1/* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18#include <linux/sched.h> 19#include <linux/pagemap.h> 20#include <linux/writeback.h> 21#include <linux/blkdev.h> 22#include <linux/sort.h> 23#include <linux/rcupdate.h> 24#include <linux/kthread.h> 25#include <linux/slab.h> 26#include <linux/ratelimit.h> 27#include <linux/percpu_counter.h> 28#include "hash.h" 29#include "tree-log.h" 30#include "disk-io.h" 31#include "print-tree.h" 32#include "volumes.h" 33#include "raid56.h" 34#include "locking.h" 35#include "free-space-cache.h" 36#include "math.h" 37#include "sysfs.h" 38#include "qgroup.h" 39 40#undef SCRAMBLE_DELAYED_REFS 41 42/* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60}; 61 62/* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75}; 76 77static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 u64 bytenr, u64 num_bytes, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op, 86 int no_quota); 87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 88 struct extent_buffer *leaf, 89 struct btrfs_extent_item *ei); 90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 91 struct btrfs_root *root, 92 u64 parent, u64 root_objectid, 93 u64 flags, u64 owner, u64 offset, 94 struct btrfs_key *ins, int ref_mod); 95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 u64 parent, u64 root_objectid, 98 u64 flags, struct btrfs_disk_key *key, 99 int level, struct btrfs_key *ins, 100 int no_quota); 101static int do_chunk_alloc(struct btrfs_trans_handle *trans, 102 struct btrfs_root *extent_root, u64 flags, 103 int force); 104static int find_next_key(struct btrfs_path *path, int level, 105 struct btrfs_key *key); 106static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 107 int dump_block_groups); 108static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 109 u64 num_bytes, int reserve, 110 int delalloc); 111static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 112 u64 num_bytes); 113int btrfs_pin_extent(struct btrfs_root *root, 114 u64 bytenr, u64 num_bytes, int reserved); 115 116static noinline int 117block_group_cache_done(struct btrfs_block_group_cache *cache) 118{ 119 smp_mb(); 120 return cache->cached == BTRFS_CACHE_FINISHED || 121 cache->cached == BTRFS_CACHE_ERROR; 122} 123 124static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 125{ 126 return (cache->flags & bits) == bits; 127} 128 129static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 130{ 131 atomic_inc(&cache->count); 132} 133 134void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 135{ 136 if (atomic_dec_and_test(&cache->count)) { 137 WARN_ON(cache->pinned > 0); 138 WARN_ON(cache->reserved > 0); 139 kfree(cache->free_space_ctl); 140 kfree(cache); 141 } 142} 143 144/* 145 * this adds the block group to the fs_info rb tree for the block group 146 * cache 147 */ 148static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 149 struct btrfs_block_group_cache *block_group) 150{ 151 struct rb_node **p; 152 struct rb_node *parent = NULL; 153 struct btrfs_block_group_cache *cache; 154 155 spin_lock(&info->block_group_cache_lock); 156 p = &info->block_group_cache_tree.rb_node; 157 158 while (*p) { 159 parent = *p; 160 cache = rb_entry(parent, struct btrfs_block_group_cache, 161 cache_node); 162 if (block_group->key.objectid < cache->key.objectid) { 163 p = &(*p)->rb_left; 164 } else if (block_group->key.objectid > cache->key.objectid) { 165 p = &(*p)->rb_right; 166 } else { 167 spin_unlock(&info->block_group_cache_lock); 168 return -EEXIST; 169 } 170 } 171 172 rb_link_node(&block_group->cache_node, parent, p); 173 rb_insert_color(&block_group->cache_node, 174 &info->block_group_cache_tree); 175 176 if (info->first_logical_byte > block_group->key.objectid) 177 info->first_logical_byte = block_group->key.objectid; 178 179 spin_unlock(&info->block_group_cache_lock); 180 181 return 0; 182} 183 184/* 185 * This will return the block group at or after bytenr if contains is 0, else 186 * it will return the block group that contains the bytenr 187 */ 188static struct btrfs_block_group_cache * 189block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 190 int contains) 191{ 192 struct btrfs_block_group_cache *cache, *ret = NULL; 193 struct rb_node *n; 194 u64 end, start; 195 196 spin_lock(&info->block_group_cache_lock); 197 n = info->block_group_cache_tree.rb_node; 198 199 while (n) { 200 cache = rb_entry(n, struct btrfs_block_group_cache, 201 cache_node); 202 end = cache->key.objectid + cache->key.offset - 1; 203 start = cache->key.objectid; 204 205 if (bytenr < start) { 206 if (!contains && (!ret || start < ret->key.objectid)) 207 ret = cache; 208 n = n->rb_left; 209 } else if (bytenr > start) { 210 if (contains && bytenr <= end) { 211 ret = cache; 212 break; 213 } 214 n = n->rb_right; 215 } else { 216 ret = cache; 217 break; 218 } 219 } 220 if (ret) { 221 btrfs_get_block_group(ret); 222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 223 info->first_logical_byte = ret->key.objectid; 224 } 225 spin_unlock(&info->block_group_cache_lock); 226 227 return ret; 228} 229 230static int add_excluded_extent(struct btrfs_root *root, 231 u64 start, u64 num_bytes) 232{ 233 u64 end = start + num_bytes - 1; 234 set_extent_bits(&root->fs_info->freed_extents[0], 235 start, end, EXTENT_UPTODATE, GFP_NOFS); 236 set_extent_bits(&root->fs_info->freed_extents[1], 237 start, end, EXTENT_UPTODATE, GFP_NOFS); 238 return 0; 239} 240 241static void free_excluded_extents(struct btrfs_root *root, 242 struct btrfs_block_group_cache *cache) 243{ 244 u64 start, end; 245 246 start = cache->key.objectid; 247 end = start + cache->key.offset - 1; 248 249 clear_extent_bits(&root->fs_info->freed_extents[0], 250 start, end, EXTENT_UPTODATE, GFP_NOFS); 251 clear_extent_bits(&root->fs_info->freed_extents[1], 252 start, end, EXTENT_UPTODATE, GFP_NOFS); 253} 254 255static int exclude_super_stripes(struct btrfs_root *root, 256 struct btrfs_block_group_cache *cache) 257{ 258 u64 bytenr; 259 u64 *logical; 260 int stripe_len; 261 int i, nr, ret; 262 263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 265 cache->bytes_super += stripe_len; 266 ret = add_excluded_extent(root, cache->key.objectid, 267 stripe_len); 268 if (ret) 269 return ret; 270 } 271 272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 273 bytenr = btrfs_sb_offset(i); 274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 275 cache->key.objectid, bytenr, 276 0, &logical, &nr, &stripe_len); 277 if (ret) 278 return ret; 279 280 while (nr--) { 281 u64 start, len; 282 283 if (logical[nr] > cache->key.objectid + 284 cache->key.offset) 285 continue; 286 287 if (logical[nr] + stripe_len <= cache->key.objectid) 288 continue; 289 290 start = logical[nr]; 291 if (start < cache->key.objectid) { 292 start = cache->key.objectid; 293 len = (logical[nr] + stripe_len) - start; 294 } else { 295 len = min_t(u64, stripe_len, 296 cache->key.objectid + 297 cache->key.offset - start); 298 } 299 300 cache->bytes_super += len; 301 ret = add_excluded_extent(root, start, len); 302 if (ret) { 303 kfree(logical); 304 return ret; 305 } 306 } 307 308 kfree(logical); 309 } 310 return 0; 311} 312 313static struct btrfs_caching_control * 314get_caching_control(struct btrfs_block_group_cache *cache) 315{ 316 struct btrfs_caching_control *ctl; 317 318 spin_lock(&cache->lock); 319 if (!cache->caching_ctl) { 320 spin_unlock(&cache->lock); 321 return NULL; 322 } 323 324 ctl = cache->caching_ctl; 325 atomic_inc(&ctl->count); 326 spin_unlock(&cache->lock); 327 return ctl; 328} 329 330static void put_caching_control(struct btrfs_caching_control *ctl) 331{ 332 if (atomic_dec_and_test(&ctl->count)) 333 kfree(ctl); 334} 335 336/* 337 * this is only called by cache_block_group, since we could have freed extents 338 * we need to check the pinned_extents for any extents that can't be used yet 339 * since their free space will be released as soon as the transaction commits. 340 */ 341static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 342 struct btrfs_fs_info *info, u64 start, u64 end) 343{ 344 u64 extent_start, extent_end, size, total_added = 0; 345 int ret; 346 347 while (start < end) { 348 ret = find_first_extent_bit(info->pinned_extents, start, 349 &extent_start, &extent_end, 350 EXTENT_DIRTY | EXTENT_UPTODATE, 351 NULL); 352 if (ret) 353 break; 354 355 if (extent_start <= start) { 356 start = extent_end + 1; 357 } else if (extent_start > start && extent_start < end) { 358 size = extent_start - start; 359 total_added += size; 360 ret = btrfs_add_free_space(block_group, start, 361 size); 362 BUG_ON(ret); /* -ENOMEM or logic error */ 363 start = extent_end + 1; 364 } else { 365 break; 366 } 367 } 368 369 if (start < end) { 370 size = end - start; 371 total_added += size; 372 ret = btrfs_add_free_space(block_group, start, size); 373 BUG_ON(ret); /* -ENOMEM or logic error */ 374 } 375 376 return total_added; 377} 378 379static noinline void caching_thread(struct btrfs_work *work) 380{ 381 struct btrfs_block_group_cache *block_group; 382 struct btrfs_fs_info *fs_info; 383 struct btrfs_caching_control *caching_ctl; 384 struct btrfs_root *extent_root; 385 struct btrfs_path *path; 386 struct extent_buffer *leaf; 387 struct btrfs_key key; 388 u64 total_found = 0; 389 u64 last = 0; 390 u32 nritems; 391 int ret = -ENOMEM; 392 393 caching_ctl = container_of(work, struct btrfs_caching_control, work); 394 block_group = caching_ctl->block_group; 395 fs_info = block_group->fs_info; 396 extent_root = fs_info->extent_root; 397 398 path = btrfs_alloc_path(); 399 if (!path) 400 goto out; 401 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 403 404 /* 405 * We don't want to deadlock with somebody trying to allocate a new 406 * extent for the extent root while also trying to search the extent 407 * root to add free space. So we skip locking and search the commit 408 * root, since its read-only 409 */ 410 path->skip_locking = 1; 411 path->search_commit_root = 1; 412 path->reada = 1; 413 414 key.objectid = last; 415 key.offset = 0; 416 key.type = BTRFS_EXTENT_ITEM_KEY; 417again: 418 mutex_lock(&caching_ctl->mutex); 419 /* need to make sure the commit_root doesn't disappear */ 420 down_read(&fs_info->commit_root_sem); 421 422next: 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 424 if (ret < 0) 425 goto err; 426 427 leaf = path->nodes[0]; 428 nritems = btrfs_header_nritems(leaf); 429 430 while (1) { 431 if (btrfs_fs_closing(fs_info) > 1) { 432 last = (u64)-1; 433 break; 434 } 435 436 if (path->slots[0] < nritems) { 437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 438 } else { 439 ret = find_next_key(path, 0, &key); 440 if (ret) 441 break; 442 443 if (need_resched() || 444 rwsem_is_contended(&fs_info->commit_root_sem)) { 445 caching_ctl->progress = last; 446 btrfs_release_path(path); 447 up_read(&fs_info->commit_root_sem); 448 mutex_unlock(&caching_ctl->mutex); 449 cond_resched(); 450 goto again; 451 } 452 453 ret = btrfs_next_leaf(extent_root, path); 454 if (ret < 0) 455 goto err; 456 if (ret) 457 break; 458 leaf = path->nodes[0]; 459 nritems = btrfs_header_nritems(leaf); 460 continue; 461 } 462 463 if (key.objectid < last) { 464 key.objectid = last; 465 key.offset = 0; 466 key.type = BTRFS_EXTENT_ITEM_KEY; 467 468 caching_ctl->progress = last; 469 btrfs_release_path(path); 470 goto next; 471 } 472 473 if (key.objectid < block_group->key.objectid) { 474 path->slots[0]++; 475 continue; 476 } 477 478 if (key.objectid >= block_group->key.objectid + 479 block_group->key.offset) 480 break; 481 482 if (key.type == BTRFS_EXTENT_ITEM_KEY || 483 key.type == BTRFS_METADATA_ITEM_KEY) { 484 total_found += add_new_free_space(block_group, 485 fs_info, last, 486 key.objectid); 487 if (key.type == BTRFS_METADATA_ITEM_KEY) 488 last = key.objectid + 489 fs_info->tree_root->nodesize; 490 else 491 last = key.objectid + key.offset; 492 493 if (total_found > (1024 * 1024 * 2)) { 494 total_found = 0; 495 wake_up(&caching_ctl->wait); 496 } 497 } 498 path->slots[0]++; 499 } 500 ret = 0; 501 502 total_found += add_new_free_space(block_group, fs_info, last, 503 block_group->key.objectid + 504 block_group->key.offset); 505 caching_ctl->progress = (u64)-1; 506 507 spin_lock(&block_group->lock); 508 block_group->caching_ctl = NULL; 509 block_group->cached = BTRFS_CACHE_FINISHED; 510 spin_unlock(&block_group->lock); 511 512err: 513 btrfs_free_path(path); 514 up_read(&fs_info->commit_root_sem); 515 516 free_excluded_extents(extent_root, block_group); 517 518 mutex_unlock(&caching_ctl->mutex); 519out: 520 if (ret) { 521 spin_lock(&block_group->lock); 522 block_group->caching_ctl = NULL; 523 block_group->cached = BTRFS_CACHE_ERROR; 524 spin_unlock(&block_group->lock); 525 } 526 wake_up(&caching_ctl->wait); 527 528 put_caching_control(caching_ctl); 529 btrfs_put_block_group(block_group); 530} 531 532static int cache_block_group(struct btrfs_block_group_cache *cache, 533 int load_cache_only) 534{ 535 DEFINE_WAIT(wait); 536 struct btrfs_fs_info *fs_info = cache->fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 int ret = 0; 539 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 541 if (!caching_ctl) 542 return -ENOMEM; 543 544 INIT_LIST_HEAD(&caching_ctl->list); 545 mutex_init(&caching_ctl->mutex); 546 init_waitqueue_head(&caching_ctl->wait); 547 caching_ctl->block_group = cache; 548 caching_ctl->progress = cache->key.objectid; 549 atomic_set(&caching_ctl->count, 1); 550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 551 caching_thread, NULL, NULL); 552 553 spin_lock(&cache->lock); 554 /* 555 * This should be a rare occasion, but this could happen I think in the 556 * case where one thread starts to load the space cache info, and then 557 * some other thread starts a transaction commit which tries to do an 558 * allocation while the other thread is still loading the space cache 559 * info. The previous loop should have kept us from choosing this block 560 * group, but if we've moved to the state where we will wait on caching 561 * block groups we need to first check if we're doing a fast load here, 562 * so we can wait for it to finish, otherwise we could end up allocating 563 * from a block group who's cache gets evicted for one reason or 564 * another. 565 */ 566 while (cache->cached == BTRFS_CACHE_FAST) { 567 struct btrfs_caching_control *ctl; 568 569 ctl = cache->caching_ctl; 570 atomic_inc(&ctl->count); 571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 572 spin_unlock(&cache->lock); 573 574 schedule(); 575 576 finish_wait(&ctl->wait, &wait); 577 put_caching_control(ctl); 578 spin_lock(&cache->lock); 579 } 580 581 if (cache->cached != BTRFS_CACHE_NO) { 582 spin_unlock(&cache->lock); 583 kfree(caching_ctl); 584 return 0; 585 } 586 WARN_ON(cache->caching_ctl); 587 cache->caching_ctl = caching_ctl; 588 cache->cached = BTRFS_CACHE_FAST; 589 spin_unlock(&cache->lock); 590 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 592 mutex_lock(&caching_ctl->mutex); 593 ret = load_free_space_cache(fs_info, cache); 594 595 spin_lock(&cache->lock); 596 if (ret == 1) { 597 cache->caching_ctl = NULL; 598 cache->cached = BTRFS_CACHE_FINISHED; 599 cache->last_byte_to_unpin = (u64)-1; 600 caching_ctl->progress = (u64)-1; 601 } else { 602 if (load_cache_only) { 603 cache->caching_ctl = NULL; 604 cache->cached = BTRFS_CACHE_NO; 605 } else { 606 cache->cached = BTRFS_CACHE_STARTED; 607 cache->has_caching_ctl = 1; 608 } 609 } 610 spin_unlock(&cache->lock); 611 mutex_unlock(&caching_ctl->mutex); 612 613 wake_up(&caching_ctl->wait); 614 if (ret == 1) { 615 put_caching_control(caching_ctl); 616 free_excluded_extents(fs_info->extent_root, cache); 617 return 0; 618 } 619 } else { 620 /* 621 * We are not going to do the fast caching, set cached to the 622 * appropriate value and wakeup any waiters. 623 */ 624 spin_lock(&cache->lock); 625 if (load_cache_only) { 626 cache->caching_ctl = NULL; 627 cache->cached = BTRFS_CACHE_NO; 628 } else { 629 cache->cached = BTRFS_CACHE_STARTED; 630 cache->has_caching_ctl = 1; 631 } 632 spin_unlock(&cache->lock); 633 wake_up(&caching_ctl->wait); 634 } 635 636 if (load_cache_only) { 637 put_caching_control(caching_ctl); 638 return 0; 639 } 640 641 down_write(&fs_info->commit_root_sem); 642 atomic_inc(&caching_ctl->count); 643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 644 up_write(&fs_info->commit_root_sem); 645 646 btrfs_get_block_group(cache); 647 648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 649 650 return ret; 651} 652 653/* 654 * return the block group that starts at or after bytenr 655 */ 656static struct btrfs_block_group_cache * 657btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 658{ 659 struct btrfs_block_group_cache *cache; 660 661 cache = block_group_cache_tree_search(info, bytenr, 0); 662 663 return cache; 664} 665 666/* 667 * return the block group that contains the given bytenr 668 */ 669struct btrfs_block_group_cache *btrfs_lookup_block_group( 670 struct btrfs_fs_info *info, 671 u64 bytenr) 672{ 673 struct btrfs_block_group_cache *cache; 674 675 cache = block_group_cache_tree_search(info, bytenr, 1); 676 677 return cache; 678} 679 680static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 681 u64 flags) 682{ 683 struct list_head *head = &info->space_info; 684 struct btrfs_space_info *found; 685 686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 687 688 rcu_read_lock(); 689 list_for_each_entry_rcu(found, head, list) { 690 if (found->flags & flags) { 691 rcu_read_unlock(); 692 return found; 693 } 694 } 695 rcu_read_unlock(); 696 return NULL; 697} 698 699/* 700 * after adding space to the filesystem, we need to clear the full flags 701 * on all the space infos. 702 */ 703void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 704{ 705 struct list_head *head = &info->space_info; 706 struct btrfs_space_info *found; 707 708 rcu_read_lock(); 709 list_for_each_entry_rcu(found, head, list) 710 found->full = 0; 711 rcu_read_unlock(); 712} 713 714/* simple helper to search for an existing data extent at a given offset */ 715int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 716{ 717 int ret; 718 struct btrfs_key key; 719 struct btrfs_path *path; 720 721 path = btrfs_alloc_path(); 722 if (!path) 723 return -ENOMEM; 724 725 key.objectid = start; 726 key.offset = len; 727 key.type = BTRFS_EXTENT_ITEM_KEY; 728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 729 0, 0); 730 btrfs_free_path(path); 731 return ret; 732} 733 734/* 735 * helper function to lookup reference count and flags of a tree block. 736 * 737 * the head node for delayed ref is used to store the sum of all the 738 * reference count modifications queued up in the rbtree. the head 739 * node may also store the extent flags to set. This way you can check 740 * to see what the reference count and extent flags would be if all of 741 * the delayed refs are not processed. 742 */ 743int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 744 struct btrfs_root *root, u64 bytenr, 745 u64 offset, int metadata, u64 *refs, u64 *flags) 746{ 747 struct btrfs_delayed_ref_head *head; 748 struct btrfs_delayed_ref_root *delayed_refs; 749 struct btrfs_path *path; 750 struct btrfs_extent_item *ei; 751 struct extent_buffer *leaf; 752 struct btrfs_key key; 753 u32 item_size; 754 u64 num_refs; 755 u64 extent_flags; 756 int ret; 757 758 /* 759 * If we don't have skinny metadata, don't bother doing anything 760 * different 761 */ 762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 763 offset = root->nodesize; 764 metadata = 0; 765 } 766 767 path = btrfs_alloc_path(); 768 if (!path) 769 return -ENOMEM; 770 771 if (!trans) { 772 path->skip_locking = 1; 773 path->search_commit_root = 1; 774 } 775 776search_again: 777 key.objectid = bytenr; 778 key.offset = offset; 779 if (metadata) 780 key.type = BTRFS_METADATA_ITEM_KEY; 781 else 782 key.type = BTRFS_EXTENT_ITEM_KEY; 783 784 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 785 &key, path, 0, 0); 786 if (ret < 0) 787 goto out_free; 788 789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 790 if (path->slots[0]) { 791 path->slots[0]--; 792 btrfs_item_key_to_cpu(path->nodes[0], &key, 793 path->slots[0]); 794 if (key.objectid == bytenr && 795 key.type == BTRFS_EXTENT_ITEM_KEY && 796 key.offset == root->nodesize) 797 ret = 0; 798 } 799 } 800 801 if (ret == 0) { 802 leaf = path->nodes[0]; 803 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 804 if (item_size >= sizeof(*ei)) { 805 ei = btrfs_item_ptr(leaf, path->slots[0], 806 struct btrfs_extent_item); 807 num_refs = btrfs_extent_refs(leaf, ei); 808 extent_flags = btrfs_extent_flags(leaf, ei); 809 } else { 810#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 811 struct btrfs_extent_item_v0 *ei0; 812 BUG_ON(item_size != sizeof(*ei0)); 813 ei0 = btrfs_item_ptr(leaf, path->slots[0], 814 struct btrfs_extent_item_v0); 815 num_refs = btrfs_extent_refs_v0(leaf, ei0); 816 /* FIXME: this isn't correct for data */ 817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 818#else 819 BUG(); 820#endif 821 } 822 BUG_ON(num_refs == 0); 823 } else { 824 num_refs = 0; 825 extent_flags = 0; 826 ret = 0; 827 } 828 829 if (!trans) 830 goto out; 831 832 delayed_refs = &trans->transaction->delayed_refs; 833 spin_lock(&delayed_refs->lock); 834 head = btrfs_find_delayed_ref_head(trans, bytenr); 835 if (head) { 836 if (!mutex_trylock(&head->mutex)) { 837 atomic_inc(&head->node.refs); 838 spin_unlock(&delayed_refs->lock); 839 840 btrfs_release_path(path); 841 842 /* 843 * Mutex was contended, block until it's released and try 844 * again 845 */ 846 mutex_lock(&head->mutex); 847 mutex_unlock(&head->mutex); 848 btrfs_put_delayed_ref(&head->node); 849 goto search_again; 850 } 851 spin_lock(&head->lock); 852 if (head->extent_op && head->extent_op->update_flags) 853 extent_flags |= head->extent_op->flags_to_set; 854 else 855 BUG_ON(num_refs == 0); 856 857 num_refs += head->node.ref_mod; 858 spin_unlock(&head->lock); 859 mutex_unlock(&head->mutex); 860 } 861 spin_unlock(&delayed_refs->lock); 862out: 863 WARN_ON(num_refs == 0); 864 if (refs) 865 *refs = num_refs; 866 if (flags) 867 *flags = extent_flags; 868out_free: 869 btrfs_free_path(path); 870 return ret; 871} 872 873/* 874 * Back reference rules. Back refs have three main goals: 875 * 876 * 1) differentiate between all holders of references to an extent so that 877 * when a reference is dropped we can make sure it was a valid reference 878 * before freeing the extent. 879 * 880 * 2) Provide enough information to quickly find the holders of an extent 881 * if we notice a given block is corrupted or bad. 882 * 883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 884 * maintenance. This is actually the same as #2, but with a slightly 885 * different use case. 886 * 887 * There are two kinds of back refs. The implicit back refs is optimized 888 * for pointers in non-shared tree blocks. For a given pointer in a block, 889 * back refs of this kind provide information about the block's owner tree 890 * and the pointer's key. These information allow us to find the block by 891 * b-tree searching. The full back refs is for pointers in tree blocks not 892 * referenced by their owner trees. The location of tree block is recorded 893 * in the back refs. Actually the full back refs is generic, and can be 894 * used in all cases the implicit back refs is used. The major shortcoming 895 * of the full back refs is its overhead. Every time a tree block gets 896 * COWed, we have to update back refs entry for all pointers in it. 897 * 898 * For a newly allocated tree block, we use implicit back refs for 899 * pointers in it. This means most tree related operations only involve 900 * implicit back refs. For a tree block created in old transaction, the 901 * only way to drop a reference to it is COW it. So we can detect the 902 * event that tree block loses its owner tree's reference and do the 903 * back refs conversion. 904 * 905 * When a tree block is COW'd through a tree, there are four cases: 906 * 907 * The reference count of the block is one and the tree is the block's 908 * owner tree. Nothing to do in this case. 909 * 910 * The reference count of the block is one and the tree is not the 911 * block's owner tree. In this case, full back refs is used for pointers 912 * in the block. Remove these full back refs, add implicit back refs for 913 * every pointers in the new block. 914 * 915 * The reference count of the block is greater than one and the tree is 916 * the block's owner tree. In this case, implicit back refs is used for 917 * pointers in the block. Add full back refs for every pointers in the 918 * block, increase lower level extents' reference counts. The original 919 * implicit back refs are entailed to the new block. 920 * 921 * The reference count of the block is greater than one and the tree is 922 * not the block's owner tree. Add implicit back refs for every pointer in 923 * the new block, increase lower level extents' reference count. 924 * 925 * Back Reference Key composing: 926 * 927 * The key objectid corresponds to the first byte in the extent, 928 * The key type is used to differentiate between types of back refs. 929 * There are different meanings of the key offset for different types 930 * of back refs. 931 * 932 * File extents can be referenced by: 933 * 934 * - multiple snapshots, subvolumes, or different generations in one subvol 935 * - different files inside a single subvolume 936 * - different offsets inside a file (bookend extents in file.c) 937 * 938 * The extent ref structure for the implicit back refs has fields for: 939 * 940 * - Objectid of the subvolume root 941 * - objectid of the file holding the reference 942 * - original offset in the file 943 * - how many bookend extents 944 * 945 * The key offset for the implicit back refs is hash of the first 946 * three fields. 947 * 948 * The extent ref structure for the full back refs has field for: 949 * 950 * - number of pointers in the tree leaf 951 * 952 * The key offset for the implicit back refs is the first byte of 953 * the tree leaf 954 * 955 * When a file extent is allocated, The implicit back refs is used. 956 * the fields are filled in: 957 * 958 * (root_key.objectid, inode objectid, offset in file, 1) 959 * 960 * When a file extent is removed file truncation, we find the 961 * corresponding implicit back refs and check the following fields: 962 * 963 * (btrfs_header_owner(leaf), inode objectid, offset in file) 964 * 965 * Btree extents can be referenced by: 966 * 967 * - Different subvolumes 968 * 969 * Both the implicit back refs and the full back refs for tree blocks 970 * only consist of key. The key offset for the implicit back refs is 971 * objectid of block's owner tree. The key offset for the full back refs 972 * is the first byte of parent block. 973 * 974 * When implicit back refs is used, information about the lowest key and 975 * level of the tree block are required. These information are stored in 976 * tree block info structure. 977 */ 978 979#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 980static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 struct btrfs_path *path, 983 u64 owner, u32 extra_size) 984{ 985 struct btrfs_extent_item *item; 986 struct btrfs_extent_item_v0 *ei0; 987 struct btrfs_extent_ref_v0 *ref0; 988 struct btrfs_tree_block_info *bi; 989 struct extent_buffer *leaf; 990 struct btrfs_key key; 991 struct btrfs_key found_key; 992 u32 new_size = sizeof(*item); 993 u64 refs; 994 int ret; 995 996 leaf = path->nodes[0]; 997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 998 999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1000 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_extent_item_v0); 1002 refs = btrfs_extent_refs_v0(leaf, ei0); 1003 1004 if (owner == (u64)-1) { 1005 while (1) { 1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1007 ret = btrfs_next_leaf(root, path); 1008 if (ret < 0) 1009 return ret; 1010 BUG_ON(ret > 0); /* Corruption */ 1011 leaf = path->nodes[0]; 1012 } 1013 btrfs_item_key_to_cpu(leaf, &found_key, 1014 path->slots[0]); 1015 BUG_ON(key.objectid != found_key.objectid); 1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1017 path->slots[0]++; 1018 continue; 1019 } 1020 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1021 struct btrfs_extent_ref_v0); 1022 owner = btrfs_ref_objectid_v0(leaf, ref0); 1023 break; 1024 } 1025 } 1026 btrfs_release_path(path); 1027 1028 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1029 new_size += sizeof(*bi); 1030 1031 new_size -= sizeof(*ei0); 1032 ret = btrfs_search_slot(trans, root, &key, path, 1033 new_size + extra_size, 1); 1034 if (ret < 0) 1035 return ret; 1036 BUG_ON(ret); /* Corruption */ 1037 1038 btrfs_extend_item(root, path, new_size); 1039 1040 leaf = path->nodes[0]; 1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1042 btrfs_set_extent_refs(leaf, item, refs); 1043 /* FIXME: get real generation */ 1044 btrfs_set_extent_generation(leaf, item, 0); 1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1046 btrfs_set_extent_flags(leaf, item, 1047 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1048 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1049 bi = (struct btrfs_tree_block_info *)(item + 1); 1050 /* FIXME: get first key of the block */ 1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1052 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1053 } else { 1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1055 } 1056 btrfs_mark_buffer_dirty(leaf); 1057 return 0; 1058} 1059#endif 1060 1061static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1062{ 1063 u32 high_crc = ~(u32)0; 1064 u32 low_crc = ~(u32)0; 1065 __le64 lenum; 1066 1067 lenum = cpu_to_le64(root_objectid); 1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1069 lenum = cpu_to_le64(owner); 1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1071 lenum = cpu_to_le64(offset); 1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1073 1074 return ((u64)high_crc << 31) ^ (u64)low_crc; 1075} 1076 1077static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1078 struct btrfs_extent_data_ref *ref) 1079{ 1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1081 btrfs_extent_data_ref_objectid(leaf, ref), 1082 btrfs_extent_data_ref_offset(leaf, ref)); 1083} 1084 1085static int match_extent_data_ref(struct extent_buffer *leaf, 1086 struct btrfs_extent_data_ref *ref, 1087 u64 root_objectid, u64 owner, u64 offset) 1088{ 1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1091 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1092 return 0; 1093 return 1; 1094} 1095 1096static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1097 struct btrfs_root *root, 1098 struct btrfs_path *path, 1099 u64 bytenr, u64 parent, 1100 u64 root_objectid, 1101 u64 owner, u64 offset) 1102{ 1103 struct btrfs_key key; 1104 struct btrfs_extent_data_ref *ref; 1105 struct extent_buffer *leaf; 1106 u32 nritems; 1107 int ret; 1108 int recow; 1109 int err = -ENOENT; 1110 1111 key.objectid = bytenr; 1112 if (parent) { 1113 key.type = BTRFS_SHARED_DATA_REF_KEY; 1114 key.offset = parent; 1115 } else { 1116 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1117 key.offset = hash_extent_data_ref(root_objectid, 1118 owner, offset); 1119 } 1120again: 1121 recow = 0; 1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1123 if (ret < 0) { 1124 err = ret; 1125 goto fail; 1126 } 1127 1128 if (parent) { 1129 if (!ret) 1130 return 0; 1131#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1132 key.type = BTRFS_EXTENT_REF_V0_KEY; 1133 btrfs_release_path(path); 1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1135 if (ret < 0) { 1136 err = ret; 1137 goto fail; 1138 } 1139 if (!ret) 1140 return 0; 1141#endif 1142 goto fail; 1143 } 1144 1145 leaf = path->nodes[0]; 1146 nritems = btrfs_header_nritems(leaf); 1147 while (1) { 1148 if (path->slots[0] >= nritems) { 1149 ret = btrfs_next_leaf(root, path); 1150 if (ret < 0) 1151 err = ret; 1152 if (ret) 1153 goto fail; 1154 1155 leaf = path->nodes[0]; 1156 nritems = btrfs_header_nritems(leaf); 1157 recow = 1; 1158 } 1159 1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1161 if (key.objectid != bytenr || 1162 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1163 goto fail; 1164 1165 ref = btrfs_item_ptr(leaf, path->slots[0], 1166 struct btrfs_extent_data_ref); 1167 1168 if (match_extent_data_ref(leaf, ref, root_objectid, 1169 owner, offset)) { 1170 if (recow) { 1171 btrfs_release_path(path); 1172 goto again; 1173 } 1174 err = 0; 1175 break; 1176 } 1177 path->slots[0]++; 1178 } 1179fail: 1180 return err; 1181} 1182 1183static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1184 struct btrfs_root *root, 1185 struct btrfs_path *path, 1186 u64 bytenr, u64 parent, 1187 u64 root_objectid, u64 owner, 1188 u64 offset, int refs_to_add) 1189{ 1190 struct btrfs_key key; 1191 struct extent_buffer *leaf; 1192 u32 size; 1193 u32 num_refs; 1194 int ret; 1195 1196 key.objectid = bytenr; 1197 if (parent) { 1198 key.type = BTRFS_SHARED_DATA_REF_KEY; 1199 key.offset = parent; 1200 size = sizeof(struct btrfs_shared_data_ref); 1201 } else { 1202 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1203 key.offset = hash_extent_data_ref(root_objectid, 1204 owner, offset); 1205 size = sizeof(struct btrfs_extent_data_ref); 1206 } 1207 1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1209 if (ret && ret != -EEXIST) 1210 goto fail; 1211 1212 leaf = path->nodes[0]; 1213 if (parent) { 1214 struct btrfs_shared_data_ref *ref; 1215 ref = btrfs_item_ptr(leaf, path->slots[0], 1216 struct btrfs_shared_data_ref); 1217 if (ret == 0) { 1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1219 } else { 1220 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1221 num_refs += refs_to_add; 1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1223 } 1224 } else { 1225 struct btrfs_extent_data_ref *ref; 1226 while (ret == -EEXIST) { 1227 ref = btrfs_item_ptr(leaf, path->slots[0], 1228 struct btrfs_extent_data_ref); 1229 if (match_extent_data_ref(leaf, ref, root_objectid, 1230 owner, offset)) 1231 break; 1232 btrfs_release_path(path); 1233 key.offset++; 1234 ret = btrfs_insert_empty_item(trans, root, path, &key, 1235 size); 1236 if (ret && ret != -EEXIST) 1237 goto fail; 1238 1239 leaf = path->nodes[0]; 1240 } 1241 ref = btrfs_item_ptr(leaf, path->slots[0], 1242 struct btrfs_extent_data_ref); 1243 if (ret == 0) { 1244 btrfs_set_extent_data_ref_root(leaf, ref, 1245 root_objectid); 1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1249 } else { 1250 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1251 num_refs += refs_to_add; 1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1253 } 1254 } 1255 btrfs_mark_buffer_dirty(leaf); 1256 ret = 0; 1257fail: 1258 btrfs_release_path(path); 1259 return ret; 1260} 1261 1262static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1263 struct btrfs_root *root, 1264 struct btrfs_path *path, 1265 int refs_to_drop, int *last_ref) 1266{ 1267 struct btrfs_key key; 1268 struct btrfs_extent_data_ref *ref1 = NULL; 1269 struct btrfs_shared_data_ref *ref2 = NULL; 1270 struct extent_buffer *leaf; 1271 u32 num_refs = 0; 1272 int ret = 0; 1273 1274 leaf = path->nodes[0]; 1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1276 1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1278 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1279 struct btrfs_extent_data_ref); 1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1282 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1283 struct btrfs_shared_data_ref); 1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1285#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1287 struct btrfs_extent_ref_v0 *ref0; 1288 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1289 struct btrfs_extent_ref_v0); 1290 num_refs = btrfs_ref_count_v0(leaf, ref0); 1291#endif 1292 } else { 1293 BUG(); 1294 } 1295 1296 BUG_ON(num_refs < refs_to_drop); 1297 num_refs -= refs_to_drop; 1298 1299 if (num_refs == 0) { 1300 ret = btrfs_del_item(trans, root, path); 1301 *last_ref = 1; 1302 } else { 1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1308 else { 1309 struct btrfs_extent_ref_v0 *ref0; 1310 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1311 struct btrfs_extent_ref_v0); 1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1313 } 1314#endif 1315 btrfs_mark_buffer_dirty(leaf); 1316 } 1317 return ret; 1318} 1319 1320static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1321 struct btrfs_path *path, 1322 struct btrfs_extent_inline_ref *iref) 1323{ 1324 struct btrfs_key key; 1325 struct extent_buffer *leaf; 1326 struct btrfs_extent_data_ref *ref1; 1327 struct btrfs_shared_data_ref *ref2; 1328 u32 num_refs = 0; 1329 1330 leaf = path->nodes[0]; 1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1332 if (iref) { 1333 if (btrfs_extent_inline_ref_type(leaf, iref) == 1334 BTRFS_EXTENT_DATA_REF_KEY) { 1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1337 } else { 1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1340 } 1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1342 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1343 struct btrfs_extent_data_ref); 1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1346 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1347 struct btrfs_shared_data_ref); 1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1349#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1351 struct btrfs_extent_ref_v0 *ref0; 1352 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_extent_ref_v0); 1354 num_refs = btrfs_ref_count_v0(leaf, ref0); 1355#endif 1356 } else { 1357 WARN_ON(1); 1358 } 1359 return num_refs; 1360} 1361 1362static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1363 struct btrfs_root *root, 1364 struct btrfs_path *path, 1365 u64 bytenr, u64 parent, 1366 u64 root_objectid) 1367{ 1368 struct btrfs_key key; 1369 int ret; 1370 1371 key.objectid = bytenr; 1372 if (parent) { 1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1374 key.offset = parent; 1375 } else { 1376 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1377 key.offset = root_objectid; 1378 } 1379 1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1381 if (ret > 0) 1382 ret = -ENOENT; 1383#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1384 if (ret == -ENOENT && parent) { 1385 btrfs_release_path(path); 1386 key.type = BTRFS_EXTENT_REF_V0_KEY; 1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1388 if (ret > 0) 1389 ret = -ENOENT; 1390 } 1391#endif 1392 return ret; 1393} 1394 1395static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1396 struct btrfs_root *root, 1397 struct btrfs_path *path, 1398 u64 bytenr, u64 parent, 1399 u64 root_objectid) 1400{ 1401 struct btrfs_key key; 1402 int ret; 1403 1404 key.objectid = bytenr; 1405 if (parent) { 1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1407 key.offset = parent; 1408 } else { 1409 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1410 key.offset = root_objectid; 1411 } 1412 1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1414 btrfs_release_path(path); 1415 return ret; 1416} 1417 1418static inline int extent_ref_type(u64 parent, u64 owner) 1419{ 1420 int type; 1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1422 if (parent > 0) 1423 type = BTRFS_SHARED_BLOCK_REF_KEY; 1424 else 1425 type = BTRFS_TREE_BLOCK_REF_KEY; 1426 } else { 1427 if (parent > 0) 1428 type = BTRFS_SHARED_DATA_REF_KEY; 1429 else 1430 type = BTRFS_EXTENT_DATA_REF_KEY; 1431 } 1432 return type; 1433} 1434 1435static int find_next_key(struct btrfs_path *path, int level, 1436 struct btrfs_key *key) 1437 1438{ 1439 for (; level < BTRFS_MAX_LEVEL; level++) { 1440 if (!path->nodes[level]) 1441 break; 1442 if (path->slots[level] + 1 >= 1443 btrfs_header_nritems(path->nodes[level])) 1444 continue; 1445 if (level == 0) 1446 btrfs_item_key_to_cpu(path->nodes[level], key, 1447 path->slots[level] + 1); 1448 else 1449 btrfs_node_key_to_cpu(path->nodes[level], key, 1450 path->slots[level] + 1); 1451 return 0; 1452 } 1453 return 1; 1454} 1455 1456/* 1457 * look for inline back ref. if back ref is found, *ref_ret is set 1458 * to the address of inline back ref, and 0 is returned. 