1/* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19#include <linux/bsearch.h> 20#include <linux/fs.h> 21#include <linux/file.h> 22#include <linux/sort.h> 23#include <linux/mount.h> 24#include <linux/xattr.h> 25#include <linux/posix_acl_xattr.h> 26#include <linux/radix-tree.h> 27#include <linux/vmalloc.h> 28#include <linux/string.h> 29 30#include "send.h" 31#include "backref.h" 32#include "hash.h" 33#include "locking.h" 34#include "disk-io.h" 35#include "btrfs_inode.h" 36#include "transaction.h" 37 38static int g_verbose = 0; 39 40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 41 42/* 43 * A fs_path is a helper to dynamically build path names with unknown size. 44 * It reallocates the internal buffer on demand. 45 * It allows fast adding of path elements on the right side (normal path) and 46 * fast adding to the left side (reversed path). A reversed path can also be 47 * unreversed if needed. 48 */ 49struct fs_path { 50 union { 51 struct { 52 char *start; 53 char *end; 54 55 char *buf; 56 unsigned short buf_len:15; 57 unsigned short reversed:1; 58 char inline_buf[]; 59 }; 60 /* 61 * Average path length does not exceed 200 bytes, we'll have 62 * better packing in the slab and higher chance to satisfy 63 * a allocation later during send. 64 */ 65 char pad[256]; 66 }; 67}; 68#define FS_PATH_INLINE_SIZE \ 69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 70 71 72/* reused for each extent */ 73struct clone_root { 74 struct btrfs_root *root; 75 u64 ino; 76 u64 offset; 77 78 u64 found_refs; 79}; 80 81#define SEND_CTX_MAX_NAME_CACHE_SIZE 128 82#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 83 84struct send_ctx { 85 struct file *send_filp; 86 loff_t send_off; 87 char *send_buf; 88 u32 send_size; 89 u32 send_max_size; 90 u64 total_send_size; 91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 93 94 struct btrfs_root *send_root; 95 struct btrfs_root *parent_root; 96 struct clone_root *clone_roots; 97 int clone_roots_cnt; 98 99 /* current state of the compare_tree call */ 100 struct btrfs_path *left_path; 101 struct btrfs_path *right_path; 102 struct btrfs_key *cmp_key; 103 104 /* 105 * infos of the currently processed inode. In case of deleted inodes, 106 * these are the values from the deleted inode. 107 */ 108 u64 cur_ino; 109 u64 cur_inode_gen; 110 int cur_inode_new; 111 int cur_inode_new_gen; 112 int cur_inode_deleted; 113 u64 cur_inode_size; 114 u64 cur_inode_mode; 115 u64 cur_inode_rdev; 116 u64 cur_inode_last_extent; 117 118 u64 send_progress; 119 120 struct list_head new_refs; 121 struct list_head deleted_refs; 122 123 struct radix_tree_root name_cache; 124 struct list_head name_cache_list; 125 int name_cache_size; 126 127 struct file_ra_state ra; 128 129 char *read_buf; 130 131 /* 132 * We process inodes by their increasing order, so if before an 133 * incremental send we reverse the parent/child relationship of 134 * directories such that a directory with a lower inode number was 135 * the parent of a directory with a higher inode number, and the one 136 * becoming the new parent got renamed too, we can't rename/move the 137 * directory with lower inode number when we finish processing it - we 138 * must process the directory with higher inode number first, then 139 * rename/move it and then rename/move the directory with lower inode 140 * number. Example follows. 141 * 142 * Tree state when the first send was performed: 143 * 144 * . 145 * |-- a (ino 257) 146 * |-- b (ino 258) 147 * | 148 * | 149 * |-- c (ino 259) 150 * | |-- d (ino 260) 151 * | 152 * |-- c2 (ino 261) 153 * 154 * Tree state when the second (incremental) send is performed: 155 * 156 * . 157 * |-- a (ino 257) 158 * |-- b (ino 258) 159 * |-- c2 (ino 261) 160 * |-- d2 (ino 260) 161 * |-- cc (ino 259) 162 * 163 * The sequence of steps that lead to the second state was: 164 * 165 * mv /a/b/c/d /a/b/c2/d2 166 * mv /a/b/c /a/b/c2/d2/cc 167 * 168 * "c" has lower inode number, but we can't move it (2nd mv operation) 169 * before we move "d", which has higher inode number. 170 * 171 * So we just memorize which move/rename operations must be performed 172 * later when their respective parent is processed and moved/renamed. 173 */ 174 175 /* Indexed by parent directory inode number. */ 176 struct rb_root pending_dir_moves; 177 178 /* 179 * Reverse index, indexed by the inode number of a directory that 180 * is waiting for the move/rename of its immediate parent before its 181 * own move/rename can be performed. 182 */ 183 struct rb_root waiting_dir_moves; 184 185 /* 186 * A directory that is going to be rm'ed might have a child directory 187 * which is in the pending directory moves index above. In this case, 188 * the directory can only be removed after the move/rename of its child 189 * is performed. Example: 190 * 191 * Parent snapshot: 192 * 193 * . (ino 256) 194 * |-- a/ (ino 257) 195 * |-- b/ (ino 258) 196 * |-- c/ (ino 259) 197 * | |-- x/ (ino 260) 198 * | 199 * |-- y/ (ino 261) 200 * 201 * Send snapshot: 202 * 203 * . (ino 256) 204 * |-- a/ (ino 257) 205 * |-- b/ (ino 258) 206 * |-- YY/ (ino 261) 207 * |-- x/ (ino 260) 208 * 209 * Sequence of steps that lead to the send snapshot: 210 * rm -f /a/b/c/foo.txt 211 * mv /a/b/y /a/b/YY 212 * mv /a/b/c/x /a/b/YY 213 * rmdir /a/b/c 214 * 215 * When the child is processed, its move/rename is delayed until its 216 * parent is processed (as explained above), but all other operations 217 * like update utimes, chown, chgrp, etc, are performed and the paths 218 * that it uses for those operations must use the orphanized name of 219 * its parent (the directory we're going to rm later), so we need to 220 * memorize that name. 221 * 222 * Indexed by the inode number of the directory to be deleted. 223 */ 224 struct rb_root orphan_dirs; 225}; 226 227struct pending_dir_move { 228 struct rb_node node; 229 struct list_head list; 230 u64 parent_ino; 231 u64 ino; 232 u64 gen; 233 bool is_orphan; 234 struct list_head update_refs; 235}; 236 237struct waiting_dir_move { 238 struct rb_node node; 239 u64 ino; 240 /* 241 * There might be some directory that could not be removed because it 242 * was waiting for this directory inode to be moved first. Therefore 243 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 244 */ 245 u64 rmdir_ino; 246}; 247 248struct orphan_dir_info { 249 struct rb_node node; 250 u64 ino; 251 u64 gen; 252}; 253 254struct name_cache_entry { 255 struct list_head list; 256 /* 257 * radix_tree has only 32bit entries but we need to handle 64bit inums. 258 * We use the lower 32bit of the 64bit inum to store it in the tree. If 259 * more then one inum would fall into the same entry, we use radix_list 260 * to store the additional entries. radix_list is also used to store 261 * entries where two entries have the same inum but different 262 * generations. 263 */ 264 struct list_head radix_list; 265 u64 ino; 266 u64 gen; 267 u64 parent_ino; 268 u64 parent_gen; 269 int ret; 270 int need_later_update; 271 int name_len; 272 char name[]; 273}; 274 275static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 276 277static struct waiting_dir_move * 278get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 279 280static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 281 282static int need_send_hole(struct send_ctx *sctx) 283{ 284 return (sctx->parent_root && !sctx->cur_inode_new && 285 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 286 S_ISREG(sctx->cur_inode_mode)); 287} 288 289static void fs_path_reset(struct fs_path *p) 290{ 291 if (p->reversed) { 292 p->start = p->buf + p->buf_len - 1; 293 p->end = p->start; 294 *p->start = 0; 295 } else { 296 p->start = p->buf; 297 p->end = p->start; 298 *p->start = 0; 299 } 300} 301 302static struct fs_path *fs_path_alloc(void) 303{ 304 struct fs_path *p; 305 306 p = kmalloc(sizeof(*p), GFP_NOFS); 307 if (!p) 308 return NULL; 309 p->reversed = 0; 310 p->buf = p->inline_buf; 311 p->buf_len = FS_PATH_INLINE_SIZE; 312 fs_path_reset(p); 313 return p; 314} 315 316static struct fs_path *fs_path_alloc_reversed(void) 317{ 318 struct fs_path *p; 319 320 p = fs_path_alloc(); 321 if (!p) 322 return NULL; 323 p->reversed = 1; 324 fs_path_reset(p); 325 return p; 326} 327 328static void fs_path_free(struct fs_path *p) 329{ 330 if (!p) 331 return; 332 if (p->buf != p->inline_buf) 333 kfree(p->buf); 334 kfree(p); 335} 336 337static int fs_path_len(struct fs_path *p) 338{ 339 return p->end - p->start; 340} 341 342static int fs_path_ensure_buf(struct fs_path *p, int len) 343{ 344 char *tmp_buf; 345 int path_len; 346 int old_buf_len; 347 348 len++; 349 350 if (p->buf_len >= len) 351 return 0; 352 353 if (len > PATH_MAX) { 354 WARN_ON(1); 355 return -ENOMEM; 356 } 357 358 path_len = p->end - p->start; 359 old_buf_len = p->buf_len; 360 361 /* 362 * First time the inline_buf does not suffice 363 */ 364 if (p->buf == p->inline_buf) { 365 tmp_buf = kmalloc(len, GFP_NOFS); 366 if (tmp_buf) 367 memcpy(tmp_buf, p->buf, old_buf_len); 368 } else { 369 tmp_buf = krealloc(p->buf, len, GFP_NOFS); 370 } 371 if (!tmp_buf) 372 return -ENOMEM; 373 p->buf = tmp_buf; 374 /* 375 * The real size of the buffer is bigger, this will let the fast path 376 * happen most of the time 377 */ 378 p->buf_len = ksize(p->buf); 379 380 if (p->reversed) { 381 tmp_buf = p->buf + old_buf_len - path_len - 1; 382 p->end = p->buf + p->buf_len - 1; 383 p->start = p->end - path_len; 384 memmove(p->start, tmp_buf, path_len + 1); 385 } else { 386 p->start = p->buf; 387 p->end = p->start + path_len; 388 } 389 return 0; 390} 391 392static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 393 char **prepared) 394{ 395 int ret; 396 int new_len; 397 398 new_len = p->end - p->start + name_len; 399 if (p->start != p->end) 400 new_len++; 401 ret = fs_path_ensure_buf(p, new_len); 402 if (ret < 0) 403 goto out; 404 405 if (p->reversed) { 406 if (p->start != p->end) 407 *--p->start = '/'; 408 p->start -= name_len; 409 *prepared = p->start; 410 } else { 411 if (p->start != p->end) 412 *p->end++ = '/'; 413 *prepared = p->end; 414 p->end += name_len; 415 *p->end = 0; 416 } 417 418out: 419 return ret; 420} 421 422static int fs_path_add(struct fs_path *p, const char *name, int name_len) 423{ 424 int ret; 425 char *prepared; 426 427 ret = fs_path_prepare_for_add(p, name_len, &prepared); 428 if (ret < 0) 429 goto out; 430 memcpy(prepared, name, name_len); 431 432out: 433 return ret; 434} 435 436static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 437{ 438 int ret; 439 char *prepared; 440 441 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 442 if (ret < 0) 443 goto out; 444 memcpy(prepared, p2->start, p2->end - p2->start); 445 446out: 447 return ret; 448} 449 450static int fs_path_add_from_extent_buffer(struct fs_path *p, 451 struct extent_buffer *eb, 452 unsigned long off, int len) 453{ 454 int ret; 455 char *prepared; 456 457 ret = fs_path_prepare_for_add(p, len, &prepared); 458 if (ret < 0) 459 goto out; 460 461 read_extent_buffer(eb, prepared, off, len); 462 463out: 464 return ret; 465} 466 467static int fs_path_copy(struct fs_path *p, struct fs_path *from) 468{ 469 int ret; 470 471 p->reversed = from->reversed; 472 fs_path_reset(p); 473 474 ret = fs_path_add_path(p, from); 475 476 return ret; 477} 478 479 480static void fs_path_unreverse(struct fs_path *p) 481{ 482 char *tmp; 483 int len; 484 485 if (!p->reversed) 486 return; 487 488 tmp = p->start; 489 len = p->end - p->start; 490 p->start = p->buf; 491 p->end = p->start + len; 492 memmove(p->start, tmp, len + 1); 493 p->reversed = 0; 494} 495 496static struct btrfs_path *alloc_path_for_send(void) 497{ 498 struct btrfs_path *path; 499 500 path = btrfs_alloc_path(); 501 if (!path) 502 return NULL; 503 path->search_commit_root = 1; 504 path->skip_locking = 1; 505 path->need_commit_sem = 1; 506 return path; 507} 508 509static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 510{ 511 int ret; 512 mm_segment_t old_fs; 513 u32 pos = 0; 514 515 old_fs = get_fs(); 516 set_fs(KERNEL_DS); 517 518 while (pos < len) { 519 ret = vfs_write(filp, (__force const char __user *)buf + pos, 520 len - pos, off); 521 /* TODO handle that correctly */ 522 /*if (ret == -ERESTARTSYS) { 523 continue; 524 }*/ 525 if (ret < 0) 526 goto out; 527 if (ret == 0) { 528 ret = -EIO; 529 goto out; 530 } 531 pos += ret; 532 } 533 534 ret = 0; 535 536out: 537 set_fs(old_fs); 538 return ret; 539} 540 541static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 542{ 543 struct btrfs_tlv_header *hdr; 544 int total_len = sizeof(*hdr) + len; 545 int left = sctx->send_max_size - sctx->send_size; 546 547 if (unlikely(left < total_len)) 548 return -EOVERFLOW; 549 550 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 551 hdr->tlv_type = cpu_to_le16(attr); 552 hdr->tlv_len = cpu_to_le16(len); 553 memcpy(hdr + 1, data, len); 554 sctx->send_size += total_len; 555 556 return 0; 557} 558 559#define TLV_PUT_DEFINE_INT(bits) \ 560 static int tlv_put_u##bits(struct send_ctx *sctx, \ 561 u##bits attr, u##bits value) \ 562 { \ 563 __le##bits __tmp = cpu_to_le##bits(value); \ 564 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 565 } 566 567TLV_PUT_DEFINE_INT(64) 568 569static int tlv_put_string(struct send_ctx *sctx, u16 attr, 570 const char *str, int len) 571{ 572 if (len == -1) 573 len = strlen(str); 574 return tlv_put(sctx, attr, str, len); 575} 576 577static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 578 const u8 *uuid) 579{ 580 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 581} 582 583static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 584 struct extent_buffer *eb, 585 struct btrfs_timespec *ts) 586{ 587 struct btrfs_timespec bts; 588 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 589 return tlv_put(sctx, attr, &bts, sizeof(bts)); 590} 591 592 593#define TLV_PUT(sctx, attrtype, attrlen, data) \ 594 do { \ 595 ret = tlv_put(sctx, attrtype, attrlen, data); \ 596 if (ret < 0) \ 597 goto tlv_put_failure; \ 598 } while (0) 599 600#define TLV_PUT_INT(sctx, attrtype, bits, value) \ 601 do { \ 602 ret = tlv_put_u##bits(sctx, attrtype, value); \ 603 if (ret < 0) \ 604 goto tlv_put_failure; \ 605 } while (0) 606 607#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 608#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 609#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 610#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 611#define TLV_PUT_STRING(sctx, attrtype, str, len) \ 612 do { \ 613 ret = tlv_put_string(sctx, attrtype, str, len); \ 614 if (ret < 0) \ 615 goto tlv_put_failure; \ 616 } while (0) 617#define TLV_PUT_PATH(sctx, attrtype, p) \ 618 do { \ 619 ret = tlv_put_string(sctx, attrtype, p->start, \ 620 p->end - p->start); \ 621 if (ret < 0) \ 622 goto tlv_put_failure; \ 623 } while(0) 624#define TLV_PUT_UUID(sctx, attrtype, uuid) \ 625 do { \ 626 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 627 if (ret < 0) \ 628 goto tlv_put_failure; \ 629 } while (0) 630#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 631 do { \ 632 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637static int send_header(struct send_ctx *sctx) 638{ 639 struct btrfs_stream_header hdr; 640 641 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 642 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 643 644 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 645 &sctx->send_off); 646} 647 648/* 649 * For each command/item we want to send to userspace, we call this function. 650 */ 651static int begin_cmd(struct send_ctx *sctx, int cmd) 652{ 653 struct btrfs_cmd_header *hdr; 654 655 if (WARN_ON(!sctx->send_buf)) 656 return -EINVAL; 657 658 BUG_ON(sctx->send_size); 659 660 sctx->send_size += sizeof(*hdr); 661 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 662 hdr->cmd = cpu_to_le16(cmd); 663 664 return 0; 665} 666 667static int send_cmd(struct send_ctx *sctx) 668{ 669 int ret; 670 struct btrfs_cmd_header *hdr; 671 u32 crc; 672 673 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 674 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 675 hdr->crc = 0; 676 677 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 678 hdr->crc = cpu_to_le32(crc); 679 680 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 681 &sctx->send_off); 682 683 sctx->total_send_size += sctx->send_size; 684 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 685 sctx->send_size = 0; 686 687 return ret; 688} 689 690/* 691 * Sends a move instruction to user space 692 */ 693static int send_rename(struct send_ctx *sctx, 694 struct fs_path *from, struct fs_path *to) 695{ 696 int ret; 697 698verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 699 700 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 701 if (ret < 0) 702 goto out; 703 704 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 706 707 ret = send_cmd(sctx); 708 709tlv_put_failure: 710out: 711 return ret; 712} 713 714/* 715 * Sends a link instruction to user space 716 */ 717static int send_link(struct send_ctx *sctx, 718 struct fs_path *path, struct fs_path *lnk) 719{ 720 int ret; 721 722verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 723 724 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 725 if (ret < 0) 726 goto out; 727 728 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 730 731 ret = send_cmd(sctx); 732 733tlv_put_failure: 734out: 735 return ret; 736} 737 738/* 739 * Sends an unlink instruction to user space 740 */ 741static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 742{ 743 int ret; 744 745verbose_printk("btrfs: send_unlink %s\n", path->start); 746 747 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 748 if (ret < 0) 749 goto out; 750 751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 752 753 ret = send_cmd(sctx); 754 755tlv_put_failure: 756out: 757 return ret; 758} 759 760/* 761 * Sends a rmdir instruction to user space 762 */ 763static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 764{ 765 int ret; 766 767verbose_printk("btrfs: send_rmdir %s\n", path->start); 768 769 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 770 if (ret < 0) 771 goto out; 772 773 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 774 775 ret = send_cmd(sctx); 776 777tlv_put_failure: 778out: 779 return ret; 780} 781 782/* 783 * Helper function to retrieve some fields from an inode item. 784 */ 785static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 786 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 787 u64 *gid, u64 *rdev) 788{ 789 int ret; 790 struct btrfs_inode_item *ii; 791 struct btrfs_key key; 792 793 key.objectid = ino; 794 key.type = BTRFS_INODE_ITEM_KEY; 795 key.offset = 0; 796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 797 if (ret) { 798 if (ret > 0) 799 ret = -ENOENT; 800 return ret; 801 } 802 803 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 804 struct btrfs_inode_item); 805 if (size) 806 *size = btrfs_inode_size(path->nodes[0], ii); 807 if (gen) 808 *gen = btrfs_inode_generation(path->nodes[0], ii); 809 if (mode) 810 *mode = btrfs_inode_mode(path->nodes[0], ii); 811 if (uid) 812 *uid = btrfs_inode_uid(path->nodes[0], ii); 813 if (gid) 814 *gid = btrfs_inode_gid(path->nodes[0], ii); 815 if (rdev) 816 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 817 818 return ret; 819} 820 821static int get_inode_info(struct btrfs_root *root, 822 u64 ino, u64 *size, u64 *gen, 823 u64 *mode, u64 *uid, u64 *gid, 824 u64 *rdev) 825{ 826 struct btrfs_path *path; 827 int ret; 828 829 path = alloc_path_for_send(); 830 if (!path) 831 return -ENOMEM; 832 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 833 rdev); 834 btrfs_free_path(path); 835 return ret; 836} 837 838typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 839 struct fs_path *p, 840 void *ctx); 841 842/* 843 * Helper function to iterate the entries in ONE btrfs_inode_ref or 844 * btrfs_inode_extref. 