1/* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19#include <linux/fs.h> 20#include <linux/pagemap.h> 21#include <linux/highmem.h> 22#include <linux/time.h> 23#include <linux/init.h> 24#include <linux/string.h> 25#include <linux/backing-dev.h> 26#include <linux/mpage.h> 27#include <linux/falloc.h> 28#include <linux/swap.h> 29#include <linux/writeback.h> 30#include <linux/statfs.h> 31#include <linux/compat.h> 32#include <linux/slab.h> 33#include <linux/btrfs.h> 34#include <linux/uio.h> 35#include "ctree.h" 36#include "disk-io.h" 37#include "transaction.h" 38#include "btrfs_inode.h" 39#include "print-tree.h" 40#include "tree-log.h" 41#include "locking.h" 42#include "volumes.h" 43#include "qgroup.h" 44 45static struct kmem_cache *btrfs_inode_defrag_cachep; 46/* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69}; 70 71static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73{ 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84} 85 86/* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97{ 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130} 131 132static inline int __need_auto_defrag(struct btrfs_root *root) 133{ 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141} 142 143/* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149{ 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189} 190 191/* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198{ 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217} 218 219/* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223static struct inode_defrag * 224btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225{ 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262} 263 264void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265{ 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 cond_resched_lock(&fs_info->defrag_inodes_lock); 277 278 node = rb_first(&fs_info->defrag_inodes); 279 } 280 spin_unlock(&fs_info->defrag_inodes_lock); 281} 282 283#define BTRFS_DEFRAG_BATCH 1024 284 285static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 286 struct inode_defrag *defrag) 287{ 288 struct btrfs_root *inode_root; 289 struct inode *inode; 290 struct btrfs_key key; 291 struct btrfs_ioctl_defrag_range_args range; 292 int num_defrag; 293 int index; 294 int ret; 295 296 /* get the inode */ 297 key.objectid = defrag->root; 298 key.type = BTRFS_ROOT_ITEM_KEY; 299 key.offset = (u64)-1; 300 301 index = srcu_read_lock(&fs_info->subvol_srcu); 302 303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 304 if (IS_ERR(inode_root)) { 305 ret = PTR_ERR(inode_root); 306 goto cleanup; 307 } 308 309 key.objectid = defrag->ino; 310 key.type = BTRFS_INODE_ITEM_KEY; 311 key.offset = 0; 312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 313 if (IS_ERR(inode)) { 314 ret = PTR_ERR(inode); 315 goto cleanup; 316 } 317 srcu_read_unlock(&fs_info->subvol_srcu, index); 318 319 /* do a chunk of defrag */ 320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 321 memset(&range, 0, sizeof(range)); 322 range.len = (u64)-1; 323 range.start = defrag->last_offset; 324 325 sb_start_write(fs_info->sb); 326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 327 BTRFS_DEFRAG_BATCH); 328 sb_end_write(fs_info->sb); 329 /* 330 * if we filled the whole defrag batch, there 331 * must be more work to do. Queue this defrag 332 * again 333 */ 334 if (num_defrag == BTRFS_DEFRAG_BATCH) { 335 defrag->last_offset = range.start; 336 btrfs_requeue_inode_defrag(inode, defrag); 337 } else if (defrag->last_offset && !defrag->cycled) { 338 /* 339 * we didn't fill our defrag batch, but 340 * we didn't start at zero. Make sure we loop 341 * around to the start of the file. 342 */ 343 defrag->last_offset = 0; 344 defrag->cycled = 1; 345 btrfs_requeue_inode_defrag(inode, defrag); 346 } else { 347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 348 } 349 350 iput(inode); 351 return 0; 352cleanup: 353 srcu_read_unlock(&fs_info->subvol_srcu, index); 354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 355 return ret; 356} 357 358/* 359 * run through the list of inodes in the FS that need 360 * defragging 361 */ 362int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 363{ 364 struct inode_defrag *defrag; 365 u64 first_ino = 0; 366 u64 root_objectid = 0; 367 368 atomic_inc(&fs_info->defrag_running); 369 while (1) { 370 /* Pause the auto defragger. */ 371 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 372 &fs_info->fs_state)) 373 break; 374 375 if (!__need_auto_defrag(fs_info->tree_root)) 376 break; 377 378 /* find an inode to defrag */ 379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 380 first_ino); 381 if (!defrag) { 382 if (root_objectid || first_ino) { 383 root_objectid = 0; 384 first_ino = 0; 385 continue; 386 } else { 387 break; 388 } 389 } 390 391 first_ino = defrag->ino + 1; 392 root_objectid = defrag->root; 393 394 __btrfs_run_defrag_inode(fs_info, defrag); 395 } 396 atomic_dec(&fs_info->defrag_running); 397 398 /* 399 * during unmount, we use the transaction_wait queue to 400 * wait for the defragger to stop 401 */ 402 wake_up(&fs_info->transaction_wait); 403 return 0; 404} 405 406/* simple helper to fault in pages and copy. This should go away 407 * and be replaced with calls into generic code. 408 */ 409static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 410 size_t write_bytes, 411 struct page **prepared_pages, 412 struct iov_iter *i) 413{ 414 size_t copied = 0; 415 size_t total_copied = 0; 416 int pg = 0; 417 int offset = pos & (PAGE_CACHE_SIZE - 1); 418 419 while (write_bytes > 0) { 420 size_t count = min_t(size_t, 421 PAGE_CACHE_SIZE - offset, write_bytes); 422 struct page *page = prepared_pages[pg]; 423 /* 424 * Copy data from userspace to the current page 425 */ 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 427 428 /* Flush processor's dcache for this page */ 429 flush_dcache_page(page); 430 431 /* 432 * if we get a partial write, we can end up with 433 * partially up to date pages. These add 434 * a lot of complexity, so make sure they don't 435 * happen by forcing this copy to be retried. 436 * 437 * The rest of the btrfs_file_write code will fall 438 * back to page at a time copies after we return 0. 439 */ 440 if (!PageUptodate(page) && copied < count) 441 copied = 0; 442 443 iov_iter_advance(i, copied); 444 write_bytes -= copied; 445 total_copied += copied; 446 447 /* Return to btrfs_file_write_iter to fault page */ 448 if (unlikely(copied == 0)) 449 break; 450 451 if (copied < PAGE_CACHE_SIZE - offset) { 452 offset += copied; 453 } else { 454 pg++; 455 offset = 0; 456 } 457 } 458 return total_copied; 459} 460 461/* 462 * unlocks pages after btrfs_file_write is done with them 463 */ 464static void btrfs_drop_pages(struct page **pages, size_t num_pages) 465{ 466 size_t i; 467 for (i = 0; i < num_pages; i++) { 468 /* page checked is some magic around finding pages that 469 * have been modified without going through btrfs_set_page_dirty 470 * clear it here. There should be no need to mark the pages 471 * accessed as prepare_pages should have marked them accessed 472 * in prepare_pages via find_or_create_page() 473 */ 474 ClearPageChecked(pages[i]); 475 unlock_page(pages[i]); 476 page_cache_release(pages[i]); 477 } 478} 479 480/* 481 * after copy_from_user, pages need to be dirtied and we need to make 482 * sure holes are created between the current EOF and the start of 483 * any next extents (if required). 484 * 485 * this also makes the decision about creating an inline extent vs 486 * doing real data extents, marking pages dirty and delalloc as required. 487 */ 488int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 489 struct page **pages, size_t num_pages, 490 loff_t pos, size_t write_bytes, 491 struct extent_state **cached) 492{ 493 int err = 0; 494 int i; 495 u64 num_bytes; 496 u64 start_pos; 497 u64 end_of_last_block; 498 u64 end_pos = pos + write_bytes; 499 loff_t isize = i_size_read(inode); 500 501 start_pos = pos & ~((u64)root->sectorsize - 1); 502 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 503 504 end_of_last_block = start_pos + num_bytes - 1; 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 506 cached); 507 if (err) 508 return err; 509 510 for (i = 0; i < num_pages; i++) { 511 struct page *p = pages[i]; 512 SetPageUptodate(p); 513 ClearPageChecked(p); 514 set_page_dirty(p); 515 } 516 517 /* 518 * we've only changed i_size in ram, and we haven't updated 519 * the disk i_size. There is no need to log the inode 520 * at this time. 521 */ 522 if (end_pos > isize) 523 i_size_write(inode, end_pos); 524 return 0; 525} 526 527/* 528 * this drops all the extents in the cache that intersect the range 529 * [start, end]. Existing extents are split as required. 