1459 * 1460 * if back ref isn't found, *ref_ret is set to the address where it 1461 * should be inserted, and -ENOENT is returned. 1462 * 1463 * if insert is true and there are too many inline back refs, the path 1464 * points to the extent item, and -EAGAIN is returned. 1465 * 1466 * NOTE: inline back refs are ordered in the same way that back ref 1467 * items in the tree are ordered. 1468 */ 1469static noinline_for_stack 1470int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1471 struct btrfs_root *root, 1472 struct btrfs_path *path, 1473 struct btrfs_extent_inline_ref **ref_ret, 1474 u64 bytenr, u64 num_bytes, 1475 u64 parent, u64 root_objectid, 1476 u64 owner, u64 offset, int insert) 1477{ 1478 struct btrfs_key key; 1479 struct extent_buffer *leaf; 1480 struct btrfs_extent_item *ei; 1481 struct btrfs_extent_inline_ref *iref; 1482 u64 flags; 1483 u64 item_size; 1484 unsigned long ptr; 1485 unsigned long end; 1486 int extra_size; 1487 int type; 1488 int want; 1489 int ret; 1490 int err = 0; 1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1492 SKINNY_METADATA); 1493 1494 key.objectid = bytenr; 1495 key.type = BTRFS_EXTENT_ITEM_KEY; 1496 key.offset = num_bytes; 1497 1498 want = extent_ref_type(parent, owner); 1499 if (insert) { 1500 extra_size = btrfs_extent_inline_ref_size(want); 1501 path->keep_locks = 1; 1502 } else 1503 extra_size = -1; 1504 1505 /* 1506 * Owner is our parent level, so we can just add one to get the level 1507 * for the block we are interested in. 1508 */ 1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1510 key.type = BTRFS_METADATA_ITEM_KEY; 1511 key.offset = owner; 1512 } 1513 1514again: 1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1516 if (ret < 0) { 1517 err = ret; 1518 goto out; 1519 } 1520 1521 /* 1522 * We may be a newly converted file system which still has the old fat 1523 * extent entries for metadata, so try and see if we have one of those. 1524 */ 1525 if (ret > 0 && skinny_metadata) { 1526 skinny_metadata = false; 1527 if (path->slots[0]) { 1528 path->slots[0]--; 1529 btrfs_item_key_to_cpu(path->nodes[0], &key, 1530 path->slots[0]); 1531 if (key.objectid == bytenr && 1532 key.type == BTRFS_EXTENT_ITEM_KEY && 1533 key.offset == num_bytes) 1534 ret = 0; 1535 } 1536 if (ret) { 1537 key.objectid = bytenr; 1538 key.type = BTRFS_EXTENT_ITEM_KEY; 1539 key.offset = num_bytes; 1540 btrfs_release_path(path); 1541 goto again; 1542 } 1543 } 1544 1545 if (ret && !insert) { 1546 err = -ENOENT; 1547 goto out; 1548 } else if (WARN_ON(ret)) { 1549 err = -EIO; 1550 goto out; 1551 } 1552 1553 leaf = path->nodes[0]; 1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1555#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1556 if (item_size < sizeof(*ei)) { 1557 if (!insert) { 1558 err = -ENOENT; 1559 goto out; 1560 } 1561 ret = convert_extent_item_v0(trans, root, path, owner, 1562 extra_size); 1563 if (ret < 0) { 1564 err = ret; 1565 goto out; 1566 } 1567 leaf = path->nodes[0]; 1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1569 } 1570#endif 1571 BUG_ON(item_size < sizeof(*ei)); 1572 1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1574 flags = btrfs_extent_flags(leaf, ei); 1575 1576 ptr = (unsigned long)(ei + 1); 1577 end = (unsigned long)ei + item_size; 1578 1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1580 ptr += sizeof(struct btrfs_tree_block_info); 1581 BUG_ON(ptr > end); 1582 } 1583 1584 err = -ENOENT; 1585 while (1) { 1586 if (ptr >= end) { 1587 WARN_ON(ptr > end); 1588 break; 1589 } 1590 iref = (struct btrfs_extent_inline_ref *)ptr; 1591 type = btrfs_extent_inline_ref_type(leaf, iref); 1592 if (want < type) 1593 break; 1594 if (want > type) { 1595 ptr += btrfs_extent_inline_ref_size(type); 1596 continue; 1597 } 1598 1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1600 struct btrfs_extent_data_ref *dref; 1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1602 if (match_extent_data_ref(leaf, dref, root_objectid, 1603 owner, offset)) { 1604 err = 0; 1605 break; 1606 } 1607 if (hash_extent_data_ref_item(leaf, dref) < 1608 hash_extent_data_ref(root_objectid, owner, offset)) 1609 break; 1610 } else { 1611 u64 ref_offset; 1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1613 if (parent > 0) { 1614 if (parent == ref_offset) { 1615 err = 0; 1616 break; 1617 } 1618 if (ref_offset < parent) 1619 break; 1620 } else { 1621 if (root_objectid == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < root_objectid) 1626 break; 1627 } 1628 } 1629 ptr += btrfs_extent_inline_ref_size(type); 1630 } 1631 if (err == -ENOENT && insert) { 1632 if (item_size + extra_size >= 1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1634 err = -EAGAIN; 1635 goto out; 1636 } 1637 /* 1638 * To add new inline back ref, we have to make sure 1639 * there is no corresponding back ref item. 1640 * For simplicity, we just do not add new inline back 1641 * ref if there is any kind of item for this block 1642 */ 1643 if (find_next_key(path, 0, &key) == 0 && 1644 key.objectid == bytenr && 1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1646 err = -EAGAIN; 1647 goto out; 1648 } 1649 } 1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1651out: 1652 if (insert) { 1653 path->keep_locks = 0; 1654 btrfs_unlock_up_safe(path, 1); 1655 } 1656 return err; 1657} 1658 1659/* 1660 * helper to add new inline back ref 1661 */ 1662static noinline_for_stack 1663void setup_inline_extent_backref(struct btrfs_root *root, 1664 struct btrfs_path *path, 1665 struct btrfs_extent_inline_ref *iref, 1666 u64 parent, u64 root_objectid, 1667 u64 owner, u64 offset, int refs_to_add, 1668 struct btrfs_delayed_extent_op *extent_op) 1669{ 1670 struct extent_buffer *leaf; 1671 struct btrfs_extent_item *ei; 1672 unsigned long ptr; 1673 unsigned long end; 1674 unsigned long item_offset; 1675 u64 refs; 1676 int size; 1677 int type; 1678 1679 leaf = path->nodes[0]; 1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1681 item_offset = (unsigned long)iref - (unsigned long)ei; 1682 1683 type = extent_ref_type(parent, owner); 1684 size = btrfs_extent_inline_ref_size(type); 1685 1686 btrfs_extend_item(root, path, size); 1687 1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1689 refs = btrfs_extent_refs(leaf, ei); 1690 refs += refs_to_add; 1691 btrfs_set_extent_refs(leaf, ei, refs); 1692 if (extent_op) 1693 __run_delayed_extent_op(extent_op, leaf, ei); 1694 1695 ptr = (unsigned long)ei + item_offset; 1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1697 if (ptr < end - size) 1698 memmove_extent_buffer(leaf, ptr + size, ptr, 1699 end - size - ptr); 1700 1701 iref = (struct btrfs_extent_inline_ref *)ptr; 1702 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1704 struct btrfs_extent_data_ref *dref; 1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1711 struct btrfs_shared_data_ref *sref; 1712 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1717 } else { 1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1719 } 1720 btrfs_mark_buffer_dirty(leaf); 1721} 1722 1723static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct btrfs_path *path, 1726 struct btrfs_extent_inline_ref **ref_ret, 1727 u64 bytenr, u64 num_bytes, u64 parent, 1728 u64 root_objectid, u64 owner, u64 offset) 1729{ 1730 int ret; 1731 1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1733 bytenr, num_bytes, parent, 1734 root_objectid, owner, offset, 0); 1735 if (ret != -ENOENT) 1736 return ret; 1737 1738 btrfs_release_path(path); 1739 *ref_ret = NULL; 1740 1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1743 root_objectid); 1744 } else { 1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1746 root_objectid, owner, offset); 1747 } 1748 return ret; 1749} 1750 1751/* 1752 * helper to update/remove inline back ref 1753 */ 1754static noinline_for_stack 1755void update_inline_extent_backref(struct btrfs_root *root, 1756 struct btrfs_path *path, 1757 struct btrfs_extent_inline_ref *iref, 1758 int refs_to_mod, 1759 struct btrfs_delayed_extent_op *extent_op, 1760 int *last_ref) 1761{ 1762 struct extent_buffer *leaf; 1763 struct btrfs_extent_item *ei; 1764 struct btrfs_extent_data_ref *dref = NULL; 1765 struct btrfs_shared_data_ref *sref = NULL; 1766 unsigned long ptr; 1767 unsigned long end; 1768 u32 item_size; 1769 int size; 1770 int type; 1771 u64 refs; 1772 1773 leaf = path->nodes[0]; 1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1775 refs = btrfs_extent_refs(leaf, ei); 1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1777 refs += refs_to_mod; 1778 btrfs_set_extent_refs(leaf, ei, refs); 1779 if (extent_op) 1780 __run_delayed_extent_op(extent_op, leaf, ei); 1781 1782 type = btrfs_extent_inline_ref_type(leaf, iref); 1783 1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1786 refs = btrfs_extent_data_ref_count(leaf, dref); 1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1788 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1789 refs = btrfs_shared_data_ref_count(leaf, sref); 1790 } else { 1791 refs = 1; 1792 BUG_ON(refs_to_mod != -1); 1793 } 1794 1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1796 refs += refs_to_mod; 1797 1798 if (refs > 0) { 1799 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1800 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1801 else 1802 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1803 } else { 1804 *last_ref = 1; 1805 size = btrfs_extent_inline_ref_size(type); 1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1807 ptr = (unsigned long)iref; 1808 end = (unsigned long)ei + item_size; 1809 if (ptr + size < end) 1810 memmove_extent_buffer(leaf, ptr, ptr + size, 1811 end - ptr - size); 1812 item_size -= size; 1813 btrfs_truncate_item(root, path, item_size, 1); 1814 } 1815 btrfs_mark_buffer_dirty(leaf); 1816} 1817 1818static noinline_for_stack 1819int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1820 struct btrfs_root *root, 1821 struct btrfs_path *path, 1822 u64 bytenr, u64 num_bytes, u64 parent, 1823 u64 root_objectid, u64 owner, 1824 u64 offset, int refs_to_add, 1825 struct btrfs_delayed_extent_op *extent_op) 1826{ 1827 struct btrfs_extent_inline_ref *iref; 1828 int ret; 1829 1830 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1831 bytenr, num_bytes, parent, 1832 root_objectid, owner, offset, 1); 1833 if (ret == 0) { 1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1835 update_inline_extent_backref(root, path, iref, 1836 refs_to_add, extent_op, NULL); 1837 } else if (ret == -ENOENT) { 1838 setup_inline_extent_backref(root, path, iref, parent, 1839 root_objectid, owner, offset, 1840 refs_to_add, extent_op); 1841 ret = 0; 1842 } 1843 return ret; 1844} 1845 1846static int insert_extent_backref(struct btrfs_trans_handle *trans, 1847 struct btrfs_root *root, 1848 struct btrfs_path *path, 1849 u64 bytenr, u64 parent, u64 root_objectid, 1850 u64 owner, u64 offset, int refs_to_add) 1851{ 1852 int ret; 1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1854 BUG_ON(refs_to_add != 1); 1855 ret = insert_tree_block_ref(trans, root, path, bytenr, 1856 parent, root_objectid); 1857 } else { 1858 ret = insert_extent_data_ref(trans, root, path, bytenr, 1859 parent, root_objectid, 1860 owner, offset, refs_to_add); 1861 } 1862 return ret; 1863} 1864 1865static int remove_extent_backref(struct btrfs_trans_handle *trans, 1866 struct btrfs_root *root, 1867 struct btrfs_path *path, 1868 struct btrfs_extent_inline_ref *iref, 1869 int refs_to_drop, int is_data, int *last_ref) 1870{ 1871 int ret = 0; 1872 1873 BUG_ON(!is_data && refs_to_drop != 1); 1874 if (iref) { 1875 update_inline_extent_backref(root, path, iref, 1876 -refs_to_drop, NULL, last_ref); 1877 } else if (is_data) { 1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1879 last_ref); 1880 } else { 1881 *last_ref = 1; 1882 ret = btrfs_del_item(trans, root, path); 1883 } 1884 return ret; 1885} 1886 1887static int btrfs_issue_discard(struct block_device *bdev, 1888 u64 start, u64 len) 1889{ 1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1891} 1892 1893int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1894 u64 num_bytes, u64 *actual_bytes) 1895{ 1896 int ret; 1897 u64 discarded_bytes = 0; 1898 struct btrfs_bio *bbio = NULL; 1899 1900 1901 /* Tell the block device(s) that the sectors can be discarded */ 1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1903 bytenr, &num_bytes, &bbio, 0); 1904 /* Error condition is -ENOMEM */ 1905 if (!ret) { 1906 struct btrfs_bio_stripe *stripe = bbio->stripes; 1907 int i; 1908 1909 1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1911 if (!stripe->dev->can_discard) 1912 continue; 1913 1914 ret = btrfs_issue_discard(stripe->dev->bdev, 1915 stripe->physical, 1916 stripe->length); 1917 if (!ret) 1918 discarded_bytes += stripe->length; 1919 else if (ret != -EOPNOTSUPP) 1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1921 1922 /* 1923 * Just in case we get back EOPNOTSUPP for some reason, 1924 * just ignore the return value so we don't screw up 1925 * people calling discard_extent. 1926 */ 1927 ret = 0; 1928 } 1929 btrfs_put_bbio(bbio); 1930 } 1931 1932 if (actual_bytes) 1933 *actual_bytes = discarded_bytes; 1934 1935 1936 if (ret == -EOPNOTSUPP) 1937 ret = 0; 1938 return ret; 1939} 1940 1941/* Can return -ENOMEM */ 1942int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, 1944 u64 bytenr, u64 num_bytes, u64 parent, 1945 u64 root_objectid, u64 owner, u64 offset, 1946 int no_quota) 1947{ 1948 int ret; 1949 struct btrfs_fs_info *fs_info = root->fs_info; 1950 1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1952 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1953 1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1956 num_bytes, 1957 parent, root_objectid, (int)owner, 1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1959 } else { 1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1961 num_bytes, 1962 parent, root_objectid, owner, offset, 1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1964 } 1965 return ret; 1966} 1967 1968static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1969 struct btrfs_root *root, 1970 u64 bytenr, u64 num_bytes, 1971 u64 parent, u64 root_objectid, 1972 u64 owner, u64 offset, int refs_to_add, 1973 int no_quota, 1974 struct btrfs_delayed_extent_op *extent_op) 1975{ 1976 struct btrfs_fs_info *fs_info = root->fs_info; 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 struct btrfs_key key; 1981 u64 refs; 1982 int ret; 1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL; 1984 1985 path = btrfs_alloc_path(); 1986 if (!path) 1987 return -ENOMEM; 1988 1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 1990 no_quota = 1; 1991 1992 path->reada = 1; 1993 path->leave_spinning = 1; 1994 /* this will setup the path even if it fails to insert the back ref */ 1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 1996 bytenr, num_bytes, parent, 1997 root_objectid, owner, offset, 1998 refs_to_add, extent_op); 1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota)) 2000 goto out; 2001 /* 2002 * Ok we were able to insert an inline extent and it appears to be a new 2003 * reference, deal with the qgroup accounting. 2004 */ 2005 if (!ret && !no_quota) { 2006 ASSERT(root->fs_info->quota_enabled); 2007 leaf = path->nodes[0]; 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2009 item = btrfs_item_ptr(leaf, path->slots[0], 2010 struct btrfs_extent_item); 2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add) 2012 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2013 btrfs_release_path(path); 2014 2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2016 bytenr, num_bytes, type, 0); 2017 goto out; 2018 } 2019 2020 /* 2021 * Ok we had -EAGAIN which means we didn't have space to insert and 2022 * inline extent ref, so just update the reference count and add a 2023 * normal backref. 2024 */ 2025 leaf = path->nodes[0]; 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2028 refs = btrfs_extent_refs(leaf, item); 2029 if (refs) 2030 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2032 if (extent_op) 2033 __run_delayed_extent_op(extent_op, leaf, item); 2034 2035 btrfs_mark_buffer_dirty(leaf); 2036 btrfs_release_path(path); 2037 2038 if (!no_quota) { 2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2040 bytenr, num_bytes, type, 0); 2041 if (ret) 2042 goto out; 2043 } 2044 2045 path->reada = 1; 2046 path->leave_spinning = 1; 2047 /* now insert the actual backref */ 2048 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2049 path, bytenr, parent, root_objectid, 2050 owner, offset, refs_to_add); 2051 if (ret) 2052 btrfs_abort_transaction(trans, root, ret); 2053out: 2054 btrfs_free_path(path); 2055 return ret; 2056} 2057 2058static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2059 struct btrfs_root *root, 2060 struct btrfs_delayed_ref_node *node, 2061 struct btrfs_delayed_extent_op *extent_op, 2062 int insert_reserved) 2063{ 2064 int ret = 0; 2065 struct btrfs_delayed_data_ref *ref; 2066 struct btrfs_key ins; 2067 u64 parent = 0; 2068 u64 ref_root = 0; 2069 u64 flags = 0; 2070 2071 ins.objectid = node->bytenr; 2072 ins.offset = node->num_bytes; 2073 ins.type = BTRFS_EXTENT_ITEM_KEY; 2074 2075 ref = btrfs_delayed_node_to_data_ref(node); 2076 trace_run_delayed_data_ref(node, ref, node->action); 2077 2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2079 parent = ref->parent; 2080 ref_root = ref->root; 2081 2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2083 if (extent_op) 2084 flags |= extent_op->flags_to_set; 2085 ret = alloc_reserved_file_extent(trans, root, 2086 parent, ref_root, flags, 2087 ref->objectid, ref->offset, 2088 &ins, node->ref_mod); 2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2091 node->num_bytes, parent, 2092 ref_root, ref->objectid, 2093 ref->offset, node->ref_mod, 2094 node->no_quota, extent_op); 2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2096 ret = __btrfs_free_extent(trans, root, node->bytenr, 2097 node->num_bytes, parent, 2098 ref_root, ref->objectid, 2099 ref->offset, node->ref_mod, 2100 extent_op, node->no_quota); 2101 } else { 2102 BUG(); 2103 } 2104 return ret; 2105} 2106 2107static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2108 struct extent_buffer *leaf, 2109 struct btrfs_extent_item *ei) 2110{ 2111 u64 flags = btrfs_extent_flags(leaf, ei); 2112 if (extent_op->update_flags) { 2113 flags |= extent_op->flags_to_set; 2114 btrfs_set_extent_flags(leaf, ei, flags); 2115 } 2116 2117 if (extent_op->update_key) { 2118 struct btrfs_tree_block_info *bi; 2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2120 bi = (struct btrfs_tree_block_info *)(ei + 1); 2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2122 } 2123} 2124 2125static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2126 struct btrfs_root *root, 2127 struct btrfs_delayed_ref_node *node, 2128 struct btrfs_delayed_extent_op *extent_op) 2129{ 2130 struct btrfs_key key; 2131 struct btrfs_path *path; 2132 struct btrfs_extent_item *ei; 2133 struct extent_buffer *leaf; 2134 u32 item_size; 2135 int ret; 2136 int err = 0; 2137 int metadata = !extent_op->is_data; 2138 2139 if (trans->aborted) 2140 return 0; 2141 2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2143 metadata = 0; 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 2149 key.objectid = node->bytenr; 2150 2151 if (metadata) { 2152 key.type = BTRFS_METADATA_ITEM_KEY; 2153 key.offset = extent_op->level; 2154 } else { 2155 key.type = BTRFS_EXTENT_ITEM_KEY; 2156 key.offset = node->num_bytes; 2157 } 2158 2159again: 2160 path->reada = 1; 2161 path->leave_spinning = 1; 2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2163 path, 0, 1); 2164 if (ret < 0) { 2165 err = ret; 2166 goto out; 2167 } 2168 if (ret > 0) { 2169 if (metadata) { 2170 if (path->slots[0] > 0) { 2171 path->slots[0]--; 2172 btrfs_item_key_to_cpu(path->nodes[0], &key, 2173 path->slots[0]); 2174 if (key.objectid == node->bytenr && 2175 key.type == BTRFS_EXTENT_ITEM_KEY && 2176 key.offset == node->num_bytes) 2177 ret = 0; 2178 } 2179 if (ret > 0) { 2180 btrfs_release_path(path); 2181 metadata = 0; 2182 2183 key.objectid = node->bytenr; 2184 key.offset = node->num_bytes; 2185 key.type = BTRFS_EXTENT_ITEM_KEY; 2186 goto again; 2187 } 2188 } else { 2189 err = -EIO; 2190 goto out; 2191 } 2192 } 2193 2194 leaf = path->nodes[0]; 2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2196#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2197 if (item_size < sizeof(*ei)) { 2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2199 path, (u64)-1, 0); 2200 if (ret < 0) { 2201 err = ret; 2202 goto out; 2203 } 2204 leaf = path->nodes[0]; 2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2206 } 2207#endif 2208 BUG_ON(item_size < sizeof(*ei)); 2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2210 __run_delayed_extent_op(extent_op, leaf, ei); 2211 2212 btrfs_mark_buffer_dirty(leaf); 2213out: 2214 btrfs_free_path(path); 2215 return err; 2216} 2217 2218static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2219 struct btrfs_root *root, 2220 struct btrfs_delayed_ref_node *node, 2221 struct btrfs_delayed_extent_op *extent_op, 2222 int insert_reserved) 2223{ 2224 int ret = 0; 2225 struct btrfs_delayed_tree_ref *ref; 2226 struct btrfs_key ins; 2227 u64 parent = 0; 2228 u64 ref_root = 0; 2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2230 SKINNY_METADATA); 2231 2232 ref = btrfs_delayed_node_to_tree_ref(node); 2233 trace_run_delayed_tree_ref(node, ref, node->action); 2234 2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2236 parent = ref->parent; 2237 ref_root = ref->root; 2238 2239 ins.objectid = node->bytenr; 2240 if (skinny_metadata) { 2241 ins.offset = ref->level; 2242 ins.type = BTRFS_METADATA_ITEM_KEY; 2243 } else { 2244 ins.offset = node->num_bytes; 2245 ins.type = BTRFS_EXTENT_ITEM_KEY; 2246 } 2247 2248 BUG_ON(node->ref_mod != 1); 2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2250 BUG_ON(!extent_op || !extent_op->update_flags); 2251 ret = alloc_reserved_tree_block(trans, root, 2252 parent, ref_root, 2253 extent_op->flags_to_set, 2254 &extent_op->key, 2255 ref->level, &ins, 2256 node->no_quota); 2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2259 node->num_bytes, parent, ref_root, 2260 ref->level, 0, 1, node->no_quota, 2261 extent_op); 2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2263 ret = __btrfs_free_extent(trans, root, node->bytenr, 2264 node->num_bytes, parent, ref_root, 2265 ref->level, 0, 1, extent_op, 2266 node->no_quota); 2267 } else { 2268 BUG(); 2269 } 2270 return ret; 2271} 2272 2273/* helper function to actually process a single delayed ref entry */ 2274static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2275 struct btrfs_root *root, 2276 struct btrfs_delayed_ref_node *node, 2277 struct btrfs_delayed_extent_op *extent_op, 2278 int insert_reserved) 2279{ 2280 int ret = 0; 2281 2282 if (trans->aborted) { 2283 if (insert_reserved) 2284 btrfs_pin_extent(root, node->bytenr, 2285 node->num_bytes, 1); 2286 return 0; 2287 } 2288 2289 if (btrfs_delayed_ref_is_head(node)) { 2290 struct btrfs_delayed_ref_head *head; 2291 /* 2292 * we've hit the end of the chain and we were supposed 2293 * to insert this extent into the tree. But, it got 2294 * deleted before we ever needed to insert it, so all 2295 * we have to do is clean up the accounting 2296 */ 2297 BUG_ON(extent_op); 2298 head = btrfs_delayed_node_to_head(node); 2299 trace_run_delayed_ref_head(node, head, node->action); 2300 2301 if (insert_reserved) { 2302 btrfs_pin_extent(root, node->bytenr, 2303 node->num_bytes, 1); 2304 if (head->is_data) { 2305 ret = btrfs_del_csums(trans, root, 2306 node->bytenr, 2307 node->num_bytes); 2308 } 2309 } 2310 return ret; 2311 } 2312 2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2315 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2316 insert_reserved); 2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2318 node->type == BTRFS_SHARED_DATA_REF_KEY) 2319 ret = run_delayed_data_ref(trans, root, node, extent_op, 2320 insert_reserved); 2321 else 2322 BUG(); 2323 return ret; 2324} 2325 2326static noinline struct btrfs_delayed_ref_node * 2327select_delayed_ref(struct btrfs_delayed_ref_head *head) 2328{ 2329 struct rb_node *node; 2330 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2331 2332 /* 2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2334 * this prevents ref count from going down to zero when 2335 * there still are pending delayed ref. 2336 */ 2337 node = rb_first(&head->ref_root); 2338 while (node) { 2339 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2340 rb_node); 2341 if (ref->action == BTRFS_ADD_DELAYED_REF) 2342 return ref; 2343 else if (last == NULL) 2344 last = ref; 2345 node = rb_next(node); 2346 } 2347 return last; 2348} 2349 2350/* 2351 * Returns 0 on success or if called with an already aborted transaction. 2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2353 */ 2354static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2355 struct btrfs_root *root, 2356 unsigned long nr) 2357{ 2358 struct btrfs_delayed_ref_root *delayed_refs; 2359 struct btrfs_delayed_ref_node *ref; 2360 struct btrfs_delayed_ref_head *locked_ref = NULL; 2361 struct btrfs_delayed_extent_op *extent_op; 2362 struct btrfs_fs_info *fs_info = root->fs_info; 2363 ktime_t start = ktime_get(); 2364 int ret; 2365 unsigned long count = 0; 2366 unsigned long actual_count = 0; 2367 int must_insert_reserved = 0; 2368 2369 delayed_refs = &trans->transaction->delayed_refs; 2370 while (1) { 2371 if (!locked_ref) { 2372 if (count >= nr) 2373 break; 2374 2375 spin_lock(&delayed_refs->lock); 2376 locked_ref = btrfs_select_ref_head(trans); 2377 if (!locked_ref) { 2378 spin_unlock(&delayed_refs->lock); 2379 break; 2380 } 2381 2382 /* grab the lock that says we are going to process 2383 * all the refs for this head */ 2384 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2385 spin_unlock(&delayed_refs->lock); 2386 /* 2387 * we may have dropped the spin lock to get the head 2388 * mutex lock, and that might have given someone else 2389 * time to free the head. If that's true, it has been 2390 * removed from our list and we can move on. 2391 */ 2392 if (ret == -EAGAIN) { 2393 locked_ref = NULL; 2394 count++; 2395 continue; 2396 } 2397 } 2398 2399 /* 2400 * We need to try and merge add/drops of the same ref since we 2401 * can run into issues with relocate dropping the implicit ref 2402 * and then it being added back again before the drop can 2403 * finish. If we merged anything we need to re-loop so we can 2404 * get a good ref. 2405 */ 2406 spin_lock(&locked_ref->lock); 2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2408 locked_ref); 2409 2410 /* 2411 * locked_ref is the head node, so we have to go one 2412 * node back for any delayed ref updates 2413 */ 2414 ref = select_delayed_ref(locked_ref); 2415 2416 if (ref && ref->seq && 2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2418 spin_unlock(&locked_ref->lock); 2419 btrfs_delayed_ref_unlock(locked_ref); 2420 spin_lock(&delayed_refs->lock); 2421 locked_ref->processing = 0; 2422 delayed_refs->num_heads_ready++; 2423 spin_unlock(&delayed_refs->lock); 2424 locked_ref = NULL; 2425 cond_resched(); 2426 count++; 2427 continue; 2428 } 2429 2430 /* 2431 * record the must insert reserved flag before we 2432 * drop the spin lock. 2433 */ 2434 must_insert_reserved = locked_ref->must_insert_reserved; 2435 locked_ref->must_insert_reserved = 0; 2436 2437 extent_op = locked_ref->extent_op; 2438 locked_ref->extent_op = NULL; 2439 2440 if (!ref) { 2441 2442 2443 /* All delayed refs have been processed, Go ahead 2444 * and send the head node to run_one_delayed_ref, 2445 * so that any accounting fixes can happen 2446 */ 2447 ref = &locked_ref->node; 2448 2449 if (extent_op && must_insert_reserved) { 2450 btrfs_free_delayed_extent_op(extent_op); 2451 extent_op = NULL; 2452 } 2453 2454 if (extent_op) { 2455 spin_unlock(&locked_ref->lock); 2456 ret = run_delayed_extent_op(trans, root, 2457 ref, extent_op); 2458 btrfs_free_delayed_extent_op(extent_op); 2459 2460 if (ret) { 2461 /* 2462 * Need to reset must_insert_reserved if 2463 * there was an error so the abort stuff 2464 * can cleanup the reserved space 2465 * properly. 2466 */ 2467 if (must_insert_reserved) 2468 locked_ref->must_insert_reserved = 1; 2469 locked_ref->processing = 0; 2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2471 btrfs_delayed_ref_unlock(locked_ref); 2472 return ret; 2473 } 2474 continue; 2475 } 2476 2477 /* 2478 * Need to drop our head ref lock and re-aqcuire the 2479 * delayed ref lock and then re-check to make sure 2480 * nobody got added. 2481 */ 2482 spin_unlock(&locked_ref->lock); 2483 spin_lock(&delayed_refs->lock); 2484 spin_lock(&locked_ref->lock); 2485 if (rb_first(&locked_ref->ref_root) || 2486 locked_ref->extent_op) { 2487 spin_unlock(&locked_ref->lock); 2488 spin_unlock(&delayed_refs->lock); 2489 continue; 2490 } 2491 ref->in_tree = 0; 2492 delayed_refs->num_heads--; 2493 rb_erase(&locked_ref->href_node, 2494 &delayed_refs->href_root); 2495 spin_unlock(&delayed_refs->lock); 2496 } else { 2497 actual_count++; 2498 ref->in_tree = 0; 2499 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2500 } 2501 atomic_dec(&delayed_refs->num_entries); 2502 2503 if (!btrfs_delayed_ref_is_head(ref)) { 2504 /* 2505 * when we play the delayed ref, also correct the 2506 * ref_mod on head 2507 */ 2508 switch (ref->action) { 2509 case BTRFS_ADD_DELAYED_REF: 2510 case BTRFS_ADD_DELAYED_EXTENT: 2511 locked_ref->node.ref_mod -= ref->ref_mod; 2512 break; 2513 case BTRFS_DROP_DELAYED_REF: 2514 locked_ref->node.ref_mod += ref->ref_mod; 2515 break; 2516 default: 2517 WARN_ON(1); 2518 } 2519 } 2520 spin_unlock(&locked_ref->lock); 2521 2522 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2523 must_insert_reserved); 2524 2525 btrfs_free_delayed_extent_op(extent_op); 2526 if (ret) { 2527 locked_ref->processing = 0; 2528 btrfs_delayed_ref_unlock(locked_ref); 2529 btrfs_put_delayed_ref(ref); 2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2531 return ret; 2532 } 2533 2534 /* 2535 * If this node is a head, that means all the refs in this head 2536 * have been dealt with, and we will pick the next head to deal 2537 * with, so we must unlock the head and drop it from the cluster 2538 * list before we release it. 2539 */ 2540 if (btrfs_delayed_ref_is_head(ref)) { 2541 if (locked_ref->is_data && 2542 locked_ref->total_ref_mod < 0) { 2543 spin_lock(&delayed_refs->lock); 2544 delayed_refs->pending_csums -= ref->num_bytes; 2545 spin_unlock(&delayed_refs->lock); 2546 } 2547 btrfs_delayed_ref_unlock(locked_ref); 2548 locked_ref = NULL; 2549 } 2550 btrfs_put_delayed_ref(ref); 2551 count++; 2552 cond_resched(); 2553 } 2554 2555 /* 2556 * We don't want to include ref heads since we can have empty ref heads 2557 * and those will drastically skew our runtime down since we just do 2558 * accounting, no actual extent tree updates. 2559 */ 2560 if (actual_count > 0) { 2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2562 u64 avg; 2563 2564 /* 2565 * We weigh the current average higher than our current runtime 2566 * to avoid large swings in the average. 2567 */ 2568 spin_lock(&delayed_refs->lock); 2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2571 spin_unlock(&delayed_refs->lock); 2572 } 2573 return 0; 2574} 2575 2576#ifdef SCRAMBLE_DELAYED_REFS 2577/* 2578 * Normally delayed refs get processed in ascending bytenr order. This 2579 * correlates in most cases to the order added. To expose dependencies on this 2580 * order, we start to process the tree in the middle instead of the beginning 2581 */ 2582static u64 find_middle(struct rb_root *root) 2583{ 2584 struct rb_node *n = root->rb_node; 2585 struct btrfs_delayed_ref_node *entry; 2586 int alt = 1; 2587 u64 middle; 2588 u64 first = 0, last = 0; 2589 2590 n = rb_first(root); 2591 if (n) { 2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2593 first = entry->bytenr; 2594 } 2595 n = rb_last(root); 2596 if (n) { 2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2598 last = entry->bytenr; 2599 } 2600 n = root->rb_node; 2601 2602 while (n) { 2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2604 WARN_ON(!entry->in_tree); 2605 2606 middle = entry->bytenr; 2607 2608 if (alt) 2609 n = n->rb_left; 2610 else 2611 n = n->rb_right; 2612 2613 alt = 1 - alt; 2614 } 2615 return middle; 2616} 2617#endif 2618 2619static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2620{ 2621 u64 num_bytes; 2622 2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2624 sizeof(struct btrfs_extent_inline_ref)); 2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2627 2628 /* 2629 * We don't ever fill up leaves all the way so multiply by 2 just to be 2630 * closer to what we're really going to want to ouse. 2631 */ 2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2633} 2634 2635/* 2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2637 * would require to store the csums for that many bytes. 