845 * The iterate callback may return a non zero value to stop iteration. This can 846 * be a negative value for error codes or 1 to simply stop it. 847 * 848 * path must point to the INODE_REF or INODE_EXTREF when called. 849 */ 850static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 851 struct btrfs_key *found_key, int resolve, 852 iterate_inode_ref_t iterate, void *ctx) 853{ 854 struct extent_buffer *eb = path->nodes[0]; 855 struct btrfs_item *item; 856 struct btrfs_inode_ref *iref; 857 struct btrfs_inode_extref *extref; 858 struct btrfs_path *tmp_path; 859 struct fs_path *p; 860 u32 cur = 0; 861 u32 total; 862 int slot = path->slots[0]; 863 u32 name_len; 864 char *start; 865 int ret = 0; 866 int num = 0; 867 int index; 868 u64 dir; 869 unsigned long name_off; 870 unsigned long elem_size; 871 unsigned long ptr; 872 873 p = fs_path_alloc_reversed(); 874 if (!p) 875 return -ENOMEM; 876 877 tmp_path = alloc_path_for_send(); 878 if (!tmp_path) { 879 fs_path_free(p); 880 return -ENOMEM; 881 } 882 883 884 if (found_key->type == BTRFS_INODE_REF_KEY) { 885 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 886 struct btrfs_inode_ref); 887 item = btrfs_item_nr(slot); 888 total = btrfs_item_size(eb, item); 889 elem_size = sizeof(*iref); 890 } else { 891 ptr = btrfs_item_ptr_offset(eb, slot); 892 total = btrfs_item_size_nr(eb, slot); 893 elem_size = sizeof(*extref); 894 } 895 896 while (cur < total) { 897 fs_path_reset(p); 898 899 if (found_key->type == BTRFS_INODE_REF_KEY) { 900 iref = (struct btrfs_inode_ref *)(ptr + cur); 901 name_len = btrfs_inode_ref_name_len(eb, iref); 902 name_off = (unsigned long)(iref + 1); 903 index = btrfs_inode_ref_index(eb, iref); 904 dir = found_key->offset; 905 } else { 906 extref = (struct btrfs_inode_extref *)(ptr + cur); 907 name_len = btrfs_inode_extref_name_len(eb, extref); 908 name_off = (unsigned long)&extref->name; 909 index = btrfs_inode_extref_index(eb, extref); 910 dir = btrfs_inode_extref_parent(eb, extref); 911 } 912 913 if (resolve) { 914 start = btrfs_ref_to_path(root, tmp_path, name_len, 915 name_off, eb, dir, 916 p->buf, p->buf_len); 917 if (IS_ERR(start)) { 918 ret = PTR_ERR(start); 919 goto out; 920 } 921 if (start < p->buf) { 922 /* overflow , try again with larger buffer */ 923 ret = fs_path_ensure_buf(p, 924 p->buf_len + p->buf - start); 925 if (ret < 0) 926 goto out; 927 start = btrfs_ref_to_path(root, tmp_path, 928 name_len, name_off, 929 eb, dir, 930 p->buf, p->buf_len); 931 if (IS_ERR(start)) { 932 ret = PTR_ERR(start); 933 goto out; 934 } 935 BUG_ON(start < p->buf); 936 } 937 p->start = start; 938 } else { 939 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 940 name_len); 941 if (ret < 0) 942 goto out; 943 } 944 945 cur += elem_size + name_len; 946 ret = iterate(num, dir, index, p, ctx); 947 if (ret) 948 goto out; 949 num++; 950 } 951 952out: 953 btrfs_free_path(tmp_path); 954 fs_path_free(p); 955 return ret; 956} 957 958typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 959 const char *name, int name_len, 960 const char *data, int data_len, 961 u8 type, void *ctx); 962 963/* 964 * Helper function to iterate the entries in ONE btrfs_dir_item. 965 * The iterate callback may return a non zero value to stop iteration. This can 966 * be a negative value for error codes or 1 to simply stop it. 967 * 968 * path must point to the dir item when called. 969 */ 970static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 971 struct btrfs_key *found_key, 972 iterate_dir_item_t iterate, void *ctx) 973{ 974 int ret = 0; 975 struct extent_buffer *eb; 976 struct btrfs_item *item; 977 struct btrfs_dir_item *di; 978 struct btrfs_key di_key; 979 char *buf = NULL; 980 int buf_len; 981 u32 name_len; 982 u32 data_len; 983 u32 cur; 984 u32 len; 985 u32 total; 986 int slot; 987 int num; 988 u8 type; 989 990 /* 991 * Start with a small buffer (1 page). If later we end up needing more 992 * space, which can happen for xattrs on a fs with a leaf size greater 993 * then the page size, attempt to increase the buffer. Typically xattr 994 * values are small. 995 */ 996 buf_len = PATH_MAX; 997 buf = kmalloc(buf_len, GFP_NOFS); 998 if (!buf) { 999 ret = -ENOMEM; 1000 goto out; 1001 } 1002 1003 eb = path->nodes[0]; 1004 slot = path->slots[0]; 1005 item = btrfs_item_nr(slot); 1006 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1007 cur = 0; 1008 len = 0; 1009 total = btrfs_item_size(eb, item); 1010 1011 num = 0; 1012 while (cur < total) { 1013 name_len = btrfs_dir_name_len(eb, di); 1014 data_len = btrfs_dir_data_len(eb, di); 1015 type = btrfs_dir_type(eb, di); 1016 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1017 1018 if (type == BTRFS_FT_XATTR) { 1019 if (name_len > XATTR_NAME_MAX) { 1020 ret = -ENAMETOOLONG; 1021 goto out; 1022 } 1023 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) { 1024 ret = -E2BIG; 1025 goto out; 1026 } 1027 } else { 1028 /* 1029 * Path too long 1030 */ 1031 if (name_len + data_len > PATH_MAX) { 1032 ret = -ENAMETOOLONG; 1033 goto out; 1034 } 1035 } 1036 1037 if (name_len + data_len > buf_len) { 1038 buf_len = name_len + data_len; 1039 if (is_vmalloc_addr(buf)) { 1040 vfree(buf); 1041 buf = NULL; 1042 } else { 1043 char *tmp = krealloc(buf, buf_len, 1044 GFP_NOFS | __GFP_NOWARN); 1045 1046 if (!tmp) 1047 kfree(buf); 1048 buf = tmp; 1049 } 1050 if (!buf) { 1051 buf = vmalloc(buf_len); 1052 if (!buf) { 1053 ret = -ENOMEM; 1054 goto out; 1055 } 1056 } 1057 } 1058 1059 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1060 name_len + data_len); 1061 1062 len = sizeof(*di) + name_len + data_len; 1063 di = (struct btrfs_dir_item *)((char *)di + len); 1064 cur += len; 1065 1066 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1067 data_len, type, ctx); 1068 if (ret < 0) 1069 goto out; 1070 if (ret) { 1071 ret = 0; 1072 goto out; 1073 } 1074 1075 num++; 1076 } 1077 1078out: 1079 kvfree(buf); 1080 return ret; 1081} 1082 1083static int __copy_first_ref(int num, u64 dir, int index, 1084 struct fs_path *p, void *ctx) 1085{ 1086 int ret; 1087 struct fs_path *pt = ctx; 1088 1089 ret = fs_path_copy(pt, p); 1090 if (ret < 0) 1091 return ret; 1092 1093 /* we want the first only */ 1094 return 1; 1095} 1096 1097/* 1098 * Retrieve the first path of an inode. If an inode has more then one 1099 * ref/hardlink, this is ignored. 1100 */ 1101static int get_inode_path(struct btrfs_root *root, 1102 u64 ino, struct fs_path *path) 1103{ 1104 int ret; 1105 struct btrfs_key key, found_key; 1106 struct btrfs_path *p; 1107 1108 p = alloc_path_for_send(); 1109 if (!p) 1110 return -ENOMEM; 1111 1112 fs_path_reset(path); 1113 1114 key.objectid = ino; 1115 key.type = BTRFS_INODE_REF_KEY; 1116 key.offset = 0; 1117 1118 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1119 if (ret < 0) 1120 goto out; 1121 if (ret) { 1122 ret = 1; 1123 goto out; 1124 } 1125 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1126 if (found_key.objectid != ino || 1127 (found_key.type != BTRFS_INODE_REF_KEY && 1128 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1129 ret = -ENOENT; 1130 goto out; 1131 } 1132 1133 ret = iterate_inode_ref(root, p, &found_key, 1, 1134 __copy_first_ref, path); 1135 if (ret < 0) 1136 goto out; 1137 ret = 0; 1138 1139out: 1140 btrfs_free_path(p); 1141 return ret; 1142} 1143 1144struct backref_ctx { 1145 struct send_ctx *sctx; 1146 1147 struct btrfs_path *path; 1148 /* number of total found references */ 1149 u64 found; 1150 1151 /* 1152 * used for clones found in send_root. clones found behind cur_objectid 1153 * and cur_offset are not considered as allowed clones. 1154 */ 1155 u64 cur_objectid; 1156 u64 cur_offset; 1157 1158 /* may be truncated in case it's the last extent in a file */ 1159 u64 extent_len; 1160 1161 /* Just to check for bugs in backref resolving */ 1162 int found_itself; 1163}; 1164 1165static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1166{ 1167 u64 root = (u64)(uintptr_t)key; 1168 struct clone_root *cr = (struct clone_root *)elt; 1169 1170 if (root < cr->root->objectid) 1171 return -1; 1172 if (root > cr->root->objectid) 1173 return 1; 1174 return 0; 1175} 1176 1177static int __clone_root_cmp_sort(const void *e1, const void *e2) 1178{ 1179 struct clone_root *cr1 = (struct clone_root *)e1; 1180 struct clone_root *cr2 = (struct clone_root *)e2; 1181 1182 if (cr1->root->objectid < cr2->root->objectid) 1183 return -1; 1184 if (cr1->root->objectid > cr2->root->objectid) 1185 return 1; 1186 return 0; 1187} 1188 1189/* 1190 * Called for every backref that is found for the current extent. 1191 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1192 */ 1193static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1194{ 1195 struct backref_ctx *bctx = ctx_; 1196 struct clone_root *found; 1197 int ret; 1198 u64 i_size; 1199 1200 /* First check if the root is in the list of accepted clone sources */ 1201 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1202 bctx->sctx->clone_roots_cnt, 1203 sizeof(struct clone_root), 1204 __clone_root_cmp_bsearch); 1205 if (!found) 1206 return 0; 1207 1208 if (found->root == bctx->sctx->send_root && 1209 ino == bctx->cur_objectid && 1210 offset == bctx->cur_offset) { 1211 bctx->found_itself = 1; 1212 } 1213 1214 /* 1215 * There are inodes that have extents that lie behind its i_size. Don't 1216 * accept clones from these extents. 1217 */ 1218 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1219 NULL, NULL, NULL); 1220 btrfs_release_path(bctx->path); 1221 if (ret < 0) 1222 return ret; 1223 1224 if (offset + bctx->extent_len > i_size) 1225 return 0; 1226 1227 /* 1228 * Make sure we don't consider clones from send_root that are 1229 * behind the current inode/offset. 1230 */ 1231 if (found->root == bctx->sctx->send_root) { 1232 /* 1233 * TODO for the moment we don't accept clones from the inode 1234 * that is currently send. We may change this when 1235 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1236 * file. 1237 */ 1238 if (ino >= bctx->cur_objectid) 1239 return 0; 1240#if 0 1241 if (ino > bctx->cur_objectid) 1242 return 0; 1243 if (offset + bctx->extent_len > bctx->cur_offset) 1244 return 0; 1245#endif 1246 } 1247 1248 bctx->found++; 1249 found->found_refs++; 1250 if (ino < found->ino) { 1251 found->ino = ino; 1252 found->offset = offset; 1253 } else if (found->ino == ino) { 1254 /* 1255 * same extent found more then once in the same file. 1256 */ 1257 if (found->offset > offset + bctx->extent_len) 1258 found->offset = offset; 1259 } 1260 1261 return 0; 1262} 1263 1264/* 1265 * Given an inode, offset and extent item, it finds a good clone for a clone 1266 * instruction. Returns -ENOENT when none could be found. The function makes 1267 * sure that the returned clone is usable at the point where sending is at the 1268 * moment. This means, that no clones are accepted which lie behind the current 1269 * inode+offset. 1270 * 1271 * path must point to the extent item when called. 1272 */ 1273static int find_extent_clone(struct send_ctx *sctx, 1274 struct btrfs_path *path, 1275 u64 ino, u64 data_offset, 1276 u64 ino_size, 1277 struct clone_root **found) 1278{ 1279 int ret; 1280 int extent_type; 1281 u64 logical; 1282 u64 disk_byte; 1283 u64 num_bytes; 1284 u64 extent_item_pos; 1285 u64 flags = 0; 1286 struct btrfs_file_extent_item *fi; 1287 struct extent_buffer *eb = path->nodes[0]; 1288 struct backref_ctx *backref_ctx = NULL; 1289 struct clone_root *cur_clone_root; 1290 struct btrfs_key found_key; 1291 struct btrfs_path *tmp_path; 1292 int compressed; 1293 u32 i; 1294 1295 tmp_path = alloc_path_for_send(); 1296 if (!tmp_path) 1297 return -ENOMEM; 1298 1299 /* We only use this path under the commit sem */ 1300 tmp_path->need_commit_sem = 0; 1301 1302 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1303 if (!backref_ctx) { 1304 ret = -ENOMEM; 1305 goto out; 1306 } 1307 1308 backref_ctx->path = tmp_path; 1309 1310 if (data_offset >= ino_size) { 1311 /* 1312 * There may be extents that lie behind the file's size. 1313 * I at least had this in combination with snapshotting while 1314 * writing large files. 1315 */ 1316 ret = 0; 1317 goto out; 1318 } 1319 1320 fi = btrfs_item_ptr(eb, path->slots[0], 1321 struct btrfs_file_extent_item); 1322 extent_type = btrfs_file_extent_type(eb, fi); 1323 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1324 ret = -ENOENT; 1325 goto out; 1326 } 1327 compressed = btrfs_file_extent_compression(eb, fi); 1328 1329 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1330 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1331 if (disk_byte == 0) { 1332 ret = -ENOENT; 1333 goto out; 1334 } 1335 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1336 1337 down_read(&sctx->send_root->fs_info->commit_root_sem); 1338 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1339 &found_key, &flags); 1340 up_read(&sctx->send_root->fs_info->commit_root_sem); 1341 btrfs_release_path(tmp_path); 1342 1343 if (ret < 0) 1344 goto out; 1345 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1346 ret = -EIO; 1347 goto out; 1348 } 1349 1350 /* 1351 * Setup the clone roots. 1352 */ 1353 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1354 cur_clone_root = sctx->clone_roots + i; 1355 cur_clone_root->ino = (u64)-1; 1356 cur_clone_root->offset = 0; 1357 cur_clone_root->found_refs = 0; 1358 } 1359 1360 backref_ctx->sctx = sctx; 1361 backref_ctx->found = 0; 1362 backref_ctx->cur_objectid = ino; 1363 backref_ctx->cur_offset = data_offset; 1364 backref_ctx->found_itself = 0; 1365 backref_ctx->extent_len = num_bytes; 1366 1367 /* 1368 * The last extent of a file may be too large due to page alignment. 1369 * We need to adjust extent_len in this case so that the checks in 1370 * __iterate_backrefs work. 1371 */ 1372 if (data_offset + num_bytes >= ino_size) 1373 backref_ctx->extent_len = ino_size - data_offset; 1374 1375 /* 1376 * Now collect all backrefs. 1377 */ 1378 if (compressed == BTRFS_COMPRESS_NONE) 1379 extent_item_pos = logical - found_key.objectid; 1380 else 1381 extent_item_pos = 0; 1382 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1383 found_key.objectid, extent_item_pos, 1, 1384 __iterate_backrefs, backref_ctx); 1385 1386 if (ret < 0) 1387 goto out; 1388 1389 if (!backref_ctx->found_itself) { 1390 /* found a bug in backref code? */ 1391 ret = -EIO; 1392 btrfs_err(sctx->send_root->fs_info, "did not find backref in " 1393 "send_root. inode=%llu, offset=%llu, " 1394 "disk_byte=%llu found extent=%llu", 1395 ino, data_offset, disk_byte, found_key.objectid); 1396 goto out; 1397 } 1398 1399verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1400 "ino=%llu, " 1401 "num_bytes=%llu, logical=%llu\n", 1402 data_offset, ino, num_bytes, logical); 1403 1404 if (!backref_ctx->found) 1405 verbose_printk("btrfs: no clones found\n"); 1406 1407 cur_clone_root = NULL; 1408 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1409 if (sctx->clone_roots[i].found_refs) { 1410 if (!cur_clone_root) 1411 cur_clone_root = sctx->clone_roots + i; 1412 else if (sctx->clone_roots[i].root == sctx->send_root) 1413 /* prefer clones from send_root over others */ 1414 cur_clone_root = sctx->clone_roots + i; 1415 } 1416 1417 } 1418 1419 if (cur_clone_root) { 1420 if (compressed != BTRFS_COMPRESS_NONE) { 1421 /* 1422 * Offsets given by iterate_extent_inodes() are relative 1423 * to the start of the extent, we need to add logical 1424 * offset from the file extent item. 1425 * (See why at backref.c:check_extent_in_eb()) 1426 */ 1427 cur_clone_root->offset += btrfs_file_extent_offset(eb, 1428 fi); 1429 } 1430 *found = cur_clone_root; 1431 ret = 0; 1432 } else { 1433 ret = -ENOENT; 1434 } 1435 1436out: 1437 btrfs_free_path(tmp_path); 1438 kfree(backref_ctx); 1439 return ret; 1440} 1441 1442static int read_symlink(struct btrfs_root *root, 1443 u64 ino, 1444 struct fs_path *dest) 1445{ 1446 int ret; 1447 struct btrfs_path *path; 1448 struct btrfs_key key; 1449 struct btrfs_file_extent_item *ei; 1450 u8 type; 1451 u8 compression; 1452 unsigned long off; 1453 int len; 1454 1455 path = alloc_path_for_send(); 1456 if (!path) 1457 return -ENOMEM; 1458 1459 key.objectid = ino; 1460 key.type = BTRFS_EXTENT_DATA_KEY; 1461 key.offset = 0; 1462 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1463 if (ret < 0) 1464 goto out; 1465 if (ret) { 1466 /* 1467 * An empty symlink inode. Can happen in rare error paths when 1468 * creating a symlink (transaction committed before the inode 1469 * eviction handler removed the symlink inode items and a crash 1470 * happened in between or the subvol was snapshoted in between). 1471 * Print an informative message to dmesg/syslog so that the user 1472 * can delete the symlink. 1473 */ 1474 btrfs_err(root->fs_info, 1475 "Found empty symlink inode %llu at root %llu", 1476 ino, root->root_key.objectid); 1477 ret = -EIO; 1478 goto out; 1479 } 1480 1481 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1482 struct btrfs_file_extent_item); 1483 type = btrfs_file_extent_type(path->nodes[0], ei); 1484 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1485 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1486 BUG_ON(compression); 1487 1488 off = btrfs_file_extent_inline_start(ei); 1489 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1490 1491 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1492 1493out: 1494 btrfs_free_path(path); 1495 return ret; 1496} 1497 1498/* 1499 * Helper function to generate a file name that is unique in the root of 1500 * send_root and parent_root. This is used to generate names for orphan inodes. 