock? 2531 */ 2532 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2533 spin_lock(&target->d_parent->d_lock); 2534 else { 2535 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2536 spin_lock(&dentry->d_parent->d_lock); 2537 spin_lock_nested(&target->d_parent->d_lock, 2538 DENTRY_D_LOCK_NESTED); 2539 } else { 2540 spin_lock(&target->d_parent->d_lock); 2541 spin_lock_nested(&dentry->d_parent->d_lock, 2542 DENTRY_D_LOCK_NESTED); 2543 } 2544 } 2545 if (target < dentry) { 2546 spin_lock_nested(&target->d_lock, 2); 2547 spin_lock_nested(&dentry->d_lock, 3); 2548 } else { 2549 spin_lock_nested(&dentry->d_lock, 2); 2550 spin_lock_nested(&target->d_lock, 3); 2551 } 2552} 2553 2554static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2555{ 2556 if (target->d_parent != dentry->d_parent) 2557 spin_unlock(&dentry->d_parent->d_lock); 2558 if (target->d_parent != target) 2559 spin_unlock(&target->d_parent->d_lock); 2560 spin_unlock(&target->d_lock); 2561 spin_unlock(&dentry->d_lock); 2562} 2563 2564/* 2565 * When switching names, the actual string doesn't strictly have to 2566 * be preserved in the target - because we're dropping the target 2567 * anyway. As such, we can just do a simple memcpy() to copy over 2568 * the new name before we switch, unless we are going to rehash 2569 * it. Note that if we *do* unhash the target, we are not allowed 2570 * to rehash it without giving it a new name/hash key - whether 2571 * we swap or overwrite the names here, resulting name won't match 2572 * the reality in filesystem; it's only there for d_path() purposes. 2573 * Note that all of this is happening under rename_lock, so the 2574 * any hash lookup seeing it in the middle of manipulations will 2575 * be discarded anyway. So we do not care what happens to the hash 2576 * key in that case. 2577 */ 2578/* 2579 * __d_move - move a dentry 2580 * @dentry: entry to move 2581 * @target: new dentry 2582 * @exchange: exchange the two dentries 2583 * 2584 * Update the dcache to reflect the move of a file name. Negative 2585 * dcache entries should not be moved in this way. Caller must hold 2586 * rename_lock, the i_mutex of the source and target directories, 2587 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2588 */ 2589static void __d_move(struct dentry *dentry, struct dentry *target, 2590 bool exchange) 2591{ 2592 if (!dentry->d_inode) 2593 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2594 2595 BUG_ON(d_ancestor(dentry, target)); 2596 BUG_ON(d_ancestor(target, dentry)); 2597 2598 dentry_lock_for_move(dentry, target); 2599 2600 write_seqcount_begin(&dentry->d_seq); 2601 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2602 2603 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2604 2605 /* 2606 * Move the dentry to the target hash queue. Don't bother checking 2607 * for the same hash queue because of how unlikely it is. 2608 */ 2609 __d_drop(dentry); 2610 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2611 2612 /* 2613 * Unhash the target (d_delete() is not usable here). If exchanging 2614 * the two dentries, then rehash onto the other's hash queue. 2615 */ 2616 __d_drop(target); 2617 if (exchange) { 2618 __d_rehash(target, 2619 d_hash(dentry->d_parent, dentry->d_name.hash)); 2620 } 2621 2622 /* Switch the names.. */ 2623 if (exchange) 2624 swap_names(dentry, target); 2625 else 2626 copy_name(dentry, target); 2627 2628 /* ... and switch them in the tree */ 2629 if (IS_ROOT(dentry)) { 2630 /* splicing a tree */ 2631 dentry->d_flags |= DCACHE_RCUACCESS; 2632 dentry->d_parent = target->d_parent; 2633 target->d_parent = target; 2634 list_del_init(&target->d_child); 2635 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2636 } else { 2637 /* swapping two dentries */ 2638 swap(dentry->d_parent, target->d_parent); 2639 