530 */ 531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 532 int skip_pinned) 533{ 534 struct extent_map *em; 535 struct extent_map *split = NULL; 536 struct extent_map *split2 = NULL; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 u64 len = end - start + 1; 539 u64 gen; 540 int ret; 541 int testend = 1; 542 unsigned long flags; 543 int compressed = 0; 544 bool modified; 545 546 WARN_ON(end < start); 547 if (end == (u64)-1) { 548 len = (u64)-1; 549 testend = 0; 550 } 551 while (1) { 552 int no_splits = 0; 553 554 modified = false; 555 if (!split) 556 split = alloc_extent_map(); 557 if (!split2) 558 split2 = alloc_extent_map(); 559 if (!split || !split2) 560 no_splits = 1; 561 562 write_lock(&em_tree->lock); 563 em = lookup_extent_mapping(em_tree, start, len); 564 if (!em) { 565 write_unlock(&em_tree->lock); 566 break; 567 } 568 flags = em->flags; 569 gen = em->generation; 570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 571 if (testend && em->start + em->len >= start + len) { 572 free_extent_map(em); 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 start = em->start + em->len; 577 if (testend) 578 len = start + len - (em->start + em->len); 579 free_extent_map(em); 580 write_unlock(&em_tree->lock); 581 continue; 582 } 583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 584 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 585 clear_bit(EXTENT_FLAG_LOGGING, &flags); 586 modified = !list_empty(&em->list); 587 if (no_splits) 588 goto next; 589 590 if (em->start < start) { 591 split->start = em->start; 592 split->len = start - em->start; 593 594 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 595 split->orig_start = em->orig_start; 596 split->block_start = em->block_start; 597 598 if (compressed) 599 split->block_len = em->block_len; 600 else 601 split->block_len = split->len; 602 split->orig_block_len = max(split->block_len, 603 em->orig_block_len); 604 split->ram_bytes = em->ram_bytes; 605 } else { 606 split->orig_start = split->start; 607 split->block_len = 0; 608 split->block_start = em->block_start; 609 split->orig_block_len = 0; 610 split->ram_bytes = split->len; 611 } 612 613 split->generation = gen; 614 split->bdev = em->bdev; 615 split->flags = flags; 616 split->compress_type = em->compress_type; 617 replace_extent_mapping(em_tree, em, split, modified); 618 free_extent_map(split); 619 split = split2; 620 split2 = NULL; 621 } 622 if (testend && em->start + em->len > start + len) { 623 u64 diff = start + len - em->start; 624 625 split->start = start + len; 626 split->len = em->start + em->len - (start + len); 627 split->bdev = em->bdev; 628 split->flags = flags; 629 split->compress_type = em->compress_type; 630 split->generation = gen; 631 632 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 633 split->orig_block_len = max(em->block_len, 634 em->orig_block_len); 635 636 split->ram_bytes = em->ram_bytes; 637 if (compressed) { 638 split->block_len = em->block_len; 639 split->block_start = em->block_start; 640 split->orig_start = em->orig_start; 641 } else { 642 split->block_len = split->len; 643 split->block_start = em->block_start 644 + diff; 645 split->orig_start = em->orig_start; 646 } 647 } else { 648 split->ram_bytes = split->len; 649 split->orig_start = split->start; 650 split->block_len = 0; 651 split->block_start = em->block_start; 652 split->orig_block_len = 0; 653 } 654 655 if (extent_map_in_tree(em)) { 656 replace_extent_mapping(em_tree, em, split, 657 modified); 658 } else { 659 ret = add_extent_mapping(em_tree, split, 660 modified); 661 ASSERT(ret == 0); /* Logic error */ 662 } 663 free_extent_map(split); 664 split = NULL; 665 } 666next: 667 if (extent_map_in_tree(em)) 668 remove_extent_mapping(em_tree, em); 669 write_unlock(&em_tree->lock); 670 671 /* once for us */ 672 free_extent_map(em); 673 /* once for the tree*/ 674 free_extent_map(em); 675 } 676 if (split) 677 free_extent_map(split); 678 if (split2) 679 free_extent_map(split2); 680} 681 682/* 683 * this is very complex, but the basic idea is to drop all extents 684 * in the range start - end. hint_block is filled in with a block number 685 * that would be a good hint to the block allocator for this file. 686 * 687 * If an extent intersects the range but is not entirely inside the range 688 * it is either truncated or split. Anything entirely inside the range 689 * is deleted from the tree. 690 */ 691int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 692 struct btrfs_root *root, struct inode *inode, 693 struct btrfs_path *path, u64 start, u64 end, 694 u64 *drop_end, int drop_cache, 695 int replace_extent, 696 u32 extent_item_size, 697 int *key_inserted) 698{ 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *fi; 701 struct btrfs_key key; 702 struct btrfs_key new_key; 703 u64 ino = btrfs_ino(inode); 704 u64 search_start = start; 705 u64 disk_bytenr = 0; 706 u64 num_bytes = 0; 707 u64 extent_offset = 0; 708 u64 extent_end = 0; 709 int del_nr = 0; 710 int del_slot = 0; 711 int extent_type; 712 int recow; 713 int ret; 714 int modify_tree = -1; 715 int update_refs; 716 int found = 0; 717 int leafs_visited = 0; 718 719 if (drop_cache) 720 btrfs_drop_extent_cache(inode, start, end - 1, 0); 721 722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 723 modify_tree = 0; 724 725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 726 root == root->fs_info->tree_root); 727 while (1) { 728 recow = 0; 729 ret = btrfs_lookup_file_extent(trans, root, path, ino, 730 search_start, modify_tree); 731 if (ret < 0) 732 break; 733 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 734 leaf = path->nodes[0]; 735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 736 if (key.objectid == ino && 737 key.type == BTRFS_EXTENT_DATA_KEY) 738 path->slots[0]--; 739 } 740 ret = 0; 741 leafs_visited++; 742next_slot: 743 leaf = path->nodes[0]; 744 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 745 BUG_ON(del_nr > 0); 746 ret = btrfs_next_leaf(root, path); 747 if (ret < 0) 748 break; 749 if (ret > 0) { 750 ret = 0; 751 break; 752 } 753 leafs_visited++; 754 leaf = path->nodes[0]; 755 recow = 1; 756 } 757 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 760 if (key.objectid > ino) 761 break; 762 if (WARN_ON_ONCE(key.objectid < ino) || 763 key.type < BTRFS_EXTENT_DATA_KEY) { 764 ASSERT(del_nr == 0); 765 path->slots[0]++; 766 goto next_slot; 767 } 768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 769 break; 770 771 fi = btrfs_item_ptr(leaf, path->slots[0], 772 struct btrfs_file_extent_item); 773 extent_type = btrfs_file_extent_type(leaf, fi); 774 775 if (extent_type == BTRFS_FILE_EXTENT_REG || 776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 779 extent_offset = btrfs_file_extent_offset(leaf, fi); 780 extent_end = key.offset + 781 btrfs_file_extent_num_bytes(leaf, fi); 782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 783 extent_end = key.offset + 784 btrfs_file_extent_inline_len(leaf, 785 path->slots[0], fi); 786 } else { 787 /* can't happen */ 788 BUG(); 789 } 790 791 /* 792 * Don't skip extent items representing 0 byte lengths. They 793 * used to be created (bug) if while punching holes we hit 794 * -ENOSPC condition. So if we find one here, just ensure we 795 * delete it, otherwise we would insert a new file extent item 796 * with the same key (offset) as that 0 bytes length file 797 * extent item in the call to setup_items_for_insert() later 798 * in this function. 799 */ 800 if (extent_end == key.offset && extent_end >= search_start) 801 goto delete_extent_item; 802 803 if (extent_end <= search_start) { 804 path->slots[0]++; 805 goto next_slot; 806 } 807 808 found = 1; 809 search_start = max(key.offset, start); 810 if (recow || !modify_tree) { 811 modify_tree = -1; 812 btrfs_release_path(path); 813 continue; 814 } 815 816 /* 817 * | - range to drop - | 818 * | -------- extent -------- | 819 */ 820 if (start > key.offset && end < extent_end) { 821 BUG_ON(del_nr > 0); 822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 823 ret = -EOPNOTSUPP; 824 break; 825 } 826 827 memcpy(&new_key, &key, sizeof(new_key)); 828 new_key.offset = start; 829 ret = btrfs_duplicate_item(trans, root, path, 830 &new_key); 831 if (ret == -EAGAIN) { 832 btrfs_release_path(path); 833 continue; 834 } 835 if (ret < 0) 836 break; 837 838 leaf = path->nodes[0]; 839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 840 struct btrfs_file_extent_item); 841 btrfs_set_file_extent_num_bytes(leaf, fi, 842 start - key.offset); 843 844 fi = btrfs_item_ptr(leaf, path->slots[0], 845 struct btrfs_file_extent_item); 846 847 extent_offset += start - key.offset; 848 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 849 btrfs_set_file_extent_num_bytes(leaf, fi, 850 extent_end - start); 851 btrfs_mark_buffer_dirty(leaf); 852 853 if (update_refs && disk_bytenr > 0) { 854 ret = btrfs_inc_extent_ref(trans, root, 855 disk_bytenr, num_bytes, 0, 856 root->root_key.objectid, 857 new_key.objectid, 858 start - extent_offset, 1); 859 BUG_ON(ret); /* -ENOMEM */ 860 } 861 key.offset = start; 862 } 863 /* 864 * | ---- range to drop ----- | 865 * | -------- extent -------- | 866 */ 867 if (start <= key.offset && end < extent_end) { 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = end; 875 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 876 877 extent_offset += end - key.offset; 878 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 879 btrfs_set_file_extent_num_bytes(leaf, fi, 880 extent_end - end); 881 btrfs_mark_buffer_dirty(leaf); 882 if (update_refs && disk_bytenr > 0) 883 inode_sub_bytes(inode, end - key.offset); 884 break; 885 } 886 887 search_start = extent_end; 888 /* 889 * | ---- range to drop ----- | 890 * | -------- extent -------- | 891 */ 892 if (start > key.offset && end >= extent_end) { 893 BUG_ON(del_nr > 0); 894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 895 ret = -EOPNOTSUPP; 896 break; 897 } 898 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 start - key.offset); 901 btrfs_mark_buffer_dirty(leaf); 902 if (update_refs && disk_bytenr > 0) 903 inode_sub_bytes(inode, extent_end - start); 904 if (end == extent_end) 905 break; 906 907 path->slots[0]++; 908 goto next_slot; 909 } 910 911 /* 912 * | ---- range to drop ----- | 913 * | ------ extent ------ | 914 */ 915 if (start <= key.offset && end >= extent_end) { 916delete_extent_item: 917 if (del_nr == 0) { 918 del_slot = path->slots[0]; 919 del_nr = 1; 920 } else { 921 BUG_ON(del_slot + del_nr != path->slots[0]); 922 del_nr++; 923 } 924 925 if (update_refs && 926 extent_type == BTRFS_FILE_EXTENT_INLINE) { 927 inode_sub_bytes(inode, 928 extent_end - key.offset); 929 extent_end = ALIGN(extent_end, 930 root->sectorsize); 931 } else if (update_refs && disk_bytenr > 0) { 932 ret = btrfs_free_extent(trans, root, 933 disk_bytenr, num_bytes, 0, 934 root->root_key.objectid, 935 key.objectid, key.offset - 936 extent_offset, 0); 937 BUG_ON(ret); /* -ENOMEM */ 938 inode_sub_bytes(inode, 939 extent_end - key.offset); 940 } 941 942 if (end == extent_end) 943 break; 944 945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 946 path->slots[0]++; 947 goto next_slot; 948 } 949 950 ret = btrfs_del_items(trans, root, path, del_slot, 951 del_nr); 952 if (ret) { 953 btrfs_abort_transaction(trans, root, ret); 954 break; 955 } 956 957 del_nr = 0; 958 del_slot = 0; 959 960 btrfs_release_path(path); 961 continue; 962 } 963 964 BUG_ON(1); 965 } 966 967 if (!ret && del_nr > 0) { 968 /* 969 * Set path->slots[0] to first slot, so that after the delete 970 * if items are move off from our leaf to its immediate left or 971 * right neighbor leafs, we end up with a correct and adjusted 972 * path->slots[0] for our insertion (if replace_extent != 0). 