1/* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18#include <linux/sched.h> 19#include <linux/bio.h> 20#include <linux/slab.h> 21#include <linux/buffer_head.h> 22#include <linux/blkdev.h> 23#include <linux/random.h> 24#include <linux/iocontext.h> 25#include <linux/capability.h> 26#include <linux/ratelimit.h> 27#include <linux/kthread.h> 28#include <linux/raid/pq.h> 29#include <linux/semaphore.h> 30#include <asm/div64.h> 31#include "ctree.h" 32#include "extent_map.h" 33#include "disk-io.h" 34#include "transaction.h" 35#include "print-tree.h" 36#include "volumes.h" 37#include "raid56.h" 38#include "async-thread.h" 39#include "check-integrity.h" 40#include "rcu-string.h" 41#include "math.h" 42#include "dev-replace.h" 43#include "sysfs.h" 44 45static int init_first_rw_device(struct btrfs_trans_handle *trans, 46 struct btrfs_root *root, 47 struct btrfs_device *device); 48static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 52 53DEFINE_MUTEX(uuid_mutex); 54static LIST_HEAD(fs_uuids); 55 56static struct btrfs_fs_devices *__alloc_fs_devices(void) 57{ 58 struct btrfs_fs_devices *fs_devs; 59 60 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 61 if (!fs_devs) 62 return ERR_PTR(-ENOMEM); 63 64 mutex_init(&fs_devs->device_list_mutex); 65 66 INIT_LIST_HEAD(&fs_devs->devices); 67 INIT_LIST_HEAD(&fs_devs->resized_devices); 68 INIT_LIST_HEAD(&fs_devs->alloc_list); 69 INIT_LIST_HEAD(&fs_devs->list); 70 71 return fs_devs; 72} 73 74/** 75 * alloc_fs_devices - allocate struct btrfs_fs_devices 76 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 77 * generated. 78 * 79 * Return: a pointer to a new &struct btrfs_fs_devices on success; 80 * ERR_PTR() on error. Returned struct is not linked onto any lists and 81 * can be destroyed with kfree() right away. 82 */ 83static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 84{ 85 struct btrfs_fs_devices *fs_devs; 86 87 fs_devs = __alloc_fs_devices(); 88 if (IS_ERR(fs_devs)) 89 return fs_devs; 90 91 if (fsid) 92 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 93 else 94 generate_random_uuid(fs_devs->fsid); 95 96 return fs_devs; 97} 98 99static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 100{ 101 struct btrfs_device *device; 102 WARN_ON(fs_devices->opened); 103 while (!list_empty(&fs_devices->devices)) { 104 device = list_entry(fs_devices->devices.next, 105 struct btrfs_device, dev_list); 106 list_del(&device->dev_list); 107 rcu_string_free(device->name); 108 kfree(device); 109 } 110 kfree(fs_devices); 111} 112 113static void btrfs_kobject_uevent(struct block_device *bdev, 114 enum kobject_action action) 115{ 116 int ret; 117 118 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 119 if (ret) 120 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 121 action, 122 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 123 &disk_to_dev(bdev->bd_disk)->kobj); 124} 125 126void btrfs_cleanup_fs_uuids(void) 127{ 128 struct btrfs_fs_devices *fs_devices; 129 130 while (!list_empty(&fs_uuids)) { 131 fs_devices = list_entry(fs_uuids.next, 132 struct btrfs_fs_devices, list); 133 list_del(&fs_devices->list); 134 free_fs_devices(fs_devices); 135 } 136} 137 138static struct btrfs_device *__alloc_device(void) 139{ 140 struct btrfs_device *dev; 141 142 dev = kzalloc(sizeof(*dev), GFP_NOFS); 143 if (!dev) 144 return ERR_PTR(-ENOMEM); 145 146 INIT_LIST_HEAD(&dev->dev_list); 147 INIT_LIST_HEAD(&dev->dev_alloc_list); 148 INIT_LIST_HEAD(&dev->resized_list); 149 150 spin_lock_init(&dev->io_lock); 151 152 spin_lock_init(&dev->reada_lock); 153 atomic_set(&dev->reada_in_flight, 0); 154 atomic_set(&dev->dev_stats_ccnt, 0); 155 btrfs_device_data_ordered_init(dev); 156 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 157 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 158 159 return dev; 160} 161 162static noinline struct btrfs_device *__find_device(struct list_head *head, 163 u64 devid, u8 *uuid) 164{ 165 struct btrfs_device *dev; 166 167 list_for_each_entry(dev, head, dev_list) { 168 if (dev->devid == devid && 169 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 170 return dev; 171 } 172 } 173 return NULL; 174} 175 176static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 177{ 178 struct btrfs_fs_devices *fs_devices; 179 180 list_for_each_entry(fs_devices, &fs_uuids, list) { 181 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 182 return fs_devices; 183 } 184 return NULL; 185} 186 187static int 188btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 189 int flush, struct block_device **bdev, 190 struct buffer_head **bh) 191{ 192 int ret; 193 194 *bdev = blkdev_get_by_path(device_path, flags, holder); 195 196 if (IS_ERR(*bdev)) { 197 ret = PTR_ERR(*bdev); 198 printk(KERN_INFO "BTRFS: open %s failed\n", device_path); 199 goto error; 200 } 201 202 if (flush) 203 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 204 ret = set_blocksize(*bdev, 4096); 205 if (ret) { 206 blkdev_put(*bdev, flags); 207 goto error; 208 } 209 invalidate_bdev(*bdev); 210 *bh = btrfs_read_dev_super(*bdev); 211 if (!*bh) { 212 ret = -EINVAL; 213 blkdev_put(*bdev, flags); 214 goto error; 215 } 216 217 return 0; 218 219error: 220 *bdev = NULL; 221 *bh = NULL; 222 return ret; 223} 224 225static void requeue_list(struct btrfs_pending_bios *pending_bios, 226 struct bio *head, struct bio *tail) 227{ 228 229 struct bio *old_head; 230 231 old_head = pending_bios->head; 232 pending_bios->head = head; 233 if (pending_bios->tail) 234 tail->bi_next = old_head; 235 else 236 pending_bios->tail = tail; 237} 238 239/* 240 * we try to collect pending bios for a device so we don't get a large 241 * number of procs sending bios down to the same device. This greatly 242 * improves the schedulers ability to collect and merge the bios. 243 * 244 * But, it also turns into a long list of bios to process and that is sure 245 * to eventually make the worker thread block. The solution here is to 246 * make some progress and then put this work struct back at the end of 247 * the list if the block device is congested. This way, multiple devices 248 * can make progress from a single worker thread. 249 */ 250static noinline void run_scheduled_bios(struct btrfs_device *device) 251{ 252 struct bio *pending; 253 struct backing_dev_info *bdi; 254 struct btrfs_fs_info *fs_info; 255 struct btrfs_pending_bios *pending_bios; 256 struct bio *tail; 257 struct bio *cur; 258 int again = 0; 259 unsigned long num_run; 260 unsigned long batch_run = 0; 261 unsigned long limit; 262 unsigned long last_waited = 0; 263 int force_reg = 0; 264 int sync_pending = 0; 265 struct blk_plug plug; 266 267 /* 268 * this function runs all the bios we've collected for 269 * a particular device. We don't want to wander off to 270 * another device without first sending all of these down. 271 * So, setup a plug here and finish it off before we return 272 */ 273 blk_start_plug(&plug); 274 275 bdi = blk_get_backing_dev_info(device->bdev); 276 fs_info = device->dev_root->fs_info; 277 limit = btrfs_async_submit_limit(fs_info); 278 limit = limit * 2 / 3; 279 280loop: 281 spin_lock(&device->io_lock); 282 283loop_lock: 284 num_run = 0; 285 286 /* take all the bios off the list at once and process them 287 * later on (without the lock held). But, remember the 288 * tail and other pointers so the bios can be properly reinserted 289 * into the list if we hit congestion 290 */ 291 if (!force_reg && device->pending_sync_bios.head) { 292 pending_bios = &device->pending_sync_bios; 293 force_reg = 1; 294 } else { 295 pending_bios = &device->pending_bios; 296 force_reg = 0; 297 } 298 299 pending = pending_bios->head; 300 tail = pending_bios->tail; 301 WARN_ON(pending && !tail); 302 303 /* 304 * if pending was null this time around, no bios need processing 305 * at all and we can stop. Otherwise it'll loop back up again 306 * and do an additional check so no bios are missed. 307 * 308 * device->running_pending is used to synchronize with the 309 * schedule_bio code. 310 */ 311 if (device->pending_sync_bios.head == NULL && 312 device->pending_bios.head == NULL) { 313 again = 0; 314 device->running_pending = 0; 315 } else { 316 again = 1; 317 device->running_pending = 1; 318 } 319 320 pending_bios->head = NULL; 321 pending_bios->tail = NULL; 322 323 spin_unlock(&device->io_lock); 324 325 while (pending) { 326 327 rmb(); 328 /* we want to work on both lists, but do more bios on the 329 * sync list than the regular list 330 */ 331 if ((num_run > 32 && 332 pending_bios != &device->pending_sync_bios && 333 device->pending_sync_bios.head) || 334 (num_run > 64 && pending_bios == &device->pending_sync_bios && 335 device->pending_bios.head)) { 336 spin_lock(&device->io_lock); 337 requeue_list(pending_bios, pending, tail); 338 goto loop_lock; 339 } 340 341 cur = pending; 342 pending = pending->bi_next; 343 cur->bi_next = NULL; 344 345 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 346 waitqueue_active(&fs_info->async_submit_wait)) 347 wake_up(&fs_info->async_submit_wait); 348 349 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 350 351 /* 352 * if we're doing the sync list, record that our 353 * plug has some sync requests on it 354 * 355 * If we're doing the regular list and there are 356 * sync requests sitting around, unplug before 357 * we add more 358 */ 359 if (pending_bios == &device->pending_sync_bios) { 360 sync_pending = 1; 361 } else if (sync_pending) { 362 blk_finish_plug(&plug); 363 blk_start_plug(&plug); 364 sync_pending = 0; 365 } 366 367 btrfsic_submit_bio(cur->bi_rw, cur); 368 num_run++; 369 batch_run++; 370 371 cond_resched(); 372 373 /* 374 * we made progress, there is more work to do and the bdi 375 * is now congested. Back off and let other work structs 376 * run instead 377 */ 378 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 379 fs_info->fs_devices->open_devices > 1) { 380 struct io_context *ioc; 381 382 ioc = current->io_context; 383 384 /* 385 * the main goal here is that we don't want to 386 * block if we're going to be able to submit 387 * more requests without blocking. 388 * 389 * This code does two great things, it pokes into 390 * the elevator code from a filesystem _and_ 391 * it makes assumptions about how batching works. 392 */ 393 if (ioc && ioc->nr_batch_requests > 0 && 394 time_before(jiffies, ioc->last_waited + HZ/50UL) && 395 (last_waited == 0 || 396 ioc->last_waited == last_waited)) { 397 /* 398 * we want to go through our batch of 399 * requests and stop. So, we copy out 400 * the ioc->last_waited time and test 401 * against it before looping 402 */ 403 last_waited = ioc->last_waited; 404 cond_resched(); 405 continue; 406 } 407 spin_lock(&device->io_lock); 408 requeue_list(pending_bios, pending, tail); 409 device->running_pending = 1; 410 411 spin_unlock(&device->io_lock); 412 btrfs_queue_work(fs_info->submit_workers, 413 &device->work); 414 goto done; 415 } 416 /* unplug every 64 requests just for good measure */ 417 if (batch_run % 64 == 0) { 418 blk_finish_plug(&plug); 419 blk_start_plug(&plug); 420 sync_pending = 0; 421 } 422 } 423 424 cond_resched(); 425 if (again) 426 goto loop; 427 428 spin_lock(&device->io_lock); 429 if (device->pending_bios.head || device->pending_sync_bios.head) 430 goto loop_lock; 431 spin_unlock(&device->io_lock); 432 433done: 434 blk_finish_plug(&plug); 435} 436 437static void pending_bios_fn(struct btrfs_work *work) 438{ 439 struct btrfs_device *device; 440 441 device = container_of(work, struct btrfs_device, work); 442 run_scheduled_bios(device); 443} 444 445/* 446 * Add new device to list of registered devices 447 * 448 * Returns: 449 * 1 - first time device is seen 450 * 0 - device already known 451 * < 0 - error 452 */ 453static noinline int device_list_add(const char *path, 454 struct btrfs_super_block *disk_super, 455 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 456{ 457 struct btrfs_device *device; 458 struct btrfs_fs_devices *fs_devices; 459 struct rcu_string *name; 460 int ret = 0; 461 u64 found_transid = btrfs_super_generation(disk_super); 462 463 fs_devices = find_fsid(disk_super->fsid); 464 if (!fs_devices) { 465 fs_devices = alloc_fs_devices(disk_super->fsid); 466 if (IS_ERR(fs_devices)) 467 return PTR_ERR(fs_devices); 468 469 list_add(&fs_devices->list, &fs_uuids); 470 471 device = NULL; 472 } else { 473 device = __find_device(&fs_devices->devices, devid, 474 disk_super->dev_item.uuid); 475 } 476 477 if (!device) { 478 if (fs_devices->opened) 479 return -EBUSY; 480 481 device = btrfs_alloc_device(NULL, &devid, 482 disk_super->dev_item.uuid); 483 if (IS_ERR(device)) { 484 /* we can safely leave the fs_devices entry around */ 485 return PTR_ERR(device); 486 } 487 488 name = rcu_string_strdup(path, GFP_NOFS); 489 if (!name) { 490 kfree(device); 491 return -ENOMEM; 492 } 493 rcu_assign_pointer(device->name, name); 494 495 mutex_lock(&fs_devices->device_list_mutex); 496 list_add_rcu(&device->dev_list, &fs_devices->devices); 497 fs_devices->num_devices++; 498 mutex_unlock(&fs_devices->device_list_mutex); 499 500 ret = 1; 501 device->fs_devices = fs_devices; 502 } else if (!device->name || strcmp(device->name->str, path)) { 503 /* 504 * When FS is already mounted. 505 * 1. If you are here and if the device->name is NULL that 506 * means this device was missing at time of FS mount. 507 * 2. If you are here and if the device->name is different 508 * from 'path' that means either 509 * a. The same device disappeared and reappeared with 510 * different name. or 511 * b. The missing-disk-which-was-replaced, has 512 * reappeared now. 513 * 514 * We must allow 1 and 2a above. But 2b would be a spurious 515 * and unintentional. 516 * 517 * Further in case of 1 and 2a above, the disk at 'path' 518 * would have missed some transaction when it was away and 519 * in case of 2a the stale bdev has to be updated as well. 520 * 2b must not be allowed at all time. 521 */ 522 523 /* 524 * For now, we do allow update to btrfs_fs_device through the 525 * btrfs dev scan cli after FS has been mounted. We're still 526 * tracking a problem where systems fail mount by subvolume id 527 * when we reject replacement on a mounted FS. 528 */ 529 if (!fs_devices->opened && found_transid < device->generation) { 530 /* 531 * That is if the FS is _not_ mounted and if you 532 * are here, that means there is more than one 533 * disk with same uuid and devid.We keep the one 534 * with larger generation number or the last-in if 535 * generation are equal. 536 */ 537 return -EEXIST; 538 } 539 540 name = rcu_string_strdup(path, GFP_NOFS); 541 if (!name) 542 return -ENOMEM; 543 rcu_string_free(device->name); 544 rcu_assign_pointer(device->name, name); 545 if (device->missing) { 546 fs_devices->missing_devices--; 547 device->missing = 0; 548 } 549 } 550 551 /* 552 * Unmount does not free the btrfs_device struct but would zero 553 * generation along with most of the other members. So just update 554 * it back. We need it to pick the disk with largest generation 555 * (as above). 556 */ 557 if (!fs_devices->opened) 558 device->generation = found_transid; 559 560 *fs_devices_ret = fs_devices; 561 562 return ret; 563} 564 565static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 566{ 567 struct btrfs_fs_devices *fs_devices; 568 struct btrfs_device *device; 569 struct btrfs_device *orig_dev; 570 571 fs_devices = alloc_fs_devices(orig->fsid); 572 if (IS_ERR(fs_devices)) 573 return fs_devices; 574 575 mutex_lock(&orig->device_list_mutex); 576 fs_devices->total_devices = orig->total_devices; 577 578 /* We have held the volume lock, it is safe to get the devices. */ 579 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 580 struct rcu_string *name; 581 582 device = btrfs_alloc_device(NULL, &orig_dev->devid, 583 orig_dev->uuid); 584 if (IS_ERR(device)) 585 goto error; 586 587 /* 588 * This is ok to do without rcu read locked because we hold the 589 * uuid mutex so nothing we touch in here is going to disappear. 590 */ 591 if (orig_dev->name) { 592 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 593 if (!name) { 594 kfree(device); 595 goto error; 596 } 597 rcu_assign_pointer(device->name, name); 598 } 599 600 list_add(&device->dev_list, &fs_devices->devices); 601 device->fs_devices = fs_devices; 602 fs_devices->num_devices++; 603 } 604 mutex_unlock(&orig->device_list_mutex); 605 return fs_devices; 606error: 607 mutex_unlock(&orig->device_list_mutex); 608 free_fs_devices(fs_devices); 609 return ERR_PTR(-ENOMEM); 610} 611 612void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 613{ 614 struct btrfs_device *device, *next; 615 struct btrfs_device *latest_dev = NULL; 616 617 mutex_lock(&uuid_mutex); 618again: 619 /* This is the initialized path, it is safe to release the devices. */ 620 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 621 if (device->in_fs_metadata) { 622 if (!device->is_tgtdev_for_dev_replace && 623 (!latest_dev || 624 device->generation > latest_dev->generation)) { 625 latest_dev = device; 626 } 627 continue; 628 } 629 630 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 631 /* 632 * In the first step, keep the device which has 633 * the correct fsid and the devid that is used 634 * for the dev_replace procedure. 635 * In the second step, the dev_replace state is 636 * read from the device tree and it is known 637 * whether the procedure is really active or 638 * not, which means whether this device is 639 * used or whether it should be removed. 640 */ 641 if (step == 0 || device->is_tgtdev_for_dev_replace) { 642 continue; 643 } 644 } 645 if (device->bdev) { 646 blkdev_put(device->bdev, device->mode); 647 device->bdev = NULL; 648 fs_devices->open_devices--; 649 } 650 if (device->writeable) { 651 list_del_init(&device->dev_alloc_list); 652 device->writeable = 0; 653 if (!device->is_tgtdev_for_dev_replace) 654 fs_devices->rw_devices--; 655 } 656 list_del_init(&device->dev_list); 657 fs_devices->num_devices--; 658 rcu_string_free(device->name); 659 kfree(device); 660 } 661 662 if (fs_devices->seed) { 663 fs_devices = fs_devices->seed; 664 goto again; 665 } 666 667 fs_devices->latest_bdev = latest_dev->bdev; 668 669 mutex_unlock(&uuid_mutex); 670} 671 672static void __free_device(struct work_struct *work) 673{ 674 struct btrfs_device *device; 675 676 device = container_of(work, struct btrfs_device, rcu_work); 677 678 if (device->bdev) 679 blkdev_put(device->bdev, device->mode); 680 681 rcu_string_free(device->name); 682 kfree(device); 683} 684 685static void free_device(struct rcu_head *head) 686{ 687 struct btrfs_device *device; 688 689 device = container_of(head, struct btrfs_device, rcu); 690 691 INIT_WORK(&device->rcu_work, __free_device); 692 schedule_work(&device->rcu_work); 693} 694 695static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 696{ 697 struct btrfs_device *device; 698 699 if (--fs_devices->opened > 0) 700 return 0; 701 702 mutex_lock(&fs_devices->device_list_mutex); 703 list_for_each_entry(device, &fs_devices->devices, dev_list) { 704 struct btrfs_device *new_device; 705 struct rcu_string *name; 706 707 if (device->bdev) 708 fs_devices->open_devices--; 709 710 if (device->writeable && 711 device->devid != BTRFS_DEV_REPLACE_DEVID) { 712 list_del_init(&device->dev_alloc_list); 713 fs_devices->rw_devices--; 714 } 715 716 if (device->missing) 717 fs_devices->missing_devices--; 718 719 new_device = btrfs_alloc_device(NULL, &device->devid, 720 device->uuid); 721 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 722 723 /* Safe because we are under uuid_mutex */ 724 if (device->name) { 725 name = rcu_string_strdup(device->name->str, GFP_NOFS); 726 BUG_ON(!name); /* -ENOMEM */ 727 rcu_assign_pointer(new_device->name, name); 728 } 729 730 list_replace_rcu(&device->dev_list, &new_device->dev_list); 731 new_device->fs_devices = device->fs_devices; 732 733 call_rcu(&device->rcu, free_device); 734 } 735 mutex_unlock(&fs_devices->device_list_mutex); 736 737 WARN_ON(fs_devices->open_devices); 738 WARN_ON(fs_devices->rw_devices); 739 fs_devices->opened = 0; 740 fs_devices->seeding = 0; 741 742 return 0; 743} 744 745int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 746{ 747 struct btrfs_fs_devices *seed_devices = NULL; 748 int ret; 749 750 mutex_lock(&uuid_mutex); 751 ret = __btrfs_close_devices(fs_devices); 752 if (!fs_devices->opened) { 753 seed_devices = fs_devices->seed; 754 fs_devices->seed = NULL; 755 } 756 mutex_unlock(&uuid_mutex); 757 758 while (seed_devices) { 759 fs_devices = seed_devices; 760 seed_devices = fs_devices->seed; 761 __btrfs_close_devices(fs_devices); 762 free_fs_devices(fs_devices); 763 } 764 /* 765 * Wait for rcu kworkers under __btrfs_close_devices 766 * to finish all blkdev_puts so device is really 767 * free when umount is done. 768 */ 769 rcu_barrier(); 770 return ret; 771} 772 773static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 774 fmode_t flags, void *holder) 775{ 776 struct request_queue *q; 777 struct block_device *bdev; 778 struct list_head *head = &fs_devices->devices; 779 struct btrfs_device *device; 780 struct btrfs_device *latest_dev = NULL; 781 struct buffer_head *bh; 782 struct btrfs_super_block *disk_super; 783 u64 devid; 784 int seeding = 1; 785 int ret = 0; 786 787 flags |= FMODE_EXCL; 788 789 list_for_each_entry(device, head, dev_list) { 790 if (device->bdev) 791 continue; 792 if (!device->name) 793 continue; 794 795 /* Just open everything we can; ignore failures here */ 796 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 797 &bdev, &bh)) 798 continue; 799 800 disk_super = (struct btrfs_super_block *)bh->b_data; 801 devid = btrfs_stack_device_id(&disk_super->dev_item); 802 if (devid != device->devid) 803 goto error_brelse; 804 805 if (memcmp(device->uuid, disk_super->dev_item.uuid, 806 BTRFS_UUID_SIZE)) 807 goto error_brelse; 808 809 device->generation = btrfs_super_generation(disk_super); 810 if (!latest_dev || 811 device->generation > latest_dev->generation) 812 latest_dev = device; 813 814 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 815 device->writeable = 0; 816 } else { 817 device->writeable = !bdev_read_only(bdev); 818 seeding = 0; 819 } 820 821 q = bdev_get_queue(bdev); 822 if (blk_queue_discard(q)) 823 device->can_discard = 1; 824 825 device->bdev = bdev; 826 device->in_fs_metadata = 0; 827 device->mode = flags; 828 829 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 830 fs_devices->rotating = 1; 831 832 fs_devices->open_devices++; 833 if (device->writeable && 834 device->devid != BTRFS_DEV_REPLACE_DEVID) { 835 fs_devices->rw_devices++; 836 list_add(&device->dev_alloc_list, 837 &fs_devices->alloc_list); 838 } 839 brelse(bh); 840 continue; 841 842error_brelse: 843 brelse(bh); 844 blkdev_put(bdev, flags); 845 continue; 846 } 847 if (fs_devices->open_devices == 0) { 848 ret = -EINVAL; 849 goto out; 850 } 851 fs_devices->seeding = seeding; 852 fs_devices->opened = 1; 853 fs_devices->latest_bdev = latest_dev->bdev; 854 fs_devices->total_rw_bytes = 0; 855out: 856 return ret; 857} 858 859int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 860 fmode_t flags, void *holder) 861{ 862 int ret; 863 864 mutex_lock(&uuid_mutex); 865 if (fs_devices->opened) { 866 fs_devices->opened++; 867 ret = 0; 868 } else { 869 ret = __btrfs_open_devices(fs_devices, flags, holder); 870 } 871 mutex_unlock(&uuid_mutex); 872 return ret; 873} 874 875/* 876 * Look for a btrfs signature on a device. This may be called out of the mount path 877 * and we are not allowed to call set_blocksize during the scan. The superblock 878 * is read via pagecache 879 */ 880int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 881 struct btrfs_fs_devices **fs_devices_ret) 882{ 883 struct btrfs_super_block *disk_super; 884 struct block_device *bdev; 885 struct page *page; 886 void *p; 887 int ret = -EINVAL; 888 u64 devid; 889 u64 transid; 890 u64 total_devices; 891 u64 bytenr; 892 pgoff_t index; 893 894 /* 895 * we would like to check all the supers, but that would make 896 * a btrfs mount succeed after a mkfs from a different FS. 897 * So, we need to add a special mount option to scan for 898 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 899 */ 900 bytenr = btrfs_sb_offset(0); 901 flags |= FMODE_EXCL; 902 mutex_lock(&uuid_mutex); 