list_move(&target->d_child, &target->d_parent->d_subdirs); 2640 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2641 if (exchange) 2642 fsnotify_d_move(target); 2643 fsnotify_d_move(dentry); 2644 } 2645 2646 write_seqcount_end(&target->d_seq); 2647 write_seqcount_end(&dentry->d_seq); 2648 2649 dentry_unlock_for_move(dentry, target); 2650} 2651 2652/* 2653 * d_move - move a dentry 2654 * @dentry: entry to move 2655 * @target: new dentry 2656 * 2657 * Update the dcache to reflect the move of a file name. Negative 2658 * dcache entries should not be moved in this way. See the locking 2659 * requirements for __d_move. 2660 */ 2661void d_move(struct dentry *dentry, struct dentry *target) 2662{ 2663 write_seqlock(&rename_lock); 2664 __d_move(dentry, target, false); 2665 write_sequnlock(&rename_lock); 2666} 2667EXPORT_SYMBOL(d_move); 2668 2669/* 2670 * d_exchange - exchange two dentries 2671 * @dentry1: first dentry 2672 * @dentry2: second dentry 2673 */ 2674void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2675{ 2676 write_seqlock(&rename_lock); 2677 2678 WARN_ON(!dentry1->d_inode); 2679 WARN_ON(!dentry2->d_inode); 2680 WARN_ON(IS_ROOT(dentry1)); 2681 WARN_ON(IS_ROOT(dentry2)); 2682 2683 __d_move(dentry1, dentry2, true); 2684 2685 write_sequnlock(&rename_lock); 2686} 2687 2688/** 2689 * d_ancestor - search for an ancestor 2690 * @p1: ancestor dentry 2691 * @p2: child dentry 2692 * 2693 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2694 * an ancestor of p2, else NULL. 2695 */ 2696struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2697{ 2698 struct dentry *p; 2699 2700 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2701 if (p->d_parent == p1) 2702 return p; 2703 } 2704 return NULL; 2705} 2706 2707/* 2708 * This helper attempts to cope with remotely renamed directories 2709 * 2710 * It assumes that the caller is already holding 2711 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2712 * 2713 * Note: If ever the locking in lock_rename() changes, then please 2714 * remember to update this too... 2715 */ 2716static int __d_unalias(struct inode *inode, 2717 struct dentry *dentry, struct dentry *alias) 2718{ 2719 struct mutex *m1 = NULL, *m2 = NULL; 2720 int ret = -ESTALE; 2721 2722 /* If alias and dentry share a parent, then no extra locks required */ 2723 if (alias->d_parent == dentry->d_parent) 2724 goto out_unalias; 2725 2726 /* See lock_rename() */ 2727 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2728 goto out_err; 2729 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2730 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2731 goto out_err; 2732 m2 = &alias->d_parent->d_inode->i_mutex; 2733out_unalias: 2734 __d_move(alias, dentry, false); 2735 ret = 0; 2736out_err: 2737 spin_unlock(&inode->i_lock); 2738 if (m2) 2739 mutex_unlock(m2); 2740 if (m1) 2741 mutex_unlock(m1); 2742 return ret; 2743} 2744 2745/** 2746 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2747 * @inode: the inode which may have a disconnected dentry 2748 * @dentry: a negative dentry which we want to point to the inode. 2749 * 2750 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2751 * place of the given dentry and return it, else simply d_add the inode 2752 * to the dentry and return NULL. 2753 * 2754 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2755 * we should error out: directories can't have multiple aliases. 2756 * 2757 * This is needed in the lookup routine of any filesystem that is exportable 2758 * (via knfsd) so that we can build dcache paths to directories effectively. 2759 * 2760 * If a dentry was found and moved, then it is returned. Otherwise NULL 2761 * is returned. This matches the expected return value of ->lookup. 2762 * 2763 * Cluster filesystems may call this function with a negative, hashed dentry. 