1/* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19#include <linux/sched.h> 20#include <linux/slab.h> 21#include <linux/rbtree.h> 22#include "ctree.h" 23#include "disk-io.h" 24#include "transaction.h" 25#include "print-tree.h" 26#include "locking.h" 27 28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 45struct btrfs_path *btrfs_alloc_path(void) 46{ 47 struct btrfs_path *path; 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 return path; 50} 51 52/* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57{ 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68} 69 70/* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80{ 81 int i; 82 83 if (held) { 84 btrfs_set_lock_blocking_rw(held, held_rw); 85 if (held_rw == BTRFS_WRITE_LOCK) 86 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 87 else if (held_rw == BTRFS_READ_LOCK) 88 held_rw = BTRFS_READ_LOCK_BLOCKING; 89 } 90 btrfs_set_path_blocking(p); 91 92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 93 if (p->nodes[i] && p->locks[i]) { 94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 96 p->locks[i] = BTRFS_WRITE_LOCK; 97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 98 p->locks[i] = BTRFS_READ_LOCK; 99 } 100 } 101 102 if (held) 103 btrfs_clear_lock_blocking_rw(held, held_rw); 104} 105 106/* this also releases the path */ 107void btrfs_free_path(struct btrfs_path *p) 108{ 109 if (!p) 110 return; 111 btrfs_release_path(p); 112 kmem_cache_free(btrfs_path_cachep, p); 113} 114 115/* 116 * path release drops references on the extent buffers in the path 117 * and it drops any locks held by this path 118 * 119 * It is safe to call this on paths that no locks or extent buffers held. 120 */ 121noinline void btrfs_release_path(struct btrfs_path *p) 122{ 123 int i; 124 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 126 p->slots[i] = 0; 127 if (!p->nodes[i]) 128 continue; 129 if (p->locks[i]) { 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 131 p->locks[i] = 0; 132 } 133 free_extent_buffer(p->nodes[i]); 134 p->nodes[i] = NULL; 135 } 136} 137 138/* 139 * safely gets a reference on the root node of a tree. A lock 140 * is not taken, so a concurrent writer may put a different node 141 * at the root of the tree. See btrfs_lock_root_node for the 142 * looping required. 143 * 144 * The extent buffer returned by this has a reference taken, so 145 * it won't disappear. It may stop being the root of the tree 146 * at any time because there are no locks held. 147 */ 148struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 149{ 150 struct extent_buffer *eb; 151 152 while (1) { 153 rcu_read_lock(); 154 eb = rcu_dereference(root->node); 155 156 /* 157 * RCU really hurts here, we could free up the root node because 158 * it was cow'ed but we may not get the new root node yet so do 159 * the inc_not_zero dance and if it doesn't work then 160 * synchronize_rcu and try again. 161 */ 162 if (atomic_inc_not_zero(&eb->refs)) { 163 rcu_read_unlock(); 164 break; 165 } 166 rcu_read_unlock(); 167 synchronize_rcu(); 168 } 169 return eb; 170} 171 172/* loop around taking references on and locking the root node of the 173 * tree until you end up with a lock on the root. A locked buffer 174 * is returned, with a reference held. 175 */ 176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 177{ 178 struct extent_buffer *eb; 179 180 while (1) { 181 eb = btrfs_root_node(root); 182 btrfs_tree_lock(eb); 183 if (eb == root->node) 184 break; 185 btrfs_tree_unlock(eb); 186 free_extent_buffer(eb); 187 } 188 return eb; 189} 190 191/* loop around taking references on and locking the root node of the 192 * tree until you end up with a lock on the root. A locked buffer 193 * is returned, with a reference held. 194 */ 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 196{ 197 struct extent_buffer *eb; 198 199 while (1) { 200 eb = btrfs_root_node(root); 201 btrfs_tree_read_lock(eb); 202 if (eb == root->node) 203 break; 204 btrfs_tree_read_unlock(eb); 205 free_extent_buffer(eb); 206 } 207 return eb; 208} 209 210/* cowonly root (everything not a reference counted cow subvolume), just get 211 * put onto a simple dirty list. transaction.c walks this to make sure they 212 * get properly updated on disk. 213 */ 214static void add_root_to_dirty_list(struct btrfs_root *root) 215{ 216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 218 return; 219 220 spin_lock(&root->fs_info->trans_lock); 221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 222 /* Want the extent tree to be the last on the list */ 223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 224 list_move_tail(&root->dirty_list, 225 &root->fs_info->dirty_cowonly_roots); 226 else 227 list_move(&root->dirty_list, 228 &root->fs_info->dirty_cowonly_roots); 229 } 230 spin_unlock(&root->fs_info->trans_lock); 231} 232 233/* 234 * used by snapshot creation to make a copy of a root for a tree with 235 * a given objectid. The buffer with the new root node is returned in 236 * cow_ret, and this func returns zero on success or a negative error code. 237 */ 238int btrfs_copy_root(struct btrfs_trans_handle *trans, 239 struct btrfs_root *root, 240 struct extent_buffer *buf, 241 struct extent_buffer **cow_ret, u64 new_root_objectid) 242{ 243 struct extent_buffer *cow; 244 int ret = 0; 245 int level; 246 struct btrfs_disk_key disk_key; 247 248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 249 trans->transid != root->fs_info->running_transaction->transid); 250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 251 trans->transid != root->last_trans); 252 253 level = btrfs_header_level(buf); 254 if (level == 0) 255 btrfs_item_key(buf, &disk_key, 0); 256 else 257 btrfs_node_key(buf, &disk_key, 0); 258 259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 260 &disk_key, level, buf->start, 0); 261 if (IS_ERR(cow)) 262 return PTR_ERR(cow); 263 264 copy_extent_buffer(cow, buf, 0, 0, cow->len); 265 btrfs_set_header_bytenr(cow, cow->start); 266 btrfs_set_header_generation(cow, trans->transid); 267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 269 BTRFS_HEADER_FLAG_RELOC); 270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 272 else 273 btrfs_set_header_owner(cow, new_root_objectid); 274 275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 276 BTRFS_FSID_SIZE); 277 278 WARN_ON(btrfs_header_generation(buf) > trans->transid); 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 280 ret = btrfs_inc_ref(trans, root, cow, 1); 281 else 282 ret = btrfs_inc_ref(trans, root, cow, 0); 283 284 if (ret) 285 return ret; 286 287 btrfs_mark_buffer_dirty(cow); 288 *cow_ret = cow; 289 return 0; 290} 291 292enum mod_log_op { 293 MOD_LOG_KEY_REPLACE, 294 MOD_LOG_KEY_ADD, 295 MOD_LOG_KEY_REMOVE, 296 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 297 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 298 MOD_LOG_MOVE_KEYS, 299 MOD_LOG_ROOT_REPLACE, 300}; 301 302struct tree_mod_move { 303 int dst_slot; 304 int nr_items; 305}; 306 307struct tree_mod_root { 308 u64 logical; 309 u8 level; 310}; 311 312struct tree_mod_elem { 313 struct rb_node node; 314 u64 index; /* shifted logical */ 315 u64 seq; 316 enum mod_log_op op; 317 318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 319 int slot; 320 321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 322 u64 generation; 323 324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 325 struct btrfs_disk_key key; 326 u64 blockptr; 327 328 /* this is used for op == MOD_LOG_MOVE_KEYS */ 329 struct tree_mod_move move; 330 331 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 332 struct tree_mod_root old_root; 333}; 334 335static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 336{ 337 read_lock(&fs_info->tree_mod_log_lock); 338} 339 340static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 341{ 342 read_unlock(&fs_info->tree_mod_log_lock); 343} 344 345static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 346{ 347 write_lock(&fs_info->tree_mod_log_lock); 348} 349 350static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 351{ 352 write_unlock(&fs_info->tree_mod_log_lock); 353} 354 355/* 356 * Pull a new tree mod seq number for our operation. 357 */ 358static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 359{ 360 return atomic64_inc_return(&fs_info->tree_mod_seq); 361} 362 363/* 364 * This adds a new blocker to the tree mod log's blocker list if the @elem 365 * passed does not already have a sequence number set. So when a caller expects 366 * to record tree modifications, it should ensure to set elem->seq to zero 367 * before calling btrfs_get_tree_mod_seq. 368 * Returns a fresh, unused tree log modification sequence number, even if no new 369 * blocker was added. 370 */ 371u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 372 struct seq_list *elem) 373{ 374 tree_mod_log_write_lock(fs_info); 375 spin_lock(&fs_info->tree_mod_seq_lock); 376 if (!elem->seq) { 377 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 379 } 380 spin_unlock(&fs_info->tree_mod_seq_lock); 381 tree_mod_log_write_unlock(fs_info); 382 383 return elem->seq; 384} 385 386void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 387 struct seq_list *elem) 388{ 389 struct rb_root *tm_root; 390 struct rb_node *node; 391 struct rb_node *next; 392 struct seq_list *cur_elem; 393 struct tree_mod_elem *tm; 394 u64 min_seq = (u64)-1; 395 u64 seq_putting = elem->seq; 396 397 if (!seq_putting) 398 return; 399 400 spin_lock(&fs_info->tree_mod_seq_lock); 401 list_del(&elem->list); 402 elem->seq = 0; 403 404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 405 if (cur_elem->seq < min_seq) { 406 if (seq_putting > cur_elem->seq) { 407 /* 408 * blocker with lower sequence number exists, we 409 * cannot remove anything from the log 410 */ 411 spin_unlock(&fs_info->tree_mod_seq_lock); 412 return; 413 } 414 min_seq = cur_elem->seq; 415 } 416 } 417 spin_unlock(&fs_info->tree_mod_seq_lock); 418 419 /* 420 * anything that's lower than the lowest existing (read: blocked) 421 * sequence number can be removed from the tree. 422 */ 423 tree_mod_log_write_lock(fs_info); 424 tm_root = &fs_info->tree_mod_log; 425 for (node = rb_first(tm_root); node; node = next) { 426 next = rb_next(node); 427 tm = container_of(node, struct tree_mod_elem, node); 428 if (tm->seq > min_seq) 429 continue; 430 rb_erase(node, tm_root); 431 kfree(tm); 432 } 433 tree_mod_log_write_unlock(fs_info); 434} 435 436/* 437 * key order of the log: 438 * index -> sequence 439 * 440 * the index is the shifted logical of the *new* root node for root replace 441 * operations, or the shifted logical of the affected block for all other 442 * operations. 