1#include <linux/bitops.h> 2#include <linux/slab.h> 3#include <linux/bio.h> 4#include <linux/mm.h> 5#include <linux/pagemap.h> 6#include <linux/page-flags.h> 7#include <linux/spinlock.h> 8#include <linux/blkdev.h> 9#include <linux/swap.h> 10#include <linux/writeback.h> 11#include <linux/pagevec.h> 12#include <linux/prefetch.h> 13#include <linux/cleancache.h> 14#include "extent_io.h" 15#include "extent_map.h" 16#include "ctree.h" 17#include "btrfs_inode.h" 18#include "volumes.h" 19#include "check-integrity.h" 20#include "locking.h" 21#include "rcu-string.h" 22#include "backref.h" 23 24static struct kmem_cache *extent_state_cache; 25static struct kmem_cache *extent_buffer_cache; 26static struct bio_set *btrfs_bioset; 27 28static inline bool extent_state_in_tree(const struct extent_state *state) 29{ 30 return !RB_EMPTY_NODE(&state->rb_node); 31} 32 33#ifdef CONFIG_BTRFS_DEBUG 34static LIST_HEAD(buffers); 35static LIST_HEAD(states); 36 37static DEFINE_SPINLOCK(leak_lock); 38 39static inline 40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41{ 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47} 48 49static inline 50void btrfs_leak_debug_del(struct list_head *entry) 51{ 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57} 58 59static inline 60void btrfs_leak_debug_check(void) 61{ 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83} 84 85#define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89{ 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103} 104#else 105#define btrfs_leak_debug_add(new, head) do {} while (0) 106#define btrfs_leak_debug_del(entry) do {} while (0) 107#define btrfs_leak_debug_check() do {} while (0) 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109#endif 110 111#define BUFFER_LRU_MAX 64 112 113struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117}; 118 119struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132}; 133 134static noinline void flush_write_bio(void *data); 135static inline struct btrfs_fs_info * 136tree_fs_info(struct extent_io_tree *tree) 137{ 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141} 142 143int __init extent_io_init(void) 144{ 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179} 180 181void extent_io_exit(void) 182{ 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196} 197 198void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200{ 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206} 207 208static struct extent_state *alloc_extent_state(gfp_t mask) 209{ 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223} 224 225void free_extent_state(struct extent_state *state) 226{ 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235} 236 237static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243{ 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271} 272 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278{ 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323} 324 325static inline struct rb_node * 326tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330{ 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338} 339 340static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342{ 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344} 345 346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348{ 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352} 353 354/* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365{ 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396} 397 398static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned *bits) 400{ 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403} 404 405static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned *bits) 407{ 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410} 411 412static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned *bits); 414 415/* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned *bits) 430{ 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452} 453 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456{ 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459} 460 461/* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477{ 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494} 495 496static struct extent_state *next_state(struct extent_state *state) 497{ 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503} 504 505/* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned *bits, int wake) 515{ 516 struct extent_state *next; 517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542} 543 544static struct extent_state * 545alloc_extent_state_atomic(struct extent_state *prealloc) 546{ 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551} 552 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554{ 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558} 559 560/* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576{ 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 /* 599 * Don't care for allocation failure here because we might end 600 * up not needing the pre-allocated extent state at all, which 601 * is the case if we only have in the tree extent states that 602 * cover our input range and don't cover too any other range. 603 * If we end up needing a new extent state we allocate it later. 604 */ 605 prealloc = alloc_extent_state(mask); 606 } 607 608 spin_lock(&tree->lock); 609 if (cached_state) { 610 cached = *cached_state; 611 612 if (clear) { 613 *cached_state = NULL; 614 cached_state = NULL; 615 } 616 617 if (cached && extent_state_in_tree(cached) && 618 cached->start <= start && cached->end > start) { 619 if (clear) 620 atomic_dec(&cached->refs); 621 state = cached; 622 goto hit_next; 623 } 624 if (clear) 625 free_extent_state(cached); 626 } 627 /* 628 * this search will find the extents that end after 629 * our range starts 630 */ 631 node = tree_search(tree, start); 632 if (!node) 633 goto out; 634 state = rb_entry(node, struct extent_state, rb_node); 635hit_next: 636 if (state->start > end) 637 goto out; 638 WARN_ON(state->end < start); 639 last_end = state->end; 640 641 /* the state doesn't have the wanted bits, go ahead */ 642 if (!(state->state & bits)) { 643 state = next_state(state); 644 goto next; 645 } 646 647 /* 648 * | ---- desired range ---- | 649 * | state | or 650 * | ------------- state -------------- | 651 * 652 * We need to split the extent we found, and may flip 653 * bits on second half. 654 * 655 * If the extent we found extends past our range, we 656 * just split and search again. It'll get split again 657 * the next time though. 658 * 659 * If the extent we found is inside our range, we clear 660 * the desired bit on it. 661 */ 662 663 if (state->start < start) { 664 prealloc = alloc_extent_state_atomic(prealloc); 665 BUG_ON(!prealloc); 666 err = split_state(tree, state, prealloc, start); 667 if (err) 668 extent_io_tree_panic(tree, err); 669 670 prealloc = NULL; 671 if (err) 672 goto out; 673 if (state->end <= end) { 674 state = clear_state_bit(tree, state, &bits, wake); 675 goto next; 676 } 677 goto search_again; 678 } 679 /* 680 * | ---- desired range ---- | 681 * | state | 682 * We need to split the extent, and clear the bit 683 * on the first half 684 */ 685 if (state->start <= end && state->end > end) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, end + 1); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 if (wake) 693 wake_up(&state->wq); 694 695 clear_state_bit(tree, prealloc, &bits, wake); 696 697 prealloc = NULL; 698 goto out; 699 } 700 701 state = clear_state_bit(tree, state, &bits, wake); 702next: 703 if (last_end == (u64)-1) 704 goto out; 705 start = last_end + 1; 706 if (start <= end && state && !need_resched()) 707 goto hit_next; 708 goto search_again; 709 710out: 711 spin_unlock(&tree->lock); 712 if (prealloc) 713 free_extent_state(prealloc); 714 715 return 0; 716 717search_again: 718 if (start > end) 719 goto out; 720 spin_unlock(&tree->lock); 721 if (mask & __GFP_WAIT) 722 cond_resched(); 723 goto again; 724} 725 726static void wait_on_state(struct extent_io_tree *tree, 727 struct extent_state *state) 728 __releases(tree->lock) 729 __acquires(tree->lock) 730{ 731 DEFINE_WAIT(wait); 732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 733 spin_unlock(&tree->lock); 734 schedule(); 735 spin_lock(&tree->lock); 736 finish_wait(&state->wq, &wait); 737} 738 739/* 740 * waits for one or more bits to clear on a range in the state tree. 741 * The range [start, end] is inclusive. 742 * The tree lock is taken by this function 743 */ 744static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 745 unsigned long bits) 746{ 747 struct extent_state *state; 748 struct rb_node *node; 749 750 btrfs_debug_check_extent_io_range(tree, start, end); 751 752 spin_lock(&tree->lock); 753again: 754 while (1) { 755 /* 756 * this search will find all the extents that end after 757 * our range starts 758 */ 759 node = tree_search(tree, start); 760process_node: 761 if (!node) 762 break; 763 764 state = rb_entry(node, struct extent_state, rb_node); 765 766 if (state->start > end) 767 goto out; 768 769 if (state->state & bits) { 770 start = state->start; 771 atomic_inc(&state->refs); 772 wait_on_state(tree, state); 773 free_extent_state(state); 774 goto again; 775 } 776 start = state->end + 1; 777 778 if (start > end) 779 break; 780 781 if (!cond_resched_lock(&tree->lock)) { 782 node = rb_next(node); 783 goto process_node; 784 } 785 } 786out: 787 spin_unlock(&tree->lock); 788} 789 790static void set_state_bits(struct extent_io_tree *tree, 791 struct extent_state *state, 792 unsigned *bits) 793{ 794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 795 796 set_state_cb(tree, state, bits); 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 798 u64 range = state->end - state->start + 1; 799 tree->dirty_bytes += range; 800 } 801 state->state |= bits_to_set; 802} 803 804static void cache_state_if_flags(struct extent_state *state, 805 struct extent_state **cached_ptr, 806 unsigned flags) 807{ 808 if (cached_ptr && !(*cached_ptr)) { 809 if (!flags || (state->state & flags)) { 810 *cached_ptr = state; 811 atomic_inc(&state->refs); 812 } 813 } 814} 815 816static void cache_state(struct extent_state *state, 817 struct extent_state **cached_ptr) 818{ 819 return cache_state_if_flags(state, cached_ptr, 820 EXTENT_IOBITS | EXTENT_BOUNDARY); 821} 822 823/* 824 * set some bits on a range in the tree. This may require allocations or 825 * sleeping, so the gfp mask is used to indicate what is allowed. 826 * 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some 828 * part of the range already has the desired bits set. The start of the 829 * existing range is returned in failed_start in this case. 830 * 831 * [start, end] is inclusive This takes the tree lock. 832 */ 833 834static int __must_check 835__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 836 unsigned bits, unsigned exclusive_bits, 837 u64 *failed_start, struct extent_state **cached_state, 838 gfp_t mask) 839{ 840 struct extent_state *state; 841 struct extent_state *prealloc = NULL; 842 struct rb_node *node; 843 struct rb_node **p; 844 struct rb_node *parent; 845 int err = 0; 846 u64 last_start; 847 u64 last_end; 848 849 btrfs_debug_check_extent_io_range(tree, start, end); 850 851 bits |= EXTENT_FIRST_DELALLOC; 852again: 853 if (!prealloc && (mask & __GFP_WAIT)) { 854 prealloc = alloc_extent_state(mask); 855 BUG_ON(!prealloc); 856 } 857 858 spin_lock(&tree->lock); 859 if (cached_state && *cached_state) { 860 state = *cached_state; 861 if (state->start <= start && state->end > start && 862 extent_state_in_tree(state)) { 863 node = &state->rb_node; 864 goto hit_next; 865 } 866 } 867 /* 868 * this search will find all the extents that end after 869 * our range starts. 870 */ 871 node = tree_search_for_insert(tree, start, &p, &parent); 872 if (!node) { 873 prealloc = alloc_extent_state_atomic(prealloc); 874 BUG_ON(!prealloc); 875 err = insert_state(tree, prealloc, start, end, 876 &p, &parent, &bits); 877 if (err) 878 extent_io_tree_panic(tree, err); 879 880 cache_state(prealloc, cached_state); 881 prealloc = NULL; 882 goto out; 883 } 884 state = rb_entry(node, struct extent_state, rb_node); 885hit_next: 886 last_start = state->start; 887 last_end = state->end; 888 889 /* 890 * | ---- desired range ---- | 891 * | state | 892 * 893 * Just lock what we found and keep going 894 */ 895 if (state->start == start && state->end <= end) { 896 if (state->state & exclusive_bits) { 897 *failed_start = state->start; 898 err = -EEXIST; 899 goto out; 900 } 901 902 set_state_bits(tree, state, &bits); 903 cache_state(state, cached_state); 904 merge_state(tree, state); 905 if (last_end == (u64)-1) 906 goto out; 907 start = last_end + 1; 908 state = next_state(state); 909 if (start < end && state && state->start == start && 910 !need_resched()) 911 goto hit_next; 912 goto search_again; 913 } 914 915 /* 916 * | ---- desired range ---- | 917 * | state | 918 * or 919 * | ------------- state -------------- | 920 * 921 * We need to split the extent we found, and may flip bits on 922 * second half. 923 * 924 * If the extent we found extends past our 925 * range, we just split and search again. It'll get split 926 * again the next time though. 927 * 928 * If the extent we found is inside our range, we set the 929 * desired bit on it. 930 */ 931 if (state->start < start) { 932 if (state->state & exclusive_bits) { 933 *failed_start = start; 934 err = -EEXIST; 935 goto out; 936 } 937 938 prealloc = alloc_extent_state_atomic(prealloc); 939 BUG_ON(!prealloc); 940 err = split_state(tree, state, prealloc, start); 941 if (err) 942 extent_io_tree_panic(tree, err); 943 944 prealloc = NULL; 945 if (err) 946 goto out; 947 if (state->end <= end) { 948 set_state_bits(tree, state, &bits); 949 cache_state(state, cached_state); 950 merge_state(tree, state); 951 if (last_end == (u64)-1) 952 goto out; 953 start = last_end + 1; 954 state = next_state(state); 955 if (start < end && state && state->start == start && 956 !need_resched()) 957 goto hit_next; 958 } 959 goto search_again; 960 } 961 /* 962 * | ---- desired range ---- | 963 * | state | or | state | 964 * 965 * There's a hole, we need to insert something in it and 966 * ignore the extent we found. 967 */ 968 if (state->start > start) { 969 u64 this_end; 970 if (end < last_start) 971 this_end = end; 972 else 973 this_end = last_start - 1; 974 975 prealloc = alloc_extent_state_atomic(prealloc); 976 BUG_ON(!prealloc); 977 978 /* 979 * Avoid to free 'prealloc' if it can be merged with 980 * the later extent. 981 */ 982 err = insert_state(tree, prealloc, start, this_end, 983 NULL, NULL, &bits); 984 if (err) 985 extent_io_tree_panic(tree, err); 986 987 cache_state(prealloc, cached_state); 988 prealloc = NULL; 989 start = this_end + 1; 990 goto search_again; 991 } 992 /* 993 * | ---- desired range ---- | 994 * | state | 995 * We need to split the extent, and set the bit 996 * on the first half 997 */ 998 if (state->start <= end && state->end > end) { 999 if (state->state & exclusive_bits) { 1000 *failed_start = start; 1001 err = -EEXIST; 1002 goto out; 1003 } 1004 1005 prealloc = alloc_extent_state_atomic(prealloc); 1006 BUG_ON(!prealloc); 1007 err = split_state(tree, state, prealloc, end + 1); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 set_state_bits(tree, prealloc, &bits); 1012 cache_state(prealloc, cached_state); 1013 merge_state(tree, prealloc); 1014 prealloc = NULL; 1015 goto out; 1016 } 1017 1018 goto search_again; 1019 1020out: 1021 spin_unlock(&tree->lock); 1022 if (prealloc) 1023 free_extent_state(prealloc); 1024 1025 return err; 1026 1027search_again: 1028 if (start > end) 1029 goto out; 1030 spin_unlock(&tree->lock); 1031 if (mask & __GFP_WAIT) 1032 cond_resched(); 1033 goto again; 1034} 1035 1036int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1037 unsigned bits, u64 * failed_start, 1038 struct extent_state **cached_state, gfp_t mask) 1039{ 1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1041 cached_state, mask); 1042} 1043 1044 1045/** 1046 * convert_extent_bit - convert all bits in a given range from one bit to 1047 * another 1048 * @tree: the io tree to search 1049 * @start: the start offset in bytes 1050 * @end: the end offset in bytes (inclusive) 1051 * @bits: the bits to set in this range 1052 * @clear_bits: the bits to clear in this range 1053 * @cached_state: state that we're going to cache 1054 * @mask: the allocation mask 1055 * 1056 * This will go through and set bits for the given range. If any states exist 1057 * already in this range they are set with the given bit and cleared of the 1058 * clear_bits. This is only meant to be used by things that are mergeable, ie 1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1060 * boundary bits like LOCK. 1061 */ 1062int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1063 unsigned bits, unsigned clear_bits, 1064 struct extent_state **cached_state, gfp_t mask) 1065{ 1066 struct extent_state *state; 1067 struct extent_state *prealloc = NULL; 1068 struct rb_node *node; 1069 struct rb_node **p; 1070 struct rb_node *parent; 1071 int err = 0; 1072 u64 last_start; 1073 u64 last_end; 1074 bool first_iteration = true; 1075 1076 btrfs_debug_check_extent_io_range(tree, start, end); 1077 1078again: 1079 if (!prealloc && (mask & __GFP_WAIT)) { 1080 /* 1081 * Best effort, don't worry if extent state allocation fails 1082 * here for the first iteration. We might have a cached state 1083 * that matches exactly the target range, in which case no 1084 * extent state allocations are needed. We'll only know this 1085 * after locking the tree. 1086 */ 1087 prealloc = alloc_extent_state(mask); 1088 if (!prealloc && !first_iteration) 1089 return -ENOMEM; 1090 } 1091 1092 spin_lock(&tree->lock); 1093 if (cached_state && *cached_state) { 1094 state = *cached_state; 1095 if (state->start <= start && state->end > start && 1096 extent_state_in_tree(state)) { 1097 node = &state->rb_node; 1098 goto hit_next; 1099 } 1100 } 1101 1102 /* 1103 * this search will find all the extents that end after 1104 * our range starts. 