2764 * In that case, we know that the inode will be a regular file, and also this 2765 * will only occur during atomic_open. So we need to check for the dentry 2766 * being already hashed only in the final case. 2767 */ 2768struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2769{ 2770 if (IS_ERR(inode)) 2771 return ERR_CAST(inode); 2772 2773 BUG_ON(!d_unhashed(dentry)); 2774 2775 if (!inode) { 2776 __d_instantiate(dentry, NULL); 2777 goto out; 2778 } 2779 spin_lock(&inode->i_lock); 2780 if (S_ISDIR(inode->i_mode)) { 2781 struct dentry *new = __d_find_any_alias(inode); 2782 if (unlikely(new)) { 2783 write_seqlock(&rename_lock); 2784 if (unlikely(d_ancestor(new, dentry))) { 2785 write_sequnlock(&rename_lock); 2786 spin_unlock(&inode->i_lock); 2787 dput(new); 2788 new = ERR_PTR(-ELOOP); 2789 pr_warn_ratelimited( 2790 "VFS: Lookup of '%s' in %s %s" 2791 " would have caused loop\n", 2792 dentry->d_name.name, 2793 inode->i_sb->s_type->name, 2794 inode->i_sb->s_id); 2795 } else if (!IS_ROOT(new)) { 2796 int err = __d_unalias(inode, dentry, new); 2797 write_sequnlock(&rename_lock); 2798 if (err) { 2799 dput(new); 2800 new = ERR_PTR(err); 2801 } 2802 } else { 2803 __d_move(new, dentry, false); 2804 write_sequnlock(&rename_lock); 2805 spin_unlock(&inode->i_lock); 2806 security_d_instantiate(new, inode); 2807 } 2808 iput(inode); 2809 return new; 2810 } 2811 } 2812 /* already taking inode->i_lock, so d_add() by hand */ 2813 __d_instantiate(dentry, inode); 2814 spin_unlock(&inode->i_lock); 2815out: 2816 security_d_instantiate(dentry, inode); 2817 d_rehash(dentry); 2818 return NULL; 2819} 2820EXPORT_SYMBOL(d_splice_alias); 2821 2822static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2823{ 2824 *buflen -= namelen; 2825 if (*buflen < 0) 2826 return -ENAMETOOLONG; 2827 *buffer -= namelen; 2828 memcpy(*buffer, str, namelen); 2829 return 0; 2830} 2831 2832/** 2833 * prepend_name - prepend a pathname in front of current buffer pointer 2834 * @buffer: buffer pointer 2835 * @buflen: allocated length of the buffer 2836 * @name: name string and length qstr structure 2837 * 2838 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2839 * make sure that either the old or the new name pointer and length are 2840 * fetched. However, there may be mismatch between length and pointer. 2841 * The length cannot be trusted, we need to copy it byte-by-byte until 2842 * the length is reached or a null byte is found. It also prepends "/" at 2843 * the beginning of the name. The sequence number check at the caller will 2844 * retry it again when a d_move() does happen. So any garbage in the buffer 2845 * due to mismatched pointer and length will be discarded. 2846 * 2847 * Data dependency barrier is needed to make sure that we see that terminating 2848 * NUL. Alpha strikes again, film at 11... 2849 */ 2850static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2851{ 2852 const char *dname = ACCESS_ONCE(name->name); 2853 u32 dlen = ACCESS_ONCE(name->len); 2854 char *p; 2855 2856 smp_read_barrier_depends(); 2857 2858 *buflen -= dlen + 1; 2859 if (*buflen < 0) 2860 return -ENAMETOOLONG; 2861 p = *buffer -= dlen + 1; 2862 *p++ = '/'; 2863 while (dlen--) { 2864 char c = *dname++; 2865 if (!c) 2866 break; 2867 *p++ = c; 2868 } 2869 return 0; 2870} 2871 2872/** 2873 * prepend_path - Prepend path string to a buffer 2874 * @path: the dentry/vfsmount to report 2875 * @root: root vfsmnt/dentry 2876 * @buffer: pointer to the end of the buffer 2877 * @buflen: pointer to buffer length 2878 * 2879 * The function will first try to write out the pathname without taking any 2880 * lock other than the RCU read lock to make sure that dentries won't go away. 2881 * It only checks the sequence number of the global rename_lock as any change 2882 * in the dentry's d_seq will be preceded by changes in the rename_lock 2883 * sequence number. If the sequence number had been changed, it will restart 2884 * the whole pathname back-tracing sequence again by taking the rename_lock. 2885 * In this case, there is no need to take the RCU read lock as the recursive 2886 * parent pointer references will keep the dentry chain alive as long as no 2887 * rename operation is performed. 