973 */ 974 path->slots[0] = del_slot; 975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 976 if (ret) 977 btrfs_abort_transaction(trans, root, ret); 978 } 979 980 leaf = path->nodes[0]; 981 /* 982 * If btrfs_del_items() was called, it might have deleted a leaf, in 983 * which case it unlocked our path, so check path->locks[0] matches a 984 * write lock. 985 */ 986 if (!ret && replace_extent && leafs_visited == 1 && 987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 988 path->locks[0] == BTRFS_WRITE_LOCK) && 989 btrfs_leaf_free_space(root, leaf) >= 990 sizeof(struct btrfs_item) + extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 setup_items_for_insert(root, path, &key, 1003 &extent_item_size, 1004 extent_item_size, 1005 sizeof(struct btrfs_item) + 1006 extent_item_size, 1); 1007 *key_inserted = 1; 1008 } 1009 1010 if (!replace_extent || !(*key_inserted)) 1011 btrfs_release_path(path); 1012 if (drop_end) 1013 *drop_end = found ? min(end, extent_end) : end; 1014 return ret; 1015} 1016 1017int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, struct inode *inode, u64 start, 1019 u64 end, int drop_cache) 1020{ 1021 struct btrfs_path *path; 1022 int ret; 1023 1024 path = btrfs_alloc_path(); 1025 if (!path) 1026 return -ENOMEM; 1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1028 drop_cache, 0, 0, NULL); 1029 btrfs_free_path(path); 1030 return ret; 1031} 1032 1033static int extent_mergeable(struct extent_buffer *leaf, int slot, 1034 u64 objectid, u64 bytenr, u64 orig_offset, 1035 u64 *start, u64 *end) 1036{ 1037 struct btrfs_file_extent_item *fi; 1038 struct btrfs_key key; 1039 u64 extent_end; 1040 1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1042 return 0; 1043 1044 btrfs_item_key_to_cpu(leaf, &key, slot); 1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1046 return 0; 1047 1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1052 btrfs_file_extent_compression(leaf, fi) || 1053 btrfs_file_extent_encryption(leaf, fi) || 1054 btrfs_file_extent_other_encoding(leaf, fi)) 1055 return 0; 1056 1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1058 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1059 return 0; 1060 1061 *start = key.offset; 1062 *end = extent_end; 1063 return 1; 1064} 1065 1066/* 1067 * Mark extent in the range start - end as written. 1068 * 1069 * This changes extent type from 'pre-allocated' to 'regular'. If only 1070 * part of extent is marked as written, the extent will be split into 1071 * two or three. 1072 */ 1073int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1074 struct inode *inode, u64 start, u64 end) 1075{ 1076 struct btrfs_root *root = BTRFS_I(inode)->root; 1077 struct extent_buffer *leaf; 1078 struct btrfs_path *path; 1079 struct btrfs_file_extent_item *fi; 1080 struct btrfs_key key; 1081 struct btrfs_key new_key; 1082 u64 bytenr; 1083 u64 num_bytes; 1084 u64 extent_end; 1085 u64 orig_offset; 1086 u64 other_start; 1087 u64 other_end; 1088 u64 split; 1089 int del_nr = 0; 1090 int del_slot = 0; 1091 int recow; 1092 int ret; 1093 u64 ino = btrfs_ino(inode); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098again: 1099 recow = 0; 1100 split = start; 1101 key.objectid = ino; 1102 key.type = BTRFS_EXTENT_DATA_KEY; 1103 key.offset = split; 1104 1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1106 if (ret < 0) 1107 goto out; 1108 if (ret > 0 && path->slots[0] > 0) 1109 path->slots[0]--; 1110 1111 leaf = path->nodes[0]; 1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1114 fi = btrfs_item_ptr(leaf, path->slots[0], 1115 struct btrfs_file_extent_item); 1116 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1117 BTRFS_FILE_EXTENT_PREALLOC); 1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1119 BUG_ON(key.offset > start || extent_end < end); 1120 1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1124 memcpy(&new_key, &key, sizeof(new_key)); 1125 1126 if (start == key.offset && end < extent_end) { 1127 other_start = 0; 1128 other_end = start; 1129 if (extent_mergeable(leaf, path->slots[0] - 1, 1130 ino, bytenr, orig_offset, 1131 &other_start, &other_end)) { 1132 new_key.offset = end; 1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1134 fi = btrfs_item_ptr(leaf, path->slots[0], 1135 struct btrfs_file_extent_item); 1136 btrfs_set_file_extent_generation(leaf, fi, 1137 trans->transid); 1138 btrfs_set_file_extent_num_bytes(leaf, fi, 1139 extent_end - end); 1140 btrfs_set_file_extent_offset(leaf, fi, 1141 end - orig_offset); 1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1143 struct btrfs_file_extent_item); 1144 btrfs_set_file_extent_generation(leaf, fi, 1145 trans->transid); 1146 btrfs_set_file_extent_num_bytes(leaf, fi, 1147 end - other_start); 1148 btrfs_mark_buffer_dirty(leaf); 1149 goto out; 1150 } 1151 } 1152 1153 if (start > key.offset && end == extent_end) { 1154 other_start = end; 1155 other_end = 0; 1156 if (extent_mergeable(leaf, path->slots[0] + 1, 1157 ino, bytenr, orig_offset, 1158 &other_start, &other_end)) { 1159 fi = btrfs_item_ptr(leaf, path->slots[0], 1160 struct btrfs_file_extent_item); 1161 btrfs_set_file_extent_num_bytes(leaf, fi, 1162 start - key.offset); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 path->slots[0]++; 1166 new_key.offset = start; 1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1168 1169 fi = btrfs_item_ptr(leaf, path->slots[0], 1170 struct btrfs_file_extent_item); 1171 btrfs_set_file_extent_generation(leaf, fi, 1172 trans->transid); 1173 btrfs_set_file_extent_num_bytes(leaf, fi, 1174 other_end - start); 1175 btrfs_set_file_extent_offset(leaf, fi, 1176 start - orig_offset); 1177 btrfs_mark_buffer_dirty(leaf); 1178 goto out; 1179 } 1180 } 1181 1182 while (start > key.offset || end < extent_end) { 1183 if (key.offset == start) 1184 split = end; 1185 1186 new_key.offset = split; 1187 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1188 if (ret == -EAGAIN) { 1189 btrfs_release_path(path); 1190 goto again; 1191 } 1192 if (ret < 0) { 1193 btrfs_abort_transaction(trans, root, ret); 1194 goto out; 1195 } 1196 1197 leaf = path->nodes[0]; 1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1199 struct btrfs_file_extent_item); 1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1201 btrfs_set_file_extent_num_bytes(leaf, fi, 1202 split - key.offset); 1203 1204 fi = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_file_extent_item); 1206 1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1209 btrfs_set_file_extent_num_bytes(leaf, fi, 1210 extent_end - split); 1211 btrfs_mark_buffer_dirty(leaf); 1212 1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1214 root->root_key.objectid, 1215 ino, orig_offset, 1); 1216 BUG_ON(ret); /* -ENOMEM */ 1217 1218 if (split == start) { 1219 key.offset = start; 1220 } else { 1221 BUG_ON(start != key.offset); 1222 path->slots[0]--; 1223 extent_end = end; 1224 } 1225 recow = 1; 1226 } 1227 1228 other_start = end; 1229 other_end = 0; 1230 if (extent_mergeable(leaf, path->slots[0] + 1, 1231 ino, bytenr, orig_offset, 1232 &other_start, &other_end)) { 1233 if (recow) { 1234 btrfs_release_path(path); 1235 goto again; 1236 } 1237 extent_end = other_end; 1238 del_slot = path->slots[0] + 1; 1239 del_nr++; 1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1241 0, root->root_key.objectid, 1242 ino, orig_offset, 0); 1243 BUG_ON(ret); /* -ENOMEM */ 1244 } 1245 other_start = 0; 1246 other_end = start; 1247 if (extent_mergeable(leaf, path->slots[0] - 1, 1248 ino, bytenr, orig_offset, 1249 &other_start, &other_end)) { 1250 if (recow) { 1251 btrfs_release_path(path); 1252 goto again; 1253 } 1254 key.offset = other_start; 1255 del_slot = path->slots[0]; 1256 del_nr++; 1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1258 0, root->root_key.objectid, 1259 ino, orig_offset, 0); 1260 BUG_ON(ret); /* -ENOMEM */ 1261 } 1262 if (del_nr == 0) { 1263 fi = btrfs_item_ptr(leaf, path->slots[0], 1264 struct btrfs_file_extent_item); 1265 btrfs_set_file_extent_type(leaf, fi, 1266 BTRFS_FILE_EXTENT_REG); 1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1268 btrfs_mark_buffer_dirty(leaf); 1269 } else { 1270 fi = btrfs_item_ptr(leaf, del_slot - 1, 1271 struct btrfs_file_extent_item); 1272 btrfs_set_file_extent_type(leaf, fi, 1273 BTRFS_FILE_EXTENT_REG); 1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1275 btrfs_set_file_extent_num_bytes(leaf, fi, 1276 extent_end - key.offset); 1277 