1105 */ 1106 node = tree_search_for_insert(tree, start, &p, &parent); 1107 if (!node) { 1108 prealloc = alloc_extent_state_atomic(prealloc); 1109 if (!prealloc) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 err = insert_state(tree, prealloc, start, end, 1114 &p, &parent, &bits); 1115 if (err) 1116 extent_io_tree_panic(tree, err); 1117 cache_state(prealloc, cached_state); 1118 prealloc = NULL; 1119 goto out; 1120 } 1121 state = rb_entry(node, struct extent_state, rb_node); 1122hit_next: 1123 last_start = state->start; 1124 last_end = state->end; 1125 1126 /* 1127 * | ---- desired range ---- | 1128 * | state | 1129 * 1130 * Just lock what we found and keep going 1131 */ 1132 if (state->start == start && state->end <= end) { 1133 set_state_bits(tree, state, &bits); 1134 cache_state(state, cached_state); 1135 state = clear_state_bit(tree, state, &clear_bits, 0); 1136 if (last_end == (u64)-1) 1137 goto out; 1138 start = last_end + 1; 1139 if (start < end && state && state->start == start && 1140 !need_resched()) 1141 goto hit_next; 1142 goto search_again; 1143 } 1144 1145 /* 1146 * | ---- desired range ---- | 1147 * | state | 1148 * or 1149 * | ------------- state -------------- | 1150 * 1151 * We need to split the extent we found, and may flip bits on 1152 * second half. 1153 * 1154 * If the extent we found extends past our 1155 * range, we just split and search again. It'll get split 1156 * again the next time though. 1157 * 1158 * If the extent we found is inside our range, we set the 1159 * desired bit on it. 1160 */ 1161 if (state->start < start) { 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 if (!prealloc) { 1164 err = -ENOMEM; 1165 goto out; 1166 } 1167 err = split_state(tree, state, prealloc, start); 1168 if (err) 1169 extent_io_tree_panic(tree, err); 1170 prealloc = NULL; 1171 if (err) 1172 goto out; 1173 if (state->end <= end) { 1174 set_state_bits(tree, state, &bits); 1175 cache_state(state, cached_state); 1176 state = clear_state_bit(tree, state, &clear_bits, 0); 1177 if (last_end == (u64)-1) 1178 goto out; 1179 start = last_end + 1; 1180 if (start < end && state && state->start == start && 1181 !need_resched()) 1182 goto hit_next; 1183 } 1184 goto search_again; 1185 } 1186 /* 1187 * | ---- desired range ---- | 1188 * | state | or | state | 1189 * 1190 * There's a hole, we need to insert something in it and 1191 * ignore the extent we found. 1192 */ 1193 if (state->start > start) { 1194 u64 this_end; 1195 if (end < last_start) 1196 this_end = end; 1197 else 1198 this_end = last_start - 1; 1199 1200 prealloc = alloc_extent_state_atomic(prealloc); 1201 if (!prealloc) { 1202 err = -ENOMEM; 1203 goto out; 1204 } 1205 1206 /* 1207 * Avoid to free 'prealloc' if it can be merged with 1208 * the later extent. 1209 */ 1210 err = insert_state(tree, prealloc, start, this_end, 1211 NULL, NULL, &bits); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 cache_state(prealloc, cached_state); 1215 prealloc = NULL; 1216 start = this_end + 1; 1217 goto search_again; 1218 } 1219 /* 1220 * | ---- desired range ---- | 1221 * | state | 1222 * We need to split the extent, and set the bit 1223 * on the first half 1224 */ 1225 if (state->start <= end && state->end > end) { 1226 prealloc = alloc_extent_state_atomic(prealloc); 1227 if (!prealloc) { 1228 err = -ENOMEM; 1229 goto out; 1230 } 1231 1232 err = split_state(tree, state, prealloc, end + 1); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 1236 set_state_bits(tree, prealloc, &bits); 1237 cache_state(prealloc, cached_state); 1238 clear_state_bit(tree, prealloc, &clear_bits, 0); 1239 prealloc = NULL; 1240 goto out; 1241 } 1242 1243 goto search_again; 1244 1245out: 1246 spin_unlock(&tree->lock); 1247 if (prealloc) 1248 free_extent_state(prealloc); 1249 1250 return err; 1251 1252search_again: 1253 if (start > end) 1254 goto out; 1255 spin_unlock(&tree->lock); 1256 if (mask & __GFP_WAIT) 1257 cond_resched(); 1258 first_iteration = false; 1259 goto again; 1260} 1261 1262/* wrappers around set/clear extent bit */ 1263int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1264 gfp_t mask) 1265{ 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1267 NULL, mask); 1268} 1269 1270int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1271 unsigned bits, gfp_t mask) 1272{ 1273 return set_extent_bit(tree, start, end, bits, NULL, 1274 NULL, mask); 1275} 1276 1277int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1278 unsigned bits, gfp_t mask) 1279{ 1280 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1281} 1282 1283int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1284 struct extent_state **cached_state, gfp_t mask) 1285{ 1286 return set_extent_bit(tree, start, end, 1287 EXTENT_DELALLOC | EXTENT_UPTODATE, 1288 NULL, cached_state, mask); 1289} 1290 1291int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1292 struct extent_state **cached_state, gfp_t mask) 1293{ 1294 return set_extent_bit(tree, start, end, 1295 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1296 NULL, cached_state, mask); 1297} 1298 1299int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1300 gfp_t mask) 1301{ 1302 return clear_extent_bit(tree, start, end, 1303 EXTENT_DIRTY | EXTENT_DELALLOC | 1304 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1305} 1306 1307int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1308 gfp_t mask) 1309{ 1310 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1311 NULL, mask); 1312} 1313 1314int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1315 struct extent_state **cached_state, gfp_t mask) 1316{ 1317 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1318 cached_state, mask); 1319} 1320 1321int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1322 struct extent_state **cached_state, gfp_t mask) 1323{ 1324 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1325 cached_state, mask); 1326} 1327 1328/* 1329 * either insert or lock state struct between start and end use mask to tell 1330 * us if waiting is desired. 1331 */ 1332int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1333 unsigned bits, struct extent_state **cached_state) 1334{ 1335 int err; 1336 u64 failed_start; 1337 1338 while (1) { 1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1340 EXTENT_LOCKED, &failed_start, 1341 cached_state, GFP_NOFS); 1342 if (err == -EEXIST) { 1343 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1344 start = failed_start; 1345 } else 1346 break; 1347 WARN_ON(start > end); 1348 } 1349 return err; 1350} 1351 1352int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1353{ 1354 return lock_extent_bits(tree, start, end, 0, NULL); 1355} 1356 1357int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1358{ 1359 int err; 1360 u64 failed_start; 1361 1362 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1363 &failed_start, NULL, GFP_NOFS); 1364 if (err == -EEXIST) { 1365 if (failed_start > start) 1366 clear_extent_bit(tree, start, failed_start - 1, 1367 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1368 return 0; 1369 } 1370 return 1; 1371} 1372 1373int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1374 struct extent_state **cached, gfp_t mask) 1375{ 1376 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1377 mask); 1378} 1379 1380int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1381{ 1382 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1383 GFP_NOFS); 1384} 1385 1386int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1387{ 1388 unsigned long index = start >> PAGE_CACHE_SHIFT; 1389 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1390 struct page *page; 1391 1392 while (index <= end_index) { 1393 page = find_get_page(inode->i_mapping, index); 1394 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1395 clear_page_dirty_for_io(page); 1396 page_cache_release(page); 1397 index++; 1398 } 1399 return 0; 1400} 1401 1402int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1403{ 1404 unsigned long index = start >> PAGE_CACHE_SHIFT; 1405 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1406 struct page *page; 1407 1408 while (index <= end_index) { 1409 page = find_get_page(inode->i_mapping, index); 1410 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1411 __set_page_dirty_nobuffers(page); 1412 account_page_redirty(page); 1413 page_cache_release(page); 1414 index++; 1415 } 1416 return 0; 1417} 1418 1419/* 1420 * helper function to set both pages and extents in the tree writeback 1421 */ 1422static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1423{ 1424 unsigned long index = start >> PAGE_CACHE_SHIFT; 1425 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1426 struct page *page; 1427 1428 while (index <= end_index) { 1429 page = find_get_page(tree->mapping, index); 1430 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1431 set_page_writeback(page); 1432 page_cache_release(page); 1433 index++; 1434 } 1435 return 0; 1436} 1437 1438/* find the first state struct with 'bits' set after 'start', and 1439 * return it. tree->lock must be held. NULL will returned if 1440 * nothing was found after 'start' 1441 */ 1442static struct extent_state * 1443find_first_extent_bit_state(struct extent_io_tree *tree, 1444 u64 start, unsigned bits) 1445{ 1446 struct rb_node *node; 1447 struct extent_state *state; 1448 1449 /* 1450 * this search will find all the extents that end after 1451 * our range starts. 1452 */ 1453 node = tree_search(tree, start); 1454 if (!node) 1455 goto out; 1456 1457 while (1) { 1458 state = rb_entry(node, struct extent_state, rb_node); 1459 if (state->end >= start && (state->state & bits)) 1460 return state; 1461 1462 node = rb_next(node); 1463 if (!node) 1464 break; 1465 } 1466out: 1467 return NULL; 1468} 1469 1470/* 1471 * find the first offset in the io tree with 'bits' set. zero is 1472 * returned if we find something, and *start_ret and *end_ret are 1473 * set to reflect the state struct that was found. 1474 * 1475 * If nothing was found, 1 is returned. If found something, return 0. 1476 */ 1477int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1478 u64 *start_ret, u64 *end_ret, unsigned bits, 1479 struct extent_state **cached_state) 1480{ 1481 struct extent_state *state; 1482 struct rb_node *n; 1483 int ret = 1; 1484 1485 spin_lock(&tree->lock); 1486 if (cached_state && *cached_state) { 1487 state = *cached_state; 1488 if (state->end == start - 1 && extent_state_in_tree(state)) { 1489 n = rb_next(&state->rb_node); 1490 while (n) { 1491 state = rb_entry(n, struct extent_state, 1492 rb_node); 1493 if (state->state & bits) 1494 goto got_it; 1495 n = rb_next(n); 1496 } 1497 free_extent_state(*cached_state); 1498 *cached_state = NULL; 1499 goto out; 1500 } 1501 free_extent_state(*cached_state); 1502 *cached_state = NULL; 1503 } 1504 1505 state = find_first_extent_bit_state(tree, start, bits); 1506got_it: 1507 if (state) { 1508 cache_state_if_flags(state, cached_state, 0); 1509 *start_ret = state->start; 1510 *end_ret = state->end; 1511 ret = 0; 1512 } 1513out: 1514 spin_unlock(&tree->lock); 1515 return ret; 1516} 1517 1518/* 1519 * find a contiguous range of bytes in the file marked as delalloc, not 1520 * more than 'max_bytes'. start and end are used to return the range, 1521 * 1522 * 1 is returned if we find something, 0 if nothing was in the tree 1523 */ 1524static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1525 u64 *start, u64 *end, u64 max_bytes, 1526 struct extent_state **cached_state) 1527{ 1528 struct rb_node *node; 1529 struct extent_state *state; 1530 u64 cur_start = *start; 1531 u64 found = 0; 1532 u64 total_bytes = 0; 1533 1534 spin_lock(&tree->lock); 1535 1536 /* 1537 * this search will find all the extents that end after 1538 * our range starts. 1539 */ 1540 node = tree_search(tree, cur_start); 1541 if (!node) { 1542 if (!found) 1543 *end = (u64)-1; 1544 goto out; 1545 } 1546 1547 while (1) { 1548 state = rb_entry(node, struct extent_state, rb_node); 1549 if (found && (state->start != cur_start || 1550 (state->state & EXTENT_BOUNDARY))) { 1551 goto out; 1552 } 1553 if (!(state->state & EXTENT_DELALLOC)) { 1554 if (!found) 1555 *end = state->end; 1556 goto out; 1557 } 1558 if (!found) { 1559 *start = state->start; 1560 *cached_state = state; 1561 atomic_inc(&state->refs); 1562 } 1563 found++; 1564 *end = state->end; 1565 cur_start = state->end + 1; 1566 node = rb_next(node); 1567 total_bytes += state->end - state->start + 1; 1568 if (total_bytes >= max_bytes) 1569 break; 1570 if (!node) 1571 break; 1572 } 1573out: 1574 spin_unlock(&tree->lock); 1575 return found; 1576} 1577 1578static noinline void __unlock_for_delalloc(struct inode *inode, 1579 struct page *locked_page, 1580 u64 start, u64 end) 1581{ 1582 int ret; 1583 struct page *pages[16]; 1584 unsigned long index = start >> PAGE_CACHE_SHIFT; 1585 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1586 unsigned long nr_pages = end_index - index + 1; 1587 int i; 1588 1589 if (index == locked_page->index && end_index == index) 1590 return; 1591 1592 while (nr_pages > 0) { 1593 ret = find_get_pages_contig(inode->i_mapping, index, 1594 min_t(unsigned long, nr_pages, 1595 ARRAY_SIZE(pages)), pages); 1596 for (i = 0; i < ret; i++) { 1597 if (pages[i] != locked_page) 1598 unlock_page(pages[i]); 1599 page_cache_release(pages[i]); 1600 } 1601 nr_pages -= ret; 1602 index += ret; 1603 cond_resched(); 1604 } 1605} 1606 1607static noinline int lock_delalloc_pages(struct inode *inode, 1608 struct page *locked_page, 1609 u64 delalloc_start, 1610 u64 delalloc_end) 1611{ 1612 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1613 unsigned long start_index = index; 1614 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1615 unsigned long pages_locked = 0; 1616 struct page *pages[16]; 1617 unsigned long nrpages; 1618 int ret; 1619 int i; 1620 1621 /* the caller is responsible for locking the start index */ 1622 if (index == locked_page->index && index == end_index) 1623 return 0; 1624 1625 /* skip the page at the start index */ 1626 nrpages = end_index - index + 1; 1627 while (nrpages > 0) { 1628 ret = find_get_pages_contig(inode->i_mapping, index, 1629 min_t(unsigned long, 1630 nrpages, ARRAY_SIZE(pages)), pages); 1631 if (ret == 0) { 1632 ret = -EAGAIN; 1633 goto done; 1634 } 1635 /* now we have an array of pages, lock them all */ 1636 for (i = 0; i < ret; i++) { 1637 /* 1638 * the caller is taking responsibility for 1639 * locked_page 1640 */ 1641 if (pages[i] != locked_page) { 1642 lock_page(pages[i]); 1643 if (!PageDirty(pages[i]) || 1644 pages[i]->mapping != inode->i_mapping) { 1645 ret = -EAGAIN; 1646 unlock_page(pages[i]); 1647 page_cache_release(pages[i]); 1648 goto done; 1649 } 1650 } 1651 page_cache_release(pages[i]); 1652 pages_locked++; 1653 } 1654 nrpages -= ret; 1655 index += ret; 1656 cond_resched(); 1657 } 1658 ret = 0; 1659done: 1660 if (ret && pages_locked) { 1661 __unlock_for_delalloc(inode, locked_page, 1662 delalloc_start, 1663 ((u64)(start_index + pages_locked - 1)) << 1664 PAGE_CACHE_SHIFT); 1665 } 1666 return ret; 1667} 1668 1669/* 1670 * find a contiguous range of bytes in the file marked as delalloc, not 1671 * more than 'max_bytes'. start and end are used to return the range, 1672 * 1673 * 1 is returned if we find something, 0 if nothing was in the tree 1674 */ 1675STATIC u64 find_lock_delalloc_range(struct inode *inode, 1676 struct extent_io_tree *tree, 1677 struct page *locked_page, u64 *start, 1678 u64 *end, u64 max_bytes) 1679{ 1680 u64 delalloc_start; 1681 u64 delalloc_end; 1682 u64 found; 1683 struct extent_state *cached_state = NULL; 1684 int ret; 1685 int loops = 0; 1686 1687again: 1688 /* step one, find a bunch of delalloc bytes starting at start */ 1689 delalloc_start = *start; 1690 delalloc_end = 0; 1691 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1692 max_bytes, &cached_state); 1693 if (!found || delalloc_end <= *start) { 1694 *start = delalloc_start; 1695 *end = delalloc_end; 1696 free_extent_state(cached_state); 1697 return 0; 1698 } 1699 1700 /* 1701 * start comes from the offset of locked_page. We have to lock 1702 * pages in order, so we can't process delalloc bytes before 1703 * locked_page 1704 */ 1705 if (delalloc_start < *start) 1706 delalloc_start = *start; 1707 1708 /* 1709 * make sure to limit the number of pages we try to lock down 1710 */ 1711 if (delalloc_end + 1 - delalloc_start > max_bytes) 1712 delalloc_end = delalloc_start + max_bytes - 1; 1713 1714 /* step two, lock all the pages after the page that has start */ 1715 ret = lock_delalloc_pages(inode, locked_page, 1716 delalloc_start, delalloc_end); 1717 if (ret == -EAGAIN) { 1718 /* some of the pages are gone, lets avoid looping by 1719 * shortening the size of the delalloc range we're searching 1720 */ 1721 free_extent_state(cached_state); 1722 cached_state = NULL; 1723 if (!loops) { 1724 max_bytes = PAGE_CACHE_SIZE; 1725 loops = 1; 1726 goto again; 1727 } else { 1728 found = 0; 1729 goto out_failed; 1730 } 1731 } 1732 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1733 1734 /* step three, lock the state bits for the whole range */ 1735 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1736 1737 /* then test to make sure it is all still delalloc */ 1738 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1739 EXTENT_DELALLOC, 1, cached_state); 1740 if (!ret) { 1741 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1742 &cached_state, GFP_NOFS); 1743 __unlock_for_delalloc(inode, locked_page, 1744 delalloc_start, delalloc_end); 1745 cond_resched(); 1746 goto again; 1747 } 1748 free_extent_state(cached_state); 1749 *start = delalloc_start; 1750 *end = delalloc_end; 1751out_failed: 1752 return found; 1753} 1754 1755int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1756 struct page *locked_page, 1757 unsigned clear_bits, 1758 unsigned long page_ops) 1759{ 1760 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1761 int ret; 1762 struct page *pages[16]; 1763 unsigned long index = start >> PAGE_CACHE_SHIFT; 1764 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1765 unsigned long nr_pages = end_index - index + 1; 1766 int i; 1767 1768 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1769 if (page_ops == 0) 1770 return 0; 1771 1772 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1773 mapping_set_error(inode->i_mapping, -EIO); 1774 1775 while (nr_pages > 0) { 1776 ret = find_get_pages_contig(inode->i_mapping, index, 1777 min_t(unsigned long, 1778 nr_pages, ARRAY_SIZE(pages)), pages); 1779 for (i = 0; i < ret; i++) { 1780 1781 if (page_ops & PAGE_SET_PRIVATE2) 1782 SetPagePrivate2(pages[i]); 1783 1784 if (pages[i] == locked_page) { 1785 page_cache_release(pages[i]); 1786 continue; 1787 } 1788 if (page_ops & PAGE_CLEAR_DIRTY) 1789 clear_page_dirty_for_io(pages[i]); 1790 if (page_ops & PAGE_SET_WRITEBACK) 1791 set_page_writeback(pages[i]); 1792 if (page_ops & PAGE_SET_ERROR) 1793 SetPageError(pages[i]); 1794 if (page_ops & PAGE_END_WRITEBACK) 1795 end_page_writeback(pages[i]); 1796 if (page_ops & PAGE_UNLOCK) 1797 unlock_page(pages[i]); 1798 page_cache_release(pages[i]); 1799 } 1800 nr_pages -= ret; 1801 index += ret; 1802 cond_resched(); 1803 } 1804 return 0; 1805} 1806 1807/* 1808 * count the number of bytes in the tree that have a given bit(s) 1809 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1810 * cached. The total number found is returned. 