2888 */ 2889static int prepend_path(const struct path *path, 2890 const struct path *root, 2891 char **buffer, int *buflen) 2892{ 2893 struct dentry *dentry; 2894 struct vfsmount *vfsmnt; 2895 struct mount *mnt; 2896 int error = 0; 2897 unsigned seq, m_seq = 0; 2898 char *bptr; 2899 int blen; 2900 2901 rcu_read_lock(); 2902restart_mnt: 2903 read_seqbegin_or_lock(&mount_lock, &m_seq); 2904 seq = 0; 2905 rcu_read_lock(); 2906restart: 2907 bptr = *buffer; 2908 blen = *buflen; 2909 error = 0; 2910 dentry = path->dentry; 2911 vfsmnt = path->mnt; 2912 mnt = real_mount(vfsmnt); 2913 read_seqbegin_or_lock(&rename_lock, &seq); 2914 while (dentry != root->dentry || vfsmnt != root->mnt) { 2915 struct dentry * parent; 2916 2917 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2918 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2919 /* Escaped? */ 2920 if (dentry != vfsmnt->mnt_root) { 2921 bptr = *buffer; 2922 blen = *buflen; 2923 error = 3; 2924 break; 2925 } 2926 /* Global root? */ 2927 if (mnt != parent) { 2928 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2929 mnt = parent; 2930 vfsmnt = &mnt->mnt; 2931 continue; 2932 } 2933 if (!error) 2934 error = is_mounted(vfsmnt) ? 1 : 2; 2935 break; 2936 } 2937 parent = dentry->d_parent; 2938 prefetch(parent); 2939 error = prepend_name(&bptr, &blen, &dentry->d_name); 2940 if (error) 2941 break; 2942 2943 dentry = parent; 2944 } 2945 if (!(seq & 1)) 2946 rcu_read_unlock(); 2947 if (need_seqretry(&rename_lock, seq)) { 2948 seq = 1; 2949 goto restart; 2950 } 2951 done_seqretry(&rename_lock, seq); 2952 2953 if (!(m_seq & 1)) 2954 rcu_read_unlock(); 2955 if (need_seqretry(&mount_lock, m_seq)) { 2956 m_seq = 1; 2957 goto restart_mnt; 2958 } 2959 done_seqretry(&mount_lock, m_seq); 2960 2961 if (error >= 0 && bptr == *buffer) { 2962 if (--blen < 0) 2963 error = -ENAMETOOLONG; 2964 else 2965 *--bptr = '/'; 2966 } 2967 *buffer = bptr; 2968 *buflen = blen; 2969 return error; 2970} 2971 2972/** 2973 * __d_path - return the path of a dentry 2974 * @path: the dentry/vfsmount to report 2975 * @root: root vfsmnt/dentry 2976 * @buf: buffer to return value in 2977 * @buflen: buffer length 2978 * 2979 * Convert a dentry into an ASCII path name. 2980 * 2981 * Returns a pointer into the buffer or an error code if the 2982 * path was too long. 2983 * 2984 * "buflen" should be positive. 2985 * 2986 * If the path is not reachable from the supplied root, return %NULL. 2987 */ 2988char *__d_path(const struct path *path, 2989 const struct path *root, 2990 char *buf, int buflen) 2991{ 2992 char *res = buf + buflen; 2993 int error; 2994 2995 prepend(&res, &buflen, "\0", 1); 2996 error = prepend_path(path, root, &res, &buflen); 2997 2998 if (error < 0) 2999 return ERR_PTR(error); 3000 if (error > 0) 3001 return NULL; 3002 return res; 3003} 3004 3005char *d_absolute_path(const struct path *path, 3006 char *buf, int buflen) 3007{ 3008 struct path root = {}; 3009 char *res = buf + buflen; 3010 int error; 3011 3012 prepend(&res, &buflen, "\0", 1); 3013 error = prepend_path(path, &root, &res, &buflen); 3014 3015 if (error > 1) 3016 error = -EINVAL; 3017 if (error < 0) 3018 return ERR_PTR(error); 3019 return res; 3020} 3021 3022/* 3023 * same as __d_path but appends "(deleted)" for unlinked files. 