443 * 444 * Note: must be called with write lock (tree_mod_log_write_lock). 445 */ 446static noinline int 447__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 448{ 449 struct rb_root *tm_root; 450 struct rb_node **new; 451 struct rb_node *parent = NULL; 452 struct tree_mod_elem *cur; 453 454 BUG_ON(!tm); 455 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 457 458 tm_root = &fs_info->tree_mod_log; 459 new = &tm_root->rb_node; 460 while (*new) { 461 cur = container_of(*new, struct tree_mod_elem, node); 462 parent = *new; 463 if (cur->index < tm->index) 464 new = &((*new)->rb_left); 465 else if (cur->index > tm->index) 466 new = &((*new)->rb_right); 467 else if (cur->seq < tm->seq) 468 new = &((*new)->rb_left); 469 else if (cur->seq > tm->seq) 470 new = &((*new)->rb_right); 471 else 472 return -EEXIST; 473 } 474 475 rb_link_node(&tm->node, parent, new); 476 rb_insert_color(&tm->node, tm_root); 477 return 0; 478} 479 480/* 481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 482 * returns zero with the tree_mod_log_lock acquired. The caller must hold 483 * this until all tree mod log insertions are recorded in the rb tree and then 484 * call tree_mod_log_write_unlock() to release. 485 */ 486static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 487 struct extent_buffer *eb) { 488 smp_mb(); 489 if (list_empty(&(fs_info)->tree_mod_seq_list)) 490 return 1; 491 if (eb && btrfs_header_level(eb) == 0) 492 return 1; 493 494 tree_mod_log_write_lock(fs_info); 495 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 496 tree_mod_log_write_unlock(fs_info); 497 return 1; 498 } 499 500 return 0; 501} 502 503/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 504static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 505 struct extent_buffer *eb) 506{ 507 smp_mb(); 508 if (list_empty(&(fs_info)->tree_mod_seq_list)) 509 return 0; 510 if (eb && btrfs_header_level(eb) == 0) 511 return 0; 512 513 return 1; 514} 515 516static struct tree_mod_elem * 517alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 518 enum mod_log_op op, gfp_t flags) 519{ 520 struct tree_mod_elem *tm; 521 522 tm = kzalloc(sizeof(*tm), flags); 523 if (!tm) 524 return NULL; 525 526 tm->index = eb->start >> PAGE_CACHE_SHIFT; 527 if (op != MOD_LOG_KEY_ADD) { 528 btrfs_node_key(eb, &tm->key, slot); 529 tm->blockptr = btrfs_node_blockptr(eb, slot); 530 } 531 tm->op = op; 532 tm->slot = slot; 533 tm->generation = btrfs_node_ptr_generation(eb, slot); 534 RB_CLEAR_NODE(&tm->node); 535 536 return tm; 537} 538 539static noinline int 540tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 541 struct extent_buffer *eb, int slot, 542 enum mod_log_op op, gfp_t flags) 543{ 544 struct tree_mod_elem *tm; 545 int ret; 546 547 if (!tree_mod_need_log(fs_info, eb)) 548 return 0; 549 550 tm = alloc_tree_mod_elem(eb, slot, op, flags); 551 if (!tm) 552 return -ENOMEM; 553 554 if (tree_mod_dont_log(fs_info, eb)) { 555 kfree(tm); 556 return 0; 557 } 558 559 ret = __tree_mod_log_insert(fs_info, tm); 560 tree_mod_log_write_unlock(fs_info); 561 if (ret) 562 kfree(tm); 563 564 return ret; 565} 566 567static noinline int 568tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 569 struct extent_buffer *eb, int dst_slot, int src_slot, 570 int nr_items, gfp_t flags) 571{ 572 struct tree_mod_elem *tm = NULL; 573 struct tree_mod_elem **tm_list = NULL; 574 int ret = 0; 575 int i; 576 int locked = 0; 577 578 if (!tree_mod_need_log(fs_info, eb)) 579 return 0; 580 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 582 if (!tm_list) 583 return -ENOMEM; 584 585 tm = kzalloc(sizeof(*tm), flags); 586 if (!tm) { 587 ret = -ENOMEM; 588 goto free_tms; 589 } 590 591 tm->index = eb->start >> PAGE_CACHE_SHIFT; 592 tm->slot = src_slot; 593 tm->move.dst_slot = dst_slot; 594 tm->move.nr_items = nr_items; 595 tm->op = MOD_LOG_MOVE_KEYS; 596 597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 600 if (!tm_list[i]) { 601 ret = -ENOMEM; 602 goto free_tms; 603 } 604 } 605 606 if (tree_mod_dont_log(fs_info, eb)) 607 goto free_tms; 608 locked = 1; 609 610 /* 611 * When we override something during the move, we log these removals. 612 * This can only happen when we move towards the beginning of the 613 * buffer, i.e. dst_slot < src_slot. 614 */ 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 616 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 617 if (ret) 618 goto free_tms; 619 } 620 621 ret = __tree_mod_log_insert(fs_info, tm); 622 if (ret) 623 goto free_tms; 624 tree_mod_log_write_unlock(fs_info); 625 kfree(tm_list); 626 627 return 0; 628free_tms: 629 for (i = 0; i < nr_items; i++) { 630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 632 kfree(tm_list[i]); 633 } 634 if (locked) 635 tree_mod_log_write_unlock(fs_info); 636 kfree(tm_list); 637 kfree(tm); 638 639 return ret; 640} 641 642static inline int 643__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 644 struct tree_mod_elem **tm_list, 645 int nritems) 646{ 647 int i, j; 648 int ret; 649 650 for (i = nritems - 1; i >= 0; i--) { 651 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 652 if (ret) { 653 for (j = nritems - 1; j > i; j--) 654 rb_erase(&tm_list[j]->node, 655 &fs_info->tree_mod_log); 656 return ret; 657 } 658 } 659 660 return 0; 661} 662 663static noinline int 664tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 665 struct extent_buffer *old_root, 666 struct extent_buffer *new_root, gfp_t flags, 667 int log_removal) 668{ 669 struct tree_mod_elem *tm = NULL; 670 struct tree_mod_elem **tm_list = NULL; 671 int nritems = 0; 672 int ret = 0; 673 int i; 674 675 if (!tree_mod_need_log(fs_info, NULL)) 676 return 0; 677 678 if (log_removal && btrfs_header_level(old_root) > 0) { 679 nritems = btrfs_header_nritems(old_root); 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 681 flags); 682 if (!tm_list) { 683 ret = -ENOMEM; 684 goto free_tms; 685 } 686 for (i = 0; i < nritems; i++) { 687 tm_list[i] = alloc_tree_mod_elem(old_root, i, 688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 689 if (!tm_list[i]) { 690 ret = -ENOMEM; 691 goto free_tms; 692 } 693 } 694 } 695 696 tm = kzalloc(sizeof(*tm), flags); 697 if (!tm) { 698 ret = -ENOMEM; 699 goto free_tms; 700 } 701 702 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 703 tm->old_root.logical = old_root->start; 704 tm->old_root.level = btrfs_header_level(old_root); 705 tm->generation = btrfs_header_generation(old_root); 706 tm->op = MOD_LOG_ROOT_REPLACE; 707 708 if (tree_mod_dont_log(fs_info, NULL)) 709 goto free_tms; 710 711 if (tm_list) 712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 713 if (!ret) 714 ret = __tree_mod_log_insert(fs_info, tm); 715 716 tree_mod_log_write_unlock(fs_info); 717 if (ret) 718 goto free_tms; 719 kfree(tm_list); 720 721 return ret; 722 723free_tms: 724 if (tm_list) { 725 for (i = 0; i < nritems; i++) 726 kfree(tm_list[i]); 727 kfree(tm_list); 728 } 729 kfree(tm); 730 731 return ret; 732} 733 734static struct tree_mod_elem * 735__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 736 int smallest) 737{ 738 struct rb_root *tm_root; 739 struct rb_node *node; 740 struct tree_mod_elem *cur = NULL; 741 struct tree_mod_elem *found = NULL; 742 u64 index = start >> PAGE_CACHE_SHIFT; 743 744 tree_mod_log_read_lock(fs_info); 745 tm_root = &fs_info->tree_mod_log; 746 node = tm_root->rb_node; 747 while (node) { 748 cur = container_of(node, struct tree_mod_elem, node); 749 if (cur->index < index) { 750 node = node->rb_left; 751 } else if (cur->index > index) { 752 node = node->rb_right; 753 } else if (cur->seq < min_seq) { 754 node = node->rb_left; 755 } else if (!smallest) { 756 /* we want the node with the highest seq */ 757 if (found) 758 BUG_ON(found->seq > cur->seq); 759 found = cur; 760 node = node->rb_left; 761 } else if (cur->seq > min_seq) { 762 /* we want the node with the smallest seq */ 763 if (found) 764 BUG_ON(found->seq < cur->seq); 765 found = cur; 766 node = node->rb_right; 767 } else { 768 found = cur; 769 break; 770 } 771 } 772 tree_mod_log_read_unlock(fs_info); 773 774 return found; 775} 776 777/* 778 * this returns the element from the log with the smallest time sequence 779 * value that's in the log (the oldest log item). any element with a time 780 * sequence lower than min_seq will be ignored. 781 */ 782static struct tree_mod_elem * 783tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 784 u64 min_seq) 785{ 786 return __tree_mod_log_search(fs_info, start, min_seq, 1); 787} 788 789/* 790 * this returns the element from the log with the largest time sequence 791 * value that's in the log (the most recent log item). any element with 792 * a time sequence lower than min_seq will be ignored. 