1811 */ 1812u64 count_range_bits(struct extent_io_tree *tree, 1813 u64 *start, u64 search_end, u64 max_bytes, 1814 unsigned bits, int contig) 1815{ 1816 struct rb_node *node; 1817 struct extent_state *state; 1818 u64 cur_start = *start; 1819 u64 total_bytes = 0; 1820 u64 last = 0; 1821 int found = 0; 1822 1823 if (WARN_ON(search_end <= cur_start)) 1824 return 0; 1825 1826 spin_lock(&tree->lock); 1827 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1828 total_bytes = tree->dirty_bytes; 1829 goto out; 1830 } 1831 /* 1832 * this search will find all the extents that end after 1833 * our range starts. 1834 */ 1835 node = tree_search(tree, cur_start); 1836 if (!node) 1837 goto out; 1838 1839 while (1) { 1840 state = rb_entry(node, struct extent_state, rb_node); 1841 if (state->start > search_end) 1842 break; 1843 if (contig && found && state->start > last + 1) 1844 break; 1845 if (state->end >= cur_start && (state->state & bits) == bits) { 1846 total_bytes += min(search_end, state->end) + 1 - 1847 max(cur_start, state->start); 1848 if (total_bytes >= max_bytes) 1849 break; 1850 if (!found) { 1851 *start = max(cur_start, state->start); 1852 found = 1; 1853 } 1854 last = state->end; 1855 } else if (contig && found) { 1856 break; 1857 } 1858 node = rb_next(node); 1859 if (!node) 1860 break; 1861 } 1862out: 1863 spin_unlock(&tree->lock); 1864 return total_bytes; 1865} 1866 1867/* 1868 * set the private field for a given byte offset in the tree. If there isn't 1869 * an extent_state there already, this does nothing. 1870 */ 1871static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1872{ 1873 struct rb_node *node; 1874 struct extent_state *state; 1875 int ret = 0; 1876 1877 spin_lock(&tree->lock); 1878 /* 1879 * this search will find all the extents that end after 1880 * our range starts. 1881 */ 1882 node = tree_search(tree, start); 1883 if (!node) { 1884 ret = -ENOENT; 1885 goto out; 1886 } 1887 state = rb_entry(node, struct extent_state, rb_node); 1888 if (state->start != start) { 1889 ret = -ENOENT; 1890 goto out; 1891 } 1892 state->private = private; 1893out: 1894 spin_unlock(&tree->lock); 1895 return ret; 1896} 1897 1898int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1899{ 1900 struct rb_node *node; 1901 struct extent_state *state; 1902 int ret = 0; 1903 1904 spin_lock(&tree->lock); 1905 /* 1906 * this search will find all the extents that end after 1907 * our range starts. 1908 */ 1909 node = tree_search(tree, start); 1910 if (!node) { 1911 ret = -ENOENT; 1912 goto out; 1913 } 1914 state = rb_entry(node, struct extent_state, rb_node); 1915 if (state->start != start) { 1916 ret = -ENOENT; 1917 goto out; 1918 } 1919 *private = state->private; 1920out: 1921 spin_unlock(&tree->lock); 1922 return ret; 1923} 1924 1925/* 1926 * searches a range in the state tree for a given mask. 1927 * If 'filled' == 1, this returns 1 only if every extent in the tree 1928 * has the bits set. Otherwise, 1 is returned if any bit in the 1929 * range is found set. 1930 */ 1931int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1932 unsigned bits, int filled, struct extent_state *cached) 1933{ 1934 struct extent_state *state = NULL; 1935 struct rb_node *node; 1936 int bitset = 0; 1937 1938 spin_lock(&tree->lock); 1939 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1940 cached->end > start) 1941 node = &cached->rb_node; 1942 else 1943 node = tree_search(tree, start); 1944 while (node && start <= end) { 1945 state = rb_entry(node, struct extent_state, rb_node); 1946 1947 if (filled && state->start > start) { 1948 bitset = 0; 1949 break; 1950 } 1951 1952 if (state->start > end) 1953 break; 1954 1955 if (state->state & bits) { 1956 bitset = 1; 1957 if (!filled) 1958 break; 1959 } else if (filled) { 1960 bitset = 0; 1961 break; 1962 } 1963 1964 if (state->end == (u64)-1) 1965 break; 1966 1967 start = state->end + 1; 1968 if (start > end) 1969 break; 1970 node = rb_next(node); 1971 if (!node) { 1972 if (filled) 1973 bitset = 0; 1974 break; 1975 } 1976 } 1977 spin_unlock(&tree->lock); 1978 return bitset; 1979} 1980 1981/* 1982 * helper function to set a given page up to date if all the 1983 * extents in the tree for that page are up to date 1984 */ 1985static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1986{ 1987 u64 start = page_offset(page); 1988 u64 end = start + PAGE_CACHE_SIZE - 1; 1989 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1990 SetPageUptodate(page); 1991} 1992 1993int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1994{ 1995 int ret; 1996 int err = 0; 1997 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1998 1999 set_state_private(failure_tree, rec->start, 0); 2000 ret = clear_extent_bits(failure_tree, rec->start, 2001 rec->start + rec->len - 1, 2002 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2003 if (ret) 2004 err = ret; 2005 2006 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2007 rec->start + rec->len - 1, 2008 EXTENT_DAMAGED, GFP_NOFS); 2009 if (ret && !err) 2010 err = ret; 2011 2012 kfree(rec); 2013 return err; 2014} 2015 2016/* 2017 * this bypasses the standard btrfs submit functions deliberately, as 2018 * the standard behavior is to write all copies in a raid setup. here we only 2019 * want to write the one bad copy. so we do the mapping for ourselves and issue 2020 * submit_bio directly. 2021 * to avoid any synchronization issues, wait for the data after writing, which 2022 * actually prevents the read that triggered the error from finishing. 2023 * currently, there can be no more than two copies of every data bit. thus, 2024 * exactly one rewrite is required. 2025 */ 2026int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2027 struct page *page, unsigned int pg_offset, int mirror_num) 2028{ 2029 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2030 struct bio *bio; 2031 struct btrfs_device *dev; 2032 u64 map_length = 0; 2033 u64 sector; 2034 struct btrfs_bio *bbio = NULL; 2035 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2036 int ret; 2037 2038 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2039 BUG_ON(!mirror_num); 2040 2041 /* we can't repair anything in raid56 yet */ 2042 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2043 return 0; 2044 2045 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2046 if (!bio) 2047 return -EIO; 2048 bio->bi_iter.bi_size = 0; 2049 map_length = length; 2050 2051 ret = btrfs_map_block(fs_info, WRITE, logical, 2052 &map_length, &bbio, mirror_num); 2053 if (ret) { 2054 bio_put(bio); 2055 return -EIO; 2056 } 2057 BUG_ON(mirror_num != bbio->mirror_num); 2058 sector = bbio->stripes[mirror_num-1].physical >> 9; 2059 bio->bi_iter.bi_sector = sector; 2060 dev = bbio->stripes[mirror_num-1].dev; 2061 btrfs_put_bbio(bbio); 2062 if (!dev || !dev->bdev || !dev->writeable) { 2063 bio_put(bio); 2064 return -EIO; 2065 } 2066 bio->bi_bdev = dev->bdev; 2067 bio_add_page(bio, page, length, pg_offset); 2068 2069 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2070 /* try to remap that extent elsewhere? */ 2071 bio_put(bio); 2072 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2073 return -EIO; 2074 } 2075 2076 printk_ratelimited_in_rcu(KERN_INFO 2077 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n", 2078 btrfs_ino(inode), start, 2079 rcu_str_deref(dev->name), sector); 2080 bio_put(bio); 2081 return 0; 2082} 2083 2084int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2085 int mirror_num) 2086{ 2087 u64 start = eb->start; 2088 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2089 int ret = 0; 2090 2091 if (root->fs_info->sb->s_flags & MS_RDONLY) 2092 return -EROFS; 2093 2094 for (i = 0; i < num_pages; i++) { 2095 struct page *p = eb->pages[i]; 2096 2097 ret = repair_io_failure(root->fs_info->btree_inode, start, 2098 PAGE_CACHE_SIZE, start, p, 2099 start - page_offset(p), mirror_num); 2100 if (ret) 2101 break; 2102 start += PAGE_CACHE_SIZE; 2103 } 2104 2105 return ret; 2106} 2107 2108/* 2109 * each time an IO finishes, we do a fast check in the IO failure tree 2110 * to see if we need to process or clean up an io_failure_record 2111 */ 2112int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2113 unsigned int pg_offset) 2114{ 2115 u64 private; 2116 u64 private_failure; 2117 struct io_failure_record *failrec; 2118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2119 struct extent_state *state; 2120 int num_copies; 2121 int ret; 2122 2123 private = 0; 2124 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2125 (u64)-1, 1, EXTENT_DIRTY, 0); 2126 if (!ret) 2127 return 0; 2128 2129 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2130 &private_failure); 2131 if (ret) 2132 return 0; 2133 2134 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2135 BUG_ON(!failrec->this_mirror); 2136 2137 if (failrec->in_validation) { 2138 /* there was no real error, just free the record */ 2139 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2140 failrec->start); 2141 goto out; 2142 } 2143 if (fs_info->sb->s_flags & MS_RDONLY) 2144 goto out; 2145 2146 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2147 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2148 failrec->start, 2149 EXTENT_LOCKED); 2150 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2151 2152 if (state && state->start <= failrec->start && 2153 state->end >= failrec->start + failrec->len - 1) { 2154 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2155 failrec->len); 2156 if (num_copies > 1) { 2157 repair_io_failure(inode, start, failrec->len, 2158 failrec->logical, page, 2159 pg_offset, failrec->failed_mirror); 2160 } 2161 } 2162 2163out: 2164 free_io_failure(inode, failrec); 2165 2166 return 0; 2167} 2168 2169/* 2170 * Can be called when 2171 * - hold extent lock 2172 * - under ordered extent 2173 * - the inode is freeing 2174 */ 2175void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2176{ 2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2178 struct io_failure_record *failrec; 2179 struct extent_state *state, *next; 2180 2181 if (RB_EMPTY_ROOT(&failure_tree->state)) 2182 return; 2183 2184 spin_lock(&failure_tree->lock); 2185 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2186 while (state) { 2187 if (state->start > end) 2188 break; 2189 2190 ASSERT(state->end <= end); 2191 2192 next = next_state(state); 2193 2194 failrec = (struct io_failure_record *)(unsigned long)state->private; 2195 free_extent_state(state); 2196 kfree(failrec); 2197 2198 state = next; 2199 } 2200 spin_unlock(&failure_tree->lock); 2201} 2202 2203int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2204 struct io_failure_record **failrec_ret) 2205{ 2206 struct io_failure_record *failrec; 2207 u64 private; 2208 struct extent_map *em; 2209 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2210 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2211 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2212 int ret; 2213 u64 logical; 2214 2215 ret = get_state_private(failure_tree, start, &private); 2216 if (ret) { 2217 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2218 if (!failrec) 2219 return -ENOMEM; 2220 2221 failrec->start = start; 2222 failrec->len = end - start + 1; 2223 failrec->this_mirror = 0; 2224 failrec->bio_flags = 0; 2225 failrec->in_validation = 0; 2226 2227 read_lock(&em_tree->lock); 2228 em = lookup_extent_mapping(em_tree, start, failrec->len); 2229 if (!em) { 2230 read_unlock(&em_tree->lock); 2231 kfree(failrec); 2232 return -EIO; 2233 } 2234 2235 if (em->start > start || em->start + em->len <= start) { 2236 free_extent_map(em); 2237 em = NULL; 2238 } 2239 read_unlock(&em_tree->lock); 2240 if (!em) { 2241 kfree(failrec); 2242 return -EIO; 2243 } 2244 2245 logical = start - em->start; 2246 logical = em->block_start + logical; 2247 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2248 logical = em->block_start; 2249 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2250 extent_set_compress_type(&failrec->bio_flags, 2251 em->compress_type); 2252 } 2253 2254 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2255 logical, start, failrec->len); 2256 2257 failrec->logical = logical; 2258 free_extent_map(em); 2259 2260 /* set the bits in the private failure tree */ 2261 ret = set_extent_bits(failure_tree, start, end, 2262 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2263 if (ret >= 0) 2264 ret = set_state_private(failure_tree, start, 2265 (u64)(unsigned long)failrec); 2266 /* set the bits in the inode's tree */ 2267 if (ret >= 0) 2268 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2269 GFP_NOFS); 2270 if (ret < 0) { 2271 kfree(failrec); 2272 return ret; 2273 } 2274 } else { 2275 failrec = (struct io_failure_record *)(unsigned long)private; 2276 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2277 failrec->logical, failrec->start, failrec->len, 2278 failrec->in_validation); 2279 /* 2280 * when data can be on disk more than twice, add to failrec here 2281 * (e.g. with a list for failed_mirror) to make 2282 * clean_io_failure() clean all those errors at once. 2283 */ 2284 } 2285 2286 *failrec_ret = failrec; 2287 2288 return 0; 2289} 2290 2291int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2292 struct io_failure_record *failrec, int failed_mirror) 2293{ 2294 int num_copies; 2295 2296 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2297 failrec->logical, failrec->len); 2298 if (num_copies == 1) { 2299 /* 2300 * we only have a single copy of the data, so don't bother with 2301 * all the retry and error correction code that follows. no 2302 * matter what the error is, it is very likely to persist. 2303 */ 2304 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2305 num_copies, failrec->this_mirror, failed_mirror); 2306 return 0; 2307 } 2308 2309 /* 2310 * there are two premises: 2311 * a) deliver good data to the caller 2312 * b) correct the bad sectors on disk 2313 */ 2314 if (failed_bio->bi_vcnt > 1) { 2315 /* 2316 * to fulfill b), we need to know the exact failing sectors, as 2317 * we don't want to rewrite any more than the failed ones. thus, 2318 * we need separate read requests for the failed bio 2319 * 2320 * if the following BUG_ON triggers, our validation request got 2321 * merged. we need separate requests for our algorithm to work. 2322 */ 2323 BUG_ON(failrec->in_validation); 2324 failrec->in_validation = 1; 2325 failrec->this_mirror = failed_mirror; 2326 } else { 2327 /* 2328 * we're ready to fulfill a) and b) alongside. get a good copy 2329 * of the failed sector and if we succeed, we have setup 2330 * everything for repair_io_failure to do the rest for us. 2331 */ 2332 if (failrec->in_validation) { 2333 BUG_ON(failrec->this_mirror != failed_mirror); 2334 failrec->in_validation = 0; 2335 failrec->this_mirror = 0; 2336 } 2337 failrec->failed_mirror = failed_mirror; 2338 failrec->this_mirror++; 2339 if (failrec->this_mirror == failed_mirror) 2340 failrec->this_mirror++; 2341 } 2342 2343 if (failrec->this_mirror > num_copies) { 2344 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2345 num_copies, failrec->this_mirror, failed_mirror); 2346 return 0; 2347 } 2348 2349 return 1; 2350} 2351 2352 2353struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2354 struct io_failure_record *failrec, 2355 struct page *page, int pg_offset, int icsum, 2356 bio_end_io_t *endio_func, void *data) 2357{ 2358 struct bio *bio; 2359 struct btrfs_io_bio *btrfs_failed_bio; 2360 struct btrfs_io_bio *btrfs_bio; 2361 2362 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2363 if (!bio) 2364 return NULL; 2365 2366 bio->bi_end_io = endio_func; 2367 bio->bi_iter.bi_sector = failrec->logical >> 9; 2368 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2369 bio->bi_iter.bi_size = 0; 2370 bio->bi_private = data; 2371 2372 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2373 if (btrfs_failed_bio->csum) { 2374 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2375 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2376 2377 btrfs_bio = btrfs_io_bio(bio); 2378 btrfs_bio->csum = btrfs_bio->csum_inline; 2379 icsum *= csum_size; 2380 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2381 csum_size); 2382 } 2383 2384 bio_add_page(bio, page, failrec->len, pg_offset); 2385 2386 return bio; 2387} 2388 2389/* 2390 * this is a generic handler for readpage errors (default 2391 * readpage_io_failed_hook). if other copies exist, read those and write back 2392 * good data to the failed position. does not investigate in remapping the 2393 * failed extent elsewhere, hoping the device will be smart enough to do this as 2394 * needed 2395 */ 2396 2397static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2398 struct page *page, u64 start, u64 end, 2399 int failed_mirror) 2400{ 2401 struct io_failure_record *failrec; 2402 struct inode *inode = page->mapping->host; 2403 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2404 struct bio *bio; 2405 int read_mode; 2406 int ret; 2407 2408 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2409 2410 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2411 if (ret) 2412 return ret; 2413 2414 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2415 if (!ret) { 2416 free_io_failure(inode, failrec); 2417 return -EIO; 2418 } 2419 2420 if (failed_bio->bi_vcnt > 1) 2421 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2422 else 2423 read_mode = READ_SYNC; 2424 2425 phy_offset >>= inode->i_sb->s_blocksize_bits; 2426 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2427 start - page_offset(page), 2428 (int)phy_offset, failed_bio->bi_end_io, 2429 NULL); 2430 if (!bio) { 2431 free_io_failure(inode, failrec); 2432 return -EIO; 2433 } 2434 2435 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2436 read_mode, failrec->this_mirror, failrec->in_validation); 2437 2438 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2439 failrec->this_mirror, 2440 failrec->bio_flags, 0); 2441 if (ret) { 2442 free_io_failure(inode, failrec); 2443 bio_put(bio); 2444 } 2445 2446 return ret; 2447} 2448 2449/* lots and lots of room for performance fixes in the end_bio funcs */ 2450 2451int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2452{ 2453 int uptodate = (err == 0); 2454 struct extent_io_tree *tree; 2455 int ret = 0; 2456 2457 tree = &BTRFS_I(page->mapping->host)->io_tree; 2458 2459 if (tree->ops && tree->ops->writepage_end_io_hook) { 2460 ret = tree->ops->writepage_end_io_hook(page, start, 2461 end, NULL, uptodate); 2462 if (ret) 2463 uptodate = 0; 2464 } 2465 2466 if (!uptodate) { 2467 ClearPageUptodate(page); 2468 SetPageError(page); 2469 ret = ret < 0 ? ret : -EIO; 2470 mapping_set_error(page->mapping, ret); 2471 } 2472 return 0; 2473} 2474 2475/* 2476 * after a writepage IO is done, we need to: 2477 * clear the uptodate bits on error 2478 * clear the writeback bits in the extent tree for this IO 2479 * end_page_writeback if the page has no more pending IO 2480 * 2481 * Scheduling is not allowed, so the extent state tree is expected 2482 * to have one and only one object corresponding to this IO. 2483 */ 2484static void end_bio_extent_writepage(struct bio *bio, int err) 2485{ 2486 struct bio_vec *bvec; 2487 u64 start; 2488 u64 end; 2489 int i; 2490 2491 bio_for_each_segment_all(bvec, bio, i) { 2492 struct page *page = bvec->bv_page; 2493 2494 /* We always issue full-page reads, but if some block 2495 * in a page fails to read, blk_update_request() will 2496 * advance bv_offset and adjust bv_len to compensate. 