3024 */ 3025static int path_with_deleted(const struct path *path, 3026 const struct path *root, 3027 char **buf, int *buflen) 3028{ 3029 prepend(buf, buflen, "\0", 1); 3030 if (d_unlinked(path->dentry)) { 3031 int error = prepend(buf, buflen, " (deleted)", 10); 3032 if (error) 3033 return error; 3034 } 3035 3036 return prepend_path(path, root, buf, buflen); 3037} 3038 3039static int prepend_unreachable(char **buffer, int *buflen) 3040{ 3041 return prepend(buffer, buflen, "(unreachable)", 13); 3042} 3043 3044static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3045{ 3046 unsigned seq; 3047 3048 do { 3049 seq = read_seqcount_begin(&fs->seq); 3050 *root = fs->root; 3051 } while (read_seqcount_retry(&fs->seq, seq)); 3052} 3053 3054/** 3055 * d_path - return the path of a dentry 3056 * @path: path to report 3057 * @buf: buffer to return value in 3058 * @buflen: buffer length 3059 * 3060 * Convert a dentry into an ASCII path name. If the entry has been deleted 3061 * the string " (deleted)" is appended. Note that this is ambiguous. 3062 * 3063 * Returns a pointer into the buffer or an error code if the path was 3064 * too long. Note: Callers should use the returned pointer, not the passed 3065 * in buffer, to use the name! The implementation often starts at an offset 3066 * into the buffer, and may leave 0 bytes at the start. 3067 * 3068 * "buflen" should be positive. 3069 */ 3070char *d_path(const struct path *path, char *buf, int buflen) 3071{ 3072 char *res = buf + buflen; 3073 struct path root; 3074 int error; 3075 3076 /* 3077 * We have various synthetic filesystems that never get mounted. On 3078 * these filesystems dentries are never used for lookup purposes, and 3079 * thus don't need to be hashed. They also don't need a name until a 3080 * user wants to identify the object in /proc/pid/fd/. The little hack 3081 * below allows us to generate a name for these objects on demand: 3082 * 3083 * Some pseudo inodes are mountable. When they are mounted 3084 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3085 * and instead have d_path return the mounted path. 3086 */ 3087 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3088 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3089 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3090 3091 rcu_read_lock(); 3092 get_fs_root_rcu(current->fs, &root); 3093 error = path_with_deleted(path, &root, &res, &buflen); 3094 rcu_read_unlock(); 3095 3096 if (error < 0) 3097 res = ERR_PTR(error); 3098 return res; 3099} 3100EXPORT_SYMBOL(d_path); 3101 3102/* 3103 * Helper function for dentry_operations.d_dname() members 3104 */ 3105char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3106 const char *fmt, ...) 3107{ 3108 va_list args; 3109 char temp[64]; 3110 int sz; 3111 3112 va_start(args, fmt); 3113 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3114 va_end(args); 3115 3116 if (sz > sizeof(temp) || sz > buflen) 3117 return ERR_PTR(-ENAMETOOLONG); 3118 3119 buffer += buflen - sz; 3120 return memcpy(buffer, temp, sz); 3121} 3122 3123char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3124{ 3125 char *end = buffer + buflen; 3126 /* these dentries are never renamed, so d_lock is not needed */ 3127 if (prepend(&end, &buflen, " (deleted)", 11) || 3128 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3129 prepend(&end, &buflen, "/", 1)) 3130 end = ERR_PTR(-ENAMETOOLONG); 3131 return end; 3132} 3133EXPORT_SYMBOL(simple_dname); 3134 3135/* 3136 * Write full pathname from the root of the filesystem into the buffer. 3137 */ 3138static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3139{ 3140 struct dentry *dentry; 3141 char *end, *retval; 3142 int len, seq = 0; 3143 int error = 0; 3144 3145 if (buflen < 2) 3146 goto Elong; 3147 3148 rcu_read_lock(); 3149restart: 3150 dentry = d; 3151 end = buf + buflen; 3152 len = buflen; 3153 prepend(&end, &len, "\0", 1); 3154 /* Get '/' right */ 3155 retval = end-1; 3156 *retval = '/'; 3157 read_seqbegin_or_lock(&rename_lock, &seq); 3158 while (!IS_ROOT(dentry)) { 3159 struct dentry *parent = dentry->d_parent; 3160 3161 prefetch(parent); 3162 error = prepend_name(&end, &len, &dentry->d_name); 3163 if (error) 3164 break; 3165 3166 retval = end; 3167 dentry = parent; 3168 } 3169 if (!