1501 */ 1502static int gen_unique_name(struct send_ctx *sctx, 1503 u64 ino, u64 gen, 1504 struct fs_path *dest) 1505{ 1506 int ret = 0; 1507 struct btrfs_path *path; 1508 struct btrfs_dir_item *di; 1509 char tmp[64]; 1510 int len; 1511 u64 idx = 0; 1512 1513 path = alloc_path_for_send(); 1514 if (!path) 1515 return -ENOMEM; 1516 1517 while (1) { 1518 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1519 ino, gen, idx); 1520 ASSERT(len < sizeof(tmp)); 1521 1522 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1523 path, BTRFS_FIRST_FREE_OBJECTID, 1524 tmp, strlen(tmp), 0); 1525 btrfs_release_path(path); 1526 if (IS_ERR(di)) { 1527 ret = PTR_ERR(di); 1528 goto out; 1529 } 1530 if (di) { 1531 /* not unique, try again */ 1532 idx++; 1533 continue; 1534 } 1535 1536 if (!sctx->parent_root) { 1537 /* unique */ 1538 ret = 0; 1539 break; 1540 } 1541 1542 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1543 path, BTRFS_FIRST_FREE_OBJECTID, 1544 tmp, strlen(tmp), 0); 1545 btrfs_release_path(path); 1546 if (IS_ERR(di)) { 1547 ret = PTR_ERR(di); 1548 goto out; 1549 } 1550 if (di) { 1551 /* not unique, try again */ 1552 idx++; 1553 continue; 1554 } 1555 /* unique */ 1556 break; 1557 } 1558 1559 ret = fs_path_add(dest, tmp, strlen(tmp)); 1560 1561out: 1562 btrfs_free_path(path); 1563 return ret; 1564} 1565 1566enum inode_state { 1567 inode_state_no_change, 1568 inode_state_will_create, 1569 inode_state_did_create, 1570 inode_state_will_delete, 1571 inode_state_did_delete, 1572}; 1573 1574static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1575{ 1576 int ret; 1577 int left_ret; 1578 int right_ret; 1579 u64 left_gen; 1580 u64 right_gen; 1581 1582 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1583 NULL, NULL); 1584 if (ret < 0 && ret != -ENOENT) 1585 goto out; 1586 left_ret = ret; 1587 1588 if (!sctx->parent_root) { 1589 right_ret = -ENOENT; 1590 } else { 1591 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1592 NULL, NULL, NULL, NULL); 1593 if (ret < 0 && ret != -ENOENT) 1594 goto out; 1595 right_ret = ret; 1596 } 1597 1598 if (!left_ret && !right_ret) { 1599 if (left_gen == gen && right_gen == gen) { 1600 ret = inode_state_no_change; 1601 } else if (left_gen == gen) { 1602 if (ino < sctx->send_progress) 1603 ret = inode_state_did_create; 1604 else 1605 ret = inode_state_will_create; 1606 } else if (right_gen == gen) { 1607 if (ino < sctx->send_progress) 1608 ret = inode_state_did_delete; 1609 else 1610 ret = inode_state_will_delete; 1611 } else { 1612 ret = -ENOENT; 1613 } 1614 } else if (!left_ret) { 1615 if (left_gen == gen) { 1616 if (ino < sctx->send_progress) 1617 ret = inode_state_did_create; 1618 else 1619 ret = inode_state_will_create; 1620 } else { 1621 ret = -ENOENT; 1622 } 1623 } else if (!right_ret) { 1624 if (right_gen == gen) { 1625 if (ino < sctx->send_progress) 1626 ret = inode_state_did_delete; 1627 else 1628 ret = inode_state_will_delete; 1629 } else { 1630 ret = -ENOENT; 1631 } 1632 } else { 1633 ret = -ENOENT; 1634 } 1635 1636out: 1637 return ret; 1638} 1639 1640static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1641{ 1642 int ret; 1643 1644 ret = get_cur_inode_state(sctx, ino, gen); 1645 if (ret < 0) 1646 goto out; 1647 1648 if (ret == inode_state_no_change || 1649 ret == inode_state_did_create || 1650 ret == inode_state_will_delete) 1651 ret = 1; 1652 else 1653 ret = 0; 1654 1655out: 1656 return ret; 1657} 1658 1659/* 1660 * Helper function to lookup a dir item in a dir. 1661 */ 1662static int lookup_dir_item_inode(struct btrfs_root *root, 1663 u64 dir, const char *name, int name_len, 1664 u64 *found_inode, 1665 u8 *found_type) 1666{ 1667 int ret = 0; 1668 struct btrfs_dir_item *di; 1669 struct btrfs_key key; 1670 struct btrfs_path *path; 1671 1672 path = alloc_path_for_send(); 1673 if (!path) 1674 return -ENOMEM; 1675 1676 di = btrfs_lookup_dir_item(NULL, root, path, 1677 dir, name, name_len, 0); 1678 if (!di) { 1679 ret = -ENOENT; 1680 goto out; 1681 } 1682 if (IS_ERR(di)) { 1683 ret = PTR_ERR(di); 1684 goto out; 1685 } 1686 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1687 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1688 ret = -ENOENT; 1689 goto out; 1690 } 1691 *found_inode = key.objectid; 1692 *found_type = btrfs_dir_type(path->nodes[0], di); 1693 1694out: 1695 btrfs_free_path(path); 1696 return ret; 1697} 1698 1699/* 1700 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1701 * generation of the parent dir and the name of the dir entry. 1702 */ 1703static int get_first_ref(struct btrfs_root *root, u64 ino, 1704 u64 *dir, u64 *dir_gen, struct fs_path *name) 1705{ 1706 int ret; 1707 struct btrfs_key key; 1708 struct btrfs_key found_key; 1709 struct btrfs_path *path; 1710 int len; 1711 u64 parent_dir; 1712 1713 path = alloc_path_for_send(); 1714 if (!path) 1715 return -ENOMEM; 1716 1717 key.objectid = ino; 1718 key.type = BTRFS_INODE_REF_KEY; 1719 key.offset = 0; 1720 1721 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1722 if (ret < 0) 1723 goto out; 1724 if (!ret) 1725 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1726 path->slots[0]); 1727 if (ret || found_key.objectid != ino || 1728 (found_key.type != BTRFS_INODE_REF_KEY && 1729 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1730 ret = -ENOENT; 1731 goto out; 1732 } 1733 1734 if (found_key.type == BTRFS_INODE_REF_KEY) { 1735 struct btrfs_inode_ref *iref; 1736 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1737 struct btrfs_inode_ref); 1738 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1739 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1740 (unsigned long)(iref + 1), 1741 len); 1742 parent_dir = found_key.offset; 1743 } else { 1744 struct btrfs_inode_extref *extref; 1745 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1746 struct btrfs_inode_extref); 1747 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1748 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1749 (unsigned long)&extref->name, len); 1750 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1751 } 1752 if (ret < 0) 1753 goto out; 1754 btrfs_release_path(path); 1755 1756 if (dir_gen) { 1757 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1758 NULL, NULL, NULL); 1759 if (ret < 0) 1760 goto out; 1761 } 1762 1763 *dir = parent_dir; 1764 1765out: 1766 btrfs_free_path(path); 1767 return ret; 1768} 1769 1770static int is_first_ref(struct btrfs_root *root, 1771 u64 ino, u64 dir, 1772 const char *name, int name_len) 1773{ 1774 int ret; 1775 struct fs_path *tmp_name; 1776 u64 tmp_dir; 1777 1778 tmp_name = fs_path_alloc(); 1779 if (!tmp_name) 1780 return -ENOMEM; 1781 1782 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1783 if (ret < 0) 1784 goto out; 1785 1786 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1787 ret = 0; 1788 goto out; 1789 } 1790 1791 ret = !memcmp(tmp_name->start, name, name_len); 1792 1793out: 1794 fs_path_free(tmp_name); 1795 return ret; 1796} 1797 1798/* 1799 * Used by process_recorded_refs to determine if a new ref would overwrite an 1800 * already existing ref. In case it detects an overwrite, it returns the 1801 * inode/gen in who_ino/who_gen. 1802 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1803 * to make sure later references to the overwritten inode are possible. 1804 * Orphanizing is however only required for the first ref of an inode. 1805 * process_recorded_refs does an additional is_first_ref check to see if 1806 * orphanizing is really required. 1807 */ 1808static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1809 const char *name, int name_len, 1810 u64 *who_ino, u64 *who_gen) 1811{ 1812 int ret = 0; 1813 u64 gen; 1814 u64 other_inode = 0; 1815 u8 other_type = 0; 1816 1817 if (!sctx->parent_root) 1818 goto out; 1819 1820 ret = is_inode_existent(sctx, dir, dir_gen); 1821 if (ret <= 0) 1822 goto out; 1823 1824 /* 1825 * If we have a parent root we need to verify that the parent dir was 1826 * not delted and then re-created, if it was then we have no overwrite 1827 * and we can just unlink this entry. 1828 */ 1829 if (sctx->parent_root) { 1830 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1831 NULL, NULL, NULL); 1832 if (ret < 0 && ret != -ENOENT) 1833 goto out; 1834 if (ret) { 1835 ret = 0; 1836 goto out; 1837 } 1838 if (gen != dir_gen) 1839 goto out; 1840 } 1841 1842 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1843 &other_inode, &other_type); 1844 if (ret < 0 && ret != -ENOENT) 1845 goto out; 1846 if (ret) { 1847 ret = 0; 1848 goto out; 1849 } 1850 1851 /* 1852 * Check if the overwritten ref was already processed. If yes, the ref 1853 * was already unlinked/moved, so we can safely assume that we will not 1854 * overwrite anything at this point in time. 1855 */ 1856 if (other_inode > sctx->send_progress) { 1857 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1858 who_gen, NULL, NULL, NULL, NULL); 1859 if (ret < 0) 1860 goto out; 1861 1862 ret = 1; 1863 *who_ino = other_inode; 1864 } else { 1865 ret = 0; 1866 } 1867 1868out: 1869 return ret; 1870} 1871 1872/* 1873 * Checks if the ref was overwritten by an already processed inode. This is 1874 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1875 * thus the orphan name needs be used. 1876 * process_recorded_refs also uses it to avoid unlinking of refs that were 1877 * overwritten. 1878 */ 1879static int did_overwrite_ref(struct send_ctx *sctx, 1880 u64 dir, u64 dir_gen, 1881 u64 ino, u64 ino_gen, 1882 const char *name, int name_len) 1883{ 1884 int ret = 0; 1885 u64 gen; 1886 u64 ow_inode; 1887 u8 other_type; 1888 1889 if (!sctx->parent_root) 1890 goto out; 1891 1892 ret = is_inode_existent(sctx, dir, dir_gen); 1893 if (ret <= 0) 1894 goto out; 1895 1896 /* check if the ref was overwritten by another ref */ 1897 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1898 &ow_inode, &other_type); 1899 if (ret < 0 && ret != -ENOENT) 1900 goto out; 1901 if (ret) { 1902 /* was never and will never be overwritten */ 1903 ret = 0; 1904 goto out; 1905 } 1906 1907 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1908 NULL, NULL); 1909 if (ret < 0) 1910 goto out; 1911 1912 if (ow_inode == ino && gen == ino_gen) { 1913 ret = 0; 1914 goto out; 1915 } 1916 1917 /* we know that it is or will be overwritten. check this now */ 1918 if (ow_inode < sctx->send_progress) 1919 ret = 1; 1920 else 1921 ret = 0; 1922 1923out: 1924 return ret; 1925} 1926 1927/* 1928 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1929 * that got overwritten. This is used by process_recorded_refs to determine 1930 * if it has to use the path as returned by get_cur_path or the orphan name. 1931 */ 1932static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1933{ 1934 int ret = 0; 1935 struct fs_path *name = NULL; 1936 u64 dir; 1937 u64 dir_gen; 1938 1939 if (!sctx->parent_root) 1940 goto out; 1941 1942 name = fs_path_alloc(); 1943 if (!name) 1944 return -ENOMEM; 1945 1946 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1947 if (ret < 0) 1948 goto out; 1949 1950 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1951 name->start, fs_path_len(name)); 1952 1953out: 1954 fs_path_free(name); 1955 return ret; 1956} 1957 1958/* 1959 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1960 * so we need to do some special handling in case we have clashes. This function 1961 * takes care of this with the help of name_cache_entry::radix_list. 1962 * In case of error, nce is kfreed. 1963 */ 1964static int name_cache_insert(struct send_ctx *sctx, 1965 struct name_cache_entry *nce) 1966{ 1967 int ret = 0; 1968 struct list_head *nce_head; 1969 1970 nce_head = radix_tree_lookup(&sctx->name_cache, 1971 (unsigned long)nce->ino); 1972 if (!nce_head) { 1973 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1974 if (!nce_head) { 1975 kfree(nce); 1976 return -ENOMEM; 1977 } 1978 INIT_LIST_HEAD(nce_head); 1979 1980 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1981 if (ret < 0) { 1982 kfree(nce_head); 1983 kfree(nce); 1984 return ret; 1985 } 1986 } 1987 list_add_tail(&nce->radix_list, nce_head); 1988 list_add_tail(&nce->list, &sctx->name_cache_list); 1989 sctx->name_cache_size++; 1990 1991 return ret; 1992} 1993 1994static void name_cache_delete(struct send_ctx *sctx, 1995 struct name_cache_entry *nce) 1996{ 1997 struct list_head *nce_head; 1998 1999 nce_head = radix_tree_lookup(&sctx->name_cache, 2000 (unsigned long)nce->ino); 2001 if (!nce_head) { 2002 btrfs_err(sctx->send_root->fs_info, 2003 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2004 nce->ino, sctx->name_cache_size); 2005 } 2006 2007 list_del(&nce->radix_list); 2008 list_del(&nce->list); 2009 sctx->name_cache_size--; 2010 2011 /* 2012 * We may not get to the final release of nce_head if the lookup fails 2013 */ 2014 if (nce_head && list_empty(nce_head)) { 2015 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2016 kfree(nce_head); 2017 } 2018} 2019 2020static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2021 u64 ino, u64 gen) 2022{ 2023 struct list_head *nce_head; 2024 struct name_cache_entry *cur; 2025 2026 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2027 if (!nce_head) 2028 return NULL; 2029 2030 list_for_each_entry(cur, nce_head, radix_list) { 2031 if (cur->ino == ino && cur->gen == gen) 2032 return cur; 2033 } 2034 return NULL; 2035} 2036 2037/* 2038 * Removes the entry from the list and adds it back to the end. This marks the 2039 * entry as recently used so that name_cache_clean_unused does not remove it. 2040 */ 2041static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2042{ 2043 list_del(&nce->list); 2044 list_add_tail(&nce->list, &sctx->name_cache_list); 2045} 2046 2047/* 2048 * Remove some entries from the beginning of name_cache_list. 2049 */ 2050static void name_cache_clean_unused(struct send_ctx *sctx) 2051{ 2052 struct name_cache_entry *nce; 2053 2054 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2055 return; 2056 2057 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2058 nce = list_entry(sctx->name_cache_list.next, 2059 struct name_cache_entry, list); 2060 name_cache_delete(sctx, nce); 2061 kfree(nce); 2062 } 2063} 2064 2065static void name_cache_free(struct send_ctx *sctx) 2066{ 2067 struct name_cache_entry *nce; 2068 2069 while (!list_empty(&sctx->name_cache_list)) { 2070 nce = list_entry(sctx->name_cache_list.next, 2071 struct name_cache_entry, list); 2072 name_cache_delete(sctx, nce); 2073 kfree(nce); 2074 } 2075} 2076 2077/* 2078 * Used by get_cur_path for each ref up to the root. 2079 * Returns 0 if it succeeded. 2080 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2081 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2082 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2083 * Returns <0 in case of error. 2084 */ 2085static int __get_cur_name_and_parent(struct send_ctx *sctx, 2086 u64 ino, u64 gen, 2087 u64 *parent_ino, 2088 u64 *parent_gen, 2089 struct fs_path *dest) 2090{ 2091 int ret; 2092 int nce_ret; 2093 struct name_cache_entry *nce = NULL; 2094 2095 /* 2096 * First check if we already did a call to this function with the same 2097 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2098 * return the cached result. 2099 */ 2100 nce = name_cache_search(sctx, ino, gen); 2101 if (nce) { 2102 if (ino < sctx->send_progress && nce->need_later_update) { 2103 name_cache_delete(sctx, nce); 2104 kfree(nce); 2105 nce = NULL; 2106 } else { 2107 name_cache_used(sctx, nce); 2108 *parent_ino = nce->parent_ino; 2109 *parent_gen = nce->parent_gen; 2110 ret = fs_path_add(dest, nce->name, nce->name_len); 2111 if (ret < 0) 2112 goto out; 2113 ret = nce->ret; 2114 goto out; 2115 } 2116 } 2117 2118 /* 2119 * If the inode is not existent yet, add the orphan name and return 1. 2120 * This should only happen for the parent dir that we determine in 2121 * __record_new_ref 2122 */ 2123 ret = is_inode_existent(sctx, ino, gen); 2124 if (ret < 0) 2125 goto out; 2126 2127 if (!ret) { 2128 ret = gen_unique_name(sctx, ino, gen, dest); 2129 if (ret < 0) 2130 goto out; 2131 ret = 1; 2132 goto out_cache; 2133 } 2134 2135 /* 2136 * Depending on whether the inode was already processed or not, use 2137 * send_root or parent_root for ref lookup. 2138 */ 2139 if (ino < sctx->send_progress) 2140 ret = get_first_ref(sctx->send_root, ino, 2141 parent_ino, parent_gen, dest); 2142 else 2143 ret = get_first_ref(sctx->parent_root, ino, 2144 parent_ino, parent_gen, dest); 2145 if (ret < 0) 2146 goto out; 2147 2148 /* 2149 * Check if the ref was overwritten by an inode's ref that was processed 2150 * earlier. If yes, treat as orphan and return 1. 2151 */ 2152 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2153 dest->start, dest->end - dest->start); 2154 if (ret < 0) 2155 goto out; 2156 if (ret) { 2157 fs_path_reset(dest); 2158 ret = gen_unique_name(sctx, ino, gen, dest); 2159 if (ret < 0) 2160 goto out; 2161 ret = 1; 2162 } 2163 2164out_cache: 2165 /* 2166 * Store the result of the lookup in the name cache. 2167 */ 2168 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 2169 if (!nce) { 2170 ret = -ENOMEM; 2171 goto out; 2172 } 2173 2174 nce->ino = ino; 2175 nce->gen = gen; 2176 nce->parent_ino = *parent_ino; 2177 nce->parent_gen = *parent_gen; 2178 nce->name_len = fs_path_len(dest); 2179 nce->ret = ret; 2180 strcpy(nce->name, dest->start); 2181 2182 if (ino < sctx->send_progress) 2183 nce->need_later_update = 0; 2184 else 2185 nce->need_later_update = 1; 2186 2187 nce_ret = name_cache_insert(sctx, nce); 2188 if (nce_ret < 0) 2189 ret = nce_ret; 2190 name_cache_clean_unused(sctx); 2191 2192out: 2193 return ret; 2194} 2195 2196/* 2197 * Magic happens here. This function returns the first ref to an inode as it 2198 * would look like while receiving the stream at this point in time. 2199 * We walk the path up to the root. For every inode in between, we check if it 2200 * was already processed/sent. If yes, we continue with the parent as found 2201 * in send_root. If not, we continue with the parent as found in parent_root. 2202 * If we encounter an inode that was deleted at this point in time, we use the 2203 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2204 * that were not created yet and overwritten inodes/refs. 2205 * 2206 * When do we have have orphan inodes: 2207 * 1. When an inode is freshly created and thus no valid refs are available yet 2208 * 2. When a directory lost all it's refs (deleted) but still has dir items 2209 * inside which were not processed yet (pending for move/delete). If anyone 2210 * tried to get the path to the dir items, it would get a path inside that 2211 * orphan directory. 2212 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2213 * of an unprocessed inode. If in that case the first ref would be 2214 * overwritten, the overwritten inode gets "orphanized". Later when we 2215 * process this overwritten inode, it is restored at a new place by moving 2216 * the orphan inode. 