1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
21#include <linux/fsnotify.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/export.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
34#include <linux/fs_struct.h>
35#include <linux/hardirq.h>
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
38#include <linux/prefetch.h>
39#include <linux/ratelimit.h>
40#include <linux/list_lru.h>
41#include <linux/kasan.h>
42
43#include "internal.h"
44#include "mount.h"
45
46/*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 *   - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 *   - the dcache hash table
52 * s_anon bl list spinlock protects:
53 *   - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 *   - the dcache lru lists and counters
56 * d_lock protects:
57 *   - d_flags
58 *   - d_name
59 *   - d_lru
60 *   - d_count
61 *   - d_unhashed()
62 *   - d_parent and d_subdirs
63 *   - childrens' d_child and d_parent
64 *   - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 *   dentry->d_lock
69 *     dentry->d_sb->s_dentry_lru_lock
70 *     dcache_hash_bucket lock
71 *     s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 *   ...
76 *     dentry->d_parent->d_lock
77 *       dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 *   dentry1->d_lock
82 *     dentry2->d_lock
83 */
84int sysctl_vfs_cache_pressure __read_mostly = 100;
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89EXPORT_SYMBOL(rename_lock);
90
91static struct kmem_cache *dentry_cache __read_mostly;
92
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
104
105static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108					unsigned int hash)
109{
110	hash += (unsigned long) parent / L1_CACHE_BYTES;
111	return dentry_hashtable + hash_32(hash, d_hash_shift);
112}
113
114/* Statistics gathering. */
115struct dentry_stat_t dentry_stat = {
116	.age_limit = 45,
117};
118
119static DEFINE_PER_CPU(long, nr_dentry);
120static DEFINE_PER_CPU(long, nr_dentry_unused);
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123
124/*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
136static long get_nr_dentry(void)
137{
138	int i;
139	long sum = 0;
140	for_each_possible_cpu(i)
141		sum += per_cpu(nr_dentry, i);
142	return sum < 0 ? 0 : sum;
143}
144
145static long get_nr_dentry_unused(void)
146{
147	int i;
148	long sum = 0;
149	for_each_possible_cpu(i)
150		sum += per_cpu(nr_dentry_unused, i);
151	return sum < 0 ? 0 : sum;
152}
153
154int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155		   size_t *lenp, loff_t *ppos)
156{
157	dentry_stat.nr_dentry = get_nr_dentry();
158	dentry_stat.nr_unused = get_nr_dentry_unused();
159	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160}
161#endif
162
163/*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
167#ifdef CONFIG_DCACHE_WORD_ACCESS
168
169#include <asm/word-at-a-time.h>
170/*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180{
181	unsigned long a,b,mask;
182
183	for (;;) {
184		a = *(unsigned long *)cs;
185		b = load_unaligned_zeropad(ct);
186		if (tcount < sizeof(unsigned long))
187			break;
188		if (unlikely(a != b))
189			return 1;
190		cs += sizeof(unsigned long);
191		ct += sizeof(unsigned long);
192		tcount -= sizeof(unsigned long);
193		if (!tcount)
194			return 0;
195	}
196	mask = bytemask_from_count(tcount);
197	return unlikely(!!((a ^ b) & mask));
198}
199
200#else
201
202static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203{
204	do {
205		if (*cs != *ct)
206			return 1;
207		cs++;
208		ct++;
209		tcount--;
210	} while (tcount);
211	return 0;
212}
213
214#endif
215
216static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217{
218	const unsigned char *cs;
219	/*
220	 * Be careful about RCU walk racing with rename:
221	 * use ACCESS_ONCE to fetch the name pointer.
222	 *
223	 * NOTE! Even if a rename will mean that the length
224	 * was not loaded atomically, we don't care. The
225	 * RCU walk will check the sequence count eventually,
226	 * and catch it. And we won't overrun the buffer,
227	 * because we're reading the name pointer atomically,
228	 * and a dentry name is guaranteed to be properly
229	 * terminated with a NUL byte.
230	 *
231	 * End result: even if 'len' is wrong, we'll exit
232	 * early because the data cannot match (there can
233	 * be no NUL in the ct/tcount data)
234	 */
235	cs = ACCESS_ONCE(dentry->d_name.name);
236	smp_read_barrier_depends();
237	return dentry_string_cmp(cs, ct, tcount);
238}
239
240struct external_name {
241	union {
242		atomic_t count;
243		struct rcu_head head;
244	} u;
245	unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250	return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
253static void __d_free(struct rcu_head *head)
254{
255	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257	kmem_cache_free(dentry_cache, dentry);
258}
259
260static void __d_free_external(struct rcu_head *head)
261{
262	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263	kfree(external_name(dentry));
264	kmem_cache_free(dentry_cache, dentry);
265}
266
267static inline int dname_external(const struct dentry *dentry)
268{
269	return dentry->d_name.name != dentry->d_iname;
270}
271
272static inline void __d_set_inode_and_type(struct dentry *dentry,
273					  struct inode *inode,
274					  unsigned type_flags)
275{
276	unsigned flags;
277
278	dentry->d_inode = inode;
279	flags = READ_ONCE(dentry->d_flags);
280	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
281	flags |= type_flags;
282	WRITE_ONCE(dentry->d_flags, flags);
283}
284
285static inline void __d_clear_type_and_inode(struct dentry *dentry)
286{
287	unsigned flags = READ_ONCE(dentry->d_flags);
288
289	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
290	WRITE_ONCE(dentry->d_flags, flags);
291	dentry->d_inode = NULL;
292}
293
294static void dentry_free(struct dentry *dentry)
295{
296	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
297	if (unlikely(dname_external(dentry))) {
298		struct external_name *p = external_name(dentry);
299		if (likely(atomic_dec_and_test(&p->u.count))) {
300			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
301			return;
302		}
303	}
304	/* if dentry was never visible to RCU, immediate free is OK */
305	if (!(dentry->d_flags & DCACHE_RCUACCESS))
306		__d_free(&dentry->d_u.d_rcu);
307	else
308		call_rcu(&dentry->d_u.d_rcu, __d_free);
309}
310
311/**
312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
313 * @dentry: the target dentry
314 * After this call, in-progress rcu-walk path lookup will fail. This
315 * should be called after unhashing, and after changing d_inode (if
316 * the dentry has not already been unhashed).
317 */
318static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
319{
320	lockdep_assert_held(&dentry->d_lock);
321	/* Go through am invalidation barrier */
322	write_seqcount_invalidate(&dentry->d_seq);
323}
324
325/*
326 * Release the dentry's inode, using the filesystem
327 * d_iput() operation if defined. Dentry has no refcount
328 * and is unhashed.
329 */
330static void dentry_iput(struct dentry * dentry)
331	__releases(dentry->d_lock)
332	__releases(dentry->d_inode->i_lock)
333{
334	struct inode *inode = dentry->d_inode;
335	if (inode) {
336		__d_clear_type_and_inode(dentry);
337		hlist_del_init(&dentry->d_u.d_alias);
338		spin_unlock(&dentry->d_lock);
339		spin_unlock(&inode->i_lock);
340		if (!inode->i_nlink)
341			fsnotify_inoderemove(inode);
342		if (dentry->d_op && dentry->d_op->d_iput)
343			dentry->d_op->d_iput(dentry, inode);
344		else
345			iput(inode);
346	} else {
347		spin_unlock(&dentry->d_lock);
348	}
349}
350
351/*
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined. dentry remains in-use.
354 */
355static void dentry_unlink_inode(struct dentry * dentry)
356	__releases(dentry->d_lock)
357	__releases(dentry->d_inode->i_lock)
358{
359	struct inode *inode = dentry->d_inode;
360
361	raw_write_seqcount_begin(&dentry->d_seq);
362	__d_clear_type_and_inode(dentry);
363	hlist_del_init(&dentry->d_u.d_alias);
364	raw_write_seqcount_end(&dentry->d_seq);
365	spin_unlock(&dentry->d_lock);
366	spin_unlock(&inode->i_lock);
367	if (!inode->i_nlink)
368		fsnotify_inoderemove(inode);
369	if (dentry->d_op && dentry->d_op->d_iput)
370		dentry->d_op->d_iput(dentry, inode);
371	else
372		iput(inode);
373}
374
375/*
376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377 * is in use - which includes both the "real" per-superblock
378 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 *
380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381 * on the shrink list (ie not on the superblock LRU list).
382 *
383 * The per-cpu "nr_dentry_unused" counters are updated with
384 * the DCACHE_LRU_LIST bit.
385 *
386 * These helper functions make sure we always follow the
387 * rules. d_lock must be held by the caller.
388 */
389#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
390static void d_lru_add(struct dentry *dentry)
391{
392	D_FLAG_VERIFY(dentry, 0);
393	dentry->d_flags |= DCACHE_LRU_LIST;
394	this_cpu_inc(nr_dentry_unused);
395	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396}
397
398static void d_lru_del(struct dentry *dentry)
399{
400	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
401	dentry->d_flags &= ~DCACHE_LRU_LIST;
402	this_cpu_dec(nr_dentry_unused);
403	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404}
405
406static void d_shrink_del(struct dentry *dentry)
407{
408	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409	list_del_init(&dentry->d_lru);
410	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411	this_cpu_dec(nr_dentry_unused);
412}
413
414static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415{
416	D_FLAG_VERIFY(dentry, 0);
417	list_add(&dentry->d_lru, list);
418	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
419	this_cpu_inc(nr_dentry_unused);
420}
421
422/*
423 * These can only be called under the global LRU lock, ie during the
424 * callback for freeing the LRU list. "isolate" removes it from the
425 * LRU lists entirely, while shrink_move moves it to the indicated
426 * private list.
427 */
428static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429{
430	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431	dentry->d_flags &= ~DCACHE_LRU_LIST;
432	this_cpu_dec(nr_dentry_unused);
433	list_lru_isolate(lru, &dentry->d_lru);
434}
435
436static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
437			      struct list_head *list)
438{
439	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440	dentry->d_flags |= DCACHE_SHRINK_LIST;
441	list_lru_isolate_move(lru, &dentry->d_lru, list);
442}
443
444/*
445 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 */
447static void dentry_lru_add(struct dentry *dentry)
448{
449	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450		d_lru_add(dentry);
451}
452
453/**
454 * d_drop - drop a dentry
455 * @dentry: dentry to drop
456 *
457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458 * be found through a VFS lookup any more. Note that this is different from
459 * deleting the dentry - d_delete will try to mark the dentry negative if
460 * possible, giving a successful _negative_ lookup, while d_drop will
461 * just make the cache lookup fail.
462 *
463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464 * reason (NFS timeouts or autofs deletes).
465 *
466 * __d_drop requires dentry->d_lock.
467 */
468void __d_drop(struct dentry *dentry)
469{
470	if (!d_unhashed(dentry)) {
471		struct hlist_bl_head *b;
472		/*
473		 * Hashed dentries are normally on the dentry hashtable,
474		 * with the exception of those newly allocated by
475		 * d_obtain_alias, which are always IS_ROOT:
476		 */
477		if (unlikely(IS_ROOT(dentry)))
478			b = &dentry->d_sb->s_anon;
479		else
480			b = d_hash(dentry->d_parent, dentry->d_name.hash);
481
482		hlist_bl_lock(b);
483		__hlist_bl_del(&dentry->d_hash);
484		dentry->d_hash.pprev = NULL;
485		hlist_bl_unlock(b);
486		dentry_rcuwalk_invalidate(dentry);
487	}
488}
489EXPORT_SYMBOL(__d_drop);
490
491void d_drop(struct dentry *dentry)
492{
493	spin_lock(&dentry->d_lock);
494	__d_drop(dentry);
495	spin_unlock(&dentry->d_lock);
496}
497EXPORT_SYMBOL(d_drop);
498
499static void __dentry_kill(struct dentry *dentry)
500{
501	struct dentry *parent = NULL;
502	bool can_free = true;
503	if (!IS_ROOT(dentry))
504		parent = dentry->d_parent;
505
506	/*
507	 * The dentry is now unrecoverably dead to the world.
508	 */
509	lockref_mark_dead(&dentry->d_lockref);
510
511	/*
512	 * inform the fs via d_prune that this dentry is about to be
513	 * unhashed and destroyed.
514	 */
515	if (dentry->d_flags & DCACHE_OP_PRUNE)
516		dentry->d_op->d_prune(dentry);
517
518	if (dentry->d_flags & DCACHE_LRU_LIST) {
519		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
520			d_lru_del(dentry);
521	}
522	/* if it was on the hash then remove it */
523	__d_drop(dentry);
524	__list_del_entry(&dentry->d_child);
525	/*
526	 * Inform d_walk() that we are no longer attached to the
527	 * dentry tree
528	 */
529	dentry->d_flags |= DCACHE_DENTRY_KILLED;
530	if (parent)
531		spin_unlock(&parent->d_lock);
532	dentry_iput(dentry);
533	/*
534	 * dentry_iput drops the locks, at which point nobody (except
535	 * transient RCU lookups) can reach this dentry.