btrfs_mark_buffer_dirty(leaf); 1278 1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1280 if (ret < 0) { 1281 btrfs_abort_transaction(trans, root, ret); 1282 goto out; 1283 } 1284 } 1285out: 1286 btrfs_free_path(path); 1287 return 0; 1288} 1289 1290/* 1291 * on error we return an unlocked page and the error value 1292 * on success we return a locked page and 0 1293 */ 1294static int prepare_uptodate_page(struct page *page, u64 pos, 1295 bool force_uptodate) 1296{ 1297 int ret = 0; 1298 1299 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1300 !PageUptodate(page)) { 1301 ret = btrfs_readpage(NULL, page); 1302 if (ret) 1303 return ret; 1304 lock_page(page); 1305 if (!PageUptodate(page)) { 1306 unlock_page(page); 1307 return -EIO; 1308 } 1309 } 1310 return 0; 1311} 1312 1313/* 1314 * this just gets pages into the page cache and locks them down. 1315 */ 1316static noinline int prepare_pages(struct inode *inode, struct page **pages, 1317 size_t num_pages, loff_t pos, 1318 size_t write_bytes, bool force_uptodate) 1319{ 1320 int i; 1321 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1322 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1323 int err = 0; 1324 int faili; 1325 1326 for (i = 0; i < num_pages; i++) { 1327 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1328 mask | __GFP_WRITE); 1329 if (!pages[i]) { 1330 faili = i - 1; 1331 err = -ENOMEM; 1332 goto fail; 1333 } 1334 1335 if (i == 0) 1336 err = prepare_uptodate_page(pages[i], pos, 1337 force_uptodate); 1338 if (i == num_pages - 1) 1339 err = prepare_uptodate_page(pages[i], 1340 pos + write_bytes, false); 1341 if (err) { 1342 page_cache_release(pages[i]); 1343 faili = i - 1; 1344 goto fail; 1345 } 1346 wait_on_page_writeback(pages[i]); 1347 } 1348 1349 return 0; 1350fail: 1351 while (faili >= 0) { 1352 unlock_page(pages[faili]); 1353 page_cache_release(pages[faili]); 1354 faili--; 1355 } 1356 return err; 1357 1358} 1359 1360/* 1361 * This function locks the extent and properly waits for data=ordered extents 1362 * to finish before allowing the pages to be modified if need. 1363 * 1364 * The return value: 1365 * 1 - the extent is locked 1366 * 0 - the extent is not locked, and everything is OK 1367 * -EAGAIN - need re-prepare the pages 1368 * the other < 0 number - Something wrong happens 1369 */ 1370static noinline int 1371lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1372 size_t num_pages, loff_t pos, 1373 u64 *lockstart, u64 *lockend, 1374 struct extent_state **cached_state) 1375{ 1376 u64 start_pos; 1377 u64 last_pos; 1378 int i; 1379 int ret = 0; 1380 1381 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); 1382 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; 1383 1384 if (start_pos < inode->i_size) { 1385 struct btrfs_ordered_extent *ordered; 1386 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1387 start_pos, last_pos, 0, cached_state); 1388 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1389 last_pos - start_pos + 1); 1390 if (ordered && 1391 ordered->file_offset + ordered->len > start_pos && 1392 ordered->file_offset <= last_pos) { 1393 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1394 start_pos, last_pos, 1395 cached_state, GFP_NOFS); 1396 for (i = 0; i < num_pages; i++) { 1397 unlock_page(pages[i]); 1398 page_cache_release(pages[i]); 1399 } 1400 btrfs_start_ordered_extent(inode, ordered, 1); 1401 btrfs_put_ordered_extent(ordered); 1402 return -EAGAIN; 1403 } 1404 if (ordered) 1405 btrfs_put_ordered_extent(ordered); 1406 1407 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1408 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1409 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1410 0, 0, cached_state, GFP_NOFS); 1411 *lockstart = start_pos; 1412 *lockend = last_pos; 1413 ret = 1; 1414 } 1415 1416 for (i = 0; i < num_pages; i++) { 1417 if (clear_page_dirty_for_io(pages[i])) 1418 account_page_redirty(pages[i]); 1419 set_page_extent_mapped(pages[i]); 1420 WARN_ON(!PageLocked(pages[i])); 1421 } 1422 1423 return ret; 1424} 1425 1426static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1427 size_t *write_bytes) 1428{ 1429 struct btrfs_root *root = BTRFS_I(inode)->root; 1430 struct btrfs_ordered_extent *ordered; 1431 u64 lockstart, lockend; 1432 u64 num_bytes; 1433 int ret; 1434 1435 ret = btrfs_start_write_no_snapshoting(root); 1436 if (!ret) 1437 return -ENOSPC; 1438 1439 lockstart = round_down(pos, root->sectorsize); 1440 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1441 1442 while (1) { 1443 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1444 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1445 lockend - lockstart + 1); 1446 if (!ordered) { 1447 break; 1448 } 1449 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1450 btrfs_start_ordered_extent(inode, ordered, 1); 1451 btrfs_put_ordered_extent(ordered); 1452 } 1453 1454 num_bytes = lockend - lockstart + 1; 1455 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1456 if (ret <= 0) { 1457 ret = 0; 1458 btrfs_end_write_no_snapshoting(root); 1459 } else { 1460 *write_bytes = min_t(size_t, *write_bytes , 1461 num_bytes - pos + lockstart); 1462 } 1463 1464 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1465 1466 return ret; 1467} 1468 1469static noinline ssize_t __btrfs_buffered_write(struct file *file, 1470 struct iov_iter *i, 1471 loff_t pos) 1472{ 1473 struct inode *inode = file_inode(file); 1474 struct btrfs_root *root = BTRFS_I(inode)->root; 1475 struct page **pages = NULL; 1476 struct extent_state *cached_state = NULL; 1477 u64 release_bytes = 0; 1478 u64 lockstart; 1479 u64 lockend; 1480 unsigned long first_index; 1481 size_t num_written = 0; 1482 int nrptrs; 1483 int ret = 0; 1484 bool only_release_metadata = false; 1485 bool force_page_uptodate = false; 1486 bool need_unlock; 1487 1488 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE), 1489 PAGE_CACHE_SIZE / (sizeof(struct page *))); 1490 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1491 nrptrs = max(nrptrs, 8); 1492 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1493 if (!pages) 1494 return -ENOMEM; 1495 1496 first_index = pos >> PAGE_CACHE_SHIFT; 1497 1498 while (iov_iter_count(i) > 0) { 1499 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1500 size_t write_bytes = min(iov_iter_count(i), 1501 nrptrs * (size_t)PAGE_CACHE_SIZE - 1502 offset); 1503 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1504 PAGE_CACHE_SIZE); 1505 size_t reserve_bytes; 1506 size_t dirty_pages; 1507 size_t copied; 1508 1509 WARN_ON(num_pages > nrptrs); 1510 1511 /* 1512 * Fault pages before locking them in prepare_pages 1513 * to avoid recursive lock 1514 */ 1515 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1516 ret = -EFAULT; 1517 break; 1518 } 1519 1520 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1521 ret = btrfs_check_data_free_space(inode, reserve_bytes, write_bytes); 1522 if (ret == -ENOSPC && 1523 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1524 BTRFS_INODE_PREALLOC))) { 1525 ret = check_can_nocow(inode, pos, &write_bytes); 1526 if (ret > 0) { 1527 only_release_metadata = true; 1528 /* 1529 * our prealloc extent may be smaller than 1530 * write_bytes, so scale down. 1531 */ 1532 num_pages = DIV_ROUND_UP(write_bytes + offset, 1533 PAGE_CACHE_SIZE); 1534 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1535 ret = 0; 1536 } else { 1537 ret = -ENOSPC; 1538 } 1539 } 1540 1541 if (ret) 1542 break; 1543 1544 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1545 if (ret) { 1546 if (!only_release_metadata) 1547 btrfs_free_reserved_data_space(inode, 1548 reserve_bytes); 1549 else 1550 btrfs_end_write_no_snapshoting(root); 1551 break; 1552 } 1553 1554 release_bytes = reserve_bytes; 1555 need_unlock = false; 1556again: 1557 /* 1558 * This is going to setup the pages array with the number of 1559 * pages we want, so we don't really need to worry about the 1560 * contents of pages from loop to loop 1561 */ 1562 ret = prepare_pages(inode, pages, num_pages, 1563 pos, write_bytes, 1564 force_page_uptodate); 1565 if (ret) 1566 break; 1567 1568 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1569 pos, &lockstart, &lockend, 1570 &cached_state); 1571 if (ret < 0) { 1572 if (ret == -EAGAIN) 1573 goto again; 1574 break; 1575 } else if (ret > 0) { 1576 need_unlock = true; 1577 ret = 0; 1578 } 1579 1580 copied = btrfs_copy_from_user(pos, num_pages, 1581 write_bytes, pages, i); 1582 1583 /* 1584 * if we have trouble faulting in the pages, fall 1585 * back to one page at a time 1586 */ 1587 if (copied < write_bytes) 1588 nrptrs = 1; 1589 1590 if (copied == 0) { 1591 force_page_uptodate = true; 1592 dirty_pages = 0; 1593 } else { 1594 force_page_uptodate = false; 1595 dirty_pages = DIV_ROUND_UP(copied + offset, 1596 PAGE_CACHE_SIZE); 1597 } 1598 1599 /* 1600 * If we had a short copy we need to release the excess delaloc 1601 * bytes we reserved. We need to increment outstanding_extents 1602 * because btrfs_delalloc_release_space will decrement it, but 1603 * we still have an outstanding extent for the chunk we actually 1604 * managed to copy. 1605 */ 1606 if (num_pages > dirty_pages) { 1607 release_bytes = (num_pages - dirty_pages) << 1608 PAGE_CACHE_SHIFT; 1609 if (copied > 0) { 1610 spin_lock(&BTRFS_I(inode)->lock); 1611 BTRFS_I(inode)->outstanding_extents++; 1612 spin_unlock(&BTRFS_I(inode)->lock); 1613 } 1614 if (only_release_metadata) 1615 btrfs_delalloc_release_metadata(inode, 1616 release_bytes); 1617 else 1618 btrfs_delalloc_release_space(inode, 1619 release_bytes); 1620 } 1621 1622 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1623 1624 if (copied > 0) 1625 ret = btrfs_dirty_pages(root, inode, pages, 1626 dirty_pages, pos, copied, 1627 NULL); 1628 if (need_unlock) 1629 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1630 lockstart, lockend, &cached_state, 1631 GFP_NOFS); 1632 if (ret) { 1633 btrfs_drop_pages(pages, num_pages); 1634 break; 1635 } 1636 1637 release_bytes = 0; 1638 if (only_release_metadata) 1639 btrfs_end_write_no_snapshoting(root); 1640 1641 if (only_release_metadata && copied > 0) { 1642 lockstart = round_down(pos, root->sectorsize); 1643 lockend = lockstart + 1644 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1645 1646 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1647 lockend, EXTENT_NORESERVE, NULL, 1648 NULL, GFP_NOFS); 1649 only_release_metadata = false; 1650 } 1651 1652 btrfs_drop_pages(pages, num_pages); 1653 1654 cond_resched(); 1655 1656 balance_dirty_pages_ratelimited(inode->i_mapping); 1657 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1) 1658 btrfs_btree_balance_dirty(root); 1659 1660 pos += copied; 1661 num_written += copied; 1662 } 1663 1664 kfree(pages); 1665 1666 if (release_bytes) { 1667 if (only_release_metadata) { 1668 btrfs_end_write_no_snapshoting(root); 1669 btrfs_delalloc_release_metadata(inode, release_bytes); 1670 } else { 1671 btrfs_delalloc_release_space(inode, release_bytes); 1672 } 1673 } 1674 1675 return num_written ? num_written : ret; 1676} 1677 1678static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1679 struct iov_iter *from, 1680 loff_t pos) 1681{ 1682 struct file *file = iocb->ki_filp; 1683 struct inode *inode = file_inode(file); 1684 ssize_t written; 1685 ssize_t written_buffered; 1686 loff_t endbyte; 1687 int err; 1688 1689 written = generic_file_direct_write(iocb, from, pos); 1690 1691 if (written < 0 || !iov_iter_count(from)) 1692 return written; 1693 1694 pos += written; 1695 written_buffered = __btrfs_buffered_write(file, from, pos); 1696 if (written_buffered < 0) { 1697 err = written_buffered; 1698 goto out; 1699 } 1700 /* 1701 * Ensure all data is persisted. We want the next direct IO read to be 1702 * able to read what was just written. 1703 */ 1704 endbyte = pos + written_buffered - 1; 1705 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1706 if (err) 1707 goto out; 1708 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1709 if (err) 1710 goto out; 1711 written += written_buffered; 1712 iocb->ki_pos = pos + written_buffered; 1713 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1714 endbyte >> PAGE_CACHE_SHIFT); 1715out: 1716 return written ? written : err; 1717} 1718 1719static void update_time_for_write(struct inode *inode) 1720{ 1721 struct timespec now; 1722 1723 if (IS_NOCMTIME(inode)) 1724 return; 1725 1726 now = current_fs_time(inode->i_sb); 1727 if (!timespec_equal(&inode->i_mtime, &now)) 1728 inode->i_mtime = now; 1729 1730 if (!timespec_equal(&inode->i_ctime, &now)) 1731 inode->i_ctime = now; 1732 1733 if (IS_I_VERSION(inode)) 1734 inode_inc_iversion(inode); 1735} 1736 1737static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1738 struct iov_iter *from) 1739{ 1740 struct file *file = iocb->ki_filp; 1741 struct inode *inode = file_inode(file); 1742 struct btrfs_root *root = BTRFS_I(inode)->root; 1743 u64 start_pos; 1744 u64 end_pos; 1745 ssize_t num_written = 0; 1746 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1747 ssize_t err; 1748 loff_t pos; 1749 size_t count; 1750 1751 mutex_lock(&inode->i_mutex); 1752 err = generic_write_checks(iocb, from); 1753 if (err <= 0) { 1754 mutex_unlock(&inode->i_mutex); 1755 return err; 1756 } 1757 1758 current->backing_dev_info = inode_to_bdi(inode); 1759 err = file_remove_suid(file); 1760 if (err) { 1761 mutex_unlock(&inode->i_mutex); 1762 goto out; 1763 } 1764 1765 /* 1766 * If BTRFS flips readonly due to some impossible error 1767 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1768 * although we have opened a file as writable, we have 1769 * to stop this write operation to ensure FS consistency. 1770 */ 1771 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1772 mutex_unlock(&inode->i_mutex); 1773 err = -EROFS; 1774 goto out; 1775 } 1776 1777 /* 1778 * We reserve space for updating the inode when we reserve space for the 1779 * extent we are going to write, so we will enospc out there. We don't 1780 * need to start yet another transaction to update the inode as we will 1781 * update the inode when we finish writing whatever data we write. 1782 */ 1783 update_time_for_write(inode); 1784 1785 pos = iocb->ki_pos; 1786 count = iov_iter_count(from); 1787 start_pos = round_down(pos, root->sectorsize); 1788 if (start_pos > i_size_read(inode)) { 1789 /* Expand hole size to cover write data, preventing empty gap */ 1790 end_pos = round_up(pos + count, root->sectorsize); 1791 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos); 1792 if (err) { 1793 mutex_unlock(&inode->i_mutex); 1794 goto out; 1795 } 1796 } 1797 1798 if (sync) 1799 atomic_inc(&BTRFS_I(inode)->sync_writers); 1800 1801 if (iocb->ki_flags & IOCB_DIRECT) { 1802 num_written = __btrfs_direct_write(iocb, from, pos); 1803 } else { 1804 num_written = __btrfs_buffered_write(file, from, pos); 1805 if (num_written > 0) 1806 iocb->ki_pos = pos + num_written; 1807 } 1808 1809 mutex_unlock(&inode->i_mutex); 1810 1811 /* 1812 * We also have to set last_sub_trans to the current log transid, 1813 * otherwise subsequent syncs to a file that's been synced in this 1814 * transaction will appear to have already occured. 1815 */ 1816 spin_lock(&BTRFS_I(inode)->lock); 1817 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1818 spin_unlock(&BTRFS_I(inode)->lock); 1819 if (num_written > 0) { 1820 err = generic_write_sync(file, pos, num_written); 1821 if (err < 0) 1822 num_written = err; 1823 } 1824 1825 if (sync) 1826 atomic_dec(&BTRFS_I(inode)->sync_writers); 1827out: 1828 current->backing_dev_info = NULL; 1829 return num_written ? num_written : err; 1830} 1831 1832int btrfs_release_file(struct inode *inode, struct file *filp) 1833{ 1834 if (filp->private_data) 1835 btrfs_ioctl_trans_end(filp); 1836 /* 1837 * ordered_data_close is set by settattr when we are about to truncate 1838 * a file from a non-zero size to a zero size. This tries to 1839 * flush down new bytes that may have been written if the 1840 * application were using truncate to replace a file in place. 1841 */ 1842 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1843 &BTRFS_I(inode)->runtime_flags)) 1844 filemap_flush(inode->i_mapping); 1845 return 0; 1846} 1847 1848static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1849{ 1850 int ret; 1851 1852 atomic_inc(&BTRFS_I(inode)->sync_writers); 1853 ret = btrfs_fdatawrite_range(inode, start, end); 1854 atomic_dec(&BTRFS_I(inode)->sync_writers); 1855 1856 return ret; 1857} 1858 1859/* 1860 * fsync call for both files and directories. This logs the inode into 1861 * the tree log instead of forcing full commits whenever possible. 1862 * 1863 * It needs to call filemap_fdatawait so that all ordered extent updates are 1864 * in the metadata btree are up to date for copying to the log. 1865 * 1866 * It drops the inode mutex before doing the tree log commit. This is an 1867 * important optimization for directories because holding the mutex prevents 1868 * new operations on the dir while we write to disk. 1869 */ 1870int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1871{ 1872 struct dentry *dentry = file->f_path.dentry; 1873 struct inode *inode = d_inode(dentry); 1874 struct btrfs_root *root = BTRFS_I(inode)->root; 1875 struct btrfs_trans_handle *trans; 1876 struct btrfs_log_ctx ctx; 1877 int ret = 0; 1878 bool full_sync = 0; 1879 1880 trace_btrfs_sync_file(file, datasync); 1881 1882 /* 1883 * We write the dirty pages in the range and wait until they complete 1884 * out of the ->i_mutex. If so, we can flush the dirty pages by 1885 * multi-task, and make the performance up. See 1886 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1887 */ 1888 ret = start_ordered_ops(inode, start, end); 1889 if (ret) 1890 return ret; 1891 1892 mutex_lock(&inode->i_mutex); 1893 atomic_inc(&root->log_batch); 1894 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1895 &BTRFS_I(inode)->runtime_flags); 1896 /* 1897 * We might have have had more pages made dirty after calling 1898 * start_ordered_ops and before acquiring the inode's i_mutex. 1899 */ 1900 if (full_sync) { 1901 /* 1902 * For a full sync, we need to make sure any ordered operations 1903 * start and finish before we start logging the inode, so that 1904 * all extents are persisted and the respective file extent 1905 * items are in the fs/subvol btree. 1906 */ 1907 ret = btrfs_wait_ordered_range(inode, start, end - start + 1); 1908 } else { 1909 /* 1910 * Start any new ordered operations before starting to log the 1911 * inode. We will wait for them to finish in btrfs_sync_log(). 