2217 * 2218 * sctx->send_progress tells this function at which point in time receiving 2219 * would be. 2220 */ 2221static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2222 struct fs_path *dest) 2223{ 2224 int ret = 0; 2225 struct fs_path *name = NULL; 2226 u64 parent_inode = 0; 2227 u64 parent_gen = 0; 2228 int stop = 0; 2229 2230 name = fs_path_alloc(); 2231 if (!name) { 2232 ret = -ENOMEM; 2233 goto out; 2234 } 2235 2236 dest->reversed = 1; 2237 fs_path_reset(dest); 2238 2239 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2240 fs_path_reset(name); 2241 2242 if (is_waiting_for_rm(sctx, ino)) { 2243 ret = gen_unique_name(sctx, ino, gen, name); 2244 if (ret < 0) 2245 goto out; 2246 ret = fs_path_add_path(dest, name); 2247 break; 2248 } 2249 2250 if (is_waiting_for_move(sctx, ino)) { 2251 ret = get_first_ref(sctx->parent_root, ino, 2252 &parent_inode, &parent_gen, name); 2253 } else { 2254 ret = __get_cur_name_and_parent(sctx, ino, gen, 2255 &parent_inode, 2256 &parent_gen, name); 2257 if (ret) 2258 stop = 1; 2259 } 2260 2261 if (ret < 0) 2262 goto out; 2263 2264 ret = fs_path_add_path(dest, name); 2265 if (ret < 0) 2266 goto out; 2267 2268 ino = parent_inode; 2269 gen = parent_gen; 2270 } 2271 2272out: 2273 fs_path_free(name); 2274 if (!ret) 2275 fs_path_unreverse(dest); 2276 return ret; 2277} 2278 2279/* 2280 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2281 */ 2282static int send_subvol_begin(struct send_ctx *sctx) 2283{ 2284 int ret; 2285 struct btrfs_root *send_root = sctx->send_root; 2286 struct btrfs_root *parent_root = sctx->parent_root; 2287 struct btrfs_path *path; 2288 struct btrfs_key key; 2289 struct btrfs_root_ref *ref; 2290 struct extent_buffer *leaf; 2291 char *name = NULL; 2292 int namelen; 2293 2294 path = btrfs_alloc_path(); 2295 if (!path) 2296 return -ENOMEM; 2297 2298 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2299 if (!name) { 2300 btrfs_free_path(path); 2301 return -ENOMEM; 2302 } 2303 2304 key.objectid = send_root->objectid; 2305 key.type = BTRFS_ROOT_BACKREF_KEY; 2306 key.offset = 0; 2307 2308 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2309 &key, path, 1, 0); 2310 if (ret < 0) 2311 goto out; 2312 if (ret) { 2313 ret = -ENOENT; 2314 goto out; 2315 } 2316 2317 leaf = path->nodes[0]; 2318 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2319 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2320 key.objectid != send_root->objectid) { 2321 ret = -ENOENT; 2322 goto out; 2323 } 2324 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2325 namelen = btrfs_root_ref_name_len(leaf, ref); 2326 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2327 btrfs_release_path(path); 2328 2329 if (parent_root) { 2330 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2331 if (ret < 0) 2332 goto out; 2333 } else { 2334 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2335 if (ret < 0) 2336 goto out; 2337 } 2338 2339 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2340 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2341 sctx->send_root->root_item.uuid); 2342 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2343 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2344 if (parent_root) { 2345 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2346 sctx->parent_root->root_item.uuid); 2347 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2348 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2349 } 2350 2351 ret = send_cmd(sctx); 2352 2353tlv_put_failure: 2354out: 2355 btrfs_free_path(path); 2356 kfree(name); 2357 return ret; 2358} 2359 2360static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2361{ 2362 int ret = 0; 2363 struct fs_path *p; 2364 2365verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2366 2367 p = fs_path_alloc(); 2368 if (!p) 2369 return -ENOMEM; 2370 2371 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2372 if (ret < 0) 2373 goto out; 2374 2375 ret = get_cur_path(sctx, ino, gen, p); 2376 if (ret < 0) 2377 goto out; 2378 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2379 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2380 2381 ret = send_cmd(sctx); 2382 2383tlv_put_failure: 2384out: 2385 fs_path_free(p); 2386 return ret; 2387} 2388 2389static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2390{ 2391 int ret = 0; 2392 struct fs_path *p; 2393 2394verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2395 2396 p = fs_path_alloc(); 2397 if (!p) 2398 return -ENOMEM; 2399 2400 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2401 if (ret < 0) 2402 goto out; 2403 2404 ret = get_cur_path(sctx, ino, gen, p); 2405 if (ret < 0) 2406 goto out; 2407 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2408 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2409 2410 ret = send_cmd(sctx); 2411 2412tlv_put_failure: 2413out: 2414 fs_path_free(p); 2415 return ret; 2416} 2417 2418static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2419{ 2420 int ret = 0; 2421 struct fs_path *p; 2422 2423verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2424 2425 p = fs_path_alloc(); 2426 if (!p) 2427 return -ENOMEM; 2428 2429 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2430 if (ret < 0) 2431 goto out; 2432 2433 ret = get_cur_path(sctx, ino, gen, p); 2434 if (ret < 0) 2435 goto out; 2436 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2437 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2438 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2439 2440 ret = send_cmd(sctx); 2441 2442tlv_put_failure: 2443out: 2444 fs_path_free(p); 2445 return ret; 2446} 2447 2448static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2449{ 2450 int ret = 0; 2451 struct fs_path *p = NULL; 2452 struct btrfs_inode_item *ii; 2453 struct btrfs_path *path = NULL; 2454 struct extent_buffer *eb; 2455 struct btrfs_key key; 2456 int slot; 2457 2458verbose_printk("btrfs: send_utimes %llu\n", ino); 2459 2460 p = fs_path_alloc(); 2461 if (!p) 2462 return -ENOMEM; 2463 2464 path = alloc_path_for_send(); 2465 if (!path) { 2466 ret = -ENOMEM; 2467 goto out; 2468 } 2469 2470 key.objectid = ino; 2471 key.type = BTRFS_INODE_ITEM_KEY; 2472 key.offset = 0; 2473 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2474 if (ret < 0) 2475 goto out; 2476 2477 eb = path->nodes[0]; 2478 slot = path->slots[0]; 2479 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2480 2481 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2482 if (ret < 0) 2483 goto out; 2484 2485 ret = get_cur_path(sctx, ino, gen, p); 2486 if (ret < 0) 2487 goto out; 2488 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2489 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2490 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2491 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2492 /* TODO Add otime support when the otime patches get into upstream */ 2493 2494 ret = send_cmd(sctx); 2495 2496tlv_put_failure: 2497out: 2498 fs_path_free(p); 2499 btrfs_free_path(path); 2500 return ret; 2501} 2502 2503/* 2504 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2505 * a valid path yet because we did not process the refs yet. So, the inode 2506 * is created as orphan. 2507 */ 2508static int send_create_inode(struct send_ctx *sctx, u64 ino) 2509{ 2510 int ret = 0; 2511 struct fs_path *p; 2512 int cmd; 2513 u64 gen; 2514 u64 mode; 2515 u64 rdev; 2516 2517verbose_printk("btrfs: send_create_inode %llu\n", ino); 2518 2519 p = fs_path_alloc(); 2520 if (!p) 2521 return -ENOMEM; 2522 2523 if (ino != sctx->cur_ino) { 2524 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2525 NULL, NULL, &rdev); 2526 if (ret < 0) 2527 goto out; 2528 } else { 2529 gen = sctx->cur_inode_gen; 2530 mode = sctx->cur_inode_mode; 2531 rdev = sctx->cur_inode_rdev; 2532 } 2533 2534 if (S_ISREG(mode)) { 2535 cmd = BTRFS_SEND_C_MKFILE; 2536 } else if (S_ISDIR(mode)) { 2537 cmd = BTRFS_SEND_C_MKDIR; 2538 } else if (S_ISLNK(mode)) { 2539 cmd = BTRFS_SEND_C_SYMLINK; 2540 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2541 cmd = BTRFS_SEND_C_MKNOD; 2542 } else if (S_ISFIFO(mode)) { 2543 cmd = BTRFS_SEND_C_MKFIFO; 2544 } else if (S_ISSOCK(mode)) { 2545 cmd = BTRFS_SEND_C_MKSOCK; 2546 } else { 2547 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2548 (int)(mode & S_IFMT)); 2549 ret = -ENOTSUPP; 2550 goto out; 2551 } 2552 2553 ret = begin_cmd(sctx, cmd); 2554 if (ret < 0) 2555 goto out; 2556 2557 ret = gen_unique_name(sctx, ino, gen, p); 2558 if (ret < 0) 2559 goto out; 2560 2561 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2562 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2563 2564 if (S_ISLNK(mode)) { 2565 fs_path_reset(p); 2566 ret = read_symlink(sctx->send_root, ino, p); 2567 if (ret < 0) 2568 goto out; 2569 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2570 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2571 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2572 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2573 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2574 } 2575 2576 ret = send_cmd(sctx); 2577 if (ret < 0) 2578 goto out; 2579 2580 2581tlv_put_failure: 2582out: 2583 fs_path_free(p); 2584 return ret; 2585} 2586 2587/* 2588 * We need some special handling for inodes that get processed before the parent 2589 * directory got created. See process_recorded_refs for details. 2590 * This function does the check if we already created the dir out of order. 2591 */ 2592static int did_create_dir(struct send_ctx *sctx, u64 dir) 2593{ 2594 int ret = 0; 2595 struct btrfs_path *path = NULL; 2596 struct btrfs_key key; 2597 struct btrfs_key found_key; 2598 struct btrfs_key di_key; 2599 struct extent_buffer *eb; 2600 struct btrfs_dir_item *di; 2601 int slot; 2602 2603 path = alloc_path_for_send(); 2604 if (!path) { 2605 ret = -ENOMEM; 2606 goto out; 2607 } 2608 2609 key.objectid = dir; 2610 key.type = BTRFS_DIR_INDEX_KEY; 2611 key.offset = 0; 2612 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2613 if (ret < 0) 2614 goto out; 2615 2616 while (1) { 2617 eb = path->nodes[0]; 2618 slot = path->slots[0]; 2619 if (slot >= btrfs_header_nritems(eb)) { 2620 ret = btrfs_next_leaf(sctx->send_root, path); 2621 if (ret < 0) { 2622 goto out; 2623 } else if (ret > 0) { 2624 ret = 0; 2625 break; 2626 } 2627 continue; 2628 } 2629 2630 btrfs_item_key_to_cpu(eb, &found_key, slot); 2631 if (found_key.objectid != key.objectid || 2632 found_key.type != key.type) { 2633 ret = 0; 2634 goto out; 2635 } 2636 2637 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2638 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2639 2640 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2641 di_key.objectid < sctx->send_progress) { 2642 ret = 1; 2643 goto out; 2644 } 2645 2646 path->slots[0]++; 2647 } 2648 2649out: 2650 btrfs_free_path(path); 2651 return ret; 2652} 2653 2654/* 2655 * Only creates the inode if it is: 2656 * 1. Not a directory 2657 * 2. Or a directory which was not created already due to out of order 2658 * directories. See did_create_dir and process_recorded_refs for details. 2659 */ 2660static int send_create_inode_if_needed(struct send_ctx *sctx) 2661{ 2662 int ret; 2663 2664 if (S_ISDIR(sctx->cur_inode_mode)) { 2665 ret = did_create_dir(sctx, sctx->cur_ino); 2666 if (ret < 0) 2667 goto out; 2668 if (ret) { 2669 ret = 0; 2670 goto out; 2671 } 2672 } 2673 2674 ret = send_create_inode(sctx, sctx->cur_ino); 2675 if (ret < 0) 2676 goto out; 2677 2678out: 2679 return ret; 2680} 2681 2682struct recorded_ref { 2683 struct list_head list; 2684 char *dir_path; 2685 char *name; 2686 struct fs_path *full_path; 2687 u64 dir; 2688 u64 dir_gen; 2689 int dir_path_len; 2690 int name_len; 2691}; 2692 2693/* 2694 * We need to process new refs before deleted refs, but compare_tree gives us 2695 * everything mixed. So we first record all refs and later process them. 2696 * This function is a helper to record one ref. 2697 */ 2698static int __record_ref(struct list_head *head, u64 dir, 2699 u64 dir_gen, struct fs_path *path) 2700{ 2701 struct recorded_ref *ref; 2702 2703 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2704 if (!ref) 2705 return -ENOMEM; 2706 2707 ref->dir = dir; 2708 ref->dir_gen = dir_gen; 2709 ref->full_path = path; 2710 2711 ref->name = (char *)kbasename(ref->full_path->start); 2712 ref->name_len = ref->full_path->end - ref->name; 2713 ref->dir_path = ref->full_path->start; 2714 if (ref->name == ref->full_path->start) 2715 ref->dir_path_len = 0; 2716 else 2717 ref->dir_path_len = ref->full_path->end - 2718 ref->full_path->start - 1 - ref->name_len; 2719 2720 list_add_tail(&ref->list, head); 2721 return 0; 2722} 2723 2724static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2725{ 2726 struct recorded_ref *new; 2727 2728 new = kmalloc(sizeof(*ref), GFP_NOFS); 2729 if (!new) 2730 return -ENOMEM; 2731 2732 new->dir = ref->dir; 2733 new->dir_gen = ref->dir_gen; 2734 new->full_path = NULL; 2735 INIT_LIST_HEAD(&new->list); 2736 list_add_tail(&new->list, list); 2737 return 0; 2738} 2739 2740static void __free_recorded_refs(struct list_head *head) 2741{ 2742 struct recorded_ref *cur; 2743 2744 while (!list_empty(head)) { 2745 cur = list_entry(head->next, struct recorded_ref, list); 2746 fs_path_free(cur->full_path); 2747 list_del(&cur->list); 2748 kfree(cur); 2749 } 2750} 2751 2752static void free_recorded_refs(struct send_ctx *sctx) 2753{ 2754 __free_recorded_refs(&sctx->new_refs); 2755 __free_recorded_refs(&sctx->deleted_refs); 2756} 2757 2758/* 2759 * Renames/moves a file/dir to its orphan name. Used when the first 2760 * ref of an unprocessed inode gets overwritten and for all non empty 2761 * directories. 2762 */ 2763static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2764 struct fs_path *path) 2765{ 2766 int ret; 2767 struct fs_path *orphan; 2768 2769 orphan = fs_path_alloc(); 2770 if (!orphan) 2771 return -ENOMEM; 2772 2773 ret = gen_unique_name(sctx, ino, gen, orphan); 2774 if (ret < 0) 2775 goto out; 2776 2777 ret = send_rename(sctx, path, orphan); 2778 2779out: 2780 fs_path_free(orphan); 2781 return ret; 2782} 2783 2784static struct orphan_dir_info * 2785add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2786{ 2787 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2788 struct rb_node *parent = NULL; 2789 struct orphan_dir_info *entry, *odi; 2790 2791 odi = kmalloc(sizeof(*odi), GFP_NOFS); 2792 if (!odi) 2793 return ERR_PTR(-ENOMEM); 2794 odi->ino = dir_ino; 2795 odi->gen = 0; 2796 2797 while (*p) { 2798 parent = *p; 2799 entry = rb_entry(parent, struct orphan_dir_info, node); 2800 if (dir_ino < entry->ino) { 2801 p = &(*p)->rb_left; 2802 } else if (dir_ino > entry->ino) { 2803 p = &(*p)->rb_right; 2804 } else { 2805 kfree(odi); 2806 return entry; 2807 } 2808 } 2809 2810 rb_link_node(&odi->node, parent, p); 2811 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2812 return odi; 2813} 2814 2815static struct orphan_dir_info * 2816get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2817{ 2818 struct rb_node *n = sctx->orphan_dirs.rb_node; 2819 struct orphan_dir_info *entry; 2820 2821 while (n) { 2822 entry = rb_entry(n, struct orphan_dir_info, node); 2823 if (dir_ino < entry->ino) 2824 n = n->rb_left; 2825 else if (dir_ino > entry->ino) 2826 n = n->rb_right; 2827 else 2828 return entry; 2829 } 2830 return NULL; 2831} 2832 2833static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2834{ 2835 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2836 2837 return odi != NULL; 2838} 2839 2840static void free_orphan_dir_info(struct send_ctx *sctx, 2841 struct orphan_dir_info *odi) 2842{ 2843 if (!odi) 2844 return; 2845 rb_erase(&odi->node, &sctx->orphan_dirs); 2846 kfree(odi); 2847} 2848 2849/* 2850 * Returns 1 if a directory can be removed at this point in time. 2851 * We check this by iterating all dir items and checking if the inode behind 2852 * the dir item was already processed. 2853 */ 2854static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2855 u64 send_progress) 2856{ 2857 int ret = 0; 2858 struct btrfs_root *root = sctx->parent_root; 2859 struct btrfs_path *path; 2860 struct btrfs_key key; 2861 struct btrfs_key found_key; 2862 struct btrfs_key loc; 2863 struct btrfs_dir_item *di; 2864 2865 /* 2866 * Don't try to rmdir the top/root subvolume dir. 2867 */ 2868 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2869 return 0; 2870 2871 path = alloc_path_for_send(); 2872 if (!path) 2873 return -ENOMEM; 2874 2875 key.objectid = dir; 2876 key.type = BTRFS_DIR_INDEX_KEY; 2877 key.offset = 0; 2878 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2879 if (ret < 0) 2880 goto out; 2881 2882 while (1) { 2883 struct waiting_dir_move *dm; 2884 2885 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2886 ret = btrfs_next_leaf(root, path); 2887 if (ret < 0) 2888 goto out; 2889 else if (ret > 0) 2890 break; 2891 continue; 2892 } 2893 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2894 path->slots[0]); 2895 if (found_key.objectid != key.objectid || 2896 found_key.type != key.type) 2897 break; 2898 2899 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2900 struct btrfs_dir_item); 2901 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2902 2903 dm = get_waiting_dir_move(sctx, loc.objectid); 2904 if (dm) { 2905 struct orphan_dir_info *odi; 2906 2907 odi = add_orphan_dir_info(sctx, dir); 2908 if (IS_ERR(odi)) { 2909 ret = PTR_ERR(odi); 2910 goto out; 2911 } 2912 odi->gen = dir_gen; 2913 dm->rmdir_ino = dir; 2914 ret = 0; 2915 goto out; 2916 } 2917 2918 if (loc.objectid > send_progress) { 2919 ret = 0; 2920 goto out; 2921 } 2922 2923 path->slots[0]++; 2924 } 2925 2926 ret = 1; 2927 2928out: 2929 btrfs_free_path(path); 2930 return ret; 2931} 2932 2933static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 2934{ 2935 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 2936 2937 return entry != NULL; 2938} 2939 2940static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2941{ 2942 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 2943 struct rb_node *parent = NULL; 2944 struct waiting_dir_move *entry, *dm; 2945 2946 dm = kmalloc(sizeof(*dm), GFP_NOFS); 2947 if (!dm) 2948 return -ENOMEM; 2949 dm->ino = ino; 2950 dm->rmdir_ino = 0; 2951 2952 while (*p) { 2953 parent = *p; 2954 entry = rb_entry(parent, struct waiting_dir_move, node); 2955 if (ino < entry->ino) { 2956 p = &(*p)->rb_left; 2957 } else if (ino > entry->ino) { 2958 p = &(*p)->rb_right; 2959 } else { 2960 kfree(dm); 2961 return -EEXIST; 2962 } 2963 } 2964 2965 rb_link_node(&dm->node, parent, p); 2966 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 2967 return 0; 2968} 2969 2970static struct waiting_dir_move * 2971get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2972{ 2973 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 2974 struct waiting_dir_move *entry; 2975 2976 while (n) { 2977 entry = rb_entry(n, struct waiting_dir_move, node); 2978 if (ino < entry->ino) 2979 n = n->rb_left; 2980 else if (ino > entry->ino) 2981 n = n->rb_right; 2982 else 2983 return entry; 2984 } 2985 return NULL; 2986} 2987 2988static void free_waiting_dir_move(struct send_ctx *sctx, 2989 struct waiting_dir_move *dm) 2990{ 2991 if (!dm) 2992 return; 2993 rb_erase(&dm->node, &sctx->waiting_dir_moves); 2994 kfree(dm); 2995} 2996 2997static int add_pending_dir_move(struct send_ctx *sctx, 2998 u64 ino, 2999 u64 ino_gen, 3000 u64 parent_ino, 3001 struct list_head *new_refs, 3002 struct list_head *deleted_refs, 3003 const bool is_orphan) 3004{ 3005 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3006 struct rb_node *parent = NULL; 3007 struct pending_dir_move *entry = NULL, *pm; 3008 struct recorded_ref *cur; 3009 int exists = 0; 3010 int ret; 3011 3012 pm = kmalloc(sizeof(*pm), GFP_NOFS); 3013 if (!pm) 3014 return -ENOMEM; 3015 pm->parent_ino = parent_ino; 3016 pm->ino = ino; 3017 pm->gen = ino_gen; 3018 pm->is_orphan = is_orphan; 3019 INIT_LIST_HEAD(&pm->list); 3020 INIT_LIST_HEAD(&pm->update_refs); 3021 RB_CLEAR_NODE(&pm->node); 3022 3023 while (*p) { 3024 parent = *p; 3025 entry = rb_entry(parent, struct pending_dir_move, node); 3026 if (parent_ino < entry->parent_ino) { 3027 p = &(*p)->rb_left; 3028 } else if (parent_ino > entry->parent_ino) { 3029 p = &(*p)->rb_right; 3030 } else { 3031 exists = 1; 3032 break; 3033 } 3034 } 3035 3036 list_for_each_entry(cur, deleted_refs, list) { 3037 ret = dup_ref(cur, &pm->update_refs); 3038 if (ret < 0) 3039 goto out; 3040 } 3041 list_for_each_entry(cur, new_refs, list) { 3042 ret = dup_ref(cur, &pm->update_refs); 3043 if (ret < 0) 3044 goto out; 3045 } 3046 3047 ret = add_waiting_dir_move(sctx, pm->ino); 3048 if (ret) 3049 goto out; 3050 3051 if (exists) { 3052 list_add_tail(&pm->list, &entry->list); 3053 } else { 3054 rb_link_node(&pm->node, parent, p); 3055 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3056 } 3057 ret = 0; 3058out: 3059 if (ret) { 3060 __free_recorded_refs(&pm->update_refs); 3061 kfree(pm); 3062 } 3063 return ret; 3064} 3065 3066static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3067 u64 parent_ino) 3068{ 3069 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3070 struct pending_dir_move *entry; 3071 3072 while (n) { 3073 entry = rb_entry(n, struct pending_dir_move, node); 3074 if (parent_ino < entry->parent_ino) 3075 n = n->rb_left; 3076 else if (parent_ino > entry->parent_ino) 3077 n = n->rb_right; 3078 else 3079 return entry; 3080 } 3081 return NULL; 3082} 3083 3084static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3085{ 3086 struct fs_path *from_path = NULL; 3087 struct fs_path *to_path = NULL; 3088 struct fs_path *name = NULL; 3089 u64 orig_progress = sctx->send_progress; 3090 struct recorded_ref *cur; 3091 u64 parent_ino, parent_gen; 3092 struct waiting_dir_move *dm = NULL; 3093 u64 rmdir_ino = 0; 3094 int ret; 3095 3096 name = fs_path_alloc(); 3097 from_path = fs_path_alloc(); 3098 if (!name || !from_path) { 3099 ret = -ENOMEM; 3100 goto out; 3101 } 3102 3103 dm = get_waiting_dir_move(sctx, pm->ino); 3104 ASSERT(dm); 3105 rmdir_ino = dm->rmdir_ino; 3106 free_waiting_dir_move(sctx, dm); 3107 3108 if (pm->is_orphan) { 3109 ret = gen_unique_name(sctx, pm->ino, 3110 pm->gen, from_path); 3111 } else { 3112 ret = get_first_ref(sctx->parent_root, pm->ino, 3113 &parent_ino, &parent_gen, name); 3114 if (ret < 0) 3115 goto out; 3116 ret = get_cur_path(sctx, parent_ino, parent_gen, 3117 from_path); 3118 if (ret < 0) 3119 goto out; 3120 ret = fs_path_add_path(from_path, name); 3121 } 3122 if (ret < 0) 3123 goto out; 3124 3125 sctx->send_progress = sctx->cur_ino + 1; 3126 fs_path_reset(name); 3127 to_path = name; 3128 name = NULL; 3129 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3130 if (ret < 0) 3131 goto out; 3132 3133 ret = send_rename(sctx, from_path, to_path); 3134 if (ret < 0) 3135 goto out; 3136 3137 if (rmdir_ino) { 3138 struct orphan_dir_info *odi; 3139 3140 odi = get_orphan_dir_info(sctx, rmdir_ino); 3141 if (!odi) { 3142 /* already deleted */ 3143 goto finish; 3144 } 3145 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1); 3146 if (ret < 0) 3147 goto out; 3148 if (!ret) 3149 goto finish; 3150 3151 name = fs_path_alloc(); 3152 if (!name) { 3153 ret = -ENOMEM; 3154 goto out; 3155 } 3156 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3157 if (ret < 0) 3158 goto out; 3159 ret = send_rmdir(sctx, name); 3160 if (ret < 0) 3161 goto out; 3162 free_orphan_dir_info(sctx, odi); 3163 } 3164 3165finish: 3166 ret = send_utimes(sctx, pm->ino, pm->gen); 3167 if (ret < 0) 3168 goto out; 3169 3170 /* 3171 * After rename/move, need to update the utimes of both new parent(s) 3172 * and old parent(s). 