536	 */
537	BUG_ON(dentry->d_lockref.count > 0);
538	this_cpu_dec(nr_dentry);
539	if (dentry->d_op && dentry->d_op->d_release)
540		dentry->d_op->d_release(dentry);
541
542	spin_lock(&dentry->d_lock);
543	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
544		dentry->d_flags |= DCACHE_MAY_FREE;
545		can_free = false;
546	}
547	spin_unlock(&dentry->d_lock);
548	if (likely(can_free))
549		dentry_free(dentry);
550}
551
552/*
553 * Finish off a dentry we've decided to kill.
554 * dentry->d_lock must be held, returns with it unlocked.
555 * If ref is non-zero, then decrement the refcount too.
556 * Returns dentry requiring refcount drop, or NULL if we're done.
557 */
558static struct dentry *dentry_kill(struct dentry *dentry)
559	__releases(dentry->d_lock)
560{
561	struct inode *inode = dentry->d_inode;
562	struct dentry *parent = NULL;
563
564	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
565		goto failed;
566
567	if (!IS_ROOT(dentry)) {
568		parent = dentry->d_parent;
569		if (unlikely(!spin_trylock(&parent->d_lock))) {
570			if (inode)
571				spin_unlock(&inode->i_lock);
572			goto failed;
573		}
574	}
575
576	__dentry_kill(dentry);
577	return parent;
578
579failed:
580	spin_unlock(&dentry->d_lock);
581	cpu_relax();
582	return dentry; /* try again with same dentry */
583}
584
585static inline struct dentry *lock_parent(struct dentry *dentry)
586{
587	struct dentry *parent = dentry->d_parent;
588	if (IS_ROOT(dentry))
589		return NULL;
590	if (unlikely(dentry->d_lockref.count < 0))
591		return NULL;
592	if (likely(spin_trylock(&parent->d_lock)))
593		return parent;
594	rcu_read_lock();
595	spin_unlock(&dentry->d_lock);
596again:
597	parent = ACCESS_ONCE(dentry->d_parent);
598	spin_lock(&parent->d_lock);
599	/*
600	 * We can't blindly lock dentry until we are sure
601	 * that we won't violate the locking order.
602	 * Any changes of dentry->d_parent must have
603	 * been done with parent->d_lock held, so
604	 * spin_lock() above is enough of a barrier
605	 * for checking if it's still our child.
606	 */
607	if (unlikely(parent != dentry->d_parent)) {
608		spin_unlock(&parent->d_lock);
609		goto again;
610	}
611	rcu_read_unlock();
612	if (parent != dentry)
613		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
614	else
615		parent = NULL;
616	return parent;
617}
618
619/*
620 * Try to do a lockless dput(), and return whether that was successful.
621 *
622 * If unsuccessful, we return false, having already taken the dentry lock.
623 *
624 * The caller needs to hold the RCU read lock, so that the dentry is
625 * guaranteed to stay around even if the refcount goes down to zero!
626 */
627static inline bool fast_dput(struct dentry *dentry)
628{
629	int ret;
630	unsigned int d_flags;
631
632	/*
633	 * If we have a d_op->d_delete() operation, we sould not
634	 * let the dentry count go to zero, so use "put_or_lock".
635	 */
636	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
637		return lockref_put_or_lock(&dentry->d_lockref);
638
639	/*
640	 * .. otherwise, we can try to just decrement the
641	 * lockref optimistically.
642	 */
643	ret = lockref_put_return(&dentry->d_lockref);
644
645	/*
646	 * If the lockref_put_return() failed due to the lock being held
647	 * by somebody else, the fast path has failed. We will need to
648	 * get the lock, and then check the count again.
649	 */
650	if (unlikely(ret < 0)) {
651		spin_lock(&dentry->d_lock);
652		if (dentry->d_lockref.count > 1) {
653			dentry->d_lockref.count--;
654			spin_unlock(&dentry->d_lock);
655			return 1;
656		}
657		return 0;
658	}
659
660	/*
661	 * If we weren't the last ref, we're done.
662	 */
663	if (ret)
664		return 1;
665
666	/*
667	 * Careful, careful. The reference count went down
668	 * to zero, but we don't hold the dentry lock, so
669	 * somebody else could get it again, and do another
670	 * dput(), and we need to not race with that.
671	 *
672	 * However, there is a very special and common case
673	 * where we don't care, because there is nothing to
674	 * do: the dentry is still hashed, it does not have
675	 * a 'delete' op, and it's referenced and already on
676	 * the LRU list.
677	 *
678	 * NOTE! Since we aren't locked, these values are
679	 * not "stable". However, it is sufficient that at
680	 * some point after we dropped the reference the
681	 * dentry was hashed and the flags had the proper
682	 * value. Other dentry users may have re-gotten
683	 * a reference to the dentry and change that, but
684	 * our work is done - we can leave the dentry
685	 * around with a zero refcount.
686	 */
687	smp_rmb();
688	d_flags = ACCESS_ONCE(dentry->d_flags);
689	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
690
691	/* Nothing to do? Dropping the reference was all we needed? */
692	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
693		return 1;
694
695	/*
696	 * Not the fast normal case? Get the lock. We've already decremented
697	 * the refcount, but we'll need to re-check the situation after
698	 * getting the lock.
699	 */
700	spin_lock(&dentry->d_lock);
701
702	/*
703	 * Did somebody else grab a reference to it in the meantime, and
704	 * we're no longer the last user after all? Alternatively, somebody
705	 * else could have killed it and marked it dead. Either way, we
706	 * don't need to do anything else.
707	 */
708	if (dentry->d_lockref.count) {
709		spin_unlock(&dentry->d_lock);
710		return 1;
711	}
712
713	/*
714	 * Re-get the reference we optimistically dropped. We hold the
715	 * lock, and we just tested that it was zero, so we can just
716	 * set it to 1.
717	 */
718	dentry->d_lockref.count = 1;
719	return 0;
720}
721
722
723/*
724 * This is dput
725 *
726 * This is complicated by the fact that we do not want to put
727 * dentries that are no longer on any hash chain on the unused
728 * list: we'd much rather just get rid of them immediately.
729 *
730 * However, that implies that we have to traverse the dentry
731 * tree upwards to the parents which might _also_ now be
732 * scheduled for deletion (it may have been only waiting for
733 * its last child to go away).
734 *
735 * This tail recursion is done by hand as we don't want to depend
736 * on the compiler to always get this right (gcc generally doesn't).
737 * Real recursion would eat up our stack space.
738 */
739
740/*
741 * dput - release a dentry
742 * @dentry: dentry to release
743 *
744 * Release a dentry. This will drop the usage count and if appropriate
745 * call the dentry unlink method as well as removing it from the queues and
746 * releasing its resources. If the parent dentries were scheduled for release
747 * they too may now get deleted.
748 */
749void dput(struct dentry *dentry)
750{
751	if (unlikely(!dentry))
752		return;
753
754repeat:
755	rcu_read_lock();
756	if (likely(fast_dput(dentry))) {
757		rcu_read_unlock();
758		return;
759	}
760
761	/* Slow case: now with the dentry lock held */
762	rcu_read_unlock();
763
764	/* Unreachable? Get rid of it */
765	if (unlikely(d_unhashed(dentry)))
766		goto kill_it;
767
768	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
769		goto kill_it;
770
771	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
772		if (dentry->d_op->d_delete(dentry))
773			goto kill_it;
774	}
775
776	if (!(dentry->d_flags & DCACHE_REFERENCED))
777		dentry->d_flags |= DCACHE_REFERENCED;
778	dentry_lru_add(dentry);
779
780	dentry->d_lockref.count--;
781	spin_unlock(&dentry->d_lock);
782	return;
783
784kill_it:
785	dentry = dentry_kill(dentry);
786	if (dentry)
787		goto repeat;
788}
789EXPORT_SYMBOL(dput);
790
791
792/* This must be called with d_lock held */
793static inline void __dget_dlock(struct dentry *dentry)
794{
795	dentry->d_lockref.count++;
796}
797
798static inline void __dget(struct dentry *dentry)
799{
800	lockref_get(&dentry->d_lockref);
801}
802
803struct dentry *dget_parent(struct dentry *dentry)
804{
805	int gotref;
806	struct dentry *ret;
807
808	/*
809	 * Do optimistic parent lookup without any
810	 * locking.
811	 */
812	rcu_read_lock();
813	ret = ACCESS_ONCE(dentry->d_parent);
814	gotref = lockref_get_not_zero(&ret->d_lockref);
815	rcu_read_unlock();
816	if (likely(gotref)) {
817		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
818			return ret;
819		dput(ret);
820	}
821
822repeat:
823	/*
824	 * Don't need rcu_dereference because we re-check it was correct under
825	 * the lock.
826	 */
827	rcu_read_lock();
828	ret = dentry->d_parent;
829	spin_lock(&ret->d_lock);
830	if (unlikely(ret != dentry->d_parent)) {
831		spin_unlock(&ret->d_lock);
832		rcu_read_unlock();
833		goto repeat;
834	}
835	rcu_read_unlock();
836	BUG_ON(!ret->d_lockref.count);
837	ret->d_lockref.count++;
838	spin_unlock(&ret->d_lock);
839	return ret;
840}
841EXPORT_SYMBOL(dget_parent);
842
843/**
844 * d_find_alias - grab a hashed alias of inode
845 * @inode: inode in question
846 *
847 * If inode has a hashed alias, or is a directory and has any alias,
848 * acquire the reference to alias and return it. Otherwise return NULL.
849 * Notice that if inode is a directory there can be only one alias and
850 * it can be unhashed only if it has no children, or if it is the root
851 * of a filesystem, or if the directory was renamed and d_revalidate
852 * was the first vfs operation to notice.
853 *
854 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
855 * any other hashed alias over that one.
856 */
857static struct dentry *__d_find_alias(struct inode *inode)
858{
859	struct dentry *alias, *discon_alias;
860
861again:
862	discon_alias = NULL;
863	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
864		spin_lock(&alias->d_lock);
865 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
866			if (IS_ROOT(alias) &&
867			    (alias->d_flags & DCACHE_DISCONNECTED)) {
868				discon_alias = alias;
869			} else {
870				__dget_dlock(alias);
871				spin_unlock(&alias->d_lock);
872				return alias;
873			}
874		}
875		spin_unlock(&alias->d_lock);
876	}
877	if (discon_alias) {
878		alias = discon_alias;
879		spin_lock(&alias->d_lock);
880		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
881			__dget_dlock(alias);
882			spin_unlock(&alias->d_lock);
883			return alias;
884		}
885		spin_unlock(&alias->d_lock);
886		goto again;
887	}
888	return NULL;
889}
890
891struct dentry *d_find_alias(struct inode *inode)
892{
893	struct dentry *de = NULL;
894
895	if (!hlist_empty(&inode->i_dentry)) {
896		spin_lock(&inode->i_lock);
897		de = __d_find_alias(inode);
898		spin_unlock(&inode->i_lock);
899	}
900	return de;
901}
902EXPORT_SYMBOL(d_find_alias);
903
904/*
905 *	Try to kill dentries associated with this inode.
906 * WARNING: you must own a reference to inode.
907 */
908void d_prune_aliases(struct inode *inode)
909{
910	struct dentry *dentry;
911restart:
912	spin_lock(&inode->i_lock);
913	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
914		spin_lock(&dentry->d_lock);
915		if (!dentry->d_lockref.count) {
916			struct dentry *parent = lock_parent(dentry);
917			if (likely(!dentry->d_lockref.count)) {
918				__dentry_kill(dentry);
919				dput(parent);
920				goto restart;
921			}
922			if (parent)
923				spin_unlock(&parent->d_lock);
924		}
925		spin_unlock(&dentry->d_lock);
926	}
927	spin_unlock(&inode->i_lock);
928}
929EXPORT_SYMBOL(d_prune_aliases);
930
931static void shrink_dentry_list(struct list_head *list)
932{
933	struct dentry *dentry, *parent;
934
935	while (!list_empty(list)) {
936		struct inode *inode;
937		dentry = list_entry(list->prev, struct dentry, d_lru);
938		spin_lock(&dentry->d_lock);
939		parent = lock_parent(dentry);
940
941		/*
942		 * The dispose list is isolated and dentries are not accounted
943		 * to the LRU here, so we can simply remove it from the list
944		 * here regardless of whether it is referenced or not.
945		 */
946		d_shrink_del(dentry);
947
948		/*
949		 * We found an inuse dentry which was not removed from
950		 * the LRU because of laziness during lookup. Do not free it.