903 904 bdev = blkdev_get_by_path(path, flags, holder); 905 906 if (IS_ERR(bdev)) { 907 ret = PTR_ERR(bdev); 908 goto error; 909 } 910 911 /* make sure our super fits in the device */ 912 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 913 goto error_bdev_put; 914 915 /* make sure our super fits in the page */ 916 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 917 goto error_bdev_put; 918 919 /* make sure our super doesn't straddle pages on disk */ 920 index = bytenr >> PAGE_CACHE_SHIFT; 921 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 922 goto error_bdev_put; 923 924 /* pull in the page with our super */ 925 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 926 index, GFP_NOFS); 927 928 if (IS_ERR_OR_NULL(page)) 929 goto error_bdev_put; 930 931 p = kmap(page); 932 933 /* align our pointer to the offset of the super block */ 934 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 935 936 if (btrfs_super_bytenr(disk_super) != bytenr || 937 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 938 goto error_unmap; 939 940 devid = btrfs_stack_device_id(&disk_super->dev_item); 941 transid = btrfs_super_generation(disk_super); 942 total_devices = btrfs_super_num_devices(disk_super); 943 944 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 945 if (ret > 0) { 946 if (disk_super->label[0]) { 947 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 948 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 949 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 950 } else { 951 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 952 } 953 954 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 955 ret = 0; 956 } 957 if (!ret && fs_devices_ret) 958 (*fs_devices_ret)->total_devices = total_devices; 959 960error_unmap: 961 kunmap(page); 962 page_cache_release(page); 963 964error_bdev_put: 965 blkdev_put(bdev, flags); 966error: 967 mutex_unlock(&uuid_mutex); 968 return ret; 969} 970 971/* helper to account the used device space in the range */ 972int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 973 u64 end, u64 *length) 974{ 975 struct btrfs_key key; 976 struct btrfs_root *root = device->dev_root; 977 struct btrfs_dev_extent *dev_extent; 978 struct btrfs_path *path; 979 u64 extent_end; 980 int ret; 981 int slot; 982 struct extent_buffer *l; 983 984 *length = 0; 985 986 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 987 return 0; 988 989 path = btrfs_alloc_path(); 990 if (!path) 991 return -ENOMEM; 992 path->reada = 2; 993 994 key.objectid = device->devid; 995 key.offset = start; 996 key.type = BTRFS_DEV_EXTENT_KEY; 997 998 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 999 if (ret < 0) 1000 goto out; 1001 if (ret > 0) { 1002 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1003 if (ret < 0) 1004 goto out; 1005 } 1006 1007 while (1) { 1008 l = path->nodes[0]; 1009 slot = path->slots[0]; 1010 if (slot >= btrfs_header_nritems(l)) { 1011 ret = btrfs_next_leaf(root, path); 1012 if (ret == 0) 1013 continue; 1014 if (ret < 0) 1015 goto out; 1016 1017 break; 1018 } 1019 btrfs_item_key_to_cpu(l, &key, slot); 1020 1021 if (key.objectid < device->devid) 1022 goto next; 1023 1024 if (key.objectid > device->devid) 1025 break; 1026 1027 if (key.type != BTRFS_DEV_EXTENT_KEY) 1028 goto next; 1029 1030 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1031 extent_end = key.offset + btrfs_dev_extent_length(l, 1032 dev_extent); 1033 if (key.offset <= start && extent_end > end) { 1034 *length = end - start + 1; 1035 break; 1036 } else if (key.offset <= start && extent_end > start) 1037 *length += extent_end - start; 1038 else if (key.offset > start && extent_end <= end) 1039 *length += extent_end - key.offset; 1040 else if (key.offset > start && key.offset <= end) { 1041 *length += end - key.offset + 1; 1042 break; 1043 } else if (key.offset > end) 1044 break; 1045 1046next: 1047 path->slots[0]++; 1048 } 1049 ret = 0; 1050out: 1051 btrfs_free_path(path); 1052 return ret; 1053} 1054 1055static int contains_pending_extent(struct btrfs_trans_handle *trans, 1056 struct btrfs_device *device, 1057 u64 *start, u64 len) 1058{ 1059 struct extent_map *em; 1060 struct list_head *search_list = &trans->transaction->pending_chunks; 1061 int ret = 0; 1062 u64 physical_start = *start; 1063 1064again: 1065 list_for_each_entry(em, search_list, list) { 1066 struct map_lookup *map; 1067 int i; 1068 1069 map = (struct map_lookup *)em->bdev; 1070 for (i = 0; i < map->num_stripes; i++) { 1071 if (map->stripes[i].dev != device) 1072 continue; 1073 if (map->stripes[i].physical >= physical_start + len || 1074 map->stripes[i].physical + em->orig_block_len <= 1075 physical_start) 1076 continue; 1077 *start = map->stripes[i].physical + 1078 em->orig_block_len; 1079 ret = 1; 1080 } 1081 } 1082 if (search_list == &trans->transaction->pending_chunks) { 1083 search_list = &trans->root->fs_info->pinned_chunks; 1084 goto again; 1085 } 1086 1087 return ret; 1088} 1089 1090 1091/* 1092 * find_free_dev_extent - find free space in the specified device 1093 * @device: the device which we search the free space in 1094 * @num_bytes: the size of the free space that we need 1095 * @start: store the start of the free space. 1096 * @len: the size of the free space. that we find, or the size of the max 1097 * free space if we don't find suitable free space 1098 * 1099 * this uses a pretty simple search, the expectation is that it is 1100 * called very infrequently and that a given device has a small number 1101 * of extents 1102 * 1103 * @start is used to store the start of the free space if we find. But if we 1104 * don't find suitable free space, it will be used to store the start position 1105 * of the max free space. 1106 * 1107 * @len is used to store the size of the free space that we find. 1108 * But if we don't find suitable free space, it is used to store the size of 1109 * the max free space. 1110 */ 1111int find_free_dev_extent(struct btrfs_trans_handle *trans, 1112 struct btrfs_device *device, u64 num_bytes, 1113 u64 *start, u64 *len) 1114{ 1115 struct btrfs_key key; 1116 struct btrfs_root *root = device->dev_root; 1117 struct btrfs_dev_extent *dev_extent; 1118 struct btrfs_path *path; 1119 u64 hole_size; 1120 u64 max_hole_start; 1121 u64 max_hole_size; 1122 u64 extent_end; 1123 u64 search_start; 1124 u64 search_end = device->total_bytes; 1125 int ret; 1126 int slot; 1127 struct extent_buffer *l; 1128 1129 /* FIXME use last free of some kind */ 1130 1131 /* we don't want to overwrite the superblock on the drive, 1132 * so we make sure to start at an offset of at least 1MB 1133 */ 1134 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1135 1136 path = btrfs_alloc_path(); 1137 if (!path) 1138 return -ENOMEM; 1139 1140 max_hole_start = search_start; 1141 max_hole_size = 0; 1142 1143again: 1144 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1145 ret = -ENOSPC; 1146 goto out; 1147 } 1148 1149 path->reada = 2; 1150 path->search_commit_root = 1; 1151 path->skip_locking = 1; 1152 1153 key.objectid = device->devid; 1154 key.offset = search_start; 1155 key.type = BTRFS_DEV_EXTENT_KEY; 1156 1157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1158 if (ret < 0) 1159 goto out; 1160 if (ret > 0) { 1161 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1162 if (ret < 0) 1163 goto out; 1164 } 1165 1166 while (1) { 1167 l = path->nodes[0]; 1168 slot = path->slots[0]; 1169 if (slot >= btrfs_header_nritems(l)) { 1170 ret = btrfs_next_leaf(root, path); 1171 if (ret == 0) 1172 continue; 1173 if (ret < 0) 1174 goto out; 1175 1176 break; 1177 } 1178 btrfs_item_key_to_cpu(l, &key, slot); 1179 1180 if (key.objectid < device->devid) 1181 goto next; 1182 1183 if (key.objectid > device->devid) 1184 break; 1185 1186 if (key.type != BTRFS_DEV_EXTENT_KEY) 1187 goto next; 1188 1189 if (key.offset > search_start) { 1190 hole_size = key.offset - search_start; 1191 1192 /* 1193 * Have to check before we set max_hole_start, otherwise 1194 * we could end up sending back this offset anyway. 1195 */ 1196 if (contains_pending_extent(trans, device, 1197 &search_start, 1198 hole_size)) { 1199 if (key.offset >= search_start) { 1200 hole_size = key.offset - search_start; 1201 } else { 1202 WARN_ON_ONCE(1); 1203 hole_size = 0; 1204 } 1205 } 1206 1207 if (hole_size > max_hole_size) { 1208 max_hole_start = search_start; 1209 max_hole_size = hole_size; 1210 } 1211 1212 /* 1213 * If this free space is greater than which we need, 1214 * it must be the max free space that we have found 1215 * until now, so max_hole_start must point to the start 1216 * of this free space and the length of this free space 1217 * is stored in max_hole_size. Thus, we return 1218 * max_hole_start and max_hole_size and go back to the 1219 * caller. 1220 */ 1221 if (hole_size >= num_bytes) { 1222 ret = 0; 1223 goto out; 1224 } 1225 } 1226 1227 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1228 extent_end = key.offset + btrfs_dev_extent_length(l, 1229 dev_extent); 1230 if (extent_end > search_start) 1231 search_start = extent_end; 1232next: 1233 path->slots[0]++; 1234 cond_resched(); 1235 } 1236 1237 /* 1238 * At this point, search_start should be the end of 1239 * allocated dev extents, and when shrinking the device, 1240 * search_end may be smaller than search_start. 1241 */ 1242 if (search_end > search_start) { 1243 hole_size = search_end - search_start; 1244 1245 if (contains_pending_extent(trans, device, &search_start, 1246 hole_size)) { 1247 btrfs_release_path(path); 1248 goto again; 1249 } 1250 1251 if (hole_size > max_hole_size) { 1252 max_hole_start = search_start; 1253 max_hole_size = hole_size; 1254 } 1255 } 1256 1257 /* See above. */ 1258 if (max_hole_size < num_bytes) 1259 ret = -ENOSPC; 1260 else 1261 ret = 0; 1262 1263out: 1264 btrfs_free_path(path); 1265 *start = max_hole_start; 1266 if (len) 1267 *len = max_hole_size; 1268 return ret; 1269} 1270 1271static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1272 struct btrfs_device *device, 1273 u64 start, u64 *dev_extent_len) 1274{ 1275 int ret; 1276 struct btrfs_path *path; 1277 struct btrfs_root *root = device->dev_root; 1278 struct btrfs_key key; 1279 struct btrfs_key found_key; 1280 struct extent_buffer *leaf = NULL; 1281 struct btrfs_dev_extent *extent = NULL; 1282 1283 path = btrfs_alloc_path(); 1284 if (!path) 1285 return -ENOMEM; 1286 1287 key.objectid = device->devid; 1288 key.offset = start; 1289 key.type = BTRFS_DEV_EXTENT_KEY; 1290again: 1291 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1292 if (ret > 0) { 1293 ret = btrfs_previous_item(root, path, key.objectid, 1294 BTRFS_DEV_EXTENT_KEY); 1295 if (ret) 1296 goto out; 1297 leaf = path->nodes[0]; 1298 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1299 extent = btrfs_item_ptr(leaf, path->slots[0], 1300 struct btrfs_dev_extent); 1301 BUG_ON(found_key.offset > start || found_key.offset + 1302 btrfs_dev_extent_length(leaf, extent) < start); 1303 key = found_key; 1304 btrfs_release_path(path); 1305 goto again; 1306 } else if (ret == 0) { 1307 leaf = path->nodes[0]; 1308 extent = btrfs_item_ptr(leaf, path->slots[0], 1309 struct btrfs_dev_extent); 1310 } else { 1311 btrfs_error(root->fs_info, ret, "Slot search failed"); 1312 goto out; 1313 } 1314 1315 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1316 1317 ret = btrfs_del_item(trans, root, path); 1318 if (ret) { 1319 btrfs_error(root->fs_info, ret, 1320 "Failed to remove dev extent item"); 1321 } else { 1322 trans->transaction->have_free_bgs = 1; 1323 } 1324out: 1325 btrfs_free_path(path); 1326 return ret; 1327} 1328 1329static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1330 struct btrfs_device *device, 1331 u64 chunk_tree, u64 chunk_objectid, 1332 u64 chunk_offset, u64 start, u64 num_bytes) 1333{ 1334 int ret; 1335 struct btrfs_path *path; 1336 struct btrfs_root *root = device->dev_root; 1337 struct btrfs_dev_extent *extent; 1338 struct extent_buffer *leaf; 1339 struct btrfs_key key; 1340 1341 WARN_ON(!device->in_fs_metadata); 1342 WARN_ON(device->is_tgtdev_for_dev_replace); 1343 path = btrfs_alloc_path(); 1344 if (!path) 1345 return -ENOMEM; 1346 1347 key.objectid = device->devid; 1348 key.offset = start; 1349 key.type = BTRFS_DEV_EXTENT_KEY; 1350 ret = btrfs_insert_empty_item(trans, root, path, &key, 1351 sizeof(*extent)); 1352 if (ret) 1353 goto out; 1354 1355 leaf = path->nodes[0]; 1356 extent = btrfs_item_ptr(leaf, path->slots[0], 1357 struct btrfs_dev_extent); 1358 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1359 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1360 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1361 1362 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1363 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1364 1365 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1366 btrfs_mark_buffer_dirty(leaf); 1367out: 1368 btrfs_free_path(path); 1369 return ret; 1370} 1371 1372static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1373{ 1374 struct extent_map_tree *em_tree; 1375 struct extent_map *em; 1376 struct rb_node *n; 1377 u64 ret = 0; 1378 1379 em_tree = &fs_info->mapping_tree.map_tree; 1380 read_lock(&em_tree->lock); 1381 n = rb_last(&em_tree->map); 1382 if (n) { 1383 em = rb_entry(n, struct extent_map, rb_node); 1384 ret = em->start + em->len; 1385 } 1386 read_unlock(&em_tree->lock); 1387 1388 return ret; 1389} 1390 1391static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1392 u64 *devid_ret) 1393{ 1394 int ret; 1395 struct btrfs_key key; 1396 struct btrfs_key found_key; 1397 struct btrfs_path *path; 1398 1399 path = btrfs_alloc_path(); 1400 if (!path) 1401 return -ENOMEM; 1402 1403 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1404 key.type = BTRFS_DEV_ITEM_KEY; 1405 key.offset = (u64)-1; 1406 1407 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1408 if (ret < 0) 1409 goto error; 1410 1411 BUG_ON(ret == 0); /* Corruption */ 1412 1413 ret = btrfs_previous_item(fs_info->chunk_root, path, 1414 BTRFS_DEV_ITEMS_OBJECTID, 1415 BTRFS_DEV_ITEM_KEY); 1416 if (ret) { 1417 *devid_ret = 1; 1418 } else { 1419 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1420 path->slots[0]); 1421 *devid_ret = found_key.offset + 1; 1422 } 1423 ret = 0; 1424error: 1425 btrfs_free_path(path); 1426 return ret; 1427} 1428 1429/* 1430 * the device information is stored in the chunk root 1431 * the btrfs_device struct should be fully filled in 1432 */ 1433static int btrfs_add_device(struct btrfs_trans_handle *trans, 1434 struct btrfs_root *root, 1435 struct btrfs_device *device) 1436{ 1437 int ret; 1438 struct btrfs_path *path; 1439 struct btrfs_dev_item *dev_item; 1440 struct extent_buffer *leaf; 1441 struct btrfs_key key; 1442 unsigned long ptr; 1443 1444 root = root->fs_info->chunk_root; 1445 1446 path = btrfs_alloc_path(); 1447 if (!path) 1448 return -ENOMEM; 1449 1450 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1451 key.type = BTRFS_DEV_ITEM_KEY; 1452 key.offset = device->devid; 1453 1454 ret = btrfs_insert_empty_item(trans, root, path, &key, 1455 sizeof(*dev_item)); 1456 if (ret) 1457 goto out; 1458 1459 leaf = path->nodes[0]; 1460 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1461 1462 btrfs_set_device_id(leaf, dev_item, device->devid); 1463 btrfs_set_device_generation(leaf, dev_item, 0); 1464 btrfs_set_device_type(leaf, dev_item, device->type); 1465 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1466 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1467 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1468 btrfs_set_device_total_bytes(leaf, dev_item, 1469 btrfs_device_get_disk_total_bytes(device)); 1470 btrfs_set_device_bytes_used(leaf, dev_item, 1471 btrfs_device_get_bytes_used(device)); 1472 btrfs_set_device_group(leaf, dev_item, 0); 1473 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1474 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1475 btrfs_set_device_start_offset(leaf, dev_item, 0); 1476 1477 ptr = btrfs_device_uuid(dev_item); 1478 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1479 ptr = btrfs_device_fsid(dev_item); 1480 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1481 btrfs_mark_buffer_dirty(leaf); 1482 1483 ret = 0; 1484out: 1485 btrfs_free_path(path); 1486 return ret; 1487} 1488 1489/* 1490 * Function to update ctime/mtime for a given device path. 1491 * Mainly used for ctime/mtime based probe like libblkid. 1492 */ 1493static void update_dev_time(char *path_name) 1494{ 1495 struct file *filp; 1496 1497 filp = filp_open(path_name, O_RDWR, 0); 1498 if (IS_ERR(filp)) 1499 return; 1500 file_update_time(filp); 1501 filp_close(filp, NULL); 1502 return; 1503} 1504 1505static int btrfs_rm_dev_item(struct btrfs_root *root, 1506 struct btrfs_device *device) 1507{ 1508 int ret; 1509 struct btrfs_path *path; 1510 struct btrfs_key key; 1511 struct btrfs_trans_handle *trans; 1512 1513 root = root->fs_info->chunk_root; 1514 1515 path = btrfs_alloc_path(); 1516 if (!path) 1517 return -ENOMEM; 1518 1519 trans = btrfs_start_transaction(root, 0); 1520 if (IS_ERR(trans)) { 1521 btrfs_free_path(path); 1522 return PTR_ERR(trans); 1523 } 1524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1525 key.type = BTRFS_DEV_ITEM_KEY; 1526 key.offset = device->devid; 1527 1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1529 if (ret < 0) 1530 goto out; 1531 1532 if (ret > 0) { 1533 ret = -ENOENT; 1534 goto out; 1535 } 1536 1537 ret = btrfs_del_item(trans, root, path); 1538 if (ret) 1539 goto out; 1540out: 1541 btrfs_free_path(path); 1542 btrfs_commit_transaction(trans, root); 1543 return ret; 1544} 1545 1546int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1547{ 1548 struct btrfs_device *device; 1549 struct btrfs_device *next_device; 1550 struct block_device *bdev; 1551 struct buffer_head *bh = NULL; 1552 struct btrfs_super_block *disk_super; 1553 struct btrfs_fs_devices *cur_devices; 1554 u64 all_avail; 1555 u64 devid; 1556 u64 num_devices; 1557 u8 *dev_uuid; 1558 unsigned seq; 1559 int ret = 0; 1560 bool clear_super = false; 1561 1562 mutex_lock(&uuid_mutex); 1563 1564 do { 1565 seq = read_seqbegin(&root->fs_info->profiles_lock); 1566 1567 all_avail = root->fs_info->avail_data_alloc_bits | 1568 root->fs_info->avail_system_alloc_bits | 1569 root->fs_info->avail_metadata_alloc_bits; 1570 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1571 1572 num_devices = root->fs_info->fs_devices->num_devices; 1573 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1574 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1575 WARN_ON(num_devices < 1); 1576 num_devices--; 1577 } 1578 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1579 1580 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1581 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1582 goto out; 1583 } 1584 1585 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1586 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1587 goto out; 1588 } 1589 1590 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1591 root->fs_info->fs_devices->rw_devices <= 2) { 1592 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1593 goto out; 1594 } 1595 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1596 root->fs_info->fs_devices->rw_devices <= 3) { 1597 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1598 goto out; 1599 } 1600 1601 if (strcmp(device_path, "missing") == 0) { 1602 struct list_head *devices; 1603 struct btrfs_device *tmp; 1604 1605 device = NULL; 1606 devices = &root->fs_info->fs_devices->devices; 1607 /* 1608 * It is safe to read the devices since the volume_mutex 1609 * is held. 1610 */ 1611 list_for_each_entry(tmp, devices, dev_list) { 1612 if (tmp->in_fs_metadata && 1613 !tmp->is_tgtdev_for_dev_replace && 1614 !tmp->bdev) { 1615 device = tmp; 1616 break; 1617 } 1618 } 1619 bdev = NULL; 1620 bh = NULL; 1621 disk_super = NULL; 1622 if (!device) { 1623 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1624 goto out; 1625 } 1626 } else { 1627 ret = btrfs_get_bdev_and_sb(device_path, 1628 FMODE_WRITE | FMODE_EXCL, 1629 root->fs_info->bdev_holder, 0, 1630 &bdev, &bh); 1631 if (ret) 1632 goto out; 1633 disk_super = (struct btrfs_super_block *)bh->b_data; 1634 devid = btrfs_stack_device_id(&disk_super->dev_item); 1635 dev_uuid = disk_super->dev_item.uuid; 1636 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1637 disk_super->fsid); 1638 if (!device) { 1639 ret = -ENOENT; 1640 goto error_brelse; 1641 } 1642 } 1643 1644 if (device->is_tgtdev_for_dev_replace) { 1645 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1646 goto error_brelse; 1647 } 1648 1649 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1650 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1651 goto error_brelse; 1652 } 1653 1654 if (device->writeable) { 1655 lock_chunks(root); 1656 list_del_init(&device->dev_alloc_list); 1657 device->fs_devices->rw_devices--; 1658 unlock_chunks(root); 1659 clear_super = true; 1660 } 1661 1662 mutex_unlock(&uuid_mutex); 1663 ret = btrfs_shrink_device(device, 0); 1664 mutex_lock(&uuid_mutex); 1665 if (ret) 1666 goto error_undo; 1667 1668 /* 1669 * TODO: the superblock still includes this device in its num_devices 1670 * counter although write_all_supers() is not locked out. This 1671 * could give a filesystem state which requires a degraded mount. 1672 */ 1673 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1674 if (ret) 1675 goto error_undo; 1676 1677 device->in_fs_metadata = 0; 1678 btrfs_scrub_cancel_dev(root->fs_info, device); 1679 1680 /* 1681 * the device list mutex makes sure that we don't change 1682 * the device list while someone else is writing out all 1683 * the device supers. Whoever is writing all supers, should 1684 * lock the device list mutex before getting the number of 1685 * devices in the super block (super_copy). Conversely, 1686 * whoever updates the number of devices in the super block 1687 * (super_copy) should hold the device list mutex. 1688 */ 1689 1690 cur_devices = device->fs_devices; 1691 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1692 list_del_rcu(&device->dev_list); 1693 1694 device->fs_devices->num_devices--; 1695 device->fs_devices->total_devices--; 1696 1697 if (device->missing) 1698 device->fs_devices->missing_devices--; 1699 1700 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1701 struct btrfs_device, dev_list); 1702 if (device->bdev == root->fs_info->sb->s_bdev) 1703 root->fs_info->sb->s_bdev = next_device->bdev; 1704 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1705 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1706 1707 if (device->bdev) { 1708 device->fs_devices->open_devices--; 1709 /* remove sysfs entry */ 1710 btrfs_kobj_rm_device(root->fs_info, device); 1711 } 1712 1713 call_rcu(&device->rcu, free_device); 1714 1715 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1716 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1717 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1718 1719 if (cur_devices->open_devices == 0) { 1720 struct btrfs_fs_devices *fs_devices; 1721 fs_devices = root->fs_info->fs_devices; 1722 while (fs_devices) { 1723 if (fs_devices->seed == cur_devices) { 1724 fs_devices->seed = cur_devices->seed; 1725 break; 1726 } 1727 fs_devices = fs_devices->seed; 1728 } 1729 cur_devices->seed = NULL; 1730 __btrfs_close_devices(cur_devices); 1731 free_fs_devices(cur_devices); 1732 } 1733 1734 root->fs_info->num_tolerated_disk_barrier_failures = 1735 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1736 1737 /* 1738 * at this point, the device is zero sized. We want to 1739 * remove it from the devices list and zero out the old super 1740 */ 1741 if (clear_super && disk_super) { 1742 u64 bytenr; 1743 int i; 1744 1745 /* make sure this device isn't detected as part of 1746 * the FS anymore 1747 */ 1748 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1749 set_buffer_dirty(bh); 1750 sync_dirty_buffer(bh); 1751 1752 /* clear the mirror copies of super block on the disk 1753 * being removed, 0th copy is been taken care above and 1754 * the below would take of the rest 1755 */ 1756 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1757 bytenr = btrfs_sb_offset(i); 1758 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1759 i_size_read(bdev->bd_inode)) 1760 break; 1761 1762 brelse(bh); 1763 bh = __bread(bdev, bytenr / 4096, 1764 BTRFS_SUPER_INFO_SIZE); 1765 if (!bh) 1766 continue; 1767 1768 disk_super = (struct btrfs_super_block *)bh->b_data; 1769 1770 if (btrfs_super_bytenr(disk_super) != bytenr || 1771 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1772 continue; 1773 } 1774 memset(&disk_super->magic, 0, 1775 sizeof(disk_super->magic)); 1776 set_buffer_dirty(bh); 1777 sync_dirty_buffer(bh); 1778 } 1779 } 1780 1781 ret = 0; 1782 1783 if (bdev) { 1784 /* Notify udev that device has changed */ 1785 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1786 1787 /* Update ctime/mtime for device path for libblkid */ 1788 update_dev_time(device_path); 1789 } 1790 1791error_brelse: 1792 brelse(bh); 1793 if (bdev) 1794 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1795out: 1796 mutex_unlock(&uuid_mutex); 1797 return ret; 1798error_undo: 1799 if (device->writeable) { 1800 lock_chunks(root); 1801 list_add(&device->dev_alloc_list, 1802 &root->fs_info->fs_devices->alloc_list); 1803 device->fs_devices->rw_devices++; 1804 unlock_chunks(root); 1805 } 1806 goto error_brelse; 1807} 1808 1809void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1810 struct btrfs_device *srcdev) 1811{ 1812 struct btrfs_fs_devices *fs_devices; 1813 1814 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1815 1816 /* 1817 * in case of fs with no seed, srcdev->fs_devices will point 1818 * to fs_devices of fs_info. However when the dev being replaced is 1819 * a seed dev it will point to the seed's local fs_devices. In short 1820 * srcdev will have its correct fs_devices in both the cases. 