793 */ 794static struct tree_mod_elem * 795tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 796{ 797 return __tree_mod_log_search(fs_info, start, min_seq, 0); 798} 799 800static noinline int 801tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 802 struct extent_buffer *src, unsigned long dst_offset, 803 unsigned long src_offset, int nr_items) 804{ 805 int ret = 0; 806 struct tree_mod_elem **tm_list = NULL; 807 struct tree_mod_elem **tm_list_add, **tm_list_rem; 808 int i; 809 int locked = 0; 810 811 if (!tree_mod_need_log(fs_info, NULL)) 812 return 0; 813 814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 815 return 0; 816 817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 818 GFP_NOFS); 819 if (!tm_list) 820 return -ENOMEM; 821 822 tm_list_add = tm_list; 823 tm_list_rem = tm_list + nr_items; 824 for (i = 0; i < nr_items; i++) { 825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 826 MOD_LOG_KEY_REMOVE, GFP_NOFS); 827 if (!tm_list_rem[i]) { 828 ret = -ENOMEM; 829 goto free_tms; 830 } 831 832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 833 MOD_LOG_KEY_ADD, GFP_NOFS); 834 if (!tm_list_add[i]) { 835 ret = -ENOMEM; 836 goto free_tms; 837 } 838 } 839 840 if (tree_mod_dont_log(fs_info, NULL)) 841 goto free_tms; 842 locked = 1; 843 844 for (i = 0; i < nr_items; i++) { 845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 846 if (ret) 847 goto free_tms; 848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 849 if (ret) 850 goto free_tms; 851 } 852 853 tree_mod_log_write_unlock(fs_info); 854 kfree(tm_list); 855 856 return 0; 857 858free_tms: 859 for (i = 0; i < nr_items * 2; i++) { 860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 862 kfree(tm_list[i]); 863 } 864 if (locked) 865 tree_mod_log_write_unlock(fs_info); 866 kfree(tm_list); 867 868 return ret; 869} 870 871static inline void 872tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 873 int dst_offset, int src_offset, int nr_items) 874{ 875 int ret; 876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 877 nr_items, GFP_NOFS); 878 BUG_ON(ret < 0); 879} 880 881static noinline void 882tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 883 struct extent_buffer *eb, int slot, int atomic) 884{ 885 int ret; 886 887 ret = tree_mod_log_insert_key(fs_info, eb, slot, 888 MOD_LOG_KEY_REPLACE, 889 atomic ? GFP_ATOMIC : GFP_NOFS); 890 BUG_ON(ret < 0); 891} 892 893static noinline int 894tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 895{ 896 struct tree_mod_elem **tm_list = NULL; 897 int nritems = 0; 898 int i; 899 int ret = 0; 900 901 if (btrfs_header_level(eb) == 0) 902 return 0; 903 904 if (!tree_mod_need_log(fs_info, NULL)) 905 return 0; 906 907 nritems = btrfs_header_nritems(eb); 908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 909 if (!tm_list) 910 return -ENOMEM; 911 912 for (i = 0; i < nritems; i++) { 913 tm_list[i] = alloc_tree_mod_elem(eb, i, 914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 915 if (!tm_list[i]) { 916 ret = -ENOMEM; 917 goto free_tms; 918 } 919 } 920 921 if (tree_mod_dont_log(fs_info, eb)) 922 goto free_tms; 923 924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 925 tree_mod_log_write_unlock(fs_info); 926 if (ret) 927 goto free_tms; 928 kfree(tm_list); 929 930 return 0; 931 932free_tms: 933 for (i = 0; i < nritems; i++) 934 kfree(tm_list[i]); 935 kfree(tm_list); 936 937 return ret; 938} 939 940static noinline void 941tree_mod_log_set_root_pointer(struct btrfs_root *root, 942 struct extent_buffer *new_root_node, 943 int log_removal) 944{ 945 int ret; 946 ret = tree_mod_log_insert_root(root->fs_info, root->node, 947 new_root_node, GFP_NOFS, log_removal); 948 BUG_ON(ret < 0); 949} 950 951/* 952 * check if the tree block can be shared by multiple trees 953 */ 954int btrfs_block_can_be_shared(struct btrfs_root *root, 955 struct extent_buffer *buf) 956{ 957 /* 958 * Tree blocks not in refernece counted trees and tree roots 959 * are never shared. If a block was allocated after the last 960 * snapshot and the block was not allocated by tree relocation, 961 * we know the block is not shared. 962 */ 963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 964 buf != root->node && buf != root->commit_root && 965 (btrfs_header_generation(buf) <= 966 btrfs_root_last_snapshot(&root->root_item) || 967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 968 return 1; 969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0 970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 972 return 1; 973#endif 974 return 0; 975} 976 977static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root, 979 struct extent_buffer *buf, 980 struct extent_buffer *cow, 981 int *last_ref) 982{ 983 u64 refs; 984 u64 owner; 985 u64 flags; 986 u64 new_flags = 0; 987 int ret; 988 989 /* 990 * Backrefs update rules: 991 * 992 * Always use full backrefs for extent pointers in tree block 993 * allocated by tree relocation. 994 * 995 * If a shared tree block is no longer referenced by its owner 996 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 997 * use full backrefs for extent pointers in tree block. 998 * 999 * If a tree block is been relocating 1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1001 * use full backrefs for extent pointers in tree block. 1002 * The reason for this is some operations (such as drop tree) 1003 * are only allowed for blocks use full backrefs. 1004 */ 1005 1006 if (btrfs_block_can_be_shared(root, buf)) { 1007 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1008 btrfs_header_level(buf), 1, 1009 &refs, &flags); 1010 if (ret) 1011 return ret; 1012 if (refs == 0) { 1013 ret = -EROFS; 1014 btrfs_std_error(root->fs_info, ret); 1015 return ret; 1016 } 1017 } else { 1018 refs = 1; 1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1022 else 1023 flags = 0; 1024 } 1025 1026 owner = btrfs_header_owner(buf); 1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1029 1030 if (refs > 1) { 1031 if ((owner == root->root_key.objectid || 1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1034 ret = btrfs_inc_ref(trans, root, buf, 1); 1035 BUG_ON(ret); /* -ENOMEM */ 1036 1037 if (root->root_key.objectid == 1038 BTRFS_TREE_RELOC_OBJECTID) { 1039 ret = btrfs_dec_ref(trans, root, buf, 0); 1040 BUG_ON(ret); /* -ENOMEM */ 1041 ret = btrfs_inc_ref(trans, root, cow, 1); 1042 BUG_ON(ret); /* -ENOMEM */ 1043 } 1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1045 } else { 1046 1047 if (root->root_key.objectid == 1048 BTRFS_TREE_RELOC_OBJECTID) 1049 ret = btrfs_inc_ref(trans, root, cow, 1); 1050 else 1051 ret = btrfs_inc_ref(trans, root, cow, 0); 1052 BUG_ON(ret); /* -ENOMEM */ 1053 } 1054 if (new_flags != 0) { 1055 int level = btrfs_header_level(buf); 1056 1057 ret = btrfs_set_disk_extent_flags(trans, root, 1058 buf->start, 1059 buf->len, 1060 new_flags, level, 0); 1061 if (ret) 1062 return ret; 1063 } 1064 } else { 1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1066 if (root->root_key.objectid == 1067 BTRFS_TREE_RELOC_OBJECTID) 1068 ret = btrfs_inc_ref(trans, root, cow, 1); 1069 else 1070 ret = btrfs_inc_ref(trans, root, cow, 0); 1071 BUG_ON(ret); /* -ENOMEM */ 1072 ret = btrfs_dec_ref(trans, root, buf, 1); 1073 BUG_ON(ret); /* -ENOMEM */ 1074 } 1075 clean_tree_block(trans, root->fs_info, buf); 1076 *last_ref = 1; 1077 } 1078 return 0; 1079} 1080 1081/* 1082 * does the dirty work in cow of a single block. The parent block (if 1083 * supplied) is updated to point to the new cow copy. The new buffer is marked 1084 * dirty and returned locked. If you modify the block it needs to be marked 1085 * dirty again. 1086 * 1087 * search_start -- an allocation hint for the new block 1088 * 1089 * empty_size -- a hint that you plan on doing more cow. This is the size in 1090 * bytes the allocator should try to find free next to the block it returns. 1091 * This is just a hint and may be ignored by the allocator. 1092 */ 1093static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1094 struct btrfs_root *root, 1095 struct extent_buffer *buf, 1096 struct extent_buffer *parent, int parent_slot, 1097 struct extent_buffer **cow_ret, 1098 u64 search_start, u64 empty_size) 1099{ 1100 struct btrfs_disk_key disk_key; 1101 struct extent_buffer *cow; 1102 int level, ret; 1103 int last_ref = 0; 1104 int unlock_orig = 0; 1105 u64 parent_start; 1106 1107 if (*cow_ret == buf) 1108 unlock_orig = 1; 1109 1110 btrfs_assert_tree_locked(buf); 1111 1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1113 trans->transid != root->fs_info->running_transaction->transid); 1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1115 trans->transid != root->last_trans); 1116 1117 level = btrfs_header_level(buf); 1118 1119 if (level == 0) 1120 btrfs_item_key(buf, &disk_key, 0); 1121 else 1122 btrfs_node_key(buf, &disk_key, 0); 1123 1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1125 if (parent) 1126 parent_start = parent->start; 1127 else 1128 parent_start = 0; 1129 } else 1130 parent_start = 0; 1131 1132 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1133 root->root_key.objectid, &disk_key, level, 1134 search_start, empty_size); 1135 if (IS_ERR(cow)) 1136 return PTR_ERR(cow); 1137 1138 /* cow is set to blocking by btrfs_init_new_buffer */ 1139 1140 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1141 btrfs_set_header_bytenr(cow, cow->start); 1142 btrfs_set_header_generation(cow, trans->transid); 1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1145 BTRFS_HEADER_FLAG_RELOC); 1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1148 else 1149 btrfs_set_header_owner(cow, root->root_key.objectid); 1150 1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1152 BTRFS_FSID_SIZE); 1153 1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1155 if (ret) { 1156 btrfs_abort_transaction(trans, root, ret); 1157 return ret; 1158 } 1159 1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1162 