2638 */ 2639u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2640{ 2641 u64 csum_size; 2642 u64 num_csums_per_leaf; 2643 u64 num_csums; 2644 2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2646 num_csums_per_leaf = div64_u64(csum_size, 2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2648 num_csums = div64_u64(csum_bytes, root->sectorsize); 2649 num_csums += num_csums_per_leaf - 1; 2650 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2651 return num_csums; 2652} 2653 2654int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2655 struct btrfs_root *root) 2656{ 2657 struct btrfs_block_rsv *global_rsv; 2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2661 u64 num_bytes, num_dirty_bgs_bytes; 2662 int ret = 0; 2663 2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2665 num_heads = heads_to_leaves(root, num_heads); 2666 if (num_heads > 1) 2667 num_bytes += (num_heads - 1) * root->nodesize; 2668 num_bytes <<= 1; 2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2671 num_dirty_bgs); 2672 global_rsv = &root->fs_info->global_block_rsv; 2673 2674 /* 2675 * If we can't allocate any more chunks lets make sure we have _lots_ of 2676 * wiggle room since running delayed refs can create more delayed refs. 2677 */ 2678 if (global_rsv->space_info->full) { 2679 num_dirty_bgs_bytes <<= 1; 2680 num_bytes <<= 1; 2681 } 2682 2683 spin_lock(&global_rsv->lock); 2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2685 ret = 1; 2686 spin_unlock(&global_rsv->lock); 2687 return ret; 2688} 2689 2690int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2691 struct btrfs_root *root) 2692{ 2693 struct btrfs_fs_info *fs_info = root->fs_info; 2694 u64 num_entries = 2695 atomic_read(&trans->transaction->delayed_refs.num_entries); 2696 u64 avg_runtime; 2697 u64 val; 2698 2699 smp_mb(); 2700 avg_runtime = fs_info->avg_delayed_ref_runtime; 2701 val = num_entries * avg_runtime; 2702 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2703 return 1; 2704 if (val >= NSEC_PER_SEC / 2) 2705 return 2; 2706 2707 return btrfs_check_space_for_delayed_refs(trans, root); 2708} 2709 2710struct async_delayed_refs { 2711 struct btrfs_root *root; 2712 int count; 2713 int error; 2714 int sync; 2715 struct completion wait; 2716 struct btrfs_work work; 2717}; 2718 2719static void delayed_ref_async_start(struct btrfs_work *work) 2720{ 2721 struct async_delayed_refs *async; 2722 struct btrfs_trans_handle *trans; 2723 int ret; 2724 2725 async = container_of(work, struct async_delayed_refs, work); 2726 2727 trans = btrfs_join_transaction(async->root); 2728 if (IS_ERR(trans)) { 2729 async->error = PTR_ERR(trans); 2730 goto done; 2731 } 2732 2733 /* 2734 * trans->sync means that when we call end_transaciton, we won't 2735 * wait on delayed refs 2736 */ 2737 trans->sync = true; 2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2739 if (ret) 2740 async->error = ret; 2741 2742 ret = btrfs_end_transaction(trans, async->root); 2743 if (ret && !async->error) 2744 async->error = ret; 2745done: 2746 if (async->sync) 2747 complete(&async->wait); 2748 else 2749 kfree(async); 2750} 2751 2752int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2753 unsigned long count, int wait) 2754{ 2755 struct async_delayed_refs *async; 2756 int ret; 2757 2758 async = kmalloc(sizeof(*async), GFP_NOFS); 2759 if (!async) 2760 return -ENOMEM; 2761 2762 async->root = root->fs_info->tree_root; 2763 async->count = count; 2764 async->error = 0; 2765 if (wait) 2766 async->sync = 1; 2767 else 2768 async->sync = 0; 2769 init_completion(&async->wait); 2770 2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2772 delayed_ref_async_start, NULL, NULL); 2773 2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2775 2776 if (wait) { 2777 wait_for_completion(&async->wait); 2778 ret = async->error; 2779 kfree(async); 2780 return ret; 2781 } 2782 return 0; 2783} 2784 2785/* 2786 * this starts processing the delayed reference count updates and 2787 * extent insertions we have queued up so far. count can be 2788 * 0, which means to process everything in the tree at the start 2789 * of the run (but not newly added entries), or it can be some target 2790 * number you'd like to process. 2791 * 2792 * Returns 0 on success or if called with an aborted transaction 2793 * Returns <0 on error and aborts the transaction 2794 */ 2795int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2796 struct btrfs_root *root, unsigned long count) 2797{ 2798 struct rb_node *node; 2799 struct btrfs_delayed_ref_root *delayed_refs; 2800 struct btrfs_delayed_ref_head *head; 2801 int ret; 2802 int run_all = count == (unsigned long)-1; 2803 2804 /* We'll clean this up in btrfs_cleanup_transaction */ 2805 if (trans->aborted) 2806 return 0; 2807 2808 if (root == root->fs_info->extent_root) 2809 root = root->fs_info->tree_root; 2810 2811 delayed_refs = &trans->transaction->delayed_refs; 2812 if (count == 0) 2813 count = atomic_read(&delayed_refs->num_entries) * 2; 2814 2815again: 2816#ifdef SCRAMBLE_DELAYED_REFS 2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2818#endif 2819 ret = __btrfs_run_delayed_refs(trans, root, count); 2820 if (ret < 0) { 2821 btrfs_abort_transaction(trans, root, ret); 2822 return ret; 2823 } 2824 2825 if (run_all) { 2826 if (!list_empty(&trans->new_bgs)) 2827 btrfs_create_pending_block_groups(trans, root); 2828 2829 spin_lock(&delayed_refs->lock); 2830 node = rb_first(&delayed_refs->href_root); 2831 if (!node) { 2832 spin_unlock(&delayed_refs->lock); 2833 goto out; 2834 } 2835 count = (unsigned long)-1; 2836 2837 while (node) { 2838 head = rb_entry(node, struct btrfs_delayed_ref_head, 2839 href_node); 2840 if (btrfs_delayed_ref_is_head(&head->node)) { 2841 struct btrfs_delayed_ref_node *ref; 2842 2843 ref = &head->node; 2844 atomic_inc(&ref->refs); 2845 2846 spin_unlock(&delayed_refs->lock); 2847 /* 2848 * Mutex was contended, block until it's 2849 * released and try again 2850 */ 2851 mutex_lock(&head->mutex); 2852 mutex_unlock(&head->mutex); 2853 2854 btrfs_put_delayed_ref(ref); 2855 cond_resched(); 2856 goto again; 2857 } else { 2858 WARN_ON(1); 2859 } 2860 node = rb_next(node); 2861 } 2862 spin_unlock(&delayed_refs->lock); 2863 cond_resched(); 2864 goto again; 2865 } 2866out: 2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info); 2868 if (ret) 2869 return ret; 2870 assert_qgroups_uptodate(trans); 2871 return 0; 2872} 2873 2874int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2875 struct btrfs_root *root, 2876 u64 bytenr, u64 num_bytes, u64 flags, 2877 int level, int is_data) 2878{ 2879 struct btrfs_delayed_extent_op *extent_op; 2880 int ret; 2881 2882 extent_op = btrfs_alloc_delayed_extent_op(); 2883 if (!extent_op) 2884 return -ENOMEM; 2885 2886 extent_op->flags_to_set = flags; 2887 extent_op->update_flags = 1; 2888 extent_op->update_key = 0; 2889 extent_op->is_data = is_data ? 1 : 0; 2890 extent_op->level = level; 2891 2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2893 num_bytes, extent_op); 2894 if (ret) 2895 btrfs_free_delayed_extent_op(extent_op); 2896 return ret; 2897} 2898 2899static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 struct btrfs_path *path, 2902 u64 objectid, u64 offset, u64 bytenr) 2903{ 2904 struct btrfs_delayed_ref_head *head; 2905 struct btrfs_delayed_ref_node *ref; 2906 struct btrfs_delayed_data_ref *data_ref; 2907 struct btrfs_delayed_ref_root *delayed_refs; 2908 struct rb_node *node; 2909 int ret = 0; 2910 2911 delayed_refs = &trans->transaction->delayed_refs; 2912 spin_lock(&delayed_refs->lock); 2913 head = btrfs_find_delayed_ref_head(trans, bytenr); 2914 if (!head) { 2915 spin_unlock(&delayed_refs->lock); 2916 return 0; 2917 } 2918 2919 if (!mutex_trylock(&head->mutex)) { 2920 atomic_inc(&head->node.refs); 2921 spin_unlock(&delayed_refs->lock); 2922 2923 btrfs_release_path(path); 2924 2925 /* 2926 * Mutex was contended, block until it's released and let 2927 * caller try again 2928 */ 2929 mutex_lock(&head->mutex); 2930 mutex_unlock(&head->mutex); 2931 btrfs_put_delayed_ref(&head->node); 2932 return -EAGAIN; 2933 } 2934 spin_unlock(&delayed_refs->lock); 2935 2936 spin_lock(&head->lock); 2937 node = rb_first(&head->ref_root); 2938 while (node) { 2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2940 node = rb_next(node); 2941 2942 /* If it's a shared ref we know a cross reference exists */ 2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2944 ret = 1; 2945 break; 2946 } 2947 2948 data_ref = btrfs_delayed_node_to_data_ref(ref); 2949 2950 /* 2951 * If our ref doesn't match the one we're currently looking at 2952 * then we have a cross reference. 2953 */ 2954 if (data_ref->root != root->root_key.objectid || 2955 data_ref->objectid != objectid || 2956 data_ref->offset != offset) { 2957 ret = 1; 2958 break; 2959 } 2960 } 2961 spin_unlock(&head->lock); 2962 mutex_unlock(&head->mutex); 2963 return ret; 2964} 2965 2966static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2967 struct btrfs_root *root, 2968 struct btrfs_path *path, 2969 u64 objectid, u64 offset, u64 bytenr) 2970{ 2971 struct btrfs_root *extent_root = root->fs_info->extent_root; 2972 struct extent_buffer *leaf; 2973 struct btrfs_extent_data_ref *ref; 2974 struct btrfs_extent_inline_ref *iref; 2975 struct btrfs_extent_item *ei; 2976 struct btrfs_key key; 2977 u32 item_size; 2978 int ret; 2979 2980 key.objectid = bytenr; 2981 key.offset = (u64)-1; 2982 key.type = BTRFS_EXTENT_ITEM_KEY; 2983 2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2985 if (ret < 0) 2986 goto out; 2987 BUG_ON(ret == 0); /* Corruption */ 2988 2989 ret = -ENOENT; 2990 if (path->slots[0] == 0) 2991 goto out; 2992 2993 path->slots[0]--; 2994 leaf = path->nodes[0]; 2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2996 2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2998 goto out; 2999 3000 ret = 1; 3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3002#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3003 if (item_size < sizeof(*ei)) { 3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3005 goto out; 3006 } 3007#endif 3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3009 3010 if (item_size != sizeof(*ei) + 3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3012 goto out; 3013 3014 if (btrfs_extent_generation(leaf, ei) <= 3015 btrfs_root_last_snapshot(&root->root_item)) 3016 goto out; 3017 3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3019 if (btrfs_extent_inline_ref_type(leaf, iref) != 3020 BTRFS_EXTENT_DATA_REF_KEY) 3021 goto out; 3022 3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3024 if (btrfs_extent_refs(leaf, ei) != 3025 btrfs_extent_data_ref_count(leaf, ref) || 3026 btrfs_extent_data_ref_root(leaf, ref) != 3027 root->root_key.objectid || 3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3029 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3030 goto out; 3031 3032 ret = 0; 3033out: 3034 return ret; 3035} 3036 3037int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3038 struct btrfs_root *root, 3039 u64 objectid, u64 offset, u64 bytenr) 3040{ 3041 struct btrfs_path *path; 3042 int ret; 3043 int ret2; 3044 3045 path = btrfs_alloc_path(); 3046 if (!path) 3047 return -ENOENT; 3048 3049 do { 3050 ret = check_committed_ref(trans, root, path, objectid, 3051 offset, bytenr); 3052 if (ret && ret != -ENOENT) 3053 goto out; 3054 3055 ret2 = check_delayed_ref(trans, root, path, objectid, 3056 offset, bytenr); 3057 } while (ret2 == -EAGAIN); 3058 3059 if (ret2 && ret2 != -ENOENT) { 3060 ret = ret2; 3061 goto out; 3062 } 3063 3064 if (ret != -ENOENT || ret2 != -ENOENT) 3065 ret = 0; 3066out: 3067 btrfs_free_path(path); 3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3069 WARN_ON(ret > 0); 3070 return ret; 3071} 3072 3073static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3074 struct btrfs_root *root, 3075 struct extent_buffer *buf, 3076 int full_backref, int inc) 3077{ 3078 u64 bytenr; 3079 u64 num_bytes; 3080 u64 parent; 3081 u64 ref_root; 3082 u32 nritems; 3083 struct btrfs_key key; 3084 struct btrfs_file_extent_item *fi; 3085 int i; 3086 int level; 3087 int ret = 0; 3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3089 u64, u64, u64, u64, u64, u64, int); 3090 3091 3092 if (btrfs_test_is_dummy_root(root)) 3093 return 0; 3094 3095 ref_root = btrfs_header_owner(buf); 3096 nritems = btrfs_header_nritems(buf); 3097 level = btrfs_header_level(buf); 3098 3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3100 return 0; 3101 3102 if (inc) 3103 process_func = btrfs_inc_extent_ref; 3104 else 3105 process_func = btrfs_free_extent; 3106 3107 if (full_backref) 3108 parent = buf->start; 3109 else 3110 parent = 0; 3111 3112 for (i = 0; i < nritems; i++) { 3113 if (level == 0) { 3114 btrfs_item_key_to_cpu(buf, &key, i); 3115 if (key.type != BTRFS_EXTENT_DATA_KEY) 3116 continue; 3117 fi = btrfs_item_ptr(buf, i, 3118 struct btrfs_file_extent_item); 3119 if (btrfs_file_extent_type(buf, fi) == 3120 BTRFS_FILE_EXTENT_INLINE) 3121 continue; 3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3123 if (bytenr == 0) 3124 continue; 3125 3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3127 key.offset -= btrfs_file_extent_offset(buf, fi); 3128 ret = process_func(trans, root, bytenr, num_bytes, 3129 parent, ref_root, key.objectid, 3130 key.offset, 1); 3131 if (ret) 3132 goto fail; 3133 } else { 3134 bytenr = btrfs_node_blockptr(buf, i); 3135 num_bytes = root->nodesize; 3136 ret = process_func(trans, root, bytenr, num_bytes, 3137 parent, ref_root, level - 1, 0, 3138 1); 3139 if (ret) 3140 goto fail; 3141 } 3142 } 3143 return 0; 3144fail: 3145 return ret; 3146} 3147 3148int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3149 struct extent_buffer *buf, int full_backref) 3150{ 3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3152} 3153 3154int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3155 struct extent_buffer *buf, int full_backref) 3156{ 3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3158} 3159 3160static int write_one_cache_group(struct btrfs_trans_handle *trans, 3161 struct btrfs_root *root, 3162 struct btrfs_path *path, 3163 struct btrfs_block_group_cache *cache) 3164{ 3165 int ret; 3166 struct btrfs_root *extent_root = root->fs_info->extent_root; 3167 unsigned long bi; 3168 struct extent_buffer *leaf; 3169 3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3171 if (ret) { 3172 if (ret > 0) 3173 ret = -ENOENT; 3174 goto fail; 3175 } 3176 3177 leaf = path->nodes[0]; 3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3180 btrfs_mark_buffer_dirty(leaf); 3181fail: 3182 btrfs_release_path(path); 3183 return ret; 3184 3185} 3186 3187static struct btrfs_block_group_cache * 3188next_block_group(struct btrfs_root *root, 3189 struct btrfs_block_group_cache *cache) 3190{ 3191 struct rb_node *node; 3192 3193 spin_lock(&root->fs_info->block_group_cache_lock); 3194 3195 /* If our block group was removed, we need a full search. */ 3196 if (RB_EMPTY_NODE(&cache->cache_node)) { 3197 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3198 3199 spin_unlock(&root->fs_info->block_group_cache_lock); 3200 btrfs_put_block_group(cache); 3201 cache = btrfs_lookup_first_block_group(root->fs_info, 3202 next_bytenr); 3203 return cache; 3204 } 3205 node = rb_next(&cache->cache_node); 3206 btrfs_put_block_group(cache); 3207 if (node) { 3208 cache = rb_entry(node, struct btrfs_block_group_cache, 3209 cache_node); 3210 btrfs_get_block_group(cache); 3211 } else 3212 cache = NULL; 3213 spin_unlock(&root->fs_info->block_group_cache_lock); 3214 return cache; 3215} 3216 3217static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3218 struct btrfs_trans_handle *trans, 3219 struct btrfs_path *path) 3220{ 3221 struct btrfs_root *root = block_group->fs_info->tree_root; 3222 struct inode *inode = NULL; 3223 u64 alloc_hint = 0; 3224 int dcs = BTRFS_DC_ERROR; 3225 u64 num_pages = 0; 3226 int retries = 0; 3227 int ret = 0; 3228 3229 /* 3230 * If this block group is smaller than 100 megs don't bother caching the 3231 * block group. 3232 */ 3233 if (block_group->key.offset < (100 * 1024 * 1024)) { 3234 spin_lock(&block_group->lock); 3235 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3236 spin_unlock(&block_group->lock); 3237 return 0; 3238 } 3239 3240 if (trans->aborted) 3241 return 0; 3242again: 3243 inode = lookup_free_space_inode(root, block_group, path); 3244 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3245 ret = PTR_ERR(inode); 3246 btrfs_release_path(path); 3247 goto out; 3248 } 3249 3250 if (IS_ERR(inode)) { 3251 BUG_ON(retries); 3252 retries++; 3253 3254 if (block_group->ro) 3255 goto out_free; 3256 3257 ret = create_free_space_inode(root, trans, block_group, path); 3258 if (ret) 3259 goto out_free; 3260 goto again; 3261 } 3262 3263 /* We've already setup this transaction, go ahead and exit */ 3264 if (block_group->cache_generation == trans->transid && 3265 i_size_read(inode)) { 3266 dcs = BTRFS_DC_SETUP; 3267 goto out_put; 3268 } 3269 3270 /* 3271 * We want to set the generation to 0, that way if anything goes wrong 3272 * from here on out we know not to trust this cache when we load up next 3273 * time. 3274 */ 3275 BTRFS_I(inode)->generation = 0; 3276 ret = btrfs_update_inode(trans, root, inode); 3277 if (ret) { 3278 /* 3279 * So theoretically we could recover from this, simply set the 3280 * super cache generation to 0 so we know to invalidate the 3281 * cache, but then we'd have to keep track of the block groups 3282 * that fail this way so we know we _have_ to reset this cache 3283 * before the next commit or risk reading stale cache. So to 3284 * limit our exposure to horrible edge cases lets just abort the 3285 * transaction, this only happens in really bad situations 3286 * anyway. 3287 */ 3288 btrfs_abort_transaction(trans, root, ret); 3289 goto out_put; 3290 } 3291 WARN_ON(ret); 3292 3293 if (i_size_read(inode) > 0) { 3294 ret = btrfs_check_trunc_cache_free_space(root, 3295 &root->fs_info->global_block_rsv); 3296 if (ret) 3297 goto out_put; 3298 3299 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3300 if (ret) 3301 goto out_put; 3302 } 3303 3304 spin_lock(&block_group->lock); 3305 if (block_group->cached != BTRFS_CACHE_FINISHED || 3306 !btrfs_test_opt(root, SPACE_CACHE)) { 3307 /* 3308 * don't bother trying to write stuff out _if_ 3309 * a) we're not cached, 3310 * b) we're with nospace_cache mount option. 3311 */ 3312 dcs = BTRFS_DC_WRITTEN; 3313 spin_unlock(&block_group->lock); 3314 goto out_put; 3315 } 3316 spin_unlock(&block_group->lock); 3317 3318 /* 3319 * Try to preallocate enough space based on how big the block group is. 3320 * Keep in mind this has to include any pinned space which could end up 3321 * taking up quite a bit since it's not folded into the other space 3322 * cache. 3323 */ 3324 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3325 if (!num_pages) 3326 num_pages = 1; 3327 3328 num_pages *= 16; 3329 num_pages *= PAGE_CACHE_SIZE; 3330 3331 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3332 if (ret) 3333 goto out_put; 3334 3335 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3336 num_pages, num_pages, 3337 &alloc_hint); 3338 if (!ret) 3339 dcs = BTRFS_DC_SETUP; 3340 btrfs_free_reserved_data_space(inode, num_pages); 3341 3342out_put: 3343 iput(inode); 3344out_free: 3345 btrfs_release_path(path); 3346out: 3347 spin_lock(&block_group->lock); 3348 if (!ret && dcs == BTRFS_DC_SETUP) 3349 block_group->cache_generation = trans->transid; 3350 block_group->disk_cache_state = dcs; 3351 spin_unlock(&block_group->lock); 3352 3353 return ret; 3354} 3355 3356int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3357 struct btrfs_root *root) 3358{ 3359 struct btrfs_block_group_cache *cache, *tmp; 3360 struct btrfs_transaction *cur_trans = trans->transaction; 3361 struct btrfs_path *path; 3362 3363 if (list_empty(&cur_trans->dirty_bgs) || 3364 !btrfs_test_opt(root, SPACE_CACHE)) 3365 return 0; 3366 3367 path = btrfs_alloc_path(); 3368 if (!path) 3369 return -ENOMEM; 3370 3371 /* Could add new block groups, use _safe just in case */ 3372 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3373 dirty_list) { 3374 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3375 cache_save_setup(cache, trans, path); 3376 } 3377 3378 btrfs_free_path(path); 3379 return 0; 3380} 3381 3382/* 3383 * transaction commit does final block group cache writeback during a 3384 * critical section where nothing is allowed to change the FS. This is 3385 * required in order for the cache to actually match the block group, 3386 * but can introduce a lot of latency into the commit. 3387 * 3388 * So, btrfs_start_dirty_block_groups is here to kick off block group 3389 * cache IO. There's a chance we'll have to redo some of it if the 3390 * block group changes again during the commit, but it greatly reduces 3391 * the commit latency by getting rid of the easy block groups while 3392 * we're still allowing others to join the commit. 3393 */ 3394int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3395 struct btrfs_root *root) 3396{ 3397 struct btrfs_block_group_cache *cache; 3398 struct btrfs_transaction *cur_trans = trans->transaction; 3399 int ret = 0; 3400 int should_put; 3401 struct btrfs_path *path = NULL; 3402 LIST_HEAD(dirty); 3403 struct list_head *io = &cur_trans->io_bgs; 3404 int num_started = 0; 3405 int loops = 0; 3406 3407 spin_lock(&cur_trans->dirty_bgs_lock); 3408 if (list_empty(&cur_trans->dirty_bgs)) { 3409 spin_unlock(&cur_trans->dirty_bgs_lock); 3410 return 0; 3411 } 3412 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3413 spin_unlock(&cur_trans->dirty_bgs_lock); 3414 3415again: 3416 /* 3417 * make sure all the block groups on our dirty list actually 3418 * exist 3419 */ 3420 btrfs_create_pending_block_groups(trans, root); 3421 3422 if (!path) { 3423 path = btrfs_alloc_path(); 3424 if (!path) 3425 return -ENOMEM; 3426 } 3427 3428 /* 3429 * cache_write_mutex is here only to save us from balance or automatic 3430 * removal of empty block groups deleting this block group while we are 3431 * writing out the cache 3432 */ 3433 mutex_lock(&trans->transaction->cache_write_mutex); 3434 while (!list_empty(&dirty)) { 3435 cache = list_first_entry(&dirty, 3436 struct btrfs_block_group_cache, 3437 dirty_list); 3438 /* 3439 * this can happen if something re-dirties a block 3440 * group that is already under IO. Just wait for it to 3441 * finish and then do it all again 3442 */ 3443 if (!list_empty(&cache->io_list)) { 3444 list_del_init(&cache->io_list); 3445 btrfs_wait_cache_io(root, trans, cache, 3446 &cache->io_ctl, path, 3447 cache->key.objectid); 3448 btrfs_put_block_group(cache); 3449 } 3450 3451 3452 /* 3453 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3454 * if it should update the cache_state. Don't delete 3455 * until after we wait. 3456 * 3457 * Since we're not running in the commit critical section 3458 * we need the dirty_bgs_lock to protect from update_block_group 3459 */ 3460 spin_lock(&cur_trans->dirty_bgs_lock); 3461 list_del_init(&cache->dirty_list); 3462 spin_unlock(&cur_trans->dirty_bgs_lock); 3463 3464 should_put = 1; 3465 3466 cache_save_setup(cache, trans, path); 3467 3468 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3469 cache->io_ctl.inode = NULL; 3470 ret = btrfs_write_out_cache(root, trans, cache, path); 3471 if (ret == 0 && cache->io_ctl.inode) { 3472 num_started++; 3473 should_put = 0; 3474 3475 /* 3476 * the cache_write_mutex is protecting 3477 * the io_list 3478 */ 3479 list_add_tail(&cache->io_list, io); 3480 } else { 3481 /* 3482 * if we failed to write the cache, the 3483 * generation will be bad and life goes on 3484 */ 3485 ret = 0; 3486 } 3487 } 3488 if (!ret) { 3489 ret = write_one_cache_group(trans, root, path, cache); 3490 /* 3491 * Our block group might still be attached to the list 3492 * of new block groups in the transaction handle of some 3493 * other task (struct btrfs_trans_handle->new_bgs). This 3494 * means its block group item isn't yet in the extent 3495 * tree. If this happens ignore the error, as we will 3496 * try again later in the critical section of the 3497 * transaction commit. 3498 */ 3499 if (ret == -ENOENT) { 3500 ret = 0; 3501 spin_lock(&cur_trans->dirty_bgs_lock); 3502 if (list_empty(&cache->dirty_list)) { 3503 list_add_tail(&cache->dirty_list, 3504 &cur_trans->dirty_bgs); 3505 btrfs_get_block_group(cache); 3506 } 3507 spin_unlock(&cur_trans->dirty_bgs_lock); 3508 } else if (ret) { 3509 btrfs_abort_transaction(trans, root, ret); 3510 } 3511 } 3512 3513 /* if its not on the io list, we need to put the block group */ 3514 if (should_put) 3515 btrfs_put_block_group(cache); 3516 3517 if (ret) 3518 break; 3519 3520 /* 3521 * Avoid blocking other tasks for too long. It might even save 3522 * us from writing caches for block groups that are going to be 3523 * removed. 3524 */ 3525 mutex_unlock(&trans->transaction->cache_write_mutex); 3526 mutex_lock(&trans->transaction->cache_write_mutex); 3527 } 3528 mutex_unlock(&trans->transaction->cache_write_mutex); 3529 3530 /* 3531 * go through delayed refs for all the stuff we've just kicked off 3532 * and then loop back (just once) 3533 */ 3534 ret = btrfs_run_delayed_refs(trans, root, 0); 3535 if (!ret && loops == 0) { 3536 loops++; 3537 spin_lock(&cur_trans->dirty_bgs_lock); 3538 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3539 /* 3540 * dirty_bgs_lock protects us from concurrent block group 3541 * deletes too (not just cache_write_mutex). 3542 */ 3543 if (!list_empty(&dirty)) { 3544 spin_unlock(&cur_trans->dirty_bgs_lock); 3545 goto again; 3546 } 3547 spin_unlock(&cur_trans->dirty_bgs_lock); 3548 } 3549 3550 btrfs_free_path(path); 3551 return ret; 3552} 3553 3554int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3555 struct btrfs_root *root) 3556{ 3557 struct btrfs_block_group_cache *cache; 3558 struct btrfs_transaction *cur_trans = trans->transaction; 3559 int ret = 0; 3560 int should_put; 3561 struct btrfs_path *path; 3562 struct list_head *io = &cur_trans->io_bgs; 3563 int num_started = 0; 3564 3565 path = btrfs_alloc_path(); 3566 if (!path) 3567 return -ENOMEM; 3568 3569 /* 3570 * We don't need the lock here since we are protected by the transaction 3571 * commit. We want to do the cache_save_setup first and then run the 3572 * delayed refs to make sure we have the best chance at doing this all 3573 * in one shot. 3574 */ 3575 while (!list_empty(&cur_trans->dirty_bgs)) { 3576 cache = list_first_entry(&cur_trans->dirty_bgs, 3577 struct btrfs_block_group_cache, 3578 dirty_list); 3579 3580 /* 3581 * this can happen if cache_save_setup re-dirties a block 3582 * group that is already under IO. Just wait for it to 3583 * finish and then do it all again 3584 */ 3585 if (!list_empty(&cache->io_list)) { 3586 list_del_init(&cache->io_list); 3587 btrfs_wait_cache_io(root, trans, cache, 3588 &cache->io_ctl, path, 3589 cache->key.objectid); 3590 btrfs_put_block_group(cache); 3591 } 3592 3593 /* 3594 * don't remove from the dirty list until after we've waited 3595 * on any pending IO 3596 */ 3597 list_del_init(&cache->dirty_list); 3598 should_put = 1; 3599 3600 cache_save_setup(cache, trans, path); 3601 3602 if (!ret) 3603 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3604 3605 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3606 cache->io_ctl.inode = NULL; 3607 ret = btrfs_write_out_cache(root, trans, cache, path); 3608 if (ret == 0 && cache->io_ctl.inode) { 3609 num_started++; 3610 should_put = 0; 3611 list_add_tail(&cache->io_list, io); 3612 } else { 3613 /* 3614 * if we failed to write the cache, the 3615 * generation will be bad and life goes on 3616 */ 3617 ret = 0; 3618 } 3619 } 3620 if (!ret) { 3621 ret = write_one_cache_group(trans, root, path, cache); 3622 if (ret) 3623 btrfs_abort_transaction(trans, root, ret); 3624 } 3625 3626 /* if its not on the io list, we need to put the block group */ 3627 if (should_put) 3628 btrfs_put_block_group(cache); 3629 } 3630 3631 while (!list_empty(io)) { 3632 cache = list_first_entry(io, struct btrfs_block_group_cache, 3633 io_list); 3634 list_del_init(&cache->io_list); 3635 btrfs_wait_cache_io(root, trans, cache, 3636 &cache->io_ctl, path, cache->key.objectid); 3637 btrfs_put_block_group(cache); 3638 } 3639 3640 btrfs_free_path(path); 3641 return ret; 3642} 3643 3644int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3645{ 3646 struct btrfs_block_group_cache *block_group; 3647 int readonly = 0; 3648 3649 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3650 if (!block_group || block_group->ro) 3651 readonly = 1; 3652 if (block_group) 3653 btrfs_put_block_group(block_group); 3654 return readonly; 3655} 3656 3657static const char *alloc_name(u64 flags) 3658{ 3659 switch (flags) { 3660 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3661 return "mixed"; 3662 case BTRFS_BLOCK_GROUP_METADATA: 3663 return "metadata"; 3664 case BTRFS_BLOCK_GROUP_DATA: 3665 return "data"; 3666 case BTRFS_BLOCK_GROUP_SYSTEM: 3667 return "system"; 3668 default: 3669 WARN_ON(1); 3670 return "invalid-combination"; 3671 }; 3672} 3673 3674static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3675 u64 total_bytes, u64 bytes_used, 3676 struct btrfs_space_info **space_info) 3677{ 3678 struct btrfs_space_info *found; 3679 int i; 3680 int factor; 3681 int ret; 3682 3683 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3684 BTRFS_BLOCK_GROUP_RAID10)) 3685 factor = 2; 3686 else 3687 factor = 1; 3688 3689 found = __find_space_info(info, flags); 3690 if (found) { 3691 spin_lock(&found->lock); 3692 found->total_bytes += total_bytes; 3693 found->disk_total += total_bytes * factor; 3694 found->bytes_used += bytes_used; 3695 found->disk_used += bytes_used * factor; 3696 found->full = 0; 3697 spin_unlock(&found->lock); 3698 *space_info = found; 3699 return 0; 3700 } 3701 found = kzalloc(sizeof(*found), GFP_NOFS); 3702 if (!found) 3703 return -ENOMEM; 3704 3705 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3706 if (ret) { 3707 kfree(found); 3708 return ret; 3709 } 3710 3711 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3712 INIT_LIST_HEAD(&found->block_groups[i]); 3713 init_rwsem(&found->groups_sem); 3714 spin_lock_init(&found->lock); 3715 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3716 found->total_bytes = total_bytes; 3717 found->disk_total = total_bytes * factor; 3718 found->bytes_used = bytes_used; 3719 found->disk_used = bytes_used * factor; 3720 found->bytes_pinned = 0; 3721 found->bytes_reserved = 0; 3722 found->bytes_readonly = 0; 3723 found->bytes_may_use = 0; 3724 found->full = 0; 3725 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3726 found->chunk_alloc = 0; 3727 found->flush = 0; 3728 init_waitqueue_head(&found->wait); 3729 INIT_LIST_HEAD(&found->ro_bgs); 3730 3731 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3732 info->space_info_kobj, "%s", 3733 alloc_name(found->flags)); 3734 if (ret) { 3735 kfree(found); 3736 return ret; 3737 } 3738 3739 *space_info = found; 3740 list_add_rcu(&found->list, &info->space_info); 3741 if (flags & BTRFS_BLOCK_GROUP_DATA) 3742 info->data_sinfo = found; 3743 3744 return ret; 3745} 3746 3747static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3748{ 3749 u64 extra_flags = chunk_to_extended(flags) & 3750 BTRFS_EXTENDED_PROFILE_MASK; 3751 3752 write_seqlock(&fs_info->profiles_lock); 3753 if (flags & BTRFS_BLOCK_GROUP_DATA) 3754 fs_info->avail_data_alloc_bits |= extra_flags; 3755 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3756 fs_info->avail_metadata_alloc_bits |= extra_flags; 3757 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3758 fs_info->avail_system_alloc_bits |= extra_flags; 3759 write_sequnlock(&fs_info->profiles_lock); 3760} 3761 3762/* 3763 * returns target flags in extended format or 0 if restripe for this 3764 * chunk_type is not in progress 3765 * 3766 * should be called with either volume_mutex or balance_lock held 3767 */ 3768static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3769{ 3770 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3771 u64 target = 0; 3772 3773 if (!bctl) 3774 return 0; 3775 3776 if (flags & BTRFS_BLOCK_GROUP_DATA && 3777 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3778 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3779 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3780 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3781 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3782 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3783 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3784 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3785 } 3786 3787 return target; 3788} 3789 3790/* 3791 * @flags: available profiles in extended format (see ctree.h) 3792 * 3793 * Returns reduced profile in chunk format. If profile changing is in 3794 * progress (either running or paused) picks the target profile (if it's 3795 * already available), otherwise falls back to plain reducing. 3796 */ 3797static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3798{ 3799 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3800 u64 target; 3801 u64 tmp; 3802 3803 /* 3804 * see if restripe for this chunk_type is in progress, if so 3805 * try to reduce to the target profile 3806 */ 3807 spin_lock(&root->fs_info->balance_lock); 3808 target = get_restripe_target(root->fs_info, flags); 3809 if (target) { 3810 /* pick target profile only if it's already available */ 3811 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3812 spin_unlock(&root->fs_info->balance_lock); 3813 return extended_to_chunk(target); 3814 } 3815 } 3816 spin_unlock(&root->fs_info->balance_lock); 3817 3818 /* First, mask out the RAID levels which aren't possible */ 3819 if (num_devices == 1) 3820 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3821 BTRFS_BLOCK_GROUP_RAID5); 3822 if (num_devices < 3) 3823 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3824 if (num_devices < 4) 3825 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3826 3827 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3828 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3829 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3830 flags &= ~tmp; 3831 3832 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3833 tmp = BTRFS_BLOCK_GROUP_RAID6; 3834 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3835 tmp = BTRFS_BLOCK_GROUP_RAID5; 3836 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3837 tmp = BTRFS_BLOCK_GROUP_RAID10; 3838 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3839 tmp = BTRFS_BLOCK_GROUP_RAID1; 3840 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3841 tmp = BTRFS_BLOCK_GROUP_RAID0; 3842 3843 return extended_to_chunk(flags | tmp); 3844} 3845 3846static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3847{ 3848 unsigned seq; 3849 u64 flags; 3850 3851 do { 3852 flags = orig_flags; 3853 seq = read_seqbegin(&root->fs_info->profiles_lock); 3854 3855 if (flags & BTRFS_BLOCK_GROUP_DATA) 3856 flags |= root->fs_info->avail_data_alloc_bits; 3857 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3858 flags |= root->fs_info->avail_system_alloc_bits; 3859 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3860 flags |= root->fs_info->avail_metadata_alloc_bits; 3861 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3862 3863 return btrfs_reduce_alloc_profile(root, flags); 3864} 3865 3866u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3867{ 3868 u64 flags; 3869 u64 ret; 3870 3871 if (data) 3872 flags = BTRFS_BLOCK_GROUP_DATA; 3873 else if (root == root->fs_info->chunk_root) 3874 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3875 else 3876 flags = BTRFS_BLOCK_GROUP_METADATA; 3877 3878 ret = get_alloc_profile(root, flags); 3879 return ret; 3880} 3881 3882/* 3883 * This will check the space that the inode allocates from to make sure we have 3884 * enough space for bytes. 3885 */ 3886int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3887{ 3888 struct btrfs_space_info *data_sinfo; 3889 struct btrfs_root *root = BTRFS_I(inode)->root; 3890 struct btrfs_fs_info *fs_info = root->fs_info; 3891 u64 used; 3892 int ret = 0; 3893 int need_commit = 2; 3894 int have_pinned_space; 3895 3896 /* make sure bytes are sectorsize aligned */ 3897 bytes = ALIGN(bytes, root->sectorsize); 3898 3899 if (btrfs_is_free_space_inode(inode)) { 3900 need_commit = 0; 3901 ASSERT(current->journal_info); 3902 } 3903 3904 data_sinfo = fs_info->data_sinfo; 3905 if (!data_sinfo) 3906 goto alloc; 3907 3908again: 3909 /* make sure we have enough space to handle the data first */ 3910 spin_lock(&data_sinfo->lock); 3911 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3912 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3913 data_sinfo->bytes_may_use; 3914 3915 if (used + bytes > data_sinfo->total_bytes) { 3916 struct btrfs_trans_handle *trans; 3917 3918 /* 3919 * if we don't have enough free bytes in this space then we need 3920 * to alloc a new chunk. 3921 */ 3922 if (!data_sinfo->full) { 3923 u64 alloc_target; 3924 3925 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3926 spin_unlock(&data_sinfo->lock); 3927alloc: 3928 alloc_target = btrfs_get_alloc_profile(root, 1); 3929 /* 3930 * It is ugly that we don't call nolock join 3931 * transaction for the free space inode case here. 3932 * But it is safe because we only do the data space 3933 * reservation for the free space cache in the 3934 * transaction context, the common join transaction 3935 * just increase the counter of the current transaction 3936 * handler, doesn't try to acquire the trans_lock of 3937 * the fs. 3938 */ 3939 trans = btrfs_join_transaction(root); 3940 if (IS_ERR(trans)) 3941 return PTR_ERR(trans); 3942 3943 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3944 alloc_target, 3945 CHUNK_ALLOC_NO_FORCE); 3946 btrfs_end_transaction(trans, root); 3947 if (ret < 0) { 3948 if (ret != -ENOSPC) 3949 return ret; 3950 else { 3951 have_pinned_space = 1; 3952 goto commit_trans; 3953 } 3954 } 3955 3956 if (!data_sinfo) 3957 data_sinfo = fs_info->data_sinfo; 3958 3959 goto again; 3960 } 3961 3962 /* 3963 * If we don't have enough pinned space to deal with this 3964 * allocation, and no removed chunk in current transaction, 3965 * don't bother committing the transaction. 