951		 */
952		if (dentry->d_lockref.count > 0) {
953			spin_unlock(&dentry->d_lock);
954			if (parent)
955				spin_unlock(&parent->d_lock);
956			continue;
957		}
958
959
960		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
961			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
962			spin_unlock(&dentry->d_lock);
963			if (parent)
964				spin_unlock(&parent->d_lock);
965			if (can_free)
966				dentry_free(dentry);
967			continue;
968		}
969
970		inode = dentry->d_inode;
971		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
972			d_shrink_add(dentry, list);
973			spin_unlock(&dentry->d_lock);
974			if (parent)
975				spin_unlock(&parent->d_lock);
976			continue;
977		}
978
979		__dentry_kill(dentry);
980
981		/*
982		 * We need to prune ancestors too. This is necessary to prevent
983		 * quadratic behavior of shrink_dcache_parent(), but is also
984		 * expected to be beneficial in reducing dentry cache
985		 * fragmentation.
986		 */
987		dentry = parent;
988		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
989			parent = lock_parent(dentry);
990			if (dentry->d_lockref.count != 1) {
991				dentry->d_lockref.count--;
992				spin_unlock(&dentry->d_lock);
993				if (parent)
994					spin_unlock(&parent->d_lock);
995				break;
996			}
997			inode = dentry->d_inode;	/* can't be NULL */
998			if (unlikely(!spin_trylock(&inode->i_lock))) {
999				spin_unlock(&dentry->d_lock);
1000				if (parent)
1001					spin_unlock(&parent->d_lock);
1002				cpu_relax();
1003				continue;
1004			}
1005			__dentry_kill(dentry);
1006			dentry = parent;
1007		}
1008	}
1009}
1010
1011static enum lru_status dentry_lru_isolate(struct list_head *item,
1012		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1013{
1014	struct list_head *freeable = arg;
1015	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1016
1017
1018	/*
1019	 * we are inverting the lru lock/dentry->d_lock here,
1020	 * so use a trylock. If we fail to get the lock, just skip
1021	 * it
1022	 */
1023	if (!spin_trylock(&dentry->d_lock))
1024		return LRU_SKIP;
1025
1026	/*
1027	 * Referenced dentries are still in use. If they have active
1028	 * counts, just remove them from the LRU. Otherwise give them
1029	 * another pass through the LRU.
1030	 */
1031	if (dentry->d_lockref.count) {
1032		d_lru_isolate(lru, dentry);
1033		spin_unlock(&dentry->d_lock);
1034		return LRU_REMOVED;
1035	}
1036
1037	if (dentry->d_flags & DCACHE_REFERENCED) {
1038		dentry->d_flags &= ~DCACHE_REFERENCED;
1039		spin_unlock(&dentry->d_lock);
1040
1041		/*
1042		 * The list move itself will be made by the common LRU code. At
1043		 * this point, we've dropped the dentry->d_lock but keep the
1044		 * lru lock. This is safe to do, since every list movement is
1045		 * protected by the lru lock even if both locks are held.
1046		 *
1047		 * This is guaranteed by the fact that all LRU management
1048		 * functions are intermediated by the LRU API calls like
1049		 * list_lru_add and list_lru_del. List movement in this file
1050		 * only ever occur through this functions or through callbacks
1051		 * like this one, that are called from the LRU API.
1052		 *
1053		 * The only exceptions to this are functions like
1054		 * shrink_dentry_list, and code that first checks for the
1055		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1056		 * operating only with stack provided lists after they are
1057		 * properly isolated from the main list.  It is thus, always a
1058		 * local access.
1059		 */
1060		return LRU_ROTATE;
1061	}
1062
1063	d_lru_shrink_move(lru, dentry, freeable);
1064	spin_unlock(&dentry->d_lock);
1065
1066	return LRU_REMOVED;
1067}
1068
1069/**
1070 * prune_dcache_sb - shrink the dcache
1071 * @sb: superblock
1072 * @sc: shrink control, passed to list_lru_shrink_walk()
1073 *
1074 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1075 * is done when we need more memory and called from the superblock shrinker
1076 * function.
1077 *
1078 * This function may fail to free any resources if all the dentries are in
1079 * use.
1080 */
1081long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1082{
1083	LIST_HEAD(dispose);
1084	long freed;
1085
1086	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1087				     dentry_lru_isolate, &dispose);
1088	shrink_dentry_list(&dispose);
1089	return freed;
1090}
1091
1092static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1093		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1094{
1095	struct list_head *freeable = arg;
1096	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1097
1098	/*
1099	 * we are inverting the lru lock/dentry->d_lock here,
1100	 * so use a trylock. If we fail to get the lock, just skip
1101	 * it
1102	 */
1103	if (!spin_trylock(&dentry->d_lock))
1104		return LRU_SKIP;
1105
1106	d_lru_shrink_move(lru, dentry, freeable);
1107	spin_unlock(&dentry->d_lock);
1108
1109	return LRU_REMOVED;
1110}
1111
1112
1113/**
1114 * shrink_dcache_sb - shrink dcache for a superblock
1115 * @sb: superblock
1116 *
1117 * Shrink the dcache for the specified super block. This is used to free
1118 * the dcache before unmounting a file system.
1119 */
1120void shrink_dcache_sb(struct super_block *sb)
1121{
1122	long freed;
1123
1124	do {
1125		LIST_HEAD(dispose);
1126
1127		freed = list_lru_walk(&sb->s_dentry_lru,
1128			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1129
1130		this_cpu_sub(nr_dentry_unused, freed);
1131		shrink_dentry_list(&dispose);
1132	} while (freed > 0);
1133}
1134EXPORT_SYMBOL(shrink_dcache_sb);
1135
1136/**
1137 * enum d_walk_ret - action to talke during tree walk
1138 * @D_WALK_CONTINUE:	contrinue walk
1139 * @D_WALK_QUIT:	quit walk
1140 * @D_WALK_NORETRY:	quit when retry is needed
1141 * @D_WALK_SKIP:	skip this dentry and its children
1142 */
1143enum d_walk_ret {
1144	D_WALK_CONTINUE,
1145	D_WALK_QUIT,
1146	D_WALK_NORETRY,
1147	D_WALK_SKIP,
1148};
1149
1150/**
1151 * d_walk - walk the dentry tree
1152 * @parent:	start of walk
1153 * @data:	data passed to @enter() and @finish()
1154 * @enter:	callback when first entering the dentry
1155 * @finish:	callback when successfully finished the walk
1156 *
1157 * The @enter() and @finish() callbacks are called with d_lock held.
1158 */
1159static void d_walk(struct dentry *parent, void *data,
1160		   enum d_walk_ret (*enter)(void *, struct dentry *),
1161		   void (*finish)(void *))
1162{
1163	struct dentry *this_parent;
1164	struct list_head *next;
1165	unsigned seq = 0;
1166	enum d_walk_ret ret;
1167	bool retry = true;
1168
1169again:
1170	read_seqbegin_or_lock(&rename_lock, &seq);
1171	this_parent = parent;
1172	spin_lock(&this_parent->d_lock);
1173
1174	ret = enter(data, this_parent);
1175	switch (ret) {
1176	case D_WALK_CONTINUE:
1177		break;
1178	case D_WALK_QUIT:
1179	case D_WALK_SKIP:
1180		goto out_unlock;
1181	case D_WALK_NORETRY:
1182		retry = false;
1183		break;
1184	}
1185repeat:
1186	next = this_parent->d_subdirs.next;
1187resume:
1188	while (next != &this_parent->d_subdirs) {
1189		struct list_head *tmp = next;
1190		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1191		next = tmp->next;
1192
1193		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1194
1195		ret = enter(data, dentry);
1196		switch (ret) {
1197		case D_WALK_CONTINUE:
1198			break;
1199		case D_WALK_QUIT:
1200			spin_unlock(&dentry->d_lock);
1201			goto out_unlock;
1202		case D_WALK_NORETRY:
1203			retry = false;
1204			break;
1205		case D_WALK_SKIP:
1206			spin_unlock(&dentry->d_lock);
1207			continue;
1208		}
1209
1210		if (!list_empty(&dentry->d_subdirs)) {
1211			spin_unlock(&this_parent->d_lock);
1212			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1213			this_parent = dentry;
1214			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1215			goto repeat;
1216		}
1217		spin_unlock(&dentry->d_lock);
1218	}
1219	/*
1220	 * All done at this level ... ascend and resume the search.
1221	 */
1222	rcu_read_lock();
1223ascend:
1224	if (this_parent != parent) {
1225		struct dentry *child = this_parent;
1226		this_parent = child->d_parent;
1227
1228		spin_unlock(&child->d_lock);
1229		spin_lock(&this_parent->d_lock);
1230
1231		/* might go back up the wrong parent if we have had a rename. */
1232		if (need_seqretry(&rename_lock, seq))
1233			goto rename_retry;
1234		/* go into the first sibling still alive */
1235		do {
1236			next = child->d_child.next;
1237			if (next == &this_parent->d_subdirs)
1238				goto ascend;
1239			child = list_entry(next, struct dentry, d_child);
1240		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1241		rcu_read_unlock();
1242		goto resume;
1243	}
1244	if (need_seqretry(&rename_lock, seq))
1245		goto rename_retry;
1246	rcu_read_unlock();
1247	if (finish)
1248		finish(data);
1249
1250out_unlock:
1251	spin_unlock(&this_parent->d_lock);
1252	done_seqretry(&rename_lock, seq);
1253	return;
1254
1255rename_retry:
1256	spin_unlock(&this_parent->d_lock);
1257	rcu_read_unlock();
1258	BUG_ON(seq & 1);
1259	if (!retry)
1260		return;
1261	seq = 1;
1262	goto again;
1263}
1264
1265/*
1266 * Search for at least 1 mount point in the dentry's subdirs.
1267 * We descend to the next level whenever the d_subdirs
1268 * list is non-empty and continue searching.
1269 */
1270
1271static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1272{
1273	int *ret = data;
1274	if (d_mountpoint(dentry)) {
1275		*ret = 1;
1276		return D_WALK_QUIT;
1277	}
1278	return D_WALK_CONTINUE;
1279}
1280
1281/**
1282 * have_submounts - check for mounts over a dentry
1283 * @parent: dentry to check.
1284 *
1285 * Return true if the parent or its subdirectories contain
1286 * a mount point
1287 */
1288int have_submounts(struct dentry *parent)
1289{
1290	int ret = 0;
1291
1292	d_walk(parent, &ret, check_mount, NULL);
1293
1294	return ret;
1295}
1296EXPORT_SYMBOL(have_submounts);
1297
1298/*
1299 * Called by mount code to set a mountpoint and check if the mountpoint is
1300 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1301 * subtree can become unreachable).
1302 *
1303 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1304 * this reason take rename_lock and d_lock on dentry and ancestors.
1305 */
1306int d_set_mounted(struct dentry *dentry)
1307{
1308	struct dentry *p;
1309	int ret = -ENOENT;
1310	write_seqlock(&rename_lock);
1311	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1312		/* Need exclusion wrt. d_invalidate() */
1313		spin_lock(&p->d_lock);
1314		if (unlikely(d_unhashed(p))) {
1315			spin_unlock(&p->d_lock);
1316			goto out;
1317		}
1318		spin_unlock(&p->d_lock);
1319	}
1320	spin_lock(&dentry->d_lock);
1321	if (!d_unlinked(dentry)) {
1322		dentry->d_flags |= DCACHE_MOUNTED;
1323		ret = 0;
1324	}
1325 	spin_unlock(&dentry->d_lock);
1326out:
1327	write_sequnlock(&rename_lock);
1328	return ret;
1329}
1330
1331/*
1332 * Search the dentry child list of the specified parent,
1333 * and move any unused dentries to the end of the unused
1334 * list for prune_dcache(). We descend to the next level
1335 * whenever the d_subdirs list is non-empty and continue
1336 * searching.
1337 *
1338 * It returns zero iff there are no unused children,
1339 * otherwise  it returns the number of children moved to
1340 * the end of the unused list. This may not be the total
1341 * number of unused children, because select_parent can
1342 * drop the lock and return early due to latency
1343 * constraints.
1344 */
1345
1346struct select_data {
1347	struct dentry *start;
1348	struct list_head dispose;
1349	int found;
1350};
1351
1352static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1353{
1354	struct select_data *data = _data;
1355	enum d_walk_ret ret = D_WALK_CONTINUE;
1356
1357	if (data->start == dentry)
1358		goto out;
1359
1360	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1361		data->found++;
1362	} else {
1363		if (dentry->d_flags & DCACHE_LRU_LIST)
1364			d_lru_del(dentry);
1365		if (!dentry->d_lockref.count) {
1366			d_shrink_add(dentry, &data->dispose);
1367			data->found++;
1368		}
1369	}
1370	/*
1371	 * We can return to the caller if we have found some (this
1372	 * ensures forward progress). We'll be coming back to find
1373	 * the rest.
1374	 */
1375	if (!list_empty(&data->dispose))
1376		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1377out:
1378	return ret;
1379}
1380
1381/**
1382 * shrink_dcache_parent - prune dcache
1383 * @parent: parent of entries to prune
1384 *
1385 * Prune the dcache to remove unused children of the parent dentry.