if (ret) 1163 return ret; 1164 } 1165 1166 if (buf == root->node) { 1167 WARN_ON(parent && parent != buf); 1168 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1169 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1170 parent_start = buf->start; 1171 else 1172 parent_start = 0; 1173 1174 extent_buffer_get(cow); 1175 tree_mod_log_set_root_pointer(root, cow, 1); 1176 rcu_assign_pointer(root->node, cow); 1177 1178 btrfs_free_tree_block(trans, root, buf, parent_start, 1179 last_ref); 1180 free_extent_buffer(buf); 1181 add_root_to_dirty_list(root); 1182 } else { 1183 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1184 parent_start = parent->start; 1185 else 1186 parent_start = 0; 1187 1188 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1189 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1190 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1191 btrfs_set_node_blockptr(parent, parent_slot, 1192 cow->start); 1193 btrfs_set_node_ptr_generation(parent, parent_slot, 1194 trans->transid); 1195 btrfs_mark_buffer_dirty(parent); 1196 if (last_ref) { 1197 ret = tree_mod_log_free_eb(root->fs_info, buf); 1198 if (ret) { 1199 btrfs_abort_transaction(trans, root, ret); 1200 return ret; 1201 } 1202 } 1203 btrfs_free_tree_block(trans, root, buf, parent_start, 1204 last_ref); 1205 } 1206 if (unlock_orig) 1207 btrfs_tree_unlock(buf); 1208 free_extent_buffer_stale(buf); 1209 btrfs_mark_buffer_dirty(cow); 1210 *cow_ret = cow; 1211 return 0; 1212} 1213 1214/* 1215 * returns the logical address of the oldest predecessor of the given root. 1216 * entries older than time_seq are ignored. 1217 */ 1218static struct tree_mod_elem * 1219__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1220 struct extent_buffer *eb_root, u64 time_seq) 1221{ 1222 struct tree_mod_elem *tm; 1223 struct tree_mod_elem *found = NULL; 1224 u64 root_logical = eb_root->start; 1225 int looped = 0; 1226 1227 if (!time_seq) 1228 return NULL; 1229 1230 /* 1231 * the very last operation that's logged for a root is the replacement 1232 * operation (if it is replaced at all). this has the index of the *new* 1233 * root, making it the very first operation that's logged for this root. 1234 */ 1235 while (1) { 1236 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1237 time_seq); 1238 if (!looped && !tm) 1239 return NULL; 1240 /* 1241 * if there are no tree operation for the oldest root, we simply 1242 * return it. this should only happen if that (old) root is at 1243 * level 0. 1244 */ 1245 if (!tm) 1246 break; 1247 1248 /* 1249 * if there's an operation that's not a root replacement, we 1250 * found the oldest version of our root. normally, we'll find a 1251 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1252 */ 1253 if (tm->op != MOD_LOG_ROOT_REPLACE) 1254 break; 1255 1256 found = tm; 1257 root_logical = tm->old_root.logical; 1258 looped = 1; 1259 } 1260 1261 /* if there's no old root to return, return what we found instead */ 1262 if (!found) 1263 found = tm; 1264 1265 return found; 1266} 1267 1268/* 1269 * tm is a pointer to the first operation to rewind within eb. then, all 1270 * previous operations will be rewinded (until we reach something older than 1271 * time_seq). 1272 */ 1273static void 1274__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1275 u64 time_seq, struct tree_mod_elem *first_tm) 1276{ 1277 u32 n; 1278 struct rb_node *next; 1279 struct tree_mod_elem *tm = first_tm; 1280 unsigned long o_dst; 1281 unsigned long o_src; 1282 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1283 1284 n = btrfs_header_nritems(eb); 1285 tree_mod_log_read_lock(fs_info); 1286 while (tm && tm->seq >= time_seq) { 1287 /* 1288 * all the operations are recorded with the operator used for 1289 * the modification. as we're going backwards, we do the 1290 * opposite of each operation here. 1291 */ 1292 switch (tm->op) { 1293 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1294 BUG_ON(tm->slot < n); 1295 /* Fallthrough */ 1296 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1297 case MOD_LOG_KEY_REMOVE: 1298 btrfs_set_node_key(eb, &tm->key, tm->slot); 1299 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1300 btrfs_set_node_ptr_generation(eb, tm->slot, 1301 tm->generation); 1302 n++; 1303 break; 1304 case MOD_LOG_KEY_REPLACE: 1305 BUG_ON(tm->slot >= n); 1306 btrfs_set_node_key(eb, &tm->key, tm->slot); 1307 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1308 btrfs_set_node_ptr_generation(eb, tm->slot, 1309 tm->generation); 1310 break; 1311 case MOD_LOG_KEY_ADD: 1312 /* if a move operation is needed it's in the log */ 1313 n--; 1314 break; 1315 case MOD_LOG_MOVE_KEYS: 1316 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1317 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1318 memmove_extent_buffer(eb, o_dst, o_src, 1319 tm->move.nr_items * p_size); 1320 break; 1321 case MOD_LOG_ROOT_REPLACE: 1322 /* 1323 * this operation is special. for roots, this must be 1324 * handled explicitly before rewinding. 1325 * for non-roots, this operation may exist if the node 1326 * was a root: root A -> child B; then A gets empty and 1327 * B is promoted to the new root. in the mod log, we'll 1328 * have a root-replace operation for B, a tree block 1329 * that is no root. we simply ignore that operation. 1330 */ 1331 break; 1332 } 1333 next = rb_next(&tm->node); 1334 if (!next) 1335 break; 1336 tm = container_of(next, struct tree_mod_elem, node); 1337 if (tm->index != first_tm->index) 1338 break; 1339 } 1340 tree_mod_log_read_unlock(fs_info); 1341 btrfs_set_header_nritems(eb, n); 1342} 1343 1344/* 1345 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1346 * is returned. If rewind operations happen, a fresh buffer is returned. The 1347 * returned buffer is always read-locked. If the returned buffer is not the 1348 * input buffer, the lock on the input buffer is released and the input buffer 1349 * is freed (its refcount is decremented). 1350 */ 1351static struct extent_buffer * 1352tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1353 struct extent_buffer *eb, u64 time_seq) 1354{ 1355 struct extent_buffer *eb_rewin; 1356 struct tree_mod_elem *tm; 1357 1358 if (!time_seq) 1359 return eb; 1360 1361 if (btrfs_header_level(eb) == 0) 1362 return eb; 1363 1364 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1365 if (!tm) 1366 return eb; 1367 1368 btrfs_set_path_blocking(path); 1369 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1370 1371 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1372 BUG_ON(tm->slot != 0); 1373 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1374 if (!eb_rewin) { 1375 btrfs_tree_read_unlock_blocking(eb); 1376 free_extent_buffer(eb); 1377 return NULL; 1378 } 1379 btrfs_set_header_bytenr(eb_rewin, eb->start); 1380 btrfs_set_header_backref_rev(eb_rewin, 1381 btrfs_header_backref_rev(eb)); 1382 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1383 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1384 } else { 1385 eb_rewin = btrfs_clone_extent_buffer(eb); 1386 if (!eb_rewin) { 1387 btrfs_tree_read_unlock_blocking(eb); 1388 free_extent_buffer(eb); 1389 return NULL; 1390 } 1391 } 1392 1393 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1394 btrfs_tree_read_unlock_blocking(eb); 1395 free_extent_buffer(eb); 1396 1397 extent_buffer_get(eb_rewin); 1398 btrfs_tree_read_lock(eb_rewin); 1399 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1400 WARN_ON(btrfs_header_nritems(eb_rewin) > 1401 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1402 1403 return eb_rewin; 1404} 1405 1406/* 1407 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1408 * value. If there are no changes, the current root->root_node is returned. If 1409 * anything changed in between, there's a fresh buffer allocated on which the 1410 * rewind operations are done. In any case, the returned buffer is read locked. 1411 * Returns NULL on error (with no locks held). 1412 */ 1413static inline struct extent_buffer * 1414get_old_root(struct btrfs_root *root, u64 time_seq) 1415{ 1416 struct tree_mod_elem *tm; 1417 struct extent_buffer *eb = NULL; 1418 struct extent_buffer *eb_root; 1419 struct extent_buffer *old; 1420 struct tree_mod_root *old_root = NULL; 1421 u64 old_generation = 0; 1422 u64 logical; 1423 1424 eb_root = btrfs_read_lock_root_node(root); 1425 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1426 if (!tm) 1427 return eb_root; 1428 1429 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1430 old_root = &tm->old_root; 1431 old_generation = tm->generation; 1432 logical = old_root->logical; 1433 } else { 1434 logical = eb_root->start; 1435 } 1436 1437 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1438 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1439 btrfs_tree_read_unlock(eb_root); 1440 free_extent_buffer(eb_root); 1441 old = read_tree_block(root, logical, 0); 1442 if (WARN_ON(!old || !extent_buffer_uptodate(old))) { 1443 free_extent_buffer(old); 1444 btrfs_warn(root->fs_info, 1445 "failed to read tree block %llu from get_old_root", logical); 1446 } else { 1447 eb = btrfs_clone_extent_buffer(old); 1448 free_extent_buffer(old); 1449 } 1450 } else if (old_root) { 1451 btrfs_tree_read_unlock(eb_root); 1452 free_extent_buffer(eb_root); 1453 eb = alloc_dummy_extent_buffer(root->fs_info, logical); 1454 } else { 1455 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1456 eb = btrfs_clone_extent_buffer(eb_root); 1457 btrfs_tree_read_unlock_blocking(eb_root); 1458 free_extent_buffer(eb_root); 1459 } 1460 1461 if (!eb) 1462 return NULL; 1463 extent_buffer_get(eb); 1464 btrfs_tree_read_lock(eb); 1465 if (old_root) { 1466 btrfs_set_header_bytenr(eb, eb->start); 1467 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1468 