2497 * Print a warning for nonzero offsets, and an error 2498 * if they don't add up to a full page. */ 2499 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2500 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2501 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2502 "partial page write in btrfs with offset %u and length %u", 2503 bvec->bv_offset, bvec->bv_len); 2504 else 2505 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2506 "incomplete page write in btrfs with offset %u and " 2507 "length %u", 2508 bvec->bv_offset, bvec->bv_len); 2509 } 2510 2511 start = page_offset(page); 2512 end = start + bvec->bv_offset + bvec->bv_len - 1; 2513 2514 if (end_extent_writepage(page, err, start, end)) 2515 continue; 2516 2517 end_page_writeback(page); 2518 } 2519 2520 bio_put(bio); 2521} 2522 2523static void 2524endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2525 int uptodate) 2526{ 2527 struct extent_state *cached = NULL; 2528 u64 end = start + len - 1; 2529 2530 if (uptodate && tree->track_uptodate) 2531 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2532 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2533} 2534 2535/* 2536 * after a readpage IO is done, we need to: 2537 * clear the uptodate bits on error 2538 * set the uptodate bits if things worked 2539 * set the page up to date if all extents in the tree are uptodate 2540 * clear the lock bit in the extent tree 2541 * unlock the page if there are no other extents locked for it 2542 * 2543 * Scheduling is not allowed, so the extent state tree is expected 2544 * to have one and only one object corresponding to this IO. 2545 */ 2546static void end_bio_extent_readpage(struct bio *bio, int err) 2547{ 2548 struct bio_vec *bvec; 2549 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2550 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2551 struct extent_io_tree *tree; 2552 u64 offset = 0; 2553 u64 start; 2554 u64 end; 2555 u64 len; 2556 u64 extent_start = 0; 2557 u64 extent_len = 0; 2558 int mirror; 2559 int ret; 2560 int i; 2561 2562 if (err) 2563 uptodate = 0; 2564 2565 bio_for_each_segment_all(bvec, bio, i) { 2566 struct page *page = bvec->bv_page; 2567 struct inode *inode = page->mapping->host; 2568 2569 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2570 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err, 2571 io_bio->mirror_num); 2572 tree = &BTRFS_I(inode)->io_tree; 2573 2574 /* We always issue full-page reads, but if some block 2575 * in a page fails to read, blk_update_request() will 2576 * advance bv_offset and adjust bv_len to compensate. 2577 * Print a warning for nonzero offsets, and an error 2578 * if they don't add up to a full page. */ 2579 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2580 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2581 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2582 "partial page read in btrfs with offset %u and length %u", 2583 bvec->bv_offset, bvec->bv_len); 2584 else 2585 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2586 "incomplete page read in btrfs with offset %u and " 2587 "length %u", 2588 bvec->bv_offset, bvec->bv_len); 2589 } 2590 2591 start = page_offset(page); 2592 end = start + bvec->bv_offset + bvec->bv_len - 1; 2593 len = bvec->bv_len; 2594 2595 mirror = io_bio->mirror_num; 2596 if (likely(uptodate && tree->ops && 2597 tree->ops->readpage_end_io_hook)) { 2598 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2599 page, start, end, 2600 mirror); 2601 if (ret) 2602 uptodate = 0; 2603 else 2604 clean_io_failure(inode, start, page, 0); 2605 } 2606 2607 if (likely(uptodate)) 2608 goto readpage_ok; 2609 2610 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2611 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2612 if (!ret && !err && 2613 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2614 uptodate = 1; 2615 } else { 2616 /* 2617 * The generic bio_readpage_error handles errors the 2618 * following way: If possible, new read requests are 2619 * created and submitted and will end up in 2620 * end_bio_extent_readpage as well (if we're lucky, not 2621 * in the !uptodate case). In that case it returns 0 and 2622 * we just go on with the next page in our bio. If it 2623 * can't handle the error it will return -EIO and we 2624 * remain responsible for that page. 2625 */ 2626 ret = bio_readpage_error(bio, offset, page, start, end, 2627 mirror); 2628 if (ret == 0) { 2629 uptodate = 2630 test_bit(BIO_UPTODATE, &bio->bi_flags); 2631 if (err) 2632 uptodate = 0; 2633 offset += len; 2634 continue; 2635 } 2636 } 2637readpage_ok: 2638 if (likely(uptodate)) { 2639 loff_t i_size = i_size_read(inode); 2640 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2641 unsigned off; 2642 2643 /* Zero out the end if this page straddles i_size */ 2644 off = i_size & (PAGE_CACHE_SIZE-1); 2645 if (page->index == end_index && off) 2646 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2647 SetPageUptodate(page); 2648 } else { 2649 ClearPageUptodate(page); 2650 SetPageError(page); 2651 } 2652 unlock_page(page); 2653 offset += len; 2654 2655 if (unlikely(!uptodate)) { 2656 if (extent_len) { 2657 endio_readpage_release_extent(tree, 2658 extent_start, 2659 extent_len, 1); 2660 extent_start = 0; 2661 extent_len = 0; 2662 } 2663 endio_readpage_release_extent(tree, start, 2664 end - start + 1, 0); 2665 } else if (!extent_len) { 2666 extent_start = start; 2667 extent_len = end + 1 - start; 2668 } else if (extent_start + extent_len == start) { 2669 extent_len += end + 1 - start; 2670 } else { 2671 endio_readpage_release_extent(tree, extent_start, 2672 extent_len, uptodate); 2673 extent_start = start; 2674 extent_len = end + 1 - start; 2675 } 2676 } 2677 2678 if (extent_len) 2679 endio_readpage_release_extent(tree, extent_start, extent_len, 2680 uptodate); 2681 if (io_bio->end_io) 2682 io_bio->end_io(io_bio, err); 2683 bio_put(bio); 2684} 2685 2686/* 2687 * this allocates from the btrfs_bioset. We're returning a bio right now 2688 * but you can call btrfs_io_bio for the appropriate container_of magic 2689 */ 2690struct bio * 2691btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2692 gfp_t gfp_flags) 2693{ 2694 struct btrfs_io_bio *btrfs_bio; 2695 struct bio *bio; 2696 2697 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2698 2699 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2700 while (!bio && (nr_vecs /= 2)) { 2701 bio = bio_alloc_bioset(gfp_flags, 2702 nr_vecs, btrfs_bioset); 2703 } 2704 } 2705 2706 if (bio) { 2707 bio->bi_bdev = bdev; 2708 bio->bi_iter.bi_sector = first_sector; 2709 btrfs_bio = btrfs_io_bio(bio); 2710 btrfs_bio->csum = NULL; 2711 btrfs_bio->csum_allocated = NULL; 2712 btrfs_bio->end_io = NULL; 2713 } 2714 return bio; 2715} 2716 2717struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2718{ 2719 struct btrfs_io_bio *btrfs_bio; 2720 struct bio *new; 2721 2722 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2723 if (new) { 2724 btrfs_bio = btrfs_io_bio(new); 2725 btrfs_bio->csum = NULL; 2726 btrfs_bio->csum_allocated = NULL; 2727 btrfs_bio->end_io = NULL; 2728 } 2729 return new; 2730} 2731 2732/* this also allocates from the btrfs_bioset */ 2733struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2734{ 2735 struct btrfs_io_bio *btrfs_bio; 2736 struct bio *bio; 2737 2738 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2739 if (bio) { 2740 btrfs_bio = btrfs_io_bio(bio); 2741 btrfs_bio->csum = NULL; 2742 btrfs_bio->csum_allocated = NULL; 2743 btrfs_bio->end_io = NULL; 2744 } 2745 return bio; 2746} 2747 2748 2749static int __must_check submit_one_bio(int rw, struct bio *bio, 2750 int mirror_num, unsigned long bio_flags) 2751{ 2752 int ret = 0; 2753 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2754 struct page *page = bvec->bv_page; 2755 struct extent_io_tree *tree = bio->bi_private; 2756 u64 start; 2757 2758 start = page_offset(page) + bvec->bv_offset; 2759 2760 bio->bi_private = NULL; 2761 2762 bio_get(bio); 2763 2764 if (tree->ops && tree->ops->submit_bio_hook) 2765 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2766 mirror_num, bio_flags, start); 2767 else 2768 btrfsic_submit_bio(rw, bio); 2769 2770 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2771 ret = -EOPNOTSUPP; 2772 bio_put(bio); 2773 return ret; 2774} 2775 2776static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2777 unsigned long offset, size_t size, struct bio *bio, 2778 unsigned long bio_flags) 2779{ 2780 int ret = 0; 2781 if (tree->ops && tree->ops->merge_bio_hook) 2782 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2783 bio_flags); 2784 BUG_ON(ret < 0); 2785 return ret; 2786 2787} 2788 2789static int submit_extent_page(int rw, struct extent_io_tree *tree, 2790 struct page *page, sector_t sector, 2791 size_t size, unsigned long offset, 2792 struct block_device *bdev, 2793 struct bio **bio_ret, 2794 unsigned long max_pages, 2795 bio_end_io_t end_io_func, 2796 int mirror_num, 2797 unsigned long prev_bio_flags, 2798 unsigned long bio_flags, 2799 bool force_bio_submit) 2800{ 2801 int ret = 0; 2802 struct bio *bio; 2803 int nr; 2804 int contig = 0; 2805 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2806 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2807 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2808 2809 if (bio_ret && *bio_ret) { 2810 bio = *bio_ret; 2811 if (old_compressed) 2812 contig = bio->bi_iter.bi_sector == sector; 2813 else 2814 contig = bio_end_sector(bio) == sector; 2815 2816 if (prev_bio_flags != bio_flags || !contig || 2817 force_bio_submit || 2818 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2819 bio_add_page(bio, page, page_size, offset) < page_size) { 2820 ret = submit_one_bio(rw, bio, mirror_num, 2821 prev_bio_flags); 2822 if (ret < 0) { 2823 *bio_ret = NULL; 2824 return ret; 2825 } 2826 bio = NULL; 2827 } else { 2828 return 0; 2829 } 2830 } 2831 if (this_compressed) 2832 nr = BIO_MAX_PAGES; 2833 else 2834 nr = bio_get_nr_vecs(bdev); 2835 2836 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2837 if (!bio) 2838 return -ENOMEM; 2839 2840 bio_add_page(bio, page, page_size, offset); 2841 bio->bi_end_io = end_io_func; 2842 bio->bi_private = tree; 2843 2844 if (bio_ret) 2845 *bio_ret = bio; 2846 else 2847 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2848 2849 return ret; 2850} 2851 2852static void attach_extent_buffer_page(struct extent_buffer *eb, 2853 struct page *page) 2854{ 2855 if (!PagePrivate(page)) { 2856 SetPagePrivate(page); 2857 page_cache_get(page); 2858 set_page_private(page, (unsigned long)eb); 2859 } else { 2860 WARN_ON(page->private != (unsigned long)eb); 2861 } 2862} 2863 2864void set_page_extent_mapped(struct page *page) 2865{ 2866 if (!PagePrivate(page)) { 2867 SetPagePrivate(page); 2868 page_cache_get(page); 2869 set_page_private(page, EXTENT_PAGE_PRIVATE); 2870 } 2871} 2872 2873static struct extent_map * 2874__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2875 u64 start, u64 len, get_extent_t *get_extent, 2876 struct extent_map **em_cached) 2877{ 2878 struct extent_map *em; 2879 2880 if (em_cached && *em_cached) { 2881 em = *em_cached; 2882 if (extent_map_in_tree(em) && start >= em->start && 2883 start < extent_map_end(em)) { 2884 atomic_inc(&em->refs); 2885 return em; 2886 } 2887 2888 free_extent_map(em); 2889 *em_cached = NULL; 2890 } 2891 2892 em = get_extent(inode, page, pg_offset, start, len, 0); 2893 if (em_cached && !IS_ERR_OR_NULL(em)) { 2894 BUG_ON(*em_cached); 2895 atomic_inc(&em->refs); 2896 *em_cached = em; 2897 } 2898 return em; 2899} 2900/* 2901 * basic readpage implementation. Locked extent state structs are inserted 2902 * into the tree that are removed when the IO is done (by the end_io 2903 * handlers) 2904 * XXX JDM: This needs looking at to ensure proper page locking 2905 */ 2906static int __do_readpage(struct extent_io_tree *tree, 2907 struct page *page, 2908 get_extent_t *get_extent, 2909 struct extent_map **em_cached, 2910 struct bio **bio, int mirror_num, 2911 unsigned long *bio_flags, int rw, 2912 u64 *prev_em_start) 2913{ 2914 struct inode *inode = page->mapping->host; 2915 u64 start = page_offset(page); 2916 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2917 u64 end; 2918 u64 cur = start; 2919 u64 extent_offset; 2920 u64 last_byte = i_size_read(inode); 2921 u64 block_start; 2922 u64 cur_end; 2923 sector_t sector; 2924 struct extent_map *em; 2925 struct block_device *bdev; 2926 int ret; 2927 int nr = 0; 2928 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2929 size_t pg_offset = 0; 2930 size_t iosize; 2931 size_t disk_io_size; 2932 size_t blocksize = inode->i_sb->s_blocksize; 2933 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2934 2935 set_page_extent_mapped(page); 2936 2937 end = page_end; 2938 if (!PageUptodate(page)) { 2939 if (cleancache_get_page(page) == 0) { 2940 BUG_ON(blocksize != PAGE_SIZE); 2941 unlock_extent(tree, start, end); 2942 goto out; 2943 } 2944 } 2945 2946 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2947 char *userpage; 2948 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2949 2950 if (zero_offset) { 2951 iosize = PAGE_CACHE_SIZE - zero_offset; 2952 userpage = kmap_atomic(page); 2953 memset(userpage + zero_offset, 0, iosize); 2954 flush_dcache_page(page); 2955 kunmap_atomic(userpage); 2956 } 2957 } 2958 while (cur <= end) { 2959 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2960 bool force_bio_submit = false; 2961 2962 if (cur >= last_byte) { 2963 char *userpage; 2964 struct extent_state *cached = NULL; 2965 2966 iosize = PAGE_CACHE_SIZE - pg_offset; 2967 userpage = kmap_atomic(page); 2968 memset(userpage + pg_offset, 0, iosize); 2969 flush_dcache_page(page); 2970 kunmap_atomic(userpage); 2971 set_extent_uptodate(tree, cur, cur + iosize - 1, 2972 &cached, GFP_NOFS); 2973 if (!parent_locked) 2974 unlock_extent_cached(tree, cur, 2975 cur + iosize - 1, 2976 &cached, GFP_NOFS); 2977 break; 2978 } 2979 em = __get_extent_map(inode, page, pg_offset, cur, 2980 end - cur + 1, get_extent, em_cached); 2981 if (IS_ERR_OR_NULL(em)) { 2982 SetPageError(page); 2983 if (!parent_locked) 2984 unlock_extent(tree, cur, end); 2985 break; 2986 } 2987 extent_offset = cur - em->start; 2988 BUG_ON(extent_map_end(em) <= cur); 2989 BUG_ON(end < cur); 2990 2991 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2992 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2993 extent_set_compress_type(&this_bio_flag, 2994 em->compress_type); 2995 } 2996 2997 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2998 cur_end = min(extent_map_end(em) - 1, end); 2999 iosize = ALIGN(iosize, blocksize); 3000 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3001 disk_io_size = em->block_len; 3002 sector = em->block_start >> 9; 3003 } else { 3004 sector = (em->block_start + extent_offset) >> 9; 3005 disk_io_size = iosize; 3006 } 3007 bdev = em->bdev; 3008 block_start = em->block_start; 3009 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3010 block_start = EXTENT_MAP_HOLE; 3011 3012 /* 3013 * If we have a file range that points to a compressed extent 3014 * and it's followed by a consecutive file range that points to 3015 * to the same compressed extent (possibly with a different 3016 * offset and/or length, so it either points to the whole extent 3017 * or only part of it), we must make sure we do not submit a 3018 * single bio to populate the pages for the 2 ranges because 3019 * this makes the compressed extent read zero out the pages 3020 * belonging to the 2nd range. Imagine the following scenario: 3021 * 3022 * File layout 3023 * [0 - 8K] [8K - 24K] 3024 * | | 3025 * | | 3026 * points to extent X, points to extent X, 3027 * offset 4K, length of 8K offset 0, length 16K 3028 * 3029 * [extent X, compressed length = 4K uncompressed length = 16K] 3030 * 3031 * If the bio to read the compressed extent covers both ranges, 3032 * it will decompress extent X into the pages belonging to the 3033 * first range and then it will stop, zeroing out the remaining 3034 * pages that belong to the other range that points to extent X. 3035 * So here we make sure we submit 2 bios, one for the first 3036 * range and another one for the third range. Both will target 3037 * the same physical extent from disk, but we can't currently 3038 * make the compressed bio endio callback populate the pages 3039 * for both ranges because each compressed bio is tightly 3040 * coupled with a single extent map, and each range can have 3041 * an extent map with a different offset value relative to the 3042 * uncompressed data of our extent and different lengths. This 3043 * is a corner case so we prioritize correctness over 3044 * non-optimal behavior (submitting 2 bios for the same extent). 