(seq & 1)) 3170 rcu_read_unlock(); 3171 if (need_seqretry(&rename_lock, seq)) { 3172 seq = 1; 3173 goto restart; 3174 } 3175 done_seqretry(&rename_lock, seq); 3176 if (error) 3177 goto Elong; 3178 return retval; 3179Elong: 3180 return ERR_PTR(-ENAMETOOLONG); 3181} 3182 3183char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3184{ 3185 return __dentry_path(dentry, buf, buflen); 3186} 3187EXPORT_SYMBOL(dentry_path_raw); 3188 3189char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3190{ 3191 char *p = NULL; 3192 char *retval; 3193 3194 if (d_unlinked(dentry)) { 3195 p = buf + buflen; 3196 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3197 goto Elong; 3198 buflen++; 3199 } 3200 retval = __dentry_path(dentry, buf, buflen); 3201 if (!IS_ERR(retval) && p) 3202 *p = '/'; /* restore '/' overriden with '\0' */ 3203 return retval; 3204Elong: 3205 return ERR_PTR(-ENAMETOOLONG); 3206} 3207 3208static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3209 struct path *pwd) 3210{ 3211 unsigned seq; 3212 3213 do { 3214 seq = read_seqcount_begin(&fs->seq); 3215 *root = fs->root; 3216 *pwd = fs->pwd; 3217 } while (read_seqcount_retry(&fs->seq, seq)); 3218} 3219 3220/* 3221 * NOTE! The user-level library version returns a 3222 * character pointer. The kernel system call just 3223 * returns the length of the buffer filled (which 3224 * includes the ending '\0' character), or a negative 3225 * error value. So libc would do something like 3226 * 3227 * char *getcwd(char * buf, size_t size) 3228 * { 3229 * int retval; 3230 * 3231 * retval = sys_getcwd(buf, size); 3232 * if (retval >= 0) 3233 * return buf; 3234 * errno = -retval; 3235 * return NULL; 3236 * } 3237 */ 3238SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3239{ 3240 int error; 3241 struct path pwd, root; 3242 char *page = __getname(); 3243 3244 if (!page) 3245 return -ENOMEM; 3246 3247 rcu_read_lock(); 3248 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3249 3250 error = -ENOENT; 3251 if (!d_unlinked(pwd.dentry)) { 3252 unsigned long len; 3253 char *cwd = page + PATH_MAX; 3254 int buflen = PATH_MAX; 3255 3256 prepend(&cwd, &buflen, "\0", 1); 3257 error = prepend_path(&pwd, &root, &cwd, &buflen); 3258 rcu_read_unlock(); 3259 3260 if (error < 0) 3261 goto out; 3262 3263 /* Unreachable from current root */ 3264 if (error > 0) { 3265 error = prepend_unreachable(&cwd, &buflen); 3266 if (error) 3267 goto out; 3268 } 3269 3270 error = -ERANGE; 3271 len = PATH_MAX + page - cwd; 3272 if (len <= size) { 3273 error = len; 3274 if (copy_to_user(buf, cwd, len)) 3275 error = -EFAULT; 3276 } 3277 } else { 3278 rcu_read_unlock(); 3279 } 3280 3281out: 3282 __putname(page); 3283 return error; 3284} 3285 3286/* 3287 * Test whether new_dentry is a subdirectory of old_dentry. 3288 * 3289 * Trivially implemented using the dcache structure 3290 */ 3291 3292/** 3293 * is_subdir - is new dentry a subdirectory of old_dentry 3294 * @new_dentry: new dentry 3295 * @old_dentry: old dentry 3296 * 3297 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3298 * Returns 0 otherwise. 