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1469 btrfs_set_header_level(eb, old_root->level); 1470 btrfs_set_header_generation(eb, old_generation); 1471 } 1472 if (tm) 1473 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1474 else 1475 WARN_ON(btrfs_header_level(eb) != 0); 1476 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1477 1478 return eb; 1479} 1480 1481int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1482{ 1483 struct tree_mod_elem *tm; 1484 int level; 1485 struct extent_buffer *eb_root = btrfs_root_node(root); 1486 1487 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1488 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1489 level = tm->old_root.level; 1490 } else { 1491 level = btrfs_header_level(eb_root); 1492 } 1493 free_extent_buffer(eb_root); 1494 1495 return level; 1496} 1497 1498static inline int should_cow_block(struct btrfs_trans_handle *trans, 1499 struct btrfs_root *root, 1500 struct extent_buffer *buf) 1501{ 1502 if (btrfs_test_is_dummy_root(root)) 1503 return 0; 1504 1505 /* ensure we can see the force_cow */ 1506 smp_rmb(); 1507 1508 /* 1509 * We do not need to cow a block if 1510 * 1) this block is not created or changed in this transaction; 1511 * 2) this block does not belong to TREE_RELOC tree; 1512 * 3) the root is not forced COW. 1513 * 1514 * What is forced COW: 1515 * when we create snapshot during commiting the transaction, 1516 * after we've finished coping src root, we must COW the shared 1517 * block to ensure the metadata consistency. 1518 */ 1519 if (btrfs_header_generation(buf) == trans->transid && 1520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1524 return 0; 1525 return 1; 1526} 1527 1528/* 1529 * cows a single block, see __btrfs_cow_block for the real work. 1530 * This version of it has extra checks so that a block isn't cow'd more than 1531 * once per transaction, as long as it hasn't been written yet 1532 */ 1533noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1534 struct btrfs_root *root, struct extent_buffer *buf, 1535 struct extent_buffer *parent, int parent_slot, 1536 struct extent_buffer **cow_ret) 1537{ 1538 u64 search_start; 1539 int ret; 1540 1541 if (trans->transaction != root->fs_info->running_transaction) 1542 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1543 trans->transid, 1544 root->fs_info->running_transaction->transid); 1545 1546 if (trans->transid != root->fs_info->generation) 1547 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1548 trans->transid, root->fs_info->generation); 1549 1550 if (!should_cow_block(trans, root, buf)) { 1551 *cow_ret = buf; 1552 return 0; 1553 } 1554 1555 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1556 1557 if (parent) 1558 btrfs_set_lock_blocking(parent); 1559 btrfs_set_lock_blocking(buf); 1560 1561 ret = __btrfs_cow_block(trans, root, buf, parent, 1562 parent_slot, cow_ret, search_start, 0); 1563 1564 trace_btrfs_cow_block(root, buf, *cow_ret); 1565 1566 return ret; 1567} 1568 1569/* 1570 * helper function for defrag to decide if two blocks pointed to by a 1571 * node are actually close by 1572 */ 1573static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1574{ 1575 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1576 return 1; 1577 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1578 return 1; 1579 return 0; 1580} 1581 1582/* 1583 * compare two keys in a memcmp fashion 1584 */ 1585static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1586{ 1587 struct btrfs_key k1; 1588 1589 btrfs_disk_key_to_cpu(&k1, disk); 1590 1591 return btrfs_comp_cpu_keys(&k1, k2); 1592} 1593 1594/* 1595 * same as comp_keys only with two btrfs_key's 1596 */ 1597int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1598{ 1599 if (k1->objectid > k2->objectid) 1600 return 1; 1601 if (k1->objectid < k2->objectid) 1602 return -1; 1603 if (k1->type > k2->type) 1604 return 1; 1605 if (k1->type < k2->type) 1606 return -1; 1607 if (k1->offset > k2->offset) 1608 return 1; 1609 if (k1->offset < k2->offset) 1610 return -1; 1611 return 0; 1612} 1613 1614/* 1615 * this is used by the defrag code to go through all the 1616 * leaves pointed to by a node and reallocate them so that 1617 * disk order is close to key order 1618 */ 1619int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1620 struct btrfs_root *root, struct extent_buffer *parent, 1621 int start_slot, u64 *last_ret, 1622 struct btrfs_key *progress) 1623{ 1624 struct extent_buffer *cur; 1625 u64 blocknr; 1626 u64 gen; 1627 u64 search_start = *last_ret; 1628 u64 last_block = 0; 1629 u64 other; 1630 u32 parent_nritems; 1631 int end_slot; 1632 int i; 1633 int err = 0; 1634 int parent_level; 1635 int uptodate; 1636 u32 blocksize; 1637 int progress_passed = 0; 1638 struct btrfs_disk_key disk_key; 1639 1640 parent_level = btrfs_header_level(parent); 1641 1642 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1643 WARN_ON(trans->transid != root->fs_info->generation); 1644 1645 parent_nritems = btrfs_header_nritems(parent); 1646 blocksize = root->nodesize; 1647 end_slot = parent_nritems - 1; 1648 1649 if (parent_nritems <= 1) 1650 return 0; 1651 1652 btrfs_set_lock_blocking(parent); 1653 1654 for (i = start_slot; i <= end_slot; i++) { 1655 int close = 1; 1656 1657 btrfs_node_key(parent, &disk_key, i); 1658 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1659 continue; 1660 1661 progress_passed = 1; 1662 blocknr = btrfs_node_blockptr(parent, i); 1663 gen = btrfs_node_ptr_generation(parent, i); 1664 if (last_block == 0) 1665 last_block = blocknr; 1666 1667 if (i > 0) { 1668 other = btrfs_node_blockptr(parent, i - 1); 1669 close = close_blocks(blocknr, other, blocksize); 1670 } 1671 if (!close && i < end_slot) { 1672 other = btrfs_node_blockptr(parent, i + 1); 1673 close = close_blocks(blocknr, other, blocksize); 1674 } 1675 if (close) { 1676 last_block = blocknr; 1677 continue; 1678 } 1679 1680 cur = btrfs_find_tree_block(root->fs_info, blocknr); 1681 if (cur) 1682 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1683 else 1684 uptodate = 0; 1685 if (!cur || !uptodate) { 1686 if (!cur) { 1687 cur = read_tree_block(root, blocknr, gen); 1688 if (!cur || !extent_buffer_uptodate(cur)) { 1689 free_extent_buffer(cur); 1690 return -EIO; 1691 } 1692 } else if (!uptodate) { 1693 err = btrfs_read_buffer(cur, gen); 1694 if (err) { 1695 free_extent_buffer(cur); 1696 return err; 1697 } 1698 } 1699 } 1700 if (search_start == 0) 1701 search_start = last_block; 1702 1703 btrfs_tree_lock(cur); 1704 btrfs_set_lock_blocking(cur); 1705 err = __btrfs_cow_block(trans, root, cur, parent, i, 1706 &cur, search_start, 1707 min(16 * blocksize, 1708 (end_slot - i) * blocksize)); 1709 if (err) { 1710 btrfs_tree_unlock(cur); 1711 free_extent_buffer(cur); 1712 break; 1713 } 1714 search_start = cur->start; 1715 last_block = cur->start; 1716 *last_ret = search_start; 1717 btrfs_tree_unlock(cur); 1718 free_extent_buffer(cur); 1719 } 1720 return err; 1721} 1722 1723/* 1724 * The leaf data grows from end-to-front in the node. 1725 * this returns the address of the start of the last item, 1726 * which is the stop of the leaf data stack 1727 */ 1728static inline unsigned int leaf_data_end(struct btrfs_root *root, 1729 struct extent_buffer *leaf) 1730{ 1731 u32 nr = btrfs_header_nritems(leaf); 1732 if (nr == 0) 1733 return BTRFS_LEAF_DATA_SIZE(root); 1734 return btrfs_item_offset_nr(leaf, nr - 1); 1735} 1736 1737 1738/* 1739 * search for key in the extent_buffer. The items start at offset p, 1740 * and they are item_size apart. There are 'max' items in p. 1741 * 1742 * the slot in the array is returned via slot, and it points to 1743 * the place where you would insert key if it is not found in 1744 * the array. 1745 * 1746 * slot may point to max if the key is bigger than all of the keys 1747 */ 1748static noinline int generic_bin_search(struct extent_buffer *eb, 1749 unsigned long p, 1750 int item_size, struct btrfs_key *key, 1751 int max, int *slot) 1752{ 1753 int low = 0; 1754 int high = max; 1755 int mid; 1756 int ret; 1757 struct btrfs_disk_key *tmp = NULL; 1758 struct btrfs_disk_key unaligned; 1759 unsigned long offset; 1760 char *kaddr = NULL; 1761 unsigned long map_start = 0; 1762 unsigned long map_len = 0; 1763 int err; 1764 1765 while (low < high) { 1766 mid = (low + high) / 2; 1767 offset = p + mid * item_size; 1768 1769 if (!kaddr || offset < map_start || 1770 (offset + sizeof(struct btrfs_disk_key)) > 1771 map_start + map_len) { 1772 1773 err = map_private_extent_buffer(eb, offset, 1774 sizeof(struct btrfs_disk_key), 1775 &kaddr, &map_start, &map_len); 1776 1777 if (!err) { 1778 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1779 map_start); 1780 } else { 1781 read_extent_buffer(eb, &unaligned, 1782 offset, sizeof(unaligned)); 1783 tmp = &unaligned; 1784 } 1785 1786 } else { 1787 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1788 map_start); 1789 } 1790 ret = comp_keys(tmp, key); 1791 1792 if (ret < 0) 1793 low = mid + 1; 1794 else if (ret > 0) 1795 high = mid; 1796 else { 1797 *slot = mid; 1798 return 0; 1799 } 1800 } 1801 *slot = low; 1802 return 1; 1803} 1804 1805/* 1806 * simple bin_search frontend that does the right thing for 1807 * leaves vs nodes 1808 */ 1809static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1810 int level, int *slot) 1811{ 1812 if (level == 0) 1813 return generic_bin_search(eb, 1814 offsetof(struct btrfs_leaf, items), 1815 sizeof(struct btrfs_item), 1816 key, btrfs_header_nritems(eb), 1817 slot); 1818 else 1819 return generic_bin_search(eb, 1820 offsetof(struct btrfs_node, ptrs), 1821 sizeof(struct btrfs_key_ptr), 1822 key, btrfs_header_nritems(eb), 1823 slot); 1824} 1825 1826int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1827 int level, int *slot) 1828{ 1829 return bin_search(eb, key, level, slot); 1830} 1831 1832static void root_add_used(struct btrfs_root *root, u32 size) 1833{ 1834 spin_lock(&root->accounting_lock); 1835 btrfs_set_root_used(&root->root_item, 1836 btrfs_root_used(&root->root_item) + size); 1837 spin_unlock(&root->accounting_lock); 1838} 1839 1840static void root_sub_used(struct btrfs_root *root, u32 size) 1841{ 1842 spin_lock(&root->accounting_lock); 1843 btrfs_set_root_used(&root->root_item, 1844 btrfs_root_used(&root->root_item) - size); 1845 spin_unlock(&root->accounting_lock); 1846} 1847 1848/* given a node and slot number, this reads the blocks it points to. The 1849 * extent buffer is returned with a reference taken (but unlocked). 