3966 */ 3967 have_pinned_space = percpu_counter_compare( 3968 &data_sinfo->total_bytes_pinned, 3969 used + bytes - data_sinfo->total_bytes); 3970 spin_unlock(&data_sinfo->lock); 3971 3972 /* commit the current transaction and try again */ 3973commit_trans: 3974 if (need_commit && 3975 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3976 need_commit--; 3977 3978 if (need_commit > 0) { 3979 btrfs_start_delalloc_roots(fs_info, 0, -1); 3980 btrfs_wait_ordered_roots(fs_info, -1); 3981 } 3982 3983 trans = btrfs_join_transaction(root); 3984 if (IS_ERR(trans)) 3985 return PTR_ERR(trans); 3986 if (have_pinned_space >= 0 || 3987 trans->transaction->have_free_bgs || 3988 need_commit > 0) { 3989 ret = btrfs_commit_transaction(trans, root); 3990 if (ret) 3991 return ret; 3992 /* 3993 * The cleaner kthread might still be doing iput 3994 * operations. Wait for it to finish so that 3995 * more space is released. 3996 */ 3997 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 3998 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 3999 goto again; 4000 } else { 4001 btrfs_end_transaction(trans, root); 4002 } 4003 } 4004 4005 trace_btrfs_space_reservation(root->fs_info, 4006 "space_info:enospc", 4007 data_sinfo->flags, bytes, 1); 4008 return -ENOSPC; 4009 } 4010 ret = btrfs_qgroup_reserve(root, write_bytes); 4011 if (ret) 4012 goto out; 4013 data_sinfo->bytes_may_use += bytes; 4014 trace_btrfs_space_reservation(root->fs_info, "space_info", 4015 data_sinfo->flags, bytes, 1); 4016out: 4017 spin_unlock(&data_sinfo->lock); 4018 4019 return ret; 4020} 4021 4022/* 4023 * Called if we need to clear a data reservation for this inode. 4024 */ 4025void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 4026{ 4027 struct btrfs_root *root = BTRFS_I(inode)->root; 4028 struct btrfs_space_info *data_sinfo; 4029 4030 /* make sure bytes are sectorsize aligned */ 4031 bytes = ALIGN(bytes, root->sectorsize); 4032 4033 data_sinfo = root->fs_info->data_sinfo; 4034 spin_lock(&data_sinfo->lock); 4035 WARN_ON(data_sinfo->bytes_may_use < bytes); 4036 data_sinfo->bytes_may_use -= bytes; 4037 trace_btrfs_space_reservation(root->fs_info, "space_info", 4038 data_sinfo->flags, bytes, 0); 4039 spin_unlock(&data_sinfo->lock); 4040} 4041 4042static void force_metadata_allocation(struct btrfs_fs_info *info) 4043{ 4044 struct list_head *head = &info->space_info; 4045 struct btrfs_space_info *found; 4046 4047 rcu_read_lock(); 4048 list_for_each_entry_rcu(found, head, list) { 4049 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4050 found->force_alloc = CHUNK_ALLOC_FORCE; 4051 } 4052 rcu_read_unlock(); 4053} 4054 4055static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4056{ 4057 return (global->size << 1); 4058} 4059 4060static int should_alloc_chunk(struct btrfs_root *root, 4061 struct btrfs_space_info *sinfo, int force) 4062{ 4063 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4064 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4065 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4066 u64 thresh; 4067 4068 if (force == CHUNK_ALLOC_FORCE) 4069 return 1; 4070 4071 /* 4072 * We need to take into account the global rsv because for all intents 4073 * and purposes it's used space. Don't worry about locking the 4074 * global_rsv, it doesn't change except when the transaction commits. 4075 */ 4076 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4077 num_allocated += calc_global_rsv_need_space(global_rsv); 4078 4079 /* 4080 * in limited mode, we want to have some free space up to 4081 * about 1% of the FS size. 4082 */ 4083 if (force == CHUNK_ALLOC_LIMITED) { 4084 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4085 thresh = max_t(u64, 64 * 1024 * 1024, 4086 div_factor_fine(thresh, 1)); 4087 4088 if (num_bytes - num_allocated < thresh) 4089 return 1; 4090 } 4091 4092 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4093 return 0; 4094 return 1; 4095} 4096 4097static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 4098{ 4099 u64 num_dev; 4100 4101 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4102 BTRFS_BLOCK_GROUP_RAID0 | 4103 BTRFS_BLOCK_GROUP_RAID5 | 4104 BTRFS_BLOCK_GROUP_RAID6)) 4105 num_dev = root->fs_info->fs_devices->rw_devices; 4106 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4107 num_dev = 2; 4108 else 4109 num_dev = 1; /* DUP or single */ 4110 4111 /* metadata for updaing devices and chunk tree */ 4112 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 4113} 4114 4115static void check_system_chunk(struct btrfs_trans_handle *trans, 4116 struct btrfs_root *root, u64 type) 4117{ 4118 struct btrfs_space_info *info; 4119 u64 left; 4120 u64 thresh; 4121 4122 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4123 spin_lock(&info->lock); 4124 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4125 info->bytes_reserved - info->bytes_readonly; 4126 spin_unlock(&info->lock); 4127 4128 thresh = get_system_chunk_thresh(root, type); 4129 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4130 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4131 left, thresh, type); 4132 dump_space_info(info, 0, 0); 4133 } 4134 4135 if (left < thresh) { 4136 u64 flags; 4137 4138 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4139 btrfs_alloc_chunk(trans, root, flags); 4140 } 4141} 4142 4143static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4144 struct btrfs_root *extent_root, u64 flags, int force) 4145{ 4146 struct btrfs_space_info *space_info; 4147 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4148 int wait_for_alloc = 0; 4149 int ret = 0; 4150 4151 /* Don't re-enter if we're already allocating a chunk */ 4152 if (trans->allocating_chunk) 4153 return -ENOSPC; 4154 4155 space_info = __find_space_info(extent_root->fs_info, flags); 4156 if (!space_info) { 4157 ret = update_space_info(extent_root->fs_info, flags, 4158 0, 0, &space_info); 4159 BUG_ON(ret); /* -ENOMEM */ 4160 } 4161 BUG_ON(!space_info); /* Logic error */ 4162 4163again: 4164 spin_lock(&space_info->lock); 4165 if (force < space_info->force_alloc) 4166 force = space_info->force_alloc; 4167 if (space_info->full) { 4168 if (should_alloc_chunk(extent_root, space_info, force)) 4169 ret = -ENOSPC; 4170 else 4171 ret = 0; 4172 spin_unlock(&space_info->lock); 4173 return ret; 4174 } 4175 4176 if (!should_alloc_chunk(extent_root, space_info, force)) { 4177 spin_unlock(&space_info->lock); 4178 return 0; 4179 } else if (space_info->chunk_alloc) { 4180 wait_for_alloc = 1; 4181 } else { 4182 space_info->chunk_alloc = 1; 4183 } 4184 4185 spin_unlock(&space_info->lock); 4186 4187 mutex_lock(&fs_info->chunk_mutex); 4188 4189 /* 4190 * The chunk_mutex is held throughout the entirety of a chunk 4191 * allocation, so once we've acquired the chunk_mutex we know that the 4192 * other guy is done and we need to recheck and see if we should 4193 * allocate. 4194 */ 4195 if (wait_for_alloc) { 4196 mutex_unlock(&fs_info->chunk_mutex); 4197 wait_for_alloc = 0; 4198 goto again; 4199 } 4200 4201 trans->allocating_chunk = true; 4202 4203 /* 4204 * If we have mixed data/metadata chunks we want to make sure we keep 4205 * allocating mixed chunks instead of individual chunks. 4206 */ 4207 if (btrfs_mixed_space_info(space_info)) 4208 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4209 4210 /* 4211 * if we're doing a data chunk, go ahead and make sure that 4212 * we keep a reasonable number of metadata chunks allocated in the 4213 * FS as well. 4214 */ 4215 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4216 fs_info->data_chunk_allocations++; 4217 if (!(fs_info->data_chunk_allocations % 4218 fs_info->metadata_ratio)) 4219 force_metadata_allocation(fs_info); 4220 } 4221 4222 /* 4223 * Check if we have enough space in SYSTEM chunk because we may need 4224 * to update devices. 4225 */ 4226 check_system_chunk(trans, extent_root, flags); 4227 4228 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4229 trans->allocating_chunk = false; 4230 4231 spin_lock(&space_info->lock); 4232 if (ret < 0 && ret != -ENOSPC) 4233 goto out; 4234 if (ret) 4235 space_info->full = 1; 4236 else 4237 ret = 1; 4238 4239 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4240out: 4241 space_info->chunk_alloc = 0; 4242 spin_unlock(&space_info->lock); 4243 mutex_unlock(&fs_info->chunk_mutex); 4244 return ret; 4245} 4246 4247static int can_overcommit(struct btrfs_root *root, 4248 struct btrfs_space_info *space_info, u64 bytes, 4249 enum btrfs_reserve_flush_enum flush) 4250{ 4251 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4252 u64 profile = btrfs_get_alloc_profile(root, 0); 4253 u64 space_size; 4254 u64 avail; 4255 u64 used; 4256 4257 used = space_info->bytes_used + space_info->bytes_reserved + 4258 space_info->bytes_pinned + space_info->bytes_readonly; 4259 4260 /* 4261 * We only want to allow over committing if we have lots of actual space 4262 * free, but if we don't have enough space to handle the global reserve 4263 * space then we could end up having a real enospc problem when trying 4264 * to allocate a chunk or some other such important allocation. 4265 */ 4266 spin_lock(&global_rsv->lock); 4267 space_size = calc_global_rsv_need_space(global_rsv); 4268 spin_unlock(&global_rsv->lock); 4269 if (used + space_size >= space_info->total_bytes) 4270 return 0; 4271 4272 used += space_info->bytes_may_use; 4273 4274 spin_lock(&root->fs_info->free_chunk_lock); 4275 avail = root->fs_info->free_chunk_space; 4276 spin_unlock(&root->fs_info->free_chunk_lock); 4277 4278 /* 4279 * If we have dup, raid1 or raid10 then only half of the free 4280 * space is actually useable. For raid56, the space info used 4281 * doesn't include the parity drive, so we don't have to 4282 * change the math 4283 */ 4284 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4285 BTRFS_BLOCK_GROUP_RAID1 | 4286 BTRFS_BLOCK_GROUP_RAID10)) 4287 avail >>= 1; 4288 4289 /* 4290 * If we aren't flushing all things, let us overcommit up to 4291 * 1/2th of the space. If we can flush, don't let us overcommit 4292 * too much, let it overcommit up to 1/8 of the space. 4293 */ 4294 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4295 avail >>= 3; 4296 else 4297 avail >>= 1; 4298 4299 if (used + bytes < space_info->total_bytes + avail) 4300 return 1; 4301 return 0; 4302} 4303 4304static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4305 unsigned long nr_pages, int nr_items) 4306{ 4307 struct super_block *sb = root->fs_info->sb; 4308 4309 if (down_read_trylock(&sb->s_umount)) { 4310 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4311 up_read(&sb->s_umount); 4312 } else { 4313 /* 4314 * We needn't worry the filesystem going from r/w to r/o though 4315 * we don't acquire ->s_umount mutex, because the filesystem 4316 * should guarantee the delalloc inodes list be empty after 4317 * the filesystem is readonly(all dirty pages are written to 4318 * the disk). 4319 */ 4320 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4321 if (!current->journal_info) 4322 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4323 } 4324} 4325 4326static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4327{ 4328 u64 bytes; 4329 int nr; 4330 4331 bytes = btrfs_calc_trans_metadata_size(root, 1); 4332 nr = (int)div64_u64(to_reclaim, bytes); 4333 if (!nr) 4334 nr = 1; 4335 return nr; 4336} 4337 4338#define EXTENT_SIZE_PER_ITEM (256 * 1024) 4339 4340/* 4341 * shrink metadata reservation for delalloc 4342 */ 4343static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4344 bool wait_ordered) 4345{ 4346 struct btrfs_block_rsv *block_rsv; 4347 struct btrfs_space_info *space_info; 4348 struct btrfs_trans_handle *trans; 4349 u64 delalloc_bytes; 4350 u64 max_reclaim; 4351 long time_left; 4352 unsigned long nr_pages; 4353 int loops; 4354 int items; 4355 enum btrfs_reserve_flush_enum flush; 4356 4357 /* Calc the number of the pages we need flush for space reservation */ 4358 items = calc_reclaim_items_nr(root, to_reclaim); 4359 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4360 4361 trans = (struct btrfs_trans_handle *)current->journal_info; 4362 block_rsv = &root->fs_info->delalloc_block_rsv; 4363 space_info = block_rsv->space_info; 4364 4365 delalloc_bytes = percpu_counter_sum_positive( 4366 &root->fs_info->delalloc_bytes); 4367 if (delalloc_bytes == 0) { 4368 if (trans) 4369 return; 4370 if (wait_ordered) 4371 btrfs_wait_ordered_roots(root->fs_info, items); 4372 return; 4373 } 4374 4375 loops = 0; 4376 while (delalloc_bytes && loops < 3) { 4377 max_reclaim = min(delalloc_bytes, to_reclaim); 4378 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4379 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4380 /* 4381 * We need to wait for the async pages to actually start before 4382 * we do anything. 4383 */ 4384 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4385 if (!max_reclaim) 4386 goto skip_async; 4387 4388 if (max_reclaim <= nr_pages) 4389 max_reclaim = 0; 4390 else 4391 max_reclaim -= nr_pages; 4392 4393 wait_event(root->fs_info->async_submit_wait, 4394 atomic_read(&root->fs_info->async_delalloc_pages) <= 4395 (int)max_reclaim); 4396skip_async: 4397 if (!trans) 4398 flush = BTRFS_RESERVE_FLUSH_ALL; 4399 else 4400 flush = BTRFS_RESERVE_NO_FLUSH; 4401 spin_lock(&space_info->lock); 4402 if (can_overcommit(root, space_info, orig, flush)) { 4403 spin_unlock(&space_info->lock); 4404 break; 4405 } 4406 spin_unlock(&space_info->lock); 4407 4408 loops++; 4409 if (wait_ordered && !trans) { 4410 btrfs_wait_ordered_roots(root->fs_info, items); 4411 } else { 4412 time_left = schedule_timeout_killable(1); 4413 if (time_left) 4414 break; 4415 } 4416 delalloc_bytes = percpu_counter_sum_positive( 4417 &root->fs_info->delalloc_bytes); 4418 } 4419} 4420 4421/** 4422 * maybe_commit_transaction - possibly commit the transaction if its ok to 4423 * @root - the root we're allocating for 4424 * @bytes - the number of bytes we want to reserve 4425 * @force - force the commit 4426 * 4427 * This will check to make sure that committing the transaction will actually 4428 * get us somewhere and then commit the transaction if it does. Otherwise it 4429 * will return -ENOSPC. 4430 */ 4431static int may_commit_transaction(struct btrfs_root *root, 4432 struct btrfs_space_info *space_info, 4433 u64 bytes, int force) 4434{ 4435 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4436 struct btrfs_trans_handle *trans; 4437 4438 trans = (struct btrfs_trans_handle *)current->journal_info; 4439 if (trans) 4440 return -EAGAIN; 4441 4442 if (force) 4443 goto commit; 4444 4445 /* See if there is enough pinned space to make this reservation */ 4446 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4447 bytes) >= 0) 4448 goto commit; 4449 4450 /* 4451 * See if there is some space in the delayed insertion reservation for 4452 * this reservation. 4453 */ 4454 if (space_info != delayed_rsv->space_info) 4455 return -ENOSPC; 4456 4457 spin_lock(&delayed_rsv->lock); 4458 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4459 bytes - delayed_rsv->size) >= 0) { 4460 spin_unlock(&delayed_rsv->lock); 4461 return -ENOSPC; 4462 } 4463 spin_unlock(&delayed_rsv->lock); 4464 4465commit: 4466 trans = btrfs_join_transaction(root); 4467 if (IS_ERR(trans)) 4468 return -ENOSPC; 4469 4470 return btrfs_commit_transaction(trans, root); 4471} 4472 4473enum flush_state { 4474 FLUSH_DELAYED_ITEMS_NR = 1, 4475 FLUSH_DELAYED_ITEMS = 2, 4476 FLUSH_DELALLOC = 3, 4477 FLUSH_DELALLOC_WAIT = 4, 4478 ALLOC_CHUNK = 5, 4479 COMMIT_TRANS = 6, 4480}; 4481 4482static int flush_space(struct btrfs_root *root, 4483 struct btrfs_space_info *space_info, u64 num_bytes, 4484 u64 orig_bytes, int state) 4485{ 4486 struct btrfs_trans_handle *trans; 4487 int nr; 4488 int ret = 0; 4489 4490 switch (state) { 4491 case FLUSH_DELAYED_ITEMS_NR: 4492 case FLUSH_DELAYED_ITEMS: 4493 if (state == FLUSH_DELAYED_ITEMS_NR) 4494 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4495 else 4496 nr = -1; 4497 4498 trans = btrfs_join_transaction(root); 4499 if (IS_ERR(trans)) { 4500 ret = PTR_ERR(trans); 4501 break; 4502 } 4503 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4504 btrfs_end_transaction(trans, root); 4505 break; 4506 case FLUSH_DELALLOC: 4507 case FLUSH_DELALLOC_WAIT: 4508 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4509 state == FLUSH_DELALLOC_WAIT); 4510 break; 4511 case ALLOC_CHUNK: 4512 trans = btrfs_join_transaction(root); 4513 if (IS_ERR(trans)) { 4514 ret = PTR_ERR(trans); 4515 break; 4516 } 4517 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4518 btrfs_get_alloc_profile(root, 0), 4519 CHUNK_ALLOC_NO_FORCE); 4520 btrfs_end_transaction(trans, root); 4521 if (ret == -ENOSPC) 4522 ret = 0; 4523 break; 4524 case COMMIT_TRANS: 4525 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4526 break; 4527 default: 4528 ret = -ENOSPC; 4529 break; 4530 } 4531 4532 return ret; 4533} 4534 4535static inline u64 4536btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4537 struct btrfs_space_info *space_info) 4538{ 4539 u64 used; 4540 u64 expected; 4541 u64 to_reclaim; 4542 4543 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4544 16 * 1024 * 1024); 4545 spin_lock(&space_info->lock); 4546 if (can_overcommit(root, space_info, to_reclaim, 4547 BTRFS_RESERVE_FLUSH_ALL)) { 4548 to_reclaim = 0; 4549 goto out; 4550 } 4551 4552 used = space_info->bytes_used + space_info->bytes_reserved + 4553 space_info->bytes_pinned + space_info->bytes_readonly + 4554 space_info->bytes_may_use; 4555 if (can_overcommit(root, space_info, 1024 * 1024, 4556 BTRFS_RESERVE_FLUSH_ALL)) 4557 expected = div_factor_fine(space_info->total_bytes, 95); 4558 else 4559 expected = div_factor_fine(space_info->total_bytes, 90); 4560 4561 if (used > expected) 4562 to_reclaim = used - expected; 4563 else 4564 to_reclaim = 0; 4565 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4566 space_info->bytes_reserved); 4567out: 4568 spin_unlock(&space_info->lock); 4569 4570 return to_reclaim; 4571} 4572 4573static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4574 struct btrfs_fs_info *fs_info, u64 used) 4575{ 4576 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4577 4578 /* If we're just plain full then async reclaim just slows us down. */ 4579 if (space_info->bytes_used >= thresh) 4580 return 0; 4581 4582 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4583 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4584} 4585 4586static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4587 struct btrfs_fs_info *fs_info, 4588 int flush_state) 4589{ 4590 u64 used; 4591 4592 spin_lock(&space_info->lock); 4593 /* 4594 * We run out of space and have not got any free space via flush_space, 4595 * so don't bother doing async reclaim. 4596 */ 4597 if (flush_state > COMMIT_TRANS && space_info->full) { 4598 spin_unlock(&space_info->lock); 4599 return 0; 4600 } 4601 4602 used = space_info->bytes_used + space_info->bytes_reserved + 4603 space_info->bytes_pinned + space_info->bytes_readonly + 4604 space_info->bytes_may_use; 4605 if (need_do_async_reclaim(space_info, fs_info, used)) { 4606 spin_unlock(&space_info->lock); 4607 return 1; 4608 } 4609 spin_unlock(&space_info->lock); 4610 4611 return 0; 4612} 4613 4614static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4615{ 4616 struct btrfs_fs_info *fs_info; 4617 struct btrfs_space_info *space_info; 4618 u64 to_reclaim; 4619 int flush_state; 4620 4621 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4622 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4623 4624 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4625 space_info); 4626 if (!to_reclaim) 4627 return; 4628 4629 flush_state = FLUSH_DELAYED_ITEMS_NR; 4630 do { 4631 flush_space(fs_info->fs_root, space_info, to_reclaim, 4632 to_reclaim, flush_state); 4633 flush_state++; 4634 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4635 flush_state)) 4636 return; 4637 } while (flush_state < COMMIT_TRANS); 4638} 4639 4640void btrfs_init_async_reclaim_work(struct work_struct *work) 4641{ 4642 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4643} 4644 4645/** 4646 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4647 * @root - the root we're allocating for 4648 * @block_rsv - the block_rsv we're allocating for 4649 * @orig_bytes - the number of bytes we want 4650 * @flush - whether or not we can flush to make our reservation 4651 * 4652 * This will reserve orgi_bytes number of bytes from the space info associated 4653 * with the block_rsv. If there is not enough space it will make an attempt to 4654 * flush out space to make room. It will do this by flushing delalloc if 4655 * possible or committing the transaction. If flush is 0 then no attempts to 4656 * regain reservations will be made and this will fail if there is not enough 4657 * space already. 4658 */ 4659static int reserve_metadata_bytes(struct btrfs_root *root, 4660 struct btrfs_block_rsv *block_rsv, 4661 u64 orig_bytes, 4662 enum btrfs_reserve_flush_enum flush) 4663{ 4664 struct btrfs_space_info *space_info = block_rsv->space_info; 4665 u64 used; 4666 u64 num_bytes = orig_bytes; 4667 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4668 int ret = 0; 4669 bool flushing = false; 4670 4671again: 4672 ret = 0; 4673 spin_lock(&space_info->lock); 4674 /* 4675 * We only want to wait if somebody other than us is flushing and we 4676 * are actually allowed to flush all things. 4677 */ 4678 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4679 space_info->flush) { 4680 spin_unlock(&space_info->lock); 4681 /* 4682 * If we have a trans handle we can't wait because the flusher 4683 * may have to commit the transaction, which would mean we would 4684 * deadlock since we are waiting for the flusher to finish, but 4685 * hold the current transaction open. 4686 */ 4687 if (current->journal_info) 4688 return -EAGAIN; 4689 ret = wait_event_killable(space_info->wait, !space_info->flush); 4690 /* Must have been killed, return */ 4691 if (ret) 4692 return -EINTR; 4693 4694 spin_lock(&space_info->lock); 4695 } 4696 4697 ret = -ENOSPC; 4698 used = space_info->bytes_used + space_info->bytes_reserved + 4699 space_info->bytes_pinned + space_info->bytes_readonly + 4700 space_info->bytes_may_use; 4701 4702 /* 4703 * The idea here is that we've not already over-reserved the block group 4704 * then we can go ahead and save our reservation first and then start 4705 * flushing if we need to. Otherwise if we've already overcommitted 4706 * lets start flushing stuff first and then come back and try to make 4707 * our reservation. 4708 */ 4709 if (used <= space_info->total_bytes) { 4710 if (used + orig_bytes <= space_info->total_bytes) { 4711 space_info->bytes_may_use += orig_bytes; 4712 trace_btrfs_space_reservation(root->fs_info, 4713 "space_info", space_info->flags, orig_bytes, 1); 4714 ret = 0; 4715 } else { 4716 /* 4717 * Ok set num_bytes to orig_bytes since we aren't 4718 * overocmmitted, this way we only try and reclaim what 4719 * we need. 4720 */ 4721 num_bytes = orig_bytes; 4722 } 4723 } else { 4724 /* 4725 * Ok we're over committed, set num_bytes to the overcommitted 4726 * amount plus the amount of bytes that we need for this 4727 * reservation. 4728 */ 4729 num_bytes = used - space_info->total_bytes + 4730 (orig_bytes * 2); 4731 } 4732 4733 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4734 space_info->bytes_may_use += orig_bytes; 4735 trace_btrfs_space_reservation(root->fs_info, "space_info", 4736 space_info->flags, orig_bytes, 4737 1); 4738 ret = 0; 4739 } 4740 4741 /* 4742 * Couldn't make our reservation, save our place so while we're trying 4743 * to reclaim space we can actually use it instead of somebody else 4744 * stealing it from us. 4745 * 4746 * We make the other tasks wait for the flush only when we can flush 4747 * all things. 4748 */ 4749 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4750 flushing = true; 4751 space_info->flush = 1; 4752 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4753 used += orig_bytes; 4754 /* 4755 * We will do the space reservation dance during log replay, 4756 * which means we won't have fs_info->fs_root set, so don't do 4757 * the async reclaim as we will panic. 4758 */ 4759 if (!root->fs_info->log_root_recovering && 4760 need_do_async_reclaim(space_info, root->fs_info, used) && 4761 !work_busy(&root->fs_info->async_reclaim_work)) 4762 queue_work(system_unbound_wq, 4763 &root->fs_info->async_reclaim_work); 4764 } 4765 spin_unlock(&space_info->lock); 4766 4767 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4768 goto out; 4769 4770 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4771 flush_state); 4772 flush_state++; 4773 4774 /* 4775 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4776 * would happen. So skip delalloc flush. 4777 */ 4778 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4779 (flush_state == FLUSH_DELALLOC || 4780 flush_state == FLUSH_DELALLOC_WAIT)) 4781 flush_state = ALLOC_CHUNK; 4782 4783 if (!ret) 4784 goto again; 4785 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4786 flush_state < COMMIT_TRANS) 4787 goto again; 4788 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4789 flush_state <= COMMIT_TRANS) 4790 goto again; 4791 4792out: 4793 if (ret == -ENOSPC && 4794 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4795 struct btrfs_block_rsv *global_rsv = 4796 &root->fs_info->global_block_rsv; 4797 4798 if (block_rsv != global_rsv && 4799 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4800 ret = 0; 4801 } 4802 if (ret == -ENOSPC) 4803 trace_btrfs_space_reservation(root->fs_info, 4804 "space_info:enospc", 4805 space_info->flags, orig_bytes, 1); 4806 if (flushing) { 4807 spin_lock(&space_info->lock); 4808 space_info->flush = 0; 4809 wake_up_all(&space_info->wait); 4810 spin_unlock(&space_info->lock); 4811 } 4812 return ret; 4813} 4814 4815static struct btrfs_block_rsv *get_block_rsv( 4816 const struct btrfs_trans_handle *trans, 4817 const struct btrfs_root *root) 4818{ 4819 struct btrfs_block_rsv *block_rsv = NULL; 4820 4821 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4822 block_rsv = trans->block_rsv; 4823 4824 if (root == root->fs_info->csum_root && trans->adding_csums) 4825 block_rsv = trans->block_rsv; 4826 4827 if (root == root->fs_info->uuid_root) 4828 block_rsv = trans->block_rsv; 4829 4830 if (!block_rsv) 4831 block_rsv = root->block_rsv; 4832 4833 if (!block_rsv) 4834 block_rsv = &root->fs_info->empty_block_rsv; 4835 4836 return block_rsv; 4837} 4838 4839static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4840 u64 num_bytes) 4841{ 4842 int ret = -ENOSPC; 4843 spin_lock(&block_rsv->lock); 4844 if (block_rsv->reserved >= num_bytes) { 4845 block_rsv->reserved -= num_bytes; 4846 if (block_rsv->reserved < block_rsv->size) 4847 block_rsv->full = 0; 4848 ret = 0; 4849 } 4850 spin_unlock(&block_rsv->lock); 4851 return ret; 4852} 4853 4854static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4855 u64 num_bytes, int update_size) 4856{ 4857 spin_lock(&block_rsv->lock); 4858 block_rsv->reserved += num_bytes; 4859 if (update_size) 4860 block_rsv->size += num_bytes; 4861 else if (block_rsv->reserved >= block_rsv->size) 4862 block_rsv->full = 1; 4863 spin_unlock(&block_rsv->lock); 4864} 4865 4866int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4867 struct btrfs_block_rsv *dest, u64 num_bytes, 4868 int min_factor) 4869{ 4870 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4871 u64 min_bytes; 4872 4873 if (global_rsv->space_info != dest->space_info) 4874 return -ENOSPC; 4875 4876 spin_lock(&global_rsv->lock); 4877 min_bytes = div_factor(global_rsv->size, min_factor); 4878 if (global_rsv->reserved < min_bytes + num_bytes) { 4879 spin_unlock(&global_rsv->lock); 4880 return -ENOSPC; 4881 } 4882 global_rsv->reserved -= num_bytes; 4883 if (global_rsv->reserved < global_rsv->size) 4884 global_rsv->full = 0; 4885 spin_unlock(&global_rsv->lock); 4886 4887 block_rsv_add_bytes(dest, num_bytes, 1); 4888 return 0; 4889} 4890 4891static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4892 struct btrfs_block_rsv *block_rsv, 4893 struct btrfs_block_rsv *dest, u64 num_bytes) 4894{ 4895 struct btrfs_space_info *space_info = block_rsv->space_info; 4896 4897 spin_lock(&block_rsv->lock); 4898 if (num_bytes == (u64)-1) 4899 num_bytes = block_rsv->size; 4900 block_rsv->size -= num_bytes; 4901 if (block_rsv->reserved >= block_rsv->size) { 4902 num_bytes = block_rsv->reserved - block_rsv->size; 4903 block_rsv->reserved = block_rsv->size; 4904 block_rsv->full = 1; 4905 } else { 4906 num_bytes = 0; 4907 } 4908 spin_unlock(&block_rsv->lock); 4909 4910 if (num_bytes > 0) { 4911 if (dest) { 4912 spin_lock(&dest->lock); 4913 if (!dest->full) { 4914 u64 bytes_to_add; 4915 4916 bytes_to_add = dest->size - dest->reserved; 4917 bytes_to_add = min(num_bytes, bytes_to_add); 4918 dest->reserved += bytes_to_add; 4919 if (dest->reserved >= dest->size) 4920 dest->full = 1; 4921 num_bytes -= bytes_to_add; 4922 } 4923 spin_unlock(&dest->lock); 4924 } 4925 if (num_bytes) { 4926 spin_lock(&space_info->lock); 4927 space_info->bytes_may_use -= num_bytes; 4928 trace_btrfs_space_reservation(fs_info, "space_info", 4929 space_info->flags, num_bytes, 0); 4930 spin_unlock(&space_info->lock); 4931 } 4932 } 4933} 4934 4935static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4936 struct btrfs_block_rsv *dst, u64 num_bytes) 4937{ 4938 int ret; 4939 4940 ret = block_rsv_use_bytes(src, num_bytes); 4941 if (ret) 4942 return ret; 4943 4944 block_rsv_add_bytes(dst, num_bytes, 1); 4945 return 0; 4946} 4947 4948void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4949{ 4950 memset(rsv, 0, sizeof(*rsv)); 4951 spin_lock_init(&rsv->lock); 4952 rsv->type = type; 4953} 4954 4955struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4956 unsigned short type) 4957{ 4958 struct btrfs_block_rsv *block_rsv; 4959 struct btrfs_fs_info *fs_info = root->fs_info; 4960 4961 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4962 if (!block_rsv) 4963 return NULL; 4964 4965 btrfs_init_block_rsv(block_rsv, type); 4966 block_rsv->space_info = __find_space_info(fs_info, 4967 BTRFS_BLOCK_GROUP_METADATA); 4968 return block_rsv; 4969} 4970 4971void btrfs_free_block_rsv(struct btrfs_root *root, 4972 struct btrfs_block_rsv *rsv) 4973{ 4974 if (!rsv) 4975 return; 4976 btrfs_block_rsv_release(root, rsv, (u64)-1); 4977 kfree(rsv); 4978} 4979 4980void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 4981{ 4982 kfree(rsv); 4983} 4984 4985int btrfs_block_rsv_add(struct btrfs_root *root, 4986 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4987 enum btrfs_reserve_flush_enum flush) 4988{ 4989 int ret; 4990 4991 if (num_bytes == 0) 4992 return 0; 4993 4994 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4995 if (!ret) { 4996 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4997 return 0; 4998 } 4999 5000 return ret; 5001} 5002 5003int btrfs_block_rsv_check(struct btrfs_root *root, 5004 struct btrfs_block_rsv *block_rsv, int min_factor) 5005{ 5006 u64 num_bytes = 0; 5007 int ret = -ENOSPC; 5008 5009 if (!block_rsv) 5010 return 0; 5011 5012 spin_lock(&block_rsv->lock); 5013 num_bytes = div_factor(block_rsv->size, min_factor); 5014 if (block_rsv->reserved >= num_bytes) 5015 ret = 0; 5016 spin_unlock(&block_rsv->lock); 5017 5018 return ret; 5019} 5020 5021int btrfs_block_rsv_refill(struct btrfs_root *root, 5022 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5023 enum btrfs_reserve_flush_enum flush) 5024{ 5025 u64 num_bytes = 0; 5026 int ret = -ENOSPC; 5027 5028 if (!block_rsv) 5029 return 0; 5030 5031 spin_lock(&block_rsv->lock); 5032 num_bytes = min_reserved; 5033 if (block_rsv->reserved >= num_bytes) 5034 ret = 0; 5035 else 5036 num_bytes -= block_rsv->reserved; 5037 spin_unlock(&block_rsv->lock); 5038 5039 if (!ret) 5040 return 0; 5041 5042 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5043 if (!ret) { 5044 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5045 return 0; 5046 } 5047 5048 return ret; 5049} 5050 5051int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5052 struct btrfs_block_rsv *dst_rsv, 5053 u64 num_bytes) 5054{ 5055 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5056} 5057 5058void btrfs_block_rsv_release(struct btrfs_root *root, 5059 struct btrfs_block_rsv *block_rsv, 5060 u64 num_bytes) 5061{ 5062 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5063 if (global_rsv == block_rsv || 5064 block_rsv->space_info != global_rsv->space_info) 5065 global_rsv = NULL; 5066 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5067 num_bytes); 5068} 5069 5070/* 5071 * helper to calculate size of global block reservation. 5072 * the desired value is sum of space used by extent tree, 5073 * checksum tree and root tree 5074 */ 5075static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5076{ 5077 struct btrfs_space_info *sinfo; 5078 u64 num_bytes; 5079 u64 meta_used; 5080 u64 data_used; 5081 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5082 5083 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5084 spin_lock(&sinfo->lock); 5085 data_used = sinfo->bytes_used; 5086 spin_unlock(&sinfo->lock); 5087 5088 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5089 spin_lock(&sinfo->lock); 5090 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5091 data_used = 0; 5092 meta_used = sinfo->bytes_used; 5093 spin_unlock(&sinfo->lock); 5094 5095 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5096 csum_size * 2; 5097 num_bytes += div_u64(data_used + meta_used, 50); 5098 5099 if (num_bytes * 3 > meta_used) 5100 num_bytes = div_u64(meta_used, 3); 5101 5102 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5103} 5104 5105static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5106{ 5107 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5108 struct btrfs_space_info *sinfo = block_rsv->space_info; 5109 u64 num_bytes; 5110 5111 num_bytes = calc_global_metadata_size(fs_info); 5112 5113 spin_lock(&sinfo->lock); 5114 spin_lock(&block_rsv->lock); 5115 5116 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5117 5118 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5119 sinfo->bytes_reserved + sinfo->bytes_readonly + 5120 sinfo->bytes_may_use; 5121 5122 if (sinfo->total_bytes > num_bytes) { 5123 num_bytes = sinfo->total_bytes - num_bytes; 5124 block_rsv->reserved += num_bytes; 5125 sinfo->bytes_may_use += num_bytes; 5126 trace_btrfs_space_reservation(fs_info, "space_info", 5127 sinfo->flags, num_bytes, 1); 5128 } 5129 5130 if (block_rsv->reserved >= block_rsv->size) { 5131 num_bytes = block_rsv->reserved - block_rsv->size; 5132 sinfo->bytes_may_use -= num_bytes; 5133 trace_btrfs_space_reservation(fs_info, "space_info", 5134 sinfo->flags, num_bytes, 0); 5135 block_rsv->reserved = block_rsv->size; 5136 block_rsv->full = 1; 5137 } 5138 5139 spin_unlock(&block_rsv->lock); 5140 spin_unlock(&sinfo->lock); 5141} 5142 5143static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5144{ 5145 struct btrfs_space_info *space_info; 5146 5147 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5148 fs_info->chunk_block_rsv.space_info = space_info; 5149 5150 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5151 fs_info->global_block_rsv.space_info = space_info; 5152 fs_info->delalloc_block_rsv.space_info = space_info; 5153 fs_info->trans_block_rsv.space_info = space_info; 5154 fs_info->empty_block_rsv.space_info = space_info; 5155 fs_info->delayed_block_rsv.space_info = space_info; 5156 5157 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5158 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5159 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5160 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5161 if (fs_info->quota_root) 5162 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5163 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5164 5165 update_global_block_rsv(fs_info); 5166} 5167 5168static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5169{ 5170 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5171 (u64)-1); 5172 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5173 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5174 WARN_ON(fs_info->trans_block_rsv.size > 0); 5175 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5176 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5177 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5178 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5179 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5180} 5181 5182void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5183 struct btrfs_root *root) 5184{ 5185 if (!trans->block_rsv) 5186 return; 5187 5188 if (!trans->bytes_reserved) 5189 return; 5190 5191 trace_btrfs_space_reservation(root->fs_info, "transaction", 5192 trans->transid, trans->bytes_reserved, 0); 5193 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5194 trans->bytes_reserved = 0; 5195} 5196 5197/* Can only return 0 or -ENOSPC */ 5198int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5199 struct inode *inode) 5200{ 5201 struct btrfs_root *root = BTRFS_I(inode)->root; 5202 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5203 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5204 5205 /* 5206 * We need to hold space in order to delete our orphan item once we've 5207 * added it, so this takes the reservation so we can release it later 5208 * when we are truly done with the orphan item. 5209 */ 5210 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5211 trace_btrfs_space_reservation(root->fs_info, "orphan", 5212 btrfs_ino(inode), num_bytes, 1); 5213 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5214} 5215 5216void btrfs_orphan_release_metadata(struct inode *inode) 5217{ 5218 struct btrfs_root *root = BTRFS_I(inode)->root; 5219 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5220 trace_btrfs_space_reservation(root->fs_info, "orphan", 5221 btrfs_ino(inode), num_bytes, 0); 5222 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5223} 5224 5225/* 5226 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5227 * root: the root of the parent directory 5228 * rsv: block reservation 5229 * items: the number of items that we need do reservation 5230 * qgroup_reserved: used to return the reserved size in qgroup 5231 * 5232 * This function is used to reserve the space for snapshot/subvolume 5233 * creation and deletion. Those operations are different with the 5234 * common file/directory operations, they change two fs/file trees 5235 * and root tree, the number of items that the qgroup reserves is 5236 * different with the free space reservation. So we can not use 5237 * the space reseravtion mechanism in start_transaction(). 