1386 */
1387void shrink_dcache_parent(struct dentry *parent)
1388{
1389	for (;;) {
1390		struct select_data data;
1391
1392		INIT_LIST_HEAD(&data.dispose);
1393		data.start = parent;
1394		data.found = 0;
1395
1396		d_walk(parent, &data, select_collect, NULL);
1397		if (!data.found)
1398			break;
1399
1400		shrink_dentry_list(&data.dispose);
1401		cond_resched();
1402	}
1403}
1404EXPORT_SYMBOL(shrink_dcache_parent);
1405
1406static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1407{
1408	/* it has busy descendents; complain about those instead */
1409	if (!list_empty(&dentry->d_subdirs))
1410		return D_WALK_CONTINUE;
1411
1412	/* root with refcount 1 is fine */
1413	if (dentry == _data && dentry->d_lockref.count == 1)
1414		return D_WALK_CONTINUE;
1415
1416	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1417			" still in use (%d) [unmount of %s %s]\n",
1418		       dentry,
1419		       dentry->d_inode ?
1420		       dentry->d_inode->i_ino : 0UL,
1421		       dentry,
1422		       dentry->d_lockref.count,
1423		       dentry->d_sb->s_type->name,
1424		       dentry->d_sb->s_id);
1425	WARN_ON(1);
1426	return D_WALK_CONTINUE;
1427}
1428
1429static void do_one_tree(struct dentry *dentry)
1430{
1431	shrink_dcache_parent(dentry);
1432	d_walk(dentry, dentry, umount_check, NULL);
1433	d_drop(dentry);
1434	dput(dentry);
1435}
1436
1437/*
1438 * destroy the dentries attached to a superblock on unmounting
1439 */
1440void shrink_dcache_for_umount(struct super_block *sb)
1441{
1442	struct dentry *dentry;
1443
1444	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1445
1446	dentry = sb->s_root;
1447	sb->s_root = NULL;
1448	do_one_tree(dentry);
1449
1450	while (!hlist_bl_empty(&sb->s_anon)) {
1451		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1452		do_one_tree(dentry);
1453	}
1454}
1455
1456struct detach_data {
1457	struct select_data select;
1458	struct dentry *mountpoint;
1459};
1460static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1461{
1462	struct detach_data *data = _data;
1463
1464	if (d_mountpoint(dentry)) {
1465		__dget_dlock(dentry);
1466		data->mountpoint = dentry;
1467		return D_WALK_QUIT;
1468	}
1469
1470	return select_collect(&data->select, dentry);
1471}
1472
1473static void check_and_drop(void *_data)
1474{
1475	struct detach_data *data = _data;
1476
1477	if (!data->mountpoint && !data->select.found)
1478		__d_drop(data->select.start);
1479}
1480
1481/**
1482 * d_invalidate - detach submounts, prune dcache, and drop
1483 * @dentry: dentry to invalidate (aka detach, prune and drop)
1484 *
1485 * no dcache lock.
1486 *
1487 * The final d_drop is done as an atomic operation relative to
1488 * rename_lock ensuring there are no races with d_set_mounted.  This
1489 * ensures there are no unhashed dentries on the path to a mountpoint.
1490 */
1491void d_invalidate(struct dentry *dentry)
1492{
1493	/*
1494	 * If it's already been dropped, return OK.
1495	 */
1496	spin_lock(&dentry->d_lock);
1497	if (d_unhashed(dentry)) {
1498		spin_unlock(&dentry->d_lock);
1499		return;
1500	}
1501	spin_unlock(&dentry->d_lock);
1502
1503	/* Negative dentries can be dropped without further checks */
1504	if (!dentry->d_inode) {
1505		d_drop(dentry);
1506		return;
1507	}
1508
1509	for (;;) {
1510		struct detach_data data;
1511
1512		data.mountpoint = NULL;
1513		INIT_LIST_HEAD(&data.select.dispose);
1514		data.select.start = dentry;
1515		data.select.found = 0;
1516
1517		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1518
1519		if (data.select.found)
1520			shrink_dentry_list(&data.select.dispose);
1521
1522		if (data.mountpoint) {
1523			detach_mounts(data.mountpoint);
1524			dput(data.mountpoint);
1525		}
1526
1527		if (!data.mountpoint && !data.select.found)
1528			break;
1529
1530		cond_resched();
1531	}
1532}
1533EXPORT_SYMBOL(d_invalidate);
1534
1535/**
1536 * __d_alloc	-	allocate a dcache entry
1537 * @sb: filesystem it will belong to
1538 * @name: qstr of the name
1539 *
1540 * Allocates a dentry. It returns %NULL if there is insufficient memory
1541 * available. On a success the dentry is returned. The name passed in is
1542 * copied and the copy passed in may be reused after this call.
1543 */
1544
1545struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1546{
1547	struct dentry *dentry;
1548	char *dname;
1549
1550	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1551	if (!dentry)
1552		return NULL;
1553
1554	/*
1555	 * We guarantee that the inline name is always NUL-terminated.
1556	 * This way the memcpy() done by the name switching in rename
1557	 * will still always have a NUL at the end, even if we might
1558	 * be overwriting an internal NUL character
1559	 */
1560	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1561	if (name->len > DNAME_INLINE_LEN-1) {
1562		size_t size = offsetof(struct external_name, name[1]);
1563		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1564		if (!p) {
1565			kmem_cache_free(dentry_cache, dentry);
1566			return NULL;
1567		}
1568		atomic_set(&p->u.count, 1);
1569		dname = p->name;
1570		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1571			kasan_unpoison_shadow(dname,
1572				round_up(name->len + 1,	sizeof(unsigned long)));
1573	} else  {
1574		dname = dentry->d_iname;
1575	}
1576
1577	dentry->d_name.len = name->len;
1578	dentry->d_name.hash = name->hash;
1579	memcpy(dname, name->name, name->len);
1580	dname[name->len] = 0;
1581
1582	/* Make sure we always see the terminating NUL character */
1583	smp_wmb();
1584	dentry->d_name.name = dname;
1585
1586	dentry->d_lockref.count = 1;
1587	dentry->d_flags = 0;
1588	spin_lock_init(&dentry->d_lock);
1589	seqcount_init(&dentry->d_seq);
1590	dentry->d_inode = NULL;
1591	dentry->d_parent = dentry;
1592	dentry->d_sb = sb;
1593	dentry->d_op = NULL;
1594	dentry->d_fsdata = NULL;
1595	INIT_HLIST_BL_NODE(&dentry->d_hash);
1596	INIT_LIST_HEAD(&dentry->d_lru);
1597	INIT_LIST_HEAD(&dentry->d_subdirs);
1598	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1599	INIT_LIST_HEAD(&dentry->d_child);
1600	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1601
1602	this_cpu_inc(nr_dentry);
1603
1604	return dentry;
1605}
1606
1607/**
1608 * d_alloc	-	allocate a dcache entry
1609 * @parent: parent of entry to allocate
1610 * @name: qstr of the name
1611 *
1612 * Allocates a dentry. It returns %NULL if there is insufficient memory
1613 * available. On a success the dentry is returned. The name passed in is
1614 * copied and the copy passed in may be reused after this call.
1615 */
1616struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1617{
1618	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1619	if (!dentry)
1620		return NULL;
1621	dentry->d_flags |= DCACHE_RCUACCESS;
1622	spin_lock(&parent->d_lock);
1623	/*
1624	 * don't need child lock because it is not subject
1625	 * to concurrency here
1626	 */
1627	__dget_dlock(parent);
1628	dentry->d_parent = parent;
1629	list_add(&dentry->d_child, &parent->d_subdirs);
1630	spin_unlock(&parent->d_lock);
1631
1632	return dentry;
1633}
1634EXPORT_SYMBOL(d_alloc);
1635
1636/**
1637 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1638 * @sb: the superblock
1639 * @name: qstr of the name
1640 *
1641 * For a filesystem that just pins its dentries in memory and never
1642 * performs lookups at all, return an unhashed IS_ROOT dentry.
1643 */
1644struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1645{
1646	return __d_alloc(sb, name);
1647}
1648EXPORT_SYMBOL(d_alloc_pseudo);
1649
1650struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1651{
1652	struct qstr q;
1653
1654	q.name = name;
1655	q.len = strlen(name);
1656	q.hash = full_name_hash(q.name, q.len);
1657	return d_alloc(parent, &q);
1658}
1659EXPORT_SYMBOL(d_alloc_name);
1660
1661void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1662{
1663	WARN_ON_ONCE(dentry->d_op);
1664	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1665				DCACHE_OP_COMPARE	|
1666				DCACHE_OP_REVALIDATE	|
1667				DCACHE_OP_WEAK_REVALIDATE	|
1668				DCACHE_OP_DELETE	|
1669				DCACHE_OP_SELECT_INODE));
1670	dentry->d_op = op;
1671	if (!op)
1672		return;
1673	if (op->d_hash)
1674		dentry->d_flags |= DCACHE_OP_HASH;
1675	if (op->d_compare)
1676		dentry->d_flags |= DCACHE_OP_COMPARE;
1677	if (op->d_revalidate)
1678		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1679	if (op->d_weak_revalidate)
1680		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1681	if (op->d_delete)
1682		dentry->d_flags |= DCACHE_OP_DELETE;
1683	if (op->d_prune)
1684		dentry->d_flags |= DCACHE_OP_PRUNE;
1685	if (op->d_select_inode)
1686		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1687
1688}
1689EXPORT_SYMBOL(d_set_d_op);
1690
1691
1692/*
1693 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1694 * @dentry - The dentry to mark
1695 *
1696 * Mark a dentry as falling through to the lower layer (as set with
1697 * d_pin_lower()).  This flag may be recorded on the medium.
1698 */
1699void d_set_fallthru(struct dentry *dentry)
1700{
1701	spin_lock(&dentry->d_lock);
1702	dentry->d_flags |= DCACHE_FALLTHRU;
1703	spin_unlock(&dentry->d_lock);
1704}
1705EXPORT_SYMBOL(d_set_fallthru);
1706
1707static unsigned d_flags_for_inode(struct inode *inode)
1708{
1709	unsigned add_flags = DCACHE_REGULAR_TYPE;
1710
1711	if (!inode)
1712		return DCACHE_MISS_TYPE;
1713
1714	if (S_ISDIR(inode->i_mode)) {
1715		add_flags = DCACHE_DIRECTORY_TYPE;
1716		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1717			if (unlikely(!inode->i_op->lookup))
1718				add_flags = DCACHE_AUTODIR_TYPE;
1719			else
1720				inode->i_opflags |= IOP_LOOKUP;
1721		}
1722		goto type_determined;
1723	}
1724
1725	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1726		if (unlikely(inode->i_op->follow_link)) {
1727			add_flags = DCACHE_SYMLINK_TYPE;
1728			goto type_determined;
1729		}
1730		inode->i_opflags |= IOP_NOFOLLOW;
1731	}
1732
1733	if (unlikely(!S_ISREG(inode->i_mode)))
1734		add_flags = DCACHE_SPECIAL_TYPE;
1735
1736type_determined:
1737	if (unlikely(IS_AUTOMOUNT(inode)))
1738		add_flags |= DCACHE_NEED_AUTOMOUNT;
1739	return add_flags;
1740}
1741
1742static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1743{
1744	unsigned add_flags = d_flags_for_inode(inode);
1745
1746	spin_lock(&dentry->d_lock);
1747	if (inode)
1748		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1749	raw_write_seqcount_begin(&dentry->d_seq);
1750	__d_set_inode_and_type(dentry, inode, add_flags);
1751	raw_write_seqcount_end(&dentry->d_seq);
1752	spin_unlock(&dentry->d_lock);
1753	fsnotify_d_instantiate(dentry, inode);
1754}
1755
1756/**
1757 * d_instantiate - fill in inode information for a dentry
1758 * @entry: dentry to complete
1759 * @inode: inode to attach to this dentry
1760 *
1761 * Fill in inode information in the entry.
1762 *
1763 * This turns negative dentries into productive full members
1764 * of society.
1765 *
1766 * NOTE! This assumes that the inode count has been incremented
1767 * (or otherwise set) by the caller to indicate that it is now
1768 * in use by the dcache.
1769 */
1770
1771void d_instantiate(struct dentry *entry, struct inode * inode)
1772{
1773	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1774	if (inode)
1775		spin_lock(&inode->i_lock);
1776	__d_instantiate(entry, inode);
1777	if (inode)
1778		spin_unlock(&inode->i_lock);
1779	security_d_instantiate(entry, inode);
1780}
1781EXPORT_SYMBOL(d_instantiate);
1782
1783/**
1784 * d_instantiate_unique - instantiate a non-aliased dentry
1785 * @entry: dentry to instantiate
1786 * @inode: inode to attach to this dentry
1787 *
1788 * Fill in inode information in the entry. On success, it returns NULL.
1789 * If an unhashed alias of "entry" already exists, then we return the
1790 * aliased dentry instead and drop one reference to inode.
1791 *
1792 * Note that in order to avoid conflicts with rename() etc, the caller
1793 * had better be holding the parent directory semaphore.