1821 */ 1822 fs_devices = srcdev->fs_devices; 1823 1824 list_del_rcu(&srcdev->dev_list); 1825 list_del_rcu(&srcdev->dev_alloc_list); 1826 fs_devices->num_devices--; 1827 if (srcdev->missing) 1828 fs_devices->missing_devices--; 1829 1830 if (srcdev->writeable) { 1831 fs_devices->rw_devices--; 1832 /* zero out the old super if it is writable */ 1833 btrfs_scratch_superblock(srcdev); 1834 } 1835 1836 if (srcdev->bdev) 1837 fs_devices->open_devices--; 1838} 1839 1840void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 1841 struct btrfs_device *srcdev) 1842{ 1843 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 1844 1845 call_rcu(&srcdev->rcu, free_device); 1846 1847 /* 1848 * unless fs_devices is seed fs, num_devices shouldn't go 1849 * zero 1850 */ 1851 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1852 1853 /* if this is no devs we rather delete the fs_devices */ 1854 if (!fs_devices->num_devices) { 1855 struct btrfs_fs_devices *tmp_fs_devices; 1856 1857 tmp_fs_devices = fs_info->fs_devices; 1858 while (tmp_fs_devices) { 1859 if (tmp_fs_devices->seed == fs_devices) { 1860 tmp_fs_devices->seed = fs_devices->seed; 1861 break; 1862 } 1863 tmp_fs_devices = tmp_fs_devices->seed; 1864 } 1865 fs_devices->seed = NULL; 1866 __btrfs_close_devices(fs_devices); 1867 free_fs_devices(fs_devices); 1868 } 1869} 1870 1871void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1872 struct btrfs_device *tgtdev) 1873{ 1874 struct btrfs_device *next_device; 1875 1876 mutex_lock(&uuid_mutex); 1877 WARN_ON(!tgtdev); 1878 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1879 if (tgtdev->bdev) { 1880 btrfs_scratch_superblock(tgtdev); 1881 fs_info->fs_devices->open_devices--; 1882 } 1883 fs_info->fs_devices->num_devices--; 1884 1885 next_device = list_entry(fs_info->fs_devices->devices.next, 1886 struct btrfs_device, dev_list); 1887 if (tgtdev->bdev == fs_info->sb->s_bdev) 1888 fs_info->sb->s_bdev = next_device->bdev; 1889 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1890 fs_info->fs_devices->latest_bdev = next_device->bdev; 1891 list_del_rcu(&tgtdev->dev_list); 1892 1893 call_rcu(&tgtdev->rcu, free_device); 1894 1895 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1896 mutex_unlock(&uuid_mutex); 1897} 1898 1899static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1900 struct btrfs_device **device) 1901{ 1902 int ret = 0; 1903 struct btrfs_super_block *disk_super; 1904 u64 devid; 1905 u8 *dev_uuid; 1906 struct block_device *bdev; 1907 struct buffer_head *bh; 1908 1909 *device = NULL; 1910 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 1911 root->fs_info->bdev_holder, 0, &bdev, &bh); 1912 if (ret) 1913 return ret; 1914 disk_super = (struct btrfs_super_block *)bh->b_data; 1915 devid = btrfs_stack_device_id(&disk_super->dev_item); 1916 dev_uuid = disk_super->dev_item.uuid; 1917 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1918 disk_super->fsid); 1919 brelse(bh); 1920 if (!*device) 1921 ret = -ENOENT; 1922 blkdev_put(bdev, FMODE_READ); 1923 return ret; 1924} 1925 1926int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 1927 char *device_path, 1928 struct btrfs_device **device) 1929{ 1930 *device = NULL; 1931 if (strcmp(device_path, "missing") == 0) { 1932 struct list_head *devices; 1933 struct btrfs_device *tmp; 1934 1935 devices = &root->fs_info->fs_devices->devices; 1936 /* 1937 * It is safe to read the devices since the volume_mutex 1938 * is held by the caller. 1939 */ 1940 list_for_each_entry(tmp, devices, dev_list) { 1941 if (tmp->in_fs_metadata && !tmp->bdev) { 1942 *device = tmp; 1943 break; 1944 } 1945 } 1946 1947 if (!*device) { 1948 btrfs_err(root->fs_info, "no missing device found"); 1949 return -ENOENT; 1950 } 1951 1952 return 0; 1953 } else { 1954 return btrfs_find_device_by_path(root, device_path, device); 1955 } 1956} 1957 1958/* 1959 * does all the dirty work required for changing file system's UUID. 1960 */ 1961static int btrfs_prepare_sprout(struct btrfs_root *root) 1962{ 1963 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1964 struct btrfs_fs_devices *old_devices; 1965 struct btrfs_fs_devices *seed_devices; 1966 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1967 struct btrfs_device *device; 1968 u64 super_flags; 1969 1970 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1971 if (!fs_devices->seeding) 1972 return -EINVAL; 1973 1974 seed_devices = __alloc_fs_devices(); 1975 if (IS_ERR(seed_devices)) 1976 return PTR_ERR(seed_devices); 1977 1978 old_devices = clone_fs_devices(fs_devices); 1979 if (IS_ERR(old_devices)) { 1980 kfree(seed_devices); 1981 return PTR_ERR(old_devices); 1982 } 1983 1984 list_add(&old_devices->list, &fs_uuids); 1985 1986 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1987 seed_devices->opened = 1; 1988 INIT_LIST_HEAD(&seed_devices->devices); 1989 INIT_LIST_HEAD(&seed_devices->alloc_list); 1990 mutex_init(&seed_devices->device_list_mutex); 1991 1992 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1993 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1994 synchronize_rcu); 1995 list_for_each_entry(device, &seed_devices->devices, dev_list) 1996 device->fs_devices = seed_devices; 1997 1998 lock_chunks(root); 1999 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2000 unlock_chunks(root); 2001 2002 fs_devices->seeding = 0; 2003 fs_devices->num_devices = 0; 2004 fs_devices->open_devices = 0; 2005 fs_devices->missing_devices = 0; 2006 fs_devices->rotating = 0; 2007 fs_devices->seed = seed_devices; 2008 2009 generate_random_uuid(fs_devices->fsid); 2010 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2011 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2012 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2013 2014 super_flags = btrfs_super_flags(disk_super) & 2015 ~BTRFS_SUPER_FLAG_SEEDING; 2016 btrfs_set_super_flags(disk_super, super_flags); 2017 2018 return 0; 2019} 2020 2021/* 2022 * strore the expected generation for seed devices in device items. 2023 */ 2024static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2025 struct btrfs_root *root) 2026{ 2027 struct btrfs_path *path; 2028 struct extent_buffer *leaf; 2029 struct btrfs_dev_item *dev_item; 2030 struct btrfs_device *device; 2031 struct btrfs_key key; 2032 u8 fs_uuid[BTRFS_UUID_SIZE]; 2033 u8 dev_uuid[BTRFS_UUID_SIZE]; 2034 u64 devid; 2035 int ret; 2036 2037 path = btrfs_alloc_path(); 2038 if (!path) 2039 return -ENOMEM; 2040 2041 root = root->fs_info->chunk_root; 2042 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2043 key.offset = 0; 2044 key.type = BTRFS_DEV_ITEM_KEY; 2045 2046 while (1) { 2047 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2048 if (ret < 0) 2049 goto error; 2050 2051 leaf = path->nodes[0]; 2052next_slot: 2053 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2054 ret = btrfs_next_leaf(root, path); 2055 if (ret > 0) 2056 break; 2057 if (ret < 0) 2058 goto error; 2059 leaf = path->nodes[0]; 2060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2061 btrfs_release_path(path); 2062 continue; 2063 } 2064 2065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2066 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2067 key.type != BTRFS_DEV_ITEM_KEY) 2068 break; 2069 2070 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2071 struct btrfs_dev_item); 2072 devid = btrfs_device_id(leaf, dev_item); 2073 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2074 BTRFS_UUID_SIZE); 2075 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2076 BTRFS_UUID_SIZE); 2077 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2078 fs_uuid); 2079 BUG_ON(!device); /* Logic error */ 2080 2081 if (device->fs_devices->seeding) { 2082 btrfs_set_device_generation(leaf, dev_item, 2083 device->generation); 2084 btrfs_mark_buffer_dirty(leaf); 2085 } 2086 2087 path->slots[0]++; 2088 goto next_slot; 2089 } 2090 ret = 0; 2091error: 2092 btrfs_free_path(path); 2093 return ret; 2094} 2095 2096int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2097{ 2098 struct request_queue *q; 2099 struct btrfs_trans_handle *trans; 2100 struct btrfs_device *device; 2101 struct block_device *bdev; 2102 struct list_head *devices; 2103 struct super_block *sb = root->fs_info->sb; 2104 struct rcu_string *name; 2105 u64 tmp; 2106 int seeding_dev = 0; 2107 int ret = 0; 2108 2109 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2110 return -EROFS; 2111 2112 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2113 root->fs_info->bdev_holder); 2114 if (IS_ERR(bdev)) 2115 return PTR_ERR(bdev); 2116 2117 if (root->fs_info->fs_devices->seeding) { 2118 seeding_dev = 1; 2119 down_write(&sb->s_umount); 2120 mutex_lock(&uuid_mutex); 2121 } 2122 2123 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2124 2125 devices = &root->fs_info->fs_devices->devices; 2126 2127 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2128 list_for_each_entry(device, devices, dev_list) { 2129 if (device->bdev == bdev) { 2130 ret = -EEXIST; 2131 mutex_unlock( 2132 &root->fs_info->fs_devices->device_list_mutex); 2133 goto error; 2134 } 2135 } 2136 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2137 2138 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2139 if (IS_ERR(device)) { 2140 /* we can safely leave the fs_devices entry around */ 2141 ret = PTR_ERR(device); 2142 goto error; 2143 } 2144 2145 name = rcu_string_strdup(device_path, GFP_NOFS); 2146 if (!name) { 2147 kfree(device); 2148 ret = -ENOMEM; 2149 goto error; 2150 } 2151 rcu_assign_pointer(device->name, name); 2152 2153 trans = btrfs_start_transaction(root, 0); 2154 if (IS_ERR(trans)) { 2155 rcu_string_free(device->name); 2156 kfree(device); 2157 ret = PTR_ERR(trans); 2158 goto error; 2159 } 2160 2161 q = bdev_get_queue(bdev); 2162 if (blk_queue_discard(q)) 2163 device->can_discard = 1; 2164 device->writeable = 1; 2165 device->generation = trans->transid; 2166 device->io_width = root->sectorsize; 2167 device->io_align = root->sectorsize; 2168 device->sector_size = root->sectorsize; 2169 device->total_bytes = i_size_read(bdev->bd_inode); 2170 device->disk_total_bytes = device->total_bytes; 2171 device->commit_total_bytes = device->total_bytes; 2172 device->dev_root = root->fs_info->dev_root; 2173 device->bdev = bdev; 2174 device->in_fs_metadata = 1; 2175 device->is_tgtdev_for_dev_replace = 0; 2176 device->mode = FMODE_EXCL; 2177 device->dev_stats_valid = 1; 2178 set_blocksize(device->bdev, 4096); 2179 2180 if (seeding_dev) { 2181 sb->s_flags &= ~MS_RDONLY; 2182 ret = btrfs_prepare_sprout(root); 2183 BUG_ON(ret); /* -ENOMEM */ 2184 } 2185 2186 device->fs_devices = root->fs_info->fs_devices; 2187 2188 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2189 lock_chunks(root); 2190 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2191 list_add(&device->dev_alloc_list, 2192 &root->fs_info->fs_devices->alloc_list); 2193 root->fs_info->fs_devices->num_devices++; 2194 root->fs_info->fs_devices->open_devices++; 2195 root->fs_info->fs_devices->rw_devices++; 2196 root->fs_info->fs_devices->total_devices++; 2197 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2198 2199 spin_lock(&root->fs_info->free_chunk_lock); 2200 root->fs_info->free_chunk_space += device->total_bytes; 2201 spin_unlock(&root->fs_info->free_chunk_lock); 2202 2203 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2204 root->fs_info->fs_devices->rotating = 1; 2205 2206 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2207 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2208 tmp + device->total_bytes); 2209 2210 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2211 btrfs_set_super_num_devices(root->fs_info->super_copy, 2212 tmp + 1); 2213 2214 /* add sysfs device entry */ 2215 btrfs_kobj_add_device(root->fs_info, device); 2216 2217 /* 2218 * we've got more storage, clear any full flags on the space 2219 * infos 2220 */ 2221 btrfs_clear_space_info_full(root->fs_info); 2222 2223 unlock_chunks(root); 2224 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2225 2226 if (seeding_dev) { 2227 lock_chunks(root); 2228 ret = init_first_rw_device(trans, root, device); 2229 unlock_chunks(root); 2230 if (ret) { 2231 btrfs_abort_transaction(trans, root, ret); 2232 goto error_trans; 2233 } 2234 } 2235 2236 ret = btrfs_add_device(trans, root, device); 2237 if (ret) { 2238 btrfs_abort_transaction(trans, root, ret); 2239 goto error_trans; 2240 } 2241 2242 if (seeding_dev) { 2243 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2244 2245 ret = btrfs_finish_sprout(trans, root); 2246 if (ret) { 2247 btrfs_abort_transaction(trans, root, ret); 2248 goto error_trans; 2249 } 2250 2251 /* Sprouting would change fsid of the mounted root, 2252 * so rename the fsid on the sysfs 2253 */ 2254 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2255 root->fs_info->fsid); 2256 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf)) 2257 goto error_trans; 2258 } 2259 2260 root->fs_info->num_tolerated_disk_barrier_failures = 2261 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2262 ret = btrfs_commit_transaction(trans, root); 2263 2264 if (seeding_dev) { 2265 mutex_unlock(&uuid_mutex); 2266 up_write(&sb->s_umount); 2267 2268 if (ret) /* transaction commit */ 2269 return ret; 2270 2271 ret = btrfs_relocate_sys_chunks(root); 2272 if (ret < 0) 2273 btrfs_error(root->fs_info, ret, 2274 "Failed to relocate sys chunks after " 2275 "device initialization. This can be fixed " 2276 "using the \"btrfs balance\" command."); 2277 trans = btrfs_attach_transaction(root); 2278 if (IS_ERR(trans)) { 2279 if (PTR_ERR(trans) == -ENOENT) 2280 return 0; 2281 return PTR_ERR(trans); 2282 } 2283 ret = btrfs_commit_transaction(trans, root); 2284 } 2285 2286 /* Update ctime/mtime for libblkid */ 2287 update_dev_time(device_path); 2288 return ret; 2289 2290error_trans: 2291 btrfs_end_transaction(trans, root); 2292 rcu_string_free(device->name); 2293 btrfs_kobj_rm_device(root->fs_info, device); 2294 kfree(device); 2295error: 2296 blkdev_put(bdev, FMODE_EXCL); 2297 if (seeding_dev) { 2298 mutex_unlock(&uuid_mutex); 2299 up_write(&sb->s_umount); 2300 } 2301 return ret; 2302} 2303 2304int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2305 struct btrfs_device *srcdev, 2306 struct btrfs_device **device_out) 2307{ 2308 struct request_queue *q; 2309 struct btrfs_device *device; 2310 struct block_device *bdev; 2311 struct btrfs_fs_info *fs_info = root->fs_info; 2312 struct list_head *devices; 2313 struct rcu_string *name; 2314 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2315 int ret = 0; 2316 2317 *device_out = NULL; 2318 if (fs_info->fs_devices->seeding) { 2319 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2320 return -EINVAL; 2321 } 2322 2323 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2324 fs_info->bdev_holder); 2325 if (IS_ERR(bdev)) { 2326 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2327 return PTR_ERR(bdev); 2328 } 2329 2330 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2331 2332 devices = &fs_info->fs_devices->devices; 2333 list_for_each_entry(device, devices, dev_list) { 2334 if (device->bdev == bdev) { 2335 btrfs_err(fs_info, "target device is in the filesystem!"); 2336 ret = -EEXIST; 2337 goto error; 2338 } 2339 } 2340 2341 2342 if (i_size_read(bdev->bd_inode) < 2343 btrfs_device_get_total_bytes(srcdev)) { 2344 btrfs_err(fs_info, "target device is smaller than source device!"); 2345 ret = -EINVAL; 2346 goto error; 2347 } 2348 2349 2350 device = btrfs_alloc_device(NULL, &devid, NULL); 2351 if (IS_ERR(device)) { 2352 ret = PTR_ERR(device); 2353 goto error; 2354 } 2355 2356 name = rcu_string_strdup(device_path, GFP_NOFS); 2357 if (!name) { 2358 kfree(device); 2359 ret = -ENOMEM; 2360 goto error; 2361 } 2362 rcu_assign_pointer(device->name, name); 2363 2364 q = bdev_get_queue(bdev); 2365 if (blk_queue_discard(q)) 2366 device->can_discard = 1; 2367 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2368 device->writeable = 1; 2369 device->generation = 0; 2370 device->io_width = root->sectorsize; 2371 device->io_align = root->sectorsize; 2372 device->sector_size = root->sectorsize; 2373 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2374 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2375 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2376 ASSERT(list_empty(&srcdev->resized_list)); 2377 device->commit_total_bytes = srcdev->commit_total_bytes; 2378 device->commit_bytes_used = device->bytes_used; 2379 device->dev_root = fs_info->dev_root; 2380 device->bdev = bdev; 2381 device->in_fs_metadata = 1; 2382 device->is_tgtdev_for_dev_replace = 1; 2383 device->mode = FMODE_EXCL; 2384 device->dev_stats_valid = 1; 2385 set_blocksize(device->bdev, 4096); 2386 device->fs_devices = fs_info->fs_devices; 2387 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2388 fs_info->fs_devices->num_devices++; 2389 fs_info->fs_devices->open_devices++; 2390 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2391 2392 *device_out = device; 2393 return ret; 2394 2395error: 2396 blkdev_put(bdev, FMODE_EXCL); 2397 return ret; 2398} 2399 2400void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2401 struct btrfs_device *tgtdev) 2402{ 2403 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2404 tgtdev->io_width = fs_info->dev_root->sectorsize; 2405 tgtdev->io_align = fs_info->dev_root->sectorsize; 2406 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2407 tgtdev->dev_root = fs_info->dev_root; 2408 tgtdev->in_fs_metadata = 1; 2409} 2410 2411static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2412 struct btrfs_device *device) 2413{ 2414 int ret; 2415 struct btrfs_path *path; 2416 struct btrfs_root *root; 2417 struct btrfs_dev_item *dev_item; 2418 struct extent_buffer *leaf; 2419 struct btrfs_key key; 2420 2421 root = device->dev_root->fs_info->chunk_root; 2422 2423 path = btrfs_alloc_path(); 2424 if (!path) 2425 return -ENOMEM; 2426 2427 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2428 key.type = BTRFS_DEV_ITEM_KEY; 2429 key.offset = device->devid; 2430 2431 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2432 if (ret < 0) 2433 goto out; 2434 2435 if (ret > 0) { 2436 ret = -ENOENT; 2437 goto out; 2438 } 2439 2440 leaf = path->nodes[0]; 2441 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2442 2443 btrfs_set_device_id(leaf, dev_item, device->devid); 2444 btrfs_set_device_type(leaf, dev_item, device->type); 2445 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2446 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2447 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2448 btrfs_set_device_total_bytes(leaf, dev_item, 2449 btrfs_device_get_disk_total_bytes(device)); 2450 btrfs_set_device_bytes_used(leaf, dev_item, 2451 btrfs_device_get_bytes_used(device)); 2452 btrfs_mark_buffer_dirty(leaf); 2453 2454out: 2455 btrfs_free_path(path); 2456 return ret; 2457} 2458 2459int btrfs_grow_device(struct btrfs_trans_handle *trans, 2460 struct btrfs_device *device, u64 new_size) 2461{ 2462 struct btrfs_super_block *super_copy = 2463 device->dev_root->fs_info->super_copy; 2464 struct btrfs_fs_devices *fs_devices; 2465 u64 old_total; 2466 u64 diff; 2467 2468 if (!device->writeable) 2469 return -EACCES; 2470 2471 lock_chunks(device->dev_root); 2472 old_total = btrfs_super_total_bytes(super_copy); 2473 diff = new_size - device->total_bytes; 2474 2475 if (new_size <= device->total_bytes || 2476 device->is_tgtdev_for_dev_replace) { 2477 unlock_chunks(device->dev_root); 2478 return -EINVAL; 2479 } 2480 2481 fs_devices = device->dev_root->fs_info->fs_devices; 2482 2483 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2484 device->fs_devices->total_rw_bytes += diff; 2485 2486 btrfs_device_set_total_bytes(device, new_size); 2487 btrfs_device_set_disk_total_bytes(device, new_size); 2488 btrfs_clear_space_info_full(device->dev_root->fs_info); 2489 if (list_empty(&device->resized_list)) 2490 list_add_tail(&device->resized_list, 2491 &fs_devices->resized_devices); 2492 unlock_chunks(device->dev_root); 2493 2494 return btrfs_update_device(trans, device); 2495} 2496 2497static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2498 struct btrfs_root *root, u64 chunk_objectid, 2499 u64 chunk_offset) 2500{ 2501 int ret; 2502 struct btrfs_path *path; 2503 struct btrfs_key key; 2504 2505 root = root->fs_info->chunk_root; 2506 path = btrfs_alloc_path(); 2507 if (!path) 2508 return -ENOMEM; 2509 2510 key.objectid = chunk_objectid; 2511 key.offset = chunk_offset; 2512 key.type = BTRFS_CHUNK_ITEM_KEY; 2513 2514 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2515 if (ret < 0) 2516 goto out; 2517 else if (ret > 0) { /* Logic error or corruption */ 2518 btrfs_error(root->fs_info, -ENOENT, 2519 "Failed lookup while freeing chunk."); 2520 ret = -ENOENT; 2521 goto out; 2522 } 2523 2524 ret = btrfs_del_item(trans, root, path); 2525 if (ret < 0) 2526 btrfs_error(root->fs_info, ret, 2527 "Failed to delete chunk item."); 2528out: 2529 btrfs_free_path(path); 2530 return ret; 2531} 2532 2533static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2534 chunk_offset) 2535{ 2536 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2537 struct btrfs_disk_key *disk_key; 2538 struct btrfs_chunk *chunk; 2539 u8 *ptr; 2540 int ret = 0; 2541 u32 num_stripes; 2542 u32 array_size; 2543 u32 len = 0; 2544 u32 cur; 2545 struct btrfs_key key; 2546 2547 lock_chunks(root); 2548 array_size = btrfs_super_sys_array_size(super_copy); 2549 2550 ptr = super_copy->sys_chunk_array; 2551 cur = 0; 2552 2553 while (cur < array_size) { 2554 disk_key = (struct btrfs_disk_key *)ptr; 2555 btrfs_disk_key_to_cpu(&key, disk_key); 2556 2557 len = sizeof(*disk_key); 2558 2559 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2560 chunk = (struct btrfs_chunk *)(ptr + len); 2561 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2562 len += btrfs_chunk_item_size(num_stripes); 2563 } else { 2564 ret = -EIO; 2565 break; 2566 } 2567 if (key.objectid == chunk_objectid && 2568 key.offset == chunk_offset) { 2569 memmove(ptr, ptr + len, array_size - (cur + len)); 2570 array_size -= len; 2571 btrfs_set_super_sys_array_size(super_copy, array_size); 2572 } else { 2573 ptr += len; 2574 cur += len; 2575 } 2576 } 2577 unlock_chunks(root); 2578 return ret; 2579} 2580 2581int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2582 struct btrfs_root *root, u64 chunk_offset) 2583{ 2584 struct extent_map_tree *em_tree; 2585 struct extent_map *em; 2586 struct btrfs_root *extent_root = root->fs_info->extent_root; 2587 struct map_lookup *map; 