5238 */ 5239int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5240 struct btrfs_block_rsv *rsv, 5241 int items, 5242 u64 *qgroup_reserved, 5243 bool use_global_rsv) 5244{ 5245 u64 num_bytes; 5246 int ret; 5247 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5248 5249 if (root->fs_info->quota_enabled) { 5250 /* One for parent inode, two for dir entries */ 5251 num_bytes = 3 * root->nodesize; 5252 ret = btrfs_qgroup_reserve(root, num_bytes); 5253 if (ret) 5254 return ret; 5255 } else { 5256 num_bytes = 0; 5257 } 5258 5259 *qgroup_reserved = num_bytes; 5260 5261 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5262 rsv->space_info = __find_space_info(root->fs_info, 5263 BTRFS_BLOCK_GROUP_METADATA); 5264 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5265 BTRFS_RESERVE_FLUSH_ALL); 5266 5267 if (ret == -ENOSPC && use_global_rsv) 5268 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5269 5270 if (ret) { 5271 if (*qgroup_reserved) 5272 btrfs_qgroup_free(root, *qgroup_reserved); 5273 } 5274 5275 return ret; 5276} 5277 5278void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5279 struct btrfs_block_rsv *rsv, 5280 u64 qgroup_reserved) 5281{ 5282 btrfs_block_rsv_release(root, rsv, (u64)-1); 5283} 5284 5285/** 5286 * drop_outstanding_extent - drop an outstanding extent 5287 * @inode: the inode we're dropping the extent for 5288 * @num_bytes: the number of bytes we're relaseing. 5289 * 5290 * This is called when we are freeing up an outstanding extent, either called 5291 * after an error or after an extent is written. This will return the number of 5292 * reserved extents that need to be freed. This must be called with 5293 * BTRFS_I(inode)->lock held. 5294 */ 5295static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5296{ 5297 unsigned drop_inode_space = 0; 5298 unsigned dropped_extents = 0; 5299 unsigned num_extents = 0; 5300 5301 num_extents = (unsigned)div64_u64(num_bytes + 5302 BTRFS_MAX_EXTENT_SIZE - 1, 5303 BTRFS_MAX_EXTENT_SIZE); 5304 ASSERT(num_extents); 5305 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5306 BTRFS_I(inode)->outstanding_extents -= num_extents; 5307 5308 if (BTRFS_I(inode)->outstanding_extents == 0 && 5309 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5310 &BTRFS_I(inode)->runtime_flags)) 5311 drop_inode_space = 1; 5312 5313 /* 5314 * If we have more or the same amount of outsanding extents than we have 5315 * reserved then we need to leave the reserved extents count alone. 5316 */ 5317 if (BTRFS_I(inode)->outstanding_extents >= 5318 BTRFS_I(inode)->reserved_extents) 5319 return drop_inode_space; 5320 5321 dropped_extents = BTRFS_I(inode)->reserved_extents - 5322 BTRFS_I(inode)->outstanding_extents; 5323 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5324 return dropped_extents + drop_inode_space; 5325} 5326 5327/** 5328 * calc_csum_metadata_size - return the amount of metada space that must be 5329 * reserved/free'd for the given bytes. 5330 * @inode: the inode we're manipulating 5331 * @num_bytes: the number of bytes in question 5332 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5333 * 5334 * This adjusts the number of csum_bytes in the inode and then returns the 5335 * correct amount of metadata that must either be reserved or freed. We 5336 * calculate how many checksums we can fit into one leaf and then divide the 5337 * number of bytes that will need to be checksumed by this value to figure out 5338 * how many checksums will be required. If we are adding bytes then the number 5339 * may go up and we will return the number of additional bytes that must be 5340 * reserved. If it is going down we will return the number of bytes that must 5341 * be freed. 5342 * 5343 * This must be called with BTRFS_I(inode)->lock held. 5344 */ 5345static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5346 int reserve) 5347{ 5348 struct btrfs_root *root = BTRFS_I(inode)->root; 5349 u64 old_csums, num_csums; 5350 5351 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5352 BTRFS_I(inode)->csum_bytes == 0) 5353 return 0; 5354 5355 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5356 if (reserve) 5357 BTRFS_I(inode)->csum_bytes += num_bytes; 5358 else 5359 BTRFS_I(inode)->csum_bytes -= num_bytes; 5360 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5361 5362 /* No change, no need to reserve more */ 5363 if (old_csums == num_csums) 5364 return 0; 5365 5366 if (reserve) 5367 return btrfs_calc_trans_metadata_size(root, 5368 num_csums - old_csums); 5369 5370 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5371} 5372 5373int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5374{ 5375 struct btrfs_root *root = BTRFS_I(inode)->root; 5376 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5377 u64 to_reserve = 0; 5378 u64 csum_bytes; 5379 unsigned nr_extents = 0; 5380 int extra_reserve = 0; 5381 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5382 int ret = 0; 5383 bool delalloc_lock = true; 5384 u64 to_free = 0; 5385 unsigned dropped; 5386 5387 /* If we are a free space inode we need to not flush since we will be in 5388 * the middle of a transaction commit. We also don't need the delalloc 5389 * mutex since we won't race with anybody. We need this mostly to make 5390 * lockdep shut its filthy mouth. 5391 */ 5392 if (btrfs_is_free_space_inode(inode)) { 5393 flush = BTRFS_RESERVE_NO_FLUSH; 5394 delalloc_lock = false; 5395 } 5396 5397 if (flush != BTRFS_RESERVE_NO_FLUSH && 5398 btrfs_transaction_in_commit(root->fs_info)) 5399 schedule_timeout(1); 5400 5401 if (delalloc_lock) 5402 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5403 5404 num_bytes = ALIGN(num_bytes, root->sectorsize); 5405 5406 spin_lock(&BTRFS_I(inode)->lock); 5407 nr_extents = (unsigned)div64_u64(num_bytes + 5408 BTRFS_MAX_EXTENT_SIZE - 1, 5409 BTRFS_MAX_EXTENT_SIZE); 5410 BTRFS_I(inode)->outstanding_extents += nr_extents; 5411 nr_extents = 0; 5412 5413 if (BTRFS_I(inode)->outstanding_extents > 5414 BTRFS_I(inode)->reserved_extents) 5415 nr_extents = BTRFS_I(inode)->outstanding_extents - 5416 BTRFS_I(inode)->reserved_extents; 5417 5418 /* 5419 * Add an item to reserve for updating the inode when we complete the 5420 * delalloc io. 5421 */ 5422 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5423 &BTRFS_I(inode)->runtime_flags)) { 5424 nr_extents++; 5425 extra_reserve = 1; 5426 } 5427 5428 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5429 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5430 csum_bytes = BTRFS_I(inode)->csum_bytes; 5431 spin_unlock(&BTRFS_I(inode)->lock); 5432 5433 if (root->fs_info->quota_enabled) { 5434 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5435 if (ret) 5436 goto out_fail; 5437 } 5438 5439 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5440 if (unlikely(ret)) { 5441 if (root->fs_info->quota_enabled) 5442 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5443 goto out_fail; 5444 } 5445 5446 spin_lock(&BTRFS_I(inode)->lock); 5447 if (extra_reserve) { 5448 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5449 &BTRFS_I(inode)->runtime_flags); 5450 nr_extents--; 5451 } 5452 BTRFS_I(inode)->reserved_extents += nr_extents; 5453 spin_unlock(&BTRFS_I(inode)->lock); 5454 5455 if (delalloc_lock) 5456 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5457 5458 if (to_reserve) 5459 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5460 btrfs_ino(inode), to_reserve, 1); 5461 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5462 5463 return 0; 5464 5465out_fail: 5466 spin_lock(&BTRFS_I(inode)->lock); 5467 dropped = drop_outstanding_extent(inode, num_bytes); 5468 /* 5469 * If the inodes csum_bytes is the same as the original 5470 * csum_bytes then we know we haven't raced with any free()ers 5471 * so we can just reduce our inodes csum bytes and carry on. 5472 */ 5473 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5474 calc_csum_metadata_size(inode, num_bytes, 0); 5475 } else { 5476 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5477 u64 bytes; 5478 5479 /* 5480 * This is tricky, but first we need to figure out how much we 5481 * free'd from any free-ers that occured during this 5482 * reservation, so we reset ->csum_bytes to the csum_bytes 5483 * before we dropped our lock, and then call the free for the 5484 * number of bytes that were freed while we were trying our 5485 * reservation. 5486 */ 5487 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5488 BTRFS_I(inode)->csum_bytes = csum_bytes; 5489 to_free = calc_csum_metadata_size(inode, bytes, 0); 5490 5491 5492 /* 5493 * Now we need to see how much we would have freed had we not 5494 * been making this reservation and our ->csum_bytes were not 5495 * artificially inflated. 5496 */ 5497 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5498 bytes = csum_bytes - orig_csum_bytes; 5499 bytes = calc_csum_metadata_size(inode, bytes, 0); 5500 5501 /* 5502 * Now reset ->csum_bytes to what it should be. If bytes is 5503 * more than to_free then we would have free'd more space had we 5504 * not had an artificially high ->csum_bytes, so we need to free 5505 * the remainder. If bytes is the same or less then we don't 5506 * need to do anything, the other free-ers did the correct 5507 * thing. 5508 */ 5509 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5510 if (bytes > to_free) 5511 to_free = bytes - to_free; 5512 else 5513 to_free = 0; 5514 } 5515 spin_unlock(&BTRFS_I(inode)->lock); 5516 if (dropped) 5517 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5518 5519 if (to_free) { 5520 btrfs_block_rsv_release(root, block_rsv, to_free); 5521 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5522 btrfs_ino(inode), to_free, 0); 5523 } 5524 if (delalloc_lock) 5525 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5526 return ret; 5527} 5528 5529/** 5530 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5531 * @inode: the inode to release the reservation for 5532 * @num_bytes: the number of bytes we're releasing 5533 * 5534 * This will release the metadata reservation for an inode. This can be called 5535 * once we complete IO for a given set of bytes to release their metadata 5536 * reservations. 5537 */ 5538void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5539{ 5540 struct btrfs_root *root = BTRFS_I(inode)->root; 5541 u64 to_free = 0; 5542 unsigned dropped; 5543 5544 num_bytes = ALIGN(num_bytes, root->sectorsize); 5545 spin_lock(&BTRFS_I(inode)->lock); 5546 dropped = drop_outstanding_extent(inode, num_bytes); 5547 5548 if (num_bytes) 5549 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5550 spin_unlock(&BTRFS_I(inode)->lock); 5551 if (dropped > 0) 5552 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5553 5554 if (btrfs_test_is_dummy_root(root)) 5555 return; 5556 5557 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5558 btrfs_ino(inode), to_free, 0); 5559 5560 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5561 to_free); 5562} 5563 5564/** 5565 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5566 * @inode: inode we're writing to 5567 * @num_bytes: the number of bytes we want to allocate 5568 * 5569 * This will do the following things 5570 * 5571 * o reserve space in the data space info for num_bytes 5572 * o reserve space in the metadata space info based on number of outstanding 5573 * extents and how much csums will be needed 5574 * o add to the inodes ->delalloc_bytes 5575 * o add it to the fs_info's delalloc inodes list. 5576 * 5577 * This will return 0 for success and -ENOSPC if there is no space left. 5578 */ 5579int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5580{ 5581 int ret; 5582 5583 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5584 if (ret) 5585 return ret; 5586 5587 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5588 if (ret) { 5589 btrfs_free_reserved_data_space(inode, num_bytes); 5590 return ret; 5591 } 5592 5593 return 0; 5594} 5595 5596/** 5597 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5598 * @inode: inode we're releasing space for 5599 * @num_bytes: the number of bytes we want to free up 5600 * 5601 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5602 * called in the case that we don't need the metadata AND data reservations 5603 * anymore. So if there is an error or we insert an inline extent. 5604 * 5605 * This function will release the metadata space that was not used and will 5606 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5607 * list if there are no delalloc bytes left. 5608 */ 5609void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5610{ 5611 btrfs_delalloc_release_metadata(inode, num_bytes); 5612 btrfs_free_reserved_data_space(inode, num_bytes); 5613} 5614 5615static int update_block_group(struct btrfs_trans_handle *trans, 5616 struct btrfs_root *root, u64 bytenr, 5617 u64 num_bytes, int alloc) 5618{ 5619 struct btrfs_block_group_cache *cache = NULL; 5620 struct btrfs_fs_info *info = root->fs_info; 5621 u64 total = num_bytes; 5622 u64 old_val; 5623 u64 byte_in_group; 5624 int factor; 5625 5626 /* block accounting for super block */ 5627 spin_lock(&info->delalloc_root_lock); 5628 old_val = btrfs_super_bytes_used(info->super_copy); 5629 if (alloc) 5630 old_val += num_bytes; 5631 else 5632 old_val -= num_bytes; 5633 btrfs_set_super_bytes_used(info->super_copy, old_val); 5634 spin_unlock(&info->delalloc_root_lock); 5635 5636 while (total) { 5637 cache = btrfs_lookup_block_group(info, bytenr); 5638 if (!cache) 5639 return -ENOENT; 5640 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5641 BTRFS_BLOCK_GROUP_RAID1 | 5642 BTRFS_BLOCK_GROUP_RAID10)) 5643 factor = 2; 5644 else 5645 factor = 1; 5646 /* 5647 * If this block group has free space cache written out, we 5648 * need to make sure to load it if we are removing space. This 5649 * is because we need the unpinning stage to actually add the 5650 * space back to the block group, otherwise we will leak space. 5651 */ 5652 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5653 cache_block_group(cache, 1); 5654 5655 byte_in_group = bytenr - cache->key.objectid; 5656 WARN_ON(byte_in_group > cache->key.offset); 5657 5658 spin_lock(&cache->space_info->lock); 5659 spin_lock(&cache->lock); 5660 5661 if (btrfs_test_opt(root, SPACE_CACHE) && 5662 cache->disk_cache_state < BTRFS_DC_CLEAR) 5663 cache->disk_cache_state = BTRFS_DC_CLEAR; 5664 5665 old_val = btrfs_block_group_used(&cache->item); 5666 num_bytes = min(total, cache->key.offset - byte_in_group); 5667 if (alloc) { 5668 old_val += num_bytes; 5669 btrfs_set_block_group_used(&cache->item, old_val); 5670 cache->reserved -= num_bytes; 5671 cache->space_info->bytes_reserved -= num_bytes; 5672 cache->space_info->bytes_used += num_bytes; 5673 cache->space_info->disk_used += num_bytes * factor; 5674 spin_unlock(&cache->lock); 5675 spin_unlock(&cache->space_info->lock); 5676 } else { 5677 old_val -= num_bytes; 5678 btrfs_set_block_group_used(&cache->item, old_val); 5679 cache->pinned += num_bytes; 5680 cache->space_info->bytes_pinned += num_bytes; 5681 cache->space_info->bytes_used -= num_bytes; 5682 cache->space_info->disk_used -= num_bytes * factor; 5683 spin_unlock(&cache->lock); 5684 spin_unlock(&cache->space_info->lock); 5685 5686 set_extent_dirty(info->pinned_extents, 5687 bytenr, bytenr + num_bytes - 1, 5688 GFP_NOFS | __GFP_NOFAIL); 5689 /* 5690 * No longer have used bytes in this block group, queue 5691 * it for deletion. 5692 */ 5693 if (old_val == 0) { 5694 spin_lock(&info->unused_bgs_lock); 5695 if (list_empty(&cache->bg_list)) { 5696 btrfs_get_block_group(cache); 5697 list_add_tail(&cache->bg_list, 5698 &info->unused_bgs); 5699 } 5700 spin_unlock(&info->unused_bgs_lock); 5701 } 5702 } 5703 5704 spin_lock(&trans->transaction->dirty_bgs_lock); 5705 if (list_empty(&cache->dirty_list)) { 5706 list_add_tail(&cache->dirty_list, 5707 &trans->transaction->dirty_bgs); 5708 trans->transaction->num_dirty_bgs++; 5709 btrfs_get_block_group(cache); 5710 } 5711 spin_unlock(&trans->transaction->dirty_bgs_lock); 5712 5713 btrfs_put_block_group(cache); 5714 total -= num_bytes; 5715 bytenr += num_bytes; 5716 } 5717 return 0; 5718} 5719 5720static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5721{ 5722 struct btrfs_block_group_cache *cache; 5723 u64 bytenr; 5724 5725 spin_lock(&root->fs_info->block_group_cache_lock); 5726 bytenr = root->fs_info->first_logical_byte; 5727 spin_unlock(&root->fs_info->block_group_cache_lock); 5728 5729 if (bytenr < (u64)-1) 5730 return bytenr; 5731 5732 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5733 if (!cache) 5734 return 0; 5735 5736 bytenr = cache->key.objectid; 5737 btrfs_put_block_group(cache); 5738 5739 return bytenr; 5740} 5741 5742static int pin_down_extent(struct btrfs_root *root, 5743 struct btrfs_block_group_cache *cache, 5744 u64 bytenr, u64 num_bytes, int reserved) 5745{ 5746 spin_lock(&cache->space_info->lock); 5747 spin_lock(&cache->lock); 5748 cache->pinned += num_bytes; 5749 cache->space_info->bytes_pinned += num_bytes; 5750 if (reserved) { 5751 cache->reserved -= num_bytes; 5752 cache->space_info->bytes_reserved -= num_bytes; 5753 } 5754 spin_unlock(&cache->lock); 5755 spin_unlock(&cache->space_info->lock); 5756 5757 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5758 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5759 if (reserved) 5760 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5761 return 0; 5762} 5763 5764/* 5765 * this function must be called within transaction 5766 */ 5767int btrfs_pin_extent(struct btrfs_root *root, 5768 u64 bytenr, u64 num_bytes, int reserved) 5769{ 5770 struct btrfs_block_group_cache *cache; 5771 5772 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5773 BUG_ON(!cache); /* Logic error */ 5774 5775 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5776 5777 btrfs_put_block_group(cache); 5778 return 0; 5779} 5780 5781/* 5782 * this function must be called within transaction 5783 */ 5784int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5785 u64 bytenr, u64 num_bytes) 5786{ 5787 struct btrfs_block_group_cache *cache; 5788 int ret; 5789 5790 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5791 if (!cache) 5792 return -EINVAL; 5793 5794 /* 5795 * pull in the free space cache (if any) so that our pin 5796 * removes the free space from the cache. We have load_only set 5797 * to one because the slow code to read in the free extents does check 5798 * the pinned extents. 5799 */ 5800 cache_block_group(cache, 1); 5801 5802 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5803 5804 /* remove us from the free space cache (if we're there at all) */ 5805 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5806 btrfs_put_block_group(cache); 5807 return ret; 5808} 5809 5810static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5811{ 5812 int ret; 5813 struct btrfs_block_group_cache *block_group; 5814 struct btrfs_caching_control *caching_ctl; 5815 5816 block_group = btrfs_lookup_block_group(root->fs_info, start); 5817 if (!block_group) 5818 return -EINVAL; 5819 5820 cache_block_group(block_group, 0); 5821 caching_ctl = get_caching_control(block_group); 5822 5823 if (!caching_ctl) { 5824 /* Logic error */ 5825 BUG_ON(!block_group_cache_done(block_group)); 5826 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5827 } else { 5828 mutex_lock(&caching_ctl->mutex); 5829 5830 if (start >= caching_ctl->progress) { 5831 ret = add_excluded_extent(root, start, num_bytes); 5832 } else if (start + num_bytes <= caching_ctl->progress) { 5833 ret = btrfs_remove_free_space(block_group, 5834 start, num_bytes); 5835 } else { 5836 num_bytes = caching_ctl->progress - start; 5837 ret = btrfs_remove_free_space(block_group, 5838 start, num_bytes); 5839 if (ret) 5840 goto out_lock; 5841 5842 num_bytes = (start + num_bytes) - 5843 caching_ctl->progress; 5844 start = caching_ctl->progress; 5845 ret = add_excluded_extent(root, start, num_bytes); 5846 } 5847out_lock: 5848 mutex_unlock(&caching_ctl->mutex); 5849 put_caching_control(caching_ctl); 5850 } 5851 btrfs_put_block_group(block_group); 5852 return ret; 5853} 5854 5855int btrfs_exclude_logged_extents(struct btrfs_root *log, 5856 struct extent_buffer *eb) 5857{ 5858 struct btrfs_file_extent_item *item; 5859 struct btrfs_key key; 5860 int found_type; 5861 int i; 5862 5863 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5864 return 0; 5865 5866 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5867 btrfs_item_key_to_cpu(eb, &key, i); 5868 if (key.type != BTRFS_EXTENT_DATA_KEY) 5869 continue; 5870 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5871 found_type = btrfs_file_extent_type(eb, item); 5872 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5873 continue; 5874 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5875 continue; 5876 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5877 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5878 __exclude_logged_extent(log, key.objectid, key.offset); 5879 } 5880 5881 return 0; 5882} 5883 5884/** 5885 * btrfs_update_reserved_bytes - update the block_group and space info counters 5886 * @cache: The cache we are manipulating 5887 * @num_bytes: The number of bytes in question 5888 * @reserve: One of the reservation enums 5889 * @delalloc: The blocks are allocated for the delalloc write 5890 * 5891 * This is called by the allocator when it reserves space, or by somebody who is 5892 * freeing space that was never actually used on disk. For example if you 5893 * reserve some space for a new leaf in transaction A and before transaction A 5894 * commits you free that leaf, you call this with reserve set to 0 in order to 5895 * clear the reservation. 5896 * 5897 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5898 * ENOSPC accounting. For data we handle the reservation through clearing the 5899 * delalloc bits in the io_tree. We have to do this since we could end up 5900 * allocating less disk space for the amount of data we have reserved in the 5901 * case of compression. 5902 * 5903 * If this is a reservation and the block group has become read only we cannot 5904 * make the reservation and return -EAGAIN, otherwise this function always 5905 * succeeds. 5906 */ 5907static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5908 u64 num_bytes, int reserve, int delalloc) 5909{ 5910 struct btrfs_space_info *space_info = cache->space_info; 5911 int ret = 0; 5912 5913 spin_lock(&space_info->lock); 5914 spin_lock(&cache->lock); 5915 if (reserve != RESERVE_FREE) { 5916 if (cache->ro) { 5917 ret = -EAGAIN; 5918 } else { 5919 cache->reserved += num_bytes; 5920 space_info->bytes_reserved += num_bytes; 5921 if (reserve == RESERVE_ALLOC) { 5922 trace_btrfs_space_reservation(cache->fs_info, 5923 "space_info", space_info->flags, 5924 num_bytes, 0); 5925 space_info->bytes_may_use -= num_bytes; 5926 } 5927 5928 if (delalloc) 5929 cache->delalloc_bytes += num_bytes; 5930 } 5931 } else { 5932 if (cache->ro) 5933 space_info->bytes_readonly += num_bytes; 5934 cache->reserved -= num_bytes; 5935 space_info->bytes_reserved -= num_bytes; 5936 5937 if (delalloc) 5938 cache->delalloc_bytes -= num_bytes; 5939 } 5940 spin_unlock(&cache->lock); 5941 spin_unlock(&space_info->lock); 5942 return ret; 5943} 5944 5945void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5946 struct btrfs_root *root) 5947{ 5948 struct btrfs_fs_info *fs_info = root->fs_info; 5949 struct btrfs_caching_control *next; 5950 struct btrfs_caching_control *caching_ctl; 5951 struct btrfs_block_group_cache *cache; 5952 5953 down_write(&fs_info->commit_root_sem); 5954 5955 list_for_each_entry_safe(caching_ctl, next, 5956 &fs_info->caching_block_groups, list) { 5957 cache = caching_ctl->block_group; 5958 if (block_group_cache_done(cache)) { 5959 cache->last_byte_to_unpin = (u64)-1; 5960 list_del_init(&caching_ctl->list); 5961 put_caching_control(caching_ctl); 5962 } else { 5963 cache->last_byte_to_unpin = caching_ctl->progress; 5964 } 5965 } 5966 5967 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5968 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5969 else 5970 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5971 5972 up_write(&fs_info->commit_root_sem); 5973 5974 update_global_block_rsv(fs_info); 5975} 5976 5977static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 5978 const bool return_free_space) 5979{ 5980 struct btrfs_fs_info *fs_info = root->fs_info; 5981 struct btrfs_block_group_cache *cache = NULL; 5982 struct btrfs_space_info *space_info; 5983 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5984 u64 len; 5985 bool readonly; 5986 5987 while (start <= end) { 5988 readonly = false; 5989 if (!cache || 5990 start >= cache->key.objectid + cache->key.offset) { 5991 if (cache) 5992 btrfs_put_block_group(cache); 5993 cache = btrfs_lookup_block_group(fs_info, start); 5994 BUG_ON(!cache); /* Logic error */ 5995 } 5996 5997 len = cache->key.objectid + cache->key.offset - start; 5998 len = min(len, end + 1 - start); 5999 6000 if (start < cache->last_byte_to_unpin) { 6001 len = min(len, cache->last_byte_to_unpin - start); 6002 if (return_free_space) 6003 btrfs_add_free_space(cache, start, len); 6004 } 6005 6006 start += len; 6007 space_info = cache->space_info; 6008 6009 spin_lock(&space_info->lock); 6010 spin_lock(&cache->lock); 6011 cache->pinned -= len; 6012 space_info->bytes_pinned -= len; 6013 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6014 if (cache->ro) { 6015 space_info->bytes_readonly += len; 6016 readonly = true; 6017 } 6018 spin_unlock(&cache->lock); 6019 if (!readonly && global_rsv->space_info == space_info) { 6020 spin_lock(&global_rsv->lock); 6021 if (!global_rsv->full) { 6022 len = min(len, global_rsv->size - 6023 global_rsv->reserved); 6024 global_rsv->reserved += len; 6025 space_info->bytes_may_use += len; 6026 if (global_rsv->reserved >= global_rsv->size) 6027 global_rsv->full = 1; 6028 } 6029 spin_unlock(&global_rsv->lock); 6030 } 6031 spin_unlock(&space_info->lock); 6032 } 6033 6034 if (cache) 6035 btrfs_put_block_group(cache); 6036 return 0; 6037} 6038 6039int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6040 struct btrfs_root *root) 6041{ 6042 struct btrfs_fs_info *fs_info = root->fs_info; 6043 struct extent_io_tree *unpin; 6044 u64 start; 6045 u64 end; 6046 int ret; 6047 6048 if (trans->aborted) 6049 return 0; 6050 6051 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6052 unpin = &fs_info->freed_extents[1]; 6053 else 6054 unpin = &fs_info->freed_extents[0]; 6055 6056 while (1) { 6057 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6058 ret = find_first_extent_bit(unpin, 0, &start, &end, 6059 EXTENT_DIRTY, NULL); 6060 if (ret) { 6061 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6062 break; 6063 } 6064 6065 if (btrfs_test_opt(root, DISCARD)) 6066 ret = btrfs_discard_extent(root, start, 6067 end + 1 - start, NULL); 6068 6069 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6070 unpin_extent_range(root, start, end, true); 6071 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6072 cond_resched(); 6073 } 6074 6075 return 0; 6076} 6077 6078static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6079 u64 owner, u64 root_objectid) 6080{ 6081 struct btrfs_space_info *space_info; 6082 u64 flags; 6083 6084 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6085 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6086 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6087 else 6088 flags = BTRFS_BLOCK_GROUP_METADATA; 6089 } else { 6090 flags = BTRFS_BLOCK_GROUP_DATA; 6091 } 6092 6093 space_info = __find_space_info(fs_info, flags); 6094 BUG_ON(!space_info); /* Logic bug */ 6095 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6096} 6097 6098 6099static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6100 struct btrfs_root *root, 6101 u64 bytenr, u64 num_bytes, u64 parent, 6102 u64 root_objectid, u64 owner_objectid, 6103 u64 owner_offset, int refs_to_drop, 6104 struct btrfs_delayed_extent_op *extent_op, 6105 int no_quota) 6106{ 6107 struct btrfs_key key; 6108 struct btrfs_path *path; 6109 struct btrfs_fs_info *info = root->fs_info; 6110 struct btrfs_root *extent_root = info->extent_root; 6111 struct extent_buffer *leaf; 6112 struct btrfs_extent_item *ei; 6113 struct btrfs_extent_inline_ref *iref; 6114 int ret; 6115 int is_data; 6116 int extent_slot = 0; 6117 int found_extent = 0; 6118 int num_to_del = 1; 6119 u32 item_size; 6120 u64 refs; 6121 int last_ref = 0; 6122 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL; 6123 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6124 SKINNY_METADATA); 6125 6126 if (!info->quota_enabled || !is_fstree(root_objectid)) 6127 no_quota = 1; 6128 6129 path = btrfs_alloc_path(); 6130 if (!path) 6131 return -ENOMEM; 6132 6133 path->reada = 1; 6134 path->leave_spinning = 1; 6135 6136 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6137 BUG_ON(!is_data && refs_to_drop != 1); 6138 6139 if (is_data) 6140 skinny_metadata = 0; 6141 6142 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6143 bytenr, num_bytes, parent, 6144 root_objectid, owner_objectid, 6145 owner_offset); 6146 if (ret == 0) { 6147 extent_slot = path->slots[0]; 6148 while (extent_slot >= 0) { 6149 btrfs_item_key_to_cpu(path->nodes[0], &key, 6150 extent_slot); 6151 if (key.objectid != bytenr) 6152 break; 6153 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6154 key.offset == num_bytes) { 6155 found_extent = 1; 6156 break; 6157 } 6158 if (key.type == BTRFS_METADATA_ITEM_KEY && 6159 key.offset == owner_objectid) { 6160 found_extent = 1; 6161 break; 6162 } 6163 if (path->slots[0] - extent_slot > 5) 6164 break; 6165 extent_slot--; 6166 } 6167#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6168 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6169 if (found_extent && item_size < sizeof(*ei)) 6170 found_extent = 0; 6171#endif 6172 if (!found_extent) { 6173 BUG_ON(iref); 6174 ret = remove_extent_backref(trans, extent_root, path, 6175 NULL, refs_to_drop, 6176 is_data, &last_ref); 6177 if (ret) { 6178 btrfs_abort_transaction(trans, extent_root, ret); 6179 goto out; 6180 } 6181 btrfs_release_path(path); 6182 path->leave_spinning = 1; 6183 6184 key.objectid = bytenr; 6185 key.type = BTRFS_EXTENT_ITEM_KEY; 6186 key.offset = num_bytes; 6187 6188 if (!is_data && skinny_metadata) { 6189 key.type = BTRFS_METADATA_ITEM_KEY; 6190 key.offset = owner_objectid; 6191 } 6192 6193 ret = btrfs_search_slot(trans, extent_root, 6194 &key, path, -1, 1); 6195 if (ret > 0 && skinny_metadata && path->slots[0]) { 6196 /* 6197 * Couldn't find our skinny metadata item, 6198 * see if we have ye olde extent item. 6199 */ 6200 path->slots[0]--; 6201 btrfs_item_key_to_cpu(path->nodes[0], &key, 6202 path->slots[0]); 6203 if (key.objectid == bytenr && 6204 key.type == BTRFS_EXTENT_ITEM_KEY && 6205 key.offset == num_bytes) 6206 ret = 0; 6207 } 6208 6209 if (ret > 0 && skinny_metadata) { 6210 skinny_metadata = false; 6211 key.objectid = bytenr; 6212 key.type = BTRFS_EXTENT_ITEM_KEY; 6213 key.offset = num_bytes; 6214 btrfs_release_path(path); 6215 ret = btrfs_search_slot(trans, extent_root, 6216 &key, path, -1, 1); 6217 } 6218 6219 if (ret) { 6220 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6221 ret, bytenr); 6222 if (ret > 0) 6223 btrfs_print_leaf(extent_root, 6224 path->nodes[0]); 6225 } 6226 if (ret < 0) { 6227 btrfs_abort_transaction(trans, extent_root, ret); 6228 goto out; 6229 } 6230 extent_slot = path->slots[0]; 6231 } 6232 } else if (WARN_ON(ret == -ENOENT)) { 6233 btrfs_print_leaf(extent_root, path->nodes[0]); 6234 btrfs_err(info, 6235 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6236 bytenr, parent, root_objectid, owner_objectid, 6237 owner_offset); 6238 btrfs_abort_transaction(trans, extent_root, ret); 6239 goto out; 6240 } else { 6241 btrfs_abort_transaction(trans, extent_root, ret); 6242 goto out; 6243 } 6244 6245 leaf = path->nodes[0]; 6246 item_size = btrfs_item_size_nr(leaf, extent_slot); 6247#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6248 if (item_size < sizeof(*ei)) { 6249 BUG_ON(found_extent || extent_slot != path->slots[0]); 6250 ret = convert_extent_item_v0(trans, extent_root, path, 6251 owner_objectid, 0); 6252 if (ret < 0) { 6253 btrfs_abort_transaction(trans, extent_root, ret); 6254 goto out; 6255 } 6256 6257 btrfs_release_path(path); 6258 path->leave_spinning = 1; 6259 6260 key.objectid = bytenr; 6261 key.type = BTRFS_EXTENT_ITEM_KEY; 6262 key.offset = num_bytes; 6263 6264 ret = btrfs_search_slot(trans, extent_root, &key, path, 6265 -1, 1); 6266 if (ret) { 6267 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6268 ret, bytenr); 6269 btrfs_print_leaf(extent_root, path->nodes[0]); 6270 } 6271 if (ret < 0) { 6272 btrfs_abort_transaction(trans, extent_root, ret); 6273 goto out; 6274 } 6275 6276 extent_slot = path->slots[0]; 6277 leaf = path->nodes[0]; 6278 item_size = btrfs_item_size_nr(leaf, extent_slot); 6279 } 6280#endif 6281 BUG_ON(item_size < sizeof(*ei)); 6282 ei = btrfs_item_ptr(leaf, extent_slot, 6283 struct btrfs_extent_item); 6284 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6285 key.type == BTRFS_EXTENT_ITEM_KEY) { 6286 struct btrfs_tree_block_info *bi; 6287 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6288 bi = (struct btrfs_tree_block_info *)(ei + 1); 6289 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6290 } 6291 6292 refs = btrfs_extent_refs(leaf, ei); 6293 if (refs < refs_to_drop) { 6294 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6295 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6296 ret = -EINVAL; 6297 btrfs_abort_transaction(trans, extent_root, ret); 6298 goto out; 6299 } 6300 refs -= refs_to_drop; 6301 6302 if (refs > 0) { 6303 type = BTRFS_QGROUP_OPER_SUB_SHARED; 6304 if (extent_op) 6305 __run_delayed_extent_op(extent_op, leaf, ei); 6306 /* 6307 * In the case of inline back ref, reference count will 6308 * be updated by remove_extent_backref 6309 */ 6310 if (iref) { 6311 BUG_ON(!found_extent); 6312 } else { 6313 btrfs_set_extent_refs(leaf, ei, refs); 6314 btrfs_mark_buffer_dirty(leaf); 6315 } 6316 if (found_extent) { 6317 ret = remove_extent_backref(trans, extent_root, path, 6318 iref, refs_to_drop, 6319 is_data, &last_ref); 6320 if (ret) { 6321 btrfs_abort_transaction(trans, extent_root, ret); 6322 goto out; 6323 } 6324 } 6325 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6326 root_objectid); 6327 } else { 6328 if (found_extent) { 6329 BUG_ON(is_data && refs_to_drop != 6330 extent_data_ref_count(root, path, iref)); 6331 if (iref) { 6332 BUG_ON(path->slots[0] != extent_slot); 6333 } else { 6334 BUG_ON(path->slots[0] != extent_slot + 1); 6335 path->slots[0] = extent_slot; 6336 num_to_del = 2; 6337 } 6338 } 6339 6340 last_ref = 1; 6341 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6342 num_to_del); 6343 if (ret) { 6344 btrfs_abort_transaction(trans, extent_root, ret); 6345 goto out; 6346 } 6347 btrfs_release_path(path); 6348 6349 if (is_data) { 6350 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6351 if (ret) { 6352 btrfs_abort_transaction(trans, extent_root, ret); 6353 goto out; 6354 } 6355 } 6356 6357 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6358 if (ret) { 6359 btrfs_abort_transaction(trans, extent_root, ret); 6360 goto out; 6361 } 6362 } 6363 btrfs_release_path(path); 6364 6365 /* Deal with the quota accounting */ 6366 if (!ret && last_ref && !no_quota) { 6367 int mod_seq = 0; 6368 6369 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID && 6370 type == BTRFS_QGROUP_OPER_SUB_SHARED) 6371 mod_seq = 1; 6372 6373 ret = btrfs_qgroup_record_ref(trans, info, root_objectid, 6374 bytenr, num_bytes, type, 6375 mod_seq); 6376 } 6377out: 6378 btrfs_free_path(path); 6379 return ret; 6380} 6381 6382/* 6383 * when we free an block, it is possible (and likely) that we free the last 6384 * delayed ref for that extent as well. This searches the delayed ref tree for 6385 * a given extent, and if there are no other delayed refs to be processed, it 6386 * removes it from the tree. 6387 */ 6388static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6389 struct btrfs_root *root, u64 bytenr) 6390{ 6391 struct btrfs_delayed_ref_head *head; 6392 struct btrfs_delayed_ref_root *delayed_refs; 6393 int ret = 0; 6394 6395 delayed_refs = &trans->transaction->delayed_refs; 6396 spin_lock(&delayed_refs->lock); 6397 head = btrfs_find_delayed_ref_head(trans, bytenr); 6398 if (!head) 6399 goto out_delayed_unlock; 6400 6401 spin_lock(&head->lock); 6402 if (rb_first(&head->ref_root)) 6403 goto out; 6404 6405 if (head->extent_op) { 6406 if (!head->must_insert_reserved) 6407 goto out; 6408 btrfs_free_delayed_extent_op(head->extent_op); 6409 head->extent_op = NULL; 6410 } 6411 6412 /* 6413 * waiting for the lock here would deadlock. If someone else has it 6414 * locked they are already in the process of dropping it anyway 6415 */ 6416 if (!mutex_trylock(&head->mutex)) 6417 goto out; 6418 6419 /* 6420 * at this point we have a head with no other entries. Go 6421 * ahead and process it. 6422 */ 6423 head->node.in_tree = 0; 6424 rb_erase(&head->href_node, &delayed_refs->href_root); 6425 6426 atomic_dec(&delayed_refs->num_entries); 6427 6428 /* 6429 * we don't take a ref on the node because we're removing it from the 6430 * tree, so we just steal the ref the tree was holding. 