3173 */ 3174 list_for_each_entry(cur, &pm->update_refs, list) { 3175 if (cur->dir == rmdir_ino) 3176 continue; 3177 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3178 if (ret < 0) 3179 goto out; 3180 } 3181 3182out: 3183 fs_path_free(name); 3184 fs_path_free(from_path); 3185 fs_path_free(to_path); 3186 sctx->send_progress = orig_progress; 3187 3188 return ret; 3189} 3190 3191static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3192{ 3193 if (!list_empty(&m->list)) 3194 list_del(&m->list); 3195 if (!RB_EMPTY_NODE(&m->node)) 3196 rb_erase(&m->node, &sctx->pending_dir_moves); 3197 __free_recorded_refs(&m->update_refs); 3198 kfree(m); 3199} 3200 3201static void tail_append_pending_moves(struct pending_dir_move *moves, 3202 struct list_head *stack) 3203{ 3204 if (list_empty(&moves->list)) { 3205 list_add_tail(&moves->list, stack); 3206 } else { 3207 LIST_HEAD(list); 3208 list_splice_init(&moves->list, &list); 3209 list_add_tail(&moves->list, stack); 3210 list_splice_tail(&list, stack); 3211 } 3212} 3213 3214static int apply_children_dir_moves(struct send_ctx *sctx) 3215{ 3216 struct pending_dir_move *pm; 3217 struct list_head stack; 3218 u64 parent_ino = sctx->cur_ino; 3219 int ret = 0; 3220 3221 pm = get_pending_dir_moves(sctx, parent_ino); 3222 if (!pm) 3223 return 0; 3224 3225 INIT_LIST_HEAD(&stack); 3226 tail_append_pending_moves(pm, &stack); 3227 3228 while (!list_empty(&stack)) { 3229 pm = list_first_entry(&stack, struct pending_dir_move, list); 3230 parent_ino = pm->ino; 3231 ret = apply_dir_move(sctx, pm); 3232 free_pending_move(sctx, pm); 3233 if (ret) 3234 goto out; 3235 pm = get_pending_dir_moves(sctx, parent_ino); 3236 if (pm) 3237 tail_append_pending_moves(pm, &stack); 3238 } 3239 return 0; 3240 3241out: 3242 while (!list_empty(&stack)) { 3243 pm = list_first_entry(&stack, struct pending_dir_move, list); 3244 free_pending_move(sctx, pm); 3245 } 3246 return ret; 3247} 3248 3249/* 3250 * We might need to delay a directory rename even when no ancestor directory 3251 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3252 * renamed. This happens when we rename a directory to the old name (the name 3253 * in the parent root) of some other unrelated directory that got its rename 3254 * delayed due to some ancestor with higher number that got renamed. 3255 * 3256 * Example: 3257 * 3258 * Parent snapshot: 3259 * . (ino 256) 3260 * |---- a/ (ino 257) 3261 * | |---- file (ino 260) 3262 * | 3263 * |---- b/ (ino 258) 3264 * |---- c/ (ino 259) 3265 * 3266 * Send snapshot: 3267 * . (ino 256) 3268 * |---- a/ (ino 258) 3269 * |---- x/ (ino 259) 3270 * |---- y/ (ino 257) 3271 * |----- file (ino 260) 3272 * 3273 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3274 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3275 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3276 * must issue is: 3277 * 3278 * 1 - rename 259 from 'c' to 'x' 3279 * 2 - rename 257 from 'a' to 'x/y' 3280 * 3 - rename 258 from 'b' to 'a' 3281 * 3282 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3283 * be done right away and < 0 on error. 3284 */ 3285static int wait_for_dest_dir_move(struct send_ctx *sctx, 3286 struct recorded_ref *parent_ref, 3287 const bool is_orphan) 3288{ 3289 struct btrfs_path *path; 3290 struct btrfs_key key; 3291 struct btrfs_key di_key; 3292 struct btrfs_dir_item *di; 3293 u64 left_gen; 3294 u64 right_gen; 3295 int ret = 0; 3296 3297 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3298 return 0; 3299 3300 path = alloc_path_for_send(); 3301 if (!path) 3302 return -ENOMEM; 3303 3304 key.objectid = parent_ref->dir; 3305 key.type = BTRFS_DIR_ITEM_KEY; 3306 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3307 3308 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3309 if (ret < 0) { 3310 goto out; 3311 } else if (ret > 0) { 3312 ret = 0; 3313 goto out; 3314 } 3315 3316 di = btrfs_match_dir_item_name(sctx->parent_root, path, 3317 parent_ref->name, parent_ref->name_len); 3318 if (!di) { 3319 ret = 0; 3320 goto out; 3321 } 3322 /* 3323 * di_key.objectid has the number of the inode that has a dentry in the 3324 * parent directory with the same name that sctx->cur_ino is being 3325 * renamed to. We need to check if that inode is in the send root as 3326 * well and if it is currently marked as an inode with a pending rename, 3327 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3328 * that it happens after that other inode is renamed. 3329 */ 3330 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3331 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3332 ret = 0; 3333 goto out; 3334 } 3335 3336 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3337 &left_gen, NULL, NULL, NULL, NULL); 3338 if (ret < 0) 3339 goto out; 3340 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3341 &right_gen, NULL, NULL, NULL, NULL); 3342 if (ret < 0) { 3343 if (ret == -ENOENT) 3344 ret = 0; 3345 goto out; 3346 } 3347 3348 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3349 if (right_gen != left_gen) { 3350 ret = 0; 3351 goto out; 3352 } 3353 3354 if (is_waiting_for_move(sctx, di_key.objectid)) { 3355 ret = add_pending_dir_move(sctx, 3356 sctx->cur_ino, 3357 sctx->cur_inode_gen, 3358 di_key.objectid, 3359 &sctx->new_refs, 3360 &sctx->deleted_refs, 3361 is_orphan); 3362 if (!ret) 3363 ret = 1; 3364 } 3365out: 3366 btrfs_free_path(path); 3367 return ret; 3368} 3369 3370static int wait_for_parent_move(struct send_ctx *sctx, 3371 struct recorded_ref *parent_ref) 3372{ 3373 int ret = 0; 3374 u64 ino = parent_ref->dir; 3375 u64 parent_ino_before, parent_ino_after; 3376 struct fs_path *path_before = NULL; 3377 struct fs_path *path_after = NULL; 3378 int len1, len2; 3379 3380 path_after = fs_path_alloc(); 3381 path_before = fs_path_alloc(); 3382 if (!path_after || !path_before) { 3383 ret = -ENOMEM; 3384 goto out; 3385 } 3386 3387 /* 3388 * Our current directory inode may not yet be renamed/moved because some 3389 * ancestor (immediate or not) has to be renamed/moved first. So find if 3390 * such ancestor exists and make sure our own rename/move happens after 3391 * that ancestor is processed. 3392 */ 3393 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3394 if (is_waiting_for_move(sctx, ino)) { 3395 ret = 1; 3396 break; 3397 } 3398 3399 fs_path_reset(path_before); 3400 fs_path_reset(path_after); 3401 3402 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3403 NULL, path_after); 3404 if (ret < 0) 3405 goto out; 3406 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3407 NULL, path_before); 3408 if (ret < 0 && ret != -ENOENT) { 3409 goto out; 3410 } else if (ret == -ENOENT) { 3411 ret = 0; 3412 break; 3413 } 3414 3415 len1 = fs_path_len(path_before); 3416 len2 = fs_path_len(path_after); 3417 if (ino > sctx->cur_ino && 3418 (parent_ino_before != parent_ino_after || len1 != len2 || 3419 memcmp(path_before->start, path_after->start, len1))) { 3420 ret = 1; 3421 break; 3422 } 3423 ino = parent_ino_after; 3424 } 3425 3426out: 3427 fs_path_free(path_before); 3428 fs_path_free(path_after); 3429 3430 if (ret == 1) { 3431 ret = add_pending_dir_move(sctx, 3432 sctx->cur_ino, 3433 sctx->cur_inode_gen, 3434 ino, 3435 &sctx->new_refs, 3436 &sctx->deleted_refs, 3437 false); 3438 if (!ret) 3439 ret = 1; 3440 } 3441 3442 return ret; 3443} 3444 3445/* 3446 * This does all the move/link/unlink/rmdir magic. 3447 */ 3448static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3449{ 3450 int ret = 0; 3451 struct recorded_ref *cur; 3452 struct recorded_ref *cur2; 3453 struct list_head check_dirs; 3454 struct fs_path *valid_path = NULL; 3455 u64 ow_inode = 0; 3456 u64 ow_gen; 3457 int did_overwrite = 0; 3458 int is_orphan = 0; 3459 u64 last_dir_ino_rm = 0; 3460 bool can_rename = true; 3461 3462verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 3463 3464 /* 3465 * This should never happen as the root dir always has the same ref 3466 * which is always '..' 3467 */ 3468 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3469 INIT_LIST_HEAD(&check_dirs); 3470 3471 valid_path = fs_path_alloc(); 3472 if (!valid_path) { 3473 ret = -ENOMEM; 3474 goto out; 3475 } 3476 3477 /* 3478 * First, check if the first ref of the current inode was overwritten 3479 * before. If yes, we know that the current inode was already orphanized 3480 * and thus use the orphan name. If not, we can use get_cur_path to 3481 * get the path of the first ref as it would like while receiving at 3482 * this point in time. 3483 * New inodes are always orphan at the beginning, so force to use the 3484 * orphan name in this case. 3485 * The first ref is stored in valid_path and will be updated if it 3486 * gets moved around. 3487 */ 3488 if (!sctx->cur_inode_new) { 3489 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3490 sctx->cur_inode_gen); 3491 if (ret < 0) 3492 goto out; 3493 if (ret) 3494 did_overwrite = 1; 3495 } 3496 if (sctx->cur_inode_new || did_overwrite) { 3497 ret = gen_unique_name(sctx, sctx->cur_ino, 3498 sctx->cur_inode_gen, valid_path); 3499 if (ret < 0) 3500 goto out; 3501 is_orphan = 1; 3502 } else { 3503 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3504 valid_path); 3505 if (ret < 0) 3506 goto out; 3507 } 3508 3509 list_for_each_entry(cur, &sctx->new_refs, list) { 3510 /* 3511 * We may have refs where the parent directory does not exist 3512 * yet. This happens if the parent directories inum is higher 3513 * the the current inum. To handle this case, we create the 3514 * parent directory out of order. But we need to check if this 3515 * did already happen before due to other refs in the same dir. 3516 */ 3517 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3518 if (ret < 0) 3519 goto out; 3520 if (ret == inode_state_will_create) { 3521 ret = 0; 3522 /* 3523 * First check if any of the current inodes refs did 3524 * already create the dir. 3525 */ 3526 list_for_each_entry(cur2, &sctx->new_refs, list) { 3527 if (cur == cur2) 3528 break; 3529 if (cur2->dir == cur->dir) { 3530 ret = 1; 3531 break; 3532 } 3533 } 3534 3535 /* 3536 * If that did not happen, check if a previous inode 3537 * did already create the dir. 3538 */ 3539 if (!ret) 3540 ret = did_create_dir(sctx, cur->dir); 3541 if (ret < 0) 3542 goto out; 3543 if (!ret) { 3544 ret = send_create_inode(sctx, cur->dir); 3545 if (ret < 0) 3546 goto out; 3547 } 3548 } 3549 3550 /* 3551 * Check if this new ref would overwrite the first ref of 3552 * another unprocessed inode. If yes, orphanize the 3553 * overwritten inode. If we find an overwritten ref that is 3554 * not the first ref, simply unlink it. 3555 */ 3556 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3557 cur->name, cur->name_len, 3558 &ow_inode, &ow_gen); 3559 if (ret < 0) 3560 goto out; 3561 if (ret) { 3562 ret = is_first_ref(sctx->parent_root, 3563 ow_inode, cur->dir, cur->name, 3564 cur->name_len); 3565 if (ret < 0) 3566 goto out; 3567 if (ret) { 3568 struct name_cache_entry *nce; 3569 3570 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3571 cur->full_path); 3572 if (ret < 0) 3573 goto out; 3574 /* 3575 * Make sure we clear our orphanized inode's 3576 * name from the name cache. This is because the 3577 * inode ow_inode might be an ancestor of some 3578 * other inode that will be orphanized as well 3579 * later and has an inode number greater than 3580 * sctx->send_progress. We need to prevent 3581 * future name lookups from using the old name 3582 * and get instead the orphan name. 3583 */ 3584 nce = name_cache_search(sctx, ow_inode, ow_gen); 3585 if (nce) { 3586 name_cache_delete(sctx, nce); 3587 kfree(nce); 3588 } 3589 } else { 3590 ret = send_unlink(sctx, cur->full_path); 3591 if (ret < 0) 3592 goto out; 3593 } 3594 } 3595 3596 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3597 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3598 if (ret < 0) 3599 goto out; 3600 if (ret == 1) { 3601 can_rename = false; 3602 *pending_move = 1; 3603 } 3604 } 3605 3606 /* 3607 * link/move the ref to the new place. If we have an orphan 3608 * inode, move it and update valid_path. If not, link or move 3609 * it depending on the inode mode. 3610 */ 3611 if (is_orphan && can_rename) { 3612 ret = send_rename(sctx, valid_path, cur->full_path); 3613 if (ret < 0) 3614 goto out; 3615 is_orphan = 0; 3616 ret = fs_path_copy(valid_path, cur->full_path); 3617 if (ret < 0) 3618 goto out; 3619 } else if (can_rename) { 3620 if (S_ISDIR(sctx->cur_inode_mode)) { 3621 /* 3622 * Dirs can't be linked, so move it. For moved 3623 * dirs, we always have one new and one deleted 3624 * ref. The deleted ref is ignored later. 3625 */ 3626 ret = wait_for_parent_move(sctx, cur); 3627 if (ret < 0) 3628 goto out; 3629 if (ret) { 3630 *pending_move = 1; 3631 } else { 3632 ret = send_rename(sctx, valid_path, 3633 cur->full_path); 3634 if (!ret) 3635 ret = fs_path_copy(valid_path, 3636 cur->full_path); 3637 } 3638 if (ret < 0) 3639 goto out; 3640 } else { 3641 ret = send_link(sctx, cur->full_path, 3642 valid_path); 3643 if (ret < 0) 3644 goto out; 3645 } 3646 } 3647 ret = dup_ref(cur, &check_dirs); 3648 if (ret < 0) 3649 goto out; 3650 } 3651 3652 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3653 /* 3654 * Check if we can already rmdir the directory. If not, 3655 * orphanize it. For every dir item inside that gets deleted 3656 * later, we do this check again and rmdir it then if possible. 3657 * See the use of check_dirs for more details. 3658 */ 3659 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3660 sctx->cur_ino); 3661 if (ret < 0) 3662 goto out; 3663 if (ret) { 3664 ret = send_rmdir(sctx, valid_path); 3665 if (ret < 0) 3666 goto out; 3667 } else if (!is_orphan) { 3668 ret = orphanize_inode(sctx, sctx->cur_ino, 3669 sctx->cur_inode_gen, valid_path); 3670 if (ret < 0) 3671 goto out; 3672 is_orphan = 1; 3673 } 3674 3675 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3676 ret = dup_ref(cur, &check_dirs); 3677 if (ret < 0) 3678 goto out; 3679 } 3680 } else if (S_ISDIR(sctx->cur_inode_mode) && 3681 !list_empty(&sctx->deleted_refs)) { 3682 /* 3683 * We have a moved dir. Add the old parent to check_dirs 3684 */ 3685 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3686 list); 3687 ret = dup_ref(cur, &check_dirs); 3688 if (ret < 0) 3689 goto out; 3690 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3691 /* 3692 * We have a non dir inode. Go through all deleted refs and 3693 * unlink them if they were not already overwritten by other 3694 * inodes. 3695 */ 3696 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3697 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3698 sctx->cur_ino, sctx->cur_inode_gen, 3699 cur->name, cur->name_len); 3700 if (ret < 0) 3701 goto out; 3702 if (!ret) { 3703 ret = send_unlink(sctx, cur->full_path); 3704 if (ret < 0) 3705 goto out; 3706 } 3707 ret = dup_ref(cur, &check_dirs); 3708 if (ret < 0) 3709 goto out; 3710 } 3711 /* 3712 * If the inode is still orphan, unlink the orphan. This may 3713 * happen when a previous inode did overwrite the first ref 3714 * of this inode and no new refs were added for the current 3715 * inode. Unlinking does not mean that the inode is deleted in 3716 * all cases. There may still be links to this inode in other 3717 * places. 3718 */ 3719 if (is_orphan) { 3720 ret = send_unlink(sctx, valid_path); 3721 if (ret < 0) 3722 goto out; 3723 } 3724 } 3725 3726 /* 3727 * We did collect all parent dirs where cur_inode was once located. We 3728 * now go through all these dirs and check if they are pending for 3729 * deletion and if it's finally possible to perform the rmdir now. 3730 * We also update the inode stats of the parent dirs here. 3731 */ 3732 list_for_each_entry(cur, &check_dirs, list) { 3733 /* 3734 * In case we had refs into dirs that were not processed yet, 3735 * we don't need to do the utime and rmdir logic for these dirs. 3736 * The dir will be processed later. 3737 */ 3738 if (cur->dir > sctx->cur_ino) 3739 continue; 3740 3741 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3742 if (ret < 0) 3743 goto out; 3744 3745 if (ret == inode_state_did_create || 3746 ret == inode_state_no_change) { 3747 /* TODO delayed utimes */ 3748 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3749 if (ret < 0) 3750 goto out; 3751 } else if (ret == inode_state_did_delete && 3752 cur->dir != last_dir_ino_rm) { 3753 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 3754 sctx->cur_ino); 3755 if (ret < 0) 3756 goto out; 3757 if (ret) { 3758 ret = get_cur_path(sctx, cur->dir, 3759 cur->dir_gen, valid_path); 3760 if (ret < 0) 3761 goto out; 3762 ret = send_rmdir(sctx, valid_path); 3763 if (ret < 0) 3764 goto out; 3765 last_dir_ino_rm = cur->dir; 3766 } 3767 } 3768 } 3769 3770 ret = 0; 3771 3772out: 3773 __free_recorded_refs(&check_dirs); 3774 free_recorded_refs(sctx); 3775 fs_path_free(valid_path); 3776 return ret; 3777} 3778 3779static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 3780 struct fs_path *name, void *ctx, struct list_head *refs) 3781{ 3782 int ret = 0; 3783 struct send_ctx *sctx = ctx; 3784 struct fs_path *p; 3785 u64 gen; 3786 3787 p = fs_path_alloc(); 3788 if (!p) 3789 return -ENOMEM; 3790 3791 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 3792 NULL, NULL); 3793 if (ret < 0) 3794 goto out; 3795 3796 ret = get_cur_path(sctx, dir, gen, p); 3797 if (ret < 0) 3798 goto out; 3799 ret = fs_path_add_path(p, name); 3800 if (ret < 0) 3801 goto out; 3802 3803 ret = __record_ref(refs, dir, gen, p); 3804 3805out: 3806 if (ret) 3807 fs_path_free(p); 3808 return ret; 3809} 3810 3811static int __record_new_ref(int num, u64 dir, int index, 3812 struct fs_path *name, 3813 void *ctx) 3814{ 3815 struct send_ctx *sctx = ctx; 3816 return record_ref(sctx->send_root, num, dir, index, name, 3817 ctx, &sctx->new_refs); 3818} 3819 3820 3821static int __record_deleted_ref(int num, u64 dir, int index, 3822 struct fs_path *name, 3823 void *ctx) 3824{ 3825 struct send_ctx *sctx = ctx; 3826 return record_ref(sctx->parent_root, num, dir, index, name, 3827 ctx, &sctx->deleted_refs); 3828} 3829 3830static int record_new_ref(struct send_ctx *sctx) 3831{ 3832 int ret; 3833 3834 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3835 sctx->cmp_key, 0, __record_new_ref, sctx); 3836 if (ret < 0) 3837 goto out; 3838 ret = 0; 3839 3840out: 3841 return ret; 3842} 3843 3844static int record_deleted_ref(struct send_ctx *sctx) 3845{ 3846 int ret; 3847 3848 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3849 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3850 if (ret < 0) 3851 goto out; 3852 ret = 0; 3853 3854out: 3855 return ret; 3856} 3857 3858struct find_ref_ctx { 3859 u64 dir; 3860 u64 dir_gen; 3861 struct btrfs_root *root; 3862 struct fs_path *name; 3863 int found_idx; 3864}; 3865 3866static int __find_iref(int num, u64 dir, int index, 3867 struct fs_path *name, 3868 void *ctx_) 3869{ 3870 struct find_ref_ctx *ctx = ctx_; 3871 u64 dir_gen; 3872 int ret; 3873 3874 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3875 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3876 /* 3877 * To avoid doing extra lookups we'll only do this if everything 3878 * else matches. 