2588 u64 dev_extent_len = 0; 2589 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2590 int i, ret = 0; 2591 2592 /* Just in case */ 2593 root = root->fs_info->chunk_root; 2594 em_tree = &root->fs_info->mapping_tree.map_tree; 2595 2596 read_lock(&em_tree->lock); 2597 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2598 read_unlock(&em_tree->lock); 2599 2600 if (!em || em->start > chunk_offset || 2601 em->start + em->len < chunk_offset) { 2602 /* 2603 * This is a logic error, but we don't want to just rely on the 2604 * user having built with ASSERT enabled, so if ASSERT doens't 2605 * do anything we still error out. 2606 */ 2607 ASSERT(0); 2608 if (em) 2609 free_extent_map(em); 2610 return -EINVAL; 2611 } 2612 map = (struct map_lookup *)em->bdev; 2613 2614 for (i = 0; i < map->num_stripes; i++) { 2615 struct btrfs_device *device = map->stripes[i].dev; 2616 ret = btrfs_free_dev_extent(trans, device, 2617 map->stripes[i].physical, 2618 &dev_extent_len); 2619 if (ret) { 2620 btrfs_abort_transaction(trans, root, ret); 2621 goto out; 2622 } 2623 2624 if (device->bytes_used > 0) { 2625 lock_chunks(root); 2626 btrfs_device_set_bytes_used(device, 2627 device->bytes_used - dev_extent_len); 2628 spin_lock(&root->fs_info->free_chunk_lock); 2629 root->fs_info->free_chunk_space += dev_extent_len; 2630 spin_unlock(&root->fs_info->free_chunk_lock); 2631 btrfs_clear_space_info_full(root->fs_info); 2632 unlock_chunks(root); 2633 } 2634 2635 if (map->stripes[i].dev) { 2636 ret = btrfs_update_device(trans, map->stripes[i].dev); 2637 if (ret) { 2638 btrfs_abort_transaction(trans, root, ret); 2639 goto out; 2640 } 2641 } 2642 } 2643 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2644 if (ret) { 2645 btrfs_abort_transaction(trans, root, ret); 2646 goto out; 2647 } 2648 2649 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2650 2651 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2652 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2653 if (ret) { 2654 btrfs_abort_transaction(trans, root, ret); 2655 goto out; 2656 } 2657 } 2658 2659 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2660 if (ret) { 2661 btrfs_abort_transaction(trans, extent_root, ret); 2662 goto out; 2663 } 2664 2665out: 2666 /* once for us */ 2667 free_extent_map(em); 2668 return ret; 2669} 2670 2671static int btrfs_relocate_chunk(struct btrfs_root *root, 2672 u64 chunk_objectid, 2673 u64 chunk_offset) 2674{ 2675 struct btrfs_root *extent_root; 2676 struct btrfs_trans_handle *trans; 2677 int ret; 2678 2679 root = root->fs_info->chunk_root; 2680 extent_root = root->fs_info->extent_root; 2681 2682 ret = btrfs_can_relocate(extent_root, chunk_offset); 2683 if (ret) 2684 return -ENOSPC; 2685 2686 /* step one, relocate all the extents inside this chunk */ 2687 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2688 if (ret) 2689 return ret; 2690 2691 trans = btrfs_start_transaction(root, 0); 2692 if (IS_ERR(trans)) { 2693 ret = PTR_ERR(trans); 2694 btrfs_std_error(root->fs_info, ret); 2695 return ret; 2696 } 2697 2698 /* 2699 * step two, delete the device extents and the 2700 * chunk tree entries 2701 */ 2702 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2703 btrfs_end_transaction(trans, root); 2704 return ret; 2705} 2706 2707static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2708{ 2709 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2710 struct btrfs_path *path; 2711 struct extent_buffer *leaf; 2712 struct btrfs_chunk *chunk; 2713 struct btrfs_key key; 2714 struct btrfs_key found_key; 2715 u64 chunk_type; 2716 bool retried = false; 2717 int failed = 0; 2718 int ret; 2719 2720 path = btrfs_alloc_path(); 2721 if (!path) 2722 return -ENOMEM; 2723 2724again: 2725 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2726 key.offset = (u64)-1; 2727 key.type = BTRFS_CHUNK_ITEM_KEY; 2728 2729 while (1) { 2730 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2731 if (ret < 0) 2732 goto error; 2733 BUG_ON(ret == 0); /* Corruption */ 2734 2735 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2736 key.type); 2737 if (ret < 0) 2738 goto error; 2739 if (ret > 0) 2740 break; 2741 2742 leaf = path->nodes[0]; 2743 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2744 2745 chunk = btrfs_item_ptr(leaf, path->slots[0], 2746 struct btrfs_chunk); 2747 chunk_type = btrfs_chunk_type(leaf, chunk); 2748 btrfs_release_path(path); 2749 2750 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2751 ret = btrfs_relocate_chunk(chunk_root, 2752 found_key.objectid, 2753 found_key.offset); 2754 if (ret == -ENOSPC) 2755 failed++; 2756 else 2757 BUG_ON(ret); 2758 } 2759 2760 if (found_key.offset == 0) 2761 break; 2762 key.offset = found_key.offset - 1; 2763 } 2764 ret = 0; 2765 if (failed && !retried) { 2766 failed = 0; 2767 retried = true; 2768 goto again; 2769 } else if (WARN_ON(failed && retried)) { 2770 ret = -ENOSPC; 2771 } 2772error: 2773 btrfs_free_path(path); 2774 return ret; 2775} 2776 2777static int insert_balance_item(struct btrfs_root *root, 2778 struct btrfs_balance_control *bctl) 2779{ 2780 struct btrfs_trans_handle *trans; 2781 struct btrfs_balance_item *item; 2782 struct btrfs_disk_balance_args disk_bargs; 2783 struct btrfs_path *path; 2784 struct extent_buffer *leaf; 2785 struct btrfs_key key; 2786 int ret, err; 2787 2788 path = btrfs_alloc_path(); 2789 if (!path) 2790 return -ENOMEM; 2791 2792 trans = btrfs_start_transaction(root, 0); 2793 if (IS_ERR(trans)) { 2794 btrfs_free_path(path); 2795 return PTR_ERR(trans); 2796 } 2797 2798 key.objectid = BTRFS_BALANCE_OBJECTID; 2799 key.type = BTRFS_BALANCE_ITEM_KEY; 2800 key.offset = 0; 2801 2802 ret = btrfs_insert_empty_item(trans, root, path, &key, 2803 sizeof(*item)); 2804 if (ret) 2805 goto out; 2806 2807 leaf = path->nodes[0]; 2808 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2809 2810 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2811 2812 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2813 btrfs_set_balance_data(leaf, item, &disk_bargs); 2814 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2815 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2816 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2817 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2818 2819 btrfs_set_balance_flags(leaf, item, bctl->flags); 2820 2821 btrfs_mark_buffer_dirty(leaf); 2822out: 2823 btrfs_free_path(path); 2824 err = btrfs_commit_transaction(trans, root); 2825 if (err && !ret) 2826 ret = err; 2827 return ret; 2828} 2829 2830static int del_balance_item(struct btrfs_root *root) 2831{ 2832 struct btrfs_trans_handle *trans; 2833 struct btrfs_path *path; 2834 struct btrfs_key key; 2835 int ret, err; 2836 2837 path = btrfs_alloc_path(); 2838 if (!path) 2839 return -ENOMEM; 2840 2841 trans = btrfs_start_transaction(root, 0); 2842 if (IS_ERR(trans)) { 2843 btrfs_free_path(path); 2844 return PTR_ERR(trans); 2845 } 2846 2847 key.objectid = BTRFS_BALANCE_OBJECTID; 2848 key.type = BTRFS_BALANCE_ITEM_KEY; 2849 key.offset = 0; 2850 2851 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2852 if (ret < 0) 2853 goto out; 2854 if (ret > 0) { 2855 ret = -ENOENT; 2856 goto out; 2857 } 2858 2859 ret = btrfs_del_item(trans, root, path); 2860out: 2861 btrfs_free_path(path); 2862 err = btrfs_commit_transaction(trans, root); 2863 if (err && !ret) 2864 ret = err; 2865 return ret; 2866} 2867 2868/* 2869 * This is a heuristic used to reduce the number of chunks balanced on 2870 * resume after balance was interrupted. 2871 */ 2872static void update_balance_args(struct btrfs_balance_control *bctl) 2873{ 2874 /* 2875 * Turn on soft mode for chunk types that were being converted. 2876 */ 2877 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2878 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2879 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2880 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2881 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2882 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2883 2884 /* 2885 * Turn on usage filter if is not already used. The idea is 2886 * that chunks that we have already balanced should be 2887 * reasonably full. Don't do it for chunks that are being 2888 * converted - that will keep us from relocating unconverted 2889 * (albeit full) chunks. 2890 */ 2891 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2892 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2893 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2894 bctl->data.usage = 90; 2895 } 2896 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2897 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2898 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2899 bctl->sys.usage = 90; 2900 } 2901 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2902 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2903 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2904 bctl->meta.usage = 90; 2905 } 2906} 2907 2908/* 2909 * Should be called with both balance and volume mutexes held to 2910 * serialize other volume operations (add_dev/rm_dev/resize) with 2911 * restriper. Same goes for unset_balance_control. 2912 */ 2913static void set_balance_control(struct btrfs_balance_control *bctl) 2914{ 2915 struct btrfs_fs_info *fs_info = bctl->fs_info; 2916 2917 BUG_ON(fs_info->balance_ctl); 2918 2919 spin_lock(&fs_info->balance_lock); 2920 fs_info->balance_ctl = bctl; 2921 spin_unlock(&fs_info->balance_lock); 2922} 2923 2924static void unset_balance_control(struct btrfs_fs_info *fs_info) 2925{ 2926 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2927 2928 BUG_ON(!fs_info->balance_ctl); 2929 2930 spin_lock(&fs_info->balance_lock); 2931 fs_info->balance_ctl = NULL; 2932 spin_unlock(&fs_info->balance_lock); 2933 2934 kfree(bctl); 2935} 2936 2937/* 2938 * Balance filters. Return 1 if chunk should be filtered out 2939 * (should not be balanced). 2940 */ 2941static int chunk_profiles_filter(u64 chunk_type, 2942 struct btrfs_balance_args *bargs) 2943{ 2944 chunk_type = chunk_to_extended(chunk_type) & 2945 BTRFS_EXTENDED_PROFILE_MASK; 2946 2947 if (bargs->profiles & chunk_type) 2948 return 0; 2949 2950 return 1; 2951} 2952 2953static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2954 struct btrfs_balance_args *bargs) 2955{ 2956 struct btrfs_block_group_cache *cache; 2957 u64 chunk_used, user_thresh; 2958 int ret = 1; 2959 2960 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2961 chunk_used = btrfs_block_group_used(&cache->item); 2962 2963 if (bargs->usage == 0) 2964 user_thresh = 1; 2965 else if (bargs->usage > 100) 2966 user_thresh = cache->key.offset; 2967 else 2968 user_thresh = div_factor_fine(cache->key.offset, 2969 bargs->usage); 2970 2971 if (chunk_used < user_thresh) 2972 ret = 0; 2973 2974 btrfs_put_block_group(cache); 2975 return ret; 2976} 2977 2978static int chunk_devid_filter(struct extent_buffer *leaf, 2979 struct btrfs_chunk *chunk, 2980 struct btrfs_balance_args *bargs) 2981{ 2982 struct btrfs_stripe *stripe; 2983 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2984 int i; 2985 2986 for (i = 0; i < num_stripes; i++) { 2987 stripe = btrfs_stripe_nr(chunk, i); 2988 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2989 return 0; 2990 } 2991 2992 return 1; 2993} 2994 2995/* [pstart, pend) */ 2996static int chunk_drange_filter(struct extent_buffer *leaf, 2997 struct btrfs_chunk *chunk, 2998 u64 chunk_offset, 2999 struct btrfs_balance_args *bargs) 3000{ 3001 struct btrfs_stripe *stripe; 3002 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3003 u64 stripe_offset; 3004 u64 stripe_length; 3005 int factor; 3006 int i; 3007 3008 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3009 return 0; 3010 3011 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3012 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3013 factor = num_stripes / 2; 3014 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3015 factor = num_stripes - 1; 3016 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3017 factor = num_stripes - 2; 3018 } else { 3019 factor = num_stripes; 3020 } 3021 3022 for (i = 0; i < num_stripes; i++) { 3023 stripe = btrfs_stripe_nr(chunk, i); 3024 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3025 continue; 3026 3027 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3028 stripe_length = btrfs_chunk_length(leaf, chunk); 3029 stripe_length = div_u64(stripe_length, factor); 3030 3031 if (stripe_offset < bargs->pend && 3032 stripe_offset + stripe_length > bargs->pstart) 3033 return 0; 3034 } 3035 3036 return 1; 3037} 3038 3039/* [vstart, vend) */ 3040static int chunk_vrange_filter(struct extent_buffer *leaf, 3041 struct btrfs_chunk *chunk, 3042 u64 chunk_offset, 3043 struct btrfs_balance_args *bargs) 3044{ 3045 if (chunk_offset < bargs->vend && 3046 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3047 /* at least part of the chunk is inside this vrange */ 3048 return 0; 3049 3050 return 1; 3051} 3052 3053static int chunk_soft_convert_filter(u64 chunk_type, 3054 struct btrfs_balance_args *bargs) 3055{ 3056 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3057 return 0; 3058 3059 chunk_type = chunk_to_extended(chunk_type) & 3060 BTRFS_EXTENDED_PROFILE_MASK; 3061 3062 if (bargs->target == chunk_type) 3063 return 1; 3064 3065 return 0; 3066} 3067 3068static int should_balance_chunk(struct btrfs_root *root, 3069 struct extent_buffer *leaf, 3070 struct btrfs_chunk *chunk, u64 chunk_offset) 3071{ 3072 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3073 struct btrfs_balance_args *bargs = NULL; 3074 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3075 3076 /* type filter */ 3077 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3078 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3079 return 0; 3080 } 3081 3082 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3083 bargs = &bctl->data; 3084 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3085 bargs = &bctl->sys; 3086 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3087 bargs = &bctl->meta; 3088 3089 /* profiles filter */ 3090 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3091 chunk_profiles_filter(chunk_type, bargs)) { 3092 return 0; 3093 } 3094 3095 /* usage filter */ 3096 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3097 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3098 return 0; 3099 } 3100 3101 /* devid filter */ 3102 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3103 chunk_devid_filter(leaf, chunk, bargs)) { 3104 return 0; 3105 } 3106 3107 /* drange filter, makes sense only with devid filter */ 3108 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3109 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3110 return 0; 3111 } 3112 3113 /* vrange filter */ 3114 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3115 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3116 return 0; 3117 } 3118 3119 /* soft profile changing mode */ 3120 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3121 chunk_soft_convert_filter(chunk_type, bargs)) { 3122 return 0; 3123 } 3124 3125 /* 3126 * limited by count, must be the last filter 3127 */ 3128 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3129 if (bargs->limit == 0) 3130 return 0; 3131 else 3132 bargs->limit--; 3133 } 3134 3135 return 1; 3136} 3137 3138static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3139{ 3140 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3141 struct btrfs_root *chunk_root = fs_info->chunk_root; 3142 struct btrfs_root *dev_root = fs_info->dev_root; 3143 struct list_head *devices; 3144 struct btrfs_device *device; 3145 u64 old_size; 3146 u64 size_to_free; 3147 struct btrfs_chunk *chunk; 3148 struct btrfs_path *path; 3149 struct btrfs_key key; 3150 struct btrfs_key found_key; 3151 struct btrfs_trans_handle *trans; 3152 struct extent_buffer *leaf; 3153 int slot; 3154 int ret; 3155 int enospc_errors = 0; 3156 bool counting = true; 3157 u64 limit_data = bctl->data.limit; 3158 u64 limit_meta = bctl->meta.limit; 3159 u64 limit_sys = bctl->sys.limit; 3160 3161 /* step one make some room on all the devices */ 3162 devices = &fs_info->fs_devices->devices; 3163 list_for_each_entry(device, devices, dev_list) { 3164 old_size = btrfs_device_get_total_bytes(device); 3165 size_to_free = div_factor(old_size, 1); 3166 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 3167 if (!device->writeable || 3168 btrfs_device_get_total_bytes(device) - 3169 btrfs_device_get_bytes_used(device) > size_to_free || 3170 device->is_tgtdev_for_dev_replace) 3171 continue; 3172 3173 ret = btrfs_shrink_device(device, old_size - size_to_free); 3174 if (ret == -ENOSPC) 3175 break; 3176 BUG_ON(ret); 3177 3178 trans = btrfs_start_transaction(dev_root, 0); 3179 BUG_ON(IS_ERR(trans)); 3180 3181 ret = btrfs_grow_device(trans, device, old_size); 3182 BUG_ON(ret); 3183 3184 btrfs_end_transaction(trans, dev_root); 3185 } 3186 3187 /* step two, relocate all the chunks */ 3188 path = btrfs_alloc_path(); 3189 if (!path) { 3190 ret = -ENOMEM; 3191 goto error; 3192 } 3193 3194 /* zero out stat counters */ 3195 spin_lock(&fs_info->balance_lock); 3196 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3197 spin_unlock(&fs_info->balance_lock); 3198again: 3199 if (!counting) { 3200 bctl->data.limit = limit_data; 3201 bctl->meta.limit = limit_meta; 3202 bctl->sys.limit = limit_sys; 3203 } 3204 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3205 key.offset = (u64)-1; 3206 key.type = BTRFS_CHUNK_ITEM_KEY; 3207 3208 while (1) { 3209 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3210 atomic_read(&fs_info->balance_cancel_req)) { 3211 ret = -ECANCELED; 3212 goto error; 3213 } 3214 3215 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3216 if (ret < 0) 3217 goto error; 3218 3219 /* 3220 * this shouldn't happen, it means the last relocate 3221 * failed 3222 */ 3223 if (ret == 0) 3224 BUG(); /* FIXME break ? */ 3225 3226 ret = btrfs_previous_item(chunk_root, path, 0, 3227 BTRFS_CHUNK_ITEM_KEY); 3228 if (ret) { 3229 ret = 0; 3230 break; 3231 } 3232 3233 leaf = path->nodes[0]; 3234 slot = path->slots[0]; 3235 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3236 3237 if (found_key.objectid != key.objectid) 3238 break; 3239 3240 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3241 3242 if (!counting) { 3243 spin_lock(&fs_info->balance_lock); 3244 bctl->stat.considered++; 3245 spin_unlock(&fs_info->balance_lock); 3246 } 3247 3248 ret = should_balance_chunk(chunk_root, leaf, chunk, 3249 found_key.offset); 3250 btrfs_release_path(path); 3251 if (!ret) 3252 goto loop; 3253 3254 if (counting) { 3255 spin_lock(&fs_info->balance_lock); 3256 bctl->stat.expected++; 3257 spin_unlock(&fs_info->balance_lock); 3258 goto loop; 3259 } 3260 3261 ret = btrfs_relocate_chunk(chunk_root, 3262 found_key.objectid, 3263 found_key.offset); 3264 if (ret && ret != -ENOSPC) 3265 goto error; 3266 if (ret == -ENOSPC) { 3267 enospc_errors++; 3268 } else { 3269 spin_lock(&fs_info->balance_lock); 3270 bctl->stat.completed++; 3271 spin_unlock(&fs_info->balance_lock); 3272 } 3273loop: 3274 if (found_key.offset == 0) 3275 break; 3276 key.offset = found_key.offset - 1; 3277 } 3278 3279 if (counting) { 3280 btrfs_release_path(path); 3281 counting = false; 3282 goto again; 3283 } 3284error: 3285 btrfs_free_path(path); 3286 if (enospc_errors) { 3287 btrfs_info(fs_info, "%d enospc errors during balance", 3288 enospc_errors); 3289 if (!ret) 3290 ret = -ENOSPC; 3291 } 3292 3293 return ret; 3294} 3295 3296/** 3297 * alloc_profile_is_valid - see if a given profile is valid and reduced 3298 * @flags: profile to validate 3299 * @extended: if true @flags is treated as an extended profile 3300 */ 3301static int alloc_profile_is_valid(u64 flags, int extended) 3302{ 3303 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3304 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3305 3306 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3307 3308 /* 1) check that all other bits are zeroed */ 3309 if (flags & ~mask) 3310 return 0; 3311 3312 /* 2) see if profile is reduced */ 3313 if (flags == 0) 3314 return !extended; /* "0" is valid for usual profiles */ 3315 3316 /* true if exactly one bit set */ 3317 return (flags & (flags - 1)) == 0; 3318} 3319 3320static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3321{ 3322 /* cancel requested || normal exit path */ 3323 return atomic_read(&fs_info->balance_cancel_req) || 3324 (atomic_read(&fs_info->balance_pause_req) == 0 && 3325 atomic_read(&fs_info->balance_cancel_req) == 0); 3326} 3327 3328static void __cancel_balance(struct btrfs_fs_info *fs_info) 3329{ 3330 int ret; 3331 3332 unset_balance_control(fs_info); 3333 ret = del_balance_item(fs_info->tree_root); 3334 if (ret) 3335 btrfs_std_error(fs_info, ret); 3336 3337 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3338} 3339 3340/* 3341 * Should be called with both balance and volume mutexes held 3342 */ 3343int btrfs_balance(struct btrfs_balance_control *bctl, 3344 struct btrfs_ioctl_balance_args *bargs) 3345{ 3346 struct btrfs_fs_info *fs_info = bctl->fs_info; 3347 u64 allowed; 3348 int mixed = 0; 3349 int ret; 3350 u64 num_devices; 3351 unsigned seq; 3352 3353 if (btrfs_fs_closing(fs_info) || 3354 atomic_read(&fs_info->balance_pause_req) || 3355 atomic_read(&fs_info->balance_cancel_req)) { 3356 ret = -EINVAL; 3357 goto out; 3358 } 3359 3360 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3361 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3362 mixed = 1; 3363 3364 /* 3365 * In case of mixed groups both data and meta should be picked, 3366 * and identical options should be given for both of them. 3367 */ 3368 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3369 if (mixed && (bctl->flags & allowed)) { 3370 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3371 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3372 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3373 btrfs_err(fs_info, "with mixed groups data and " 3374 "metadata balance options must be the same"); 3375 ret = -EINVAL; 3376 goto out; 3377 } 3378 } 3379 3380 num_devices = fs_info->fs_devices->num_devices; 3381 btrfs_dev_replace_lock(&fs_info->dev_replace); 3382 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3383 BUG_ON(num_devices < 1); 3384 num_devices--; 3385 } 3386 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3387 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3388 if (num_devices == 1) 3389 allowed |= BTRFS_BLOCK_GROUP_DUP; 3390 else if (num_devices > 1) 3391 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3392 if (num_devices > 2) 3393 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3394 if (num_devices > 3) 3395 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3396 BTRFS_BLOCK_GROUP_RAID6); 3397 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3398 (!alloc_profile_is_valid(bctl->data.target, 1) || 3399 (bctl->data.target & ~allowed))) { 3400 btrfs_err(fs_info, "unable to start balance with target " 3401 "data profile %llu", 3402 bctl->data.target); 3403 ret = -EINVAL; 3404 goto out; 3405 } 3406 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3407 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3408 (bctl->meta.target & ~allowed))) { 3409 btrfs_err(fs_info, 3410 "unable to start balance with target metadata profile %llu", 3411 bctl->meta.target); 3412 ret = -EINVAL; 3413 goto out; 3414 } 3415 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3416 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3417 (bctl->sys.target & ~allowed))) { 3418 btrfs_err(fs_info, 3419 "unable to start balance with target system profile %llu", 3420 bctl->sys.target); 3421 ret = -EINVAL; 3422 goto out; 3423 } 3424 3425 /* allow dup'ed data chunks only in mixed mode */ 3426 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3427 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3428 btrfs_err(fs_info, "dup for data is not allowed"); 3429 ret = -EINVAL; 3430 goto out; 3431 } 3432 3433 /* allow to reduce meta or sys integrity only if force set */ 3434 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3435 BTRFS_BLOCK_GROUP_RAID10 | 3436 BTRFS_BLOCK_GROUP_RAID5 | 3437 BTRFS_BLOCK_GROUP_RAID6; 3438 do { 3439 seq = read_seqbegin(&fs_info->profiles_lock); 3440 3441 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3442 (fs_info->avail_system_alloc_bits & allowed) && 3443 !