3045 */ 3046 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3047 prev_em_start && *prev_em_start != (u64)-1 && 3048 *prev_em_start != em->orig_start) 3049 force_bio_submit = true; 3050 3051 if (prev_em_start) 3052 *prev_em_start = em->orig_start; 3053 3054 free_extent_map(em); 3055 em = NULL; 3056 3057 /* we've found a hole, just zero and go on */ 3058 if (block_start == EXTENT_MAP_HOLE) { 3059 char *userpage; 3060 struct extent_state *cached = NULL; 3061 3062 userpage = kmap_atomic(page); 3063 memset(userpage + pg_offset, 0, iosize); 3064 flush_dcache_page(page); 3065 kunmap_atomic(userpage); 3066 3067 set_extent_uptodate(tree, cur, cur + iosize - 1, 3068 &cached, GFP_NOFS); 3069 unlock_extent_cached(tree, cur, cur + iosize - 1, 3070 &cached, GFP_NOFS); 3071 cur = cur + iosize; 3072 pg_offset += iosize; 3073 continue; 3074 } 3075 /* the get_extent function already copied into the page */ 3076 if (test_range_bit(tree, cur, cur_end, 3077 EXTENT_UPTODATE, 1, NULL)) { 3078 check_page_uptodate(tree, page); 3079 if (!parent_locked) 3080 unlock_extent(tree, cur, cur + iosize - 1); 3081 cur = cur + iosize; 3082 pg_offset += iosize; 3083 continue; 3084 } 3085 /* we have an inline extent but it didn't get marked up 3086 * to date. Error out 3087 */ 3088 if (block_start == EXTENT_MAP_INLINE) { 3089 SetPageError(page); 3090 if (!parent_locked) 3091 unlock_extent(tree, cur, cur + iosize - 1); 3092 cur = cur + iosize; 3093 pg_offset += iosize; 3094 continue; 3095 } 3096 3097 pnr -= page->index; 3098 ret = submit_extent_page(rw, tree, page, 3099 sector, disk_io_size, pg_offset, 3100 bdev, bio, pnr, 3101 end_bio_extent_readpage, mirror_num, 3102 *bio_flags, 3103 this_bio_flag, 3104 force_bio_submit); 3105 if (!ret) { 3106 nr++; 3107 *bio_flags = this_bio_flag; 3108 } else { 3109 SetPageError(page); 3110 if (!parent_locked) 3111 unlock_extent(tree, cur, cur + iosize - 1); 3112 } 3113 cur = cur + iosize; 3114 pg_offset += iosize; 3115 } 3116out: 3117 if (!nr) { 3118 if (!PageError(page)) 3119 SetPageUptodate(page); 3120 unlock_page(page); 3121 } 3122 return 0; 3123} 3124 3125static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3126 struct page *pages[], int nr_pages, 3127 u64 start, u64 end, 3128 get_extent_t *get_extent, 3129 struct extent_map **em_cached, 3130 struct bio **bio, int mirror_num, 3131 unsigned long *bio_flags, int rw, 3132 u64 *prev_em_start) 3133{ 3134 struct inode *inode; 3135 struct btrfs_ordered_extent *ordered; 3136 int index; 3137 3138 inode = pages[0]->mapping->host; 3139 while (1) { 3140 lock_extent(tree, start, end); 3141 ordered = btrfs_lookup_ordered_range(inode, start, 3142 end - start + 1); 3143 if (!ordered) 3144 break; 3145 unlock_extent(tree, start, end); 3146 btrfs_start_ordered_extent(inode, ordered, 1); 3147 btrfs_put_ordered_extent(ordered); 3148 } 3149 3150 for (index = 0; index < nr_pages; index++) { 3151 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3152 mirror_num, bio_flags, rw, prev_em_start); 3153 page_cache_release(pages[index]); 3154 } 3155} 3156 3157static void __extent_readpages(struct extent_io_tree *tree, 3158 struct page *pages[], 3159 int nr_pages, get_extent_t *get_extent, 3160 struct extent_map **em_cached, 3161 struct bio **bio, int mirror_num, 3162 unsigned long *bio_flags, int rw, 3163 u64 *prev_em_start) 3164{ 3165 u64 start = 0; 3166 u64 end = 0; 3167 u64 page_start; 3168 int index; 3169 int first_index = 0; 3170 3171 for (index = 0; index < nr_pages; index++) { 3172 page_start = page_offset(pages[index]); 3173 if (!end) { 3174 start = page_start; 3175 end = start + PAGE_CACHE_SIZE - 1; 3176 first_index = index; 3177 } else if (end + 1 == page_start) { 3178 end += PAGE_CACHE_SIZE; 3179 } else { 3180 __do_contiguous_readpages(tree, &pages[first_index], 3181 index - first_index, start, 3182 end, get_extent, em_cached, 3183 bio, mirror_num, bio_flags, 3184 rw, prev_em_start); 3185 start = page_start; 3186 end = start + PAGE_CACHE_SIZE - 1; 3187 first_index = index; 3188 } 3189 } 3190 3191 if (end) 3192 __do_contiguous_readpages(tree, &pages[first_index], 3193 index - first_index, start, 3194 end, get_extent, em_cached, bio, 3195 mirror_num, bio_flags, rw, 3196 prev_em_start); 3197} 3198 3199static int __extent_read_full_page(struct extent_io_tree *tree, 3200 struct page *page, 3201 get_extent_t *get_extent, 3202 struct bio **bio, int mirror_num, 3203 unsigned long *bio_flags, int rw) 3204{ 3205 struct inode *inode = page->mapping->host; 3206 struct btrfs_ordered_extent *ordered; 3207 u64 start = page_offset(page); 3208 u64 end = start + PAGE_CACHE_SIZE - 1; 3209 int ret; 3210 3211 while (1) { 3212 lock_extent(tree, start, end); 3213 ordered = btrfs_lookup_ordered_extent(inode, start); 3214 if (!ordered) 3215 break; 3216 unlock_extent(tree, start, end); 3217 btrfs_start_ordered_extent(inode, ordered, 1); 3218 btrfs_put_ordered_extent(ordered); 3219 } 3220 3221 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3222 bio_flags, rw, NULL); 3223 return ret; 3224} 3225 3226int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3227 get_extent_t *get_extent, int mirror_num) 3228{ 3229 struct bio *bio = NULL; 3230 unsigned long bio_flags = 0; 3231 int ret; 3232 3233 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3234 &bio_flags, READ); 3235 if (bio) 3236 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3237 return ret; 3238} 3239 3240int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3241 get_extent_t *get_extent, int mirror_num) 3242{ 3243 struct bio *bio = NULL; 3244 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3245 int ret; 3246 3247 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3248 &bio_flags, READ, NULL); 3249 if (bio) 3250 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3251 return ret; 3252} 3253 3254static noinline void update_nr_written(struct page *page, 3255 struct writeback_control *wbc, 3256 unsigned long nr_written) 3257{ 3258 wbc->nr_to_write -= nr_written; 3259 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3260 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3261 page->mapping->writeback_index = page->index + nr_written; 3262} 3263 3264/* 3265 * helper for __extent_writepage, doing all of the delayed allocation setup. 3266 * 3267 * This returns 1 if our fill_delalloc function did all the work required 3268 * to write the page (copy into inline extent). In this case the IO has 3269 * been started and the page is already unlocked. 3270 * 3271 * This returns 0 if all went well (page still locked) 3272 * This returns < 0 if there were errors (page still locked) 3273 */ 3274static noinline_for_stack int writepage_delalloc(struct inode *inode, 3275 struct page *page, struct writeback_control *wbc, 3276 struct extent_page_data *epd, 3277 u64 delalloc_start, 3278 unsigned long *nr_written) 3279{ 3280 struct extent_io_tree *tree = epd->tree; 3281 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3282 u64 nr_delalloc; 3283 u64 delalloc_to_write = 0; 3284 u64 delalloc_end = 0; 3285 int ret; 3286 int page_started = 0; 3287 3288 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3289 return 0; 3290 3291 while (delalloc_end < page_end) { 3292 nr_delalloc = find_lock_delalloc_range(inode, tree, 3293 page, 3294 &delalloc_start, 3295 &delalloc_end, 3296 BTRFS_MAX_EXTENT_SIZE); 3297 if (nr_delalloc == 0) { 3298 delalloc_start = delalloc_end + 1; 3299 continue; 3300 } 3301 ret = tree->ops->fill_delalloc(inode, page, 3302 delalloc_start, 3303 delalloc_end, 3304 &page_started, 3305 nr_written); 3306 /* File system has been set read-only */ 3307 if (ret) { 3308 SetPageError(page); 3309 /* fill_delalloc should be return < 0 for error 3310 * but just in case, we use > 0 here meaning the 3311 * IO is started, so we don't want to return > 0 3312 * unless things are going well. 3313 */ 3314 ret = ret < 0 ? ret : -EIO; 3315 goto done; 3316 } 3317 /* 3318 * delalloc_end is already one less than the total 3319 * length, so we don't subtract one from 3320 * PAGE_CACHE_SIZE 3321 */ 3322 delalloc_to_write += (delalloc_end - delalloc_start + 3323 PAGE_CACHE_SIZE) >> 3324 PAGE_CACHE_SHIFT; 3325 delalloc_start = delalloc_end + 1; 3326 } 3327 if (wbc->nr_to_write < delalloc_to_write) { 3328 int thresh = 8192; 3329 3330 if (delalloc_to_write < thresh * 2) 3331 thresh = delalloc_to_write; 3332 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3333 thresh); 3334 } 3335 3336 /* did the fill delalloc function already unlock and start 3337 * the IO? 3338 */ 3339 if (page_started) { 3340 /* 3341 * we've unlocked the page, so we can't update 3342 * the mapping's writeback index, just update 3343 * nr_to_write. 3344 */ 3345 wbc->nr_to_write -= *nr_written; 3346 return 1; 3347 } 3348 3349 ret = 0; 3350 3351done: 3352 return ret; 3353} 3354 3355/* 3356 * helper for __extent_writepage. This calls the writepage start hooks, 3357 * and does the loop to map the page into extents and bios. 3358 * 3359 * We return 1 if the IO is started and the page is unlocked, 3360 * 0 if all went well (page still locked) 3361 * < 0 if there were errors (page still locked) 3362 */ 3363static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3364 struct page *page, 3365 struct writeback_control *wbc, 3366 struct extent_page_data *epd, 3367 loff_t i_size, 3368 unsigned long nr_written, 3369 int write_flags, int *nr_ret) 3370{ 3371 struct extent_io_tree *tree = epd->tree; 3372 u64 start = page_offset(page); 3373 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3374 u64 end; 3375 u64 cur = start; 3376 u64 extent_offset; 3377 u64 block_start; 3378 u64 iosize; 3379 sector_t sector; 3380 struct extent_state *cached_state = NULL; 3381 struct extent_map *em; 3382 struct block_device *bdev; 3383 size_t pg_offset = 0; 3384 size_t blocksize; 3385 int ret = 0; 3386 int nr = 0; 3387 bool compressed; 3388 3389 if (tree->ops && tree->ops->writepage_start_hook) { 3390 ret = tree->ops->writepage_start_hook(page, start, 3391 page_end); 3392 if (ret) { 3393 /* Fixup worker will requeue */ 3394 if (ret == -EBUSY) 3395 wbc->pages_skipped++; 3396 else 3397 redirty_page_for_writepage(wbc, page); 3398 3399 update_nr_written(page, wbc, nr_written); 3400 unlock_page(page); 3401 ret = 1; 3402 goto done_unlocked; 3403 } 3404 } 3405 3406 /* 3407 * we don't want to touch the inode after unlocking the page, 3408 * so we update the mapping writeback index now 3409 */ 3410 update_nr_written(page, wbc, nr_written + 1); 3411 3412 end = page_end; 3413 if (i_size <= start) { 3414 if (tree->ops && tree->ops->writepage_end_io_hook) 3415 tree->ops->writepage_end_io_hook(page, start, 3416 page_end, NULL, 1); 3417 goto done; 3418 } 3419 3420 blocksize = inode->i_sb->s_blocksize; 3421 3422 while (cur <= end) { 3423 u64 em_end; 3424 if (cur >= i_size) { 3425 if (tree->ops && tree->ops->writepage_end_io_hook) 3426 tree->ops->writepage_end_io_hook(page, cur, 3427 page_end, NULL, 1); 3428 break; 3429 } 3430 em = epd->get_extent(inode, page, pg_offset, cur, 3431 end - cur + 1, 1); 3432 if (IS_ERR_OR_NULL(em)) { 3433 SetPageError(page); 3434 ret = PTR_ERR_OR_ZERO(em); 3435 break; 3436 } 3437 3438 extent_offset = cur - em->start; 3439 em_end = extent_map_end(em); 3440 BUG_ON(em_end <= cur); 3441 BUG_ON(end < cur); 3442 iosize = min(em_end - cur, end - cur + 1); 3443 iosize = ALIGN(iosize, blocksize); 3444 sector = (em->block_start + extent_offset) >> 9; 3445 bdev = em->bdev; 3446 block_start = em->block_start; 3447 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3448 free_extent_map(em); 3449 em = NULL; 3450 3451 /* 3452 * compressed and inline extents are written through other 3453 * paths in the FS 3454 */ 3455 if (compressed || block_start == EXTENT_MAP_HOLE || 3456 block_start == EXTENT_MAP_INLINE) { 3457 /* 3458 * end_io notification does not happen here for 3459 * compressed extents 3460 */ 3461 if (!compressed && tree->ops && 3462 tree->ops->writepage_end_io_hook) 3463 tree->ops->writepage_end_io_hook(page, cur, 3464 cur + iosize - 1, 3465 NULL, 1); 3466 else if (compressed) { 3467 /* we don't want to end_page_writeback on 3468 * a compressed extent. this happens 3469 * elsewhere 3470 */ 3471 nr++; 3472 } 3473 3474 cur += iosize; 3475 pg_offset += iosize; 3476 continue; 3477 } 3478 3479 if (tree->ops && tree->ops->writepage_io_hook) { 3480 ret = tree->ops->writepage_io_hook(page, cur, 3481 cur + iosize - 1); 3482 } else { 3483 ret = 0; 3484 } 3485 if (ret) { 3486 SetPageError(page); 3487 } else { 3488 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3489 3490 set_range_writeback(tree, cur, cur + iosize - 1); 3491 if (!PageWriteback(page)) { 3492 btrfs_err(BTRFS_I(inode)->root->fs_info, 3493 "page %lu not writeback, cur %llu end %llu", 3494 page->index, cur, end); 3495 } 3496 3497 ret = submit_extent_page(write_flags, tree, page, 3498 sector, iosize, pg_offset, 3499 bdev, &epd->bio, max_nr, 3500 end_bio_extent_writepage, 3501 0, 0, 0, false); 3502 if (ret) 3503 SetPageError(page); 3504 } 3505 cur = cur + iosize; 3506 pg_offset += iosize; 3507 nr++; 3508 } 3509done: 3510 *nr_ret = nr; 3511 3512done_unlocked: 3513 3514 /* drop our reference on any cached states */ 3515 free_extent_state(cached_state); 3516 return ret; 3517} 3518 3519/* 3520 * the writepage semantics are similar to regular writepage. extent 3521 * records are inserted to lock ranges in the tree, and as dirty areas 3522 * are found, they are marked writeback. Then the lock bits are removed 3523 * and the end_io handler clears the writeback ranges 3524 */ 3525static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3526 void *data) 3527{ 3528 struct inode *inode = page->mapping->host; 3529 struct extent_page_data *epd = data; 3530 u64 start = page_offset(page); 3531 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3532 int ret; 3533 int nr = 0; 3534 size_t pg_offset = 0; 3535 loff_t i_size = i_size_read(inode); 3536 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3537 int write_flags; 3538 unsigned long nr_written = 0; 3539 3540 if (wbc->sync_mode == WB_SYNC_ALL) 3541 write_flags = WRITE_SYNC; 3542 else 3543 write_flags = WRITE; 3544 3545 trace___extent_writepage(page, inode, wbc); 3546 3547 WARN_ON(!PageLocked(page)); 3548 3549 ClearPageError(page); 3550 3551 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3552 if (page->index > end_index || 3553 (page->index == end_index && !pg_offset)) { 3554 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3555 unlock_page(page); 3556 return 0; 3557 } 3558 3559 if (page->index == end_index) { 3560 char *userpage; 3561 3562 userpage = kmap_atomic(page); 3563 memset(userpage + pg_offset, 0, 3564 PAGE_CACHE_SIZE - pg_offset); 3565 kunmap_atomic(userpage); 3566 flush_dcache_page(page); 3567 } 3568 3569 pg_offset = 0; 3570 3571 set_page_extent_mapped(page); 3572 3573 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3574 if (ret == 1) 3575 goto done_unlocked; 3576 if (ret) 3577 goto done; 3578 3579 ret = __extent_writepage_io(inode, page, wbc, epd, 3580 i_size, nr_written, write_flags, &nr); 3581 if (ret == 1) 3582 goto done_unlocked; 3583 3584done: 3585 if (nr == 0) { 3586 /* make sure the mapping tag for page dirty gets cleared */ 3587 set_page_writeback(page); 3588 end_page_writeback(page); 3589 } 3590 if (PageError(page)) { 3591 ret = ret < 0 ? ret : -EIO; 3592 end_extent_writepage(page, ret, start, page_end); 3593 } 3594 unlock_page(page); 3595 return ret; 3596 3597done_unlocked: 3598 return 0; 3599} 3600 3601void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3602{ 3603 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3604 TASK_UNINTERRUPTIBLE); 3605} 3606 3607static noinline_for_stack int 3608lock_extent_buffer_for_io(struct extent_buffer *eb, 3609 struct btrfs_fs_info *fs_info, 3610 struct extent_page_data *epd) 3611{ 3612 unsigned long i, num_pages; 3613 int flush = 0; 3614 int ret = 0; 3615 3616 if (!btrfs_try_tree_write_lock(eb)) { 3617 flush = 1; 3618 flush_write_bio(epd); 3619 btrfs_tree_lock(eb); 3620 } 3621 3622 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3623 btrfs_tree_unlock(eb); 3624 if (!epd->sync_io) 3625 return 0; 3626 if (!flush) { 3627 flush_write_bio(epd); 3628 flush = 1; 3629 } 3630 while (1) { 3631 wait_on_extent_buffer_writeback(eb); 3632 btrfs_tree_lock(eb); 3633 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3634 break; 3635 btrfs_tree_unlock(eb); 3636 } 3637 } 3638 3639 /* 3640 * We need to do this to prevent races in people who check if the eb is 3641 * under IO since we can end up having no IO bits set for a short period 3642 * of time. 3643 */ 3644 spin_lock(&eb->refs_lock); 3645 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3646 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3647 spin_unlock(&eb->refs_lock); 3648 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3649 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3650 -eb->len, 3651 fs_info->dirty_metadata_batch); 3652 ret = 1; 3653 } else { 3654 spin_unlock(&eb->refs_lock); 3655 } 3656 3657 btrfs_tree_unlock(eb); 3658 3659 if (!ret) 3660 return ret; 3661 3662 num_pages = num_extent_pages(eb->start, eb->len); 3663 for (i = 0; i < num_pages; i++) { 3664 struct page *p = eb->pages[i]; 3665 3666 if (!trylock_page(p)) { 3667 if (!flush) { 3668 flush_write_bio(epd); 3669 flush = 1; 3670 } 3671 lock_page(p); 3672 } 3673 } 3674 3675 return ret; 3676} 3677 3678static void end_extent_buffer_writeback(struct extent_buffer *eb) 3679{ 3680 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3681 smp_mb__after_atomic(); 3682 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3683} 3684 3685static void set_btree_ioerr(struct page *page) 3686{ 3687 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3688 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3689 3690 SetPageError(page); 3691 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3692 return; 3693 3694 /* 3695 * If writeback for a btree extent that doesn't belong to a log tree 3696 * failed, increment the counter transaction->eb_write_errors. 3697 * We do this because while the transaction is running and before it's 3698 * committing (when we call filemap_fdata[write|wait]_range against 3699 * the btree inode), we might have 3700 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3701 * returns an error or an error happens during writeback, when we're 3702 * committing the transaction we wouldn't know about it, since the pages 3703 * can be no longer dirty nor marked anymore for writeback (if a 3704 * subsequent modification to the extent buffer didn't happen before the 3705 * transaction commit), which makes filemap_fdata[write|wait]_range not 3706 * able to find the pages tagged with SetPageError at transaction 3707 * commit time. So if this happens we must abort the transaction, 3708 * otherwise we commit a super block with btree roots that point to 3709 * btree nodes/leafs whose content on disk is invalid - either garbage 3710 * or the content of some node/leaf from a past generation that got 3711 * cowed or deleted and is no longer valid. 