1794 *
1795 * This also assumes that the inode count has been incremented
1796 * (or otherwise set) by the caller to indicate that it is now
1797 * in use by the dcache.
1798 */
1799static struct dentry *__d_instantiate_unique(struct dentry *entry,
1800					     struct inode *inode)
1801{
1802	struct dentry *alias;
1803	int len = entry->d_name.len;
1804	const char *name = entry->d_name.name;
1805	unsigned int hash = entry->d_name.hash;
1806
1807	if (!inode) {
1808		__d_instantiate(entry, NULL);
1809		return NULL;
1810	}
1811
1812	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1813		/*
1814		 * Don't need alias->d_lock here, because aliases with
1815		 * d_parent == entry->d_parent are not subject to name or
1816		 * parent changes, because the parent inode i_mutex is held.
1817		 */
1818		if (alias->d_name.hash != hash)
1819			continue;
1820		if (alias->d_parent != entry->d_parent)
1821			continue;
1822		if (alias->d_name.len != len)
1823			continue;
1824		if (dentry_cmp(alias, name, len))
1825			continue;
1826		__dget(alias);
1827		return alias;
1828	}
1829
1830	__d_instantiate(entry, inode);
1831	return NULL;
1832}
1833
1834struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1835{
1836	struct dentry *result;
1837
1838	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1839
1840	if (inode)
1841		spin_lock(&inode->i_lock);
1842	result = __d_instantiate_unique(entry, inode);
1843	if (inode)
1844		spin_unlock(&inode->i_lock);
1845
1846	if (!result) {
1847		security_d_instantiate(entry, inode);
1848		return NULL;
1849	}
1850
1851	BUG_ON(!d_unhashed(result));
1852	iput(inode);
1853	return result;
1854}
1855
1856EXPORT_SYMBOL(d_instantiate_unique);
1857
1858/**
1859 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1860 * @entry: dentry to complete
1861 * @inode: inode to attach to this dentry
1862 *
1863 * Fill in inode information in the entry.  If a directory alias is found, then
1864 * return an error (and drop inode).  Together with d_materialise_unique() this
1865 * guarantees that a directory inode may never have more than one alias.
1866 */
1867int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1868{
1869	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1870
1871	spin_lock(&inode->i_lock);
1872	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1873		spin_unlock(&inode->i_lock);
1874		iput(inode);
1875		return -EBUSY;
1876	}
1877	__d_instantiate(entry, inode);
1878	spin_unlock(&inode->i_lock);
1879	security_d_instantiate(entry, inode);
1880
1881	return 0;
1882}
1883EXPORT_SYMBOL(d_instantiate_no_diralias);
1884
1885struct dentry *d_make_root(struct inode *root_inode)
1886{
1887	struct dentry *res = NULL;
1888
1889	if (root_inode) {
1890		static const struct qstr name = QSTR_INIT("/", 1);
1891
1892		res = __d_alloc(root_inode->i_sb, &name);
1893		if (res)
1894			d_instantiate(res, root_inode);
1895		else
1896			iput(root_inode);
1897	}
1898	return res;
1899}
1900EXPORT_SYMBOL(d_make_root);
1901
1902static struct dentry * __d_find_any_alias(struct inode *inode)
1903{
1904	struct dentry *alias;
1905
1906	if (hlist_empty(&inode->i_dentry))
1907		return NULL;
1908	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1909	__dget(alias);
1910	return alias;
1911}
1912
1913/**
1914 * d_find_any_alias - find any alias for a given inode
1915 * @inode: inode to find an alias for
1916 *
1917 * If any aliases exist for the given inode, take and return a
1918 * reference for one of them.  If no aliases exist, return %NULL.
1919 */
1920struct dentry *d_find_any_alias(struct inode *inode)
1921{
1922	struct dentry *de;
1923
1924	spin_lock(&inode->i_lock);
1925	de = __d_find_any_alias(inode);
1926	spin_unlock(&inode->i_lock);
1927	return de;
1928}
1929EXPORT_SYMBOL(d_find_any_alias);
1930
1931static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1932{
1933	static const struct qstr anonstring = QSTR_INIT("/", 1);
1934	struct dentry *tmp;
1935	struct dentry *res;
1936	unsigned add_flags;
1937
1938	if (!inode)
1939		return ERR_PTR(-ESTALE);
1940	if (IS_ERR(inode))
1941		return ERR_CAST(inode);
1942
1943	res = d_find_any_alias(inode);
1944	if (res)
1945		goto out_iput;
1946
1947	tmp = __d_alloc(inode->i_sb, &anonstring);
1948	if (!tmp) {
1949		res = ERR_PTR(-ENOMEM);
1950		goto out_iput;
1951	}
1952
1953	spin_lock(&inode->i_lock);
1954	res = __d_find_any_alias(inode);
1955	if (res) {
1956		spin_unlock(&inode->i_lock);
1957		dput(tmp);
1958		goto out_iput;
1959	}
1960
1961	/* attach a disconnected dentry */
1962	add_flags = d_flags_for_inode(inode);
1963
1964	if (disconnected)
1965		add_flags |= DCACHE_DISCONNECTED;
1966
1967	spin_lock(&tmp->d_lock);
1968	__d_set_inode_and_type(tmp, inode, add_flags);
1969	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1970	hlist_bl_lock(&tmp->d_sb->s_anon);
1971	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1972	hlist_bl_unlock(&tmp->d_sb->s_anon);
1973	spin_unlock(&tmp->d_lock);
1974	spin_unlock(&inode->i_lock);
1975	security_d_instantiate(tmp, inode);
1976
1977	return tmp;
1978
1979 out_iput:
1980	if (res && !IS_ERR(res))
1981		security_d_instantiate(res, inode);
1982	iput(inode);
1983	return res;
1984}
1985
1986/**
1987 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1988 * @inode: inode to allocate the dentry for
1989 *
1990 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1991 * similar open by handle operations.  The returned dentry may be anonymous,
1992 * or may have a full name (if the inode was already in the cache).
1993 *
1994 * When called on a directory inode, we must ensure that the inode only ever
1995 * has one dentry.  If a dentry is found, that is returned instead of
1996 * allocating a new one.
1997 *
1998 * On successful return, the reference to the inode has been transferred
1999 * to the dentry.  In case of an error the reference on the inode is released.
2000 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2001 * be passed in and the error will be propagated to the return value,
2002 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2003 */
2004struct dentry *d_obtain_alias(struct inode *inode)
2005{
2006	return __d_obtain_alias(inode, 1);
2007}
2008EXPORT_SYMBOL(d_obtain_alias);
2009
2010/**
2011 * d_obtain_root - find or allocate a dentry for a given inode
2012 * @inode: inode to allocate the dentry for
2013 *
2014 * Obtain an IS_ROOT dentry for the root of a filesystem.
2015 *
2016 * We must ensure that directory inodes only ever have one dentry.  If a
2017 * dentry is found, that is returned instead of allocating a new one.
2018 *
2019 * On successful return, the reference to the inode has been transferred
2020 * to the dentry.  In case of an error the reference on the inode is
2021 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2022 * error will be propagate to the return value, with a %NULL @inode
2023 * replaced by ERR_PTR(-ESTALE).
2024 */
2025struct dentry *d_obtain_root(struct inode *inode)
2026{
2027	return __d_obtain_alias(inode, 0);
2028}
2029EXPORT_SYMBOL(d_obtain_root);
2030
2031/**
2032 * d_add_ci - lookup or allocate new dentry with case-exact name
2033 * @inode:  the inode case-insensitive lookup has found
2034 * @dentry: the negative dentry that was passed to the parent's lookup func
2035 * @name:   the case-exact name to be associated with the returned dentry
2036 *
2037 * This is to avoid filling the dcache with case-insensitive names to the
2038 * same inode, only the actual correct case is stored in the dcache for
2039 * case-insensitive filesystems.
2040 *
2041 * For a case-insensitive lookup match and if the the case-exact dentry
2042 * already exists in in the dcache, use it and return it.
2043 *
2044 * If no entry exists with the exact case name, allocate new dentry with
2045 * the exact case, and return the spliced entry.
2046 */
2047struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2048			struct qstr *name)
2049{
2050	struct dentry *found;
2051	struct dentry *new;
2052
2053	/*
2054	 * First check if a dentry matching the name already exists,
2055	 * if not go ahead and create it now.
2056	 */
2057	found = d_hash_and_lookup(dentry->d_parent, name);
2058	if (!found) {
2059		new = d_alloc(dentry->d_parent, name);
2060		if (!new) {
2061			found = ERR_PTR(-ENOMEM);
2062		} else {
2063			found = d_splice_alias(inode, new);
2064			if (found) {
2065				dput(new);
2066				return found;
2067			}
2068			return new;
2069		}
2070	}
2071	iput(inode);
2072	return found;
2073}
2074EXPORT_SYMBOL(d_add_ci);
2075
2076/*
2077 * Do the slow-case of the dentry name compare.
2078 *
2079 * Unlike the dentry_cmp() function, we need to atomically
2080 * load the name and length information, so that the
2081 * filesystem can rely on them, and can use the 'name' and
2082 * 'len' information without worrying about walking off the
2083 * end of memory etc.
2084 *
2085 * Thus the read_seqcount_retry() and the "duplicate" info
2086 * in arguments (the low-level filesystem should not look
2087 * at the dentry inode or name contents directly, since
2088 * rename can change them while we're in RCU mode).
2089 */
2090enum slow_d_compare {
2091	D_COMP_OK,
2092	D_COMP_NOMATCH,
2093	D_COMP_SEQRETRY,
2094};
2095
2096static noinline enum slow_d_compare slow_dentry_cmp(
2097		const struct dentry *parent,
2098		struct dentry *dentry,
2099		unsigned int seq,
2100		const struct qstr *name)
2101{
2102	int tlen = dentry->d_name.len;
2103	const char *tname = dentry->d_name.name;
2104
2105	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2106		cpu_relax();
2107		return D_COMP_SEQRETRY;
2108	}
2109	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2110		return D_COMP_NOMATCH;
2111	return D_COMP_OK;
2112}
2113
2114/**
2115 * __d_lookup_rcu - search for a dentry (racy, store-free)
2116 * @parent: parent dentry
2117 * @name: qstr of name we wish to find
2118 * @seqp: returns d_seq value at the point where the dentry was found
2119 * Returns: dentry, or NULL
2120 *
2121 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2122 * resolution (store-free path walking) design described in
2123 * Documentation/filesystems/path-lookup.txt.
2124 *
2125 * This is not to be used outside core vfs.
2126 *
2127 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2128 * held, and rcu_read_lock held. The returned dentry must not be stored into
2129 * without taking d_lock and checking d_seq sequence count against @seq
2130 * returned here.
2131 *
2132 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2133 * function.
2134 *
2135 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2136 * the returned dentry, so long as its parent's seqlock is checked after the
2137 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2138 * is formed, giving integrity down the path walk.
2139 *
2140 * NOTE! The caller *has* to check the resulting dentry against the sequence
2141 * number we've returned before using any of the resulting dentry state!
2142 */
2143struct dentry *__d_lookup_rcu(const struct dentry *parent,
2144				const struct qstr *name,
2145				unsigned *seqp)
2146{
2147	u64 hashlen = name->hash_len;
2148	const unsigned char *str = name->name;
2149	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2150	struct hlist_bl_node *node;
2151	struct dentry *dentry;
2152
2153	/*
2154	 * Note: There is significant duplication with __d_lookup_rcu which is
2155	 * required to prevent single threaded performance regressions
2156	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2157	 * Keep the two functions in sync.
2158	 */
2159
2160	/*
2161	 * The hash list is protected using RCU.
2162	 *
2163	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2164	 * races with d_move().
2165	 *
2166	 * It is possible that concurrent renames can mess up our list
2167	 * walk here and result in missing our dentry, resulting in the
2168	 * false-negative result. d_lookup() protects against concurrent
2169	 * renames using rename_lock seqlock.
2170	 *
2171	 * See Documentation/filesystems/path-lookup.txt for more details.
2172	 */
2173	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2174		unsigned seq;
2175
2176seqretry:
2177		/*
2178		 * The dentry sequence count protects us from concurrent
2179		 * renames, and thus protects parent and name fields.
2180		 *
2181		 * The caller must perform a seqcount check in order
2182		 * to do anything useful with the returned dentry.
2183		 *
2184		 * NOTE! We do a "raw" seqcount_begin here. That means that
2185		 * we don't wait for the sequence count to stabilize if it
2186		 * is in the middle of a sequence change. If we do the slow
2187		 * dentry compare, we will do seqretries until it is stable,
2188		 * and if we end up with a successful lookup, we actually
2189		 * want to exit RCU lookup anyway.