6431 */ 6432 delayed_refs->num_heads--; 6433 if (head->processing == 0) 6434 delayed_refs->num_heads_ready--; 6435 head->processing = 0; 6436 spin_unlock(&head->lock); 6437 spin_unlock(&delayed_refs->lock); 6438 6439 BUG_ON(head->extent_op); 6440 if (head->must_insert_reserved) 6441 ret = 1; 6442 6443 mutex_unlock(&head->mutex); 6444 btrfs_put_delayed_ref(&head->node); 6445 return ret; 6446out: 6447 spin_unlock(&head->lock); 6448 6449out_delayed_unlock: 6450 spin_unlock(&delayed_refs->lock); 6451 return 0; 6452} 6453 6454void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6455 struct btrfs_root *root, 6456 struct extent_buffer *buf, 6457 u64 parent, int last_ref) 6458{ 6459 int pin = 1; 6460 int ret; 6461 6462 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6463 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6464 buf->start, buf->len, 6465 parent, root->root_key.objectid, 6466 btrfs_header_level(buf), 6467 BTRFS_DROP_DELAYED_REF, NULL, 0); 6468 BUG_ON(ret); /* -ENOMEM */ 6469 } 6470 6471 if (!last_ref) 6472 return; 6473 6474 if (btrfs_header_generation(buf) == trans->transid) { 6475 struct btrfs_block_group_cache *cache; 6476 6477 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6478 ret = check_ref_cleanup(trans, root, buf->start); 6479 if (!ret) 6480 goto out; 6481 } 6482 6483 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6484 6485 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6486 pin_down_extent(root, cache, buf->start, buf->len, 1); 6487 btrfs_put_block_group(cache); 6488 goto out; 6489 } 6490 6491 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6492 6493 btrfs_add_free_space(cache, buf->start, buf->len); 6494 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6495 btrfs_put_block_group(cache); 6496 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6497 pin = 0; 6498 } 6499out: 6500 if (pin) 6501 add_pinned_bytes(root->fs_info, buf->len, 6502 btrfs_header_level(buf), 6503 root->root_key.objectid); 6504 6505 /* 6506 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6507 * anymore. 6508 */ 6509 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6510} 6511 6512/* Can return -ENOMEM */ 6513int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6514 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6515 u64 owner, u64 offset, int no_quota) 6516{ 6517 int ret; 6518 struct btrfs_fs_info *fs_info = root->fs_info; 6519 6520 if (btrfs_test_is_dummy_root(root)) 6521 return 0; 6522 6523 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6524 6525 /* 6526 * tree log blocks never actually go into the extent allocation 6527 * tree, just update pinning info and exit early. 6528 */ 6529 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6530 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6531 /* unlocks the pinned mutex */ 6532 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6533 ret = 0; 6534 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6535 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6536 num_bytes, 6537 parent, root_objectid, (int)owner, 6538 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6539 } else { 6540 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6541 num_bytes, 6542 parent, root_objectid, owner, 6543 offset, BTRFS_DROP_DELAYED_REF, 6544 NULL, no_quota); 6545 } 6546 return ret; 6547} 6548 6549/* 6550 * when we wait for progress in the block group caching, its because 6551 * our allocation attempt failed at least once. So, we must sleep 6552 * and let some progress happen before we try again. 6553 * 6554 * This function will sleep at least once waiting for new free space to 6555 * show up, and then it will check the block group free space numbers 6556 * for our min num_bytes. Another option is to have it go ahead 6557 * and look in the rbtree for a free extent of a given size, but this 6558 * is a good start. 6559 * 6560 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6561 * any of the information in this block group. 6562 */ 6563static noinline void 6564wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6565 u64 num_bytes) 6566{ 6567 struct btrfs_caching_control *caching_ctl; 6568 6569 caching_ctl = get_caching_control(cache); 6570 if (!caching_ctl) 6571 return; 6572 6573 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6574 (cache->free_space_ctl->free_space >= num_bytes)); 6575 6576 put_caching_control(caching_ctl); 6577} 6578 6579static noinline int 6580wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6581{ 6582 struct btrfs_caching_control *caching_ctl; 6583 int ret = 0; 6584 6585 caching_ctl = get_caching_control(cache); 6586 if (!caching_ctl) 6587 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6588 6589 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6590 if (cache->cached == BTRFS_CACHE_ERROR) 6591 ret = -EIO; 6592 put_caching_control(caching_ctl); 6593 return ret; 6594} 6595 6596int __get_raid_index(u64 flags) 6597{ 6598 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6599 return BTRFS_RAID_RAID10; 6600 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6601 return BTRFS_RAID_RAID1; 6602 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6603 return BTRFS_RAID_DUP; 6604 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6605 return BTRFS_RAID_RAID0; 6606 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6607 return BTRFS_RAID_RAID5; 6608 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6609 return BTRFS_RAID_RAID6; 6610 6611 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6612} 6613 6614int get_block_group_index(struct btrfs_block_group_cache *cache) 6615{ 6616 return __get_raid_index(cache->flags); 6617} 6618 6619static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6620 [BTRFS_RAID_RAID10] = "raid10", 6621 [BTRFS_RAID_RAID1] = "raid1", 6622 [BTRFS_RAID_DUP] = "dup", 6623 [BTRFS_RAID_RAID0] = "raid0", 6624 [BTRFS_RAID_SINGLE] = "single", 6625 [BTRFS_RAID_RAID5] = "raid5", 6626 [BTRFS_RAID_RAID6] = "raid6", 6627}; 6628 6629static const char *get_raid_name(enum btrfs_raid_types type) 6630{ 6631 if (type >= BTRFS_NR_RAID_TYPES) 6632 return NULL; 6633 6634 return btrfs_raid_type_names[type]; 6635} 6636 6637enum btrfs_loop_type { 6638 LOOP_CACHING_NOWAIT = 0, 6639 LOOP_CACHING_WAIT = 1, 6640 LOOP_ALLOC_CHUNK = 2, 6641 LOOP_NO_EMPTY_SIZE = 3, 6642}; 6643 6644static inline void 6645btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6646 int delalloc) 6647{ 6648 if (delalloc) 6649 down_read(&cache->data_rwsem); 6650} 6651 6652static inline void 6653btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6654 int delalloc) 6655{ 6656 btrfs_get_block_group(cache); 6657 if (delalloc) 6658 down_read(&cache->data_rwsem); 6659} 6660 6661static struct btrfs_block_group_cache * 6662btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6663 struct btrfs_free_cluster *cluster, 6664 int delalloc) 6665{ 6666 struct btrfs_block_group_cache *used_bg; 6667 bool locked = false; 6668again: 6669 spin_lock(&cluster->refill_lock); 6670 if (locked) { 6671 if (used_bg == cluster->block_group) 6672 return used_bg; 6673 6674 up_read(&used_bg->data_rwsem); 6675 btrfs_put_block_group(used_bg); 6676 } 6677 6678 used_bg = cluster->block_group; 6679 if (!used_bg) 6680 return NULL; 6681 6682 if (used_bg == block_group) 6683 return used_bg; 6684 6685 btrfs_get_block_group(used_bg); 6686 6687 if (!delalloc) 6688 return used_bg; 6689 6690 if (down_read_trylock(&used_bg->data_rwsem)) 6691 return used_bg; 6692 6693 spin_unlock(&cluster->refill_lock); 6694 down_read(&used_bg->data_rwsem); 6695 locked = true; 6696 goto again; 6697} 6698 6699static inline void 6700btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6701 int delalloc) 6702{ 6703 if (delalloc) 6704 up_read(&cache->data_rwsem); 6705 btrfs_put_block_group(cache); 6706} 6707 6708/* 6709 * walks the btree of allocated extents and find a hole of a given size. 6710 * The key ins is changed to record the hole: 6711 * ins->objectid == start position 6712 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6713 * ins->offset == the size of the hole. 6714 * Any available blocks before search_start are skipped. 6715 * 6716 * If there is no suitable free space, we will record the max size of 6717 * the free space extent currently. 6718 */ 6719static noinline int find_free_extent(struct btrfs_root *orig_root, 6720 u64 num_bytes, u64 empty_size, 6721 u64 hint_byte, struct btrfs_key *ins, 6722 u64 flags, int delalloc) 6723{ 6724 int ret = 0; 6725 struct btrfs_root *root = orig_root->fs_info->extent_root; 6726 struct btrfs_free_cluster *last_ptr = NULL; 6727 struct btrfs_block_group_cache *block_group = NULL; 6728 u64 search_start = 0; 6729 u64 max_extent_size = 0; 6730 int empty_cluster = 2 * 1024 * 1024; 6731 struct btrfs_space_info *space_info; 6732 int loop = 0; 6733 int index = __get_raid_index(flags); 6734 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6735 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6736 bool failed_cluster_refill = false; 6737 bool failed_alloc = false; 6738 bool use_cluster = true; 6739 bool have_caching_bg = false; 6740 6741 WARN_ON(num_bytes < root->sectorsize); 6742 ins->type = BTRFS_EXTENT_ITEM_KEY; 6743 ins->objectid = 0; 6744 ins->offset = 0; 6745 6746 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6747 6748 space_info = __find_space_info(root->fs_info, flags); 6749 if (!space_info) { 6750 btrfs_err(root->fs_info, "No space info for %llu", flags); 6751 return -ENOSPC; 6752 } 6753 6754 /* 6755 * If the space info is for both data and metadata it means we have a 6756 * small filesystem and we can't use the clustering stuff. 6757 */ 6758 if (btrfs_mixed_space_info(space_info)) 6759 use_cluster = false; 6760 6761 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6762 last_ptr = &root->fs_info->meta_alloc_cluster; 6763 if (!btrfs_test_opt(root, SSD)) 6764 empty_cluster = 64 * 1024; 6765 } 6766 6767 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6768 btrfs_test_opt(root, SSD)) { 6769 last_ptr = &root->fs_info->data_alloc_cluster; 6770 } 6771 6772 if (last_ptr) { 6773 spin_lock(&last_ptr->lock); 6774 if (last_ptr->block_group) 6775 hint_byte = last_ptr->window_start; 6776 spin_unlock(&last_ptr->lock); 6777 } 6778 6779 search_start = max(search_start, first_logical_byte(root, 0)); 6780 search_start = max(search_start, hint_byte); 6781 6782 if (!last_ptr) 6783 empty_cluster = 0; 6784 6785 if (search_start == hint_byte) { 6786 block_group = btrfs_lookup_block_group(root->fs_info, 6787 search_start); 6788 /* 6789 * we don't want to use the block group if it doesn't match our 6790 * allocation bits, or if its not cached. 6791 * 6792 * However if we are re-searching with an ideal block group 6793 * picked out then we don't care that the block group is cached. 6794 */ 6795 if (block_group && block_group_bits(block_group, flags) && 6796 block_group->cached != BTRFS_CACHE_NO) { 6797 down_read(&space_info->groups_sem); 6798 if (list_empty(&block_group->list) || 6799 block_group->ro) { 6800 /* 6801 * someone is removing this block group, 6802 * we can't jump into the have_block_group 6803 * target because our list pointers are not 6804 * valid 6805 */ 6806 btrfs_put_block_group(block_group); 6807 up_read(&space_info->groups_sem); 6808 } else { 6809 index = get_block_group_index(block_group); 6810 btrfs_lock_block_group(block_group, delalloc); 6811 goto have_block_group; 6812 } 6813 } else if (block_group) { 6814 btrfs_put_block_group(block_group); 6815 } 6816 } 6817search: 6818 have_caching_bg = false; 6819 down_read(&space_info->groups_sem); 6820 list_for_each_entry(block_group, &space_info->block_groups[index], 6821 list) { 6822 u64 offset; 6823 int cached; 6824 6825 btrfs_grab_block_group(block_group, delalloc); 6826 search_start = block_group->key.objectid; 6827 6828 /* 6829 * this can happen if we end up cycling through all the 6830 * raid types, but we want to make sure we only allocate 6831 * for the proper type. 6832 */ 6833 if (!block_group_bits(block_group, flags)) { 6834 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6835 BTRFS_BLOCK_GROUP_RAID1 | 6836 BTRFS_BLOCK_GROUP_RAID5 | 6837 BTRFS_BLOCK_GROUP_RAID6 | 6838 BTRFS_BLOCK_GROUP_RAID10; 6839 6840 /* 6841 * if they asked for extra copies and this block group 6842 * doesn't provide them, bail. This does allow us to 6843 * fill raid0 from raid1. 6844 */ 6845 if ((flags & extra) && !(block_group->flags & extra)) 6846 goto loop; 6847 } 6848 6849have_block_group: 6850 cached = block_group_cache_done(block_group); 6851 if (unlikely(!cached)) { 6852 ret = cache_block_group(block_group, 0); 6853 BUG_ON(ret < 0); 6854 ret = 0; 6855 } 6856 6857 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6858 goto loop; 6859 if (unlikely(block_group->ro)) 6860 goto loop; 6861 6862 /* 6863 * Ok we want to try and use the cluster allocator, so 6864 * lets look there 6865 */ 6866 if (last_ptr) { 6867 struct btrfs_block_group_cache *used_block_group; 6868 unsigned long aligned_cluster; 6869 /* 6870 * the refill lock keeps out other 6871 * people trying to start a new cluster 6872 */ 6873 used_block_group = btrfs_lock_cluster(block_group, 6874 last_ptr, 6875 delalloc); 6876 if (!used_block_group) 6877 goto refill_cluster; 6878 6879 if (used_block_group != block_group && 6880 (used_block_group->ro || 6881 !block_group_bits(used_block_group, flags))) 6882 goto release_cluster; 6883 6884 offset = btrfs_alloc_from_cluster(used_block_group, 6885 last_ptr, 6886 num_bytes, 6887 used_block_group->key.objectid, 6888 &max_extent_size); 6889 if (offset) { 6890 /* we have a block, we're done */ 6891 spin_unlock(&last_ptr->refill_lock); 6892 trace_btrfs_reserve_extent_cluster(root, 6893 used_block_group, 6894 search_start, num_bytes); 6895 if (used_block_group != block_group) { 6896 btrfs_release_block_group(block_group, 6897 delalloc); 6898 block_group = used_block_group; 6899 } 6900 goto checks; 6901 } 6902 6903 WARN_ON(last_ptr->block_group != used_block_group); 6904release_cluster: 6905 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6906 * set up a new clusters, so lets just skip it 6907 * and let the allocator find whatever block 6908 * it can find. If we reach this point, we 6909 * will have tried the cluster allocator 6910 * plenty of times and not have found 6911 * anything, so we are likely way too 6912 * fragmented for the clustering stuff to find 6913 * anything. 6914 * 6915 * However, if the cluster is taken from the 6916 * current block group, release the cluster 6917 * first, so that we stand a better chance of 6918 * succeeding in the unclustered 6919 * allocation. */ 6920 if (loop >= LOOP_NO_EMPTY_SIZE && 6921 used_block_group != block_group) { 6922 spin_unlock(&last_ptr->refill_lock); 6923 btrfs_release_block_group(used_block_group, 6924 delalloc); 6925 goto unclustered_alloc; 6926 } 6927 6928 /* 6929 * this cluster didn't work out, free it and 6930 * start over 6931 */ 6932 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6933 6934 if (used_block_group != block_group) 6935 btrfs_release_block_group(used_block_group, 6936 delalloc); 6937refill_cluster: 6938 if (loop >= LOOP_NO_EMPTY_SIZE) { 6939 spin_unlock(&last_ptr->refill_lock); 6940 goto unclustered_alloc; 6941 } 6942 6943 aligned_cluster = max_t(unsigned long, 6944 empty_cluster + empty_size, 6945 block_group->full_stripe_len); 6946 6947 /* allocate a cluster in this block group */ 6948 ret = btrfs_find_space_cluster(root, block_group, 6949 last_ptr, search_start, 6950 num_bytes, 6951 aligned_cluster); 6952 if (ret == 0) { 6953 /* 6954 * now pull our allocation out of this 6955 * cluster 6956 */ 6957 offset = btrfs_alloc_from_cluster(block_group, 6958 last_ptr, 6959 num_bytes, 6960 search_start, 6961 &max_extent_size); 6962 if (offset) { 6963 /* we found one, proceed */ 6964 spin_unlock(&last_ptr->refill_lock); 6965 trace_btrfs_reserve_extent_cluster(root, 6966 block_group, search_start, 6967 num_bytes); 6968 goto checks; 6969 } 6970 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6971 && !failed_cluster_refill) { 6972 spin_unlock(&last_ptr->refill_lock); 6973 6974 failed_cluster_refill = true; 6975 wait_block_group_cache_progress(block_group, 6976 num_bytes + empty_cluster + empty_size); 6977 goto have_block_group; 6978 } 6979 6980 /* 6981 * at this point we either didn't find a cluster 6982 * or we weren't able to allocate a block from our 6983 * cluster. Free the cluster we've been trying 6984 * to use, and go to the next block group 6985 */ 6986 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6987 spin_unlock(&last_ptr->refill_lock); 6988 goto loop; 6989 } 6990 6991unclustered_alloc: 6992 spin_lock(&block_group->free_space_ctl->tree_lock); 6993 if (cached && 6994 block_group->free_space_ctl->free_space < 6995 num_bytes + empty_cluster + empty_size) { 6996 if (block_group->free_space_ctl->free_space > 6997 max_extent_size) 6998 max_extent_size = 6999 block_group->free_space_ctl->free_space; 7000 spin_unlock(&block_group->free_space_ctl->tree_lock); 7001 goto loop; 7002 } 7003 spin_unlock(&block_group->free_space_ctl->tree_lock); 7004 7005 offset = btrfs_find_space_for_alloc(block_group, search_start, 7006 num_bytes, empty_size, 7007 &max_extent_size); 7008 /* 7009 * If we didn't find a chunk, and we haven't failed on this 7010 * block group before, and this block group is in the middle of 7011 * caching and we are ok with waiting, then go ahead and wait 7012 * for progress to be made, and set failed_alloc to true. 7013 * 7014 * If failed_alloc is true then we've already waited on this 7015 * block group once and should move on to the next block group. 7016 */ 7017 if (!offset && !failed_alloc && !cached && 7018 loop > LOOP_CACHING_NOWAIT) { 7019 wait_block_group_cache_progress(block_group, 7020 num_bytes + empty_size); 7021 failed_alloc = true; 7022 goto have_block_group; 7023 } else if (!offset) { 7024 if (!cached) 7025 have_caching_bg = true; 7026 goto loop; 7027 } 7028checks: 7029 search_start = ALIGN(offset, root->stripesize); 7030 7031 /* move on to the next group */ 7032 if (search_start + num_bytes > 7033 block_group->key.objectid + block_group->key.offset) { 7034 btrfs_add_free_space(block_group, offset, num_bytes); 7035 goto loop; 7036 } 7037 7038 if (offset < search_start) 7039 btrfs_add_free_space(block_group, offset, 7040 search_start - offset); 7041 BUG_ON(offset > search_start); 7042 7043 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7044 alloc_type, delalloc); 7045 if (ret == -EAGAIN) { 7046 btrfs_add_free_space(block_group, offset, num_bytes); 7047 goto loop; 7048 } 7049 7050 /* we are all good, lets return */ 7051 ins->objectid = search_start; 7052 ins->offset = num_bytes; 7053 7054 trace_btrfs_reserve_extent(orig_root, block_group, 7055 search_start, num_bytes); 7056 btrfs_release_block_group(block_group, delalloc); 7057 break; 7058loop: 7059 failed_cluster_refill = false; 7060 failed_alloc = false; 7061 BUG_ON(index != get_block_group_index(block_group)); 7062 btrfs_release_block_group(block_group, delalloc); 7063 } 7064 up_read(&space_info->groups_sem); 7065 7066 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7067 goto search; 7068 7069 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7070 goto search; 7071 7072 /* 7073 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7074 * caching kthreads as we move along 7075 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7076 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7077 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7078 * again 7079 */ 7080 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7081 index = 0; 7082 loop++; 7083 if (loop == LOOP_ALLOC_CHUNK) { 7084 struct btrfs_trans_handle *trans; 7085 int exist = 0; 7086 7087 trans = current->journal_info; 7088 if (trans) 7089 exist = 1; 7090 else 7091 trans = btrfs_join_transaction(root); 7092 7093 if (IS_ERR(trans)) { 7094 ret = PTR_ERR(trans); 7095 goto out; 7096 } 7097 7098 ret = do_chunk_alloc(trans, root, flags, 7099 CHUNK_ALLOC_FORCE); 7100 /* 7101 * Do not bail out on ENOSPC since we 7102 * can do more things. 7103 */ 7104 if (ret < 0 && ret != -ENOSPC) 7105 btrfs_abort_transaction(trans, 7106 root, ret); 7107 else 7108 ret = 0; 7109 if (!exist) 7110 btrfs_end_transaction(trans, root); 7111 if (ret) 7112 goto out; 7113 } 7114 7115 if (loop == LOOP_NO_EMPTY_SIZE) { 7116 empty_size = 0; 7117 empty_cluster = 0; 7118 } 7119 7120 goto search; 7121 } else if (!ins->objectid) { 7122 ret = -ENOSPC; 7123 } else if (ins->objectid) { 7124 ret = 0; 7125 } 7126out: 7127 if (ret == -ENOSPC) 7128 ins->offset = max_extent_size; 7129 return ret; 7130} 7131 7132static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7133 int dump_block_groups) 7134{ 7135 struct btrfs_block_group_cache *cache; 7136 int index = 0; 7137 7138 spin_lock(&info->lock); 7139 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7140 info->flags, 7141 info->total_bytes - info->bytes_used - info->bytes_pinned - 7142 info->bytes_reserved - info->bytes_readonly, 7143 (info->full) ? "" : "not "); 7144 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7145 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7146 info->total_bytes, info->bytes_used, info->bytes_pinned, 7147 info->bytes_reserved, info->bytes_may_use, 7148 info->bytes_readonly); 7149 spin_unlock(&info->lock); 7150 7151 if (!dump_block_groups) 7152 return; 7153 7154 down_read(&info->groups_sem); 7155again: 7156 list_for_each_entry(cache, &info->block_groups[index], list) { 7157 spin_lock(&cache->lock); 7158 printk(KERN_INFO "BTRFS: " 7159 "block group %llu has %llu bytes, " 7160 "%llu used %llu pinned %llu reserved %s\n", 7161 cache->key.objectid, cache->key.offset, 7162 btrfs_block_group_used(&cache->item), cache->pinned, 7163 cache->reserved, cache->ro ? "[readonly]" : ""); 7164 btrfs_dump_free_space(cache, bytes); 7165 spin_unlock(&cache->lock); 7166 } 7167 if (++index < BTRFS_NR_RAID_TYPES) 7168 goto again; 7169 up_read(&info->groups_sem); 7170} 7171 7172int btrfs_reserve_extent(struct btrfs_root *root, 7173 u64 num_bytes, u64 min_alloc_size, 7174 u64 empty_size, u64 hint_byte, 7175 struct btrfs_key *ins, int is_data, int delalloc) 7176{ 7177 bool final_tried = false; 7178 u64 flags; 7179 int ret; 7180 7181 flags = btrfs_get_alloc_profile(root, is_data); 7182again: 7183 WARN_ON(num_bytes < root->sectorsize); 7184 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7185 flags, delalloc); 7186 7187 if (ret == -ENOSPC) { 7188 if (!final_tried && ins->offset) { 7189 num_bytes = min(num_bytes >> 1, ins->offset); 7190 num_bytes = round_down(num_bytes, root->sectorsize); 7191 num_bytes = max(num_bytes, min_alloc_size); 7192 if (num_bytes == min_alloc_size) 7193 final_tried = true; 7194 goto again; 7195 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7196 struct btrfs_space_info *sinfo; 7197 7198 sinfo = __find_space_info(root->fs_info, flags); 7199 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7200 flags, num_bytes); 7201 if (sinfo) 7202 dump_space_info(sinfo, num_bytes, 1); 7203 } 7204 } 7205 7206 return ret; 7207} 7208 7209static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7210 u64 start, u64 len, 7211 int pin, int delalloc) 7212{ 7213 struct btrfs_block_group_cache *cache; 7214 int ret = 0; 7215 7216 cache = btrfs_lookup_block_group(root->fs_info, start); 7217 if (!cache) { 7218 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7219 start); 7220 return -ENOSPC; 7221 } 7222 7223 if (pin) 7224 pin_down_extent(root, cache, start, len, 1); 7225 else { 7226 if (btrfs_test_opt(root, DISCARD)) 7227 ret = btrfs_discard_extent(root, start, len, NULL); 7228 btrfs_add_free_space(cache, start, len); 7229 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7230 } 7231 7232 btrfs_put_block_group(cache); 7233 7234 trace_btrfs_reserved_extent_free(root, start, len); 7235 7236 return ret; 7237} 7238 7239int btrfs_free_reserved_extent(struct btrfs_root *root, 7240 u64 start, u64 len, int delalloc) 7241{ 7242 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7243} 7244 7245int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7246 u64 start, u64 len) 7247{ 7248 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7249} 7250 7251static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7252 struct btrfs_root *root, 7253 u64 parent, u64 root_objectid, 7254 u64 flags, u64 owner, u64 offset, 7255 struct btrfs_key *ins, int ref_mod) 7256{ 7257 int ret; 7258 struct btrfs_fs_info *fs_info = root->fs_info; 7259 struct btrfs_extent_item *extent_item; 7260 struct btrfs_extent_inline_ref *iref; 7261 struct btrfs_path *path; 7262 struct extent_buffer *leaf; 7263 int type; 7264 u32 size; 7265 7266 if (parent > 0) 7267 type = BTRFS_SHARED_DATA_REF_KEY; 7268 else 7269 type = BTRFS_EXTENT_DATA_REF_KEY; 7270 7271 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7272 7273 path = btrfs_alloc_path(); 7274 if (!path) 7275 return -ENOMEM; 7276 7277 path->leave_spinning = 1; 7278 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7279 ins, size); 7280 if (ret) { 7281 btrfs_free_path(path); 7282 return ret; 7283 } 7284 7285 leaf = path->nodes[0]; 7286 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7287 struct btrfs_extent_item); 7288 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7289 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7290 btrfs_set_extent_flags(leaf, extent_item, 7291 flags | BTRFS_EXTENT_FLAG_DATA); 7292 7293 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7294 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7295 if (parent > 0) { 7296 struct btrfs_shared_data_ref *ref; 7297 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7298 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7299 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7300 } else { 7301 struct btrfs_extent_data_ref *ref; 7302 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7303 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7304 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7305 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7306 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7307 } 7308 7309 btrfs_mark_buffer_dirty(path->nodes[0]); 7310 btrfs_free_path(path); 7311 7312 /* Always set parent to 0 here since its exclusive anyway. */ 7313 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7314 ins->objectid, ins->offset, 7315 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7316 if (ret) 7317 return ret; 7318 7319 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7320 if (ret) { /* -ENOENT, logic error */ 7321 btrfs_err(fs_info, "update block group failed for %llu %llu", 7322 ins->objectid, ins->offset); 7323 BUG(); 7324 } 7325 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7326 return ret; 7327} 7328 7329static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7330 struct btrfs_root *root, 7331 u64 parent, u64 root_objectid, 7332 u64 flags, struct btrfs_disk_key *key, 7333 int level, struct btrfs_key *ins, 7334 int no_quota) 7335{ 7336 int ret; 7337 struct btrfs_fs_info *fs_info = root->fs_info; 7338 struct btrfs_extent_item *extent_item; 7339 struct btrfs_tree_block_info *block_info; 7340 struct btrfs_extent_inline_ref *iref; 7341 struct btrfs_path *path; 7342 struct extent_buffer *leaf; 7343 u32 size = sizeof(*extent_item) + sizeof(*iref); 7344 u64 num_bytes = ins->offset; 7345 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7346 SKINNY_METADATA); 7347 7348 if (!skinny_metadata) 7349 size += sizeof(*block_info); 7350 7351 path = btrfs_alloc_path(); 7352 if (!path) { 7353 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7354 root->nodesize); 7355 return -ENOMEM; 7356 } 7357 7358 path->leave_spinning = 1; 7359 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7360 ins, size); 7361 if (ret) { 7362 btrfs_free_path(path); 7363 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7364 root->nodesize); 7365 return ret; 7366 } 7367 7368 leaf = path->nodes[0]; 7369 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7370 struct btrfs_extent_item); 7371 btrfs_set_extent_refs(leaf, extent_item, 1); 7372 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7373 btrfs_set_extent_flags(leaf, extent_item, 7374 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7375 7376 if (skinny_metadata) { 7377 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7378 num_bytes = root->nodesize; 7379 } else { 7380 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7381 btrfs_set_tree_block_key(leaf, block_info, key); 7382 btrfs_set_tree_block_level(leaf, block_info, level); 7383 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7384 } 7385 7386 if (parent > 0) { 7387 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7388 btrfs_set_extent_inline_ref_type(leaf, iref, 7389 BTRFS_SHARED_BLOCK_REF_KEY); 7390 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7391 } else { 7392 btrfs_set_extent_inline_ref_type(leaf, iref, 7393 BTRFS_TREE_BLOCK_REF_KEY); 7394 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7395 } 7396 7397 btrfs_mark_buffer_dirty(leaf); 7398 btrfs_free_path(path); 7399 7400 if (!no_quota) { 7401 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7402 ins->objectid, num_bytes, 7403 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7404 if (ret) 7405 return ret; 7406 } 7407 7408 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7409 1); 7410 if (ret) { /* -ENOENT, logic error */ 7411 btrfs_err(fs_info, "update block group failed for %llu %llu", 7412 ins->objectid, ins->offset); 7413 BUG(); 7414 } 7415 7416 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7417 return ret; 7418} 7419 7420int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7421 struct btrfs_root *root, 7422 u64 root_objectid, u64 owner, 7423 u64 offset, struct btrfs_key *ins) 7424{ 7425 int ret; 7426 7427 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7428 7429 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7430 ins->offset, 0, 7431 root_objectid, owner, offset, 7432 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7433 return ret; 7434} 7435 7436/* 7437 * this is used by the tree logging recovery code. It records that 7438 * an extent has been allocated and makes sure to clear the free 7439 * space cache bits as well 7440 */ 7441int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7442 struct btrfs_root *root, 7443 u64 root_objectid, u64 owner, u64 offset, 7444 struct btrfs_key *ins) 7445{ 7446 int ret; 7447 struct btrfs_block_group_cache *block_group; 7448 7449 /* 7450 * Mixed block groups will exclude before processing the log so we only 7451 * need to do the exlude dance if this fs isn't mixed. 7452 */ 7453 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7454 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7455 if (ret) 7456 return ret; 7457 } 7458 7459 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7460 if (!block_group) 7461 return -EINVAL; 7462 7463 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7464 RESERVE_ALLOC_NO_ACCOUNT, 0); 7465 BUG_ON(ret); /* logic error */ 7466 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7467 0, owner, offset, ins, 1); 7468 btrfs_put_block_group(block_group); 7469 return ret; 7470} 7471 7472static struct extent_buffer * 7473btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7474 u64 bytenr, int level) 7475{ 7476 struct extent_buffer *buf; 7477 7478 buf = btrfs_find_create_tree_block(root, bytenr); 7479 if (!buf) 7480 return ERR_PTR(-ENOMEM); 7481 btrfs_set_header_generation(buf, trans->transid); 7482 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7483 btrfs_tree_lock(buf); 7484 clean_tree_block(trans, root->fs_info, buf); 7485 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7486 7487 btrfs_set_lock_blocking(buf); 7488 btrfs_set_buffer_uptodate(buf); 7489 7490 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7491 buf->log_index = root->log_transid % 2; 7492 /* 7493 * we allow two log transactions at a time, use different 7494 * EXENT bit to differentiate dirty pages. 7495 */ 7496 if (buf->log_index == 0) 7497 set_extent_dirty(&root->dirty_log_pages, buf->start, 7498 buf->start + buf->len - 1, GFP_NOFS); 7499 else 7500 set_extent_new(&root->dirty_log_pages, buf->start, 7501 buf->start + buf->len - 1, GFP_NOFS); 7502 } else { 7503 buf->log_index = -1; 7504 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7505 buf->start + buf->len - 1, GFP_NOFS); 7506 } 7507 trans->blocks_used++; 7508 /* this returns a buffer locked for blocking */ 7509 return buf; 7510} 7511 7512static struct btrfs_block_rsv * 7513use_block_rsv(struct btrfs_trans_handle *trans, 7514 struct btrfs_root *root, u32 blocksize) 7515{ 7516 struct btrfs_block_rsv *block_rsv; 7517 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7518 int ret; 7519 bool global_updated = false; 7520 7521 block_rsv = get_block_rsv(trans, root); 7522 7523 if (unlikely(block_rsv->size == 0)) 7524 goto try_reserve; 7525again: 7526 ret = block_rsv_use_bytes(block_rsv, blocksize); 7527 if (!ret) 7528 return block_rsv; 7529 7530 if (block_rsv->failfast) 7531 return ERR_PTR(ret); 7532 7533 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7534 global_updated = true; 7535 update_global_block_rsv(root->fs_info); 7536 goto again; 7537 } 7538 7539 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7540 static DEFINE_RATELIMIT_STATE(_rs, 7541 DEFAULT_RATELIMIT_INTERVAL * 10, 7542 /*DEFAULT_RATELIMIT_BURST*/ 1); 7543 if (__ratelimit(&_rs)) 7544 WARN(1, KERN_DEBUG 7545 "BTRFS: block rsv returned %d\n", ret); 7546 } 7547try_reserve: 7548 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7549 BTRFS_RESERVE_NO_FLUSH); 7550 if (!ret) 7551 return block_rsv; 7552 /* 7553 * If we couldn't reserve metadata bytes try and use some from 7554 * the global reserve if its space type is the same as the global 7555 * reservation. 7556 */ 7557 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7558 block_rsv->space_info == global_rsv->space_info) { 7559 ret = block_rsv_use_bytes(global_rsv, blocksize); 7560 if (!ret) 7561 return global_rsv; 7562 } 7563 return ERR_PTR(ret); 7564} 7565 7566static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7567 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7568{ 7569 block_rsv_add_bytes(block_rsv, blocksize, 0); 7570 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7571} 7572 7573/* 7574 * finds a free extent and does all the dirty work required for allocation 7575 * returns the key for the extent through ins, and a tree buffer for 7576 * the first block of the extent through buf. 7577 * 7578 * returns the tree buffer or an ERR_PTR on error. 