1850 * NULL is returned on error. 1851 */ 1852static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1853 struct extent_buffer *parent, int slot) 1854{ 1855 int level = btrfs_header_level(parent); 1856 struct extent_buffer *eb; 1857 1858 if (slot < 0) 1859 return NULL; 1860 if (slot >= btrfs_header_nritems(parent)) 1861 return NULL; 1862 1863 BUG_ON(level == 0); 1864 1865 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1866 btrfs_node_ptr_generation(parent, slot)); 1867 if (eb && !extent_buffer_uptodate(eb)) { 1868 free_extent_buffer(eb); 1869 eb = NULL; 1870 } 1871 1872 return eb; 1873} 1874 1875/* 1876 * node level balancing, used to make sure nodes are in proper order for 1877 * item deletion. We balance from the top down, so we have to make sure 1878 * that a deletion won't leave an node completely empty later on. 1879 */ 1880static noinline int balance_level(struct btrfs_trans_handle *trans, 1881 struct btrfs_root *root, 1882 struct btrfs_path *path, int level) 1883{ 1884 struct extent_buffer *right = NULL; 1885 struct extent_buffer *mid; 1886 struct extent_buffer *left = NULL; 1887 struct extent_buffer *parent = NULL; 1888 int ret = 0; 1889 int wret; 1890 int pslot; 1891 int orig_slot = path->slots[level]; 1892 u64 orig_ptr; 1893 1894 if (level == 0) 1895 return 0; 1896 1897 mid = path->nodes[level]; 1898 1899 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1900 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1901 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1902 1903 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1904 1905 if (level < BTRFS_MAX_LEVEL - 1) { 1906 parent = path->nodes[level + 1]; 1907 pslot = path->slots[level + 1]; 1908 } 1909 1910 /* 1911 * deal with the case where there is only one pointer in the root 1912 * by promoting the node below to a root 1913 */ 1914 if (!parent) { 1915 struct extent_buffer *child; 1916 1917 if (btrfs_header_nritems(mid) != 1) 1918 return 0; 1919 1920 /* promote the child to a root */ 1921 child = read_node_slot(root, mid, 0); 1922 if (!child) { 1923 ret = -EROFS; 1924 btrfs_std_error(root->fs_info, ret); 1925 goto enospc; 1926 } 1927 1928 btrfs_tree_lock(child); 1929 btrfs_set_lock_blocking(child); 1930 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1931 if (ret) { 1932 btrfs_tree_unlock(child); 1933 free_extent_buffer(child); 1934 goto enospc; 1935 } 1936 1937 tree_mod_log_set_root_pointer(root, child, 1); 1938 rcu_assign_pointer(root->node, child); 1939 1940 add_root_to_dirty_list(root); 1941 btrfs_tree_unlock(child); 1942 1943 path->locks[level] = 0; 1944 path->nodes[level] = NULL; 1945 clean_tree_block(trans, root->fs_info, mid); 1946 btrfs_tree_unlock(mid); 1947 /* once for the path */ 1948 free_extent_buffer(mid); 1949 1950 root_sub_used(root, mid->len); 1951 btrfs_free_tree_block(trans, root, mid, 0, 1); 1952 /* once for the root ptr */ 1953 free_extent_buffer_stale(mid); 1954 return 0; 1955 } 1956 if (btrfs_header_nritems(mid) > 1957 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1958 return 0; 1959 1960 left = read_node_slot(root, parent, pslot - 1); 1961 if (left) { 1962 btrfs_tree_lock(left); 1963 btrfs_set_lock_blocking(left); 1964 wret = btrfs_cow_block(trans, root, left, 1965 parent, pslot - 1, &left); 1966 if (wret) { 1967 ret = wret; 1968 goto enospc; 1969 } 1970 } 1971 right = read_node_slot(root, parent, pslot + 1); 1972 if (right) { 1973 btrfs_tree_lock(right); 1974 btrfs_set_lock_blocking(right); 1975 wret = btrfs_cow_block(trans, root, right, 1976 parent, pslot + 1, &right); 1977 if (wret) { 1978 ret = wret; 1979 goto enospc; 1980 } 1981 } 1982 1983 /* first, try to make some room in the middle buffer */ 1984 if (left) { 1985 orig_slot += btrfs_header_nritems(left); 1986 wret = push_node_left(trans, root, left, mid, 1); 1987 if (wret < 0) 1988 ret = wret; 1989 } 1990 1991 /* 1992 * then try to empty the right most buffer into the middle 1993 */ 1994 if (right) { 1995 wret = push_node_left(trans, root, mid, right, 1); 1996 if (wret < 0 && wret != -ENOSPC) 1997 ret = wret; 1998 if (btrfs_header_nritems(right) == 0) { 1999 clean_tree_block(trans, root->fs_info, right); 2000 btrfs_tree_unlock(right); 2001 del_ptr(root, path, level + 1, pslot + 1); 2002 root_sub_used(root, right->len); 2003 btrfs_free_tree_block(trans, root, right, 0, 1); 2004 free_extent_buffer_stale(right); 2005 right = NULL; 2006 } else { 2007 struct btrfs_disk_key right_key; 2008 btrfs_node_key(right, &right_key, 0); 2009 tree_mod_log_set_node_key(root->fs_info, parent, 2010 pslot + 1, 0); 2011 btrfs_set_node_key(parent, &right_key, pslot + 1); 2012 btrfs_mark_buffer_dirty(parent); 2013 } 2014 } 2015 if (btrfs_header_nritems(mid) == 1) { 2016 /* 2017 * we're not allowed to leave a node with one item in the 2018 * tree during a delete. A deletion from lower in the tree 2019 * could try to delete the only pointer in this node. 2020 * So, pull some keys from the left. 2021 * There has to be a left pointer at this point because 2022 * otherwise we would have pulled some pointers from the 2023 * right 2024 */ 2025 if (!left) { 2026 ret = -EROFS; 2027 btrfs_std_error(root->fs_info, ret); 2028 goto enospc; 2029 } 2030 wret = balance_node_right(trans, root, mid, left); 2031 if (wret < 0) { 2032 ret = wret; 2033 goto enospc; 2034 } 2035 if (wret == 1) { 2036 wret = push_node_left(trans, root, left, mid, 1); 2037 if (wret < 0) 2038 ret = wret; 2039 } 2040 BUG_ON(wret == 1); 2041 } 2042 if (btrfs_header_nritems(mid) == 0) { 2043 clean_tree_block(trans, root->fs_info, mid); 2044 btrfs_tree_unlock(mid); 2045 del_ptr(root, path, level + 1, pslot); 2046 root_sub_used(root, mid->len); 2047 btrfs_free_tree_block(trans, root, mid, 0, 1); 2048 free_extent_buffer_stale(mid); 2049 mid = NULL; 2050 } else { 2051 /* update the parent key to reflect our changes */ 2052 struct btrfs_disk_key mid_key; 2053 btrfs_node_key(mid, &mid_key, 0); 2054 tree_mod_log_set_node_key(root->fs_info, parent, 2055 pslot, 0); 2056 btrfs_set_node_key(parent, &mid_key, pslot); 2057 btrfs_mark_buffer_dirty(parent); 2058 } 2059 2060 /* update the path */ 2061 if (left) { 2062 if (btrfs_header_nritems(left) > orig_slot) { 2063 extent_buffer_get(left); 2064 /* left was locked after cow */ 2065 path->nodes[level] = left; 2066 path->slots[level + 1] -= 1; 2067 path->slots[level] = orig_slot; 2068 if (mid) { 2069 btrfs_tree_unlock(mid); 2070 free_extent_buffer(mid); 2071 } 2072 } else { 2073 orig_slot -= btrfs_header_nritems(left); 2074 path->slots[level] = orig_slot; 2075 } 2076 } 2077 /* double check we haven't messed things up */ 2078 if (orig_ptr != 2079 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2080 BUG(); 2081enospc: 2082 if (right) { 2083 btrfs_tree_unlock(right); 2084 free_extent_buffer(right); 2085 } 2086 if (left) { 2087 if (path->nodes[level] != left) 2088 btrfs_tree_unlock(left); 2089 free_extent_buffer(left); 2090 } 2091 return ret; 2092} 2093 2094/* Node balancing for insertion. Here we only split or push nodes around 2095 * when they are completely full. This is also done top down, so we 2096 * have to be pessimistic. 2097 */ 2098static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2099 struct btrfs_root *root, 2100 struct btrfs_path *path, int level) 2101{ 2102 struct extent_buffer *right = NULL; 2103 struct extent_buffer *mid; 2104 struct extent_buffer *left = NULL; 2105 struct extent_buffer *parent = NULL; 2106 int ret = 0; 2107 int wret; 2108 int pslot; 2109 int orig_slot = path->slots[level]; 2110 2111 if (level == 0) 2112 return 1; 2113 2114 mid = path->nodes[level]; 2115 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2116 2117 if (level < BTRFS_MAX_LEVEL - 1) { 2118 parent = path->nodes[level + 1]; 2119 pslot = path->slots[level + 1]; 2120 } 2121 2122 if (!parent) 2123 return 1; 2124 2125 left = read_node_slot(root, parent, pslot - 1); 2126 2127 /* first, try to make some room in the middle buffer */ 2128 if (left) { 2129 u32 left_nr; 2130 2131 btrfs_tree_lock(left); 2132 btrfs_set_lock_blocking(left); 2133 2134 left_nr = btrfs_header_nritems(left); 2135 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2136 wret = 1; 2137 } else { 2138 ret = btrfs_cow_block(trans, root, left, parent, 2139 pslot - 1, &left); 2140 if (ret) 2141 wret = 1; 2142 else { 2143 wret = push_node_left(trans, root, 2144 left, mid, 0); 2145 } 2146 } 2147 if (wret < 0) 2148 ret = wret; 2149 if (wret == 0) { 2150 struct btrfs_disk_key disk_key; 2151 orig_slot += left_nr; 2152 btrfs_node_key(mid, &disk_key, 0); 2153 tree_mod_log_set_node_key(root->fs_info, parent, 2154 pslot, 0); 2155 btrfs_set_node_key(parent, &disk_key, pslot); 2156 btrfs_mark_buffer_dirty(parent); 2157 if (btrfs_header_nritems(left) > orig_slot) { 2158 path->nodes[level] = left; 2159 path->slots[level + 1] -= 1; 2160 path->slots[level] = orig_slot; 2161 btrfs_tree_unlock(mid); 2162 free_extent_buffer(mid); 2163 } else { 2164 orig_slot -= 2165 btrfs_header_nritems(left); 2166 