2190		 */
2191		seq = raw_seqcount_begin(&dentry->d_seq);
2192		if (dentry->d_parent != parent)
2193			continue;
2194		if (d_unhashed(dentry))
2195			continue;
2196
2197		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2198			if (dentry->d_name.hash != hashlen_hash(hashlen))
2199				continue;
2200			*seqp = seq;
2201			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2202			case D_COMP_OK:
2203				return dentry;
2204			case D_COMP_NOMATCH:
2205				continue;
2206			default:
2207				goto seqretry;
2208			}
2209		}
2210
2211		if (dentry->d_name.hash_len != hashlen)
2212			continue;
2213		*seqp = seq;
2214		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2215			return dentry;
2216	}
2217	return NULL;
2218}
2219
2220/**
2221 * d_lookup - search for a dentry
2222 * @parent: parent dentry
2223 * @name: qstr of name we wish to find
2224 * Returns: dentry, or NULL
2225 *
2226 * d_lookup searches the children of the parent dentry for the name in
2227 * question. If the dentry is found its reference count is incremented and the
2228 * dentry is returned. The caller must use dput to free the entry when it has
2229 * finished using it. %NULL is returned if the dentry does not exist.
2230 */
2231struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2232{
2233	struct dentry *dentry;
2234	unsigned seq;
2235
2236	do {
2237		seq = read_seqbegin(&rename_lock);
2238		dentry = __d_lookup(parent, name);
2239		if (dentry)
2240			break;
2241	} while (read_seqretry(&rename_lock, seq));
2242	return dentry;
2243}
2244EXPORT_SYMBOL(d_lookup);
2245
2246/**
2247 * __d_lookup - search for a dentry (racy)
2248 * @parent: parent dentry
2249 * @name: qstr of name we wish to find
2250 * Returns: dentry, or NULL
2251 *
2252 * __d_lookup is like d_lookup, however it may (rarely) return a
2253 * false-negative result due to unrelated rename activity.
2254 *
2255 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2256 * however it must be used carefully, eg. with a following d_lookup in
2257 * the case of failure.
2258 *
2259 * __d_lookup callers must be commented.
2260 */
2261struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2262{
2263	unsigned int len = name->len;
2264	unsigned int hash = name->hash;
2265	const unsigned char *str = name->name;
2266	struct hlist_bl_head *b = d_hash(parent, hash);
2267	struct hlist_bl_node *node;
2268	struct dentry *found = NULL;
2269	struct dentry *dentry;
2270
2271	/*
2272	 * Note: There is significant duplication with __d_lookup_rcu which is
2273	 * required to prevent single threaded performance regressions
2274	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2275	 * Keep the two functions in sync.
2276	 */
2277
2278	/*
2279	 * The hash list is protected using RCU.
2280	 *
2281	 * Take d_lock when comparing a candidate dentry, to avoid races
2282	 * with d_move().
2283	 *
2284	 * It is possible that concurrent renames can mess up our list
2285	 * walk here and result in missing our dentry, resulting in the
2286	 * false-negative result. d_lookup() protects against concurrent
2287	 * renames using rename_lock seqlock.
2288	 *
2289	 * See Documentation/filesystems/path-lookup.txt for more details.
2290	 */
2291	rcu_read_lock();
2292
2293	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2294
2295		if (dentry->d_name.hash != hash)
2296			continue;
2297
2298		spin_lock(&dentry->d_lock);
2299		if (dentry->d_parent != parent)
2300			goto next;
2301		if (d_unhashed(dentry))
2302			goto next;
2303
2304		/*
2305		 * It is safe to compare names since d_move() cannot
2306		 * change the qstr (protected by d_lock).
2307		 */
2308		if (parent->d_flags & DCACHE_OP_COMPARE) {
2309			int tlen = dentry->d_name.len;
2310			const char *tname = dentry->d_name.name;
2311			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2312				goto next;
2313		} else {
2314			if (dentry->d_name.len != len)
2315				goto next;
2316			if (dentry_cmp(dentry, str, len))
2317				goto next;
2318		}
2319
2320		dentry->d_lockref.count++;
2321		found = dentry;
2322		spin_unlock(&dentry->d_lock);
2323		break;
2324next:
2325		spin_unlock(&dentry->d_lock);
2326 	}
2327 	rcu_read_unlock();
2328
2329 	return found;
2330}
2331
2332/**
2333 * d_hash_and_lookup - hash the qstr then search for a dentry
2334 * @dir: Directory to search in
2335 * @name: qstr of name we wish to find
2336 *
2337 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2338 */
2339struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2340{
2341	/*
2342	 * Check for a fs-specific hash function. Note that we must
2343	 * calculate the standard hash first, as the d_op->d_hash()
2344	 * routine may choose to leave the hash value unchanged.
2345	 */
2346	name->hash = full_name_hash(name->name, name->len);
2347	if (dir->d_flags & DCACHE_OP_HASH) {
2348		int err = dir->d_op->d_hash(dir, name);
2349		if (unlikely(err < 0))
2350			return ERR_PTR(err);
2351	}
2352	return d_lookup(dir, name);
2353}
2354EXPORT_SYMBOL(d_hash_and_lookup);
2355
2356/*
2357 * When a file is deleted, we have two options:
2358 * - turn this dentry into a negative dentry
2359 * - unhash this dentry and free it.
2360 *
2361 * Usually, we want to just turn this into
2362 * a negative dentry, but if anybody else is
2363 * currently using the dentry or the inode
2364 * we can't do that and we fall back on removing
2365 * it from the hash queues and waiting for
2366 * it to be deleted later when it has no users
2367 */
2368
2369/**
2370 * d_delete - delete a dentry
2371 * @dentry: The dentry to delete
2372 *
2373 * Turn the dentry into a negative dentry if possible, otherwise
2374 * remove it from the hash queues so it can be deleted later
2375 */
2376
2377void d_delete(struct dentry * dentry)
2378{
2379	struct inode *inode;
2380	int isdir = 0;
2381	/*
2382	 * Are we the only user?
2383	 */
2384again:
2385	spin_lock(&dentry->d_lock);
2386	inode = dentry->d_inode;
2387	isdir = S_ISDIR(inode->i_mode);
2388	if (dentry->d_lockref.count == 1) {
2389		if (!spin_trylock(&inode->i_lock)) {
2390			spin_unlock(&dentry->d_lock);
2391			cpu_relax();
2392			goto again;
2393		}
2394		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2395		dentry_unlink_inode(dentry);
2396		fsnotify_nameremove(dentry, isdir);
2397		return;
2398	}
2399
2400	if (!d_unhashed(dentry))
2401		__d_drop(dentry);
2402
2403	spin_unlock(&dentry->d_lock);
2404
2405	fsnotify_nameremove(dentry, isdir);
2406}
2407EXPORT_SYMBOL(d_delete);
2408
2409static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2410{
2411	BUG_ON(!d_unhashed(entry));
2412	hlist_bl_lock(b);
2413	hlist_bl_add_head_rcu(&entry->d_hash, b);
2414	hlist_bl_unlock(b);
2415}
2416
2417static void _d_rehash(struct dentry * entry)
2418{
2419	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2420}
2421
2422/**
2423 * d_rehash	- add an entry back to the hash
2424 * @entry: dentry to add to the hash
2425 *
2426 * Adds a dentry to the hash according to its name.
2427 */
2428
2429void d_rehash(struct dentry * entry)
2430{
2431	spin_lock(&entry->d_lock);
2432	_d_rehash(entry);
2433	spin_unlock(&entry->d_lock);
2434}
2435EXPORT_SYMBOL(d_rehash);
2436
2437/**
2438 * dentry_update_name_case - update case insensitive dentry with a new name
2439 * @dentry: dentry to be updated
2440 * @name: new name
2441 *
2442 * Update a case insensitive dentry with new case of name.
2443 *
2444 * dentry must have been returned by d_lookup with name @name. Old and new
2445 * name lengths must match (ie. no d_compare which allows mismatched name
2446 * lengths).
2447 *
2448 * Parent inode i_mutex must be held over d_lookup and into this call (to
2449 * keep renames and concurrent inserts, and readdir(2) away).
2450 */
2451void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2452{
2453	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2454	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2455
2456	spin_lock(&dentry->d_lock);
2457	write_seqcount_begin(&dentry->d_seq);
2458	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2459	write_seqcount_end(&dentry->d_seq);
2460	spin_unlock(&dentry->d_lock);
2461}
2462EXPORT_SYMBOL(dentry_update_name_case);
2463
2464static void swap_names(struct dentry *dentry, struct dentry *target)
2465{
2466	if (unlikely(dname_external(target))) {
2467		if (unlikely(dname_external(dentry))) {
2468			/*
2469			 * Both external: swap the pointers
2470			 */
2471			swap(target->d_name.name, dentry->d_name.name);
2472		} else {
2473			/*
2474			 * dentry:internal, target:external.  Steal target's
2475			 * storage and make target internal.
2476			 */
2477			memcpy(target->d_iname, dentry->d_name.name,
2478					dentry->d_name.len + 1);
2479			dentry->d_name.name = target->d_name.name;
2480			target->d_name.name = target->d_iname;
2481		}
2482	} else {
2483		if (unlikely(dname_external(dentry))) {
2484			/*
2485			 * dentry:external, target:internal.  Give dentry's
2486			 * storage to target and make dentry internal
2487			 */
2488			memcpy(dentry->d_iname, target->d_name.name,
2489					target->d_name.len + 1);
2490			target->d_name.name = dentry->d_name.name;
2491			dentry->d_name.name = dentry->d_iname;
2492		} else {
2493			/*
2494			 * Both are internal.
2495			 */
2496			unsigned int i;
2497			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2498			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2499			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2500			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2501				swap(((long *) &dentry->d_iname)[i],
2502				     ((long *) &target->d_iname)[i]);
2503			}
2504		}
2505	}
2506	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2507}
2508
2509static void copy_name(struct dentry *dentry, struct dentry *target)
2510{
2511	struct external_name *old_name = NULL;
2512	if (unlikely(dname_external(dentry)))
2513		old_name = external_name(dentry);
2514	if (unlikely(dname_external(target))) {
2515		atomic_inc(&external_name(target)->u.count);
2516		dentry->d_name = target->d_name;
2517	} else {
2518		memcpy(dentry->d_iname, target->d_name.name,
2519				target->d_name.len + 1);
2520		dentry->d_name.name = dentry->d_iname;
2521		dentry->d_name.hash_len = target->d_name.hash_len;
2522	}
2523	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2524		kfree_rcu(old_name, u.head);
2525}
2526
2527static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2528{
2529	/*
2530	 * XXXX: do we really need to take target->d_lock?
2531	 */
2532	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2533		spin_lock(&target->d_parent->d_lock);
2534	else {
2535		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2536			spin_lock(&dentry->d_parent->d_lock);
2537			spin_lock_nested(&target->d_parent->d_lock,
2538						DENTRY_D_LOCK_NESTED);
2539		} else {
2540			spin_lock(&target->d_parent->d_lock);
2541			spin_lock_nested(&dentry->d_parent->d_lock,
2542						DENTRY_D_LOCK_NESTED);
2543		}
2544	}
2545	if (target < dentry) {
2546		spin_lock_nested(&target->d_lock, 2);
2547		spin_lock_nested(&dentry->d_lock, 3);
2548	} else {
2549		spin_lock_nested(&dentry->d_lock, 2);
2550		spin_lock_nested(&target->d_lock, 3);
2551	}
2552}
2553
2554static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2555{
2556	if (target->d_parent != dentry->d_parent)
2557		spin_unlock(&dentry->d_parent->d_lock);
2558	if (target->d_parent != target)
2559		spin_unlock(&target->d_parent->d_lock);
2560	spin_unlock(&target->d_lock);
2561	spin_unlock(&dentry->d_lock);
2562}
2563
2564/*
2565 * When switching names, the actual string doesn't strictly have to
2566 * be preserved in the target - because we're dropping the target
2567 * anyway. As such, we can just do a simple memcpy() to copy over
2568 * the new name before we switch, unless we are going to rehash
2569 * it.  Note that if we *do* unhash the target, we are not allowed
2570 * to rehash it without giving it a new name/hash key - whether
2571 * we swap or overwrite the names here, resulting name won't match
2572 * the reality in filesystem; it's only there for d_path() purposes.
2573 * Note that all of this is happening under rename_lock, so the
2574 * any hash lookup seeing it in the middle of manipulations will
2575 * be discarded anyway.  So we do not care what happens to the hash
2576 * key in that case.
2577 */
2578/*
2579 * __d_move - move a dentry
2580 * @dentry: entry to move
2581 * @target: new dentry
2582 * @exchange: exchange the two dentries
2583 *
2584 * Update the dcache to reflect the move of a file name. Negative
2585 * dcache entries should not be moved in this way. Caller must hold
2586 * rename_lock, the i_mutex of the source and target directories,
2587 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2588 */
2589static void __d_move(struct dentry *dentry, struct dentry *target,
2590		     bool exchange)
2591{
2592	if (!dentry->d_inode)
2593		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2594
2595	BUG_ON(d_ancestor(dentry, target));
2596	BUG_ON(d_ancestor(target, dentry));
2597
2598	dentry_lock_for_move(dentry, target);
2599
2600	write_seqcount_begin(&dentry->d_seq);
2601	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2602
2603	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2604
2605	/*
2606	 * Move the dentry to the target hash queue. Don't bother checking
2607	 * for the same hash queue because of how unlikely it is.