3879 */ 3880 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 3881 NULL, NULL, NULL); 3882 if (ret) 3883 return ret; 3884 if (dir_gen != ctx->dir_gen) 3885 return 0; 3886 ctx->found_idx = num; 3887 return 1; 3888 } 3889 return 0; 3890} 3891 3892static int find_iref(struct btrfs_root *root, 3893 struct btrfs_path *path, 3894 struct btrfs_key *key, 3895 u64 dir, u64 dir_gen, struct fs_path *name) 3896{ 3897 int ret; 3898 struct find_ref_ctx ctx; 3899 3900 ctx.dir = dir; 3901 ctx.name = name; 3902 ctx.dir_gen = dir_gen; 3903 ctx.found_idx = -1; 3904 ctx.root = root; 3905 3906 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 3907 if (ret < 0) 3908 return ret; 3909 3910 if (ctx.found_idx == -1) 3911 return -ENOENT; 3912 3913 return ctx.found_idx; 3914} 3915 3916static int __record_changed_new_ref(int num, u64 dir, int index, 3917 struct fs_path *name, 3918 void *ctx) 3919{ 3920 u64 dir_gen; 3921 int ret; 3922 struct send_ctx *sctx = ctx; 3923 3924 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 3925 NULL, NULL, NULL); 3926 if (ret) 3927 return ret; 3928 3929 ret = find_iref(sctx->parent_root, sctx->right_path, 3930 sctx->cmp_key, dir, dir_gen, name); 3931 if (ret == -ENOENT) 3932 ret = __record_new_ref(num, dir, index, name, sctx); 3933 else if (ret > 0) 3934 ret = 0; 3935 3936 return ret; 3937} 3938 3939static int __record_changed_deleted_ref(int num, u64 dir, int index, 3940 struct fs_path *name, 3941 void *ctx) 3942{ 3943 u64 dir_gen; 3944 int ret; 3945 struct send_ctx *sctx = ctx; 3946 3947 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 3948 NULL, NULL, NULL); 3949 if (ret) 3950 return ret; 3951 3952 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 3953 dir, dir_gen, name); 3954 if (ret == -ENOENT) 3955 ret = __record_deleted_ref(num, dir, index, name, sctx); 3956 else if (ret > 0) 3957 ret = 0; 3958 3959 return ret; 3960} 3961 3962static int record_changed_ref(struct send_ctx *sctx) 3963{ 3964 int ret = 0; 3965 3966 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3967 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 3968 if (ret < 0) 3969 goto out; 3970 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3971 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 3972 if (ret < 0) 3973 goto out; 3974 ret = 0; 3975 3976out: 3977 return ret; 3978} 3979 3980/* 3981 * Record and process all refs at once. Needed when an inode changes the 3982 * generation number, which means that it was deleted and recreated. 3983 */ 3984static int process_all_refs(struct send_ctx *sctx, 3985 enum btrfs_compare_tree_result cmd) 3986{ 3987 int ret; 3988 struct btrfs_root *root; 3989 struct btrfs_path *path; 3990 struct btrfs_key key; 3991 struct btrfs_key found_key; 3992 struct extent_buffer *eb; 3993 int slot; 3994 iterate_inode_ref_t cb; 3995 int pending_move = 0; 3996 3997 path = alloc_path_for_send(); 3998 if (!path) 3999 return -ENOMEM; 4000 4001 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4002 root = sctx->send_root; 4003 cb = __record_new_ref; 4004 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4005 root = sctx->parent_root; 4006 cb = __record_deleted_ref; 4007 } else { 4008 btrfs_err(sctx->send_root->fs_info, 4009 "Wrong command %d in process_all_refs", cmd); 4010 ret = -EINVAL; 4011 goto out; 4012 } 4013 4014 key.objectid = sctx->cmp_key->objectid; 4015 key.type = BTRFS_INODE_REF_KEY; 4016 key.offset = 0; 4017 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4018 if (ret < 0) 4019 goto out; 4020 4021 while (1) { 4022 eb = path->nodes[0]; 4023 slot = path->slots[0]; 4024 if (slot >= btrfs_header_nritems(eb)) { 4025 ret = btrfs_next_leaf(root, path); 4026 if (ret < 0) 4027 goto out; 4028 else if (ret > 0) 4029 break; 4030 continue; 4031 } 4032 4033 btrfs_item_key_to_cpu(eb, &found_key, slot); 4034 4035 if (found_key.objectid != key.objectid || 4036 (found_key.type != BTRFS_INODE_REF_KEY && 4037 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4038 break; 4039 4040 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4041 if (ret < 0) 4042 goto out; 4043 4044 path->slots[0]++; 4045 } 4046 btrfs_release_path(path); 4047 4048 ret = process_recorded_refs(sctx, &pending_move); 4049 /* Only applicable to an incremental send. */ 4050 ASSERT(pending_move == 0); 4051 4052out: 4053 btrfs_free_path(path); 4054 return ret; 4055} 4056 4057static int send_set_xattr(struct send_ctx *sctx, 4058 struct fs_path *path, 4059 const char *name, int name_len, 4060 const char *data, int data_len) 4061{ 4062 int ret = 0; 4063 4064 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4065 if (ret < 0) 4066 goto out; 4067 4068 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4069 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4070 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4071 4072 ret = send_cmd(sctx); 4073 4074tlv_put_failure: 4075out: 4076 return ret; 4077} 4078 4079static int send_remove_xattr(struct send_ctx *sctx, 4080 struct fs_path *path, 4081 const char *name, int name_len) 4082{ 4083 int ret = 0; 4084 4085 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4086 if (ret < 0) 4087 goto out; 4088 4089 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4090 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4091 4092 ret = send_cmd(sctx); 4093 4094tlv_put_failure: 4095out: 4096 return ret; 4097} 4098 4099static int __process_new_xattr(int num, struct btrfs_key *di_key, 4100 const char *name, int name_len, 4101 const char *data, int data_len, 4102 u8 type, void *ctx) 4103{ 4104 int ret; 4105 struct send_ctx *sctx = ctx; 4106 struct fs_path *p; 4107 posix_acl_xattr_header dummy_acl; 4108 4109 p = fs_path_alloc(); 4110 if (!p) 4111 return -ENOMEM; 4112 4113 /* 4114 * This hack is needed because empty acl's are stored as zero byte 4115 * data in xattrs. Problem with that is, that receiving these zero byte 4116 * acl's will fail later. To fix this, we send a dummy acl list that 4117 * only contains the version number and no entries. 4118 */ 4119 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4120 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4121 if (data_len == 0) { 4122 dummy_acl.a_version = 4123 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4124 data = (char *)&dummy_acl; 4125 data_len = sizeof(dummy_acl); 4126 } 4127 } 4128 4129 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4130 if (ret < 0) 4131 goto out; 4132 4133 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4134 4135out: 4136 fs_path_free(p); 4137 return ret; 4138} 4139 4140static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4141 const char *name, int name_len, 4142 const char *data, int data_len, 4143 u8 type, void *ctx) 4144{ 4145 int ret; 4146 struct send_ctx *sctx = ctx; 4147 struct fs_path *p; 4148 4149 p = fs_path_alloc(); 4150 if (!p) 4151 return -ENOMEM; 4152 4153 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4154 if (ret < 0) 4155 goto out; 4156 4157 ret = send_remove_xattr(sctx, p, name, name_len); 4158 4159out: 4160 fs_path_free(p); 4161 return ret; 4162} 4163 4164static int process_new_xattr(struct send_ctx *sctx) 4165{ 4166 int ret = 0; 4167 4168 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4169 sctx->cmp_key, __process_new_xattr, sctx); 4170 4171 return ret; 4172} 4173 4174static int process_deleted_xattr(struct send_ctx *sctx) 4175{ 4176 int ret; 4177 4178 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4179 sctx->cmp_key, __process_deleted_xattr, sctx); 4180 4181 return ret; 4182} 4183 4184struct find_xattr_ctx { 4185 const char *name; 4186 int name_len; 4187 int found_idx; 4188 char *found_data; 4189 int found_data_len; 4190}; 4191 4192static int __find_xattr(int num, struct btrfs_key *di_key, 4193 const char *name, int name_len, 4194 const char *data, int data_len, 4195 u8 type, void *vctx) 4196{ 4197 struct find_xattr_ctx *ctx = vctx; 4198 4199 if (name_len == ctx->name_len && 4200 strncmp(name, ctx->name, name_len) == 0) { 4201 ctx->found_idx = num; 4202 ctx->found_data_len = data_len; 4203 ctx->found_data = kmemdup(data, data_len, GFP_NOFS); 4204 if (!ctx->found_data) 4205 return -ENOMEM; 4206 return 1; 4207 } 4208 return 0; 4209} 4210 4211static int find_xattr(struct btrfs_root *root, 4212 struct btrfs_path *path, 4213 struct btrfs_key *key, 4214 const char *name, int name_len, 4215 char **data, int *data_len) 4216{ 4217 int ret; 4218 struct find_xattr_ctx ctx; 4219 4220 ctx.name = name; 4221 ctx.name_len = name_len; 4222 ctx.found_idx = -1; 4223 ctx.found_data = NULL; 4224 ctx.found_data_len = 0; 4225 4226 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4227 if (ret < 0) 4228 return ret; 4229 4230 if (ctx.found_idx == -1) 4231 return -ENOENT; 4232 if (data) { 4233 *data = ctx.found_data; 4234 *data_len = ctx.found_data_len; 4235 } else { 4236 kfree(ctx.found_data); 4237 } 4238 return ctx.found_idx; 4239} 4240 4241 4242static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4243 const char *name, int name_len, 4244 const char *data, int data_len, 4245 u8 type, void *ctx) 4246{ 4247 int ret; 4248 struct send_ctx *sctx = ctx; 4249 char *found_data = NULL; 4250 int found_data_len = 0; 4251 4252 ret = find_xattr(sctx->parent_root, sctx->right_path, 4253 sctx->cmp_key, name, name_len, &found_data, 4254 &found_data_len); 4255 if (ret == -ENOENT) { 4256 ret = __process_new_xattr(num, di_key, name, name_len, data, 4257 data_len, type, ctx); 4258 } else if (ret >= 0) { 4259 if (data_len != found_data_len || 4260 memcmp(data, found_data, data_len)) { 4261 ret = __process_new_xattr(num, di_key, name, name_len, 4262 data, data_len, type, ctx); 4263 } else { 4264 ret = 0; 4265 } 4266 } 4267 4268 kfree(found_data); 4269 return ret; 4270} 4271 4272static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4273 const char *name, int name_len, 4274 const char *data, int data_len, 4275 u8 type, void *ctx) 4276{ 4277 int ret; 4278 struct send_ctx *sctx = ctx; 4279 4280 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4281 name, name_len, NULL, NULL); 4282 if (ret == -ENOENT) 4283 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4284 data_len, type, ctx); 4285 else if (ret >= 0) 4286 ret = 0; 4287 4288 return ret; 4289} 4290 4291static int process_changed_xattr(struct send_ctx *sctx) 4292{ 4293 int ret = 0; 4294 4295 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4296 sctx->cmp_key, __process_changed_new_xattr, sctx); 4297 if (ret < 0) 4298 goto out; 4299 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4300 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4301 4302out: 4303 return ret; 4304} 4305 4306static int process_all_new_xattrs(struct send_ctx *sctx) 4307{ 4308 int ret; 4309 struct btrfs_root *root; 4310 struct btrfs_path *path; 4311 struct btrfs_key key; 4312 struct btrfs_key found_key; 4313 struct extent_buffer *eb; 4314 int slot; 4315 4316 path = alloc_path_for_send(); 4317 if (!path) 4318 return -ENOMEM; 4319 4320 root = sctx->send_root; 4321 4322 key.objectid = sctx->cmp_key->objectid; 4323 key.type = BTRFS_XATTR_ITEM_KEY; 4324 key.offset = 0; 4325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4326 if (ret < 0) 4327 goto out; 4328 4329 while (1) { 4330 eb = path->nodes[0]; 4331 slot = path->slots[0]; 4332 if (slot >= btrfs_header_nritems(eb)) { 4333 ret = btrfs_next_leaf(root, path); 4334 if (ret < 0) { 4335 goto out; 4336 } else if (ret > 0) { 4337 ret = 0; 4338 break; 4339 } 4340 continue; 4341 } 4342 4343 btrfs_item_key_to_cpu(eb, &found_key, slot); 4344 if (found_key.objectid != key.objectid || 4345 found_key.type != key.type) { 4346 ret = 0; 4347 goto out; 4348 } 4349 4350 ret = iterate_dir_item(root, path, &found_key, 4351 __process_new_xattr, sctx); 4352 if (ret < 0) 4353 goto out; 4354 4355 path->slots[0]++; 4356 } 4357 4358out: 4359 btrfs_free_path(path); 4360 return ret; 4361} 4362 4363static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4364{ 4365 struct btrfs_root *root = sctx->send_root; 4366 struct btrfs_fs_info *fs_info = root->fs_info; 4367 struct inode *inode; 4368 struct page *page; 4369 char *addr; 4370 struct btrfs_key key; 4371 pgoff_t index = offset >> PAGE_CACHE_SHIFT; 4372 pgoff_t last_index; 4373 unsigned pg_offset = offset & ~PAGE_CACHE_MASK; 4374 ssize_t ret = 0; 4375 4376 key.objectid = sctx->cur_ino; 4377 key.type = BTRFS_INODE_ITEM_KEY; 4378 key.offset = 0; 4379 4380 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4381 if (IS_ERR(inode)) 4382 return PTR_ERR(inode); 4383 4384 if (offset + len > i_size_read(inode)) { 4385 if (offset > i_size_read(inode)) 4386 len = 0; 4387 else 4388 len = offset - i_size_read(inode); 4389 } 4390 if (len == 0) 4391 goto out; 4392 4393 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT; 4394 4395 /* initial readahead */ 4396 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4397 file_ra_state_init(&sctx->ra, inode->i_mapping); 4398 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index, 4399 last_index - index + 1); 4400 4401 while (index <= last_index) { 4402 unsigned cur_len = min_t(unsigned, len, 4403 PAGE_CACHE_SIZE - pg_offset); 4404 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4405 if (!page) { 4406 ret = -ENOMEM; 4407 break; 4408 } 4409 4410 if (!PageUptodate(page)) { 4411 btrfs_readpage(NULL, page); 4412 lock_page(page); 4413 if (!PageUptodate(page)) { 4414 unlock_page(page); 4415 page_cache_release(page); 4416 ret = -EIO; 4417 break; 4418 } 4419 } 4420 4421 addr = kmap(page); 4422 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4423 kunmap(page); 4424 unlock_page(page); 4425 page_cache_release(page); 4426 index++; 4427 pg_offset = 0; 4428 len -= cur_len; 4429 ret += cur_len; 4430 } 4431out: 4432 iput(inode); 4433 return ret; 4434} 4435 4436/* 4437 * Read some bytes from the current inode/file and send a write command to 4438 * user space. 4439 */ 4440static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4441{ 4442 int ret = 0; 4443 struct fs_path *p; 4444 ssize_t num_read = 0; 4445 4446 p = fs_path_alloc(); 4447 if (!p) 4448 return -ENOMEM; 4449 4450verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 4451 4452 num_read = fill_read_buf(sctx, offset, len); 4453 if (num_read <= 0) { 4454 if (num_read < 0) 4455 ret = num_read; 4456 goto out; 4457 } 4458 4459 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4460 if (ret < 0) 4461 goto out; 4462 4463 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4464 if (ret < 0) 4465 goto out; 4466 4467 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4468 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4469 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4470 4471 ret = send_cmd(sctx); 4472 4473tlv_put_failure: 4474out: 4475 fs_path_free(p); 4476 if (ret < 0) 4477 return ret; 4478 return num_read; 4479} 4480 4481/* 4482 * Send a clone command to user space. 4483 */ 4484static int send_clone(struct send_ctx *sctx, 4485 u64 offset, u32 len, 4486 struct clone_root *clone_root) 4487{ 4488 int ret = 0; 4489 struct fs_path *p; 4490 u64 gen; 4491 4492verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 4493 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 4494 clone_root->root->objectid, clone_root->ino, 4495 clone_root->offset); 4496 4497 p = fs_path_alloc(); 4498 if (!p) 4499 return -ENOMEM; 4500 4501 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4502 if (ret < 0) 4503 goto out; 4504 4505 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4506 if (ret < 0) 4507 goto out; 4508 4509 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4510 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4511 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4512 4513 if (clone_root->root == sctx->send_root) { 4514 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4515 &gen, NULL, NULL, NULL, NULL); 4516 if (ret < 0) 4517 goto out; 4518 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4519 } else { 4520 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4521 } 4522 if (ret < 0) 4523 goto out; 4524 4525 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4526 clone_root->root->root_item.uuid); 4527 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4528 le64_to_cpu(clone_root->root->root_item.ctransid)); 4529 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4530 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4531 clone_root->offset); 4532 4533 ret = send_cmd(sctx); 4534 4535tlv_put_failure: 4536out: 4537 fs_path_free(p); 4538 return ret; 4539} 4540 4541/* 4542 * Send an update extent command to user space. 