3299 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3300 */ 3301 3302int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3303{ 3304 int result; 3305 unsigned seq; 3306 3307 if (new_dentry == old_dentry) 3308 return 1; 3309 3310 do { 3311 /* for restarting inner loop in case of seq retry */ 3312 seq = read_seqbegin(&rename_lock); 3313 /* 3314 * Need rcu_readlock to protect against the d_parent trashing 3315 * due to d_move 3316 */ 3317 rcu_read_lock(); 3318 if (d_ancestor(old_dentry, new_dentry)) 3319 result = 1; 3320 else 3321 result = 0; 3322 rcu_read_unlock(); 3323 } while (read_seqretry(&rename_lock, seq)); 3324 3325 return result; 3326} 3327 3328static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3329{ 3330 struct dentry *root = data; 3331 if (dentry != root) { 3332 if (d_unhashed(dentry) || !dentry->d_inode) 3333 return D_WALK_SKIP; 3334 3335 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3336 dentry->d_flags |= DCACHE_GENOCIDE; 3337 dentry->d_lockref.count--; 3338 } 3339 } 3340 return D_WALK_CONTINUE; 3341} 3342 3343void d_genocide(struct dentry *parent) 3344{ 3345 d_walk(parent, parent, d_genocide_kill, NULL); 3346} 3347 3348void d_tmpfile(struct dentry *dentry, struct inode *inode) 3349{ 3350 inode_dec_link_count(inode); 3351 BUG_ON(dentry->d_name.name != dentry->d_iname || 3352 !hlist_unhashed(&dentry->d_u.d_alias) || 3353 !d_unlinked(dentry)); 3354 spin_lock(&dentry->d_parent->d_lock); 3355 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3356 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3357 (unsigned long long)inode->i_ino); 3358 spin_unlock(&dentry->d_lock); 3359 spin_unlock(&dentry->d_parent->d_lock); 3360 d_instantiate(dentry, inode); 3361} 3362EXPORT_SYMBOL(d_tmpfile); 3363 3364static __initdata unsigned long dhash_entries; 3365static int __init set_dhash_entries(char *str) 3366{ 3367 if (!str) 3368 return 0; 3369 dhash_entries = simple_strtoul(str, &str, 0); 3370 return 1; 3371} 3372__setup("dhash_entries=", set_dhash_entries); 3373 3374static void __init dcache_init_early(void) 3375{ 3376 unsigned int loop; 3377 3378 /* If hashes are distributed across NUMA nodes, defer 3379 * hash allocation until vmalloc space is available. 3380 */ 3381 if (hashdist) 3382 return; 3383 3384 dentry_hashtable = 3385 alloc_large_system_hash("Dentry cache", 3386 sizeof(struct hlist_bl_head), 3387 dhash_entries, 3388 13, 3389 HASH_EARLY, 3390 &d_hash_shift, 3391 &d_hash_mask, 3392 0, 3393 0); 3394 3395 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3396 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3397} 3398 3399static void __init dcache_init(void) 3400{ 3401 unsigned int loop; 3402 3403 /* 3404 * A constructor could be added for stable state like the lists, 3405 * but it is probably not worth it because of the cache nature 3406 * of the dcache. 3407 */ 3408 dentry_cache = KMEM_CACHE(dentry, 3409 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3410 3411 /* Hash may have been set up in dcache_init_early */ 3412 if (!hashdist) 3413 return; 3414 3415 dentry_hashtable = 3416 alloc_large_system_hash("Dentry cache", 3417 sizeof(struct hlist_bl_head), 3418 dhash_entries, 3419 13, 3420 0, 3421 &d_hash_shift, 3422 &d_hash_mask, 3423 0, 3424 0); 3425 3426 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3427 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3428} 3429 3430/* SLAB cache for __getname() consumers */ 3431struct kmem_cache *names_cachep __read_mostly; 3432EXPORT_SYMBOL(names_cachep); 3433 3434EXPORT_SYMBOL(d_genocide); 3435 3436void __init vfs_caches_init_early(void) 3437{ 3438 dcache_init_early(); 3439 inode_init_early(); 3440} 3441 3442void __init vfs_caches_init(unsigned long mempages) 3443{ 3444 unsigned long reserve; 3445 3446 /* Base hash sizes on available memory, with a reserve equal to 3447 150% of current kernel size */ 3448 3449 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3450 mempages -= reserve; 3451 3452 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3453 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3454 3455 dcache_init(); 3456 inode_init(); 3457 files_init(mempages); 3458 mnt_init(); 3459 bdev_cache_init(); 3460 chrdev_init(); 3461} 3462