3712 * 3713 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3714 * not be enough - we need to distinguish between log tree extents vs 3715 * non-log tree extents, and the next filemap_fdatawait_range() call 3716 * will catch and clear such errors in the mapping - and that call might 3717 * be from a log sync and not from a transaction commit. Also, checking 3718 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3719 * not done and would not be reliable - the eb might have been released 3720 * from memory and reading it back again means that flag would not be 3721 * set (since it's a runtime flag, not persisted on disk). 3722 * 3723 * Using the flags below in the btree inode also makes us achieve the 3724 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3725 * writeback for all dirty pages and before filemap_fdatawait_range() 3726 * is called, the writeback for all dirty pages had already finished 3727 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3728 * filemap_fdatawait_range() would return success, as it could not know 3729 * that writeback errors happened (the pages were no longer tagged for 3730 * writeback). 3731 */ 3732 switch (eb->log_index) { 3733 case -1: 3734 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3735 break; 3736 case 0: 3737 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3738 break; 3739 case 1: 3740 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3741 break; 3742 default: 3743 BUG(); /* unexpected, logic error */ 3744 } 3745} 3746 3747static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3748{ 3749 struct bio_vec *bvec; 3750 struct extent_buffer *eb; 3751 int i, done; 3752 3753 bio_for_each_segment_all(bvec, bio, i) { 3754 struct page *page = bvec->bv_page; 3755 3756 eb = (struct extent_buffer *)page->private; 3757 BUG_ON(!eb); 3758 done = atomic_dec_and_test(&eb->io_pages); 3759 3760 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3761 ClearPageUptodate(page); 3762 set_btree_ioerr(page); 3763 } 3764 3765 end_page_writeback(page); 3766 3767 if (!done) 3768 continue; 3769 3770 end_extent_buffer_writeback(eb); 3771 } 3772 3773 bio_put(bio); 3774} 3775 3776static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3777 struct btrfs_fs_info *fs_info, 3778 struct writeback_control *wbc, 3779 struct extent_page_data *epd) 3780{ 3781 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3782 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3783 u64 offset = eb->start; 3784 unsigned long i, num_pages; 3785 unsigned long bio_flags = 0; 3786 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3787 int ret = 0; 3788 3789 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3790 num_pages = num_extent_pages(eb->start, eb->len); 3791 atomic_set(&eb->io_pages, num_pages); 3792 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3793 bio_flags = EXTENT_BIO_TREE_LOG; 3794 3795 for (i = 0; i < num_pages; i++) { 3796 struct page *p = eb->pages[i]; 3797 3798 clear_page_dirty_for_io(p); 3799 set_page_writeback(p); 3800 ret = submit_extent_page(rw, tree, p, offset >> 9, 3801 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3802 -1, end_bio_extent_buffer_writepage, 3803 0, epd->bio_flags, bio_flags, false); 3804 epd->bio_flags = bio_flags; 3805 if (ret) { 3806 set_btree_ioerr(p); 3807 end_page_writeback(p); 3808 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3809 end_extent_buffer_writeback(eb); 3810 ret = -EIO; 3811 break; 3812 } 3813 offset += PAGE_CACHE_SIZE; 3814 update_nr_written(p, wbc, 1); 3815 unlock_page(p); 3816 } 3817 3818 if (unlikely(ret)) { 3819 for (; i < num_pages; i++) { 3820 struct page *p = eb->pages[i]; 3821 clear_page_dirty_for_io(p); 3822 unlock_page(p); 3823 } 3824 } 3825 3826 return ret; 3827} 3828 3829int btree_write_cache_pages(struct address_space *mapping, 3830 struct writeback_control *wbc) 3831{ 3832 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3833 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3834 struct extent_buffer *eb, *prev_eb = NULL; 3835 struct extent_page_data epd = { 3836 .bio = NULL, 3837 .tree = tree, 3838 .extent_locked = 0, 3839 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3840 .bio_flags = 0, 3841 }; 3842 int ret = 0; 3843 int done = 0; 3844 int nr_to_write_done = 0; 3845 struct pagevec pvec; 3846 int nr_pages; 3847 pgoff_t index; 3848 pgoff_t end; /* Inclusive */ 3849 int scanned = 0; 3850 int tag; 3851 3852 pagevec_init(&pvec, 0); 3853 if (wbc->range_cyclic) { 3854 index = mapping->writeback_index; /* Start from prev offset */ 3855 end = -1; 3856 } else { 3857 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3858 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3859 scanned = 1; 3860 } 3861 if (wbc->sync_mode == WB_SYNC_ALL) 3862 tag = PAGECACHE_TAG_TOWRITE; 3863 else 3864 tag = PAGECACHE_TAG_DIRTY; 3865retry: 3866 if (wbc->sync_mode == WB_SYNC_ALL) 3867 tag_pages_for_writeback(mapping, index, end); 3868 while (!done && !nr_to_write_done && (index <= end) && 3869 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3870 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3871 unsigned i; 3872 3873 scanned = 1; 3874 for (i = 0; i < nr_pages; i++) { 3875 struct page *page = pvec.pages[i]; 3876 3877 if (!PagePrivate(page)) 3878 continue; 3879 3880 if (!wbc->range_cyclic && page->index > end) { 3881 done = 1; 3882 break; 3883 } 3884 3885 spin_lock(&mapping->private_lock); 3886 if (!PagePrivate(page)) { 3887 spin_unlock(&mapping->private_lock); 3888 continue; 3889 } 3890 3891 eb = (struct extent_buffer *)page->private; 3892 3893 /* 3894 * Shouldn't happen and normally this would be a BUG_ON 3895 * but no sense in crashing the users box for something 3896 * we can survive anyway. 3897 */ 3898 if (WARN_ON(!eb)) { 3899 spin_unlock(&mapping->private_lock); 3900 continue; 3901 } 3902 3903 if (eb == prev_eb) { 3904 spin_unlock(&mapping->private_lock); 3905 continue; 3906 } 3907 3908 ret = atomic_inc_not_zero(&eb->refs); 3909 spin_unlock(&mapping->private_lock); 3910 if (!ret) 3911 continue; 3912 3913 prev_eb = eb; 3914 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3915 if (!ret) { 3916 free_extent_buffer(eb); 3917 continue; 3918 } 3919 3920 ret = write_one_eb(eb, fs_info, wbc, &epd); 3921 if (ret) { 3922 done = 1; 3923 free_extent_buffer(eb); 3924 break; 3925 } 3926 free_extent_buffer(eb); 3927 3928 /* 3929 * the filesystem may choose to bump up nr_to_write. 3930 * We have to make sure to honor the new nr_to_write 3931 * at any time 3932 */ 3933 nr_to_write_done = wbc->nr_to_write <= 0; 3934 } 3935 pagevec_release(&pvec); 3936 cond_resched(); 3937 } 3938 if (!scanned && !done) { 3939 /* 3940 * We hit the last page and there is more work to be done: wrap 3941 * back to the start of the file 3942 */ 3943 scanned = 1; 3944 index = 0; 3945 goto retry; 3946 } 3947 flush_write_bio(&epd); 3948 return ret; 3949} 3950 3951/** 3952 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3953 * @mapping: address space structure to write 3954 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3955 * @writepage: function called for each page 3956 * @data: data passed to writepage function 3957 * 3958 * If a page is already under I/O, write_cache_pages() skips it, even 3959 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3960 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3961 * and msync() need to guarantee that all the data which was dirty at the time 3962 * the call was made get new I/O started against them. If wbc->sync_mode is 3963 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3964 * existing IO to complete. 3965 */ 3966static int extent_write_cache_pages(struct extent_io_tree *tree, 3967 struct address_space *mapping, 3968 struct writeback_control *wbc, 3969 writepage_t writepage, void *data, 3970 void (*flush_fn)(void *)) 3971{ 3972 struct inode *inode = mapping->host; 3973 int ret = 0; 3974 int done = 0; 3975 int err = 0; 3976 int nr_to_write_done = 0; 3977 struct pagevec pvec; 3978 int nr_pages; 3979 pgoff_t index; 3980 pgoff_t end; /* Inclusive */ 3981 int scanned = 0; 3982 int tag; 3983 3984 /* 3985 * We have to hold onto the inode so that ordered extents can do their 3986 * work when the IO finishes. The alternative to this is failing to add 3987 * an ordered extent if the igrab() fails there and that is a huge pain 3988 * to deal with, so instead just hold onto the inode throughout the 3989 * writepages operation. If it fails here we are freeing up the inode 3990 * anyway and we'd rather not waste our time writing out stuff that is 3991 * going to be truncated anyway. 3992 */ 3993 if (!igrab(inode)) 3994 return 0; 3995 3996 pagevec_init(&pvec, 0); 3997 if (wbc->range_cyclic) { 3998 index = mapping->writeback_index; /* Start from prev offset */ 3999 end = -1; 4000 } else { 4001 index = wbc->range_start >> PAGE_CACHE_SHIFT; 4002 end = wbc->range_end >> PAGE_CACHE_SHIFT; 4003 scanned = 1; 4004 } 4005 if (wbc->sync_mode == WB_SYNC_ALL) 4006 tag = PAGECACHE_TAG_TOWRITE; 4007 else 4008 tag = PAGECACHE_TAG_DIRTY; 4009retry: 4010 if (wbc->sync_mode == WB_SYNC_ALL) 4011 tag_pages_for_writeback(mapping, index, end); 4012 while (!done && !nr_to_write_done && (index <= end) && 4013 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 4014 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 4015 unsigned i; 4016 4017 scanned = 1; 4018 for (i = 0; i < nr_pages; i++) { 4019 struct page *page = pvec.pages[i]; 4020 4021 /* 4022 * At this point we hold neither mapping->tree_lock nor 4023 * lock on the page itself: the page may be truncated or 4024 * invalidated (changing page->mapping to NULL), or even 4025 * swizzled back from swapper_space to tmpfs file 4026 * mapping 4027 */ 4028 if (!trylock_page(page)) { 4029 flush_fn(data); 4030 lock_page(page); 4031 } 4032 4033 if (unlikely(page->mapping != mapping)) { 4034 unlock_page(page); 4035 continue; 4036 } 4037 4038 if (!wbc->range_cyclic && page->index > end) { 4039 done = 1; 4040 unlock_page(page); 4041 continue; 4042 } 4043 4044 if (wbc->sync_mode != WB_SYNC_NONE) { 4045 if (PageWriteback(page)) 4046 flush_fn(data); 4047 wait_on_page_writeback(page); 4048 } 4049 4050 if (PageWriteback(page) || 4051 !clear_page_dirty_for_io(page)) { 4052 unlock_page(page); 4053 continue; 4054 } 4055 4056 ret = (*writepage)(page, wbc, data); 4057 4058 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4059 unlock_page(page); 4060 ret = 0; 4061 } 4062 if (!err && ret < 0) 4063 err = ret; 4064 4065 /* 4066 * the filesystem may choose to bump up nr_to_write. 4067 * We have to make sure to honor the new nr_to_write 4068 * at any time 4069 */ 4070 nr_to_write_done = wbc->nr_to_write <= 0; 4071 } 4072 pagevec_release(&pvec); 4073 cond_resched(); 4074 } 4075 if (!scanned && !done && !err) { 4076 /* 4077 * We hit the last page and there is more work to be done: wrap 4078 * back to the start of the file 4079 */ 4080 scanned = 1; 4081 index = 0; 4082 goto retry; 4083 } 4084 btrfs_add_delayed_iput(inode); 4085 return err; 4086} 4087 4088static void flush_epd_write_bio(struct extent_page_data *epd) 4089{ 4090 if (epd->bio) { 4091 int rw = WRITE; 4092 int ret; 4093 4094 if (epd->sync_io) 4095 rw = WRITE_SYNC; 4096 4097 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4098 BUG_ON(ret < 0); /* -ENOMEM */ 4099 epd->bio = NULL; 4100 } 4101} 4102 4103static noinline void flush_write_bio(void *data) 4104{ 4105 struct extent_page_data *epd = data; 4106 flush_epd_write_bio(epd); 4107} 4108 4109int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4110 get_extent_t *get_extent, 4111 struct writeback_control *wbc) 4112{ 4113 int ret; 4114 struct extent_page_data epd = { 4115 .bio = NULL, 4116 .tree = tree, 4117 .get_extent = get_extent, 4118 .extent_locked = 0, 4119 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4120 .bio_flags = 0, 4121 }; 4122 4123 ret = __extent_writepage(page, wbc, &epd); 4124 4125 flush_epd_write_bio(&epd); 4126 return ret; 4127} 4128 4129int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4130 u64 start, u64 end, get_extent_t *get_extent, 4131 int mode) 4132{ 4133 int ret = 0; 4134 struct address_space *mapping = inode->i_mapping; 4135 struct page *page; 4136 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4137 PAGE_CACHE_SHIFT; 4138 4139 struct extent_page_data epd = { 4140 .bio = NULL, 4141 .tree = tree, 4142 .get_extent = get_extent, 4143 .extent_locked = 1, 4144 .sync_io = mode == WB_SYNC_ALL, 4145 .bio_flags = 0, 4146 }; 4147 struct writeback_control wbc_writepages = { 4148 .sync_mode = mode, 4149 .nr_to_write = nr_pages * 2, 4150 .range_start = start, 4151 .range_end = end + 1, 4152 }; 4153 4154 while (start <= end) { 4155 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4156 if (clear_page_dirty_for_io(page)) 4157 ret = __extent_writepage(page, &wbc_writepages, &epd); 4158 else { 4159 if (tree->ops && tree->ops->writepage_end_io_hook) 4160 tree->ops->writepage_end_io_hook(page, start, 4161 start + PAGE_CACHE_SIZE - 1, 4162 NULL, 1); 4163 unlock_page(page); 4164 } 4165 page_cache_release(page); 4166 start += PAGE_CACHE_SIZE; 4167 } 4168 4169 flush_epd_write_bio(&epd); 4170 return ret; 4171} 4172 4173int extent_writepages(struct extent_io_tree *tree, 4174 struct address_space *mapping, 4175 get_extent_t *get_extent, 4176 struct writeback_control *wbc) 4177{ 4178 int ret = 0; 4179 struct extent_page_data epd = { 4180 .bio = NULL, 4181 .tree = tree, 4182 .get_extent = get_extent, 4183 .extent_locked = 0, 4184 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4185 .bio_flags = 0, 4186 }; 4187 4188 ret = extent_write_cache_pages(tree, mapping, wbc, 4189 __extent_writepage, &epd, 4190 flush_write_bio); 4191 flush_epd_write_bio(&epd); 4192 return ret; 4193} 4194 4195int extent_readpages(struct extent_io_tree *tree, 4196 struct address_space *mapping, 4197 struct list_head *pages, unsigned nr_pages, 4198 get_extent_t get_extent) 4199{ 4200 struct bio *bio = NULL; 4201 unsigned page_idx; 4202 unsigned long bio_flags = 0; 4203 struct page *pagepool[16]; 4204 struct page *page; 4205 struct extent_map *em_cached = NULL; 4206 int nr = 0; 4207 u64 prev_em_start = (u64)-1; 4208 4209 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4210 page = list_entry(pages->prev, struct page, lru); 4211 4212 prefetchw(&page->flags); 4213 list_del(&page->lru); 4214 if (add_to_page_cache_lru(page, mapping, 4215 page->index, GFP_NOFS)) { 4216 page_cache_release(page); 4217 continue; 4218 } 4219 4220 pagepool[nr++] = page; 4221 if (nr < ARRAY_SIZE(pagepool)) 4222 continue; 4223 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4224 &bio, 0, &bio_flags, READ, &prev_em_start); 4225 nr = 0; 4226 } 4227 if (nr) 4228 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4229 &bio, 0, &bio_flags, READ, &prev_em_start); 4230 4231 if (em_cached) 4232 free_extent_map(em_cached); 4233 4234 BUG_ON(!list_empty(pages)); 4235 if (bio) 4236 return submit_one_bio(READ, bio, 0, bio_flags); 4237 return 0; 4238} 4239 4240/* 4241 * basic invalidatepage code, this waits on any locked or writeback 4242 * ranges corresponding to the page, and then deletes any extent state 4243 * records from the tree 4244 */ 4245int extent_invalidatepage(struct extent_io_tree *tree, 4246 struct page *page, unsigned long offset) 4247{ 4248 struct extent_state *cached_state = NULL; 4249 u64 start = page_offset(page); 4250 u64 end = start + PAGE_CACHE_SIZE - 1; 4251 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4252 4253 start += ALIGN(offset, blocksize); 4254 if (start > end) 4255 return 0; 4256 4257 lock_extent_bits(tree, start, end, 0, &cached_state); 4258 wait_on_page_writeback(page); 4259 clear_extent_bit(tree, start, end, 4260 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4261 EXTENT_DO_ACCOUNTING, 4262 1, 1, &cached_state, GFP_NOFS); 4263 return 0; 4264} 4265 4266/* 4267 * a helper for releasepage, this tests for areas of the page that 4268 * are locked or under IO and drops the related state bits if it is safe 4269 * to drop the page. 4270 */ 4271static int try_release_extent_state(struct extent_map_tree *map, 4272 struct extent_io_tree *tree, 4273 struct page *page, gfp_t mask) 4274{ 4275 u64 start = page_offset(page); 4276 u64 end = start + PAGE_CACHE_SIZE - 1; 4277 int ret = 1; 4278 4279 if (test_range_bit(tree, start, end, 4280 EXTENT_IOBITS, 0, NULL)) 4281 ret = 0; 4282 else { 4283 if ((mask & GFP_NOFS) == GFP_NOFS) 4284 mask = GFP_NOFS; 4285 /* 4286 * at this point we can safely clear everything except the 4287 * locked bit and the nodatasum bit 4288 */ 4289 ret = clear_extent_bit(tree, start, end, 4290 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4291 0, 0, NULL, mask); 4292 4293 /* if clear_extent_bit failed for enomem reasons, 4294 * we can't allow the release to continue. 4295 */ 4296 if (ret < 0) 4297 ret = 0; 4298 else 4299 ret = 1; 4300 } 4301 return ret; 4302} 4303 4304/* 4305 * a helper for releasepage. As long as there are no locked extents 4306 * in the range corresponding to the page, both state records and extent 4307 * map records are removed 4308 */ 4309int try_release_extent_mapping(struct extent_map_tree *map, 4310 struct extent_io_tree *tree, struct page *page, 4311 gfp_t mask) 4312{ 4313 struct extent_map *em; 4314 u64 start = page_offset(page); 4315 u64 end = start + PAGE_CACHE_SIZE - 1; 4316 4317 if ((mask & __GFP_WAIT) && 4318 page->mapping->host->i_size > 16 * 1024 * 1024) { 4319 u64 len; 4320 while (start <= end) { 4321 len = end - start + 1; 4322 write_lock(&map->lock); 4323 em = lookup_extent_mapping(map, start, len); 4324 if (!em) { 4325 write_unlock(&map->lock); 4326 break; 4327 } 4328 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4329 em->start != start) { 4330 write_unlock(&map->lock); 4331 free_extent_map(em); 4332 break; 4333 } 4334 if (!test_range_bit(tree, em->start, 4335 extent_map_end(em) - 1, 4336 EXTENT_LOCKED | EXTENT_WRITEBACK, 4337 0, NULL)) { 4338 remove_extent_mapping(map, em); 4339 /* once for the rb tree */ 4340 free_extent_map(em); 4341 } 4342 start = extent_map_end(em); 4343 write_unlock(&map->lock); 4344 4345 /* once for us */ 4346 free_extent_map(em); 4347 } 4348 } 4349 return try_release_extent_state(map, tree, page, mask); 4350} 4351 4352/* 4353 * helper function for fiemap, which doesn't want to see any holes. 