(bctl->sys.target & allowed)) || 3444 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3445 (fs_info->avail_metadata_alloc_bits & allowed) && 3446 !(bctl->meta.target & allowed))) { 3447 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3448 btrfs_info(fs_info, "force reducing metadata integrity"); 3449 } else { 3450 btrfs_err(fs_info, "balance will reduce metadata " 3451 "integrity, use force if you want this"); 3452 ret = -EINVAL; 3453 goto out; 3454 } 3455 } 3456 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3457 3458 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3459 int num_tolerated_disk_barrier_failures; 3460 u64 target = bctl->sys.target; 3461 3462 num_tolerated_disk_barrier_failures = 3463 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3464 if (num_tolerated_disk_barrier_failures > 0 && 3465 (target & 3466 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3467 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 3468 num_tolerated_disk_barrier_failures = 0; 3469 else if (num_tolerated_disk_barrier_failures > 1 && 3470 (target & 3471 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 3472 num_tolerated_disk_barrier_failures = 1; 3473 3474 fs_info->num_tolerated_disk_barrier_failures = 3475 num_tolerated_disk_barrier_failures; 3476 } 3477 3478 ret = insert_balance_item(fs_info->tree_root, bctl); 3479 if (ret && ret != -EEXIST) 3480 goto out; 3481 3482 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3483 BUG_ON(ret == -EEXIST); 3484 set_balance_control(bctl); 3485 } else { 3486 BUG_ON(ret != -EEXIST); 3487 spin_lock(&fs_info->balance_lock); 3488 update_balance_args(bctl); 3489 spin_unlock(&fs_info->balance_lock); 3490 } 3491 3492 atomic_inc(&fs_info->balance_running); 3493 mutex_unlock(&fs_info->balance_mutex); 3494 3495 ret = __btrfs_balance(fs_info); 3496 3497 mutex_lock(&fs_info->balance_mutex); 3498 atomic_dec(&fs_info->balance_running); 3499 3500 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3501 fs_info->num_tolerated_disk_barrier_failures = 3502 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3503 } 3504 3505 if (bargs) { 3506 memset(bargs, 0, sizeof(*bargs)); 3507 update_ioctl_balance_args(fs_info, 0, bargs); 3508 } 3509 3510 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3511 balance_need_close(fs_info)) { 3512 __cancel_balance(fs_info); 3513 } 3514 3515 wake_up(&fs_info->balance_wait_q); 3516 3517 return ret; 3518out: 3519 if (bctl->flags & BTRFS_BALANCE_RESUME) 3520 __cancel_balance(fs_info); 3521 else { 3522 kfree(bctl); 3523 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3524 } 3525 return ret; 3526} 3527 3528static int balance_kthread(void *data) 3529{ 3530 struct btrfs_fs_info *fs_info = data; 3531 int ret = 0; 3532 3533 mutex_lock(&fs_info->volume_mutex); 3534 mutex_lock(&fs_info->balance_mutex); 3535 3536 if (fs_info->balance_ctl) { 3537 btrfs_info(fs_info, "continuing balance"); 3538 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3539 } 3540 3541 mutex_unlock(&fs_info->balance_mutex); 3542 mutex_unlock(&fs_info->volume_mutex); 3543 3544 return ret; 3545} 3546 3547int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3548{ 3549 struct task_struct *tsk; 3550 3551 spin_lock(&fs_info->balance_lock); 3552 if (!fs_info->balance_ctl) { 3553 spin_unlock(&fs_info->balance_lock); 3554 return 0; 3555 } 3556 spin_unlock(&fs_info->balance_lock); 3557 3558 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3559 btrfs_info(fs_info, "force skipping balance"); 3560 return 0; 3561 } 3562 3563 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3564 return PTR_ERR_OR_ZERO(tsk); 3565} 3566 3567int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3568{ 3569 struct btrfs_balance_control *bctl; 3570 struct btrfs_balance_item *item; 3571 struct btrfs_disk_balance_args disk_bargs; 3572 struct btrfs_path *path; 3573 struct extent_buffer *leaf; 3574 struct btrfs_key key; 3575 int ret; 3576 3577 path = btrfs_alloc_path(); 3578 if (!path) 3579 return -ENOMEM; 3580 3581 key.objectid = BTRFS_BALANCE_OBJECTID; 3582 key.type = BTRFS_BALANCE_ITEM_KEY; 3583 key.offset = 0; 3584 3585 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3586 if (ret < 0) 3587 goto out; 3588 if (ret > 0) { /* ret = -ENOENT; */ 3589 ret = 0; 3590 goto out; 3591 } 3592 3593 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3594 if (!bctl) { 3595 ret = -ENOMEM; 3596 goto out; 3597 } 3598 3599 leaf = path->nodes[0]; 3600 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3601 3602 bctl->fs_info = fs_info; 3603 bctl->flags = btrfs_balance_flags(leaf, item); 3604 bctl->flags |= BTRFS_BALANCE_RESUME; 3605 3606 btrfs_balance_data(leaf, item, &disk_bargs); 3607 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3608 btrfs_balance_meta(leaf, item, &disk_bargs); 3609 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3610 btrfs_balance_sys(leaf, item, &disk_bargs); 3611 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3612 3613 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3614 3615 mutex_lock(&fs_info->volume_mutex); 3616 mutex_lock(&fs_info->balance_mutex); 3617 3618 set_balance_control(bctl); 3619 3620 mutex_unlock(&fs_info->balance_mutex); 3621 mutex_unlock(&fs_info->volume_mutex); 3622out: 3623 btrfs_free_path(path); 3624 return ret; 3625} 3626 3627int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3628{ 3629 int ret = 0; 3630 3631 mutex_lock(&fs_info->balance_mutex); 3632 if (!fs_info->balance_ctl) { 3633 mutex_unlock(&fs_info->balance_mutex); 3634 return -ENOTCONN; 3635 } 3636 3637 if (atomic_read(&fs_info->balance_running)) { 3638 atomic_inc(&fs_info->balance_pause_req); 3639 mutex_unlock(&fs_info->balance_mutex); 3640 3641 wait_event(fs_info->balance_wait_q, 3642 atomic_read(&fs_info->balance_running) == 0); 3643 3644 mutex_lock(&fs_info->balance_mutex); 3645 /* we are good with balance_ctl ripped off from under us */ 3646 BUG_ON(atomic_read(&fs_info->balance_running)); 3647 atomic_dec(&fs_info->balance_pause_req); 3648 } else { 3649 ret = -ENOTCONN; 3650 } 3651 3652 mutex_unlock(&fs_info->balance_mutex); 3653 return ret; 3654} 3655 3656int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3657{ 3658 if (fs_info->sb->s_flags & MS_RDONLY) 3659 return -EROFS; 3660 3661 mutex_lock(&fs_info->balance_mutex); 3662 if (!fs_info->balance_ctl) { 3663 mutex_unlock(&fs_info->balance_mutex); 3664 return -ENOTCONN; 3665 } 3666 3667 atomic_inc(&fs_info->balance_cancel_req); 3668 /* 3669 * if we are running just wait and return, balance item is 3670 * deleted in btrfs_balance in this case 3671 */ 3672 if (atomic_read(&fs_info->balance_running)) { 3673 mutex_unlock(&fs_info->balance_mutex); 3674 wait_event(fs_info->balance_wait_q, 3675 atomic_read(&fs_info->balance_running) == 0); 3676 mutex_lock(&fs_info->balance_mutex); 3677 } else { 3678 /* __cancel_balance needs volume_mutex */ 3679 mutex_unlock(&fs_info->balance_mutex); 3680 mutex_lock(&fs_info->volume_mutex); 3681 mutex_lock(&fs_info->balance_mutex); 3682 3683 if (fs_info->balance_ctl) 3684 __cancel_balance(fs_info); 3685 3686 mutex_unlock(&fs_info->volume_mutex); 3687 } 3688 3689 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3690 atomic_dec(&fs_info->balance_cancel_req); 3691 mutex_unlock(&fs_info->balance_mutex); 3692 return 0; 3693} 3694 3695static int btrfs_uuid_scan_kthread(void *data) 3696{ 3697 struct btrfs_fs_info *fs_info = data; 3698 struct btrfs_root *root = fs_info->tree_root; 3699 struct btrfs_key key; 3700 struct btrfs_key max_key; 3701 struct btrfs_path *path = NULL; 3702 int ret = 0; 3703 struct extent_buffer *eb; 3704 int slot; 3705 struct btrfs_root_item root_item; 3706 u32 item_size; 3707 struct btrfs_trans_handle *trans = NULL; 3708 3709 path = btrfs_alloc_path(); 3710 if (!path) { 3711 ret = -ENOMEM; 3712 goto out; 3713 } 3714 3715 key.objectid = 0; 3716 key.type = BTRFS_ROOT_ITEM_KEY; 3717 key.offset = 0; 3718 3719 max_key.objectid = (u64)-1; 3720 max_key.type = BTRFS_ROOT_ITEM_KEY; 3721 max_key.offset = (u64)-1; 3722 3723 while (1) { 3724 ret = btrfs_search_forward(root, &key, path, 0); 3725 if (ret) { 3726 if (ret > 0) 3727 ret = 0; 3728 break; 3729 } 3730 3731 if (key.type != BTRFS_ROOT_ITEM_KEY || 3732 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3733 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3734 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3735 goto skip; 3736 3737 eb = path->nodes[0]; 3738 slot = path->slots[0]; 3739 item_size = btrfs_item_size_nr(eb, slot); 3740 if (item_size < sizeof(root_item)) 3741 goto skip; 3742 3743 read_extent_buffer(eb, &root_item, 3744 btrfs_item_ptr_offset(eb, slot), 3745 (int)sizeof(root_item)); 3746 if (btrfs_root_refs(&root_item) == 0) 3747 goto skip; 3748 3749 if (!btrfs_is_empty_uuid(root_item.uuid) || 3750 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3751 if (trans) 3752 goto update_tree; 3753 3754 btrfs_release_path(path); 3755 /* 3756 * 1 - subvol uuid item 3757 * 1 - received_subvol uuid item 3758 */ 3759 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3760 if (IS_ERR(trans)) { 3761 ret = PTR_ERR(trans); 3762 break; 3763 } 3764 continue; 3765 } else { 3766 goto skip; 3767 } 3768update_tree: 3769 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3770 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3771 root_item.uuid, 3772 BTRFS_UUID_KEY_SUBVOL, 3773 key.objectid); 3774 if (ret < 0) { 3775 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3776 ret); 3777 break; 3778 } 3779 } 3780 3781 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3782 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3783 root_item.received_uuid, 3784 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3785 key.objectid); 3786 if (ret < 0) { 3787 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3788 ret); 3789 break; 3790 } 3791 } 3792 3793skip: 3794 if (trans) { 3795 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3796 trans = NULL; 3797 if (ret) 3798 break; 3799 } 3800 3801 btrfs_release_path(path); 3802 if (key.offset < (u64)-1) { 3803 key.offset++; 3804 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3805 key.offset = 0; 3806 key.type = BTRFS_ROOT_ITEM_KEY; 3807 } else if (key.objectid < (u64)-1) { 3808 key.offset = 0; 3809 key.type = BTRFS_ROOT_ITEM_KEY; 3810 key.objectid++; 3811 } else { 3812 break; 3813 } 3814 cond_resched(); 3815 } 3816 3817out: 3818 btrfs_free_path(path); 3819 if (trans && !IS_ERR(trans)) 3820 btrfs_end_transaction(trans, fs_info->uuid_root); 3821 if (ret) 3822 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 3823 else 3824 fs_info->update_uuid_tree_gen = 1; 3825 up(&fs_info->uuid_tree_rescan_sem); 3826 return 0; 3827} 3828 3829/* 3830 * Callback for btrfs_uuid_tree_iterate(). 3831 * returns: 3832 * 0 check succeeded, the entry is not outdated. 3833 * < 0 if an error occured. 3834 * > 0 if the check failed, which means the caller shall remove the entry. 3835 */ 3836static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3837 u8 *uuid, u8 type, u64 subid) 3838{ 3839 struct btrfs_key key; 3840 int ret = 0; 3841 struct btrfs_root *subvol_root; 3842 3843 if (type != BTRFS_UUID_KEY_SUBVOL && 3844 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3845 goto out; 3846 3847 key.objectid = subid; 3848 key.type = BTRFS_ROOT_ITEM_KEY; 3849 key.offset = (u64)-1; 3850 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3851 if (IS_ERR(subvol_root)) { 3852 ret = PTR_ERR(subvol_root); 3853 if (ret == -ENOENT) 3854 ret = 1; 3855 goto out; 3856 } 3857 3858 switch (type) { 3859 case BTRFS_UUID_KEY_SUBVOL: 3860 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3861 ret = 1; 3862 break; 3863 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3864 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3865 BTRFS_UUID_SIZE)) 3866 ret = 1; 3867 break; 3868 } 3869 3870out: 3871 return ret; 3872} 3873 3874static int btrfs_uuid_rescan_kthread(void *data) 3875{ 3876 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3877 int ret; 3878 3879 /* 3880 * 1st step is to iterate through the existing UUID tree and 3881 * to delete all entries that contain outdated data. 3882 * 2nd step is to add all missing entries to the UUID tree. 3883 */ 3884 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 3885 if (ret < 0) { 3886 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 3887 up(&fs_info->uuid_tree_rescan_sem); 3888 return ret; 3889 } 3890 return btrfs_uuid_scan_kthread(data); 3891} 3892 3893int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 3894{ 3895 struct btrfs_trans_handle *trans; 3896 struct btrfs_root *tree_root = fs_info->tree_root; 3897 struct btrfs_root *uuid_root; 3898 struct task_struct *task; 3899 int ret; 3900 3901 /* 3902 * 1 - root node 3903 * 1 - root item 3904 */ 3905 trans = btrfs_start_transaction(tree_root, 2); 3906 if (IS_ERR(trans)) 3907 return PTR_ERR(trans); 3908 3909 uuid_root = btrfs_create_tree(trans, fs_info, 3910 BTRFS_UUID_TREE_OBJECTID); 3911 if (IS_ERR(uuid_root)) { 3912 btrfs_abort_transaction(trans, tree_root, 3913 PTR_ERR(uuid_root)); 3914 return PTR_ERR(uuid_root); 3915 } 3916 3917 fs_info->uuid_root = uuid_root; 3918 3919 ret = btrfs_commit_transaction(trans, tree_root); 3920 if (ret) 3921 return ret; 3922 3923 down(&fs_info->uuid_tree_rescan_sem); 3924 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 3925 if (IS_ERR(task)) { 3926 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3927 btrfs_warn(fs_info, "failed to start uuid_scan task"); 3928 up(&fs_info->uuid_tree_rescan_sem); 3929 return PTR_ERR(task); 3930 } 3931 3932 return 0; 3933} 3934 3935int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3936{ 3937 struct task_struct *task; 3938 3939 down(&fs_info->uuid_tree_rescan_sem); 3940 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3941 if (IS_ERR(task)) { 3942 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3943 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3944 up(&fs_info->uuid_tree_rescan_sem); 3945 return PTR_ERR(task); 3946 } 3947 3948 return 0; 3949} 3950 3951/* 3952 * shrinking a device means finding all of the device extents past 3953 * the new size, and then following the back refs to the chunks. 3954 * The chunk relocation code actually frees the device extent 3955 */ 3956int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3957{ 3958 struct btrfs_trans_handle *trans; 3959 struct btrfs_root *root = device->dev_root; 3960 struct btrfs_dev_extent *dev_extent = NULL; 3961 struct btrfs_path *path; 3962 u64 length; 3963 u64 chunk_objectid; 3964 u64 chunk_offset; 3965 int ret; 3966 int slot; 3967 int failed = 0; 3968 bool retried = false; 3969 struct extent_buffer *l; 3970 struct btrfs_key key; 3971 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3972 u64 old_total = btrfs_super_total_bytes(super_copy); 3973 u64 old_size = btrfs_device_get_total_bytes(device); 3974 u64 diff = old_size - new_size; 3975 3976 if (device->is_tgtdev_for_dev_replace) 3977 return -EINVAL; 3978 3979 path = btrfs_alloc_path(); 3980 if (!path) 3981 return -ENOMEM; 3982 3983 path->reada = 2; 3984 3985 lock_chunks(root); 3986 3987 btrfs_device_set_total_bytes(device, new_size); 3988 if (device->writeable) { 3989 device->fs_devices->total_rw_bytes -= diff; 3990 spin_lock(&root->fs_info->free_chunk_lock); 3991 root->fs_info->free_chunk_space -= diff; 3992 spin_unlock(&root->fs_info->free_chunk_lock); 3993 } 3994 unlock_chunks(root); 3995 3996again: 3997 key.objectid = device->devid; 3998 key.offset = (u64)-1; 3999 key.type = BTRFS_DEV_EXTENT_KEY; 4000 4001 do { 4002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4003 if (ret < 0) 4004 goto done; 4005 4006 ret = btrfs_previous_item(root, path, 0, key.type); 4007 if (ret < 0) 4008 goto done; 4009 if (ret) { 4010 ret = 0; 4011 btrfs_release_path(path); 4012 break; 4013 } 4014 4015 l = path->nodes[0]; 4016 slot = path->slots[0]; 4017 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4018 4019 if (key.objectid != device->devid) { 4020 btrfs_release_path(path); 4021 break; 4022 } 4023 4024 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4025 length = btrfs_dev_extent_length(l, dev_extent); 4026 4027 if (key.offset + length <= new_size) { 4028 btrfs_release_path(path); 4029 break; 4030 } 4031 4032 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 4033 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4034 btrfs_release_path(path); 4035 4036 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset); 4037 if (ret && ret != -ENOSPC) 4038 goto done; 4039 if (ret == -ENOSPC) 4040 failed++; 4041 } while (key.offset-- > 0); 4042 4043 if (failed && !retried) { 4044 failed = 0; 4045 retried = true; 4046 goto again; 4047 } else if (failed && retried) { 4048 ret = -ENOSPC; 4049 lock_chunks(root); 4050 4051 btrfs_device_set_total_bytes(device, old_size); 4052 if (device->writeable) 4053 device->fs_devices->total_rw_bytes += diff; 4054 spin_lock(&root->fs_info->free_chunk_lock); 4055 root->fs_info->free_chunk_space += diff; 4056 spin_unlock(&root->fs_info->free_chunk_lock); 4057 unlock_chunks(root); 4058 goto done; 4059 } 4060 4061 /* Shrinking succeeded, else we would be at "done". */ 4062 trans = btrfs_start_transaction(root, 0); 4063 if (IS_ERR(trans)) { 4064 ret = PTR_ERR(trans); 4065 goto done; 4066 } 4067 4068 lock_chunks(root); 4069 btrfs_device_set_disk_total_bytes(device, new_size); 4070 if (list_empty(&device->resized_list)) 4071 list_add_tail(&device->resized_list, 4072 &root->fs_info->fs_devices->resized_devices); 4073 4074 WARN_ON(diff > old_total); 4075 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4076 unlock_chunks(root); 4077 4078 /* Now btrfs_update_device() will change the on-disk size. */ 4079 ret = btrfs_update_device(trans, device); 4080 btrfs_end_transaction(trans, root); 4081done: 4082 btrfs_free_path(path); 4083 return ret; 4084} 4085 4086static int btrfs_add_system_chunk(struct btrfs_root *root, 4087 struct btrfs_key *key, 4088 struct btrfs_chunk *chunk, int item_size) 4089{ 4090 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4091 struct btrfs_disk_key disk_key; 4092 u32 array_size; 4093 u8 *ptr; 4094 4095 lock_chunks(root); 4096 array_size = btrfs_super_sys_array_size(super_copy); 4097 if (array_size + item_size + sizeof(disk_key) 4098 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4099 unlock_chunks(root); 4100 return -EFBIG; 4101 } 4102 4103 ptr = super_copy->sys_chunk_array + array_size; 4104 btrfs_cpu_key_to_disk(&disk_key, key); 4105 memcpy(ptr, &disk_key, sizeof(disk_key)); 4106 ptr += sizeof(disk_key); 4107 memcpy(ptr, chunk, item_size); 4108 item_size += sizeof(disk_key); 4109 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4110 unlock_chunks(root); 4111 4112 return 0; 4113} 4114 4115/* 4116 * sort the devices in descending order by max_avail, total_avail 4117 */ 4118static int btrfs_cmp_device_info(const void *a, const void *b) 4119{ 4120 const struct btrfs_device_info *di_a = a; 4121 const struct btrfs_device_info *di_b = b; 4122 4123 if (di_a->max_avail > di_b->max_avail) 4124 return -1; 4125 if (di_a->max_avail < di_b->max_avail) 4126 return 1; 4127 if (di_a->total_avail > di_b->total_avail) 4128 return -1; 4129 if (di_a->total_avail < di_b->total_avail) 4130 return 1; 4131 return 0; 4132} 4133 4134static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 4135 [BTRFS_RAID_RAID10] = { 4136 .sub_stripes = 2, 4137 .dev_stripes = 1, 4138 .devs_max = 0, /* 0 == as many as possible */ 4139 .devs_min = 4, 4140 .devs_increment = 2, 4141 .ncopies = 2, 4142 }, 4143 [BTRFS_RAID_RAID1] = { 4144 .sub_stripes = 1, 4145 .dev_stripes = 1, 4146 .devs_max = 2, 4147 .devs_min = 2, 4148 .devs_increment = 2, 4149 .ncopies = 2, 4150 }, 4151 [BTRFS_RAID_DUP] = { 4152 .sub_stripes = 1, 4153 .dev_stripes = 2, 4154 .devs_max = 1, 4155 .devs_min = 1, 4156 .devs_increment = 1, 4157 .ncopies = 2, 4158 }, 4159 [BTRFS_RAID_RAID0] = { 4160 .sub_stripes = 1, 4161 .dev_stripes = 1, 4162 .devs_max = 0, 4163 .devs_min = 2, 4164 .devs_increment = 1, 4165 .ncopies = 1, 4166 }, 4167 [BTRFS_RAID_SINGLE] = { 4168 .sub_stripes = 1, 4169 .dev_stripes = 1, 4170 .devs_max = 1, 4171 .devs_min = 1, 4172 .devs_increment = 1, 4173 .ncopies = 1, 4174 }, 4175 [BTRFS_RAID_RAID5] = { 4176 .sub_stripes = 1, 4177 .dev_stripes = 1, 4178 .devs_max = 0, 4179 .devs_min = 2, 4180 .devs_increment = 1, 4181 .ncopies = 2, 4182 }, 4183 [BTRFS_RAID_RAID6] = { 4184 .sub_stripes = 1, 4185 .dev_stripes = 1, 4186 .devs_max = 0, 4187 .devs_min = 3, 4188 .devs_increment = 1, 4189 .ncopies = 3, 4190 }, 4191}; 4192 4193static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4194{ 4195 /* TODO allow them to set a preferred stripe size */ 4196 return 64 * 1024; 4197} 4198 4199static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4200{ 4201 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4202 return; 4203 4204 btrfs_set_fs_incompat(info, RAID56); 4205} 4206 4207#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4208 - sizeof(struct btrfs_item) \ 4209 - sizeof(struct btrfs_chunk)) \ 4210 / sizeof(struct btrfs_stripe) + 1) 4211 4212#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4213 - 2 * sizeof(struct btrfs_disk_key) \ 4214 - 2 * sizeof(struct btrfs_chunk)) \ 4215 / sizeof(struct btrfs_stripe) + 1) 4216 4217static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4218 struct btrfs_root *extent_root, u64 start, 4219 u64 type) 4220{ 4221 struct btrfs_fs_info *info = extent_root->fs_info; 4222 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4223 struct list_head *cur; 4224 struct map_lookup *map = NULL; 4225 struct extent_map_tree *em_tree; 4226 struct extent_map *em; 4227 struct btrfs_device_info *devices_info = NULL; 4228 u64 total_avail; 4229 int num_stripes; /* total number of stripes to allocate */ 4230 int data_stripes; /* number of stripes that count for 4231 block group size */ 4232 int sub_stripes; /* sub_stripes info for map */ 4233 int dev_stripes; /* stripes per dev */ 4234 int devs_max; /* max devs to use */ 4235 int devs_min; /* min devs needed */ 4236 int devs_increment; /* ndevs has to be a multiple of this */ 4237 int ncopies; /* how many copies to data has */ 4238 int ret; 4239 u64 max_stripe_size; 4240 u64 max_chunk_size; 4241 u64 stripe_size; 4242 u64 num_bytes; 4243 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4244 int ndevs; 4245 int i; 4246 int j; 4247 int index; 4248 4249 BUG_ON(!alloc_profile_is_valid(type, 0)); 4250 4251 if (list_empty(&fs_devices->alloc_list)) 4252 return -ENOSPC; 4253 4254 index = __get_raid_index(type); 4255 4256 sub_stripes = btrfs_raid_array[index].sub_stripes; 4257 dev_stripes = btrfs_raid_array[index].dev_stripes; 4258 devs_max = btrfs_raid_array[index].devs_max; 4259 devs_min = btrfs_raid_array[index].devs_min; 4260 devs_increment = btrfs_raid_array[index].devs_increment; 4261 ncopies = btrfs_raid_array[index].ncopies; 4262 4263 if (type & BTRFS_BLOCK_GROUP_DATA) { 4264 max_stripe_size = 1024 * 1024 * 1024; 4265 max_chunk_size = 10 * max_stripe_size; 4266 if (!devs_max) 4267 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4268 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4269 /* for larger filesystems, use larger metadata chunks */ 4270 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4271 max_stripe_size = 1024 * 1024 * 1024; 4272 else 4273 max_stripe_size = 256 * 1024 * 1024; 4274 max_chunk_size = max_stripe_size; 4275 if (!devs_max) 4276 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4277 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4278 max_stripe_size = 32 * 1024 * 1024; 4279 max_chunk_size = 2 * max_stripe_size; 4280 if (!devs_max) 4281 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4282 } else { 4283 btrfs_err(info, "invalid chunk type 0x%llx requested", 4284 type); 4285 BUG_ON(1); 4286 } 4287 4288 /* we don't want a chunk larger than 10% of writeable space */ 4289 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4290 max_chunk_size); 4291 4292 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4293 GFP_NOFS); 4294 if (!devices_info) 4295 return -ENOMEM; 4296 4297 cur = fs_devices->alloc_list.next; 4298 4299 /* 4300 * in the first pass through the devices list, we gather information 4301 * about the available holes on each device. 