1912 * 1913 * Right before acquiring the inode's mutex, we might have new 1914 * writes dirtying pages, which won't immediately start the 1915 * respective ordered operations - that is done through the 1916 * fill_delalloc callbacks invoked from the writepage and 1917 * writepages address space operations. So make sure we start 1918 * all ordered operations before starting to log our inode. Not 1919 * doing this means that while logging the inode, writeback 1920 * could start and invoke writepage/writepages, which would call 1921 * the fill_delalloc callbacks (cow_file_range, 1922 * submit_compressed_extents). These callbacks add first an 1923 * extent map to the modified list of extents and then create 1924 * the respective ordered operation, which means in 1925 * tree-log.c:btrfs_log_inode() we might capture all existing 1926 * ordered operations (with btrfs_get_logged_extents()) before 1927 * the fill_delalloc callback adds its ordered operation, and by 1928 * the time we visit the modified list of extent maps (with 1929 * btrfs_log_changed_extents()), we see and process the extent 1930 * map they created. We then use the extent map to construct a 1931 * file extent item for logging without waiting for the 1932 * respective ordered operation to finish - this file extent 1933 * item points to a disk location that might not have yet been 1934 * written to, containing random data - so after a crash a log 1935 * replay will make our inode have file extent items that point 1936 * to disk locations containing invalid data, as we returned 1937 * success to userspace without waiting for the respective 1938 * ordered operation to finish, because it wasn't captured by 1939 * btrfs_get_logged_extents(). 1940 */ 1941 ret = start_ordered_ops(inode, start, end); 1942 } 1943 if (ret) { 1944 mutex_unlock(&inode->i_mutex); 1945 goto out; 1946 } 1947 atomic_inc(&root->log_batch); 1948 1949 /* 1950 * If the last transaction that changed this file was before the current 1951 * transaction and we have the full sync flag set in our inode, we can 1952 * bail out now without any syncing. 1953 * 1954 * Note that we can't bail out if the full sync flag isn't set. This is 1955 * because when the full sync flag is set we start all ordered extents 1956 * and wait for them to fully complete - when they complete they update 1957 * the inode's last_trans field through: 1958 * 1959 * btrfs_finish_ordered_io() -> 1960 * btrfs_update_inode_fallback() -> 1961 * btrfs_update_inode() -> 1962 * btrfs_set_inode_last_trans() 1963 * 1964 * So we are sure that last_trans is up to date and can do this check to 1965 * bail out safely. For the fast path, when the full sync flag is not 1966 * set in our inode, we can not do it because we start only our ordered 1967 * extents and don't wait for them to complete (that is when 1968 * btrfs_finish_ordered_io runs), so here at this point their last_trans 1969 * value might be less than or equals to fs_info->last_trans_committed, 1970 * and setting a speculative last_trans for an inode when a buffered 1971 * write is made (such as fs_info->generation + 1 for example) would not 1972 * be reliable since after setting the value and before fsync is called 1973 * any number of transactions can start and commit (transaction kthread 1974 * commits the current transaction periodically), and a transaction 1975 * commit does not start nor waits for ordered extents to complete. 1976 */ 1977 smp_mb(); 1978 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1979 (full_sync && BTRFS_I(inode)->last_trans <= 1980 root->fs_info->last_trans_committed)) { 1981 /* 1982 * We'v had everything committed since the last time we were 1983 * modified so clear this flag in case it was set for whatever 1984 * reason, it's no longer relevant. 1985 */ 1986 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1987 &BTRFS_I(inode)->runtime_flags); 1988 mutex_unlock(&inode->i_mutex); 1989 goto out; 1990 } 1991 1992 /* 1993 * ok we haven't committed the transaction yet, lets do a commit 1994 */ 1995 if (file->private_data) 1996 btrfs_ioctl_trans_end(file); 1997 1998 /* 1999 * We use start here because we will need to wait on the IO to complete 2000 * in btrfs_sync_log, which could require joining a transaction (for 2001 * example checking cross references in the nocow path). If we use join 2002 * here we could get into a situation where we're waiting on IO to 2003 * happen that is blocked on a transaction trying to commit. With start 2004 * we inc the extwriter counter, so we wait for all extwriters to exit 2005 * before we start blocking join'ers. This comment is to keep somebody 2006 * from thinking they are super smart and changing this to 2007 * btrfs_join_transaction *cough*Josef*cough*. 2008 */ 2009 trans = btrfs_start_transaction(root, 0); 2010 if (IS_ERR(trans)) { 2011 ret = PTR_ERR(trans); 2012 mutex_unlock(&inode->i_mutex); 2013 goto out; 2014 } 2015 trans->sync = true; 2016 2017 btrfs_init_log_ctx(&ctx); 2018 2019 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2020 if (ret < 0) { 2021 /* Fallthrough and commit/free transaction. */ 2022 ret = 1; 2023 } 2024 2025 /* we've logged all the items and now have a consistent 2026 * version of the file in the log. It is possible that 2027 * someone will come in and modify the file, but that's 2028 * fine because the log is consistent on disk, and we 2029 * have references to all of the file's extents 2030 * 2031 * It is possible that someone will come in and log the 2032 * file again, but that will end up using the synchronization 2033 * inside btrfs_sync_log to keep things safe. 2034 */ 2035 mutex_unlock(&inode->i_mutex); 2036 2037 /* 2038 * If any of the ordered extents had an error, just return it to user 2039 * space, so that the application knows some writes didn't succeed and 2040 * can take proper action (retry for e.g.). Blindly committing the 2041 * transaction in this case, would fool userspace that everything was 2042 * successful. And we also want to make sure our log doesn't contain 2043 * file extent items pointing to extents that weren't fully written to - 2044 * just like in the non fast fsync path, where we check for the ordered 2045 * operation's error flag before writing to the log tree and return -EIO 2046 * if any of them had this flag set (btrfs_wait_ordered_range) - 2047 * therefore we need to check for errors in the ordered operations, 2048 * which are indicated by ctx.io_err. 2049 */ 2050 if (ctx.io_err) { 2051 btrfs_end_transaction(trans, root); 2052 ret = ctx.io_err; 2053 goto out; 2054 } 2055 2056 if (ret != BTRFS_NO_LOG_SYNC) { 2057 if (!ret) { 2058 ret = btrfs_sync_log(trans, root, &ctx); 2059 if (!ret) { 2060 ret = btrfs_end_transaction(trans, root); 2061 goto out; 2062 } 2063 } 2064 if (!full_sync) { 2065 ret = btrfs_wait_ordered_range(inode, start, 2066 end - start + 1); 2067 if (ret) { 2068 btrfs_end_transaction(trans, root); 2069 goto out; 2070 } 2071 } 2072 ret = btrfs_commit_transaction(trans, root); 2073 } else { 2074 ret = btrfs_end_transaction(trans, root); 2075 } 2076out: 2077 return ret > 0 ? -EIO : ret; 2078} 2079 2080static const struct vm_operations_struct btrfs_file_vm_ops = { 2081 .fault = filemap_fault, 2082 .map_pages = filemap_map_pages, 2083 .page_mkwrite = btrfs_page_mkwrite, 2084}; 2085 2086static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2087{ 2088 struct address_space *mapping = filp->f_mapping; 2089 2090 if (!mapping->a_ops->readpage) 2091 return -ENOEXEC; 2092 2093 file_accessed(filp); 2094 vma->vm_ops = &btrfs_file_vm_ops; 2095 2096 return 0; 2097} 2098 2099static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2100 int slot, u64 start, u64 end) 2101{ 2102 struct btrfs_file_extent_item *fi; 2103 struct btrfs_key key; 2104 2105 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2106 return 0; 2107 2108 btrfs_item_key_to_cpu(leaf, &key, slot); 2109 if (key.objectid != btrfs_ino(inode) || 2110 key.type != BTRFS_EXTENT_DATA_KEY) 2111 return 0; 2112 2113 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2114 2115 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2116 return 0; 2117 2118 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2119 return 0; 2120 2121 if (key.offset == end) 2122 return 1; 2123 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2124 return 1; 2125 return 0; 2126} 2127 2128static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2129 struct btrfs_path *path, u64 offset, u64 end) 2130{ 2131 struct btrfs_root *root = BTRFS_I(inode)->root; 2132 struct extent_buffer *leaf; 2133 struct btrfs_file_extent_item *fi; 2134 struct extent_map *hole_em; 2135 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2136 struct btrfs_key key; 2137 int ret; 2138 2139 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2140 goto out; 2141 2142 key.objectid = btrfs_ino(inode); 2143 key.type = BTRFS_EXTENT_DATA_KEY; 2144 key.offset = offset; 2145 2146 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2147 if (ret < 0) 2148 return ret; 2149 BUG_ON(!ret); 2150 2151 leaf = path->nodes[0]; 2152 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2153 u64 num_bytes; 2154 2155 path->slots[0]--; 2156 fi = btrfs_item_ptr(leaf, path->slots[0], 2157 struct btrfs_file_extent_item); 2158 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2159 end - offset; 2160 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2161 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2162 btrfs_set_file_extent_offset(leaf, fi, 0); 2163 btrfs_mark_buffer_dirty(leaf); 2164 goto out; 2165 } 2166 2167 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2168 u64 num_bytes; 2169 2170 key.offset = offset; 2171 btrfs_set_item_key_safe(root->fs_info, path, &key); 2172 fi = btrfs_item_ptr(leaf, path->slots[0], 2173 struct btrfs_file_extent_item); 2174 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2175 offset; 2176 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2177 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2178 btrfs_set_file_extent_offset(leaf, fi, 0); 2179 btrfs_mark_buffer_dirty(leaf); 2180 goto out; 2181 } 2182 btrfs_release_path(path); 2183 2184 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2185 0, 0, end - offset, 0, end - offset, 2186 0, 0, 0); 2187 if (ret) 2188 return ret; 2189 2190out: 2191 btrfs_release_path(path); 2192 2193 hole_em = alloc_extent_map(); 2194 if (!hole_em) { 2195 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2196 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2197 &BTRFS_I(inode)->runtime_flags); 2198 } else { 2199 hole_em->start = offset; 2200 hole_em->len = end - offset; 2201 hole_em->ram_bytes = hole_em->len; 2202 hole_em->orig_start = offset; 2203 2204 hole_em->block_start = EXTENT_MAP_HOLE; 2205 hole_em->block_len = 0; 2206 hole_em->orig_block_len = 0; 2207 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2208 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2209 hole_em->generation = trans->transid; 2210 2211 do { 2212 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2213 write_lock(&em_tree->lock); 2214 ret = add_extent_mapping(em_tree, hole_em, 1); 2215 write_unlock(&em_tree->lock); 2216 } while (ret == -EEXIST); 2217 free_extent_map(hole_em); 2218 if (ret) 2219 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2220 &BTRFS_I(inode)->runtime_flags); 2221 } 2222 2223 return 0; 2224} 2225 2226/* 2227 * Find a hole extent on given inode and change start/len to the end of hole 2228 * extent.