path->slots[level] = orig_slot; 2167 btrfs_tree_unlock(left); 2168 free_extent_buffer(left); 2169 } 2170 return 0; 2171 } 2172 btrfs_tree_unlock(left); 2173 free_extent_buffer(left); 2174 } 2175 right = read_node_slot(root, parent, pslot + 1); 2176 2177 /* 2178 * then try to empty the right most buffer into the middle 2179 */ 2180 if (right) { 2181 u32 right_nr; 2182 2183 btrfs_tree_lock(right); 2184 btrfs_set_lock_blocking(right); 2185 2186 right_nr = btrfs_header_nritems(right); 2187 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2188 wret = 1; 2189 } else { 2190 ret = btrfs_cow_block(trans, root, right, 2191 parent, pslot + 1, 2192 &right); 2193 if (ret) 2194 wret = 1; 2195 else { 2196 wret = balance_node_right(trans, root, 2197 right, mid); 2198 } 2199 } 2200 if (wret < 0) 2201 ret = wret; 2202 if (wret == 0) { 2203 struct btrfs_disk_key disk_key; 2204 2205 btrfs_node_key(right, &disk_key, 0); 2206 tree_mod_log_set_node_key(root->fs_info, parent, 2207 pslot + 1, 0); 2208 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2209 btrfs_mark_buffer_dirty(parent); 2210 2211 if (btrfs_header_nritems(mid) <= orig_slot) { 2212 path->nodes[level] = right; 2213 path->slots[level + 1] += 1; 2214 path->slots[level] = orig_slot - 2215 btrfs_header_nritems(mid); 2216 btrfs_tree_unlock(mid); 2217 free_extent_buffer(mid); 2218 } else { 2219 btrfs_tree_unlock(right); 2220 free_extent_buffer(right); 2221 } 2222 return 0; 2223 } 2224 btrfs_tree_unlock(right); 2225 free_extent_buffer(right); 2226 } 2227 return 1; 2228} 2229 2230/* 2231 * readahead one full node of leaves, finding things that are close 2232 * to the block in 'slot', and triggering ra on them. 2233 */ 2234static void reada_for_search(struct btrfs_root *root, 2235 struct btrfs_path *path, 2236 int level, int slot, u64 objectid) 2237{ 2238 struct extent_buffer *node; 2239 struct btrfs_disk_key disk_key; 2240 u32 nritems; 2241 u64 search; 2242 u64 target; 2243 u64 nread = 0; 2244 u64 gen; 2245 int direction = path->reada; 2246 struct extent_buffer *eb; 2247 u32 nr; 2248 u32 blocksize; 2249 u32 nscan = 0; 2250 2251 if (level != 1) 2252 return; 2253 2254 if (!path->nodes[level]) 2255 return; 2256 2257 node = path->nodes[level]; 2258 2259 search = btrfs_node_blockptr(node, slot); 2260 blocksize = root->nodesize; 2261 eb = btrfs_find_tree_block(root->fs_info, search); 2262 if (eb) { 2263 free_extent_buffer(eb); 2264 return; 2265 } 2266 2267 target = search; 2268 2269 nritems = btrfs_header_nritems(node); 2270 nr = slot; 2271 2272 while (1) { 2273 if (direction < 0) { 2274 if (nr == 0) 2275 break; 2276 nr--; 2277 } else if (direction > 0) { 2278 nr++; 2279 if (nr >= nritems) 2280 break; 2281 } 2282 if (path->reada < 0 && objectid) { 2283 btrfs_node_key(node, &disk_key, nr); 2284 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2285 break; 2286 } 2287 search = btrfs_node_blockptr(node, nr); 2288 if ((search <= target && target - search <= 65536) || 2289 (search > target && search - target <= 65536)) { 2290 gen = btrfs_node_ptr_generation(node, nr); 2291 readahead_tree_block(root, search); 2292 nread += blocksize; 2293 } 2294 nscan++; 2295 if ((nread > 65536 || nscan > 32)) 2296 break; 2297 } 2298} 2299 2300static noinline void reada_for_balance(struct btrfs_root *root, 2301 struct btrfs_path *path, int level) 2302{ 2303 int slot; 2304 int nritems; 2305 struct extent_buffer *parent; 2306 struct extent_buffer *eb; 2307 u64 gen; 2308 u64 block1 = 0; 2309 u64 block2 = 0; 2310 2311 parent = path->nodes[level + 1]; 2312 if (!parent) 2313 return; 2314 2315 nritems = btrfs_header_nritems(parent); 2316 slot = path->slots[level + 1]; 2317 2318 if (slot > 0) { 2319 block1 = btrfs_node_blockptr(parent, slot - 1); 2320 gen = btrfs_node_ptr_generation(parent, slot - 1); 2321 eb = btrfs_find_tree_block(root->fs_info, block1); 2322 /* 2323 * if we get -eagain from btrfs_buffer_uptodate, we 2324 * don't want to return eagain here. That will loop 2325 * forever 2326 */ 2327 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2328 block1 = 0; 2329 free_extent_buffer(eb); 2330 } 2331 if (slot + 1 < nritems) { 2332 block2 = btrfs_node_blockptr(parent, slot + 1); 2333 gen = btrfs_node_ptr_generation(parent, slot + 1); 2334 eb = btrfs_find_tree_block(root->fs_info, block2); 2335 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2336 block2 = 0; 2337 free_extent_buffer(eb); 2338 } 2339 2340 if (block1) 2341 readahead_tree_block(root, block1); 2342 if (block2) 2343 readahead_tree_block(root, block2); 2344} 2345 2346 2347/* 2348 * when we walk down the tree, it is usually safe to unlock the higher layers 2349 * in the tree. The exceptions are when our path goes through slot 0, because 2350 * operations on the tree might require changing key pointers higher up in the 2351 * tree. 2352 * 2353 * callers might also have set path->keep_locks, which tells this code to keep 2354 * the lock if the path points to the last slot in the block. This is part of 2355 * walking through the tree, and selecting the next slot in the higher block. 2356 * 2357 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2358 * if lowest_unlock is 1, level 0 won't be unlocked 2359 */ 2360static noinline void unlock_up(struct btrfs_path *path, int level, 2361 int lowest_unlock, int min_write_lock_level, 2362 int *write_lock_level) 2363{ 2364 int i; 2365 int skip_level = level; 2366 int no_skips = 0; 2367 struct extent_buffer *t; 2368 2369 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2370 if (!path->nodes[i]) 2371 break; 2372 if (!path->locks[i]) 2373 break; 2374 if (!no_skips && path->slots[i] == 0) { 2375 skip_level = i + 1; 2376 continue; 2377 } 2378 if (!no_skips && path->keep_locks) { 2379 u32 nritems; 2380 t = path->nodes[i]; 2381 nritems = btrfs_header_nritems(t); 2382 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2383 skip_level = i + 1; 2384 continue; 2385 } 2386 } 2387 if (skip_level < i && i >= lowest_unlock) 2388 no_skips = 1; 2389 2390 t = path->nodes[i]; 2391 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2392 btrfs_tree_unlock_rw(t, path->locks[i]); 2393 path->locks[i] = 0; 2394 if (write_lock_level && 2395 i > min_write_lock_level && 2396 i <= *write_lock_level) { 2397 *write_lock_level = i - 1; 2398 } 2399 } 2400 } 2401} 2402 2403/* 2404 * This releases any locks held in the path starting at level and 2405 * going all the way up to the root. 2406 * 2407 * btrfs_search_slot will keep the lock held on higher nodes in a few 2408 * corner cases, such as COW of the block at slot zero in the node. This 2409 * ignores those rules, and it should only be called when there are no 2410 * more updates to be done higher up in the tree. 2411 */ 2412noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2413{ 2414 int i; 2415 2416 if (path->keep_locks) 2417 return; 2418 2419 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2420 if (!path->nodes[i]) 2421 continue; 2422 if (!path->locks[i]) 2423 continue; 2424 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2425 path->locks[i] = 0; 2426 } 2427} 2428 2429/* 2430 * helper function for btrfs_search_slot. The goal is to find a block 2431 * in cache without setting the path to blocking. If we find the block 2432 * we return zero and the path is unchanged. 2433 * 2434 * If we can't find the block, we set the path blocking and do some 2435 * reada. -EAGAIN is returned and the search must be repeated. 2436 */ 2437static int 2438read_block_for_search(struct btrfs_trans_handle *trans, 2439 struct btrfs_root *root, struct btrfs_path *p, 2440 struct extent_buffer **eb_ret, int level, int slot, 2441 struct btrfs_key *key, u64 time_seq) 2442{ 2443 u64 blocknr; 2444 u64 gen; 2445 struct extent_buffer *b = *eb_ret; 2446 struct extent_buffer *tmp; 2447 int ret; 2448 2449 blocknr = btrfs_node_blockptr(b, slot); 2450 gen = btrfs_node_ptr_generation(b, slot); 2451 2452 tmp = btrfs_find_tree_block(root->fs_info, blocknr); 2453 if (tmp) { 2454 /* first we do an atomic uptodate check */ 2455 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2456 *eb_ret = tmp; 2457 return 0; 2458 } 2459 2460 /* the pages were up to date, but we failed 2461 * the generation number check. Do a full 2462 * read for the generation number that is correct. 2463 * We must do this without dropping locks so 2464 * we can trust our generation number 2465 */ 2466 btrfs_set_path_blocking(p); 2467 2468 /* now we're allowed to do a blocking uptodate check */ 2469 ret = btrfs_read_buffer(tmp, gen); 2470 if (!ret) { 2471 *eb_ret = tmp; 2472 return 0; 2473 } 2474 free_extent_buffer(tmp); 2475 btrfs_release_path(p); 2476 return -EIO; 2477 } 2478 2479 /* 2480 * reduce lock contention at high levels 2481 * of the btree by dropping locks before 2482 * we read. Don't release the lock on the current 2483 * level because we need to walk this node to figure 2484 * out which blocks to read. 2485 */ 2486 btrfs_unlock_up_safe(p, level + 1); 2487 btrfs_set_path_blocking(p); 2488 2489 free_extent_buffer(tmp); 2490 if (p->reada) 2491 reada_for_search(root, p, level, slot, key->objectid); 2492 2493 btrfs_release_path(p); 2494 2495 ret = -EAGAIN; 2496 tmp = read_tree_block(root, blocknr, 0); 2497 if (tmp) { 2498 /* 2499 * If the read above didn't mark this buffer up to date, 2500 * it will never end up being up to date. Set ret to EIO now 2501 * and give up so that our caller doesn't loop forever 2502 * on our EAGAINs. 