4302 */ 4303 ndevs = 0; 4304 while (cur != &fs_devices->alloc_list) { 4305 struct btrfs_device *device; 4306 u64 max_avail; 4307 u64 dev_offset; 4308 4309 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4310 4311 cur = cur->next; 4312 4313 if (!device->writeable) { 4314 WARN(1, KERN_ERR 4315 "BTRFS: read-only device in alloc_list\n"); 4316 continue; 4317 } 4318 4319 if (!device->in_fs_metadata || 4320 device->is_tgtdev_for_dev_replace) 4321 continue; 4322 4323 if (device->total_bytes > device->bytes_used) 4324 total_avail = device->total_bytes - device->bytes_used; 4325 else 4326 total_avail = 0; 4327 4328 /* If there is no space on this device, skip it. */ 4329 if (total_avail == 0) 4330 continue; 4331 4332 ret = find_free_dev_extent(trans, device, 4333 max_stripe_size * dev_stripes, 4334 &dev_offset, &max_avail); 4335 if (ret && ret != -ENOSPC) 4336 goto error; 4337 4338 if (ret == 0) 4339 max_avail = max_stripe_size * dev_stripes; 4340 4341 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4342 continue; 4343 4344 if (ndevs == fs_devices->rw_devices) { 4345 WARN(1, "%s: found more than %llu devices\n", 4346 __func__, fs_devices->rw_devices); 4347 break; 4348 } 4349 devices_info[ndevs].dev_offset = dev_offset; 4350 devices_info[ndevs].max_avail = max_avail; 4351 devices_info[ndevs].total_avail = total_avail; 4352 devices_info[ndevs].dev = device; 4353 ++ndevs; 4354 } 4355 4356 /* 4357 * now sort the devices by hole size / available space 4358 */ 4359 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4360 btrfs_cmp_device_info, NULL); 4361 4362 /* round down to number of usable stripes */ 4363 ndevs -= ndevs % devs_increment; 4364 4365 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4366 ret = -ENOSPC; 4367 goto error; 4368 } 4369 4370 if (devs_max && ndevs > devs_max) 4371 ndevs = devs_max; 4372 /* 4373 * the primary goal is to maximize the number of stripes, so use as many 4374 * devices as possible, even if the stripes are not maximum sized. 4375 */ 4376 stripe_size = devices_info[ndevs-1].max_avail; 4377 num_stripes = ndevs * dev_stripes; 4378 4379 /* 4380 * this will have to be fixed for RAID1 and RAID10 over 4381 * more drives 4382 */ 4383 data_stripes = num_stripes / ncopies; 4384 4385 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4386 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4387 btrfs_super_stripesize(info->super_copy)); 4388 data_stripes = num_stripes - 1; 4389 } 4390 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4391 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4392 btrfs_super_stripesize(info->super_copy)); 4393 data_stripes = num_stripes - 2; 4394 } 4395 4396 /* 4397 * Use the number of data stripes to figure out how big this chunk 4398 * is really going to be in terms of logical address space, 4399 * and compare that answer with the max chunk size 4400 */ 4401 if (stripe_size * data_stripes > max_chunk_size) { 4402 u64 mask = (1ULL << 24) - 1; 4403 4404 stripe_size = div_u64(max_chunk_size, data_stripes); 4405 4406 /* bump the answer up to a 16MB boundary */ 4407 stripe_size = (stripe_size + mask) & ~mask; 4408 4409 /* but don't go higher than the limits we found 4410 * while searching for free extents 4411 */ 4412 if (stripe_size > devices_info[ndevs-1].max_avail) 4413 stripe_size = devices_info[ndevs-1].max_avail; 4414 } 4415 4416 stripe_size = div_u64(stripe_size, dev_stripes); 4417 4418 /* align to BTRFS_STRIPE_LEN */ 4419 stripe_size = div_u64(stripe_size, raid_stripe_len); 4420 stripe_size *= raid_stripe_len; 4421 4422 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4423 if (!map) { 4424 ret = -ENOMEM; 4425 goto error; 4426 } 4427 map->num_stripes = num_stripes; 4428 4429 for (i = 0; i < ndevs; ++i) { 4430 for (j = 0; j < dev_stripes; ++j) { 4431 int s = i * dev_stripes + j; 4432 map->stripes[s].dev = devices_info[i].dev; 4433 map->stripes[s].physical = devices_info[i].dev_offset + 4434 j * stripe_size; 4435 } 4436 } 4437 map->sector_size = extent_root->sectorsize; 4438 map->stripe_len = raid_stripe_len; 4439 map->io_align = raid_stripe_len; 4440 map->io_width = raid_stripe_len; 4441 map->type = type; 4442 map->sub_stripes = sub_stripes; 4443 4444 num_bytes = stripe_size * data_stripes; 4445 4446 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4447 4448 em = alloc_extent_map(); 4449 if (!em) { 4450 kfree(map); 4451 ret = -ENOMEM; 4452 goto error; 4453 } 4454 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4455 em->bdev = (struct block_device *)map; 4456 em->start = start; 4457 em->len = num_bytes; 4458 em->block_start = 0; 4459 em->block_len = em->len; 4460 em->orig_block_len = stripe_size; 4461 4462 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4463 write_lock(&em_tree->lock); 4464 ret = add_extent_mapping(em_tree, em, 0); 4465 if (!ret) { 4466 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4467 atomic_inc(&em->refs); 4468 } 4469 write_unlock(&em_tree->lock); 4470 if (ret) { 4471 free_extent_map(em); 4472 goto error; 4473 } 4474 4475 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4476 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4477 start, num_bytes); 4478 if (ret) 4479 goto error_del_extent; 4480 4481 for (i = 0; i < map->num_stripes; i++) { 4482 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4483 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4484 } 4485 4486 spin_lock(&extent_root->fs_info->free_chunk_lock); 4487 extent_root->fs_info->free_chunk_space -= (stripe_size * 4488 map->num_stripes); 4489 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4490 4491 free_extent_map(em); 4492 check_raid56_incompat_flag(extent_root->fs_info, type); 4493 4494 kfree(devices_info); 4495 return 0; 4496 4497error_del_extent: 4498 write_lock(&em_tree->lock); 4499 remove_extent_mapping(em_tree, em); 4500 write_unlock(&em_tree->lock); 4501 4502 /* One for our allocation */ 4503 free_extent_map(em); 4504 /* One for the tree reference */ 4505 free_extent_map(em); 4506 /* One for the pending_chunks list reference */ 4507 free_extent_map(em); 4508error: 4509 kfree(devices_info); 4510 return ret; 4511} 4512 4513int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4514 struct btrfs_root *extent_root, 4515 u64 chunk_offset, u64 chunk_size) 4516{ 4517 struct btrfs_key key; 4518 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4519 struct btrfs_device *device; 4520 struct btrfs_chunk *chunk; 4521 struct btrfs_stripe *stripe; 4522 struct extent_map_tree *em_tree; 4523 struct extent_map *em; 4524 struct map_lookup *map; 4525 size_t item_size; 4526 u64 dev_offset; 4527 u64 stripe_size; 4528 int i = 0; 4529 int ret; 4530 4531 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4532 read_lock(&em_tree->lock); 4533 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4534 read_unlock(&em_tree->lock); 4535 4536 if (!em) { 4537 btrfs_crit(extent_root->fs_info, "unable to find logical " 4538 "%Lu len %Lu", chunk_offset, chunk_size); 4539 return -EINVAL; 4540 } 4541 4542 if (em->start != chunk_offset || em->len != chunk_size) { 4543 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4544 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4545 chunk_size, em->start, em->len); 4546 free_extent_map(em); 4547 return -EINVAL; 4548 } 4549 4550 map = (struct map_lookup *)em->bdev; 4551 item_size = btrfs_chunk_item_size(map->num_stripes); 4552 stripe_size = em->orig_block_len; 4553 4554 chunk = kzalloc(item_size, GFP_NOFS); 4555 if (!chunk) { 4556 ret = -ENOMEM; 4557 goto out; 4558 } 4559 4560 for (i = 0; i < map->num_stripes; i++) { 4561 device = map->stripes[i].dev; 4562 dev_offset = map->stripes[i].physical; 4563 4564 ret = btrfs_update_device(trans, device); 4565 if (ret) 4566 goto out; 4567 ret = btrfs_alloc_dev_extent(trans, device, 4568 chunk_root->root_key.objectid, 4569 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4570 chunk_offset, dev_offset, 4571 stripe_size); 4572 if (ret) 4573 goto out; 4574 } 4575 4576 stripe = &chunk->stripe; 4577 for (i = 0; i < map->num_stripes; i++) { 4578 device = map->stripes[i].dev; 4579 dev_offset = map->stripes[i].physical; 4580 4581 btrfs_set_stack_stripe_devid(stripe, device->devid); 4582 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4583 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4584 stripe++; 4585 } 4586 4587 btrfs_set_stack_chunk_length(chunk, chunk_size); 4588 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4589 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4590 btrfs_set_stack_chunk_type(chunk, map->type); 4591 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4592 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4593 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4594 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4595 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4596 4597 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4598 key.type = BTRFS_CHUNK_ITEM_KEY; 4599 key.offset = chunk_offset; 4600 4601 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4602 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4603 /* 4604 * TODO: Cleanup of inserted chunk root in case of 4605 * failure. 4606 */ 4607 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4608 item_size); 4609 } 4610 4611out: 4612 kfree(chunk); 4613 free_extent_map(em); 4614 return ret; 4615} 4616 4617/* 4618 * Chunk allocation falls into two parts. The first part does works 4619 * that make the new allocated chunk useable, but not do any operation 4620 * that modifies the chunk tree. The second part does the works that 4621 * require modifying the chunk tree. This division is important for the 4622 * bootstrap process of adding storage to a seed btrfs. 4623 */ 4624int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4625 struct btrfs_root *extent_root, u64 type) 4626{ 4627 u64 chunk_offset; 4628 4629 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex)); 4630 chunk_offset = find_next_chunk(extent_root->fs_info); 4631 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4632} 4633 4634static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4635 struct btrfs_root *root, 4636 struct btrfs_device *device) 4637{ 4638 u64 chunk_offset; 4639 u64 sys_chunk_offset; 4640 u64 alloc_profile; 4641 struct btrfs_fs_info *fs_info = root->fs_info; 4642 struct btrfs_root *extent_root = fs_info->extent_root; 4643 int ret; 4644 4645 chunk_offset = find_next_chunk(fs_info); 4646 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4647 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4648 alloc_profile); 4649 if (ret) 4650 return ret; 4651 4652 sys_chunk_offset = find_next_chunk(root->fs_info); 4653 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4654 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4655 alloc_profile); 4656 return ret; 4657} 4658 4659static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4660{ 4661 int max_errors; 4662 4663 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4664 BTRFS_BLOCK_GROUP_RAID10 | 4665 BTRFS_BLOCK_GROUP_RAID5 | 4666 BTRFS_BLOCK_GROUP_DUP)) { 4667 max_errors = 1; 4668 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4669 max_errors = 2; 4670 } else { 4671 max_errors = 0; 4672 } 4673 4674 return max_errors; 4675} 4676 4677int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4678{ 4679 struct extent_map *em; 4680 struct map_lookup *map; 4681 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4682 int readonly = 0; 4683 int miss_ndevs = 0; 4684 int i; 4685 4686 read_lock(&map_tree->map_tree.lock); 4687 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4688 read_unlock(&map_tree->map_tree.lock); 4689 if (!em) 4690 return 1; 4691 4692 map = (struct map_lookup *)em->bdev; 4693 for (i = 0; i < map->num_stripes; i++) { 4694 if (map->stripes[i].dev->missing) { 4695 miss_ndevs++; 4696 continue; 4697 } 4698 4699 if (!map->stripes[i].dev->writeable) { 4700 readonly = 1; 4701 goto end; 4702 } 4703 } 4704 4705 /* 4706 * If the number of missing devices is larger than max errors, 4707 * we can not write the data into that chunk successfully, so 4708 * set it readonly. 4709 */ 4710 if (miss_ndevs > btrfs_chunk_max_errors(map)) 4711 readonly = 1; 4712end: 4713 free_extent_map(em); 4714 return readonly; 4715} 4716 4717void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4718{ 4719 extent_map_tree_init(&tree->map_tree); 4720} 4721 4722void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4723{ 4724 struct extent_map *em; 4725 4726 while (1) { 4727 write_lock(&tree->map_tree.lock); 4728 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4729 if (em) 4730 remove_extent_mapping(&tree->map_tree, em); 4731 write_unlock(&tree->map_tree.lock); 4732 if (!em) 4733 break; 4734 /* once for us */ 4735 free_extent_map(em); 4736 /* once for the tree */ 4737 free_extent_map(em); 4738 } 4739} 4740 4741int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4742{ 4743 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4744 struct extent_map *em; 4745 struct map_lookup *map; 4746 struct extent_map_tree *em_tree = &map_tree->map_tree; 4747 int ret; 4748 4749 read_lock(&em_tree->lock); 4750 em = lookup_extent_mapping(em_tree, logical, len); 4751 read_unlock(&em_tree->lock); 4752 4753 /* 4754 * We could return errors for these cases, but that could get ugly and 4755 * we'd probably do the same thing which is just not do anything else 4756 * and exit, so return 1 so the callers don't try to use other copies. 4757 */ 4758 if (!em) { 4759 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 4760 logical+len); 4761 return 1; 4762 } 4763 4764 if (em->start > logical || em->start + em->len < logical) { 4765 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4766 "%Lu-%Lu", logical, logical+len, em->start, 4767 em->start + em->len); 4768 free_extent_map(em); 4769 return 1; 4770 } 4771 4772 map = (struct map_lookup *)em->bdev; 4773 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4774 ret = map->num_stripes; 4775 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4776 ret = map->sub_stripes; 4777 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4778 ret = 2; 4779 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4780 ret = 3; 4781 else 4782 ret = 1; 4783 free_extent_map(em); 4784 4785 btrfs_dev_replace_lock(&fs_info->dev_replace); 4786 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4787 ret++; 4788 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4789 4790 return ret; 4791} 4792 4793unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4794 struct btrfs_mapping_tree *map_tree, 4795 u64 logical) 4796{ 4797 struct extent_map *em; 4798 struct map_lookup *map; 4799 struct extent_map_tree *em_tree = &map_tree->map_tree; 4800 unsigned long len = root->sectorsize; 4801 4802 read_lock(&em_tree->lock); 4803 em = lookup_extent_mapping(em_tree, logical, len); 4804 read_unlock(&em_tree->lock); 4805 BUG_ON(!em); 4806 4807 BUG_ON(em->start > logical || em->start + em->len < logical); 4808 map = (struct map_lookup *)em->bdev; 4809 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 4810 len = map->stripe_len * nr_data_stripes(map); 4811 free_extent_map(em); 4812 return len; 4813} 4814 4815int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4816 u64 logical, u64 len, int mirror_num) 4817{ 4818 struct extent_map *em; 4819 struct map_lookup *map; 4820 struct extent_map_tree *em_tree = &map_tree->map_tree; 4821 int ret = 0; 4822 4823 read_lock(&em_tree->lock); 4824 em = lookup_extent_mapping(em_tree, logical, len); 4825 read_unlock(&em_tree->lock); 4826 BUG_ON(!em); 4827 4828 BUG_ON(em->start > logical || em->start + em->len < logical); 4829 map = (struct map_lookup *)em->bdev; 4830 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 4831 ret = 1; 4832 free_extent_map(em); 4833 return ret; 4834} 4835 4836static int find_live_mirror(struct btrfs_fs_info *fs_info, 4837 struct map_lookup *map, int first, int num, 4838 int optimal, int dev_replace_is_ongoing) 4839{ 4840 int i; 4841 int tolerance; 4842 struct btrfs_device *srcdev; 4843 4844 if (dev_replace_is_ongoing && 4845 fs_info->dev_replace.cont_reading_from_srcdev_mode == 4846 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 4847 srcdev = fs_info->dev_replace.srcdev; 4848 else 4849 srcdev = NULL; 4850 4851 /* 4852 * try to avoid the drive that is the source drive for a 4853 * dev-replace procedure, only choose it if no other non-missing 4854 * mirror is available 4855 */ 4856 for (tolerance = 0; tolerance < 2; tolerance++) { 4857 if (map->stripes[optimal].dev->bdev && 4858 (tolerance || map->stripes[optimal].dev != srcdev)) 4859 return optimal; 4860 for (i = first; i < first + num; i++) { 4861 if (map->stripes[i].dev->bdev && 4862 (tolerance || map->stripes[i].dev != srcdev)) 4863 return i; 4864 } 4865 } 4866 4867 /* we couldn't find one that doesn't fail. Just return something 4868 * and the io error handling code will clean up eventually 4869 */ 4870 return optimal; 4871} 4872 4873static inline int parity_smaller(u64 a, u64 b) 4874{ 4875 return a > b; 4876} 4877 4878/* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 4879static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 4880{ 4881 struct btrfs_bio_stripe s; 4882 int i; 4883 u64 l; 4884 int again = 1; 4885 4886 while (again) { 4887 again = 0; 4888 for (i = 0; i < num_stripes - 1; i++) { 4889 if (parity_smaller(bbio->raid_map[i], 4890 bbio->raid_map[i+1])) { 4891 s = bbio->stripes[i]; 4892 l = bbio->raid_map[i]; 4893 bbio->stripes[i] = bbio->stripes[i+1]; 4894 bbio->raid_map[i] = bbio->raid_map[i+1]; 4895 bbio->stripes[i+1] = s; 4896 bbio->raid_map[i+1] = l; 4897 4898 again = 1; 4899 } 4900 } 4901 } 4902} 4903 4904static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 4905{ 4906 struct btrfs_bio *bbio = kzalloc( 4907 /* the size of the btrfs_bio */ 4908 sizeof(struct btrfs_bio) + 4909 /* plus the variable array for the stripes */ 4910 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 4911 /* plus the variable array for the tgt dev */ 4912 sizeof(int) * (real_stripes) + 4913 /* 4914 * plus the raid_map, which includes both the tgt dev 4915 * and the stripes 4916 */ 4917 sizeof(u64) * (total_stripes), 4918 GFP_NOFS); 4919 if (!bbio) 4920 return NULL; 4921 4922 atomic_set(&bbio->error, 0); 4923 atomic_set(&bbio->refs, 1); 4924 4925 return bbio; 4926} 4927 4928void btrfs_get_bbio(struct btrfs_bio *bbio) 4929{ 4930 WARN_ON(!atomic_read(&bbio->refs)); 4931 atomic_inc(&bbio->refs); 4932} 4933 4934void btrfs_put_bbio(struct btrfs_bio *bbio) 4935{ 4936 if (!bbio) 4937 return; 4938 if (atomic_dec_and_test(&bbio->refs)) 4939 kfree(bbio); 4940} 4941 4942static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 4943 u64 logical, u64 *length, 4944 struct btrfs_bio **bbio_ret, 4945 int mirror_num, int need_raid_map) 4946{ 4947 struct extent_map *em; 4948 struct map_lookup *map; 4949 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4950 struct extent_map_tree *em_tree = &map_tree->map_tree; 4951 u64 offset; 4952 u64 stripe_offset; 4953 u64 stripe_end_offset; 4954 u64 stripe_nr; 4955 u64 stripe_nr_orig; 4956 u64 stripe_nr_end; 4957 u64 stripe_len; 4958 u32 stripe_index; 4959 int i; 4960 int ret = 0; 4961 int num_stripes; 4962 int max_errors = 0; 4963 int tgtdev_indexes = 0; 4964 struct btrfs_bio *bbio = NULL; 4965 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 4966 int dev_replace_is_ongoing = 0; 4967 int num_alloc_stripes; 4968 int patch_the_first_stripe_for_dev_replace = 0; 4969 u64 physical_to_patch_in_first_stripe = 0; 4970 u64 raid56_full_stripe_start = (u64)-1; 4971 4972 read_lock(&em_tree->lock); 4973 em = lookup_extent_mapping(em_tree, logical, *length); 4974 read_unlock(&em_tree->lock); 4975 4976 if (!em) { 4977 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 4978 logical, *length); 4979 return -EINVAL; 4980 } 4981 4982 if (em->start > logical || em->start + em->len < logical) { 4983 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 4984 "found %Lu-%Lu", logical, em->start, 4985 em->start + em->len); 4986 free_extent_map(em); 4987 return -EINVAL; 4988 } 4989 4990 map = (struct map_lookup *)em->bdev; 4991 offset = logical - em->start; 4992 4993 stripe_len = map->stripe_len; 4994 stripe_nr = offset; 4995 /* 4996 * stripe_nr counts the total number of stripes we have to stride 4997 * to get to this block 4998 */ 4999 stripe_nr = div64_u64(stripe_nr, stripe_len); 5000 5001 stripe_offset = stripe_nr * stripe_len; 5002 BUG_ON(offset < stripe_offset); 5003 5004 /* stripe_offset is the offset of this block in its stripe*/ 5005 stripe_offset = offset - stripe_offset; 5006 5007 /* if we're here for raid56, we need to know the stripe aligned start */ 5008 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5009 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5010 raid56_full_stripe_start = offset; 5011 5012 /* allow a write of a full stripe, but make sure we don't 5013 * allow straddling of stripes 5014 */ 5015 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5016 full_stripe_len); 5017 raid56_full_stripe_start *= full_stripe_len; 5018 } 5019 5020 if (rw & REQ_DISCARD) { 5021 /* we don't discard raid56 yet */ 5022 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5023 ret = -EOPNOTSUPP; 5024 goto out; 5025 } 5026 *length = min_t(u64, em->len - offset, *length); 5027 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5028 u64 max_len; 5029 /* For writes to RAID[56], allow a full stripeset across all disks. 5030 For other RAID types and for RAID[56] reads, just allow a single 5031 stripe (on a single disk). */ 5032 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5033 (rw & REQ_WRITE)) { 5034 max_len = stripe_len * nr_data_stripes(map) - 5035 (offset - raid56_full_stripe_start); 5036 } else { 5037 /* we limit the length of each bio to what fits in a stripe */ 5038 max_len = stripe_len - stripe_offset; 5039 } 5040 *length = min_t(u64, em->len - offset, max_len); 5041 } else { 5042 *length = em->len - offset; 5043 } 5044 5045 /* This is for when we're called from btrfs_merge_bio_hook() and all 5046 it cares about is the length */ 5047 if (!bbio_ret) 5048 goto out; 5049 5050 btrfs_dev_replace_lock(dev_replace); 5051 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5052 if (!dev_replace_is_ongoing) 5053 btrfs_dev_replace_unlock(dev_replace); 5054 5055 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5056 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5057 dev_replace->tgtdev != NULL) { 5058 /* 5059 * in dev-replace case, for repair case (that's the only 5060 * case where the mirror is selected explicitly when 5061 * calling btrfs_map_block), blocks left of the left cursor 5062 * can also be read from the target drive. 5063 * For REQ_GET_READ_MIRRORS, the target drive is added as 5064 * the last one to the array of stripes. For READ, it also 5065 * needs to be supported using the same mirror number. 5066 * If the requested block is not left of the left cursor, 5067 * EIO is returned. This can happen because btrfs_num_copies() 5068 * returns one more in the dev-replace case. 5069 */ 5070 u64 tmp_length = *length; 5071 struct btrfs_bio *tmp_bbio = NULL; 5072 int tmp_num_stripes; 5073 u64 srcdev_devid = dev_replace->srcdev->devid; 5074 int index_srcdev = 0; 5075 int found = 0; 5076 u64 physical_of_found = 0; 5077 5078 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5079 logical, &tmp_length, &tmp_bbio, 0, 0); 5080 if (ret) { 5081 WARN_ON(tmp_bbio != NULL); 5082 goto out; 5083 } 5084 5085 tmp_num_stripes = tmp_bbio->num_stripes; 5086 if (mirror_num > tmp_num_stripes) { 5087 /* 5088 * REQ_GET_READ_MIRRORS does not contain this 5089 * mirror, that means that the requested area 5090 * is not left of the left cursor 5091 */ 5092 ret = -EIO; 5093 btrfs_put_bbio(tmp_bbio); 5094 goto out; 5095 } 5096 5097 /* 5098 * process the rest of the function using the mirror_num 5099 * of the source drive. Therefore look it up first. 