(hole/vacuum extent whose em->start <= start && 2229 * em->start + em->len > start) 2230 * When a hole extent is found, return 1 and modify start/len. 2231 */ 2232static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2233{ 2234 struct extent_map *em; 2235 int ret = 0; 2236 2237 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2238 if (IS_ERR_OR_NULL(em)) { 2239 if (!em) 2240 ret = -ENOMEM; 2241 else 2242 ret = PTR_ERR(em); 2243 return ret; 2244 } 2245 2246 /* Hole or vacuum extent(only exists in no-hole mode) */ 2247 if (em->block_start == EXTENT_MAP_HOLE) { 2248 ret = 1; 2249 *len = em->start + em->len > *start + *len ? 2250 0 : *start + *len - em->start - em->len; 2251 *start = em->start + em->len; 2252 } 2253 free_extent_map(em); 2254 return ret; 2255} 2256 2257static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2258{ 2259 struct btrfs_root *root = BTRFS_I(inode)->root; 2260 struct extent_state *cached_state = NULL; 2261 struct btrfs_path *path; 2262 struct btrfs_block_rsv *rsv; 2263 struct btrfs_trans_handle *trans; 2264 u64 lockstart; 2265 u64 lockend; 2266 u64 tail_start; 2267 u64 tail_len; 2268 u64 orig_start = offset; 2269 u64 cur_offset; 2270 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2271 u64 drop_end; 2272 int ret = 0; 2273 int err = 0; 2274 int rsv_count; 2275 bool same_page; 2276 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2277 u64 ino_size; 2278 bool truncated_page = false; 2279 bool updated_inode = false; 2280 2281 ret = btrfs_wait_ordered_range(inode, offset, len); 2282 if (ret) 2283 return ret; 2284 2285 mutex_lock(&inode->i_mutex); 2286 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE); 2287 ret = find_first_non_hole(inode, &offset, &len); 2288 if (ret < 0) 2289 goto out_only_mutex; 2290 if (ret && !len) { 2291 /* Already in a large hole */ 2292 ret = 0; 2293 goto out_only_mutex; 2294 } 2295 2296 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2297 lockend = round_down(offset + len, 2298 BTRFS_I(inode)->root->sectorsize) - 1; 2299 same_page = ((offset >> PAGE_CACHE_SHIFT) == 2300 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2301 2302 /* 2303 * We needn't truncate any page which is beyond the end of the file 2304 * because we are sure there is no data there. 2305 */ 2306 /* 2307 * Only do this if we are in the same page and we aren't doing the 2308 * entire page. 2309 */ 2310 if (same_page && len < PAGE_CACHE_SIZE) { 2311 if (offset < ino_size) { 2312 truncated_page = true; 2313 ret = btrfs_truncate_page(inode, offset, len, 0); 2314 } else { 2315 ret = 0; 2316 } 2317 goto out_only_mutex; 2318 } 2319 2320 /* zero back part of the first page */ 2321 if (offset < ino_size) { 2322 truncated_page = true; 2323 ret = btrfs_truncate_page(inode, offset, 0, 0); 2324 if (ret) { 2325 mutex_unlock(&inode->i_mutex); 2326 return ret; 2327 } 2328 } 2329 2330 /* Check the aligned pages after the first unaligned page, 2331 * if offset != orig_start, which means the first unaligned page 2332 * including serveral following pages are already in holes, 2333 * the extra check can be skipped */ 2334 if (offset == orig_start) { 2335 /* after truncate page, check hole again */ 2336 len = offset + len - lockstart; 2337 offset = lockstart; 2338 ret = find_first_non_hole(inode, &offset, &len); 2339 if (ret < 0) 2340 goto out_only_mutex; 2341 if (ret && !len) { 2342 ret = 0; 2343 goto out_only_mutex; 2344 } 2345 lockstart = offset; 2346 } 2347 2348 /* Check the tail unaligned part is in a hole */ 2349 tail_start = lockend + 1; 2350 tail_len = offset + len - tail_start; 2351 if (tail_len) { 2352 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2353 if (unlikely(ret < 0)) 2354 goto out_only_mutex; 2355 if (!ret) { 2356 /* zero the front end of the last page */ 2357 if (tail_start + tail_len < ino_size) { 2358 truncated_page = true; 2359 ret = btrfs_truncate_page(inode, 2360 tail_start + tail_len, 0, 1); 2361 if (ret) 2362 goto out_only_mutex; 2363 } 2364 } 2365 } 2366 2367 if (lockend < lockstart) { 2368 ret = 0; 2369 goto out_only_mutex; 2370 } 2371 2372 while (1) { 2373 struct btrfs_ordered_extent *ordered; 2374 2375 truncate_pagecache_range(inode, lockstart, lockend); 2376 2377 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2378 0, &cached_state); 2379 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2380 2381 /* 2382 * We need to make sure we have no ordered extents in this range 2383 * and nobody raced in and read a page in this range, if we did 2384 * we need to try again. 2385 */ 2386 if ((!ordered || 2387 (ordered->file_offset + ordered->len <= lockstart || 2388 ordered->file_offset > lockend)) && 2389 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2390 if (ordered) 2391 btrfs_put_ordered_extent(ordered); 2392 break; 2393 } 2394 if (ordered) 2395 btrfs_put_ordered_extent(ordered); 2396 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2397 lockend, &cached_state, GFP_NOFS); 2398 ret = btrfs_wait_ordered_range(inode, lockstart, 2399 lockend - lockstart + 1); 2400 if (ret) { 2401 mutex_unlock(&inode->i_mutex); 2402 return ret; 2403 } 2404 } 2405 2406 path = btrfs_alloc_path(); 2407 if (!path) { 2408 ret = -ENOMEM; 2409 goto out; 2410 } 2411 2412 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2413 if (!rsv) { 2414 ret = -ENOMEM; 2415 goto out_free; 2416 } 2417 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2418 rsv->failfast = 1; 2419 2420 /* 2421 * 1 - update the inode 2422 * 1 - removing the extents in the range 2423 * 1 - adding the hole extent if no_holes isn't set 2424 */ 2425 rsv_count = no_holes ? 2 : 3; 2426 trans = btrfs_start_transaction(root, rsv_count); 2427 if (IS_ERR(trans)) { 2428 err = PTR_ERR(trans); 2429 goto out_free; 2430 } 2431 2432 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2433 min_size); 2434 BUG_ON(ret); 2435 trans->block_rsv = rsv; 2436 2437 cur_offset = lockstart; 2438 len = lockend - cur_offset; 2439 while (cur_offset < lockend) { 2440 ret = __btrfs_drop_extents(trans, root, inode, path, 2441 cur_offset, lockend + 1, 2442 &drop_end, 1, 0, 0, NULL); 2443 if (ret != -ENOSPC) 2444 break; 2445 2446 trans->block_rsv = &root->fs_info->trans_block_rsv; 2447 2448 if (cur_offset < ino_size) { 2449 ret = fill_holes(trans, inode, path, cur_offset, 2450 drop_end); 2451 if (ret) { 2452 err = ret; 2453 break; 2454 } 2455 } 2456 2457 cur_offset = drop_end; 2458 2459 ret = btrfs_update_inode(trans, root, inode); 2460 if (ret) { 2461 err = ret; 2462 break; 2463 } 2464 2465 btrfs_end_transaction(trans, root); 2466 btrfs_btree_balance_dirty(root); 2467 2468 trans = btrfs_start_transaction(root, rsv_count); 2469 if (IS_ERR(trans)) { 2470 ret = PTR_ERR(trans); 2471 trans = NULL; 2472 break; 2473 } 2474 2475 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2476 rsv, min_size); 2477 BUG_ON(ret); /* shouldn't happen */ 2478 trans->block_rsv = rsv; 2479 2480 ret = find_first_non_hole(inode, &cur_offset, &len); 2481 if (unlikely(ret < 0)) 2482 break; 2483 if (ret && !len) { 2484 ret = 0; 2485 break; 2486 } 2487 } 2488 2489 if (ret) { 2490 err = ret; 2491 goto out_trans; 2492 } 2493 2494 trans->block_rsv = &root->fs_info->trans_block_rsv; 2495 /* 2496 * Don't insert file hole extent item if it's for a range beyond eof 2497 * (because it's useless) or if it represents a 0 bytes range (when 2498 * cur_offset == drop_end). 2499 */ 2500 if (cur_offset < ino_size && cur_offset < drop_end) { 2501 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2502 if (ret) { 2503 err = ret; 2504 goto out_trans; 2505 } 2506 } 2507 2508out_trans: 2509 if (!trans) 2510 goto out_free; 2511 2512 inode_inc_iversion(inode); 2513 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2514 2515 trans->block_rsv = &root->fs_info->trans_block_rsv; 2516 ret = btrfs_update_inode(trans, root, inode); 2517 updated_inode = true; 2518 btrfs_end_transaction(trans, root); 2519 btrfs_btree_balance_dirty(root); 2520out_free: 2521 btrfs_free_path(path); 2522 btrfs_free_block_rsv(root, rsv); 2523out: 2524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2525 &cached_state, GFP_NOFS); 2526out_only_mutex: 2527 if (!updated_inode && truncated_page && !ret && !err) { 2528 /* 2529 * If we only end up zeroing part of a page, we still need to 2530 * update the inode item, so that all the time fields are 2531 * updated as well as the necessary btrfs inode in memory fields 2532 * for detecting, at fsync time, if the inode isn't yet in the 2533 * log tree or it's there but not up to date. 2534 */ 2535 trans = btrfs_start_transaction(root, 1); 2536 if (IS_ERR(trans)) { 2537 err = PTR_ERR(trans); 2538 } else { 2539 err = btrfs_update_inode(trans, root, inode); 2540 ret = btrfs_end_transaction(trans, root); 2541 } 2542 } 2543 mutex_unlock(&inode->i_mutex); 2544 if (ret && !err) 2545 err = ret; 2546 return err; 2547} 2548 2549static long btrfs_fallocate(struct file *file, int mode, 2550 loff_t offset, loff_t len) 2551{ 2552 struct inode *inode = file_inode(file); 2553 struct extent_state *cached_state = NULL; 2554 u64 cur_offset; 2555 u64 last_byte; 2556 u64 alloc_start; 2557 u64 alloc_end; 2558 u64 alloc_hint = 0; 2559 u64 locked_end; 2560 struct extent_map *em; 2561 int blocksize = BTRFS_I(inode)->root->sectorsize; 2562 int ret; 2563 2564 alloc_start = round_down(offset, blocksize); 2565 alloc_end = round_up(offset + len, blocksize); 2566 2567 /* Make sure we aren't being give some crap mode */ 2568 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2569 return -EOPNOTSUPP; 2570 2571 if (mode & FALLOC_FL_PUNCH_HOLE) 2572 return btrfs_punch_hole(inode, offset, len); 2573 2574 /* 2575 * Make sure we have enough space before we do the 2576 * allocation. 