7579 */ 7580struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7581 struct btrfs_root *root, 7582 u64 parent, u64 root_objectid, 7583 struct btrfs_disk_key *key, int level, 7584 u64 hint, u64 empty_size) 7585{ 7586 struct btrfs_key ins; 7587 struct btrfs_block_rsv *block_rsv; 7588 struct extent_buffer *buf; 7589 struct btrfs_delayed_extent_op *extent_op; 7590 u64 flags = 0; 7591 int ret; 7592 u32 blocksize = root->nodesize; 7593 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7594 SKINNY_METADATA); 7595 7596 if (btrfs_test_is_dummy_root(root)) { 7597 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7598 level); 7599 if (!IS_ERR(buf)) 7600 root->alloc_bytenr += blocksize; 7601 return buf; 7602 } 7603 7604 block_rsv = use_block_rsv(trans, root, blocksize); 7605 if (IS_ERR(block_rsv)) 7606 return ERR_CAST(block_rsv); 7607 7608 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7609 empty_size, hint, &ins, 0, 0); 7610 if (ret) 7611 goto out_unuse; 7612 7613 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7614 if (IS_ERR(buf)) { 7615 ret = PTR_ERR(buf); 7616 goto out_free_reserved; 7617 } 7618 7619 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7620 if (parent == 0) 7621 parent = ins.objectid; 7622 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7623 } else 7624 BUG_ON(parent > 0); 7625 7626 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7627 extent_op = btrfs_alloc_delayed_extent_op(); 7628 if (!extent_op) { 7629 ret = -ENOMEM; 7630 goto out_free_buf; 7631 } 7632 if (key) 7633 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7634 else 7635 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7636 extent_op->flags_to_set = flags; 7637 if (skinny_metadata) 7638 extent_op->update_key = 0; 7639 else 7640 extent_op->update_key = 1; 7641 extent_op->update_flags = 1; 7642 extent_op->is_data = 0; 7643 extent_op->level = level; 7644 7645 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7646 ins.objectid, ins.offset, 7647 parent, root_objectid, level, 7648 BTRFS_ADD_DELAYED_EXTENT, 7649 extent_op, 0); 7650 if (ret) 7651 goto out_free_delayed; 7652 } 7653 return buf; 7654 7655out_free_delayed: 7656 btrfs_free_delayed_extent_op(extent_op); 7657out_free_buf: 7658 free_extent_buffer(buf); 7659out_free_reserved: 7660 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7661out_unuse: 7662 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7663 return ERR_PTR(ret); 7664} 7665 7666struct walk_control { 7667 u64 refs[BTRFS_MAX_LEVEL]; 7668 u64 flags[BTRFS_MAX_LEVEL]; 7669 struct btrfs_key update_progress; 7670 int stage; 7671 int level; 7672 int shared_level; 7673 int update_ref; 7674 int keep_locks; 7675 int reada_slot; 7676 int reada_count; 7677 int for_reloc; 7678}; 7679 7680#define DROP_REFERENCE 1 7681#define UPDATE_BACKREF 2 7682 7683static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7684 struct btrfs_root *root, 7685 struct walk_control *wc, 7686 struct btrfs_path *path) 7687{ 7688 u64 bytenr; 7689 u64 generation; 7690 u64 refs; 7691 u64 flags; 7692 u32 nritems; 7693 u32 blocksize; 7694 struct btrfs_key key; 7695 struct extent_buffer *eb; 7696 int ret; 7697 int slot; 7698 int nread = 0; 7699 7700 if (path->slots[wc->level] < wc->reada_slot) { 7701 wc->reada_count = wc->reada_count * 2 / 3; 7702 wc->reada_count = max(wc->reada_count, 2); 7703 } else { 7704 wc->reada_count = wc->reada_count * 3 / 2; 7705 wc->reada_count = min_t(int, wc->reada_count, 7706 BTRFS_NODEPTRS_PER_BLOCK(root)); 7707 } 7708 7709 eb = path->nodes[wc->level]; 7710 nritems = btrfs_header_nritems(eb); 7711 blocksize = root->nodesize; 7712 7713 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7714 if (nread >= wc->reada_count) 7715 break; 7716 7717 cond_resched(); 7718 bytenr = btrfs_node_blockptr(eb, slot); 7719 generation = btrfs_node_ptr_generation(eb, slot); 7720 7721 if (slot == path->slots[wc->level]) 7722 goto reada; 7723 7724 if (wc->stage == UPDATE_BACKREF && 7725 generation <= root->root_key.offset) 7726 continue; 7727 7728 /* We don't lock the tree block, it's OK to be racy here */ 7729 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7730 wc->level - 1, 1, &refs, 7731 &flags); 7732 /* We don't care about errors in readahead. */ 7733 if (ret < 0) 7734 continue; 7735 BUG_ON(refs == 0); 7736 7737 if (wc->stage == DROP_REFERENCE) { 7738 if (refs == 1) 7739 goto reada; 7740 7741 if (wc->level == 1 && 7742 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7743 continue; 7744 if (!wc->update_ref || 7745 generation <= root->root_key.offset) 7746 continue; 7747 btrfs_node_key_to_cpu(eb, &key, slot); 7748 ret = btrfs_comp_cpu_keys(&key, 7749 &wc->update_progress); 7750 if (ret < 0) 7751 continue; 7752 } else { 7753 if (wc->level == 1 && 7754 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7755 continue; 7756 } 7757reada: 7758 readahead_tree_block(root, bytenr); 7759 nread++; 7760 } 7761 wc->reada_slot = slot; 7762} 7763 7764static int account_leaf_items(struct btrfs_trans_handle *trans, 7765 struct btrfs_root *root, 7766 struct extent_buffer *eb) 7767{ 7768 int nr = btrfs_header_nritems(eb); 7769 int i, extent_type, ret; 7770 struct btrfs_key key; 7771 struct btrfs_file_extent_item *fi; 7772 u64 bytenr, num_bytes; 7773 7774 for (i = 0; i < nr; i++) { 7775 btrfs_item_key_to_cpu(eb, &key, i); 7776 7777 if (key.type != BTRFS_EXTENT_DATA_KEY) 7778 continue; 7779 7780 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7781 /* filter out non qgroup-accountable extents */ 7782 extent_type = btrfs_file_extent_type(eb, fi); 7783 7784 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7785 continue; 7786 7787 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7788 if (!bytenr) 7789 continue; 7790 7791 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7792 7793 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7794 root->objectid, 7795 bytenr, num_bytes, 7796 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0); 7797 if (ret) 7798 return ret; 7799 } 7800 return 0; 7801} 7802 7803/* 7804 * Walk up the tree from the bottom, freeing leaves and any interior 7805 * nodes which have had all slots visited. If a node (leaf or 7806 * interior) is freed, the node above it will have it's slot 7807 * incremented. The root node will never be freed. 7808 * 7809 * At the end of this function, we should have a path which has all 7810 * slots incremented to the next position for a search. If we need to 7811 * read a new node it will be NULL and the node above it will have the 7812 * correct slot selected for a later read. 7813 * 7814 * If we increment the root nodes slot counter past the number of 7815 * elements, 1 is returned to signal completion of the search. 7816 */ 7817static int adjust_slots_upwards(struct btrfs_root *root, 7818 struct btrfs_path *path, int root_level) 7819{ 7820 int level = 0; 7821 int nr, slot; 7822 struct extent_buffer *eb; 7823 7824 if (root_level == 0) 7825 return 1; 7826 7827 while (level <= root_level) { 7828 eb = path->nodes[level]; 7829 nr = btrfs_header_nritems(eb); 7830 path->slots[level]++; 7831 slot = path->slots[level]; 7832 if (slot >= nr || level == 0) { 7833 /* 7834 * Don't free the root - we will detect this 7835 * condition after our loop and return a 7836 * positive value for caller to stop walking the tree. 7837 */ 7838 if (level != root_level) { 7839 btrfs_tree_unlock_rw(eb, path->locks[level]); 7840 path->locks[level] = 0; 7841 7842 free_extent_buffer(eb); 7843 path->nodes[level] = NULL; 7844 path->slots[level] = 0; 7845 } 7846 } else { 7847 /* 7848 * We have a valid slot to walk back down 7849 * from. Stop here so caller can process these 7850 * new nodes. 7851 */ 7852 break; 7853 } 7854 7855 level++; 7856 } 7857 7858 eb = path->nodes[root_level]; 7859 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7860 return 1; 7861 7862 return 0; 7863} 7864 7865/* 7866 * root_eb is the subtree root and is locked before this function is called. 7867 */ 7868static int account_shared_subtree(struct btrfs_trans_handle *trans, 7869 struct btrfs_root *root, 7870 struct extent_buffer *root_eb, 7871 u64 root_gen, 7872 int root_level) 7873{ 7874 int ret = 0; 7875 int level; 7876 struct extent_buffer *eb = root_eb; 7877 struct btrfs_path *path = NULL; 7878 7879 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7880 BUG_ON(root_eb == NULL); 7881 7882 if (!root->fs_info->quota_enabled) 7883 return 0; 7884 7885 if (!extent_buffer_uptodate(root_eb)) { 7886 ret = btrfs_read_buffer(root_eb, root_gen); 7887 if (ret) 7888 goto out; 7889 } 7890 7891 if (root_level == 0) { 7892 ret = account_leaf_items(trans, root, root_eb); 7893 goto out; 7894 } 7895 7896 path = btrfs_alloc_path(); 7897 if (!path) 7898 return -ENOMEM; 7899 7900 /* 7901 * Walk down the tree. Missing extent blocks are filled in as 7902 * we go. Metadata is accounted every time we read a new 7903 * extent block. 7904 * 7905 * When we reach a leaf, we account for file extent items in it, 7906 * walk back up the tree (adjusting slot pointers as we go) 7907 * and restart the search process. 7908 */ 7909 extent_buffer_get(root_eb); /* For path */ 7910 path->nodes[root_level] = root_eb; 7911 path->slots[root_level] = 0; 7912 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7913walk_down: 7914 level = root_level; 7915 while (level >= 0) { 7916 if (path->nodes[level] == NULL) { 7917 int parent_slot; 7918 u64 child_gen; 7919 u64 child_bytenr; 7920 7921 /* We need to get child blockptr/gen from 7922 * parent before we can read it. */ 7923 eb = path->nodes[level + 1]; 7924 parent_slot = path->slots[level + 1]; 7925 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7926 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7927 7928 eb = read_tree_block(root, child_bytenr, child_gen); 7929 if (!eb || !extent_buffer_uptodate(eb)) { 7930 ret = -EIO; 7931 goto out; 7932 } 7933 7934 path->nodes[level] = eb; 7935 path->slots[level] = 0; 7936 7937 btrfs_tree_read_lock(eb); 7938 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7939 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7940 7941 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7942 root->objectid, 7943 child_bytenr, 7944 root->nodesize, 7945 BTRFS_QGROUP_OPER_SUB_SUBTREE, 7946 0); 7947 if (ret) 7948 goto out; 7949 7950 } 7951 7952 if (level == 0) { 7953 ret = account_leaf_items(trans, root, path->nodes[level]); 7954 if (ret) 7955 goto out; 7956 7957 /* Nonzero return here means we completed our search */ 7958 ret = adjust_slots_upwards(root, path, root_level); 7959 if (ret) 7960 break; 7961 7962 /* Restart search with new slots */ 7963 goto walk_down; 7964 } 7965 7966 level--; 7967 } 7968 7969 ret = 0; 7970out: 7971 btrfs_free_path(path); 7972 7973 return ret; 7974} 7975 7976/* 7977 * helper to process tree block while walking down the tree. 7978 * 7979 * when wc->stage == UPDATE_BACKREF, this function updates 7980 * back refs for pointers in the block. 7981 * 7982 * NOTE: return value 1 means we should stop walking down. 7983 */ 7984static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7985 struct btrfs_root *root, 7986 struct btrfs_path *path, 7987 struct walk_control *wc, int lookup_info) 7988{ 7989 int level = wc->level; 7990 struct extent_buffer *eb = path->nodes[level]; 7991 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7992 int ret; 7993 7994 if (wc->stage == UPDATE_BACKREF && 7995 btrfs_header_owner(eb) != root->root_key.objectid) 7996 return 1; 7997 7998 /* 7999 * when reference count of tree block is 1, it won't increase 8000 * again. once full backref flag is set, we never clear it. 8001 */ 8002 if (lookup_info && 8003 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8004 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8005 BUG_ON(!path->locks[level]); 8006 ret = btrfs_lookup_extent_info(trans, root, 8007 eb->start, level, 1, 8008 &wc->refs[level], 8009 &wc->flags[level]); 8010 BUG_ON(ret == -ENOMEM); 8011 if (ret) 8012 return ret; 8013 BUG_ON(wc->refs[level] == 0); 8014 } 8015 8016 if (wc->stage == DROP_REFERENCE) { 8017 if (wc->refs[level] > 1) 8018 return 1; 8019 8020 if (path->locks[level] && !wc->keep_locks) { 8021 btrfs_tree_unlock_rw(eb, path->locks[level]); 8022 path->locks[level] = 0; 8023 } 8024 return 0; 8025 } 8026 8027 /* wc->stage == UPDATE_BACKREF */ 8028 if (!(wc->flags[level] & flag)) { 8029 BUG_ON(!path->locks[level]); 8030 ret = btrfs_inc_ref(trans, root, eb, 1); 8031 BUG_ON(ret); /* -ENOMEM */ 8032 ret = btrfs_dec_ref(trans, root, eb, 0); 8033 BUG_ON(ret); /* -ENOMEM */ 8034 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8035 eb->len, flag, 8036 btrfs_header_level(eb), 0); 8037 BUG_ON(ret); /* -ENOMEM */ 8038 wc->flags[level] |= flag; 8039 } 8040 8041 /* 8042 * the block is shared by multiple trees, so it's not good to 8043 * keep the tree lock 8044 */ 8045 if (path->locks[level] && level > 0) { 8046 btrfs_tree_unlock_rw(eb, path->locks[level]); 8047 path->locks[level] = 0; 8048 } 8049 return 0; 8050} 8051 8052/* 8053 * helper to process tree block pointer. 8054 * 8055 * when wc->stage == DROP_REFERENCE, this function checks 8056 * reference count of the block pointed to. if the block 8057 * is shared and we need update back refs for the subtree 8058 * rooted at the block, this function changes wc->stage to 8059 * UPDATE_BACKREF. if the block is shared and there is no 8060 * need to update back, this function drops the reference 8061 * to the block. 8062 * 8063 * NOTE: return value 1 means we should stop walking down. 8064 */ 8065static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8066 struct btrfs_root *root, 8067 struct btrfs_path *path, 8068 struct walk_control *wc, int *lookup_info) 8069{ 8070 u64 bytenr; 8071 u64 generation; 8072 u64 parent; 8073 u32 blocksize; 8074 struct btrfs_key key; 8075 struct extent_buffer *next; 8076 int level = wc->level; 8077 int reada = 0; 8078 int ret = 0; 8079 bool need_account = false; 8080 8081 generation = btrfs_node_ptr_generation(path->nodes[level], 8082 path->slots[level]); 8083 /* 8084 * if the lower level block was created before the snapshot 8085 * was created, we know there is no need to update back refs 8086 * for the subtree 8087 */ 8088 if (wc->stage == UPDATE_BACKREF && 8089 generation <= root->root_key.offset) { 8090 *lookup_info = 1; 8091 return 1; 8092 } 8093 8094 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8095 blocksize = root->nodesize; 8096 8097 next = btrfs_find_tree_block(root->fs_info, bytenr); 8098 if (!next) { 8099 next = btrfs_find_create_tree_block(root, bytenr); 8100 if (!next) 8101 return -ENOMEM; 8102 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8103 level - 1); 8104 reada = 1; 8105 } 8106 btrfs_tree_lock(next); 8107 btrfs_set_lock_blocking(next); 8108 8109 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8110 &wc->refs[level - 1], 8111 &wc->flags[level - 1]); 8112 if (ret < 0) { 8113 btrfs_tree_unlock(next); 8114 return ret; 8115 } 8116 8117 if (unlikely(wc->refs[level - 1] == 0)) { 8118 btrfs_err(root->fs_info, "Missing references."); 8119 BUG(); 8120 } 8121 *lookup_info = 0; 8122 8123 if (wc->stage == DROP_REFERENCE) { 8124 if (wc->refs[level - 1] > 1) { 8125 need_account = true; 8126 if (level == 1 && 8127 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8128 goto skip; 8129 8130 if (!wc->update_ref || 8131 generation <= root->root_key.offset) 8132 goto skip; 8133 8134 btrfs_node_key_to_cpu(path->nodes[level], &key, 8135 path->slots[level]); 8136 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8137 if (ret < 0) 8138 goto skip; 8139 8140 wc->stage = UPDATE_BACKREF; 8141 wc->shared_level = level - 1; 8142 } 8143 } else { 8144 if (level == 1 && 8145 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8146 goto skip; 8147 } 8148 8149 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8150 btrfs_tree_unlock(next); 8151 free_extent_buffer(next); 8152 next = NULL; 8153 *lookup_info = 1; 8154 } 8155 8156 if (!next) { 8157 if (reada && level == 1) 8158 reada_walk_down(trans, root, wc, path); 8159 next = read_tree_block(root, bytenr, generation); 8160 if (!next || !extent_buffer_uptodate(next)) { 8161 free_extent_buffer(next); 8162 return -EIO; 8163 } 8164 btrfs_tree_lock(next); 8165 btrfs_set_lock_blocking(next); 8166 } 8167 8168 level--; 8169 BUG_ON(level != btrfs_header_level(next)); 8170 path->nodes[level] = next; 8171 path->slots[level] = 0; 8172 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8173 wc->level = level; 8174 if (wc->level == 1) 8175 wc->reada_slot = 0; 8176 return 0; 8177skip: 8178 wc->refs[level - 1] = 0; 8179 wc->flags[level - 1] = 0; 8180 if (wc->stage == DROP_REFERENCE) { 8181 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8182 parent = path->nodes[level]->start; 8183 } else { 8184 BUG_ON(root->root_key.objectid != 8185 btrfs_header_owner(path->nodes[level])); 8186 parent = 0; 8187 } 8188 8189 if (need_account) { 8190 ret = account_shared_subtree(trans, root, next, 8191 generation, level - 1); 8192 if (ret) { 8193 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8194 "%d accounting shared subtree. Quota " 8195 "is out of sync, rescan required.\n", 8196 root->fs_info->sb->s_id, ret); 8197 } 8198 } 8199 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8200 root->root_key.objectid, level - 1, 0, 0); 8201 BUG_ON(ret); /* -ENOMEM */ 8202 } 8203 btrfs_tree_unlock(next); 8204 free_extent_buffer(next); 8205 *lookup_info = 1; 8206 return 1; 8207} 8208 8209/* 8210 * helper to process tree block while walking up the tree. 8211 * 8212 * when wc->stage == DROP_REFERENCE, this function drops 8213 * reference count on the block. 8214 * 8215 * when wc->stage == UPDATE_BACKREF, this function changes 8216 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8217 * to UPDATE_BACKREF previously while processing the block. 8218 * 8219 * NOTE: return value 1 means we should stop walking up. 8220 */ 8221static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8222 struct btrfs_root *root, 8223 struct btrfs_path *path, 8224 struct walk_control *wc) 8225{ 8226 int ret; 8227 int level = wc->level; 8228 struct extent_buffer *eb = path->nodes[level]; 8229 u64 parent = 0; 8230 8231 if (wc->stage == UPDATE_BACKREF) { 8232 BUG_ON(wc->shared_level < level); 8233 if (level < wc->shared_level) 8234 goto out; 8235 8236 ret = find_next_key(path, level + 1, &wc->update_progress); 8237 if (ret > 0) 8238 wc->update_ref = 0; 8239 8240 wc->stage = DROP_REFERENCE; 8241 wc->shared_level = -1; 8242 path->slots[level] = 0; 8243 8244 /* 8245 * check reference count again if the block isn't locked. 8246 * we should start walking down the tree again if reference 8247 * count is one. 8248 */ 8249 if (!path->locks[level]) { 8250 BUG_ON(level == 0); 8251 btrfs_tree_lock(eb); 8252 btrfs_set_lock_blocking(eb); 8253 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8254 8255 ret = btrfs_lookup_extent_info(trans, root, 8256 eb->start, level, 1, 8257 &wc->refs[level], 8258 &wc->flags[level]); 8259 if (ret < 0) { 8260 btrfs_tree_unlock_rw(eb, path->locks[level]); 8261 path->locks[level] = 0; 8262 return ret; 8263 } 8264 BUG_ON(wc->refs[level] == 0); 8265 if (wc->refs[level] == 1) { 8266 btrfs_tree_unlock_rw(eb, path->locks[level]); 8267 path->locks[level] = 0; 8268 return 1; 8269 } 8270 } 8271 } 8272 8273 /* wc->stage == DROP_REFERENCE */ 8274 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8275 8276 if (wc->refs[level] == 1) { 8277 if (level == 0) { 8278 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8279 ret = btrfs_dec_ref(trans, root, eb, 1); 8280 else 8281 ret = btrfs_dec_ref(trans, root, eb, 0); 8282 BUG_ON(ret); /* -ENOMEM */ 8283 ret = account_leaf_items(trans, root, eb); 8284 if (ret) { 8285 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8286 "%d accounting leaf items. Quota " 8287 "is out of sync, rescan required.\n", 8288 root->fs_info->sb->s_id, ret); 8289 } 8290 } 8291 /* make block locked assertion in clean_tree_block happy */ 8292 if (!path->locks[level] && 8293 btrfs_header_generation(eb) == trans->transid) { 8294 btrfs_tree_lock(eb); 8295 btrfs_set_lock_blocking(eb); 8296 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8297 } 8298 clean_tree_block(trans, root->fs_info, eb); 8299 } 8300 8301 if (eb == root->node) { 8302 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8303 parent = eb->start; 8304 else 8305 BUG_ON(root->root_key.objectid != 8306 btrfs_header_owner(eb)); 8307 } else { 8308 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8309 parent = path->nodes[level + 1]->start; 8310 else 8311 BUG_ON(root->root_key.objectid != 8312 btrfs_header_owner(path->nodes[level + 1])); 8313 } 8314 8315 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8316out: 8317 wc->refs[level] = 0; 8318 wc->flags[level] = 0; 8319 return 0; 8320} 8321 8322static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8323 struct btrfs_root *root, 8324 struct btrfs_path *path, 8325 struct walk_control *wc) 8326{ 8327 int level = wc->level; 8328 int lookup_info = 1; 8329 int ret; 8330 8331 while (level >= 0) { 8332 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8333 if (ret > 0) 8334 break; 8335 8336 if (level == 0) 8337 break; 8338 8339 if (path->slots[level] >= 8340 btrfs_header_nritems(path->nodes[level])) 8341 break; 8342 8343 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8344 if (ret > 0) { 8345 path->slots[level]++; 8346 continue; 8347 } else if (ret < 0) 8348 return ret; 8349 level = wc->level; 8350 } 8351 return 0; 8352} 8353 8354static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8355 struct btrfs_root *root, 8356 struct btrfs_path *path, 8357 struct walk_control *wc, int max_level) 8358{ 8359 int level = wc->level; 8360 int ret; 8361 8362 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8363 while (level < max_level && path->nodes[level]) { 8364 wc->level = level; 8365 if (path->slots[level] + 1 < 8366 btrfs_header_nritems(path->nodes[level])) { 8367 path->slots[level]++; 8368 return 0; 8369 } else { 8370 ret = walk_up_proc(trans, root, path, wc); 8371 if (ret > 0) 8372 return 0; 8373 8374 if (path->locks[level]) { 8375 btrfs_tree_unlock_rw(path->nodes[level], 8376 path->locks[level]); 8377 path->locks[level] = 0; 8378 } 8379 free_extent_buffer(path->nodes[level]); 8380 path->nodes[level] = NULL; 8381 level++; 8382 } 8383 } 8384 return 1; 8385} 8386 8387/* 8388 * drop a subvolume tree. 8389 * 8390 * this function traverses the tree freeing any blocks that only 8391 * referenced by the tree. 8392 * 8393 * when a shared tree block is found. this function decreases its 8394 * reference count by one. if update_ref is true, this function 8395 * also make sure backrefs for the shared block and all lower level 8396 * blocks are properly updated. 8397 * 8398 * If called with for_reloc == 0, may exit early with -EAGAIN 8399 */ 8400int btrfs_drop_snapshot(struct btrfs_root *root, 8401 struct btrfs_block_rsv *block_rsv, int update_ref, 8402 int for_reloc) 8403{ 8404 struct btrfs_path *path; 8405 struct btrfs_trans_handle *trans; 8406 struct btrfs_root *tree_root = root->fs_info->tree_root; 8407 struct btrfs_root_item *root_item = &root->root_item; 8408 struct walk_control *wc; 8409 struct btrfs_key key; 8410 int err = 0; 8411 int ret; 8412 int level; 8413 bool root_dropped = false; 8414 8415 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8416 8417 path = btrfs_alloc_path(); 8418 if (!path) { 8419 err = -ENOMEM; 8420 goto out; 8421 } 8422 8423 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8424 if (!wc) { 8425 btrfs_free_path(path); 8426 err = -ENOMEM; 8427 goto out; 8428 } 8429 8430 trans = btrfs_start_transaction(tree_root, 0); 8431 if (IS_ERR(trans)) { 8432 err = PTR_ERR(trans); 8433 goto out_free; 8434 } 8435 8436 if (block_rsv) 8437 trans->block_rsv = block_rsv; 8438 8439 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8440 level = btrfs_header_level(root->node); 8441 path->nodes[level] = btrfs_lock_root_node(root); 8442 btrfs_set_lock_blocking(path->nodes[level]); 8443 path->slots[level] = 0; 8444 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8445 memset(&wc->update_progress, 0, 8446 sizeof(wc->update_progress)); 8447 } else { 8448 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8449 memcpy(&wc->update_progress, &key, 8450 sizeof(wc->update_progress)); 8451 8452 level = root_item->drop_level; 8453 BUG_ON(level == 0); 8454 path->lowest_level = level; 8455 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8456 path->lowest_level = 0; 8457 if (ret < 0) { 8458 err = ret; 8459 goto out_end_trans; 8460 } 8461 WARN_ON(ret > 0); 8462 8463 /* 8464 * unlock our path, this is safe because only this 8465 * function is allowed to delete this snapshot 8466 */ 8467 btrfs_unlock_up_safe(path, 0); 8468 8469 level = btrfs_header_level(root->node); 8470 while (1) { 8471 btrfs_tree_lock(path->nodes[level]); 8472 btrfs_set_lock_blocking(path->nodes[level]); 8473 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8474 8475 ret = btrfs_lookup_extent_info(trans, root, 8476 path->nodes[level]->start, 8477 level, 1, &wc->refs[level], 8478 &wc->flags[level]); 8479 if (ret < 0) { 8480 err = ret; 8481 goto out_end_trans; 8482 } 8483 BUG_ON(wc->refs[level] == 0); 8484 8485 if (level == root_item->drop_level) 8486 break; 8487 8488 btrfs_tree_unlock(path->nodes[level]); 8489 path->locks[level] = 0; 8490 WARN_ON(wc->refs[level] != 1); 8491 level--; 8492 } 8493 } 8494 8495 wc->level = level; 8496 wc->shared_level = -1; 8497 wc->stage = DROP_REFERENCE; 8498 wc->update_ref = update_ref; 8499 wc->keep_locks = 0; 8500 wc->for_reloc = for_reloc; 8501 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8502 8503 while (1) { 8504 8505 ret = walk_down_tree(trans, root, path, wc); 8506 if (ret < 0) { 8507 err = ret; 8508 break; 8509 } 8510 8511 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8512 if (ret < 0) { 8513 err = ret; 8514 break; 8515 } 8516 8517 if (ret > 0) { 8518 BUG_ON(wc->stage != DROP_REFERENCE); 8519 break; 8520 } 8521 8522 if (wc->stage == DROP_REFERENCE) { 8523 level = wc->level; 8524 btrfs_node_key(path->nodes[level], 8525 &root_item->drop_progress, 8526 path->slots[level]); 8527 root_item->drop_level = level; 8528 } 8529 8530 BUG_ON(wc->level == 0); 8531 if (btrfs_should_end_transaction(trans, tree_root) || 8532 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8533 ret = btrfs_update_root(trans, tree_root, 8534 &root->root_key, 8535 root_item); 8536 if (ret) { 8537 btrfs_abort_transaction(trans, tree_root, ret); 8538 err = ret; 8539 goto out_end_trans; 8540 } 8541 8542 /* 8543 * Qgroup update accounting is run from 8544 * delayed ref handling. This usually works 8545 * out because delayed refs are normally the 8546 * only way qgroup updates are added. However, 8547 * we may have added updates during our tree 8548 * walk so run qgroups here to make sure we 8549 * don't lose any updates. 8550 */ 8551 ret = btrfs_delayed_qgroup_accounting(trans, 8552 root->fs_info); 8553 if (ret) 8554 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8555 "running qgroup updates " 8556 "during snapshot delete. " 8557 "Quota is out of sync, " 8558 "rescan required.\n", ret); 8559 8560 btrfs_end_transaction_throttle(trans, tree_root); 8561 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8562 pr_debug("BTRFS: drop snapshot early exit\n"); 8563 err = -EAGAIN; 8564 goto out_free; 8565 } 8566 8567 trans = btrfs_start_transaction(tree_root, 0); 8568 if (IS_ERR(trans)) { 8569 err = PTR_ERR(trans); 8570 goto out_free; 8571 } 8572 if (block_rsv) 8573 trans->block_rsv = block_rsv; 8574 } 8575 } 8576 btrfs_release_path(path); 8577 if (err) 8578 goto out_end_trans; 8579 8580 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8581 if (ret) { 8582 btrfs_abort_transaction(trans, tree_root, ret); 8583 goto out_end_trans; 8584 } 8585 8586 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8587 ret = btrfs_find_root(tree_root, &root->root_key, path, 8588 NULL, NULL); 8589 if (ret < 0) { 8590 btrfs_abort_transaction(trans, tree_root, ret); 8591 err = ret; 8592 goto out_end_trans; 8593 } else if (ret > 0) { 8594 /* if we fail to delete the orphan item this time 8595 * around, it'll get picked up the next time. 8596 * 8597 * The most common failure here is just -ENOENT. 8598 */ 8599 btrfs_del_orphan_item(trans, tree_root, 8600 root->root_key.objectid); 8601 } 8602 } 8603 8604 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8605 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8606 } else { 8607 free_extent_buffer(root->node); 8608 free_extent_buffer(root->commit_root); 8609 btrfs_put_fs_root(root); 8610 } 8611 root_dropped = true; 8612out_end_trans: 8613 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info); 8614 if (ret) 8615 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8616 "running qgroup updates " 8617 "during snapshot delete. " 8618 "Quota is out of sync, " 8619 "rescan required.\n", ret); 8620 8621 btrfs_end_transaction_throttle(trans, tree_root); 8622out_free: 8623 kfree(wc); 8624 btrfs_free_path(path); 8625out: 8626 /* 8627 * So if we need to stop dropping the snapshot for whatever reason we 8628 * need to make sure to add it back to the dead root list so that we 8629 * keep trying to do the work later. This also cleans up roots if we 8630 * don't have it in the radix (like when we recover after a power fail 8631 * or unmount) so we don't leak memory. 8632 */ 8633 if (!for_reloc && root_dropped == false) 8634 btrfs_add_dead_root(root); 8635 if (err && err != -EAGAIN) 8636 btrfs_std_error(root->fs_info, err); 8637 return err; 8638} 8639 8640/* 8641 * drop subtree rooted at tree block 'node'. 8642 * 8643 * NOTE: this function will unlock and release tree block 'node' 8644 * only used by relocation code 8645 */ 8646int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8647 struct btrfs_root *root, 8648 struct extent_buffer *node, 8649 struct extent_buffer *parent) 8650{ 8651 struct btrfs_path *path; 8652 struct walk_control *wc; 8653 int level; 8654 int parent_level; 8655 int ret = 0; 8656 int wret; 8657 8658 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8659 8660 path = btrfs_alloc_path(); 8661 if (!path) 8662 return -ENOMEM; 8663 8664 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8665 if (!wc) { 8666 btrfs_free_path(path); 8667 return -ENOMEM; 8668 } 8669 8670 btrfs_assert_tree_locked(parent); 8671 parent_level = btrfs_header_level(parent); 8672 extent_buffer_get(parent); 8673 path->nodes[parent_level] = parent; 8674 path->slots[parent_level] = btrfs_header_nritems(parent); 8675 8676 btrfs_assert_tree_locked(node); 8677 level = btrfs_header_level(node); 8678 path->nodes[level] = node; 8679 path->slots[level] = 0; 8680 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8681 8682 wc->refs[parent_level] = 1; 8683 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8684 wc->level = level; 8685 wc->shared_level = -1; 8686 wc->stage = DROP_REFERENCE; 8687 wc->update_ref = 0; 8688 wc->keep_locks = 1; 8689 wc->for_reloc = 1; 8690 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8691 8692 while (1) { 8693 wret = walk_down_tree(trans, root, path, wc); 8694 if (wret < 0) { 8695 ret = wret; 8696 break; 8697 } 8698 8699 wret = walk_up_tree(trans, root, path, wc, parent_level); 8700 if (wret < 0) 8701 ret = wret; 8702 if (wret != 0) 8703 break; 8704 } 8705 8706 kfree(wc); 8707 btrfs_free_path(path); 8708 return ret; 8709} 8710 8711static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8712{ 8713 u64 num_devices; 8714 u64 stripped; 8715 8716 /* 8717 * if restripe for this chunk_type is on pick target profile and 8718 * return, otherwise do the usual balance 8719 */ 8720 stripped = get_restripe_target(root->fs_info, flags); 8721 if (stripped) 8722 return extended_to_chunk(stripped); 8723 8724 num_devices = root->fs_info->fs_devices->rw_devices; 8725 8726 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8727 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8728 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8729 8730 if (num_devices == 1) { 8731 stripped |= BTRFS_BLOCK_GROUP_DUP; 8732 stripped = flags & ~stripped; 8733 8734 /* turn raid0 into single device chunks */ 8735 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8736 return stripped; 8737 8738 /* turn mirroring into duplication */ 8739 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8740 BTRFS_BLOCK_GROUP_RAID10)) 8741 return stripped | BTRFS_BLOCK_GROUP_DUP; 8742 } else { 8743 /* they already had raid on here, just return */ 8744 if (flags & stripped) 8745 return flags; 8746 8747 stripped |= BTRFS_BLOCK_GROUP_DUP; 8748 stripped = flags & ~stripped; 8749 8750 /* switch duplicated blocks with raid1 */ 8751 if (flags & BTRFS_BLOCK_GROUP_DUP) 8752 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8753 8754 /* this is drive concat, leave it alone */ 8755 } 8756 8757 return flags; 8758} 8759 8760static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8761{ 8762 struct btrfs_space_info *sinfo = cache->space_info; 8763 u64 num_bytes; 8764 u64 min_allocable_bytes; 8765 int ret = -ENOSPC; 8766 8767 8768 /* 8769 * We need some metadata space and system metadata space for 8770 * allocating chunks in some corner cases until we force to set 8771 * it to be readonly. 8772 */ 8773 if ((sinfo->flags & 8774 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8775 !force) 8776 min_allocable_bytes = 1 * 1024 * 1024; 8777 else 8778 min_allocable_bytes = 0; 8779 8780 spin_lock(&sinfo->lock); 8781 spin_lock(&cache->lock); 8782 8783 if (cache->ro) { 8784 ret = 0; 8785 goto out; 8786 } 8787 8788 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8789 cache->bytes_super - btrfs_block_group_used(&cache->item); 8790 8791 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8792 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8793 min_allocable_bytes <= sinfo->total_bytes) { 8794 sinfo->bytes_readonly += num_bytes; 8795 cache->ro = 1; 8796 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8797 ret = 0; 8798 } 8799out: 8800 spin_unlock(&cache->lock); 8801 spin_unlock(&sinfo->lock); 8802 return ret; 8803} 8804 8805int btrfs_set_block_group_ro(struct btrfs_root *root, 8806 struct btrfs_block_group_cache *cache) 8807 8808{ 8809 struct btrfs_trans_handle *trans; 8810 u64 alloc_flags; 8811 int ret; 8812 8813 BUG_ON(cache->ro); 8814 8815again: 8816 trans = btrfs_join_transaction(root); 8817 if (IS_ERR(trans)) 8818 return PTR_ERR(trans); 8819 8820 /* 8821 * we're not allowed to set block groups readonly after the dirty 8822 * block groups cache has started writing. If it already started, 8823 * back off and let this transaction commit 8824 */ 8825 mutex_lock(&root->fs_info->ro_block_group_mutex); 8826 if (trans->transaction->dirty_bg_run) { 8827 u64 transid = trans->transid; 8828 8829 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8830 btrfs_end_transaction(trans, root); 8831 8832 ret = btrfs_wait_for_commit(root, transid); 8833 if (ret) 8834 return ret; 8835 goto again; 8836 } 8837 8838 /* 8839 * if we are changing raid levels, try to allocate a corresponding 8840 * block group with the new raid level. 8841 */ 8842 alloc_flags = update_block_group_flags(root, cache->flags); 8843 if (alloc_flags != cache->flags) { 8844 ret = do_chunk_alloc(trans, root, alloc_flags, 8845 CHUNK_ALLOC_FORCE); 8846 /* 8847 * ENOSPC is allowed here, we may have enough space 8848 * already allocated at the new raid level to 8849 * carry on 8850 */ 8851 if (ret == -ENOSPC) 8852 ret = 0; 8853 if (ret < 0) 8854 goto out; 8855 } 8856 8857 ret = set_block_group_ro(cache, 0); 8858 if (!ret) 8859 goto out; 8860 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8861 ret = do_chunk_alloc(trans, root, alloc_flags, 8862 CHUNK_ALLOC_FORCE); 8863 if (ret < 0) 8864 goto out; 8865 ret = set_block_group_ro(cache, 0); 8866out: 8867 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8868 alloc_flags = update_block_group_flags(root, cache->flags); 8869 lock_chunks(root->fs_info->chunk_root); 8870 check_system_chunk(trans, root, alloc_flags); 8871 unlock_chunks(root->fs_info->chunk_root); 8872 } 8873 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8874 8875 btrfs_end_transaction(trans, root); 8876 return ret; 8877} 8878 8879int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8880 struct btrfs_root *root, u64 type) 8881{ 8882 u64 alloc_flags = get_alloc_profile(root, type); 8883 return do_chunk_alloc(trans, root, alloc_flags, 8884 CHUNK_ALLOC_FORCE); 8885} 8886 8887/* 8888 * helper to account the unused space of all the readonly block group in the 8889 * space_info. takes mirrors into account. 8890 */ 8891u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8892{ 8893 struct btrfs_block_group_cache *block_group; 8894 u64 free_bytes = 0; 8895 int factor; 8896 8897 /* It's df, we don't care if it's racey */ 8898 if (list_empty(&sinfo->ro_bgs)) 8899 return 0; 8900 8901 spin_lock(&sinfo->lock); 8902 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8903 spin_lock(&block_group->lock); 8904 8905 if (!block_group->ro) { 8906 spin_unlock(&block_group->lock); 8907 continue; 8908 } 8909 8910 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8911 BTRFS_BLOCK_GROUP_RAID10 | 8912 BTRFS_BLOCK_GROUP_DUP)) 8913 factor = 2; 8914 else 8915 factor = 1; 8916 8917 free_bytes += (block_group->key.offset - 8918 btrfs_block_group_used(&block_group->item)) * 8919 factor; 8920 8921 spin_unlock(&block_group->lock); 8922 } 8923 spin_unlock(&sinfo->lock); 8924 8925 return free_bytes; 8926} 8927 8928void btrfs_set_block_group_rw(struct btrfs_root *root, 8929 struct btrfs_block_group_cache *cache) 8930{ 8931 struct btrfs_space_info *sinfo = cache->space_info; 8932 u64 num_bytes; 8933 8934 BUG_ON(!cache->ro); 8935 8936 spin_lock(&sinfo->lock); 8937 spin_lock(&cache->lock); 8938 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8939 cache->bytes_super - btrfs_block_group_used(&cache->item); 8940 sinfo->bytes_readonly -= num_bytes; 8941 cache->ro = 0; 8942 list_del_init(&cache->ro_list); 8943 spin_unlock(&cache->lock); 8944 spin_unlock(&sinfo->lock); 8945} 8946 8947/* 8948 * checks to see if its even possible to relocate this block group. 8949 * 8950 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8951 * ok to go ahead and try. 8952 */ 8953int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8954{ 8955 struct btrfs_block_group_cache *block_group; 8956 struct btrfs_space_info *space_info; 8957 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8958 struct btrfs_device *device; 8959 struct btrfs_trans_handle *trans; 8960 u64 min_free; 8961 u64 dev_min = 1; 8962 u64 dev_nr = 0; 8963 u64 target; 8964 int index; 8965 int full = 0; 8966 int ret = 0; 8967 8968 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8969 8970 /* odd, couldn't find the block group, leave it alone */ 8971 if (!block_group) 8972 return -1; 8973 8974 min_free = btrfs_block_group_used(&block_group->item); 8975 8976 /* no bytes used, we're good */ 8977 if (!min_free) 8978 goto out; 8979 8980 space_info = block_group->space_info; 8981 spin_lock(&space_info->lock); 8982 8983 full = space_info->full; 8984 8985 /* 8986 * if this is the last block group we have in this space, we can't 8987 * relocate it unless we're able to allocate a new chunk below. 