5100 * At the end, patch the device pointer to the one of the 5101 * target drive. 5102 */ 5103 for (i = 0; i < tmp_num_stripes; i++) { 5104 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 5105 /* 5106 * In case of DUP, in order to keep it 5107 * simple, only add the mirror with the 5108 * lowest physical address 5109 */ 5110 if (found && 5111 physical_of_found <= 5112 tmp_bbio->stripes[i].physical) 5113 continue; 5114 index_srcdev = i; 5115 found = 1; 5116 physical_of_found = 5117 tmp_bbio->stripes[i].physical; 5118 } 5119 } 5120 5121 if (found) { 5122 mirror_num = index_srcdev + 1; 5123 patch_the_first_stripe_for_dev_replace = 1; 5124 physical_to_patch_in_first_stripe = physical_of_found; 5125 } else { 5126 WARN_ON(1); 5127 ret = -EIO; 5128 btrfs_put_bbio(tmp_bbio); 5129 goto out; 5130 } 5131 5132 btrfs_put_bbio(tmp_bbio); 5133 } else if (mirror_num > map->num_stripes) { 5134 mirror_num = 0; 5135 } 5136 5137 num_stripes = 1; 5138 stripe_index = 0; 5139 stripe_nr_orig = stripe_nr; 5140 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5141 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5142 stripe_end_offset = stripe_nr_end * map->stripe_len - 5143 (offset + *length); 5144 5145 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5146 if (rw & REQ_DISCARD) 5147 num_stripes = min_t(u64, map->num_stripes, 5148 stripe_nr_end - stripe_nr_orig); 5149 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5150 &stripe_index); 5151 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5152 mirror_num = 1; 5153 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5154 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5155 num_stripes = map->num_stripes; 5156 else if (mirror_num) 5157 stripe_index = mirror_num - 1; 5158 else { 5159 stripe_index = find_live_mirror(fs_info, map, 0, 5160 map->num_stripes, 5161 current->pid % map->num_stripes, 5162 dev_replace_is_ongoing); 5163 mirror_num = stripe_index + 1; 5164 } 5165 5166 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5167 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5168 num_stripes = map->num_stripes; 5169 } else if (mirror_num) { 5170 stripe_index = mirror_num - 1; 5171 } else { 5172 mirror_num = 1; 5173 } 5174 5175 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5176 u32 factor = map->num_stripes / map->sub_stripes; 5177 5178 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5179 stripe_index *= map->sub_stripes; 5180 5181 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5182 num_stripes = map->sub_stripes; 5183 else if (rw & REQ_DISCARD) 5184 num_stripes = min_t(u64, map->sub_stripes * 5185 (stripe_nr_end - stripe_nr_orig), 5186 map->num_stripes); 5187 else if (mirror_num) 5188 stripe_index += mirror_num - 1; 5189 else { 5190 int old_stripe_index = stripe_index; 5191 stripe_index = find_live_mirror(fs_info, map, 5192 stripe_index, 5193 map->sub_stripes, stripe_index + 5194 current->pid % map->sub_stripes, 5195 dev_replace_is_ongoing); 5196 mirror_num = stripe_index - old_stripe_index + 1; 5197 } 5198 5199 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5200 if (need_raid_map && 5201 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5202 mirror_num > 1)) { 5203 /* push stripe_nr back to the start of the full stripe */ 5204 stripe_nr = div_u64(raid56_full_stripe_start, 5205 stripe_len * nr_data_stripes(map)); 5206 5207 /* RAID[56] write or recovery. Return all stripes */ 5208 num_stripes = map->num_stripes; 5209 max_errors = nr_parity_stripes(map); 5210 5211 *length = map->stripe_len; 5212 stripe_index = 0; 5213 stripe_offset = 0; 5214 } else { 5215 /* 5216 * Mirror #0 or #1 means the original data block. 5217 * Mirror #2 is RAID5 parity block. 5218 * Mirror #3 is RAID6 Q block. 5219 */ 5220 stripe_nr = div_u64_rem(stripe_nr, 5221 nr_data_stripes(map), &stripe_index); 5222 if (mirror_num > 1) 5223 stripe_index = nr_data_stripes(map) + 5224 mirror_num - 2; 5225 5226 /* We distribute the parity blocks across stripes */ 5227 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5228 &stripe_index); 5229 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5230 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5231 mirror_num = 1; 5232 } 5233 } else { 5234 /* 5235 * after this, stripe_nr is the number of stripes on this 5236 * device we have to walk to find the data, and stripe_index is 5237 * the number of our device in the stripe array 5238 */ 5239 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5240 &stripe_index); 5241 mirror_num = stripe_index + 1; 5242 } 5243 BUG_ON(stripe_index >= map->num_stripes); 5244 5245 num_alloc_stripes = num_stripes; 5246 if (dev_replace_is_ongoing) { 5247 if (rw & (REQ_WRITE | REQ_DISCARD)) 5248 num_alloc_stripes <<= 1; 5249 if (rw & REQ_GET_READ_MIRRORS) 5250 num_alloc_stripes++; 5251 tgtdev_indexes = num_stripes; 5252 } 5253 5254 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5255 if (!bbio) { 5256 ret = -ENOMEM; 5257 goto out; 5258 } 5259 if (dev_replace_is_ongoing) 5260 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5261 5262 /* build raid_map */ 5263 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5264 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5265 mirror_num > 1)) { 5266 u64 tmp; 5267 unsigned rot; 5268 5269 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5270 sizeof(struct btrfs_bio_stripe) * 5271 num_alloc_stripes + 5272 sizeof(int) * tgtdev_indexes); 5273 5274 /* Work out the disk rotation on this stripe-set */ 5275 div_u64_rem(stripe_nr, num_stripes, &rot); 5276 5277 /* Fill in the logical address of each stripe */ 5278 tmp = stripe_nr * nr_data_stripes(map); 5279 for (i = 0; i < nr_data_stripes(map); i++) 5280 bbio->raid_map[(i+rot) % num_stripes] = 5281 em->start + (tmp + i) * map->stripe_len; 5282 5283 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5284 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5285 bbio->raid_map[(i+rot+1) % num_stripes] = 5286 RAID6_Q_STRIPE; 5287 } 5288 5289 if (rw & REQ_DISCARD) { 5290 u32 factor = 0; 5291 u32 sub_stripes = 0; 5292 u64 stripes_per_dev = 0; 5293 u32 remaining_stripes = 0; 5294 u32 last_stripe = 0; 5295 5296 if (map->type & 5297 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5298 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5299 sub_stripes = 1; 5300 else 5301 sub_stripes = map->sub_stripes; 5302 5303 factor = map->num_stripes / sub_stripes; 5304 stripes_per_dev = div_u64_rem(stripe_nr_end - 5305 stripe_nr_orig, 5306 factor, 5307 &remaining_stripes); 5308 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5309 last_stripe *= sub_stripes; 5310 } 5311 5312 for (i = 0; i < num_stripes; i++) { 5313 bbio->stripes[i].physical = 5314 map->stripes[stripe_index].physical + 5315 stripe_offset + stripe_nr * map->stripe_len; 5316 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5317 5318 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5319 BTRFS_BLOCK_GROUP_RAID10)) { 5320 bbio->stripes[i].length = stripes_per_dev * 5321 map->stripe_len; 5322 5323 if (i / sub_stripes < remaining_stripes) 5324 bbio->stripes[i].length += 5325 map->stripe_len; 5326 5327 /* 5328 * Special for the first stripe and 5329 * the last stripe: 5330 * 5331 * |-------|...|-------| 5332 * |----------| 5333 * off end_off 5334 */ 5335 if (i < sub_stripes) 5336 bbio->stripes[i].length -= 5337 stripe_offset; 5338 5339 if (stripe_index >= last_stripe && 5340 stripe_index <= (last_stripe + 5341 sub_stripes - 1)) 5342 bbio->stripes[i].length -= 5343 stripe_end_offset; 5344 5345 if (i == sub_stripes - 1) 5346 stripe_offset = 0; 5347 } else 5348 bbio->stripes[i].length = *length; 5349 5350 stripe_index++; 5351 if (stripe_index == map->num_stripes) { 5352 /* This could only happen for RAID0/10 */ 5353 stripe_index = 0; 5354 stripe_nr++; 5355 } 5356 } 5357 } else { 5358 for (i = 0; i < num_stripes; i++) { 5359 bbio->stripes[i].physical = 5360 map->stripes[stripe_index].physical + 5361 stripe_offset + 5362 stripe_nr * map->stripe_len; 5363 bbio->stripes[i].dev = 5364 map->stripes[stripe_index].dev; 5365 stripe_index++; 5366 } 5367 } 5368 5369 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5370 max_errors = btrfs_chunk_max_errors(map); 5371 5372 if (bbio->raid_map) 5373 sort_parity_stripes(bbio, num_stripes); 5374 5375 tgtdev_indexes = 0; 5376 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5377 dev_replace->tgtdev != NULL) { 5378 int index_where_to_add; 5379 u64 srcdev_devid = dev_replace->srcdev->devid; 5380 5381 /* 5382 * duplicate the write operations while the dev replace 5383 * procedure is running. Since the copying of the old disk 5384 * to the new disk takes place at run time while the 5385 * filesystem is mounted writable, the regular write 5386 * operations to the old disk have to be duplicated to go 5387 * to the new disk as well. 5388 * Note that device->missing is handled by the caller, and 5389 * that the write to the old disk is already set up in the 5390 * stripes array. 5391 */ 5392 index_where_to_add = num_stripes; 5393 for (i = 0; i < num_stripes; i++) { 5394 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5395 /* write to new disk, too */ 5396 struct btrfs_bio_stripe *new = 5397 bbio->stripes + index_where_to_add; 5398 struct btrfs_bio_stripe *old = 5399 bbio->stripes + i; 5400 5401 new->physical = old->physical; 5402 new->length = old->length; 5403 new->dev = dev_replace->tgtdev; 5404 bbio->tgtdev_map[i] = index_where_to_add; 5405 index_where_to_add++; 5406 max_errors++; 5407 tgtdev_indexes++; 5408 } 5409 } 5410 num_stripes = index_where_to_add; 5411 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5412 dev_replace->tgtdev != NULL) { 5413 u64 srcdev_devid = dev_replace->srcdev->devid; 5414 int index_srcdev = 0; 5415 int found = 0; 5416 u64 physical_of_found = 0; 5417 5418 /* 5419 * During the dev-replace procedure, the target drive can 5420 * also be used to read data in case it is needed to repair 5421 * a corrupt block elsewhere. This is possible if the 5422 * requested area is left of the left cursor. In this area, 5423 * the target drive is a full copy of the source drive. 5424 */ 5425 for (i = 0; i < num_stripes; i++) { 5426 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5427 /* 5428 * In case of DUP, in order to keep it 5429 * simple, only add the mirror with the 5430 * lowest physical address 5431 */ 5432 if (found && 5433 physical_of_found <= 5434 bbio->stripes[i].physical) 5435 continue; 5436 index_srcdev = i; 5437 found = 1; 5438 physical_of_found = bbio->stripes[i].physical; 5439 } 5440 } 5441 if (found) { 5442 if (physical_of_found + map->stripe_len <= 5443 dev_replace->cursor_left) { 5444 struct btrfs_bio_stripe *tgtdev_stripe = 5445 bbio->stripes + num_stripes; 5446 5447 tgtdev_stripe->physical = physical_of_found; 5448 tgtdev_stripe->length = 5449 bbio->stripes[index_srcdev].length; 5450 tgtdev_stripe->dev = dev_replace->tgtdev; 5451 bbio->tgtdev_map[index_srcdev] = num_stripes; 5452 5453 tgtdev_indexes++; 5454 num_stripes++; 5455 } 5456 } 5457 } 5458 5459 *bbio_ret = bbio; 5460 bbio->map_type = map->type; 5461 bbio->num_stripes = num_stripes; 5462 bbio->max_errors = max_errors; 5463 bbio->mirror_num = mirror_num; 5464 bbio->num_tgtdevs = tgtdev_indexes; 5465 5466 /* 5467 * this is the case that REQ_READ && dev_replace_is_ongoing && 5468 * mirror_num == num_stripes + 1 && dev_replace target drive is 5469 * available as a mirror 5470 */ 5471 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5472 WARN_ON(num_stripes > 1); 5473 bbio->stripes[0].dev = dev_replace->tgtdev; 5474 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5475 bbio->mirror_num = map->num_stripes + 1; 5476 } 5477out: 5478 if (dev_replace_is_ongoing) 5479 btrfs_dev_replace_unlock(dev_replace); 5480 free_extent_map(em); 5481 return ret; 5482} 5483 5484int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5485 u64 logical, u64 *length, 5486 struct btrfs_bio **bbio_ret, int mirror_num) 5487{ 5488 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5489 mirror_num, 0); 5490} 5491 5492/* For Scrub/replace */ 5493int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw, 5494 u64 logical, u64 *length, 5495 struct btrfs_bio **bbio_ret, int mirror_num, 5496 int need_raid_map) 5497{ 5498 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5499 mirror_num, need_raid_map); 5500} 5501 5502int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5503 u64 chunk_start, u64 physical, u64 devid, 5504 u64 **logical, int *naddrs, int *stripe_len) 5505{ 5506 struct extent_map_tree *em_tree = &map_tree->map_tree; 5507 struct extent_map *em; 5508 struct map_lookup *map; 5509 u64 *buf; 5510 u64 bytenr; 5511 u64 length; 5512 u64 stripe_nr; 5513 u64 rmap_len; 5514 int i, j, nr = 0; 5515 5516 read_lock(&em_tree->lock); 5517 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5518 read_unlock(&em_tree->lock); 5519 5520 if (!em) { 5521 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5522 chunk_start); 5523 return -EIO; 5524 } 5525 5526 if (em->start != chunk_start) { 5527 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5528 em->start, chunk_start); 5529 free_extent_map(em); 5530 return -EIO; 5531 } 5532 map = (struct map_lookup *)em->bdev; 5533 5534 length = em->len; 5535 rmap_len = map->stripe_len; 5536 5537 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5538 length = div_u64(length, map->num_stripes / map->sub_stripes); 5539 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5540 length = div_u64(length, map->num_stripes); 5541 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5542 length = div_u64(length, nr_data_stripes(map)); 5543 rmap_len = map->stripe_len * nr_data_stripes(map); 5544 } 5545 5546 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5547 BUG_ON(!buf); /* -ENOMEM */ 5548 5549 for (i = 0; i < map->num_stripes; i++) { 5550 if (devid && map->stripes[i].dev->devid != devid) 5551 continue; 5552 if (map->stripes[i].physical > physical || 5553 map->stripes[i].physical + length <= physical) 5554 continue; 5555 5556 stripe_nr = physical - map->stripes[i].physical; 5557 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5558 5559 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5560 stripe_nr = stripe_nr * map->num_stripes + i; 5561 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5562 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5563 stripe_nr = stripe_nr * map->num_stripes + i; 5564 } /* else if RAID[56], multiply by nr_data_stripes(). 5565 * Alternatively, just use rmap_len below instead of 5566 * map->stripe_len */ 5567 5568 bytenr = chunk_start + stripe_nr * rmap_len; 5569 WARN_ON(nr >= map->num_stripes); 5570 for (j = 0; j < nr; j++) { 5571 if (buf[j] == bytenr) 5572 break; 5573 } 5574 if (j == nr) { 5575 WARN_ON(nr >= map->num_stripes); 5576 buf[nr++] = bytenr; 5577 } 5578 } 5579 5580 *logical = buf; 5581 *naddrs = nr; 5582 *stripe_len = rmap_len; 5583 5584 free_extent_map(em); 5585 return 0; 5586} 5587 5588static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err) 5589{ 5590 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED)) 5591 bio_endio_nodec(bio, err); 5592 else 5593 bio_endio(bio, err); 5594 btrfs_put_bbio(bbio); 5595} 5596 5597static void btrfs_end_bio(struct bio *bio, int err) 5598{ 5599 struct btrfs_bio *bbio = bio->bi_private; 5600 struct btrfs_device *dev = bbio->stripes[0].dev; 5601 int is_orig_bio = 0; 5602 5603 if (err) { 5604 atomic_inc(&bbio->error); 5605 if (err == -EIO || err == -EREMOTEIO) { 5606 unsigned int stripe_index = 5607 btrfs_io_bio(bio)->stripe_index; 5608 5609 BUG_ON(stripe_index >= bbio->num_stripes); 5610 dev = bbio->stripes[stripe_index].dev; 5611 if (dev->bdev) { 5612 if (bio->bi_rw & WRITE) 5613 btrfs_dev_stat_inc(dev, 5614 BTRFS_DEV_STAT_WRITE_ERRS); 5615 else 5616 btrfs_dev_stat_inc(dev, 5617 BTRFS_DEV_STAT_READ_ERRS); 5618 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5619 btrfs_dev_stat_inc(dev, 5620 BTRFS_DEV_STAT_FLUSH_ERRS); 5621 btrfs_dev_stat_print_on_error(dev); 5622 } 5623 } 5624 } 5625 5626 if (bio == bbio->orig_bio) 5627 is_orig_bio = 1; 5628 5629 btrfs_bio_counter_dec(bbio->fs_info); 5630 5631 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5632 if (!is_orig_bio) { 5633 bio_put(bio); 5634 bio = bbio->orig_bio; 5635 } 5636 5637 bio->bi_private = bbio->private; 5638 bio->bi_end_io = bbio->end_io; 5639 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5640 /* only send an error to the higher layers if it is 5641 * beyond the tolerance of the btrfs bio 5642 */ 5643 if (atomic_read(&bbio->error) > bbio->max_errors) { 5644 err = -EIO; 5645 } else { 5646 /* 5647 * this bio is actually up to date, we didn't 5648 * go over the max number of errors 5649 */ 5650 set_bit(BIO_UPTODATE, &bio->bi_flags); 5651 err = 0; 5652 } 5653 5654 btrfs_end_bbio(bbio, bio, err); 5655 } else if (!is_orig_bio) { 5656 bio_put(bio); 5657 } 5658} 5659 5660/* 5661 * see run_scheduled_bios for a description of why bios are collected for 5662 * async submit. 5663 * 5664 * This will add one bio to the pending list for a device and make sure 5665 * the work struct is scheduled. 5666 */ 5667static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5668 struct btrfs_device *device, 5669 int rw, struct bio *bio) 5670{ 5671 int should_queue = 1; 5672 struct btrfs_pending_bios *pending_bios; 5673 5674 if (device->missing || !device->bdev) { 5675 bio_endio(bio, -EIO); 5676 return; 5677 } 5678 5679 /* don't bother with additional async steps for reads, right now */ 5680 if (!(rw & REQ_WRITE)) { 5681 bio_get(bio); 5682 btrfsic_submit_bio(rw, bio); 5683 bio_put(bio); 5684 return; 5685 } 5686 5687 /* 5688 * nr_async_bios allows us to reliably return congestion to the 5689 * higher layers. Otherwise, the async bio makes it appear we have 5690 * made progress against dirty pages when we've really just put it 5691 * on a queue for later 5692 */ 5693 atomic_inc(&root->fs_info->nr_async_bios); 5694 WARN_ON(bio->bi_next); 5695 bio->bi_next = NULL; 5696 bio->bi_rw |= rw; 5697 5698 spin_lock(&device->io_lock); 5699 if (bio->bi_rw & REQ_SYNC) 5700 pending_bios = &device->pending_sync_bios; 5701 else 5702 pending_bios = &device->pending_bios; 5703 5704 if (pending_bios->tail) 5705 pending_bios->tail->bi_next = bio; 5706 5707 pending_bios->tail = bio; 5708 if (!pending_bios->head) 5709 pending_bios->head = bio; 5710 if (device->running_pending) 5711 should_queue = 0; 5712 5713 spin_unlock(&device->io_lock); 5714 5715 if (should_queue) 5716 btrfs_queue_work(root->fs_info->submit_workers, 5717 &device->work); 5718} 5719 5720static int bio_size_ok(struct block_device *bdev, struct bio *bio, 5721 sector_t sector) 5722{ 5723 struct bio_vec *prev; 5724 struct request_queue *q = bdev_get_queue(bdev); 5725 unsigned int max_sectors = queue_max_sectors(q); 5726 struct bvec_merge_data bvm = { 5727 .bi_bdev = bdev, 5728 .bi_sector = sector, 5729 .bi_rw = bio->bi_rw, 5730 }; 5731 5732 if (WARN_ON(bio->bi_vcnt == 0)) 5733 return 1; 5734 5735 prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 5736 if (bio_sectors(bio) > max_sectors) 5737 return 0; 5738 5739 if (!q->merge_bvec_fn) 5740 return 1; 5741 5742 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len; 5743 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) 5744 return 0; 5745 return 1; 5746} 5747 5748static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5749 struct bio *bio, u64 physical, int dev_nr, 5750 int rw, int async) 5751{ 5752 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5753 5754 bio->bi_private = bbio; 5755 btrfs_io_bio(bio)->stripe_index = dev_nr; 5756 bio->bi_end_io = btrfs_end_bio; 5757 bio->bi_iter.bi_sector = physical >> 9; 5758#ifdef DEBUG 5759 { 5760 struct rcu_string *name; 5761 5762 rcu_read_lock(); 5763 name = rcu_dereference(dev->name); 5764 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5765 "(%s id %llu), size=%u\n", rw, 5766 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 5767 name->str, dev->devid, bio->bi_iter.bi_size); 5768 rcu_read_unlock(); 5769 } 5770#endif 5771 bio->bi_bdev = dev->bdev; 5772 5773 btrfs_bio_counter_inc_noblocked(root->fs_info); 5774 5775 if (async) 5776 btrfs_schedule_bio(root, dev, rw, bio); 5777 else 5778 btrfsic_submit_bio(rw, bio); 5779} 5780 5781static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5782 struct bio *first_bio, struct btrfs_device *dev, 5783 int dev_nr, int rw, int async) 5784{ 5785 struct bio_vec *bvec = first_bio->bi_io_vec; 5786 struct bio *bio; 5787 int nr_vecs = bio_get_nr_vecs(dev->bdev); 5788 u64 physical = bbio->stripes[dev_nr].physical; 5789 5790again: 5791 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); 5792 if (!bio) 5793 return -ENOMEM; 5794 5795 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { 5796 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5797 bvec->bv_offset) < bvec->bv_len) { 5798 u64 len = bio->bi_iter.bi_size; 5799 5800 atomic_inc(&bbio->stripes_pending); 5801 submit_stripe_bio(root, bbio, bio, physical, dev_nr, 5802 rw, async); 5803 physical += len; 5804 goto again; 5805 } 5806 bvec++; 5807 } 5808 5809 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); 5810 return 0; 5811} 5812 5813static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5814{ 5815 atomic_inc(&bbio->error); 5816 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5817 /* Shoud be the original bio. */ 5818 WARN_ON(bio != bbio->orig_bio); 5819 5820 bio->bi_private = bbio->private; 5821 bio->bi_end_io = bbio->end_io; 5822 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5823 bio->bi_iter.bi_sector = logical >> 9; 5824 5825 btrfs_end_bbio(bbio, bio, -EIO); 5826 } 5827} 5828 5829int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5830 int mirror_num, int async_submit) 5831{ 5832 struct btrfs_device *dev; 5833 struct bio *first_bio = bio; 5834 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 5835 u64 length = 0; 5836 u64 map_length; 5837 int ret; 5838 int dev_nr; 5839 int total_devs; 5840 struct btrfs_bio *bbio = NULL; 5841 5842 length = bio->bi_iter.bi_size; 5843 map_length = length; 5844 5845 btrfs_bio_counter_inc_blocked(root->fs_info); 5846 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5847 mirror_num, 1); 5848 if (ret) { 5849 btrfs_bio_counter_dec(root->fs_info); 5850 return ret; 5851 } 5852 5853 total_devs = bbio->num_stripes; 5854 bbio->orig_bio = first_bio; 5855 bbio->private = first_bio->bi_private; 5856 bbio->end_io = first_bio->bi_end_io; 5857 bbio->fs_info = root->fs_info; 5858 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5859 5860 if (bbio->raid_map) { 5861 /* In this case, map_length has been set to the length of 5862 a single stripe; not the whole write */ 5863 if (rw & WRITE) { 5864 ret = raid56_parity_write(root, bio, bbio, map_length); 5865 } else { 5866 ret = raid56_parity_recover(root, bio, bbio, map_length, 5867 mirror_num, 1); 5868 } 5869 5870 btrfs_bio_counter_dec(root->fs_info); 5871 return ret; 5872 } 5873 5874 if (map_length < length) { 5875 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5876 logical, length, map_length); 5877 BUG(); 5878 } 5879 5880 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 5881 dev = bbio->stripes[dev_nr].dev; 5882 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5883 bbio_error(bbio, first_bio, logical); 5884 continue; 5885 } 5886 5887 /* 5888 * Check and see if we're ok with this bio based on it's size 5889 * and offset with the given device. 