2608	 */
2609	__d_drop(dentry);
2610	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2611
2612	/*
2613	 * Unhash the target (d_delete() is not usable here).  If exchanging
2614	 * the two dentries, then rehash onto the other's hash queue.
2615	 */
2616	__d_drop(target);
2617	if (exchange) {
2618		__d_rehash(target,
2619			   d_hash(dentry->d_parent, dentry->d_name.hash));
2620	}
2621
2622	/* Switch the names.. */
2623	if (exchange)
2624		swap_names(dentry, target);
2625	else
2626		copy_name(dentry, target);
2627
2628	/* ... and switch them in the tree */
2629	if (IS_ROOT(dentry)) {
2630		/* splicing a tree */
2631		dentry->d_flags |= DCACHE_RCUACCESS;
2632		dentry->d_parent = target->d_parent;
2633		target->d_parent = target;
2634		list_del_init(&target->d_child);
2635		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2636	} else {
2637		/* swapping two dentries */
2638		swap(dentry->d_parent, target->d_parent);
2639		list_move(&target->d_child, &target->d_parent->d_subdirs);
2640		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2641		if (exchange)
2642			fsnotify_d_move(target);
2643		fsnotify_d_move(dentry);
2644	}
2645
2646	write_seqcount_end(&target->d_seq);
2647	write_seqcount_end(&dentry->d_seq);
2648
2649	dentry_unlock_for_move(dentry, target);
2650}
2651
2652/*
2653 * d_move - move a dentry
2654 * @dentry: entry to move
2655 * @target: new dentry
2656 *
2657 * Update the dcache to reflect the move of a file name. Negative
2658 * dcache entries should not be moved in this way. See the locking
2659 * requirements for __d_move.
2660 */
2661void d_move(struct dentry *dentry, struct dentry *target)
2662{
2663	write_seqlock(&rename_lock);
2664	__d_move(dentry, target, false);
2665	write_sequnlock(&rename_lock);
2666}
2667EXPORT_SYMBOL(d_move);
2668
2669/*
2670 * d_exchange - exchange two dentries
2671 * @dentry1: first dentry
2672 * @dentry2: second dentry
2673 */
2674void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2675{
2676	write_seqlock(&rename_lock);
2677
2678	WARN_ON(!dentry1->d_inode);
2679	WARN_ON(!dentry2->d_inode);
2680	WARN_ON(IS_ROOT(dentry1));
2681	WARN_ON(IS_ROOT(dentry2));
2682
2683	__d_move(dentry1, dentry2, true);
2684
2685	write_sequnlock(&rename_lock);
2686}
2687
2688/**
2689 * d_ancestor - search for an ancestor
2690 * @p1: ancestor dentry
2691 * @p2: child dentry
2692 *
2693 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2694 * an ancestor of p2, else NULL.
2695 */
2696struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2697{
2698	struct dentry *p;
2699
2700	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2701		if (p->d_parent == p1)
2702			return p;
2703	}
2704	return NULL;
2705}
2706
2707/*
2708 * This helper attempts to cope with remotely renamed directories
2709 *
2710 * It assumes that the caller is already holding
2711 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2712 *
2713 * Note: If ever the locking in lock_rename() changes, then please
2714 * remember to update this too...
2715 */
2716static int __d_unalias(struct inode *inode,
2717		struct dentry *dentry, struct dentry *alias)
2718{
2719	struct mutex *m1 = NULL, *m2 = NULL;
2720	int ret = -ESTALE;
2721
2722	/* If alias and dentry share a parent, then no extra locks required */
2723	if (alias->d_parent == dentry->d_parent)
2724		goto out_unalias;
2725
2726	/* See lock_rename() */
2727	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2728		goto out_err;
2729	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2730	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2731		goto out_err;
2732	m2 = &alias->d_parent->d_inode->i_mutex;
2733out_unalias:
2734	__d_move(alias, dentry, false);
2735	ret = 0;
2736out_err:
2737	spin_unlock(&inode->i_lock);
2738	if (m2)
2739		mutex_unlock(m2);
2740	if (m1)
2741		mutex_unlock(m1);
2742	return ret;
2743}
2744
2745/**
2746 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2747 * @inode:  the inode which may have a disconnected dentry
2748 * @dentry: a negative dentry which we want to point to the inode.
2749 *
2750 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2751 * place of the given dentry and return it, else simply d_add the inode
2752 * to the dentry and return NULL.
2753 *
2754 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2755 * we should error out: directories can't have multiple aliases.
2756 *
2757 * This is needed in the lookup routine of any filesystem that is exportable
2758 * (via knfsd) so that we can build dcache paths to directories effectively.
2759 *
2760 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2761 * is returned.  This matches the expected return value of ->lookup.
2762 *
2763 * Cluster filesystems may call this function with a negative, hashed dentry.
2764 * In that case, we know that the inode will be a regular file, and also this
2765 * will only occur during atomic_open. So we need to check for the dentry
2766 * being already hashed only in the final case.
2767 */
2768struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2769{
2770	if (IS_ERR(inode))
2771		return ERR_CAST(inode);
2772
2773	BUG_ON(!d_unhashed(dentry));
2774
2775	if (!inode) {
2776		__d_instantiate(dentry, NULL);
2777		goto out;
2778	}
2779	spin_lock(&inode->i_lock);
2780	if (S_ISDIR(inode->i_mode)) {
2781		struct dentry *new = __d_find_any_alias(inode);
2782		if (unlikely(new)) {
2783			write_seqlock(&rename_lock);
2784			if (unlikely(d_ancestor(new, dentry))) {
2785				write_sequnlock(&rename_lock);
2786				spin_unlock(&inode->i_lock);
2787				dput(new);
2788				new = ERR_PTR(-ELOOP);
2789				pr_warn_ratelimited(
2790					"VFS: Lookup of '%s' in %s %s"
2791					" would have caused loop\n",
2792					dentry->d_name.name,
2793					inode->i_sb->s_type->name,
2794					inode->i_sb->s_id);
2795			} else if (!IS_ROOT(new)) {
2796				int err = __d_unalias(inode, dentry, new);
2797				write_sequnlock(&rename_lock);
2798				if (err) {
2799					dput(new);
2800					new = ERR_PTR(err);
2801				}
2802			} else {
2803				__d_move(new, dentry, false);
2804				write_sequnlock(&rename_lock);
2805				spin_unlock(&inode->i_lock);
2806				security_d_instantiate(new, inode);
2807			}
2808			iput(inode);
2809			return new;
2810		}
2811	}
2812	/* already taking inode->i_lock, so d_add() by hand */
2813	__d_instantiate(dentry, inode);
2814	spin_unlock(&inode->i_lock);
2815out:
2816	security_d_instantiate(dentry, inode);
2817	d_rehash(dentry);
2818	return NULL;
2819}
2820EXPORT_SYMBOL(d_splice_alias);
2821
2822static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2823{
2824	*buflen -= namelen;
2825	if (*buflen < 0)
2826		return -ENAMETOOLONG;
2827	*buffer -= namelen;
2828	memcpy(*buffer, str, namelen);
2829	return 0;
2830}
2831
2832/**
2833 * prepend_name - prepend a pathname in front of current buffer pointer
2834 * @buffer: buffer pointer
2835 * @buflen: allocated length of the buffer
2836 * @name:   name string and length qstr structure
2837 *
2838 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2839 * make sure that either the old or the new name pointer and length are
2840 * fetched. However, there may be mismatch between length and pointer.
2841 * The length cannot be trusted, we need to copy it byte-by-byte until
2842 * the length is reached or a null byte is found. It also prepends "/" at
2843 * the beginning of the name. The sequence number check at the caller will
2844 * retry it again when a d_move() does happen. So any garbage in the buffer
2845 * due to mismatched pointer and length will be discarded.
2846 *
2847 * Data dependency barrier is needed to make sure that we see that terminating
2848 * NUL.  Alpha strikes again, film at 11...
2849 */
2850static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2851{
2852	const char *dname = ACCESS_ONCE(name->name);
2853	u32 dlen = ACCESS_ONCE(name->len);
2854	char *p;
2855
2856	smp_read_barrier_depends();
2857
2858	*buflen -= dlen + 1;
2859	if (*buflen < 0)
2860		return -ENAMETOOLONG;
2861	p = *buffer -= dlen + 1;
2862	*p++ = '/';
2863	while (dlen--) {
2864		char c = *dname++;
2865		if (!c)
2866			break;
2867		*p++ = c;
2868	}
2869	return 0;
2870}
2871
2872/**
2873 * prepend_path - Prepend path string to a buffer
2874 * @path: the dentry/vfsmount to report
2875 * @root: root vfsmnt/dentry
2876 * @buffer: pointer to the end of the buffer
2877 * @buflen: pointer to buffer length
2878 *
2879 * The function will first try to write out the pathname without taking any
2880 * lock other than the RCU read lock to make sure that dentries won't go away.
2881 * It only checks the sequence number of the global rename_lock as any change
2882 * in the dentry's d_seq will be preceded by changes in the rename_lock
2883 * sequence number. If the sequence number had been changed, it will restart
2884 * the whole pathname back-tracing sequence again by taking the rename_lock.
2885 * In this case, there is no need to take the RCU read lock as the recursive
2886 * parent pointer references will keep the dentry chain alive as long as no
2887 * rename operation is performed.
2888 */
2889static int prepend_path(const struct path *path,
2890			const struct path *root,
2891			char **buffer, int *buflen)
2892{
2893	struct dentry *dentry;
2894	struct vfsmount *vfsmnt;
2895	struct mount *mnt;
2896	int error = 0;
2897	unsigned seq, m_seq = 0;
2898	char *bptr;
2899	int blen;
2900
2901	rcu_read_lock();
2902restart_mnt:
2903	read_seqbegin_or_lock(&mount_lock, &m_seq);
2904	seq = 0;
2905	rcu_read_lock();
2906restart:
2907	bptr = *buffer;
2908	blen = *buflen;
2909	error = 0;
2910	dentry = path->dentry;
2911	vfsmnt = path->mnt;
2912	mnt = real_mount(vfsmnt);
2913	read_seqbegin_or_lock(&rename_lock, &seq);
2914	while (dentry != root->dentry || vfsmnt != root->mnt) {
2915		struct dentry * parent;
2916
2917		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2918			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2919			/* Escaped? */
2920			if (dentry != vfsmnt->mnt_root) {
2921				bptr = *buffer;
2922				blen = *buflen;
2923				error = 3;
2924				break;
2925			}
2926			/* Global root? */
2927			if (mnt != parent) {
2928				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2929				mnt = parent;
2930				vfsmnt = &mnt->mnt;
2931				continue;
2932			}
2933			if (!error)
2934				error = is_mounted(vfsmnt) ? 1 : 2;
2935			break;
2936		}
2937		parent = dentry->d_parent;
2938		prefetch(parent);
2939		error = prepend_name(&bptr, &blen, &dentry->d_name);
2940		if (error)
2941			break;
2942
2943		dentry = parent;
2944	}
2945	if (!(seq & 1))
2946		rcu_read_unlock();
2947	if (need_seqretry(&rename_lock, seq)) {
2948		seq = 1;
2949		goto restart;
2950	}
2951	done_seqretry(&rename_lock, seq);
2952
2953	if (!(m_seq & 1))
2954		rcu_read_unlock();
2955	if (need_seqretry(&mount_lock, m_seq)) {
2956		m_seq = 1;
2957		goto restart_mnt;
2958	}
2959	done_seqretry(&mount_lock, m_seq);
2960
2961	if (error >= 0 && bptr == *buffer) {
2962		if (--blen < 0)
2963			error = -ENAMETOOLONG;
2964		else
2965			*--bptr = '/';
2966	}
2967	*buffer = bptr;
2968	*buflen = blen;
2969	return error;
2970}
2971
2972/**
2973 * __d_path - return the path of a dentry
2974 * @path: the dentry/vfsmount to report
2975 * @root: root vfsmnt/dentry
2976 * @buf: buffer to return value in
2977 * @buflen: buffer length
2978 *
2979 * Convert a dentry into an ASCII path name.
2980 *
2981 * Returns a pointer into the buffer or an error code if the
2982 * path was too long.
2983 *
2984 * "buflen" should be positive.
2985 *
2986 * If the path is not reachable from the supplied root, return %NULL.