4543 */ 4544static int send_update_extent(struct send_ctx *sctx, 4545 u64 offset, u32 len) 4546{ 4547 int ret = 0; 4548 struct fs_path *p; 4549 4550 p = fs_path_alloc(); 4551 if (!p) 4552 return -ENOMEM; 4553 4554 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4555 if (ret < 0) 4556 goto out; 4557 4558 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4559 if (ret < 0) 4560 goto out; 4561 4562 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4563 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4564 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4565 4566 ret = send_cmd(sctx); 4567 4568tlv_put_failure: 4569out: 4570 fs_path_free(p); 4571 return ret; 4572} 4573 4574static int send_hole(struct send_ctx *sctx, u64 end) 4575{ 4576 struct fs_path *p = NULL; 4577 u64 offset = sctx->cur_inode_last_extent; 4578 u64 len; 4579 int ret = 0; 4580 4581 p = fs_path_alloc(); 4582 if (!p) 4583 return -ENOMEM; 4584 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4585 if (ret < 0) 4586 goto tlv_put_failure; 4587 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4588 while (offset < end) { 4589 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4590 4591 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4592 if (ret < 0) 4593 break; 4594 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4595 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4596 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4597 ret = send_cmd(sctx); 4598 if (ret < 0) 4599 break; 4600 offset += len; 4601 } 4602tlv_put_failure: 4603 fs_path_free(p); 4604 return ret; 4605} 4606 4607static int send_write_or_clone(struct send_ctx *sctx, 4608 struct btrfs_path *path, 4609 struct btrfs_key *key, 4610 struct clone_root *clone_root) 4611{ 4612 int ret = 0; 4613 struct btrfs_file_extent_item *ei; 4614 u64 offset = key->offset; 4615 u64 pos = 0; 4616 u64 len; 4617 u32 l; 4618 u8 type; 4619 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 4620 4621 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4622 struct btrfs_file_extent_item); 4623 type = btrfs_file_extent_type(path->nodes[0], ei); 4624 if (type == BTRFS_FILE_EXTENT_INLINE) { 4625 len = btrfs_file_extent_inline_len(path->nodes[0], 4626 path->slots[0], ei); 4627 /* 4628 * it is possible the inline item won't cover the whole page, 4629 * but there may be items after this page. Make 4630 * sure to send the whole thing 4631 */ 4632 len = PAGE_CACHE_ALIGN(len); 4633 } else { 4634 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 4635 } 4636 4637 if (offset + len > sctx->cur_inode_size) 4638 len = sctx->cur_inode_size - offset; 4639 if (len == 0) { 4640 ret = 0; 4641 goto out; 4642 } 4643 4644 if (clone_root && IS_ALIGNED(offset + len, bs)) { 4645 ret = send_clone(sctx, offset, len, clone_root); 4646 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) { 4647 ret = send_update_extent(sctx, offset, len); 4648 } else { 4649 while (pos < len) { 4650 l = len - pos; 4651 if (l > BTRFS_SEND_READ_SIZE) 4652 l = BTRFS_SEND_READ_SIZE; 4653 ret = send_write(sctx, pos + offset, l); 4654 if (ret < 0) 4655 goto out; 4656 if (!ret) 4657 break; 4658 pos += ret; 4659 } 4660 ret = 0; 4661 } 4662out: 4663 return ret; 4664} 4665 4666static int is_extent_unchanged(struct send_ctx *sctx, 4667 struct btrfs_path *left_path, 4668 struct btrfs_key *ekey) 4669{ 4670 int ret = 0; 4671 struct btrfs_key key; 4672 struct btrfs_path *path = NULL; 4673 struct extent_buffer *eb; 4674 int slot; 4675 struct btrfs_key found_key; 4676 struct btrfs_file_extent_item *ei; 4677 u64 left_disknr; 4678 u64 right_disknr; 4679 u64 left_offset; 4680 u64 right_offset; 4681 u64 left_offset_fixed; 4682 u64 left_len; 4683 u64 right_len; 4684 u64 left_gen; 4685 u64 right_gen; 4686 u8 left_type; 4687 u8 right_type; 4688 4689 path = alloc_path_for_send(); 4690 if (!path) 4691 return -ENOMEM; 4692 4693 eb = left_path->nodes[0]; 4694 slot = left_path->slots[0]; 4695 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4696 left_type = btrfs_file_extent_type(eb, ei); 4697 4698 if (left_type != BTRFS_FILE_EXTENT_REG) { 4699 ret = 0; 4700 goto out; 4701 } 4702 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4703 left_len = btrfs_file_extent_num_bytes(eb, ei); 4704 left_offset = btrfs_file_extent_offset(eb, ei); 4705 left_gen = btrfs_file_extent_generation(eb, ei); 4706 4707 /* 4708 * Following comments will refer to these graphics. L is the left 4709 * extents which we are checking at the moment. 1-8 are the right 4710 * extents that we iterate. 4711 * 4712 * |-----L-----| 4713 * |-1-|-2a-|-3-|-4-|-5-|-6-| 4714 * 4715 * |-----L-----| 4716 * |--1--|-2b-|...(same as above) 4717 * 4718 * Alternative situation. Happens on files where extents got split. 4719 * |-----L-----| 4720 * |-----------7-----------|-6-| 4721 * 4722 * Alternative situation. Happens on files which got larger. 4723 * |-----L-----| 4724 * |-8-| 4725 * Nothing follows after 8. 4726 */ 4727 4728 key.objectid = ekey->objectid; 4729 key.type = BTRFS_EXTENT_DATA_KEY; 4730 key.offset = ekey->offset; 4731 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 4732 if (ret < 0) 4733 goto out; 4734 if (ret) { 4735 ret = 0; 4736 goto out; 4737 } 4738 4739 /* 4740 * Handle special case where the right side has no extents at all. 4741 */ 4742 eb = path->nodes[0]; 4743 slot = path->slots[0]; 4744 btrfs_item_key_to_cpu(eb, &found_key, slot); 4745 if (found_key.objectid != key.objectid || 4746 found_key.type != key.type) { 4747 /* If we're a hole then just pretend nothing changed */ 4748 ret = (left_disknr) ? 0 : 1; 4749 goto out; 4750 } 4751 4752 /* 4753 * We're now on 2a, 2b or 7. 4754 */ 4755 key = found_key; 4756 while (key.offset < ekey->offset + left_len) { 4757 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4758 right_type = btrfs_file_extent_type(eb, ei); 4759 if (right_type != BTRFS_FILE_EXTENT_REG) { 4760 ret = 0; 4761 goto out; 4762 } 4763 4764 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4765 right_len = btrfs_file_extent_num_bytes(eb, ei); 4766 right_offset = btrfs_file_extent_offset(eb, ei); 4767 right_gen = btrfs_file_extent_generation(eb, ei); 4768 4769 /* 4770 * Are we at extent 8? If yes, we know the extent is changed. 4771 * This may only happen on the first iteration. 4772 */ 4773 if (found_key.offset + right_len <= ekey->offset) { 4774 /* If we're a hole just pretend nothing changed */ 4775 ret = (left_disknr) ? 0 : 1; 4776 goto out; 4777 } 4778 4779 left_offset_fixed = left_offset; 4780 if (key.offset < ekey->offset) { 4781 /* Fix the right offset for 2a and 7. */ 4782 right_offset += ekey->offset - key.offset; 4783 } else { 4784 /* Fix the left offset for all behind 2a and 2b */ 4785 left_offset_fixed += key.offset - ekey->offset; 4786 } 4787 4788 /* 4789 * Check if we have the same extent. 4790 */ 4791 if (left_disknr != right_disknr || 4792 left_offset_fixed != right_offset || 4793 left_gen != right_gen) { 4794 ret = 0; 4795 goto out; 4796 } 4797 4798 /* 4799 * Go to the next extent. 4800 */ 4801 ret = btrfs_next_item(sctx->parent_root, path); 4802 if (ret < 0) 4803 goto out; 4804 if (!ret) { 4805 eb = path->nodes[0]; 4806 slot = path->slots[0]; 4807 btrfs_item_key_to_cpu(eb, &found_key, slot); 4808 } 4809 if (ret || found_key.objectid != key.objectid || 4810 found_key.type != key.type) { 4811 key.offset += right_len; 4812 break; 4813 } 4814 if (found_key.offset != key.offset + right_len) { 4815 ret = 0; 4816 goto out; 4817 } 4818 key = found_key; 4819 } 4820 4821 /* 4822 * We're now behind the left extent (treat as unchanged) or at the end 4823 * of the right side (treat as changed). 4824 */ 4825 if (key.offset >= ekey->offset + left_len) 4826 ret = 1; 4827 else 4828 ret = 0; 4829 4830 4831out: 4832 btrfs_free_path(path); 4833 return ret; 4834} 4835 4836static int get_last_extent(struct send_ctx *sctx, u64 offset) 4837{ 4838 struct btrfs_path *path; 4839 struct btrfs_root *root = sctx->send_root; 4840 struct btrfs_file_extent_item *fi; 4841 struct btrfs_key key; 4842 u64 extent_end; 4843 u8 type; 4844 int ret; 4845 4846 path = alloc_path_for_send(); 4847 if (!path) 4848 return -ENOMEM; 4849 4850 sctx->cur_inode_last_extent = 0; 4851 4852 key.objectid = sctx->cur_ino; 4853 key.type = BTRFS_EXTENT_DATA_KEY; 4854 key.offset = offset; 4855 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 4856 if (ret < 0) 4857 goto out; 4858 ret = 0; 4859 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4860 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 4861 goto out; 4862 4863 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4864 struct btrfs_file_extent_item); 4865 type = btrfs_file_extent_type(path->nodes[0], fi); 4866 if (type == BTRFS_FILE_EXTENT_INLINE) { 4867 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4868 path->slots[0], fi); 4869 extent_end = ALIGN(key.offset + size, 4870 sctx->send_root->sectorsize); 4871 } else { 4872 extent_end = key.offset + 4873 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4874 } 4875 sctx->cur_inode_last_extent = extent_end; 4876out: 4877 btrfs_free_path(path); 4878 return ret; 4879} 4880 4881static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 4882 struct btrfs_key *key) 4883{ 4884 struct btrfs_file_extent_item *fi; 4885 u64 extent_end; 4886 u8 type; 4887 int ret = 0; 4888 4889 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 4890 return 0; 4891 4892 if (sctx->cur_inode_last_extent == (u64)-1) { 4893 ret = get_last_extent(sctx, key->offset - 1); 4894 if (ret) 4895 return ret; 4896 } 4897 4898 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4899 struct btrfs_file_extent_item); 4900 type = btrfs_file_extent_type(path->nodes[0], fi); 4901 if (type == BTRFS_FILE_EXTENT_INLINE) { 4902 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4903 path->slots[0], fi); 4904 extent_end = ALIGN(key->offset + size, 4905 sctx->send_root->sectorsize); 4906 } else { 4907 extent_end = key->offset + 4908 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4909 } 4910 4911 if (path->slots[0] == 0 && 4912 sctx->cur_inode_last_extent < key->offset) { 4913 /* 4914 * We might have skipped entire leafs that contained only 4915 * file extent items for our current inode. These leafs have 4916 * a generation number smaller (older) than the one in the 4917 * current leaf and the leaf our last extent came from, and 4918 * are located between these 2 leafs. 4919 */ 4920 ret = get_last_extent(sctx, key->offset - 1); 4921 if (ret) 4922 return ret; 4923 } 4924 4925 if (sctx->cur_inode_last_extent < key->offset) 4926 ret = send_hole(sctx, key->offset); 4927 sctx->cur_inode_last_extent = extent_end; 4928 return ret; 4929} 4930 4931static int process_extent(struct send_ctx *sctx, 4932 struct btrfs_path *path, 4933 struct btrfs_key *key) 4934{ 4935 struct clone_root *found_clone = NULL; 4936 int ret = 0; 4937 4938 if (S_ISLNK(sctx->cur_inode_mode)) 4939 return 0; 4940 4941 if (sctx->parent_root && !sctx->cur_inode_new) { 4942 ret = is_extent_unchanged(sctx, path, key); 4943 if (ret < 0) 4944 goto out; 4945 if (ret) { 4946 ret = 0; 4947 goto out_hole; 4948 } 4949 } else { 4950 struct btrfs_file_extent_item *ei; 4951 u8 type; 4952 4953 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4954 struct btrfs_file_extent_item); 4955 type = btrfs_file_extent_type(path->nodes[0], ei); 4956 if (type == BTRFS_FILE_EXTENT_PREALLOC || 4957 type == BTRFS_FILE_EXTENT_REG) { 4958 /* 4959 * The send spec does not have a prealloc command yet, 4960 * so just leave a hole for prealloc'ed extents until 4961 * we have enough commands queued up to justify rev'ing 4962 * the send spec. 4963 */ 4964 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 4965 ret = 0; 4966 goto out; 4967 } 4968 4969 /* Have a hole, just skip it. */ 4970 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 4971 ret = 0; 4972 goto out; 4973 } 4974 } 4975 } 4976 4977 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 4978 sctx->cur_inode_size, &found_clone); 4979 if (ret != -ENOENT && ret < 0) 4980 goto out; 4981 4982 ret = send_write_or_clone(sctx, path, key, found_clone); 4983 if (ret) 4984 goto out; 4985out_hole: 4986 ret = maybe_send_hole(sctx, path, key); 4987out: 4988 return ret; 4989} 4990 4991static int process_all_extents(struct send_ctx *sctx) 4992{ 4993 int ret; 4994 struct btrfs_root *root; 4995 struct btrfs_path *path; 4996 struct btrfs_key key; 4997 struct btrfs_key found_key; 4998 struct extent_buffer *eb; 4999 int slot; 5000 5001 root = sctx->send_root; 5002 path = alloc_path_for_send(); 5003 if (!path) 5004 return -ENOMEM; 5005 5006 key.objectid = sctx->cmp_key->objectid; 5007 key.type = BTRFS_EXTENT_DATA_KEY; 5008 key.offset = 0; 5009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5010 if (ret < 0) 5011 goto out; 5012 5013 while (1) { 5014 eb = path->nodes[0]; 5015 slot = path->slots[0]; 5016 5017 if (slot >= btrfs_header_nritems(eb)) { 5018 ret = btrfs_next_leaf(root, path); 5019 if (ret < 0) { 5020 goto out; 5021 } else if (ret > 0) { 5022 ret = 0; 5023 break; 5024 } 5025 continue; 5026 } 5027 5028 btrfs_item_key_to_cpu(eb, &found_key, slot); 5029 5030 if (found_key.objectid != key.objectid || 5031 found_key.type != key.type) { 5032 ret = 0; 5033 goto out; 5034 } 5035 5036 ret = process_extent(sctx, path, &found_key); 5037 if (ret < 0) 5038 goto out; 5039 5040 path->slots[0]++; 5041 } 5042 5043out: 5044 btrfs_free_path(path); 5045 return ret; 5046} 5047 5048static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5049 int *pending_move, 5050 int *refs_processed) 5051{ 5052 int ret = 0; 5053 5054 if (sctx->cur_ino == 0) 5055 goto out; 5056 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5057 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5058 goto out; 5059 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5060 goto out; 5061 5062 ret = process_recorded_refs(sctx, pending_move); 5063 if (ret < 0) 5064 goto out; 5065 5066 *refs_processed = 1; 5067out: 5068 return ret; 5069} 5070 5071static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5072{ 5073 int ret = 0; 5074 u64 left_mode; 5075 u64 left_uid; 5076 u64 left_gid; 5077 u64 right_mode; 5078 u64 right_uid; 5079 u64 right_gid; 5080 int need_chmod = 0; 5081 int need_chown = 0; 5082 int pending_move = 0; 5083 int refs_processed = 0; 5084 5085 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5086 &refs_processed); 5087 if (ret < 0) 5088 goto out; 5089 5090 /* 5091 * We have processed the refs and thus need to advance send_progress. 5092 * Now, calls to get_cur_xxx will take the updated refs of the current 5093 * inode into account. 5094 * 5095 * On the other hand, if our current inode is a directory and couldn't 5096 * be moved/renamed because its parent was renamed/moved too and it has 5097 * a higher inode number, we can only move/rename our current inode 5098 * after we moved/renamed its parent. Therefore in this case operate on 5099 * the old path (pre move/rename) of our current inode, and the 5100 * move/rename will be performed later. 5101 */ 5102 if (refs_processed && !pending_move) 5103 sctx->send_progress = sctx->cur_ino + 1; 5104 5105 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5106 goto out; 5107 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5108 goto out; 5109 5110 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5111 &left_mode, &left_uid, &left_gid, NULL); 5112 if (ret < 0) 5113 goto out; 5114 5115 if (!sctx->parent_root || sctx->cur_inode_new) { 5116 need_chown = 1; 5117 if (!S_ISLNK(sctx->cur_inode_mode)) 5118 need_chmod = 1; 5119 } else { 5120 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5121 NULL, NULL, &right_mode, &right_uid, 5122 &right_gid, NULL); 5123 if (ret < 0) 5124 goto out; 5125 5126 if (left_uid != right_uid || left_gid != right_gid) 5127 need_chown = 1; 5128 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5129 need_chmod = 1; 5130 } 5131 5132 if (S_ISREG(sctx->cur_inode_mode)) { 5133 if (need_send_hole(sctx)) { 5134 if (sctx->cur_inode_last_extent == (u64)-1 || 5135 sctx->cur_inode_last_extent < 5136 sctx->cur_inode_size) { 5137 ret = get_last_extent(sctx, (u64)-1); 5138 if (ret) 5139 goto out; 5140 } 5141 if (sctx->cur_inode_last_extent < 5142 sctx->cur_inode_size) { 5143 ret = send_hole(sctx, sctx->cur_inode_size); 5144 if (ret) 5145 goto out; 5146 } 5147 } 5148 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5149 sctx->cur_inode_size); 5150 if (ret < 0) 5151 goto out; 5152 } 5153 5154 if (need_chown) { 5155 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5156 left_uid, left_gid); 5157 if (ret < 0) 5158 goto out; 5159 } 5160 if (need_chmod) { 5161 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5162 left_mode); 5163 if (ret < 0) 5164 goto out; 5165 } 5166 5167 /* 5168 * If other directory inodes depended on our current directory 5169 * inode's move/rename, now do their move/rename operations. 5170 */ 5171 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5172 ret = apply_children_dir_moves(sctx); 5173 if (ret) 5174 goto out; 5175 /* 5176 * Need to send that every time, no matter if it actually 5177 * changed between the two trees as we have done changes to 5178 * the inode before. If our inode is a directory and it's 5179 * waiting to be moved/renamed, we will send its utimes when 5180 * it's moved/renamed, therefore we don't need to do it here. 5181 */ 5182 sctx->send_progress = sctx->cur_ino + 1; 5183 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5184 if (ret < 0) 5185 goto out; 5186 } 5187 5188out: 5189 return ret; 5190} 5191 5192static int changed_inode(struct send_ctx *sctx, 5193 enum btrfs_compare_tree_result result) 5194{ 5195 int ret = 0; 5196 struct btrfs_key *key = sctx->cmp_key; 5197 struct btrfs_inode_item *left_ii = NULL; 5198 struct btrfs_inode_item *right_ii = NULL; 5199 u64 left_gen = 0; 5200 u64 right_gen = 0; 5201 5202 sctx->cur_ino = key->objectid; 5203 sctx->cur_inode_new_gen = 0; 5204 sctx->cur_inode_last_extent = (u64)-1; 5205 5206 /* 5207 * Set send_progress to current inode. This will tell all get_cur_xxx 5208 * functions that the current inode's refs are not updated yet. Later, 5209 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5210 */ 5211 sctx->send_progress = sctx->cur_ino; 5212 5213 if (result == BTRFS_COMPARE_TREE_NEW || 5214 result == BTRFS_COMPARE_TREE_CHANGED) { 5215 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5216 sctx->left_path->slots[0], 5217 struct btrfs_inode_item); 5218 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5219 left_ii); 5220 } else { 5221 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5222 sctx->right_path->slots[0], 5223 struct btrfs_inode_item); 5224 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5225 right_ii); 5226 } 5227 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5228 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5229 sctx->right_path->slots[0], 5230 struct btrfs_inode_item); 5231 5232 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5233 right_ii); 5234 5235 /* 5236 * The cur_ino = root dir case is special here. We can't treat 5237 * the inode as deleted+reused because it would generate a 5238 * stream that tries to delete/mkdir the root dir. 5239 */ 5240 if (left_gen != right_gen && 5241 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5242 sctx->cur_inode_new_gen = 1; 5243 } 5244 5245 if (result == BTRFS_COMPARE_TREE_NEW) { 5246 sctx->cur_inode_gen = left_gen; 5247 sctx->cur_inode_new = 1; 5248 sctx->cur_inode_deleted = 0; 5249 sctx->cur_inode_size = btrfs_inode_size( 5250 sctx->left_path->nodes[0], left_ii); 5251 sctx->cur_inode_mode = btrfs_inode_mode( 5252 sctx->left_path->nodes[0], left_ii); 5253 sctx->cur_inode_rdev = btrfs_inode_rdev( 5254 sctx->left_path->nodes[0], left_ii); 5255 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5256 ret = send_create_inode_if_needed(sctx); 5257 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5258 sctx->cur_inode_gen = right_gen; 5259 sctx->cur_inode_new = 0; 5260 sctx->cur_inode_deleted = 1; 5261 sctx->cur_inode_size = btrfs_inode_size( 5262 sctx->right_path->nodes[0], right_ii); 5263 sctx->cur_inode_mode = btrfs_inode_mode( 5264 sctx->right_path->nodes[0], right_ii); 5265 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5266 /* 5267 * We need to do some special handling in case the inode was 5268 * reported as changed with a changed generation number. This 5269 * means that the original inode was deleted and new inode 5270 * reused the same inum. So we have to treat the old inode as 5271 * deleted and the new one as new. 5272 */ 5273 if (sctx->cur_inode_new_gen) { 5274 /* 5275 * First, process the inode as if it was deleted. 