4354 * This maps until we find something past 'last' 4355 */ 4356static struct extent_map *get_extent_skip_holes(struct inode *inode, 4357 u64 offset, 4358 u64 last, 4359 get_extent_t *get_extent) 4360{ 4361 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4362 struct extent_map *em; 4363 u64 len; 4364 4365 if (offset >= last) 4366 return NULL; 4367 4368 while (1) { 4369 len = last - offset; 4370 if (len == 0) 4371 break; 4372 len = ALIGN(len, sectorsize); 4373 em = get_extent(inode, NULL, 0, offset, len, 0); 4374 if (IS_ERR_OR_NULL(em)) 4375 return em; 4376 4377 /* if this isn't a hole return it */ 4378 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4379 em->block_start != EXTENT_MAP_HOLE) { 4380 return em; 4381 } 4382 4383 /* this is a hole, advance to the next extent */ 4384 offset = extent_map_end(em); 4385 free_extent_map(em); 4386 if (offset >= last) 4387 break; 4388 } 4389 return NULL; 4390} 4391 4392int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4393 __u64 start, __u64 len, get_extent_t *get_extent) 4394{ 4395 int ret = 0; 4396 u64 off = start; 4397 u64 max = start + len; 4398 u32 flags = 0; 4399 u32 found_type; 4400 u64 last; 4401 u64 last_for_get_extent = 0; 4402 u64 disko = 0; 4403 u64 isize = i_size_read(inode); 4404 struct btrfs_key found_key; 4405 struct extent_map *em = NULL; 4406 struct extent_state *cached_state = NULL; 4407 struct btrfs_path *path; 4408 struct btrfs_root *root = BTRFS_I(inode)->root; 4409 int end = 0; 4410 u64 em_start = 0; 4411 u64 em_len = 0; 4412 u64 em_end = 0; 4413 4414 if (len == 0) 4415 return -EINVAL; 4416 4417 path = btrfs_alloc_path(); 4418 if (!path) 4419 return -ENOMEM; 4420 path->leave_spinning = 1; 4421 4422 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4423 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4424 4425 /* 4426 * lookup the last file extent. We're not using i_size here 4427 * because there might be preallocation past i_size 4428 */ 4429 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4430 0); 4431 if (ret < 0) { 4432 btrfs_free_path(path); 4433 return ret; 4434 } 4435 WARN_ON(!ret); 4436 path->slots[0]--; 4437 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4438 found_type = found_key.type; 4439 4440 /* No extents, but there might be delalloc bits */ 4441 if (found_key.objectid != btrfs_ino(inode) || 4442 found_type != BTRFS_EXTENT_DATA_KEY) { 4443 /* have to trust i_size as the end */ 4444 last = (u64)-1; 4445 last_for_get_extent = isize; 4446 } else { 4447 /* 4448 * remember the start of the last extent. There are a 4449 * bunch of different factors that go into the length of the 4450 * extent, so its much less complex to remember where it started 4451 */ 4452 last = found_key.offset; 4453 last_for_get_extent = last + 1; 4454 } 4455 btrfs_release_path(path); 4456 4457 /* 4458 * we might have some extents allocated but more delalloc past those 4459 * extents. so, we trust isize unless the start of the last extent is 4460 * beyond isize 4461 */ 4462 if (last < isize) { 4463 last = (u64)-1; 4464 last_for_get_extent = isize; 4465 } 4466 4467 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4468 &cached_state); 4469 4470 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4471 get_extent); 4472 if (!em) 4473 goto out; 4474 if (IS_ERR(em)) { 4475 ret = PTR_ERR(em); 4476 goto out; 4477 } 4478 4479 while (!end) { 4480 u64 offset_in_extent = 0; 4481 4482 /* break if the extent we found is outside the range */ 4483 if (em->start >= max || extent_map_end(em) < off) 4484 break; 4485 4486 /* 4487 * get_extent may return an extent that starts before our 4488 * requested range. We have to make sure the ranges 4489 * we return to fiemap always move forward and don't 4490 * overlap, so adjust the offsets here 4491 */ 4492 em_start = max(em->start, off); 4493 4494 /* 4495 * record the offset from the start of the extent 4496 * for adjusting the disk offset below. Only do this if the 4497 * extent isn't compressed since our in ram offset may be past 4498 * what we have actually allocated on disk. 4499 */ 4500 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4501 offset_in_extent = em_start - em->start; 4502 em_end = extent_map_end(em); 4503 em_len = em_end - em_start; 4504 disko = 0; 4505 flags = 0; 4506 4507 /* 4508 * bump off for our next call to get_extent 4509 */ 4510 off = extent_map_end(em); 4511 if (off >= max) 4512 end = 1; 4513 4514 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4515 end = 1; 4516 flags |= FIEMAP_EXTENT_LAST; 4517 } else if (em->block_start == EXTENT_MAP_INLINE) { 4518 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4519 FIEMAP_EXTENT_NOT_ALIGNED); 4520 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4521 flags |= (FIEMAP_EXTENT_DELALLOC | 4522 FIEMAP_EXTENT_UNKNOWN); 4523 } else if (fieinfo->fi_extents_max) { 4524 u64 bytenr = em->block_start - 4525 (em->start - em->orig_start); 4526 4527 disko = em->block_start + offset_in_extent; 4528 4529 /* 4530 * As btrfs supports shared space, this information 4531 * can be exported to userspace tools via 4532 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4533 * then we're just getting a count and we can skip the 4534 * lookup stuff. 4535 */ 4536 ret = btrfs_check_shared(NULL, root->fs_info, 4537 root->objectid, 4538 btrfs_ino(inode), bytenr); 4539 if (ret < 0) 4540 goto out_free; 4541 if (ret) 4542 flags |= FIEMAP_EXTENT_SHARED; 4543 ret = 0; 4544 } 4545 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4546 flags |= FIEMAP_EXTENT_ENCODED; 4547 4548 free_extent_map(em); 4549 em = NULL; 4550 if ((em_start >= last) || em_len == (u64)-1 || 4551 (last == (u64)-1 && isize <= em_end)) { 4552 flags |= FIEMAP_EXTENT_LAST; 4553 end = 1; 4554 } 4555 4556 /* now scan forward to see if this is really the last extent. */ 4557 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4558 get_extent); 4559 if (IS_ERR(em)) { 4560 ret = PTR_ERR(em); 4561 goto out; 4562 } 4563 if (!em) { 4564 flags |= FIEMAP_EXTENT_LAST; 4565 end = 1; 4566 } 4567 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4568 em_len, flags); 4569 if (ret) { 4570 if (ret == 1) 4571 ret = 0; 4572 goto out_free; 4573 } 4574 } 4575out_free: 4576 free_extent_map(em); 4577out: 4578 btrfs_free_path(path); 4579 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4580 &cached_state, GFP_NOFS); 4581 return ret; 4582} 4583 4584static void __free_extent_buffer(struct extent_buffer *eb) 4585{ 4586 btrfs_leak_debug_del(&eb->leak_list); 4587 kmem_cache_free(extent_buffer_cache, eb); 4588} 4589 4590int extent_buffer_under_io(struct extent_buffer *eb) 4591{ 4592 return (atomic_read(&eb->io_pages) || 4593 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4594 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4595} 4596 4597/* 4598 * Helper for releasing extent buffer page. 4599 */ 4600static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4601{ 4602 unsigned long index; 4603 struct page *page; 4604 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4605 4606 BUG_ON(extent_buffer_under_io(eb)); 4607 4608 index = num_extent_pages(eb->start, eb->len); 4609 if (index == 0) 4610 return; 4611 4612 do { 4613 index--; 4614 page = eb->pages[index]; 4615 if (!page) 4616 continue; 4617 if (mapped) 4618 spin_lock(&page->mapping->private_lock); 4619 /* 4620 * We do this since we'll remove the pages after we've 4621 * removed the eb from the radix tree, so we could race 4622 * and have this page now attached to the new eb. So 4623 * only clear page_private if it's still connected to 4624 * this eb. 4625 */ 4626 if (PagePrivate(page) && 4627 page->private == (unsigned long)eb) { 4628 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4629 BUG_ON(PageDirty(page)); 4630 BUG_ON(PageWriteback(page)); 4631 /* 4632 * We need to make sure we haven't be attached 4633 * to a new eb. 4634 */ 4635 ClearPagePrivate(page); 4636 set_page_private(page, 0); 4637 /* One for the page private */ 4638 page_cache_release(page); 4639 } 4640 4641 if (mapped) 4642 spin_unlock(&page->mapping->private_lock); 4643 4644 /* One for when we alloced the page */ 4645 page_cache_release(page); 4646 } while (index != 0); 4647} 4648 4649/* 4650 * Helper for releasing the extent buffer. 4651 */ 4652static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4653{ 4654 btrfs_release_extent_buffer_page(eb); 4655 __free_extent_buffer(eb); 4656} 4657 4658static struct extent_buffer * 4659__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4660 unsigned long len) 4661{ 4662 struct extent_buffer *eb = NULL; 4663 4664 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS); 4665 if (eb == NULL) 4666 return NULL; 4667 eb->start = start; 4668 eb->len = len; 4669 eb->fs_info = fs_info; 4670 eb->bflags = 0; 4671 rwlock_init(&eb->lock); 4672 atomic_set(&eb->write_locks, 0); 4673 atomic_set(&eb->read_locks, 0); 4674 atomic_set(&eb->blocking_readers, 0); 4675 atomic_set(&eb->blocking_writers, 0); 4676 atomic_set(&eb->spinning_readers, 0); 4677 atomic_set(&eb->spinning_writers, 0); 4678 eb->lock_nested = 0; 4679 init_waitqueue_head(&eb->write_lock_wq); 4680 init_waitqueue_head(&eb->read_lock_wq); 4681 4682 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4683 4684 spin_lock_init(&eb->refs_lock); 4685 atomic_set(&eb->refs, 1); 4686 atomic_set(&eb->io_pages, 0); 4687 4688 /* 4689 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4690 */ 4691 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4692 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4693 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4694 4695 return eb; 4696} 4697 4698struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4699{ 4700 unsigned long i; 4701 struct page *p; 4702 struct extent_buffer *new; 4703 unsigned long num_pages = num_extent_pages(src->start, src->len); 4704 4705 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4706 if (new == NULL) 4707 return NULL; 4708 4709 for (i = 0; i < num_pages; i++) { 4710 p = alloc_page(GFP_NOFS); 4711 if (!p) { 4712 btrfs_release_extent_buffer(new); 4713 return NULL; 4714 } 4715 attach_extent_buffer_page(new, p); 4716 WARN_ON(PageDirty(p)); 4717 SetPageUptodate(p); 4718 new->pages[i] = p; 4719 } 4720 4721 copy_extent_buffer(new, src, 0, 0, src->len); 4722 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4723 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4724 4725 return new; 4726} 4727 4728struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4729 u64 start) 4730{ 4731 struct extent_buffer *eb; 4732 unsigned long len; 4733 unsigned long num_pages; 4734 unsigned long i; 4735 4736 if (!fs_info) { 4737 /* 4738 * Called only from tests that don't always have a fs_info 4739 * available, but we know that nodesize is 4096 4740 */ 4741 len = 4096; 4742 } else { 4743 len = fs_info->tree_root->nodesize; 4744 } 4745 num_pages = num_extent_pages(0, len); 4746 4747 eb = __alloc_extent_buffer(fs_info, start, len); 4748 if (!eb) 4749 return NULL; 4750 4751 for (i = 0; i < num_pages; i++) { 4752 eb->pages[i] = alloc_page(GFP_NOFS); 4753 if (!eb->pages[i]) 4754 goto err; 4755 } 4756 set_extent_buffer_uptodate(eb); 4757 btrfs_set_header_nritems(eb, 0); 4758 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4759 4760 return eb; 4761err: 4762 for (; i > 0; i--) 4763 __free_page(eb->pages[i - 1]); 4764 __free_extent_buffer(eb); 4765 return NULL; 4766} 4767 4768static void check_buffer_tree_ref(struct extent_buffer *eb) 4769{ 4770 int refs; 4771 /* the ref bit is tricky. We have to make sure it is set 4772 * if we have the buffer dirty. Otherwise the 4773 * code to free a buffer can end up dropping a dirty 4774 * page 4775 * 4776 * Once the ref bit is set, it won't go away while the 4777 * buffer is dirty or in writeback, and it also won't 4778 * go away while we have the reference count on the 4779 * eb bumped. 4780 * 4781 * We can't just set the ref bit without bumping the 4782 * ref on the eb because free_extent_buffer might 4783 * see the ref bit and try to clear it. If this happens 4784 * free_extent_buffer might end up dropping our original 4785 * ref by mistake and freeing the page before we are able 4786 * to add one more ref. 4787 * 4788 * So bump the ref count first, then set the bit. If someone 4789 * beat us to it, drop the ref we added. 4790 */ 4791 refs = atomic_read(&eb->refs); 4792 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4793 return; 4794 4795 spin_lock(&eb->refs_lock); 4796 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4797 atomic_inc(&eb->refs); 4798 spin_unlock(&eb->refs_lock); 4799} 4800 4801static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4802 struct page *accessed) 4803{ 4804 unsigned long num_pages, i; 4805 4806 check_buffer_tree_ref(eb); 4807 4808 num_pages = num_extent_pages(eb->start, eb->len); 4809 for (i = 0; i < num_pages; i++) { 4810 struct page *p = eb->pages[i]; 4811 4812 if (p != accessed) 4813 mark_page_accessed(p); 4814 } 4815} 4816 4817struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4818 u64 start) 4819{ 4820 struct extent_buffer *eb; 4821 4822 rcu_read_lock(); 4823 eb = radix_tree_lookup(&fs_info->buffer_radix, 4824 start >> PAGE_CACHE_SHIFT); 4825 if (eb && atomic_inc_not_zero(&eb->refs)) { 4826 rcu_read_unlock(); 4827 /* 4828 * Lock our eb's refs_lock to avoid races with 4829 * free_extent_buffer. When we get our eb it might be flagged 4830 * with EXTENT_BUFFER_STALE and another task running 4831 * free_extent_buffer might have seen that flag set, 4832 * eb->refs == 2, that the buffer isn't under IO (dirty and 4833 * writeback flags not set) and it's still in the tree (flag 4834 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4835 * of decrementing the extent buffer's reference count twice. 4836 * So here we could race and increment the eb's reference count, 4837 * clear its stale flag, mark it as dirty and drop our reference 4838 * before the other task finishes executing free_extent_buffer, 4839 * which would later result in an attempt to free an extent 4840 * buffer that is dirty. 4841 */ 4842 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4843 spin_lock(&eb->refs_lock); 4844 spin_unlock(&eb->refs_lock); 4845 } 4846 mark_extent_buffer_accessed(eb, NULL); 4847 return eb; 4848 } 4849 rcu_read_unlock(); 4850 4851 return NULL; 4852} 4853 4854#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4855struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4856 u64 start) 4857{ 4858 struct extent_buffer *eb, *exists = NULL; 4859 int ret; 4860 4861 eb = find_extent_buffer(fs_info, start); 4862 if (eb) 4863 return eb; 4864 eb = alloc_dummy_extent_buffer(fs_info, start); 4865 if (!eb) 4866 return NULL; 4867 eb->fs_info = fs_info; 4868again: 4869 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4870 if (ret) 4871 goto free_eb; 4872 spin_lock(&fs_info->buffer_lock); 4873 ret = radix_tree_insert(&fs_info->buffer_radix, 4874 start >> PAGE_CACHE_SHIFT, eb); 4875 spin_unlock(&fs_info->buffer_lock); 4876 radix_tree_preload_end(); 4877 if (ret == -EEXIST) { 4878 exists = find_extent_buffer(fs_info, start); 4879 if (exists) 4880 goto free_eb; 4881 else 4882 goto again; 4883 } 4884 check_buffer_tree_ref(eb); 4885 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4886 4887 /* 4888 * We will free dummy extent buffer's if they come into 4889 * free_extent_buffer with a ref count of 2, but if we are using this we 4890 * want the buffers to stay in memory until we're done with them, so 4891 * bump the ref count again. 4892 */ 4893 atomic_inc(&eb->refs); 4894 return eb; 4895free_eb: 4896 btrfs_release_extent_buffer(eb); 4897 return exists; 4898} 4899#endif 4900 4901struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4902 u64 start) 4903{ 4904 unsigned long len = fs_info->tree_root->nodesize; 4905 unsigned long num_pages = num_extent_pages(start, len); 4906 unsigned long i; 4907 unsigned long index = start >> PAGE_CACHE_SHIFT; 4908 struct extent_buffer *eb; 4909 struct extent_buffer *exists = NULL; 4910 struct page *p; 4911 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4912 int uptodate = 1; 4913 int ret; 4914 4915 eb = find_extent_buffer(fs_info, start); 4916 if (eb) 4917 return eb; 4918 4919 eb = __alloc_extent_buffer(fs_info, start, len); 4920 if (!eb) 4921 return NULL; 4922 4923 for (i = 0; i < num_pages; i++, index++) { 4924 p = find_or_create_page(mapping, index, GFP_NOFS); 4925 if (!p) 4926 goto free_eb; 4927 4928 spin_lock(&mapping->private_lock); 4929 if (PagePrivate(p)) { 4930 /* 4931 * We could have already allocated an eb for this page 4932 * and attached one so lets see if we can get a ref on 4933 * the existing eb, and if we can we know it's good and 4934 * we can just return that one, else we know we can just 4935 * overwrite page->private. 