8988 * 8989 * Otherwise, we need to make sure we have room in the space to handle 8990 * all of the extents from this block group. If we can, we're good 8991 */ 8992 if ((space_info->total_bytes != block_group->key.offset) && 8993 (space_info->bytes_used + space_info->bytes_reserved + 8994 space_info->bytes_pinned + space_info->bytes_readonly + 8995 min_free < space_info->total_bytes)) { 8996 spin_unlock(&space_info->lock); 8997 goto out; 8998 } 8999 spin_unlock(&space_info->lock); 9000 9001 /* 9002 * ok we don't have enough space, but maybe we have free space on our 9003 * devices to allocate new chunks for relocation, so loop through our 9004 * alloc devices and guess if we have enough space. if this block 9005 * group is going to be restriped, run checks against the target 9006 * profile instead of the current one. 9007 */ 9008 ret = -1; 9009 9010 /* 9011 * index: 9012 * 0: raid10 9013 * 1: raid1 9014 * 2: dup 9015 * 3: raid0 9016 * 4: single 9017 */ 9018 target = get_restripe_target(root->fs_info, block_group->flags); 9019 if (target) { 9020 index = __get_raid_index(extended_to_chunk(target)); 9021 } else { 9022 /* 9023 * this is just a balance, so if we were marked as full 9024 * we know there is no space for a new chunk 9025 */ 9026 if (full) 9027 goto out; 9028 9029 index = get_block_group_index(block_group); 9030 } 9031 9032 if (index == BTRFS_RAID_RAID10) { 9033 dev_min = 4; 9034 /* Divide by 2 */ 9035 min_free >>= 1; 9036 } else if (index == BTRFS_RAID_RAID1) { 9037 dev_min = 2; 9038 } else if (index == BTRFS_RAID_DUP) { 9039 /* Multiply by 2 */ 9040 min_free <<= 1; 9041 } else if (index == BTRFS_RAID_RAID0) { 9042 dev_min = fs_devices->rw_devices; 9043 min_free = div64_u64(min_free, dev_min); 9044 } 9045 9046 /* We need to do this so that we can look at pending chunks */ 9047 trans = btrfs_join_transaction(root); 9048 if (IS_ERR(trans)) { 9049 ret = PTR_ERR(trans); 9050 goto out; 9051 } 9052 9053 mutex_lock(&root->fs_info->chunk_mutex); 9054 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9055 u64 dev_offset; 9056 9057 /* 9058 * check to make sure we can actually find a chunk with enough 9059 * space to fit our block group in. 9060 */ 9061 if (device->total_bytes > device->bytes_used + min_free && 9062 !device->is_tgtdev_for_dev_replace) { 9063 ret = find_free_dev_extent(trans, device, min_free, 9064 &dev_offset, NULL); 9065 if (!ret) 9066 dev_nr++; 9067 9068 if (dev_nr >= dev_min) 9069 break; 9070 9071 ret = -1; 9072 } 9073 } 9074 mutex_unlock(&root->fs_info->chunk_mutex); 9075 btrfs_end_transaction(trans, root); 9076out: 9077 btrfs_put_block_group(block_group); 9078 return ret; 9079} 9080 9081static int find_first_block_group(struct btrfs_root *root, 9082 struct btrfs_path *path, struct btrfs_key *key) 9083{ 9084 int ret = 0; 9085 struct btrfs_key found_key; 9086 struct extent_buffer *leaf; 9087 int slot; 9088 9089 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9090 if (ret < 0) 9091 goto out; 9092 9093 while (1) { 9094 slot = path->slots[0]; 9095 leaf = path->nodes[0]; 9096 if (slot >= btrfs_header_nritems(leaf)) { 9097 ret = btrfs_next_leaf(root, path); 9098 if (ret == 0) 9099 continue; 9100 if (ret < 0) 9101 goto out; 9102 break; 9103 } 9104 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9105 9106 if (found_key.objectid >= key->objectid && 9107 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9108 ret = 0; 9109 goto out; 9110 } 9111 path->slots[0]++; 9112 } 9113out: 9114 return ret; 9115} 9116 9117void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9118{ 9119 struct btrfs_block_group_cache *block_group; 9120 u64 last = 0; 9121 9122 while (1) { 9123 struct inode *inode; 9124 9125 block_group = btrfs_lookup_first_block_group(info, last); 9126 while (block_group) { 9127 spin_lock(&block_group->lock); 9128 if (block_group->iref) 9129 break; 9130 spin_unlock(&block_group->lock); 9131 block_group = next_block_group(info->tree_root, 9132 block_group); 9133 } 9134 if (!block_group) { 9135 if (last == 0) 9136 break; 9137 last = 0; 9138 continue; 9139 } 9140 9141 inode = block_group->inode; 9142 block_group->iref = 0; 9143 block_group->inode = NULL; 9144 spin_unlock(&block_group->lock); 9145 iput(inode); 9146 last = block_group->key.objectid + block_group->key.offset; 9147 btrfs_put_block_group(block_group); 9148 } 9149} 9150 9151int btrfs_free_block_groups(struct btrfs_fs_info *info) 9152{ 9153 struct btrfs_block_group_cache *block_group; 9154 struct btrfs_space_info *space_info; 9155 struct btrfs_caching_control *caching_ctl; 9156 struct rb_node *n; 9157 9158 down_write(&info->commit_root_sem); 9159 while (!list_empty(&info->caching_block_groups)) { 9160 caching_ctl = list_entry(info->caching_block_groups.next, 9161 struct btrfs_caching_control, list); 9162 list_del(&caching_ctl->list); 9163 put_caching_control(caching_ctl); 9164 } 9165 up_write(&info->commit_root_sem); 9166 9167 spin_lock(&info->unused_bgs_lock); 9168 while (!list_empty(&info->unused_bgs)) { 9169 block_group = list_first_entry(&info->unused_bgs, 9170 struct btrfs_block_group_cache, 9171 bg_list); 9172 list_del_init(&block_group->bg_list); 9173 btrfs_put_block_group(block_group); 9174 } 9175 spin_unlock(&info->unused_bgs_lock); 9176 9177 spin_lock(&info->block_group_cache_lock); 9178 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9179 block_group = rb_entry(n, struct btrfs_block_group_cache, 9180 cache_node); 9181 rb_erase(&block_group->cache_node, 9182 &info->block_group_cache_tree); 9183 RB_CLEAR_NODE(&block_group->cache_node); 9184 spin_unlock(&info->block_group_cache_lock); 9185 9186 down_write(&block_group->space_info->groups_sem); 9187 list_del(&block_group->list); 9188 up_write(&block_group->space_info->groups_sem); 9189 9190 if (block_group->cached == BTRFS_CACHE_STARTED) 9191 wait_block_group_cache_done(block_group); 9192 9193 /* 9194 * We haven't cached this block group, which means we could 9195 * possibly have excluded extents on this block group. 9196 */ 9197 if (block_group->cached == BTRFS_CACHE_NO || 9198 block_group->cached == BTRFS_CACHE_ERROR) 9199 free_excluded_extents(info->extent_root, block_group); 9200 9201 btrfs_remove_free_space_cache(block_group); 9202 btrfs_put_block_group(block_group); 9203 9204 spin_lock(&info->block_group_cache_lock); 9205 } 9206 spin_unlock(&info->block_group_cache_lock); 9207 9208 /* now that all the block groups are freed, go through and 9209 * free all the space_info structs. This is only called during 9210 * the final stages of unmount, and so we know nobody is 9211 * using them. We call synchronize_rcu() once before we start, 9212 * just to be on the safe side. 9213 */ 9214 synchronize_rcu(); 9215 9216 release_global_block_rsv(info); 9217 9218 while (!list_empty(&info->space_info)) { 9219 int i; 9220 9221 space_info = list_entry(info->space_info.next, 9222 struct btrfs_space_info, 9223 list); 9224 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9225 if (WARN_ON(space_info->bytes_pinned > 0 || 9226 space_info->bytes_reserved > 0 || 9227 space_info->bytes_may_use > 0)) { 9228 dump_space_info(space_info, 0, 0); 9229 } 9230 } 9231 list_del(&space_info->list); 9232 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9233 struct kobject *kobj; 9234 kobj = space_info->block_group_kobjs[i]; 9235 space_info->block_group_kobjs[i] = NULL; 9236 if (kobj) { 9237 kobject_del(kobj); 9238 kobject_put(kobj); 9239 } 9240 } 9241 kobject_del(&space_info->kobj); 9242 kobject_put(&space_info->kobj); 9243 } 9244 return 0; 9245} 9246 9247static void __link_block_group(struct btrfs_space_info *space_info, 9248 struct btrfs_block_group_cache *cache) 9249{ 9250 int index = get_block_group_index(cache); 9251 bool first = false; 9252 9253 down_write(&space_info->groups_sem); 9254 if (list_empty(&space_info->block_groups[index])) 9255 first = true; 9256 list_add_tail(&cache->list, &space_info->block_groups[index]); 9257 up_write(&space_info->groups_sem); 9258 9259 if (first) { 9260 struct raid_kobject *rkobj; 9261 int ret; 9262 9263 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9264 if (!rkobj) 9265 goto out_err; 9266 rkobj->raid_type = index; 9267 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9268 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9269 "%s", get_raid_name(index)); 9270 if (ret) { 9271 kobject_put(&rkobj->kobj); 9272 goto out_err; 9273 } 9274 space_info->block_group_kobjs[index] = &rkobj->kobj; 9275 } 9276 9277 return; 9278out_err: 9279 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9280} 9281 9282static struct btrfs_block_group_cache * 9283btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9284{ 9285 struct btrfs_block_group_cache *cache; 9286 9287 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9288 if (!cache) 9289 return NULL; 9290 9291 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9292 GFP_NOFS); 9293 if (!cache->free_space_ctl) { 9294 kfree(cache); 9295 return NULL; 9296 } 9297 9298 cache->key.objectid = start; 9299 cache->key.offset = size; 9300 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9301 9302 cache->sectorsize = root->sectorsize; 9303 cache->fs_info = root->fs_info; 9304 cache->full_stripe_len = btrfs_full_stripe_len(root, 9305 &root->fs_info->mapping_tree, 9306 start); 9307 atomic_set(&cache->count, 1); 9308 spin_lock_init(&cache->lock); 9309 init_rwsem(&cache->data_rwsem); 9310 INIT_LIST_HEAD(&cache->list); 9311 INIT_LIST_HEAD(&cache->cluster_list); 9312 INIT_LIST_HEAD(&cache->bg_list); 9313 INIT_LIST_HEAD(&cache->ro_list); 9314 INIT_LIST_HEAD(&cache->dirty_list); 9315 INIT_LIST_HEAD(&cache->io_list); 9316 btrfs_init_free_space_ctl(cache); 9317 atomic_set(&cache->trimming, 0); 9318 9319 return cache; 9320} 9321 9322int btrfs_read_block_groups(struct btrfs_root *root) 9323{ 9324 struct btrfs_path *path; 9325 int ret; 9326 struct btrfs_block_group_cache *cache; 9327 struct btrfs_fs_info *info = root->fs_info; 9328 struct btrfs_space_info *space_info; 9329 struct btrfs_key key; 9330 struct btrfs_key found_key; 9331 struct extent_buffer *leaf; 9332 int need_clear = 0; 9333 u64 cache_gen; 9334 9335 root = info->extent_root; 9336 key.objectid = 0; 9337 key.offset = 0; 9338 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9339 path = btrfs_alloc_path(); 9340 if (!path) 9341 return -ENOMEM; 9342 path->reada = 1; 9343 9344 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9345 if (btrfs_test_opt(root, SPACE_CACHE) && 9346 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9347 need_clear = 1; 9348 if (btrfs_test_opt(root, CLEAR_CACHE)) 9349 need_clear = 1; 9350 9351 while (1) { 9352 ret = find_first_block_group(root, path, &key); 9353 if (ret > 0) 9354 break; 9355 if (ret != 0) 9356 goto error; 9357 9358 leaf = path->nodes[0]; 9359 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9360 9361 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9362 found_key.offset); 9363 if (!cache) { 9364 ret = -ENOMEM; 9365 goto error; 9366 } 9367 9368 if (need_clear) { 9369 /* 9370 * When we mount with old space cache, we need to 9371 * set BTRFS_DC_CLEAR and set dirty flag. 9372 * 9373 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9374 * truncate the old free space cache inode and 9375 * setup a new one. 9376 * b) Setting 'dirty flag' makes sure that we flush 9377 * the new space cache info onto disk. 9378 */ 9379 if (btrfs_test_opt(root, SPACE_CACHE)) 9380 cache->disk_cache_state = BTRFS_DC_CLEAR; 9381 } 9382 9383 read_extent_buffer(leaf, &cache->item, 9384 btrfs_item_ptr_offset(leaf, path->slots[0]), 9385 sizeof(cache->item)); 9386 cache->flags = btrfs_block_group_flags(&cache->item); 9387 9388 key.objectid = found_key.objectid + found_key.offset; 9389 btrfs_release_path(path); 9390 9391 /* 9392 * We need to exclude the super stripes now so that the space 9393 * info has super bytes accounted for, otherwise we'll think 9394 * we have more space than we actually do. 9395 */ 9396 ret = exclude_super_stripes(root, cache); 9397 if (ret) { 9398 /* 9399 * We may have excluded something, so call this just in 9400 * case. 9401 */ 9402 free_excluded_extents(root, cache); 9403 btrfs_put_block_group(cache); 9404 goto error; 9405 } 9406 9407 /* 9408 * check for two cases, either we are full, and therefore 9409 * don't need to bother with the caching work since we won't 9410 * find any space, or we are empty, and we can just add all 9411 * the space in and be done with it. This saves us _alot_ of 9412 * time, particularly in the full case. 9413 */ 9414 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9415 cache->last_byte_to_unpin = (u64)-1; 9416 cache->cached = BTRFS_CACHE_FINISHED; 9417 free_excluded_extents(root, cache); 9418 } else if (btrfs_block_group_used(&cache->item) == 0) { 9419 cache->last_byte_to_unpin = (u64)-1; 9420 cache->cached = BTRFS_CACHE_FINISHED; 9421 add_new_free_space(cache, root->fs_info, 9422 found_key.objectid, 9423 found_key.objectid + 9424 found_key.offset); 9425 free_excluded_extents(root, cache); 9426 } 9427 9428 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9429 if (ret) { 9430 btrfs_remove_free_space_cache(cache); 9431 btrfs_put_block_group(cache); 9432 goto error; 9433 } 9434 9435 ret = update_space_info(info, cache->flags, found_key.offset, 9436 btrfs_block_group_used(&cache->item), 9437 &space_info); 9438 if (ret) { 9439 btrfs_remove_free_space_cache(cache); 9440 spin_lock(&info->block_group_cache_lock); 9441 rb_erase(&cache->cache_node, 9442 &info->block_group_cache_tree); 9443 RB_CLEAR_NODE(&cache->cache_node); 9444 spin_unlock(&info->block_group_cache_lock); 9445 btrfs_put_block_group(cache); 9446 goto error; 9447 } 9448 9449 cache->space_info = space_info; 9450 spin_lock(&cache->space_info->lock); 9451 cache->space_info->bytes_readonly += cache->bytes_super; 9452 spin_unlock(&cache->space_info->lock); 9453 9454 __link_block_group(space_info, cache); 9455 9456 set_avail_alloc_bits(root->fs_info, cache->flags); 9457 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9458 set_block_group_ro(cache, 1); 9459 } else if (btrfs_block_group_used(&cache->item) == 0) { 9460 spin_lock(&info->unused_bgs_lock); 9461 /* Should always be true but just in case. */ 9462 if (list_empty(&cache->bg_list)) { 9463 btrfs_get_block_group(cache); 9464 list_add_tail(&cache->bg_list, 9465 &info->unused_bgs); 9466 } 9467 spin_unlock(&info->unused_bgs_lock); 9468 } 9469 } 9470 9471 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9472 if (!(get_alloc_profile(root, space_info->flags) & 9473 (BTRFS_BLOCK_GROUP_RAID10 | 9474 BTRFS_BLOCK_GROUP_RAID1 | 9475 BTRFS_BLOCK_GROUP_RAID5 | 9476 BTRFS_BLOCK_GROUP_RAID6 | 9477 BTRFS_BLOCK_GROUP_DUP))) 9478 continue; 9479 /* 9480 * avoid allocating from un-mirrored block group if there are 9481 * mirrored block groups. 9482 */ 9483 list_for_each_entry(cache, 9484 &space_info->block_groups[BTRFS_RAID_RAID0], 9485 list) 9486 set_block_group_ro(cache, 1); 9487 list_for_each_entry(cache, 9488 &space_info->block_groups[BTRFS_RAID_SINGLE], 9489 list) 9490 set_block_group_ro(cache, 1); 9491 } 9492 9493 init_global_block_rsv(info); 9494 ret = 0; 9495error: 9496 btrfs_free_path(path); 9497 return ret; 9498} 9499 9500void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9501 struct btrfs_root *root) 9502{ 9503 struct btrfs_block_group_cache *block_group, *tmp; 9504 struct btrfs_root *extent_root = root->fs_info->extent_root; 9505 struct btrfs_block_group_item item; 9506 struct btrfs_key key; 9507 int ret = 0; 9508 9509 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9510 if (ret) 9511 goto next; 9512 9513 spin_lock(&block_group->lock); 9514 memcpy(&item, &block_group->item, sizeof(item)); 9515 memcpy(&key, &block_group->key, sizeof(key)); 9516 spin_unlock(&block_group->lock); 9517 9518 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9519 sizeof(item)); 9520 if (ret) 9521 btrfs_abort_transaction(trans, extent_root, ret); 9522 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9523 key.objectid, key.offset); 9524 if (ret) 9525 btrfs_abort_transaction(trans, extent_root, ret); 9526next: 9527 list_del_init(&block_group->bg_list); 9528 } 9529} 9530 9531int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9532 struct btrfs_root *root, u64 bytes_used, 9533 u64 type, u64 chunk_objectid, u64 chunk_offset, 9534 u64 size) 9535{ 9536 int ret; 9537 struct btrfs_root *extent_root; 9538 struct btrfs_block_group_cache *cache; 9539 9540 extent_root = root->fs_info->extent_root; 9541 9542 btrfs_set_log_full_commit(root->fs_info, trans); 9543 9544 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9545 if (!cache) 9546 return -ENOMEM; 9547 9548 btrfs_set_block_group_used(&cache->item, bytes_used); 9549 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9550 btrfs_set_block_group_flags(&cache->item, type); 9551 9552 cache->flags = type; 9553 cache->last_byte_to_unpin = (u64)-1; 9554 cache->cached = BTRFS_CACHE_FINISHED; 9555 ret = exclude_super_stripes(root, cache); 9556 if (ret) { 9557 /* 9558 * We may have excluded something, so call this just in 9559 * case. 9560 */ 9561 free_excluded_extents(root, cache); 9562 btrfs_put_block_group(cache); 9563 return ret; 9564 } 9565 9566 add_new_free_space(cache, root->fs_info, chunk_offset, 9567 chunk_offset + size); 9568 9569 free_excluded_extents(root, cache); 9570 9571 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9572 if (ret) { 9573 btrfs_remove_free_space_cache(cache); 9574 btrfs_put_block_group(cache); 9575 return ret; 9576 } 9577 9578 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9579 &cache->space_info); 9580 if (ret) { 9581 btrfs_remove_free_space_cache(cache); 9582 spin_lock(&root->fs_info->block_group_cache_lock); 9583 rb_erase(&cache->cache_node, 9584 &root->fs_info->block_group_cache_tree); 9585 RB_CLEAR_NODE(&cache->cache_node); 9586 spin_unlock(&root->fs_info->block_group_cache_lock); 9587 btrfs_put_block_group(cache); 9588 return ret; 9589 } 9590 update_global_block_rsv(root->fs_info); 9591 9592 spin_lock(&cache->space_info->lock); 9593 cache->space_info->bytes_readonly += cache->bytes_super; 9594 spin_unlock(&cache->space_info->lock); 9595 9596 __link_block_group(cache->space_info, cache); 9597 9598 list_add_tail(&cache->bg_list, &trans->new_bgs); 9599 9600 set_avail_alloc_bits(extent_root->fs_info, type); 9601 9602 return 0; 9603} 9604 9605static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9606{ 9607 u64 extra_flags = chunk_to_extended(flags) & 9608 BTRFS_EXTENDED_PROFILE_MASK; 9609 9610 write_seqlock(&fs_info->profiles_lock); 9611 if (flags & BTRFS_BLOCK_GROUP_DATA) 9612 fs_info->avail_data_alloc_bits &= ~extra_flags; 9613 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9614 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9615 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9616 fs_info->avail_system_alloc_bits &= ~extra_flags; 9617 write_sequnlock(&fs_info->profiles_lock); 9618} 9619 9620int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9621 struct btrfs_root *root, u64 group_start, 9622 struct extent_map *em) 9623{ 9624 struct btrfs_path *path; 9625 struct btrfs_block_group_cache *block_group; 9626 struct btrfs_free_cluster *cluster; 9627 struct btrfs_root *tree_root = root->fs_info->tree_root; 9628 struct btrfs_key key; 9629 struct inode *inode; 9630 struct kobject *kobj = NULL; 9631 int ret; 9632 int index; 9633 int factor; 9634 struct btrfs_caching_control *caching_ctl = NULL; 9635 bool remove_em; 9636 9637 root = root->fs_info->extent_root; 9638 9639 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9640 BUG_ON(!block_group); 9641 BUG_ON(!block_group->ro); 9642 9643 /* 9644 * Free the reserved super bytes from this block group before 9645 * remove it. 9646 */ 9647 free_excluded_extents(root, block_group); 9648 9649 memcpy(&key, &block_group->key, sizeof(key)); 9650 index = get_block_group_index(block_group); 9651 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9652 BTRFS_BLOCK_GROUP_RAID1 | 9653 BTRFS_BLOCK_GROUP_RAID10)) 9654 factor = 2; 9655 else 9656 factor = 1; 9657 9658 /* make sure this block group isn't part of an allocation cluster */ 9659 cluster = &root->fs_info->data_alloc_cluster; 9660 spin_lock(&cluster->refill_lock); 9661 btrfs_return_cluster_to_free_space(block_group, cluster); 9662 spin_unlock(&cluster->refill_lock); 9663 9664 /* 9665 * make sure this block group isn't part of a metadata 9666 * allocation cluster 9667 */ 9668 cluster = &root->fs_info->meta_alloc_cluster; 9669 spin_lock(&cluster->refill_lock); 9670 btrfs_return_cluster_to_free_space(block_group, cluster); 9671 spin_unlock(&cluster->refill_lock); 9672 9673 path = btrfs_alloc_path(); 9674 if (!path) { 9675 ret = -ENOMEM; 9676 goto out; 9677 } 9678 9679 /* 9680 * get the inode first so any iput calls done for the io_list 9681 * aren't the final iput (no unlinks allowed now) 9682 */ 9683 inode = lookup_free_space_inode(tree_root, block_group, path); 9684 9685 mutex_lock(&trans->transaction->cache_write_mutex); 9686 /* 9687 * make sure our free spache cache IO is done before remove the 9688 * free space inode 9689 */ 9690 spin_lock(&trans->transaction->dirty_bgs_lock); 9691 if (!list_empty(&block_group->io_list)) { 9692 list_del_init(&block_group->io_list); 9693 9694 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9695 9696 spin_unlock(&trans->transaction->dirty_bgs_lock); 9697 btrfs_wait_cache_io(root, trans, block_group, 9698 &block_group->io_ctl, path, 9699 block_group->key.objectid); 9700 btrfs_put_block_group(block_group); 9701 spin_lock(&trans->transaction->dirty_bgs_lock); 9702 } 9703 9704 if (!list_empty(&block_group->dirty_list)) { 9705 list_del_init(&block_group->dirty_list); 9706 btrfs_put_block_group(block_group); 9707 } 9708 spin_unlock(&trans->transaction->dirty_bgs_lock); 9709 mutex_unlock(&trans->transaction->cache_write_mutex); 9710 9711 if (!IS_ERR(inode)) { 9712 ret = btrfs_orphan_add(trans, inode); 9713 if (ret) { 9714 btrfs_add_delayed_iput(inode); 9715 goto out; 9716 } 9717 clear_nlink(inode); 9718 /* One for the block groups ref */ 9719 spin_lock(&block_group->lock); 9720 if (block_group->iref) { 9721 block_group->iref = 0; 9722 block_group->inode = NULL; 9723 spin_unlock(&block_group->lock); 9724 iput(inode); 9725 } else { 9726 spin_unlock(&block_group->lock); 9727 } 9728 /* One for our lookup ref */ 9729 btrfs_add_delayed_iput(inode); 9730 } 9731 9732 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9733 key.offset = block_group->key.objectid; 9734 key.type = 0; 9735 9736 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9737 if (ret < 0) 9738 goto out; 9739 if (ret > 0) 9740 btrfs_release_path(path); 9741 if (ret == 0) { 9742 ret = btrfs_del_item(trans, tree_root, path); 9743 if (ret) 9744 goto out; 9745 btrfs_release_path(path); 9746 } 9747 9748 spin_lock(&root->fs_info->block_group_cache_lock); 9749 rb_erase(&block_group->cache_node, 9750 &root->fs_info->block_group_cache_tree); 9751 RB_CLEAR_NODE(&block_group->cache_node); 9752 9753 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9754 root->fs_info->first_logical_byte = (u64)-1; 9755 spin_unlock(&root->fs_info->block_group_cache_lock); 9756 9757 down_write(&block_group->space_info->groups_sem); 9758 /* 9759 * we must use list_del_init so people can check to see if they 9760 * are still on the list after taking the semaphore 9761 */ 9762 list_del_init(&block_group->list); 9763 if (list_empty(&block_group->space_info->block_groups[index])) { 9764 kobj = block_group->space_info->block_group_kobjs[index]; 9765 block_group->space_info->block_group_kobjs[index] = NULL; 9766 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9767 } 9768 up_write(&block_group->space_info->groups_sem); 9769 if (kobj) { 9770 kobject_del(kobj); 9771 kobject_put(kobj); 9772 } 9773 9774 if (block_group->has_caching_ctl) 9775 caching_ctl = get_caching_control(block_group); 9776 if (block_group->cached == BTRFS_CACHE_STARTED) 9777 wait_block_group_cache_done(block_group); 9778 if (block_group->has_caching_ctl) { 9779 down_write(&root->fs_info->commit_root_sem); 9780 if (!caching_ctl) { 9781 struct btrfs_caching_control *ctl; 9782 9783 list_for_each_entry(ctl, 9784 &root->fs_info->caching_block_groups, list) 9785 if (ctl->block_group == block_group) { 9786 caching_ctl = ctl; 9787 atomic_inc(&caching_ctl->count); 9788 break; 9789 } 9790 } 9791 if (caching_ctl) 9792 list_del_init(&caching_ctl->list); 9793 up_write(&root->fs_info->commit_root_sem); 9794 if (caching_ctl) { 9795 /* Once for the caching bgs list and once for us. */ 9796 put_caching_control(caching_ctl); 9797 put_caching_control(caching_ctl); 9798 } 9799 } 9800 9801 spin_lock(&trans->transaction->dirty_bgs_lock); 9802 if (!list_empty(&block_group->dirty_list)) { 9803 WARN_ON(1); 9804 } 9805 if (!list_empty(&block_group->io_list)) { 9806 WARN_ON(1); 9807 } 9808 spin_unlock(&trans->transaction->dirty_bgs_lock); 9809 btrfs_remove_free_space_cache(block_group); 9810 9811 spin_lock(&block_group->space_info->lock); 9812 list_del_init(&block_group->ro_list); 9813 9814 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9815 WARN_ON(block_group->space_info->total_bytes 9816 < block_group->key.offset); 9817 WARN_ON(block_group->space_info->bytes_readonly 9818 < block_group->key.offset); 9819 WARN_ON(block_group->space_info->disk_total 9820 < block_group->key.offset * factor); 9821 } 9822 block_group->space_info->total_bytes -= block_group->key.offset; 9823 block_group->space_info->bytes_readonly -= block_group->key.offset; 9824 block_group->space_info->disk_total -= block_group->key.offset * factor; 9825 9826 spin_unlock(&block_group->space_info->lock); 9827 9828 memcpy(&key, &block_group->key, sizeof(key)); 9829 9830 lock_chunks(root); 9831 if (!list_empty(&em->list)) { 9832 /* We're in the transaction->pending_chunks list. */ 9833 free_extent_map(em); 9834 } 9835 spin_lock(&block_group->lock); 9836 block_group->removed = 1; 9837 /* 9838 * At this point trimming can't start on this block group, because we 9839 * removed the block group from the tree fs_info->block_group_cache_tree 9840 * so no one can't find it anymore and even if someone already got this 9841 * block group before we removed it from the rbtree, they have already 9842 * incremented block_group->trimming - if they didn't, they won't find 9843 * any free space entries because we already removed them all when we 9844 * called btrfs_remove_free_space_cache(). 9845 * 9846 * And we must not remove the extent map from the fs_info->mapping_tree 9847 * to prevent the same logical address range and physical device space 9848 * ranges from being reused for a new block group. This is because our 9849 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9850 * completely transactionless, so while it is trimming a range the 9851 * currently running transaction might finish and a new one start, 9852 * allowing for new block groups to be created that can reuse the same 9853 * physical device locations unless we take this special care. 9854 */ 9855 remove_em = (atomic_read(&block_group->trimming) == 0); 9856 /* 9857 * Make sure a trimmer task always sees the em in the pinned_chunks list 9858 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9859 * before checking block_group->removed). 9860 */ 9861 if (!remove_em) { 9862 /* 9863 * Our em might be in trans->transaction->pending_chunks which 9864 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9865 * and so is the fs_info->pinned_chunks list. 9866 * 9867 * So at this point we must be holding the chunk_mutex to avoid 9868 * any races with chunk allocation (more specifically at 9869 * volumes.c:contains_pending_extent()), to ensure it always 9870 * sees the em, either in the pending_chunks list or in the 9871 * pinned_chunks list. 9872 */ 9873 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9874 } 9875 spin_unlock(&block_group->lock); 9876 9877 if (remove_em) { 9878 struct extent_map_tree *em_tree; 9879 9880 em_tree = &root->fs_info->mapping_tree.map_tree; 9881 write_lock(&em_tree->lock); 9882 /* 9883 * The em might be in the pending_chunks list, so make sure the 9884 * chunk mutex is locked, since remove_extent_mapping() will 9885 * delete us from that list. 9886 */ 9887 remove_extent_mapping(em_tree, em); 9888 write_unlock(&em_tree->lock); 9889 /* once for the tree */ 9890 free_extent_map(em); 9891 } 9892 9893 unlock_chunks(root); 9894 9895 btrfs_put_block_group(block_group); 9896 btrfs_put_block_group(block_group); 9897 9898 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9899 if (ret > 0) 9900 ret = -EIO; 9901 if (ret < 0) 9902 goto out; 9903 9904 ret = btrfs_del_item(trans, root, path); 9905out: 9906 btrfs_free_path(path); 9907 return ret; 9908} 9909 9910/* 9911 * Process the unused_bgs list and remove any that don't have any allocated 9912 * space inside of them. 9913 */ 9914void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9915{ 9916 struct btrfs_block_group_cache *block_group; 9917 struct btrfs_space_info *space_info; 9918 struct btrfs_root *root = fs_info->extent_root; 9919 struct btrfs_trans_handle *trans; 9920 int ret = 0; 9921 9922 if (!fs_info->open) 9923 return; 9924 9925 spin_lock(&fs_info->unused_bgs_lock); 9926 while (!list_empty(&fs_info->unused_bgs)) { 9927 u64 start, end; 9928 9929 block_group = list_first_entry(&fs_info->unused_bgs, 9930 struct btrfs_block_group_cache, 9931 bg_list); 9932 space_info = block_group->space_info; 9933 list_del_init(&block_group->bg_list); 9934 if (ret || btrfs_mixed_space_info(space_info)) { 9935 btrfs_put_block_group(block_group); 9936 continue; 9937 } 9938 spin_unlock(&fs_info->unused_bgs_lock); 9939 9940 /* Don't want to race with allocators so take the groups_sem */ 9941 down_write(&space_info->groups_sem); 9942 spin_lock(&block_group->lock); 9943 if (block_group->reserved || 9944 btrfs_block_group_used(&block_group->item) || 9945 block_group->ro) { 9946 /* 9947 * We want to bail if we made new allocations or have 9948 * outstanding allocations in this block group. We do 9949 * the ro check in case balance is currently acting on 9950 * this block group. 9951 */ 9952 spin_unlock(&block_group->lock); 9953 up_write(&space_info->groups_sem); 9954 goto next; 9955 } 9956 spin_unlock(&block_group->lock); 9957 9958 /* We don't want to force the issue, only flip if it's ok. */ 9959 ret = set_block_group_ro(block_group, 0); 9960 up_write(&space_info->groups_sem); 9961 if (ret < 0) { 9962 ret = 0; 9963 goto next; 9964 } 9965 9966 /* 9967 * Want to do this before we do anything else so we can recover 9968 * properly if we fail to join the transaction. 9969 */ 9970 /* 1 for btrfs_orphan_reserve_metadata() */ 9971 trans = btrfs_start_transaction(root, 1); 9972 if (IS_ERR(trans)) { 9973 btrfs_set_block_group_rw(root, block_group); 9974 ret = PTR_ERR(trans); 9975 goto next; 9976 } 9977 9978 /* 9979 * We could have pending pinned extents for this block group, 9980 * just delete them, we don't care about them anymore. 9981 */ 9982 start = block_group->key.objectid; 9983 end = start + block_group->key.offset - 1; 9984 /* 9985 * Hold the unused_bg_unpin_mutex lock to avoid racing with 9986 * btrfs_finish_extent_commit(). If we are at transaction N, 9987 * another task might be running finish_extent_commit() for the 9988 * previous transaction N - 1, and have seen a range belonging 9989 * to the block group in freed_extents[] before we were able to 9990 * clear the whole block group range from freed_extents[]. This 9991 * means that task can lookup for the block group after we 9992 * unpinned it from freed_extents[] and removed it, leading to 9993 * a BUG_ON() at btrfs_unpin_extent_range(). 9994 */ 9995 mutex_lock(&fs_info->unused_bg_unpin_mutex); 9996 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 9997 EXTENT_DIRTY, GFP_NOFS); 9998 if (ret) { 9999 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10000 btrfs_set_block_group_rw(root, block_group); 10001 goto end_trans; 10002 } 10003 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10004 EXTENT_DIRTY, GFP_NOFS); 10005 if (ret) { 10006 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10007 btrfs_set_block_group_rw(root, block_group); 10008 goto end_trans; 10009 } 10010 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10011 10012 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10013 spin_lock(&space_info->lock); 10014 spin_lock(&block_group->lock); 10015 10016 space_info->bytes_pinned -= block_group->pinned; 10017 space_info->bytes_readonly += block_group->pinned; 10018 percpu_counter_add(&space_info->total_bytes_pinned, 10019 -block_group->pinned); 10020 block_group->pinned = 0; 10021 10022 spin_unlock(&block_group->lock); 10023 spin_unlock(&space_info->lock); 10024 10025 /* 10026 * Btrfs_remove_chunk will abort the transaction if things go 10027 * horribly wrong. 10028 */ 10029 ret = btrfs_remove_chunk(trans, root, 10030 block_group->key.objectid); 10031end_trans: 10032 btrfs_end_transaction(trans, root); 10033next: 10034 btrfs_put_block_group(block_group); 10035 spin_lock(&fs_info->unused_bgs_lock); 10036 } 10037 spin_unlock(&fs_info->unused_bgs_lock); 10038} 10039 10040int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10041{ 10042 struct btrfs_space_info *space_info; 10043 struct btrfs_super_block *disk_super; 10044 u64 features; 10045 u64 flags; 10046 int mixed = 0; 10047 int ret; 10048 10049 disk_super = fs_info->super_copy; 10050 if (!btrfs_super_root(disk_super)) 10051 return 1; 10052 10053 features = btrfs_super_incompat_flags(disk_super); 10054 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10055 mixed = 1; 10056 10057 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10058 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10059 if (ret) 10060 goto out; 10061 10062 if (mixed) { 10063 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10064 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10065 } else { 10066 flags = BTRFS_BLOCK_GROUP_METADATA; 10067 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10068 if (ret) 10069 goto out; 10070 10071 flags = BTRFS_BLOCK_GROUP_DATA; 10072 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10073 } 10074out: 10075 return ret; 10076} 10077 10078int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10079{ 10080 return unpin_extent_range(root, start, end, false); 10081} 10082 10083int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10084{ 10085 struct btrfs_fs_info *fs_info = root->fs_info; 10086 struct btrfs_block_group_cache *cache = NULL; 10087 u64 group_trimmed; 10088 u64 start; 10089 u64 end; 10090 u64 trimmed = 0; 10091 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10092 int ret = 0; 10093 10094 /* 10095 * try to trim all FS space, our block group may start from non-zero. 10096 */ 10097 if (range->len == total_bytes) 10098 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10099 else 10100 cache = btrfs_lookup_block_group(fs_info, range->start); 10101 10102 while (cache) { 10103 if (cache->key.objectid >= (range->start + range->len)) { 10104 btrfs_put_block_group(cache); 10105 break; 10106 } 10107 10108 start = max(range->start, cache->key.objectid); 10109 end = min(range->start + range->len, 10110 cache->key.objectid + cache->key.offset); 10111 10112 if (end - start >= range->minlen) { 10113 if (!block_group_cache_done(cache)) { 10114 ret = cache_block_group(cache, 0); 10115 if (ret) { 10116 btrfs_put_block_group(cache); 10117 break; 10118 } 10119 ret = wait_block_group_cache_done(cache); 10120 if (ret) { 10121 btrfs_put_block_group(cache); 10122 break; 10123 } 10124 } 10125 ret = btrfs_trim_block_group(cache, 10126 &group_trimmed, 10127 start, 10128 end, 10129 range->minlen); 10130 10131 trimmed += group_trimmed; 10132 if (ret) { 10133 btrfs_put_block_group(cache); 10134 break; 10135 } 10136 } 10137 10138 cache = next_block_group(fs_info->tree_root, cache); 10139 } 10140 10141 range->len = trimmed; 10142 return ret; 10143} 10144 10145/* 10146 * btrfs_{start,end}_write_no_snapshoting() are similar to 10147 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10148 * data into the page cache through nocow before the subvolume is snapshoted, 10149 * but flush the data into disk after the snapshot creation, or to prevent 10150 * operations while snapshoting is ongoing and that cause the snapshot to be 10151 * inconsistent (writes followed by expanding truncates for example). 10152 */ 10153void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10154{ 10155 percpu_counter_dec(&root->subv_writers->counter); 10156 /* 10157 * Make sure counter is updated before we wake up 10158 * waiters. 10159 */ 10160 smp_mb(); 10161 if (waitqueue_active(&root->subv_writers->wait)) 10162 wake_up(&root->subv_writers->wait); 10163} 10164 10165int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10166{ 10167 if (atomic_read(&root->will_be_snapshoted)) 10168 return 0; 10169 10170 percpu_counter_inc(&root->subv_writers->counter); 10171 /* 10172 * Make sure counter is updated before we check for snapshot creation. 10173 */ 10174 smp_mb(); 10175 if (atomic_read(&root->will_be_snapshoted)) { 10176 btrfs_end_write_no_snapshoting(root); 10177 return 0; 10178 } 10179 return 1; 10180} 10181