5276 */ 5277 sctx->cur_inode_gen = right_gen; 5278 sctx->cur_inode_new = 0; 5279 sctx->cur_inode_deleted = 1; 5280 sctx->cur_inode_size = btrfs_inode_size( 5281 sctx->right_path->nodes[0], right_ii); 5282 sctx->cur_inode_mode = btrfs_inode_mode( 5283 sctx->right_path->nodes[0], right_ii); 5284 ret = process_all_refs(sctx, 5285 BTRFS_COMPARE_TREE_DELETED); 5286 if (ret < 0) 5287 goto out; 5288 5289 /* 5290 * Now process the inode as if it was new. 5291 */ 5292 sctx->cur_inode_gen = left_gen; 5293 sctx->cur_inode_new = 1; 5294 sctx->cur_inode_deleted = 0; 5295 sctx->cur_inode_size = btrfs_inode_size( 5296 sctx->left_path->nodes[0], left_ii); 5297 sctx->cur_inode_mode = btrfs_inode_mode( 5298 sctx->left_path->nodes[0], left_ii); 5299 sctx->cur_inode_rdev = btrfs_inode_rdev( 5300 sctx->left_path->nodes[0], left_ii); 5301 ret = send_create_inode_if_needed(sctx); 5302 if (ret < 0) 5303 goto out; 5304 5305 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5306 if (ret < 0) 5307 goto out; 5308 /* 5309 * Advance send_progress now as we did not get into 5310 * process_recorded_refs_if_needed in the new_gen case. 5311 */ 5312 sctx->send_progress = sctx->cur_ino + 1; 5313 5314 /* 5315 * Now process all extents and xattrs of the inode as if 5316 * they were all new. 5317 */ 5318 ret = process_all_extents(sctx); 5319 if (ret < 0) 5320 goto out; 5321 ret = process_all_new_xattrs(sctx); 5322 if (ret < 0) 5323 goto out; 5324 } else { 5325 sctx->cur_inode_gen = left_gen; 5326 sctx->cur_inode_new = 0; 5327 sctx->cur_inode_new_gen = 0; 5328 sctx->cur_inode_deleted = 0; 5329 sctx->cur_inode_size = btrfs_inode_size( 5330 sctx->left_path->nodes[0], left_ii); 5331 sctx->cur_inode_mode = btrfs_inode_mode( 5332 sctx->left_path->nodes[0], left_ii); 5333 } 5334 } 5335 5336out: 5337 return ret; 5338} 5339 5340/* 5341 * We have to process new refs before deleted refs, but compare_trees gives us 5342 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5343 * first and later process them in process_recorded_refs. 5344 * For the cur_inode_new_gen case, we skip recording completely because 5345 * changed_inode did already initiate processing of refs. The reason for this is 5346 * that in this case, compare_tree actually compares the refs of 2 different 5347 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5348 * refs of the right tree as deleted and all refs of the left tree as new. 5349 */ 5350static int changed_ref(struct send_ctx *sctx, 5351 enum btrfs_compare_tree_result result) 5352{ 5353 int ret = 0; 5354 5355 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5356 5357 if (!sctx->cur_inode_new_gen && 5358 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5359 if (result == BTRFS_COMPARE_TREE_NEW) 5360 ret = record_new_ref(sctx); 5361 else if (result == BTRFS_COMPARE_TREE_DELETED) 5362 ret = record_deleted_ref(sctx); 5363 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5364 ret = record_changed_ref(sctx); 5365 } 5366 5367 return ret; 5368} 5369 5370/* 5371 * Process new/deleted/changed xattrs. We skip processing in the 5372 * cur_inode_new_gen case because changed_inode did already initiate processing 5373 * of xattrs. The reason is the same as in changed_ref 5374 */ 5375static int changed_xattr(struct send_ctx *sctx, 5376 enum btrfs_compare_tree_result result) 5377{ 5378 int ret = 0; 5379 5380 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5381 5382 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5383 if (result == BTRFS_COMPARE_TREE_NEW) 5384 ret = process_new_xattr(sctx); 5385 else if (result == BTRFS_COMPARE_TREE_DELETED) 5386 ret = process_deleted_xattr(sctx); 5387 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5388 ret = process_changed_xattr(sctx); 5389 } 5390 5391 return ret; 5392} 5393 5394/* 5395 * Process new/deleted/changed extents. We skip processing in the 5396 * cur_inode_new_gen case because changed_inode did already initiate processing 5397 * of extents. The reason is the same as in changed_ref 5398 */ 5399static int changed_extent(struct send_ctx *sctx, 5400 enum btrfs_compare_tree_result result) 5401{ 5402 int ret = 0; 5403 5404 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5405 5406 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5407 if (result != BTRFS_COMPARE_TREE_DELETED) 5408 ret = process_extent(sctx, sctx->left_path, 5409 sctx->cmp_key); 5410 } 5411 5412 return ret; 5413} 5414 5415static int dir_changed(struct send_ctx *sctx, u64 dir) 5416{ 5417 u64 orig_gen, new_gen; 5418 int ret; 5419 5420 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 5421 NULL, NULL); 5422 if (ret) 5423 return ret; 5424 5425 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 5426 NULL, NULL, NULL); 5427 if (ret) 5428 return ret; 5429 5430 return (orig_gen != new_gen) ? 1 : 0; 5431} 5432 5433static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 5434 struct btrfs_key *key) 5435{ 5436 struct btrfs_inode_extref *extref; 5437 struct extent_buffer *leaf; 5438 u64 dirid = 0, last_dirid = 0; 5439 unsigned long ptr; 5440 u32 item_size; 5441 u32 cur_offset = 0; 5442 int ref_name_len; 5443 int ret = 0; 5444 5445 /* Easy case, just check this one dirid */ 5446 if (key->type == BTRFS_INODE_REF_KEY) { 5447 dirid = key->offset; 5448 5449 ret = dir_changed(sctx, dirid); 5450 goto out; 5451 } 5452 5453 leaf = path->nodes[0]; 5454 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 5455 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 5456 while (cur_offset < item_size) { 5457 extref = (struct btrfs_inode_extref *)(ptr + 5458 cur_offset); 5459 dirid = btrfs_inode_extref_parent(leaf, extref); 5460 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 5461 cur_offset += ref_name_len + sizeof(*extref); 5462 if (dirid == last_dirid) 5463 continue; 5464 ret = dir_changed(sctx, dirid); 5465 if (ret) 5466 break; 5467 last_dirid = dirid; 5468 } 5469out: 5470 return ret; 5471} 5472 5473/* 5474 * Updates compare related fields in sctx and simply forwards to the actual 5475 * changed_xxx functions. 5476 */ 5477static int changed_cb(struct btrfs_root *left_root, 5478 struct btrfs_root *right_root, 5479 struct btrfs_path *left_path, 5480 struct btrfs_path *right_path, 5481 struct btrfs_key *key, 5482 enum btrfs_compare_tree_result result, 5483 void *ctx) 5484{ 5485 int ret = 0; 5486 struct send_ctx *sctx = ctx; 5487 5488 if (result == BTRFS_COMPARE_TREE_SAME) { 5489 if (key->type == BTRFS_INODE_REF_KEY || 5490 key->type == BTRFS_INODE_EXTREF_KEY) { 5491 ret = compare_refs(sctx, left_path, key); 5492 if (!ret) 5493 return 0; 5494 if (ret < 0) 5495 return ret; 5496 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 5497 return maybe_send_hole(sctx, left_path, key); 5498 } else { 5499 return 0; 5500 } 5501 result = BTRFS_COMPARE_TREE_CHANGED; 5502 ret = 0; 5503 } 5504 5505 sctx->left_path = left_path; 5506 sctx->right_path = right_path; 5507 sctx->cmp_key = key; 5508 5509 ret = finish_inode_if_needed(sctx, 0); 5510 if (ret < 0) 5511 goto out; 5512 5513 /* Ignore non-FS objects */ 5514 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 5515 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 5516 goto out; 5517 5518 if (key->type == BTRFS_INODE_ITEM_KEY) 5519 ret = changed_inode(sctx, result); 5520 else if (key->type == BTRFS_INODE_REF_KEY || 5521 key->type == BTRFS_INODE_EXTREF_KEY) 5522 ret = changed_ref(sctx, result); 5523 else if (key->type == BTRFS_XATTR_ITEM_KEY) 5524 ret = changed_xattr(sctx, result); 5525 else if (key->type == BTRFS_EXTENT_DATA_KEY) 5526 ret = changed_extent(sctx, result); 5527 5528out: 5529 return ret; 5530} 5531 5532static int full_send_tree(struct send_ctx *sctx) 5533{ 5534 int ret; 5535 struct btrfs_root *send_root = sctx->send_root; 5536 struct btrfs_key key; 5537 struct btrfs_key found_key; 5538 struct btrfs_path *path; 5539 struct extent_buffer *eb; 5540 int slot; 5541 5542 path = alloc_path_for_send(); 5543 if (!path) 5544 return -ENOMEM; 5545 5546 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 5547 key.type = BTRFS_INODE_ITEM_KEY; 5548 key.offset = 0; 5549 5550 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 5551 if (ret < 0) 5552 goto out; 5553 if (ret) 5554 goto out_finish; 5555 5556 while (1) { 5557 eb = path->nodes[0]; 5558 slot = path->slots[0]; 5559 btrfs_item_key_to_cpu(eb, &found_key, slot); 5560 5561 ret = changed_cb(send_root, NULL, path, NULL, 5562 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 5563 if (ret < 0) 5564 goto out; 5565 5566 key.objectid = found_key.objectid; 5567 key.type = found_key.type; 5568 key.offset = found_key.offset + 1; 5569 5570 ret = btrfs_next_item(send_root, path); 5571 if (ret < 0) 5572 goto out; 5573 if (ret) { 5574 ret = 0; 5575 break; 5576 } 5577 } 5578 5579out_finish: 5580 ret = finish_inode_if_needed(sctx, 1); 5581 5582out: 5583 btrfs_free_path(path); 5584 return ret; 5585} 5586 5587static int send_subvol(struct send_ctx *sctx) 5588{ 5589 int ret; 5590 5591 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 5592 ret = send_header(sctx); 5593 if (ret < 0) 5594 goto out; 5595 } 5596 5597 ret = send_subvol_begin(sctx); 5598 if (ret < 0) 5599 goto out; 5600 5601 if (sctx->parent_root) { 5602 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 5603 changed_cb, sctx); 5604 if (ret < 0) 5605 goto out; 5606 ret = finish_inode_if_needed(sctx, 1); 5607 if (ret < 0) 5608 goto out; 5609 } else { 5610 ret = full_send_tree(sctx); 5611 if (ret < 0) 5612 goto out; 5613 } 5614 5615out: 5616 free_recorded_refs(sctx); 5617 return ret; 5618} 5619 5620/* 5621 * If orphan cleanup did remove any orphans from a root, it means the tree 5622 * was modified and therefore the commit root is not the same as the current 5623 * root anymore. This is a problem, because send uses the commit root and 5624 * therefore can see inode items that don't exist in the current root anymore, 5625 * and for example make calls to btrfs_iget, which will do tree lookups based 5626 * on the current root and not on the commit root. Those lookups will fail, 5627 * returning a -ESTALE error, and making send fail with that error. So make 5628 * sure a send does not see any orphans we have just removed, and that it will 5629 * see the same inodes regardless of whether a transaction commit happened 5630 * before it started (meaning that the commit root will be the same as the 5631 * current root) or not. 5632 */ 5633static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 5634{ 5635 int i; 5636 struct btrfs_trans_handle *trans = NULL; 5637 5638again: 5639 if (sctx->parent_root && 5640 sctx->parent_root->node != sctx->parent_root->commit_root) 5641 goto commit_trans; 5642 5643 for (i = 0; i < sctx->clone_roots_cnt; i++) 5644 if (sctx->clone_roots[i].root->node != 5645 sctx->clone_roots[i].root->commit_root) 5646 goto commit_trans; 5647 5648 if (trans) 5649 return btrfs_end_transaction(trans, sctx->send_root); 5650 5651 return 0; 5652 5653commit_trans: 5654 /* Use any root, all fs roots will get their commit roots updated. */ 5655 if (!trans) { 5656 trans = btrfs_join_transaction(sctx->send_root); 5657 if (IS_ERR(trans)) 5658 return PTR_ERR(trans); 5659 goto again; 5660 } 5661 5662 return btrfs_commit_transaction(trans, sctx->send_root); 5663} 5664 5665static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 5666{ 5667 spin_lock(&root->root_item_lock); 5668 root->send_in_progress--; 5669 /* 5670 * Not much left to do, we don't know why it's unbalanced and 5671 * can't blindly reset it to 0. 5672 */ 5673 if (root->send_in_progress < 0) 5674 btrfs_err(root->fs_info, 5675 "send_in_progres unbalanced %d root %llu", 5676 root->send_in_progress, root->root_key.objectid); 5677 spin_unlock(&root->root_item_lock); 5678} 5679 5680long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 5681{ 5682 int ret = 0; 5683 struct btrfs_root *send_root; 5684 struct btrfs_root *clone_root; 5685 struct btrfs_fs_info *fs_info; 5686 struct btrfs_ioctl_send_args *arg = NULL; 5687 struct btrfs_key key; 5688 struct send_ctx *sctx = NULL; 5689 u32 i; 5690 u64 *clone_sources_tmp = NULL; 5691 int clone_sources_to_rollback = 0; 5692 int sort_clone_roots = 0; 5693 int index; 5694 5695 if (!capable(CAP_SYS_ADMIN)) 5696 return -EPERM; 5697 5698 send_root = BTRFS_I(file_inode(mnt_file))->root; 5699 fs_info = send_root->fs_info; 5700 5701 /* 5702 * The subvolume must remain read-only during send, protect against 5703 * making it RW. This also protects against deletion. 5704 */ 5705 spin_lock(&send_root->root_item_lock); 5706 send_root->send_in_progress++; 5707 spin_unlock(&send_root->root_item_lock); 5708 5709 /* 5710 * This is done when we lookup the root, it should already be complete 5711 * by the time we get here. 5712 */ 5713 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 5714 5715 /* 5716 * Userspace tools do the checks and warn the user if it's 5717 * not RO. 5718 */ 5719 if (!btrfs_root_readonly(send_root)) { 5720 ret = -EPERM; 5721 goto out; 5722 } 5723 5724 arg = memdup_user(arg_, sizeof(*arg)); 5725 if (IS_ERR(arg)) { 5726 ret = PTR_ERR(arg); 5727 arg = NULL; 5728 goto out; 5729 } 5730 5731 if (!access_ok(VERIFY_READ, arg->clone_sources, 5732 sizeof(*arg->clone_sources) * 5733 arg->clone_sources_count)) { 5734 ret = -EFAULT; 5735 goto out; 5736 } 5737 5738 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 5739 ret = -EINVAL; 5740 goto out; 5741 } 5742 5743 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 5744 if (!sctx) { 5745 ret = -ENOMEM; 5746 goto out; 5747 } 5748 5749 INIT_LIST_HEAD(&sctx->new_refs); 5750 INIT_LIST_HEAD(&sctx->deleted_refs); 5751 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 5752 INIT_LIST_HEAD(&sctx->name_cache_list); 5753 5754 sctx->flags = arg->flags; 5755 5756 sctx->send_filp = fget(arg->send_fd); 5757 if (!sctx->send_filp) { 5758 ret = -EBADF; 5759 goto out; 5760 } 5761 5762 sctx->send_root = send_root; 5763 /* 5764 * Unlikely but possible, if the subvolume is marked for deletion but 5765 * is slow to remove the directory entry, send can still be started 5766 */ 5767 if (btrfs_root_dead(sctx->send_root)) { 5768 ret = -EPERM; 5769 goto out; 5770 } 5771 5772 sctx->clone_roots_cnt = arg->clone_sources_count; 5773 5774 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 5775 sctx->send_buf = vmalloc(sctx->send_max_size); 5776 if (!sctx->send_buf) { 5777 ret = -ENOMEM; 5778 goto out; 5779 } 5780 5781 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 5782 if (!sctx->read_buf) { 5783 ret = -ENOMEM; 5784 goto out; 5785 } 5786 5787 sctx->pending_dir_moves = RB_ROOT; 5788 sctx->waiting_dir_moves = RB_ROOT; 5789 sctx->orphan_dirs = RB_ROOT; 5790 5791 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 5792 (arg->clone_sources_count + 1)); 5793 if (!sctx->clone_roots) { 5794 ret = -ENOMEM; 5795 goto out; 5796 } 5797 5798 if (arg->clone_sources_count) { 5799 clone_sources_tmp = vmalloc(arg->clone_sources_count * 5800 sizeof(*arg->clone_sources)); 5801 if (!clone_sources_tmp) { 5802 ret = -ENOMEM; 5803 goto out; 5804 } 5805 5806 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 5807 arg->clone_sources_count * 5808 sizeof(*arg->clone_sources)); 5809 if (ret) { 5810 ret = -EFAULT; 5811 goto out; 5812 } 5813 5814 for (i = 0; i < arg->clone_sources_count; i++) { 5815 key.objectid = clone_sources_tmp[i]; 5816 key.type = BTRFS_ROOT_ITEM_KEY; 5817 key.offset = (u64)-1; 5818 5819 index = srcu_read_lock(&fs_info->subvol_srcu); 5820 5821 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 5822 if (IS_ERR(clone_root)) { 5823 srcu_read_unlock(&fs_info->subvol_srcu, index); 5824 ret = PTR_ERR(clone_root); 5825 goto out; 5826 } 5827 spin_lock(&clone_root->root_item_lock); 5828 if (!btrfs_root_readonly(clone_root) || 5829 btrfs_root_dead(clone_root)) { 5830 spin_unlock(&clone_root->root_item_lock); 5831 srcu_read_unlock(&fs_info->subvol_srcu, index); 5832 ret = -EPERM; 5833 goto out; 5834 } 5835 clone_root->send_in_progress++; 5836 spin_unlock(&clone_root->root_item_lock); 5837 srcu_read_unlock(&fs_info->subvol_srcu, index); 5838 5839 sctx->clone_roots[i].root = clone_root; 5840 clone_sources_to_rollback = i + 1; 5841 } 5842 vfree(clone_sources_tmp); 5843 clone_sources_tmp = NULL; 5844 } 5845 5846 if (arg->parent_root) { 5847 key.objectid = arg->parent_root; 5848 key.type = BTRFS_ROOT_ITEM_KEY; 5849 key.offset = (u64)-1; 5850 5851 index = srcu_read_lock(&fs_info->subvol_srcu); 5852 5853 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 5854 if (IS_ERR(sctx->parent_root)) { 5855 srcu_read_unlock(&fs_info->subvol_srcu, index); 5856 ret = PTR_ERR(sctx->parent_root); 5857 goto out; 5858 } 5859 5860 spin_lock(&sctx->parent_root->root_item_lock); 5861 sctx->parent_root->send_in_progress++; 5862 if (!btrfs_root_readonly(sctx->parent_root) || 5863 btrfs_root_dead(sctx->parent_root)) { 5864 spin_unlock(&sctx->parent_root->root_item_lock); 5865 srcu_read_unlock(&fs_info->subvol_srcu, index); 5866 ret = -EPERM; 5867 goto out; 5868 } 5869 spin_unlock(&sctx->parent_root->root_item_lock); 5870 5871 srcu_read_unlock(&fs_info->subvol_srcu, index); 5872 } 5873 5874 /* 5875 * Clones from send_root are allowed, but only if the clone source 5876 * is behind the current send position. This is checked while searching 5877 * for possible clone sources. 5878 */ 5879 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 5880 5881 /* We do a bsearch later */ 5882 sort(sctx->clone_roots, sctx->clone_roots_cnt, 5883 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 5884 NULL); 5885 sort_clone_roots = 1; 5886 5887 ret = ensure_commit_roots_uptodate(sctx); 5888 if (ret) 5889 goto out; 5890 5891 current->journal_info = BTRFS_SEND_TRANS_STUB; 5892 ret = send_subvol(sctx); 5893 current->journal_info = NULL; 5894 if (ret < 0) 5895 goto out; 5896 5897 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 5898 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 5899 if (ret < 0) 5900 goto out; 5901 ret = send_cmd(sctx); 5902 if (ret < 0) 5903 goto out; 5904 } 5905 5906out: 5907 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 5908 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 5909 struct rb_node *n; 5910 struct pending_dir_move *pm; 5911 5912 n = rb_first(&sctx->pending_dir_moves); 5913 pm = rb_entry(n, struct pending_dir_move, node); 5914 while (!list_empty(&pm->list)) { 5915 struct pending_dir_move *pm2; 5916 5917 pm2 = list_first_entry(&pm->list, 5918 struct pending_dir_move, list); 5919 free_pending_move(sctx, pm2); 5920 } 5921 free_pending_move(sctx, pm); 5922 } 5923 5924 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 5925 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 5926 struct rb_node *n; 5927 struct waiting_dir_move *dm; 5928 5929 n = rb_first(&sctx->waiting_dir_moves); 5930 dm = rb_entry(n, struct waiting_dir_move, node); 5931 rb_erase(&dm->node, &sctx->waiting_dir_moves); 5932 kfree(dm); 5933 } 5934 5935 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 5936 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 5937 struct rb_node *n; 5938 struct orphan_dir_info *odi; 5939 5940 n = rb_first(&sctx->orphan_dirs); 5941 odi = rb_entry(n, struct orphan_dir_info, node); 5942 free_orphan_dir_info(sctx, odi); 5943 } 5944 5945 if (sort_clone_roots) { 5946 for (i = 0; i < sctx->clone_roots_cnt; i++) 5947 btrfs_root_dec_send_in_progress( 5948 sctx->clone_roots[i].root); 5949 } else { 5950 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 5951 btrfs_root_dec_send_in_progress( 5952 sctx->clone_roots[i].root); 5953 5954 btrfs_root_dec_send_in_progress(send_root); 5955 } 5956 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 5957 btrfs_root_dec_send_in_progress(sctx->parent_root); 5958 5959 kfree(arg); 5960 vfree(clone_sources_tmp); 5961 5962 if (sctx) { 5963 if (sctx->send_filp) 5964 fput(sctx->send_filp); 5965 5966 vfree(sctx->clone_roots); 5967 vfree(sctx->send_buf); 5968 vfree(sctx->read_buf); 5969 5970 name_cache_free(sctx); 5971 5972 kfree(sctx); 5973 } 5974 5975 return ret; 5976} 5977