4936 */ 4937 exists = (struct extent_buffer *)p->private; 4938 if (atomic_inc_not_zero(&exists->refs)) { 4939 spin_unlock(&mapping->private_lock); 4940 unlock_page(p); 4941 page_cache_release(p); 4942 mark_extent_buffer_accessed(exists, p); 4943 goto free_eb; 4944 } 4945 exists = NULL; 4946 4947 /* 4948 * Do this so attach doesn't complain and we need to 4949 * drop the ref the old guy had. 4950 */ 4951 ClearPagePrivate(p); 4952 WARN_ON(PageDirty(p)); 4953 page_cache_release(p); 4954 } 4955 attach_extent_buffer_page(eb, p); 4956 spin_unlock(&mapping->private_lock); 4957 WARN_ON(PageDirty(p)); 4958 eb->pages[i] = p; 4959 if (!PageUptodate(p)) 4960 uptodate = 0; 4961 4962 /* 4963 * see below about how we avoid a nasty race with release page 4964 * and why we unlock later 4965 */ 4966 } 4967 if (uptodate) 4968 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4969again: 4970 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4971 if (ret) 4972 goto free_eb; 4973 4974 spin_lock(&fs_info->buffer_lock); 4975 ret = radix_tree_insert(&fs_info->buffer_radix, 4976 start >> PAGE_CACHE_SHIFT, eb); 4977 spin_unlock(&fs_info->buffer_lock); 4978 radix_tree_preload_end(); 4979 if (ret == -EEXIST) { 4980 exists = find_extent_buffer(fs_info, start); 4981 if (exists) 4982 goto free_eb; 4983 else 4984 goto again; 4985 } 4986 /* add one reference for the tree */ 4987 check_buffer_tree_ref(eb); 4988 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4989 4990 /* 4991 * there is a race where release page may have 4992 * tried to find this extent buffer in the radix 4993 * but failed. It will tell the VM it is safe to 4994 * reclaim the, and it will clear the page private bit. 4995 * We must make sure to set the page private bit properly 4996 * after the extent buffer is in the radix tree so 4997 * it doesn't get lost 4998 */ 4999 SetPageChecked(eb->pages[0]); 5000 for (i = 1; i < num_pages; i++) { 5001 p = eb->pages[i]; 5002 ClearPageChecked(p); 5003 unlock_page(p); 5004 } 5005 unlock_page(eb->pages[0]); 5006 return eb; 5007 5008free_eb: 5009 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5010 for (i = 0; i < num_pages; i++) { 5011 if (eb->pages[i]) 5012 unlock_page(eb->pages[i]); 5013 } 5014 5015 btrfs_release_extent_buffer(eb); 5016 return exists; 5017} 5018 5019static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5020{ 5021 struct extent_buffer *eb = 5022 container_of(head, struct extent_buffer, rcu_head); 5023 5024 __free_extent_buffer(eb); 5025} 5026 5027/* Expects to have eb->eb_lock already held */ 5028static int release_extent_buffer(struct extent_buffer *eb) 5029{ 5030 WARN_ON(atomic_read(&eb->refs) == 0); 5031 if (atomic_dec_and_test(&eb->refs)) { 5032 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5033 struct btrfs_fs_info *fs_info = eb->fs_info; 5034 5035 spin_unlock(&eb->refs_lock); 5036 5037 spin_lock(&fs_info->buffer_lock); 5038 radix_tree_delete(&fs_info->buffer_radix, 5039 eb->start >> PAGE_CACHE_SHIFT); 5040 spin_unlock(&fs_info->buffer_lock); 5041 } else { 5042 spin_unlock(&eb->refs_lock); 5043 } 5044 5045 /* Should be safe to release our pages at this point */ 5046 btrfs_release_extent_buffer_page(eb); 5047#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5048 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5049 __free_extent_buffer(eb); 5050 return 1; 5051 } 5052#endif 5053 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5054 return 1; 5055 } 5056 spin_unlock(&eb->refs_lock); 5057 5058 return 0; 5059} 5060 5061void free_extent_buffer(struct extent_buffer *eb) 5062{ 5063 int refs; 5064 int old; 5065 if (!eb) 5066 return; 5067 5068 while (1) { 5069 refs = atomic_read(&eb->refs); 5070 if (refs <= 3) 5071 break; 5072 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5073 if (old == refs) 5074 return; 5075 } 5076 5077 spin_lock(&eb->refs_lock); 5078 if (atomic_read(&eb->refs) == 2 && 5079 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5080 atomic_dec(&eb->refs); 5081 5082 if (atomic_read(&eb->refs) == 2 && 5083 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5084 !extent_buffer_under_io(eb) && 5085 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5086 atomic_dec(&eb->refs); 5087 5088 /* 5089 * I know this is terrible, but it's temporary until we stop tracking 5090 * the uptodate bits and such for the extent buffers. 5091 */ 5092 release_extent_buffer(eb); 5093} 5094 5095void free_extent_buffer_stale(struct extent_buffer *eb) 5096{ 5097 if (!eb) 5098 return; 5099 5100 spin_lock(&eb->refs_lock); 5101 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5102 5103 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5104 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5105 atomic_dec(&eb->refs); 5106 release_extent_buffer(eb); 5107} 5108 5109void clear_extent_buffer_dirty(struct extent_buffer *eb) 5110{ 5111 unsigned long i; 5112 unsigned long num_pages; 5113 struct page *page; 5114 5115 num_pages = num_extent_pages(eb->start, eb->len); 5116 5117 for (i = 0; i < num_pages; i++) { 5118 page = eb->pages[i]; 5119 if (!PageDirty(page)) 5120 continue; 5121 5122 lock_page(page); 5123 WARN_ON(!PagePrivate(page)); 5124 5125 clear_page_dirty_for_io(page); 5126 spin_lock_irq(&page->mapping->tree_lock); 5127 if (!PageDirty(page)) { 5128 radix_tree_tag_clear(&page->mapping->page_tree, 5129 page_index(page), 5130 PAGECACHE_TAG_DIRTY); 5131 } 5132 spin_unlock_irq(&page->mapping->tree_lock); 5133 ClearPageError(page); 5134 unlock_page(page); 5135 } 5136 WARN_ON(atomic_read(&eb->refs) == 0); 5137} 5138 5139int set_extent_buffer_dirty(struct extent_buffer *eb) 5140{ 5141 unsigned long i; 5142 unsigned long num_pages; 5143 int was_dirty = 0; 5144 5145 check_buffer_tree_ref(eb); 5146 5147 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5148 5149 num_pages = num_extent_pages(eb->start, eb->len); 5150 WARN_ON(atomic_read(&eb->refs) == 0); 5151 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5152 5153 for (i = 0; i < num_pages; i++) 5154 set_page_dirty(eb->pages[i]); 5155 return was_dirty; 5156} 5157 5158int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5159{ 5160 unsigned long i; 5161 struct page *page; 5162 unsigned long num_pages; 5163 5164 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5165 num_pages = num_extent_pages(eb->start, eb->len); 5166 for (i = 0; i < num_pages; i++) { 5167 page = eb->pages[i]; 5168 if (page) 5169 ClearPageUptodate(page); 5170 } 5171 return 0; 5172} 5173 5174int set_extent_buffer_uptodate(struct extent_buffer *eb) 5175{ 5176 unsigned long i; 5177 struct page *page; 5178 unsigned long num_pages; 5179 5180 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5181 num_pages = num_extent_pages(eb->start, eb->len); 5182 for (i = 0; i < num_pages; i++) { 5183 page = eb->pages[i]; 5184 SetPageUptodate(page); 5185 } 5186 return 0; 5187} 5188 5189int extent_buffer_uptodate(struct extent_buffer *eb) 5190{ 5191 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5192} 5193 5194int read_extent_buffer_pages(struct extent_io_tree *tree, 5195 struct extent_buffer *eb, u64 start, int wait, 5196 get_extent_t *get_extent, int mirror_num) 5197{ 5198 unsigned long i; 5199 unsigned long start_i; 5200 struct page *page; 5201 int err; 5202 int ret = 0; 5203 int locked_pages = 0; 5204 int all_uptodate = 1; 5205 unsigned long num_pages; 5206 unsigned long num_reads = 0; 5207 struct bio *bio = NULL; 5208 unsigned long bio_flags = 0; 5209 5210 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5211 return 0; 5212 5213 if (start) { 5214 WARN_ON(start < eb->start); 5215 start_i = (start >> PAGE_CACHE_SHIFT) - 5216 (eb->start >> PAGE_CACHE_SHIFT); 5217 } else { 5218 start_i = 0; 5219 } 5220 5221 num_pages = num_extent_pages(eb->start, eb->len); 5222 for (i = start_i; i < num_pages; i++) { 5223 page = eb->pages[i]; 5224 if (wait == WAIT_NONE) { 5225 if (!trylock_page(page)) 5226 goto unlock_exit; 5227 } else { 5228 lock_page(page); 5229 } 5230 locked_pages++; 5231 if (!PageUptodate(page)) { 5232 num_reads++; 5233 all_uptodate = 0; 5234 } 5235 } 5236 if (all_uptodate) { 5237 if (start_i == 0) 5238 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5239 goto unlock_exit; 5240 } 5241 5242 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5243 eb->read_mirror = 0; 5244 atomic_set(&eb->io_pages, num_reads); 5245 for (i = start_i; i < num_pages; i++) { 5246 page = eb->pages[i]; 5247 if (!PageUptodate(page)) { 5248 ClearPageError(page); 5249 err = __extent_read_full_page(tree, page, 5250 get_extent, &bio, 5251 mirror_num, &bio_flags, 5252 READ | REQ_META); 5253 if (err) 5254 ret = err; 5255 } else { 5256 unlock_page(page); 5257 } 5258 } 5259 5260 if (bio) { 5261 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5262 bio_flags); 5263 if (err) 5264 return err; 5265 } 5266 5267 if (ret || wait != WAIT_COMPLETE) 5268 return ret; 5269 5270 for (i = start_i; i < num_pages; i++) { 5271 page = eb->pages[i]; 5272 wait_on_page_locked(page); 5273 if (!PageUptodate(page)) 5274 ret = -EIO; 5275 } 5276 5277 return ret; 5278 5279unlock_exit: 5280 i = start_i; 5281 while (locked_pages > 0) { 5282 page = eb->pages[i]; 5283 i++; 5284 unlock_page(page); 5285 locked_pages--; 5286 } 5287 return ret; 5288} 5289 5290void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5291 unsigned long start, 5292 unsigned long len) 5293{ 5294 size_t cur; 5295 size_t offset; 5296 struct page *page; 5297 char *kaddr; 5298 char *dst = (char *)dstv; 5299 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5300 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5301 5302 WARN_ON(start > eb->len); 5303 WARN_ON(start + len > eb->start + eb->len); 5304 5305 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5306 5307 while (len > 0) { 5308 page = eb->pages[i]; 5309 5310 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5311 kaddr = page_address(page); 5312 memcpy(dst, kaddr + offset, cur); 5313 5314 dst += cur; 5315 len -= cur; 5316 offset = 0; 5317 i++; 5318 } 5319} 5320 5321int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5322 unsigned long start, 5323 unsigned long len) 5324{ 5325 size_t cur; 5326 size_t offset; 5327 struct page *page; 5328 char *kaddr; 5329 char __user *dst = (char __user *)dstv; 5330 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5331 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5332 int ret = 0; 5333 5334 WARN_ON(start > eb->len); 5335 WARN_ON(start + len > eb->start + eb->len); 5336 5337 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5338 5339 while (len > 0) { 5340 page = eb->pages[i]; 5341 5342 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5343 kaddr = page_address(page); 5344 if (copy_to_user(dst, kaddr + offset, cur)) { 5345 ret = -EFAULT; 5346 break; 5347 } 5348 5349 dst += cur; 5350 len -= cur; 5351 offset = 0; 5352 i++; 5353 } 5354 5355 return ret; 5356} 5357 5358int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5359 unsigned long min_len, char **map, 5360 unsigned long *map_start, 5361 unsigned long *map_len) 5362{ 5363 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5364 char *kaddr; 5365 struct page *p; 5366 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5367 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5368 unsigned long end_i = (start_offset + start + min_len - 1) >> 5369 PAGE_CACHE_SHIFT; 5370 5371 if (i != end_i) 5372 return -EINVAL; 5373 5374 if (i == 0) { 5375 offset = start_offset; 5376 *map_start = 0; 5377 } else { 5378 offset = 0; 5379 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5380 } 5381 5382 if (start + min_len > eb->len) { 5383 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5384 "wanted %lu %lu\n", 5385 eb->start, eb->len, start, min_len); 5386 return -EINVAL; 5387 } 5388 5389 p = eb->pages[i]; 5390 kaddr = page_address(p); 5391 *map = kaddr + offset; 5392 *map_len = PAGE_CACHE_SIZE - offset; 5393 return 0; 5394} 5395 5396int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5397 unsigned long start, 5398 unsigned long len) 5399{ 5400 size_t cur; 5401 size_t offset; 5402 struct page *page; 5403 char *kaddr; 5404 char *ptr = (char *)ptrv; 5405 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5406 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5407 int ret = 0; 5408 5409 WARN_ON(start > eb->len); 5410 WARN_ON(start + len > eb->start + eb->len); 5411 5412 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5413 5414 while (len > 0) { 5415 page = eb->pages[i]; 5416 5417 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5418 5419 kaddr = page_address(page); 5420 ret = memcmp(ptr, kaddr + offset, cur); 5421 if (ret) 5422 break; 5423 5424 ptr += cur; 5425 len -= cur; 5426 offset = 0; 5427 i++; 5428 } 5429 return ret; 5430} 5431 5432void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5433 unsigned long start, unsigned long len) 5434{ 5435 size_t cur; 5436 size_t offset; 5437 struct page *page; 5438 char *kaddr; 5439 char *src = (char *)srcv; 5440 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5441 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5442 5443 WARN_ON(start > eb->len); 5444 WARN_ON(start + len > eb->start + eb->len); 5445 5446 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5447 5448 while (len > 0) { 5449 page = eb->pages[i]; 5450 WARN_ON(!PageUptodate(page)); 5451 5452 cur = min(len, PAGE_CACHE_SIZE - offset); 5453 kaddr = page_address(page); 5454 memcpy(kaddr + offset, src, cur); 5455 5456 src += cur; 5457 len -= cur; 5458 offset = 0; 5459 i++; 5460 } 5461} 5462 5463void memset_extent_buffer(struct extent_buffer *eb, char c, 5464 unsigned long start, unsigned long len) 5465{ 5466 size_t cur; 5467 size_t offset; 5468 struct page *page; 5469 char *kaddr; 5470 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5471 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5472 5473 WARN_ON(start > eb->len); 5474 WARN_ON(start + len > eb->start + eb->len); 5475 5476 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5477 5478 while (len > 0) { 5479 page = eb->pages[i]; 5480 WARN_ON(!PageUptodate(page)); 5481 5482 cur = min(len, PAGE_CACHE_SIZE - offset); 5483 kaddr = page_address(page); 5484 memset(kaddr + offset, c, cur); 5485 5486 len -= cur; 5487 offset = 0; 5488 i++; 5489 } 5490} 5491 5492void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5493 unsigned long dst_offset, unsigned long src_offset, 5494 unsigned long len) 5495{ 5496 u64 dst_len = dst->len; 5497 size_t cur; 5498 size_t offset; 5499 struct page *page; 5500 char *kaddr; 5501 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5502 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5503 5504 WARN_ON(src->len != dst_len); 5505 5506 offset = (start_offset + dst_offset) & 5507 (PAGE_CACHE_SIZE - 1); 5508 5509 while (len > 0) { 5510 page = dst->pages[i]; 5511 WARN_ON(!PageUptodate(page)); 5512 5513 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5514 5515 kaddr = page_address(page); 5516 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5517 5518 src_offset += cur; 5519 len -= cur; 5520 offset = 0; 5521 i++; 5522 } 5523} 5524 5525static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5526{ 5527 unsigned long distance = (src > dst) ? src - dst : dst - src; 5528 return distance < len; 5529} 5530 5531static void copy_pages(struct page *dst_page, struct page *src_page, 5532 unsigned long dst_off, unsigned long src_off, 5533 unsigned long len) 5534{ 5535 char *dst_kaddr = page_address(dst_page); 5536 char *src_kaddr; 5537 int must_memmove = 0; 5538 5539 if (dst_page != src_page) { 5540 src_kaddr = page_address(src_page); 5541 } else { 5542 src_kaddr = dst_kaddr; 5543 if (areas_overlap(src_off, dst_off, len)) 5544 must_memmove = 1; 5545 } 5546 5547 if (must_memmove) 5548 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5549 else 5550 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5551} 5552 5553void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5554 unsigned long src_offset, unsigned long len) 5555{ 5556 size_t cur; 5557 size_t dst_off_in_page; 5558 size_t src_off_in_page; 5559 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5560 unsigned long dst_i; 5561 unsigned long src_i; 5562 5563 if (src_offset + len > dst->len) { 5564 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5565 "len %lu dst len %lu\n", src_offset, len, dst->len); 5566 BUG_ON(1); 5567 } 5568 if (dst_offset + len > dst->len) { 5569 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5570 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5571 BUG_ON(1); 5572 } 5573 5574 while (len > 0) { 5575 dst_off_in_page = (start_offset + dst_offset) & 5576 (PAGE_CACHE_SIZE - 1); 5577 src_off_in_page = (start_offset + src_offset) & 5578 (PAGE_CACHE_SIZE - 1); 5579 5580 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5581 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5582 5583 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5584 src_off_in_page)); 5585 cur = min_t(unsigned long, cur, 5586 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5587 5588 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5589 dst_off_in_page, src_off_in_page, cur); 5590 5591 src_offset += cur; 5592 dst_offset += cur; 5593 len -= cur; 5594 } 5595} 5596 5597void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5598 unsigned long src_offset, unsigned long len) 5599{ 5600 size_t cur; 5601 size_t dst_off_in_page; 5602 size_t src_off_in_page; 5603 unsigned long dst_end = dst_offset + len - 1; 5604 unsigned long src_end = src_offset + len - 1; 5605 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5606 unsigned long dst_i; 5607 unsigned long src_i; 5608 5609 if (src_offset + len > dst->len) { 5610 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5611 "len %lu len %lu\n", src_offset, len, dst->len); 5612 BUG_ON(1); 5613 } 5614 if (dst_offset + len > dst->len) { 5615 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5616 "len %lu len %lu\n", dst_offset, len, dst->len); 5617 BUG_ON(1); 5618 } 5619 if (dst_offset < src_offset) { 5620 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5621 return; 5622 } 5623 while (len > 0) { 5624 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5625 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5626 5627 dst_off_in_page = (start_offset + dst_end) & 5628 (PAGE_CACHE_SIZE - 1); 5629 src_off_in_page = (start_offset + src_end) & 5630 (PAGE_CACHE_SIZE - 1); 5631 5632 cur = min_t(unsigned long, len, src_off_in_page + 1); 5633 cur = min(cur, dst_off_in_page + 1); 5634 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5635 dst_off_in_page - cur + 1, 5636 src_off_in_page - cur + 1, cur); 5637 5638 dst_end -= cur; 5639 src_end -= cur; 5640 len -= cur; 5641 } 5642} 5643 5644int try_release_extent_buffer(struct page *page) 5645{ 5646 struct extent_buffer *eb; 5647 5648 /* 5649 * We need to make sure noboody is attaching this page to an eb right 5650 * now. 5651 */ 5652 spin_lock(&page->mapping->private_lock); 5653 if (!PagePrivate(page)) { 5654 spin_unlock(&page->mapping->private_lock); 5655 return 1; 5656 } 5657 5658 eb = (struct extent_buffer *)page->private; 5659 BUG_ON(!eb); 5660 5661 /* 5662 * This is a little awful but should be ok, we need to make sure that 5663 * the eb doesn't disappear out from under us while we're looking at 5664 * this page. 5665 */ 5666 spin_lock(&eb->refs_lock); 5667 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5668 spin_unlock(&eb->refs_lock); 5669 spin_unlock(&page->mapping->private_lock); 5670 return 0; 5671 } 5672 spin_unlock(&page->mapping->private_lock); 5673 5674 /* 5675 * If tree ref isn't set then we know the ref on this eb is a real ref, 5676 * so just return, this page will likely be freed soon anyway. 5677 */ 5678 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5679 spin_unlock(&eb->refs_lock); 5680 return 0; 5681 } 5682 5683 return release_extent_buffer(eb); 5684} 5685