2987 */
2988char *__d_path(const struct path *path,
2989	       const struct path *root,
2990	       char *buf, int buflen)
2991{
2992	char *res = buf + buflen;
2993	int error;
2994
2995	prepend(&res, &buflen, "\0", 1);
2996	error = prepend_path(path, root, &res, &buflen);
2997
2998	if (error < 0)
2999		return ERR_PTR(error);
3000	if (error > 0)
3001		return NULL;
3002	return res;
3003}
3004
3005char *d_absolute_path(const struct path *path,
3006	       char *buf, int buflen)
3007{
3008	struct path root = {};
3009	char *res = buf + buflen;
3010	int error;
3011
3012	prepend(&res, &buflen, "\0", 1);
3013	error = prepend_path(path, &root, &res, &buflen);
3014
3015	if (error > 1)
3016		error = -EINVAL;
3017	if (error < 0)
3018		return ERR_PTR(error);
3019	return res;
3020}
3021
3022/*
3023 * same as __d_path but appends "(deleted)" for unlinked files.
3024 */
3025static int path_with_deleted(const struct path *path,
3026			     const struct path *root,
3027			     char **buf, int *buflen)
3028{
3029	prepend(buf, buflen, "\0", 1);
3030	if (d_unlinked(path->dentry)) {
3031		int error = prepend(buf, buflen, " (deleted)", 10);
3032		if (error)
3033			return error;
3034	}
3035
3036	return prepend_path(path, root, buf, buflen);
3037}
3038
3039static int prepend_unreachable(char **buffer, int *buflen)
3040{
3041	return prepend(buffer, buflen, "(unreachable)", 13);
3042}
3043
3044static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3045{
3046	unsigned seq;
3047
3048	do {
3049		seq = read_seqcount_begin(&fs->seq);
3050		*root = fs->root;
3051	} while (read_seqcount_retry(&fs->seq, seq));
3052}
3053
3054/**
3055 * d_path - return the path of a dentry
3056 * @path: path to report
3057 * @buf: buffer to return value in
3058 * @buflen: buffer length
3059 *
3060 * Convert a dentry into an ASCII path name. If the entry has been deleted
3061 * the string " (deleted)" is appended. Note that this is ambiguous.
3062 *
3063 * Returns a pointer into the buffer or an error code if the path was
3064 * too long. Note: Callers should use the returned pointer, not the passed
3065 * in buffer, to use the name! The implementation often starts at an offset
3066 * into the buffer, and may leave 0 bytes at the start.
3067 *
3068 * "buflen" should be positive.
3069 */
3070char *d_path(const struct path *path, char *buf, int buflen)
3071{
3072	char *res = buf + buflen;
3073	struct path root;
3074	int error;
3075
3076	/*
3077	 * We have various synthetic filesystems that never get mounted.  On
3078	 * these filesystems dentries are never used for lookup purposes, and
3079	 * thus don't need to be hashed.  They also don't need a name until a
3080	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3081	 * below allows us to generate a name for these objects on demand:
3082	 *
3083	 * Some pseudo inodes are mountable.  When they are mounted
3084	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3085	 * and instead have d_path return the mounted path.
3086	 */
3087	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3088	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3089		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3090
3091	rcu_read_lock();
3092	get_fs_root_rcu(current->fs, &root);
3093	error = path_with_deleted(path, &root, &res, &buflen);
3094	rcu_read_unlock();
3095
3096	if (error < 0)
3097		res = ERR_PTR(error);
3098	return res;
3099}
3100EXPORT_SYMBOL(d_path);
3101
3102/*
3103 * Helper function for dentry_operations.d_dname() members
3104 */
3105char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3106			const char *fmt, ...)
3107{
3108	va_list args;
3109	char temp[64];
3110	int sz;
3111
3112	va_start(args, fmt);
3113	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3114	va_end(args);
3115
3116	if (sz > sizeof(temp) || sz > buflen)
3117		return ERR_PTR(-ENAMETOOLONG);
3118
3119	buffer += buflen - sz;
3120	return memcpy(buffer, temp, sz);
3121}
3122
3123char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3124{
3125	char *end = buffer + buflen;
3126	/* these dentries are never renamed, so d_lock is not needed */
3127	if (prepend(&end, &buflen, " (deleted)", 11) ||
3128	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3129	    prepend(&end, &buflen, "/", 1))
3130		end = ERR_PTR(-ENAMETOOLONG);
3131	return end;
3132}
3133EXPORT_SYMBOL(simple_dname);
3134
3135/*
3136 * Write full pathname from the root of the filesystem into the buffer.
3137 */
3138static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3139{
3140	struct dentry *dentry;
3141	char *end, *retval;
3142	int len, seq = 0;
3143	int error = 0;
3144
3145	if (buflen < 2)
3146		goto Elong;
3147
3148	rcu_read_lock();
3149restart:
3150	dentry = d;
3151	end = buf + buflen;
3152	len = buflen;
3153	prepend(&end, &len, "\0", 1);
3154	/* Get '/' right */
3155	retval = end-1;
3156	*retval = '/';
3157	read_seqbegin_or_lock(&rename_lock, &seq);
3158	while (!IS_ROOT(dentry)) {
3159		struct dentry *parent = dentry->d_parent;
3160
3161		prefetch(parent);
3162		error = prepend_name(&end, &len, &dentry->d_name);
3163		if (error)
3164			break;
3165
3166		retval = end;
3167		dentry = parent;
3168	}
3169	if (!(seq & 1))
3170		rcu_read_unlock();
3171	if (need_seqretry(&rename_lock, seq)) {
3172		seq = 1;
3173		goto restart;
3174	}
3175	done_seqretry(&rename_lock, seq);
3176	if (error)
3177		goto Elong;
3178	return retval;
3179Elong:
3180	return ERR_PTR(-ENAMETOOLONG);
3181}
3182
3183char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3184{
3185	return __dentry_path(dentry, buf, buflen);
3186}
3187EXPORT_SYMBOL(dentry_path_raw);
3188
3189char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3190{
3191	char *p = NULL;
3192	char *retval;
3193
3194	if (d_unlinked(dentry)) {
3195		p = buf + buflen;
3196		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3197			goto Elong;
3198		buflen++;
3199	}
3200	retval = __dentry_path(dentry, buf, buflen);
3201	if (!IS_ERR(retval) && p)
3202		*p = '/';	/* restore '/' overriden with '\0' */
3203	return retval;
3204Elong:
3205	return ERR_PTR(-ENAMETOOLONG);
3206}
3207
3208static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3209				    struct path *pwd)
3210{
3211	unsigned seq;
3212
3213	do {
3214		seq = read_seqcount_begin(&fs->seq);
3215		*root = fs->root;
3216		*pwd = fs->pwd;
3217	} while (read_seqcount_retry(&fs->seq, seq));
3218}
3219
3220/*
3221 * NOTE! The user-level library version returns a
3222 * character pointer. The kernel system call just
3223 * returns the length of the buffer filled (which
3224 * includes the ending '\0' character), or a negative
3225 * error value. So libc would do something like
3226 *
3227 *	char *getcwd(char * buf, size_t size)
3228 *	{
3229 *		int retval;
3230 *
3231 *		retval = sys_getcwd(buf, size);
3232 *		if (retval >= 0)
3233 *			return buf;
3234 *		errno = -retval;
3235 *		return NULL;
3236 *	}
3237 */
3238SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3239{
3240	int error;
3241	struct path pwd, root;
3242	char *page = __getname();
3243
3244	if (!page)
3245		return -ENOMEM;
3246
3247	rcu_read_lock();
3248	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3249
3250	error = -ENOENT;
3251	if (!d_unlinked(pwd.dentry)) {
3252		unsigned long len;
3253		char *cwd = page + PATH_MAX;
3254		int buflen = PATH_MAX;
3255
3256		prepend(&cwd, &buflen, "\0", 1);
3257		error = prepend_path(&pwd, &root, &cwd, &buflen);
3258		rcu_read_unlock();
3259
3260		if (error < 0)
3261			goto out;
3262
3263		/* Unreachable from current root */
3264		if (error > 0) {
3265			error = prepend_unreachable(&cwd, &buflen);
3266			if (error)
3267				goto out;
3268		}
3269
3270		error = -ERANGE;
3271		len = PATH_MAX + page - cwd;
3272		if (len <= size) {
3273			error = len;
3274			if (copy_to_user(buf, cwd, len))
3275				error = -EFAULT;
3276		}
3277	} else {
3278		rcu_read_unlock();
3279	}
3280
3281out:
3282	__putname(page);
3283	return error;
3284}
3285
3286/*
3287 * Test whether new_dentry is a subdirectory of old_dentry.
3288 *
3289 * Trivially implemented using the dcache structure
3290 */
3291
3292/**
3293 * is_subdir - is new dentry a subdirectory of old_dentry
3294 * @new_dentry: new dentry
3295 * @old_dentry: old dentry
3296 *
3297 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3298 * Returns 0 otherwise.
3299 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3300 */
3301
3302int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3303{
3304	int result;
3305	unsigned seq;
3306
3307	if (new_dentry == old_dentry)
3308		return 1;
3309
3310	do {
3311		/* for restarting inner loop in case of seq retry */
3312		seq = read_seqbegin(&rename_lock);
3313		/*
3314		 * Need rcu_readlock to protect against the d_parent trashing
3315		 * due to d_move
3316		 */
3317		rcu_read_lock();
3318		if (d_ancestor(old_dentry, new_dentry))
3319			result = 1;
3320		else
3321			result = 0;
3322		rcu_read_unlock();
3323	} while (read_seqretry(&rename_lock, seq));
3324
3325	return result;
3326}
3327
3328static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3329{
3330	struct dentry *root = data;
3331	if (dentry != root) {
3332		if (d_unhashed(dentry) || !dentry->d_inode)
3333			return D_WALK_SKIP;
3334
3335		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3336			dentry->d_flags |= DCACHE_GENOCIDE;
3337			dentry->d_lockref.count--;
3338		}
3339	}
3340	return D_WALK_CONTINUE;
3341}
3342
3343void d_genocide(struct dentry *parent)
3344{
3345	d_walk(parent, parent, d_genocide_kill, NULL);
3346}
3347
3348void d_tmpfile(struct dentry *dentry, struct inode *inode)
3349{
3350	inode_dec_link_count(inode);
3351	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3352		!hlist_unhashed(&dentry->d_u.d_alias) ||
3353		!d_unlinked(dentry));
3354	spin_lock(&dentry->d_parent->d_lock);
3355	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3356	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3357				(unsigned long long)inode->i_ino);
3358	spin_unlock(&dentry->d_lock);
3359	spin_unlock(&dentry->d_parent->d_lock);
3360	d_instantiate(dentry, inode);
3361}
3362EXPORT_SYMBOL(d_tmpfile);
3363
3364static __initdata unsigned long dhash_entries;
3365static int __init set_dhash_entries(char *str)
3366{
3367	if (!str)
3368		return 0;
3369	dhash_entries = simple_strtoul(str, &str, 0);
3370	return 1;
3371}
3372__setup("dhash_entries=", set_dhash_entries);
3373
3374static void __init dcache_init_early(void)
3375{
3376	unsigned int loop;
3377
3378	/* If hashes are distributed across NUMA nodes, defer
3379	 * hash allocation until vmalloc space is available.
3380	 */
3381	if (hashdist)
3382		return;
3383
3384	dentry_hashtable =
3385		alloc_large_system_hash("Dentry cache",
3386					sizeof(struct hlist_bl_head),
3387					dhash_entries,
3388					13,
3389					HASH_EARLY,
3390					&d_hash_shift,
3391					&d_hash_mask,
3392					0,
3393					0);
3394
3395	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3396		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3397}
3398
3399static void __init dcache_init(void)
3400{
3401	unsigned int loop;
3402
3403	/*
3404	 * A constructor could be added for stable state like the lists,
3405	 * but it is probably not worth it because of the cache nature
3406	 * of the dcache.
3407	 */
3408	dentry_cache = KMEM_CACHE(dentry,
3409		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3410
3411	/* Hash may have been set up in dcache_init_early */
3412	if (!hashdist)
3413		return;
3414
3415	dentry_hashtable =
3416		alloc_large_system_hash("Dentry cache",
3417					sizeof(struct hlist_bl_head),
3418					dhash_entries,
3419					13,
3420					0,
3421					&d_hash_shift,
3422					&d_hash_mask,
3423					0,
3424					0);
3425
3426	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3427		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3428}
3429
3430/* SLAB cache for __getname() consumers */
3431struct kmem_cache *names_cachep __read_mostly;
3432EXPORT_SYMBOL(names_cachep);
3433
3434EXPORT_SYMBOL(d_genocide);
3435
3436void __init vfs_caches_init_early(void)
3437{
3438	dcache_init_early();
3439	inode_init_early();
3440}
3441
3442void __init vfs_caches_init(unsigned long mempages)
3443{
3444	unsigned long reserve;
3445
3446	/* Base hash sizes on available memory, with a reserve equal to
3447           150% of current kernel size */
3448
3449	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3450	mempages -= reserve;
3451
3452	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3453			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3454
3455	dcache_init();
3456	inode_init();
3457	files_init(mempages);
3458	mnt_init();
3459	bdev_cache_init();
3460	chrdev_init();
3461}
3462