5890 */ 5891 if (!bio_size_ok(dev->bdev, first_bio, 5892 bbio->stripes[dev_nr].physical >> 9)) { 5893 ret = breakup_stripe_bio(root, bbio, first_bio, dev, 5894 dev_nr, rw, async_submit); 5895 BUG_ON(ret); 5896 continue; 5897 } 5898 5899 if (dev_nr < total_devs - 1) { 5900 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 5901 BUG_ON(!bio); /* -ENOMEM */ 5902 } else { 5903 bio = first_bio; 5904 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED; 5905 } 5906 5907 submit_stripe_bio(root, bbio, bio, 5908 bbio->stripes[dev_nr].physical, dev_nr, rw, 5909 async_submit); 5910 } 5911 btrfs_bio_counter_dec(root->fs_info); 5912 return 0; 5913} 5914 5915struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 5916 u8 *uuid, u8 *fsid) 5917{ 5918 struct btrfs_device *device; 5919 struct btrfs_fs_devices *cur_devices; 5920 5921 cur_devices = fs_info->fs_devices; 5922 while (cur_devices) { 5923 if (!fsid || 5924 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5925 device = __find_device(&cur_devices->devices, 5926 devid, uuid); 5927 if (device) 5928 return device; 5929 } 5930 cur_devices = cur_devices->seed; 5931 } 5932 return NULL; 5933} 5934 5935static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 5936 struct btrfs_fs_devices *fs_devices, 5937 u64 devid, u8 *dev_uuid) 5938{ 5939 struct btrfs_device *device; 5940 5941 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 5942 if (IS_ERR(device)) 5943 return NULL; 5944 5945 list_add(&device->dev_list, &fs_devices->devices); 5946 device->fs_devices = fs_devices; 5947 fs_devices->num_devices++; 5948 5949 device->missing = 1; 5950 fs_devices->missing_devices++; 5951 5952 return device; 5953} 5954 5955/** 5956 * btrfs_alloc_device - allocate struct btrfs_device 5957 * @fs_info: used only for generating a new devid, can be NULL if 5958 * devid is provided (i.e. @devid != NULL). 5959 * @devid: a pointer to devid for this device. If NULL a new devid 5960 * is generated. 5961 * @uuid: a pointer to UUID for this device. If NULL a new UUID 5962 * is generated. 5963 * 5964 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 5965 * on error. Returned struct is not linked onto any lists and can be 5966 * destroyed with kfree() right away. 5967 */ 5968struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 5969 const u64 *devid, 5970 const u8 *uuid) 5971{ 5972 struct btrfs_device *dev; 5973 u64 tmp; 5974 5975 if (WARN_ON(!devid && !fs_info)) 5976 return ERR_PTR(-EINVAL); 5977 5978 dev = __alloc_device(); 5979 if (IS_ERR(dev)) 5980 return dev; 5981 5982 if (devid) 5983 tmp = *devid; 5984 else { 5985 int ret; 5986 5987 ret = find_next_devid(fs_info, &tmp); 5988 if (ret) { 5989 kfree(dev); 5990 return ERR_PTR(ret); 5991 } 5992 } 5993 dev->devid = tmp; 5994 5995 if (uuid) 5996 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 5997 else 5998 generate_random_uuid(dev->uuid); 5999 6000 btrfs_init_work(&dev->work, btrfs_submit_helper, 6001 pending_bios_fn, NULL, NULL); 6002 6003 return dev; 6004} 6005 6006static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6007 struct extent_buffer *leaf, 6008 struct btrfs_chunk *chunk) 6009{ 6010 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6011 struct map_lookup *map; 6012 struct extent_map *em; 6013 u64 logical; 6014 u64 length; 6015 u64 devid; 6016 u8 uuid[BTRFS_UUID_SIZE]; 6017 int num_stripes; 6018 int ret; 6019 int i; 6020 6021 logical = key->offset; 6022 length = btrfs_chunk_length(leaf, chunk); 6023 6024 read_lock(&map_tree->map_tree.lock); 6025 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6026 read_unlock(&map_tree->map_tree.lock); 6027 6028 /* already mapped? */ 6029 if (em && em->start <= logical && em->start + em->len > logical) { 6030 free_extent_map(em); 6031 return 0; 6032 } else if (em) { 6033 free_extent_map(em); 6034 } 6035 6036 em = alloc_extent_map(); 6037 if (!em) 6038 return -ENOMEM; 6039 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6040 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6041 if (!map) { 6042 free_extent_map(em); 6043 return -ENOMEM; 6044 } 6045 6046 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6047 em->bdev = (struct block_device *)map; 6048 em->start = logical; 6049 em->len = length; 6050 em->orig_start = 0; 6051 em->block_start = 0; 6052 em->block_len = em->len; 6053 6054 map->num_stripes = num_stripes; 6055 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6056 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6057 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6058 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6059 map->type = btrfs_chunk_type(leaf, chunk); 6060 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6061 for (i = 0; i < num_stripes; i++) { 6062 map->stripes[i].physical = 6063 btrfs_stripe_offset_nr(leaf, chunk, i); 6064 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6065 read_extent_buffer(leaf, uuid, (unsigned long) 6066 btrfs_stripe_dev_uuid_nr(chunk, i), 6067 BTRFS_UUID_SIZE); 6068 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6069 uuid, NULL); 6070 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6071 free_extent_map(em); 6072 return -EIO; 6073 } 6074 if (!map->stripes[i].dev) { 6075 map->stripes[i].dev = 6076 add_missing_dev(root, root->fs_info->fs_devices, 6077 devid, uuid); 6078 if (!map->stripes[i].dev) { 6079 free_extent_map(em); 6080 return -EIO; 6081 } 6082 } 6083 map->stripes[i].dev->in_fs_metadata = 1; 6084 } 6085 6086 write_lock(&map_tree->map_tree.lock); 6087 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6088 write_unlock(&map_tree->map_tree.lock); 6089 BUG_ON(ret); /* Tree corruption */ 6090 free_extent_map(em); 6091 6092 return 0; 6093} 6094 6095static void fill_device_from_item(struct extent_buffer *leaf, 6096 struct btrfs_dev_item *dev_item, 6097 struct btrfs_device *device) 6098{ 6099 unsigned long ptr; 6100 6101 device->devid = btrfs_device_id(leaf, dev_item); 6102 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6103 device->total_bytes = device->disk_total_bytes; 6104 device->commit_total_bytes = device->disk_total_bytes; 6105 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6106 device->commit_bytes_used = device->bytes_used; 6107 device->type = btrfs_device_type(leaf, dev_item); 6108 device->io_align = btrfs_device_io_align(leaf, dev_item); 6109 device->io_width = btrfs_device_io_width(leaf, dev_item); 6110 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6111 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6112 device->is_tgtdev_for_dev_replace = 0; 6113 6114 ptr = btrfs_device_uuid(dev_item); 6115 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6116} 6117 6118static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6119 u8 *fsid) 6120{ 6121 struct btrfs_fs_devices *fs_devices; 6122 int ret; 6123 6124 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6125 6126 fs_devices = root->fs_info->fs_devices->seed; 6127 while (fs_devices) { 6128 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6129 return fs_devices; 6130 6131 fs_devices = fs_devices->seed; 6132 } 6133 6134 fs_devices = find_fsid(fsid); 6135 if (!fs_devices) { 6136 if (!btrfs_test_opt(root, DEGRADED)) 6137 return ERR_PTR(-ENOENT); 6138 6139 fs_devices = alloc_fs_devices(fsid); 6140 if (IS_ERR(fs_devices)) 6141 return fs_devices; 6142 6143 fs_devices->seeding = 1; 6144 fs_devices->opened = 1; 6145 return fs_devices; 6146 } 6147 6148 fs_devices = clone_fs_devices(fs_devices); 6149 if (IS_ERR(fs_devices)) 6150 return fs_devices; 6151 6152 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6153 root->fs_info->bdev_holder); 6154 if (ret) { 6155 free_fs_devices(fs_devices); 6156 fs_devices = ERR_PTR(ret); 6157 goto out; 6158 } 6159 6160 if (!fs_devices->seeding) { 6161 __btrfs_close_devices(fs_devices); 6162 free_fs_devices(fs_devices); 6163 fs_devices = ERR_PTR(-EINVAL); 6164 goto out; 6165 } 6166 6167 fs_devices->seed = root->fs_info->fs_devices->seed; 6168 root->fs_info->fs_devices->seed = fs_devices; 6169out: 6170 return fs_devices; 6171} 6172 6173static int read_one_dev(struct btrfs_root *root, 6174 struct extent_buffer *leaf, 6175 struct btrfs_dev_item *dev_item) 6176{ 6177 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6178 struct btrfs_device *device; 6179 u64 devid; 6180 int ret; 6181 u8 fs_uuid[BTRFS_UUID_SIZE]; 6182 u8 dev_uuid[BTRFS_UUID_SIZE]; 6183 6184 devid = btrfs_device_id(leaf, dev_item); 6185 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6186 BTRFS_UUID_SIZE); 6187 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6188 BTRFS_UUID_SIZE); 6189 6190 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6191 fs_devices = open_seed_devices(root, fs_uuid); 6192 if (IS_ERR(fs_devices)) 6193 return PTR_ERR(fs_devices); 6194 } 6195 6196 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6197 if (!device) { 6198 if (!btrfs_test_opt(root, DEGRADED)) 6199 return -EIO; 6200 6201 btrfs_warn(root->fs_info, "devid %llu missing", devid); 6202 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6203 if (!device) 6204 return -ENOMEM; 6205 } else { 6206 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6207 return -EIO; 6208 6209 if(!device->bdev && !device->missing) { 6210 /* 6211 * this happens when a device that was properly setup 6212 * in the device info lists suddenly goes bad. 6213 * device->bdev is NULL, and so we have to set 6214 * device->missing to one here 6215 */ 6216 device->fs_devices->missing_devices++; 6217 device->missing = 1; 6218 } 6219 6220 /* Move the device to its own fs_devices */ 6221 if (device->fs_devices != fs_devices) { 6222 ASSERT(device->missing); 6223 6224 list_move(&device->dev_list, &fs_devices->devices); 6225 device->fs_devices->num_devices--; 6226 fs_devices->num_devices++; 6227 6228 device->fs_devices->missing_devices--; 6229 fs_devices->missing_devices++; 6230 6231 device->fs_devices = fs_devices; 6232 } 6233 } 6234 6235 if (device->fs_devices != root->fs_info->fs_devices) { 6236 BUG_ON(device->writeable); 6237 if (device->generation != 6238 btrfs_device_generation(leaf, dev_item)) 6239 return -EINVAL; 6240 } 6241 6242 fill_device_from_item(leaf, dev_item, device); 6243 device->in_fs_metadata = 1; 6244 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6245 device->fs_devices->total_rw_bytes += device->total_bytes; 6246 spin_lock(&root->fs_info->free_chunk_lock); 6247 root->fs_info->free_chunk_space += device->total_bytes - 6248 device->bytes_used; 6249 spin_unlock(&root->fs_info->free_chunk_lock); 6250 } 6251 ret = 0; 6252 return ret; 6253} 6254 6255int btrfs_read_sys_array(struct btrfs_root *root) 6256{ 6257 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6258 struct extent_buffer *sb; 6259 struct btrfs_disk_key *disk_key; 6260 struct btrfs_chunk *chunk; 6261 u8 *array_ptr; 6262 unsigned long sb_array_offset; 6263 int ret = 0; 6264 u32 num_stripes; 6265 u32 array_size; 6266 u32 len = 0; 6267 u32 cur_offset; 6268 struct btrfs_key key; 6269 6270 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6271 /* 6272 * This will create extent buffer of nodesize, superblock size is 6273 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6274 * overallocate but we can keep it as-is, only the first page is used. 6275 */ 6276 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6277 if (!sb) 6278 return -ENOMEM; 6279 btrfs_set_buffer_uptodate(sb); 6280 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6281 /* 6282 * The sb extent buffer is artifical and just used to read the system array. 6283 * btrfs_set_buffer_uptodate() call does not properly mark all it's 6284 * pages up-to-date when the page is larger: extent does not cover the 6285 * whole page and consequently check_page_uptodate does not find all 6286 * the page's extents up-to-date (the hole beyond sb), 6287 * write_extent_buffer then triggers a WARN_ON. 6288 * 6289 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6290 * but sb spans only this function. Add an explicit SetPageUptodate call 6291 * to silence the warning eg. on PowerPC 64. 6292 */ 6293 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6294 SetPageUptodate(sb->pages[0]); 6295 6296 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6297 array_size = btrfs_super_sys_array_size(super_copy); 6298 6299 array_ptr = super_copy->sys_chunk_array; 6300 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6301 cur_offset = 0; 6302 6303 while (cur_offset < array_size) { 6304 disk_key = (struct btrfs_disk_key *)array_ptr; 6305 len = sizeof(*disk_key); 6306 if (cur_offset + len > array_size) 6307 goto out_short_read; 6308 6309 btrfs_disk_key_to_cpu(&key, disk_key); 6310 6311 array_ptr += len; 6312 sb_array_offset += len; 6313 cur_offset += len; 6314 6315 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6316 chunk = (struct btrfs_chunk *)sb_array_offset; 6317 /* 6318 * At least one btrfs_chunk with one stripe must be 6319 * present, exact stripe count check comes afterwards 6320 */ 6321 len = btrfs_chunk_item_size(1); 6322 if (cur_offset + len > array_size) 6323 goto out_short_read; 6324 6325 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6326 if (!num_stripes) { 6327 printk(KERN_ERR 6328 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n", 6329 num_stripes, cur_offset); 6330 ret = -EIO; 6331 break; 6332 } 6333 6334 len = btrfs_chunk_item_size(num_stripes); 6335 if (cur_offset + len > array_size) 6336 goto out_short_read; 6337 6338 ret = read_one_chunk(root, &key, sb, chunk); 6339 if (ret) 6340 break; 6341 } else { 6342 ret = -EIO; 6343 break; 6344 } 6345 array_ptr += len; 6346 sb_array_offset += len; 6347 cur_offset += len; 6348 } 6349 free_extent_buffer(sb); 6350 return ret; 6351 6352out_short_read: 6353 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6354 len, cur_offset); 6355 free_extent_buffer(sb); 6356 return -EIO; 6357} 6358 6359int btrfs_read_chunk_tree(struct btrfs_root *root) 6360{ 6361 struct btrfs_path *path; 6362 struct extent_buffer *leaf; 6363 struct btrfs_key key; 6364 struct btrfs_key found_key; 6365 int ret; 6366 int slot; 6367 6368 root = root->fs_info->chunk_root; 6369 6370 path = btrfs_alloc_path(); 6371 if (!path) 6372 return -ENOMEM; 6373 6374 mutex_lock(&uuid_mutex); 6375 lock_chunks(root); 6376 6377 /* 6378 * Read all device items, and then all the chunk items. All 6379 * device items are found before any chunk item (their object id 6380 * is smaller than the lowest possible object id for a chunk 6381 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6382 */ 6383 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6384 key.offset = 0; 6385 key.type = 0; 6386 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6387 if (ret < 0) 6388 goto error; 6389 while (1) { 6390 leaf = path->nodes[0]; 6391 slot = path->slots[0]; 6392 if (slot >= btrfs_header_nritems(leaf)) { 6393 ret = btrfs_next_leaf(root, path); 6394 if (ret == 0) 6395 continue; 6396 if (ret < 0) 6397 goto error; 6398 break; 6399 } 6400 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6401 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6402 struct btrfs_dev_item *dev_item; 6403 dev_item = btrfs_item_ptr(leaf, slot, 6404 struct btrfs_dev_item); 6405 ret = read_one_dev(root, leaf, dev_item); 6406 if (ret) 6407 goto error; 6408 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6409 struct btrfs_chunk *chunk; 6410 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6411 ret = read_one_chunk(root, &found_key, leaf, chunk); 6412 if (ret) 6413 goto error; 6414 } 6415 path->slots[0]++; 6416 } 6417 ret = 0; 6418error: 6419 unlock_chunks(root); 6420 mutex_unlock(&uuid_mutex); 6421 6422 btrfs_free_path(path); 6423 return ret; 6424} 6425 6426void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6427{ 6428 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6429 struct btrfs_device *device; 6430 6431 while (fs_devices) { 6432 mutex_lock(&fs_devices->device_list_mutex); 6433 list_for_each_entry(device, &fs_devices->devices, dev_list) 6434 device->dev_root = fs_info->dev_root; 6435 mutex_unlock(&fs_devices->device_list_mutex); 6436 6437 fs_devices = fs_devices->seed; 6438 } 6439} 6440 6441static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6442{ 6443 int i; 6444 6445 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6446 btrfs_dev_stat_reset(dev, i); 6447} 6448 6449int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6450{ 6451 struct btrfs_key key; 6452 struct btrfs_key found_key; 6453 struct btrfs_root *dev_root = fs_info->dev_root; 6454 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6455 struct extent_buffer *eb; 6456 int slot; 6457 int ret = 0; 6458 struct btrfs_device *device; 6459 struct btrfs_path *path = NULL; 6460 int i; 6461 6462 path = btrfs_alloc_path(); 6463 if (!path) { 6464 ret = -ENOMEM; 6465 goto out; 6466 } 6467 6468 mutex_lock(&fs_devices->device_list_mutex); 6469 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6470 int item_size; 6471 struct btrfs_dev_stats_item *ptr; 6472 6473 key.objectid = 0; 6474 key.type = BTRFS_DEV_STATS_KEY; 6475 key.offset = device->devid; 6476 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6477 if (ret) { 6478 __btrfs_reset_dev_stats(device); 6479 device->dev_stats_valid = 1; 6480 btrfs_release_path(path); 6481 continue; 6482 } 6483 slot = path->slots[0]; 6484 eb = path->nodes[0]; 6485 btrfs_item_key_to_cpu(eb, &found_key, slot); 6486 item_size = btrfs_item_size_nr(eb, slot); 6487 6488 ptr = btrfs_item_ptr(eb, slot, 6489 struct btrfs_dev_stats_item); 6490 6491 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6492 if (item_size >= (1 + i) * sizeof(__le64)) 6493 btrfs_dev_stat_set(device, i, 6494 btrfs_dev_stats_value(eb, ptr, i)); 6495 else 6496 btrfs_dev_stat_reset(device, i); 6497 } 6498 6499 device->dev_stats_valid = 1; 6500 btrfs_dev_stat_print_on_load(device); 6501 btrfs_release_path(path); 6502 } 6503 mutex_unlock(&fs_devices->device_list_mutex); 6504 6505out: 6506 btrfs_free_path(path); 6507 return ret < 0 ? ret : 0; 6508} 6509 6510static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6511 struct btrfs_root *dev_root, 6512 struct btrfs_device *device) 6513{ 6514 struct btrfs_path *path; 6515 struct btrfs_key key; 6516 struct extent_buffer *eb; 6517 struct btrfs_dev_stats_item *ptr; 6518 int ret; 6519 int i; 6520 6521 key.objectid = 0; 6522 key.type = BTRFS_DEV_STATS_KEY; 6523 key.offset = device->devid; 6524 6525 path = btrfs_alloc_path(); 6526 BUG_ON(!path); 6527 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6528 if (ret < 0) { 6529 printk_in_rcu(KERN_WARNING "BTRFS: " 6530 "error %d while searching for dev_stats item for device %s!\n", 6531 ret, rcu_str_deref(device->name)); 6532 goto out; 6533 } 6534 6535 if (ret == 0 && 6536 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6537 /* need to delete old one and insert a new one */ 6538 ret = btrfs_del_item(trans, dev_root, path); 6539 if (ret != 0) { 6540 printk_in_rcu(KERN_WARNING "BTRFS: " 6541 "delete too small dev_stats item for device %s failed %d!\n", 6542 rcu_str_deref(device->name), ret); 6543 goto out; 6544 } 6545 ret = 1; 6546 } 6547 6548 if (ret == 1) { 6549 /* need to insert a new item */ 6550 btrfs_release_path(path); 6551 ret = btrfs_insert_empty_item(trans, dev_root, path, 6552 &key, sizeof(*ptr)); 6553 if (ret < 0) { 6554 printk_in_rcu(KERN_WARNING "BTRFS: " 6555 "insert dev_stats item for device %s failed %d!\n", 6556 rcu_str_deref(device->name), ret); 6557 goto out; 6558 } 6559 } 6560 6561 eb = path->nodes[0]; 6562 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6563 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6564 btrfs_set_dev_stats_value(eb, ptr, i, 6565 btrfs_dev_stat_read(device, i)); 6566 btrfs_mark_buffer_dirty(eb); 6567 6568out: 6569 btrfs_free_path(path); 6570 return ret; 6571} 6572 6573/* 6574 * called from commit_transaction. Writes all changed device stats to disk. 6575 */ 6576int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6577 struct btrfs_fs_info *fs_info) 6578{ 6579 struct btrfs_root *dev_root = fs_info->dev_root; 6580 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6581 struct btrfs_device *device; 6582 int stats_cnt; 6583 int ret = 0; 6584 6585 mutex_lock(&fs_devices->device_list_mutex); 6586 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6587 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6588 continue; 6589 6590 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6591 ret = update_dev_stat_item(trans, dev_root, device); 6592 if (!ret) 6593 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6594 } 6595 mutex_unlock(&fs_devices->device_list_mutex); 6596 6597 return ret; 6598} 6599 6600void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6601{ 6602 btrfs_dev_stat_inc(dev, index); 6603 btrfs_dev_stat_print_on_error(dev); 6604} 6605 6606static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6607{ 6608 if (!dev->dev_stats_valid) 6609 return; 6610 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 6611 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6612 rcu_str_deref(dev->name), 6613 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6616 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6617 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6618} 6619 6620static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6621{ 6622 int i; 6623 6624 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6625 if (btrfs_dev_stat_read(dev, i) != 0) 6626 break; 6627 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6628 return; /* all values == 0, suppress message */ 6629 6630 printk_in_rcu(KERN_INFO "BTRFS: " 6631 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6632 rcu_str_deref(dev->name), 6633 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6634 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6635 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6636 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6637 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6638} 6639 6640int btrfs_get_dev_stats(struct btrfs_root *root, 6641 struct btrfs_ioctl_get_dev_stats *stats) 6642{ 6643 struct btrfs_device *dev; 6644 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6645 int i; 6646 6647 mutex_lock(&fs_devices->device_list_mutex); 6648 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6649 mutex_unlock(&fs_devices->device_list_mutex); 6650 6651 if (!dev) { 6652 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6653 return -ENODEV; 6654 } else if (!dev->dev_stats_valid) { 6655 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6656 return -ENODEV; 6657 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6658 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6659 if (stats->nr_items > i) 6660 stats->values[i] = 6661 btrfs_dev_stat_read_and_reset(dev, i); 6662 else 6663 btrfs_dev_stat_reset(dev, i); 6664 } 6665 } else { 6666 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6667 if (stats->nr_items > i) 6668 stats->values[i] = btrfs_dev_stat_read(dev, i); 6669 } 6670 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6671 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6672 return 0; 6673} 6674 6675int btrfs_scratch_superblock(struct btrfs_device *device) 6676{ 6677 struct buffer_head *bh; 6678 struct btrfs_super_block *disk_super; 6679 6680 bh = btrfs_read_dev_super(device->bdev); 6681 if (!bh) 6682 return -EINVAL; 6683 disk_super = (struct btrfs_super_block *)bh->b_data; 6684 6685 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6686 set_buffer_dirty(bh); 6687 sync_dirty_buffer(bh); 6688 brelse(bh); 6689 6690 return 0; 6691} 6692 6693/* 6694 * Update the size of all devices, which is used for writing out the 6695 * super blocks. 6696 */ 6697void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 6698{ 6699 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6700 struct btrfs_device *curr, *next; 6701 6702 if (list_empty(&fs_devices->resized_devices)) 6703 return; 6704 6705 mutex_lock(&fs_devices->device_list_mutex); 6706 lock_chunks(fs_info->dev_root); 6707 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 6708 resized_list) { 6709 list_del_init(&curr->resized_list); 6710 curr->commit_total_bytes = curr->disk_total_bytes; 6711 } 6712 unlock_chunks(fs_info->dev_root); 6713 mutex_unlock(&fs_devices->device_list_mutex); 6714} 6715 6716/* Must be invoked during the transaction commit */ 6717void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 6718 struct btrfs_transaction *transaction) 6719{ 6720 struct extent_map *em; 6721 struct map_lookup *map; 6722 struct btrfs_device *dev; 6723 int i; 6724 6725 if (list_empty(&transaction->pending_chunks)) 6726 return; 6727 6728 /* In order to kick the device replace finish process */ 6729 lock_chunks(root); 6730 list_for_each_entry(em, &transaction->pending_chunks, list) { 6731 map = (struct map_lookup *)em->bdev; 6732 6733 for (i = 0; i < map->num_stripes; i++) { 6734 dev = map->stripes[i].dev; 6735 dev->commit_bytes_used = dev->bytes_used; 6736 } 6737 } 6738 unlock_chunks(root); 6739} 6740