2577 */ 2578 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start, alloc_end - alloc_start); 2579 if (ret) 2580 return ret; 2581 2582 mutex_lock(&inode->i_mutex); 2583 ret = inode_newsize_ok(inode, alloc_end); 2584 if (ret) 2585 goto out; 2586 2587 if (alloc_start > inode->i_size) { 2588 ret = btrfs_cont_expand(inode, i_size_read(inode), 2589 alloc_start); 2590 if (ret) 2591 goto out; 2592 } else { 2593 /* 2594 * If we are fallocating from the end of the file onward we 2595 * need to zero out the end of the page if i_size lands in the 2596 * middle of a page. 2597 */ 2598 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2599 if (ret) 2600 goto out; 2601 } 2602 2603 /* 2604 * wait for ordered IO before we have any locks. We'll loop again 2605 * below with the locks held. 2606 */ 2607 ret = btrfs_wait_ordered_range(inode, alloc_start, 2608 alloc_end - alloc_start); 2609 if (ret) 2610 goto out; 2611 2612 locked_end = alloc_end - 1; 2613 while (1) { 2614 struct btrfs_ordered_extent *ordered; 2615 2616 /* the extent lock is ordered inside the running 2617 * transaction 2618 */ 2619 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2620 locked_end, 0, &cached_state); 2621 ordered = btrfs_lookup_first_ordered_extent(inode, 2622 alloc_end - 1); 2623 if (ordered && 2624 ordered->file_offset + ordered->len > alloc_start && 2625 ordered->file_offset < alloc_end) { 2626 btrfs_put_ordered_extent(ordered); 2627 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2628 alloc_start, locked_end, 2629 &cached_state, GFP_NOFS); 2630 /* 2631 * we can't wait on the range with the transaction 2632 * running or with the extent lock held 2633 */ 2634 ret = btrfs_wait_ordered_range(inode, alloc_start, 2635 alloc_end - alloc_start); 2636 if (ret) 2637 goto out; 2638 } else { 2639 if (ordered) 2640 btrfs_put_ordered_extent(ordered); 2641 break; 2642 } 2643 } 2644 2645 cur_offset = alloc_start; 2646 while (1) { 2647 u64 actual_end; 2648 2649 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2650 alloc_end - cur_offset, 0); 2651 if (IS_ERR_OR_NULL(em)) { 2652 if (!em) 2653 ret = -ENOMEM; 2654 else 2655 ret = PTR_ERR(em); 2656 break; 2657 } 2658 last_byte = min(extent_map_end(em), alloc_end); 2659 actual_end = min_t(u64, extent_map_end(em), offset + len); 2660 last_byte = ALIGN(last_byte, blocksize); 2661 2662 if (em->block_start == EXTENT_MAP_HOLE || 2663 (cur_offset >= inode->i_size && 2664 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2665 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2666 last_byte - cur_offset, 2667 1 << inode->i_blkbits, 2668 offset + len, 2669 &alloc_hint); 2670 } else if (actual_end > inode->i_size && 2671 !(mode & FALLOC_FL_KEEP_SIZE)) { 2672 struct btrfs_trans_handle *trans; 2673 struct btrfs_root *root = BTRFS_I(inode)->root; 2674 2675 /* 2676 * We didn't need to allocate any more space, but we 2677 * still extended the size of the file so we need to 2678 * update i_size and the inode item. 2679 */ 2680 trans = btrfs_start_transaction(root, 1); 2681 if (IS_ERR(trans)) { 2682 ret = PTR_ERR(trans); 2683 } else { 2684 inode->i_ctime = CURRENT_TIME; 2685 i_size_write(inode, actual_end); 2686 btrfs_ordered_update_i_size(inode, actual_end, 2687 NULL); 2688 ret = btrfs_update_inode(trans, root, inode); 2689 if (ret) 2690 btrfs_end_transaction(trans, root); 2691 else 2692 ret = btrfs_end_transaction(trans, 2693 root); 2694 } 2695 } 2696 free_extent_map(em); 2697 if (ret < 0) 2698 break; 2699 2700 cur_offset = last_byte; 2701 if (cur_offset >= alloc_end) { 2702 ret = 0; 2703 break; 2704 } 2705 } 2706 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2707 &cached_state, GFP_NOFS); 2708out: 2709 mutex_unlock(&inode->i_mutex); 2710 /* Let go of our reservation. */ 2711 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2712 return ret; 2713} 2714 2715static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2716{ 2717 struct btrfs_root *root = BTRFS_I(inode)->root; 2718 struct extent_map *em = NULL; 2719 struct extent_state *cached_state = NULL; 2720 u64 lockstart; 2721 u64 lockend; 2722 u64 start; 2723 u64 len; 2724 int ret = 0; 2725 2726 if (inode->i_size == 0) 2727 return -ENXIO; 2728 2729 /* 2730 * *offset can be negative, in this case we start finding DATA/HOLE from 2731 * the very start of the file. 2732 */ 2733 start = max_t(loff_t, 0, *offset); 2734 2735 lockstart = round_down(start, root->sectorsize); 2736 lockend = round_up(i_size_read(inode), root->sectorsize); 2737 if (lockend <= lockstart) 2738 lockend = lockstart + root->sectorsize; 2739 lockend--; 2740 len = lockend - lockstart + 1; 2741 2742 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2743 &cached_state); 2744 2745 while (start < inode->i_size) { 2746 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2747 if (IS_ERR(em)) { 2748 ret = PTR_ERR(em); 2749 em = NULL; 2750 break; 2751 } 2752 2753 if (whence == SEEK_HOLE && 2754 (em->block_start == EXTENT_MAP_HOLE || 2755 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2756 break; 2757 else if (whence == SEEK_DATA && 2758 (em->block_start != EXTENT_MAP_HOLE && 2759 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2760 break; 2761 2762 start = em->start + em->len; 2763 free_extent_map(em); 2764 em = NULL; 2765 cond_resched(); 2766 } 2767 free_extent_map(em); 2768 if (!ret) { 2769 if (whence == SEEK_DATA && start >= inode->i_size) 2770 ret = -ENXIO; 2771 else 2772 *offset = min_t(loff_t, start, inode->i_size); 2773 } 2774 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2775 &cached_state, GFP_NOFS); 2776 return ret; 2777} 2778 2779static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2780{ 2781 struct inode *inode = file->f_mapping->host; 2782 int ret; 2783 2784 mutex_lock(&inode->i_mutex); 2785 switch (whence) { 2786 case SEEK_END: 2787 case SEEK_CUR: 2788 offset = generic_file_llseek(file, offset, whence); 2789 goto out; 2790 case SEEK_DATA: 2791 case SEEK_HOLE: 2792 if (offset >= i_size_read(inode)) { 2793 mutex_unlock(&inode->i_mutex); 2794 return -ENXIO; 2795 } 2796 2797 ret = find_desired_extent(inode, &offset, whence); 2798 if (ret) { 2799 mutex_unlock(&inode->i_mutex); 2800 return ret; 2801 } 2802 } 2803 2804 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2805out: 2806 mutex_unlock(&inode->i_mutex); 2807 return offset; 2808} 2809 2810const struct file_operations btrfs_file_operations = { 2811 .llseek = btrfs_file_llseek, 2812 .read_iter = generic_file_read_iter, 2813 .splice_read = generic_file_splice_read, 2814 .write_iter = btrfs_file_write_iter, 2815 .mmap = btrfs_file_mmap, 2816 .open = generic_file_open, 2817 .release = btrfs_release_file, 2818 .fsync = btrfs_sync_file, 2819 .fallocate = btrfs_fallocate, 2820 .unlocked_ioctl = btrfs_ioctl, 2821#ifdef CONFIG_COMPAT 2822 .compat_ioctl = btrfs_compat_ioctl, 2823#endif 2824}; 2825 2826void btrfs_auto_defrag_exit(void) 2827{ 2828 if (btrfs_inode_defrag_cachep) 2829 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2830} 2831 2832int btrfs_auto_defrag_init(void) 2833{ 2834 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2835 sizeof(struct inode_defrag), 0, 2836 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2837 NULL); 2838 if (!btrfs_inode_defrag_cachep) 2839 return -ENOMEM; 2840 2841 return 0; 2842} 2843 2844int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 2845{ 2846 int ret; 2847 2848 /* 2849 * So with compression we will find and lock a dirty page and clear the 2850 * first one as dirty, setup an async extent, and immediately return 2851 * with the entire range locked but with nobody actually marked with 2852 * writeback. So we can't just filemap_write_and_wait_range() and 2853 * expect it to work since it will just kick off a thread to do the 2854 * actual work. So we need to call filemap_fdatawrite_range _again_ 2855 * since it will wait on the page lock, which won't be unlocked until 2856 * after the pages have been marked as writeback and so we're good to go 2857 * from there. We have to do this otherwise we'll miss the ordered 2858 * extents and that results in badness. Please Josef, do not think you 2859 * know better and pull this out at some point in the future, it is 2860 * right and you are wrong. 2861 */ 2862 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2863 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 2864 &BTRFS_I(inode)->runtime_flags)) 2865 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2866 2867 return ret; 2868} 2869