2503 */ 2504 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2505 ret = -EIO; 2506 free_extent_buffer(tmp); 2507 } 2508 return ret; 2509} 2510 2511/* 2512 * helper function for btrfs_search_slot. This does all of the checks 2513 * for node-level blocks and does any balancing required based on 2514 * the ins_len. 2515 * 2516 * If no extra work was required, zero is returned. If we had to 2517 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2518 * start over 2519 */ 2520static int 2521setup_nodes_for_search(struct btrfs_trans_handle *trans, 2522 struct btrfs_root *root, struct btrfs_path *p, 2523 struct extent_buffer *b, int level, int ins_len, 2524 int *write_lock_level) 2525{ 2526 int ret; 2527 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2528 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2529 int sret; 2530 2531 if (*write_lock_level < level + 1) { 2532 *write_lock_level = level + 1; 2533 btrfs_release_path(p); 2534 goto again; 2535 } 2536 2537 btrfs_set_path_blocking(p); 2538 reada_for_balance(root, p, level); 2539 sret = split_node(trans, root, p, level); 2540 btrfs_clear_path_blocking(p, NULL, 0); 2541 2542 BUG_ON(sret > 0); 2543 if (sret) { 2544 ret = sret; 2545 goto done; 2546 } 2547 b = p->nodes[level]; 2548 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2549 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2550 int sret; 2551 2552 if (*write_lock_level < level + 1) { 2553 *write_lock_level = level + 1; 2554 btrfs_release_path(p); 2555 goto again; 2556 } 2557 2558 btrfs_set_path_blocking(p); 2559 reada_for_balance(root, p, level); 2560 sret = balance_level(trans, root, p, level); 2561 btrfs_clear_path_blocking(p, NULL, 0); 2562 2563 if (sret) { 2564 ret = sret; 2565 goto done; 2566 } 2567 b = p->nodes[level]; 2568 if (!b) { 2569 btrfs_release_path(p); 2570 goto again; 2571 } 2572 BUG_ON(btrfs_header_nritems(b) == 1); 2573 } 2574 return 0; 2575 2576again: 2577 ret = -EAGAIN; 2578done: 2579 return ret; 2580} 2581 2582static void key_search_validate(struct extent_buffer *b, 2583 struct btrfs_key *key, 2584 int level) 2585{ 2586#ifdef CONFIG_BTRFS_ASSERT 2587 struct btrfs_disk_key disk_key; 2588 2589 btrfs_cpu_key_to_disk(&disk_key, key); 2590 2591 if (level == 0) 2592 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2593 offsetof(struct btrfs_leaf, items[0].key), 2594 sizeof(disk_key))); 2595 else 2596 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2597 offsetof(struct btrfs_node, ptrs[0].key), 2598 sizeof(disk_key))); 2599#endif 2600} 2601 2602static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2603 int level, int *prev_cmp, int *slot) 2604{ 2605 if (*prev_cmp != 0) { 2606 *prev_cmp = bin_search(b, key, level, slot); 2607 return *prev_cmp; 2608 } 2609 2610 key_search_validate(b, key, level); 2611 *slot = 0; 2612 2613 return 0; 2614} 2615 2616int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2617 u64 iobjectid, u64 ioff, u8 key_type, 2618 struct btrfs_key *found_key) 2619{ 2620 int ret; 2621 struct btrfs_key key; 2622 struct extent_buffer *eb; 2623 2624 ASSERT(path); 2625 ASSERT(found_key); 2626 2627 key.type = key_type; 2628 key.objectid = iobjectid; 2629 key.offset = ioff; 2630 2631 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2632 if (ret < 0) 2633 return ret; 2634 2635 eb = path->nodes[0]; 2636 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2637 ret = btrfs_next_leaf(fs_root, path); 2638 if (ret) 2639 return ret; 2640 eb = path->nodes[0]; 2641 } 2642 2643 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2644 if (found_key->type != key.type || 2645 found_key->objectid != key.objectid) 2646 return 1; 2647 2648 return 0; 2649} 2650 2651/* 2652 * look for key in the tree. path is filled in with nodes along the way 2653 * if key is found, we return zero and you can find the item in the leaf 2654 * level of the path (level 0) 2655 * 2656 * If the key isn't found, the path points to the slot where it should 2657 * be inserted, and 1 is returned. If there are other errors during the 2658 * search a negative error number is returned. 2659 * 2660 * if ins_len > 0, nodes and leaves will be split as we walk down the 2661 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2662 * possible) 2663 */ 2664int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2665 *root, struct btrfs_key *key, struct btrfs_path *p, int 2666 ins_len, int cow) 2667{ 2668 struct extent_buffer *b; 2669 int slot; 2670 int ret; 2671 int err; 2672 int level; 2673 int lowest_unlock = 1; 2674 int root_lock; 2675 /* everything at write_lock_level or lower must be write locked */ 2676 int write_lock_level = 0; 2677 u8 lowest_level = 0; 2678 int min_write_lock_level; 2679 int prev_cmp; 2680 2681 lowest_level = p->lowest_level; 2682 WARN_ON(lowest_level && ins_len > 0); 2683 WARN_ON(p->nodes[0] != NULL); 2684 BUG_ON(!cow && ins_len); 2685 2686 if (ins_len < 0) { 2687 lowest_unlock = 2; 2688 2689 /* when we are removing items, we might have to go up to level 2690 * two as we update tree pointers Make sure we keep write 2691 * for those levels as well 2692 */ 2693 write_lock_level = 2; 2694 } else if (ins_len > 0) { 2695 /* 2696 * for inserting items, make sure we have a write lock on 2697 * level 1 so we can update keys 2698 */ 2699 write_lock_level = 1; 2700 } 2701 2702 if (!cow) 2703 write_lock_level = -1; 2704 2705 if (cow && (p->keep_locks || p->lowest_level)) 2706 write_lock_level = BTRFS_MAX_LEVEL; 2707 2708 min_write_lock_level = write_lock_level; 2709 2710again: 2711 prev_cmp = -1; 2712 /* 2713 * we try very hard to do read locks on the root 2714 */ 2715 root_lock = BTRFS_READ_LOCK; 2716 level = 0; 2717 if (p->search_commit_root) { 2718 /* 2719 * the commit roots are read only 2720 * so we always do read locks 2721 */ 2722 if (p->need_commit_sem) 2723 down_read(&root->fs_info->commit_root_sem); 2724 b = root->commit_root; 2725 extent_buffer_get(b); 2726 level = btrfs_header_level(b); 2727 if (p->need_commit_sem) 2728 up_read(&root->fs_info->commit_root_sem); 2729 if (!p->skip_locking) 2730 btrfs_tree_read_lock(b); 2731 } else { 2732 if (p->skip_locking) { 2733 b = btrfs_root_node(root); 2734 level = btrfs_header_level(b); 2735 } else { 2736 /* we don't know the level of the root node 2737 * until we actually have it read locked 2738 */ 2739 b = btrfs_read_lock_root_node(root); 2740 level = btrfs_header_level(b); 2741 if (level <= write_lock_level) { 2742 /* whoops, must trade for write lock */ 2743 btrfs_tree_read_unlock(b); 2744 free_extent_buffer(b); 2745 b = btrfs_lock_root_node(root); 2746 root_lock = BTRFS_WRITE_LOCK; 2747 2748 /* the level might have changed, check again */ 2749 level = btrfs_header_level(b); 2750 } 2751 } 2752 } 2753 p->nodes[level] = b; 2754 if (!p->skip_locking) 2755 p->locks[level] = root_lock; 2756 2757 while (b) { 2758 level = btrfs_header_level(b); 2759 2760 /* 2761 * setup the path here so we can release it under lock 2762 * contention with the cow code 2763 */ 2764 if (cow) { 2765 /* 2766 * if we don't really need to cow this block 2767 * then we don't want to set the path blocking, 2768 * so we test it here 2769 */ 2770 if (!should_cow_block(trans, root, b)) 2771 goto cow_done; 2772 2773 /* 2774 * must have write locks on this node and the 2775 * parent 2776 */ 2777 if (level > write_lock_level || 2778 (level + 1 > write_lock_level && 2779 level + 1 < BTRFS_MAX_LEVEL && 2780 p->nodes[level + 1])) { 2781 write_lock_level = level + 1; 2782 btrfs_release_path(p); 2783 goto again; 2784 } 2785 2786 btrfs_set_path_blocking(p); 2787 err = btrfs_cow_block(trans, root, b, 2788 p->nodes[level + 1], 2789 p->slots[level + 1], &b); 2790 if (err) { 2791 ret = err; 2792 goto done; 2793 } 2794 } 2795cow_done: 2796 p->nodes[level] = b; 2797 btrfs_clear_path_blocking(p, NULL, 0); 2798 2799 /* 2800 * we have a lock on b and as long as we aren't changing 2801 * the tree, there is no way to for the items in b to change. 2802 * It is safe to drop the lock on our parent before we 2803 * go through the expensive btree search on b. 2804 * 2805 * If we're inserting or deleting (ins_len != 0), then we might 2806 * be changing slot zero, which may require changing the parent. 2807 * So, we can't drop the lock until after we know which slot 2808 * we're operating on. 2809 */ 2810 if (!ins_len && !p->keep_locks) { 2811 int u = level + 1; 2812 2813 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2814 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2815 p->locks[u] = 0; 2816 } 2817 } 2818 2819 ret = key_search(b, key, level, &prev_cmp, &slot); 2820 2821 if (level != 0) { 2822 int dec = 0; 2823 if (ret && slot > 0) { 2824 dec = 1; 2825 slot -= 1; 2826 } 2827 p->slots[level] = slot; 2828 err = setup_nodes_for_search(trans, root, p, b, level, 2829 ins_len, &write_lock_level); 2830 if (err == -EAGAIN) 2831 goto again; 2832 if (err) { 2833 ret = err; 2834 goto done; 2835 } 2836 b = p->nodes[level]; 2837 slot = p->slots[level]; 2838 2839 /* 2840 * slot 0 is special, if we change the key 2841 * we have to update the parent pointer 2842 * which means we must have a write lock 2843 * on the parent 2844 */ 2845 if (slot == 0 && ins_len && 2846 write_lock_level < level + 1) { 2847 write_lock_level = level + 1; 2848 btrfs_release_path(p); 2849 goto again; 2850 } 2851 2852 unlock_up(p, level, lowest_unlock, 2853 min_write_lock_level, &write_lock_level); 2854 2855 if (level == lowest_level) { 2856 if (dec) 2857 p->slots[level]++; 2858 goto done; 2859 } 2860 2861 err = read_block_for_search(trans, root, p, 2862 &b, level, slot, key, 0); 2863 if (err == -EAGAIN) 2864 goto again; 2865 if (err) { 2866 ret = err; 2867 goto done; 2868 } 2869 2870 if (!p->skip_locking) { 2871 level = btrfs_header_level(b); 2872 if (level <= write_lock_level) { 2873 err = btrfs_try_tree_write_lock(b); 2874 if (!err) { 2875 btrfs_set_path_blocking(p); 2876 btrfs_tree_lock(b); 2877 btrfs_clear_path_blocking(p, b, 2878 BTRFS_WRITE_LOCK); 2879 } 2880 p->locks[level] = BTRFS_WRITE_LOCK; 2881 } else { 2882 err = btrfs_tree_read_lock_atomic(b); 2883 if (!err) { 2884 btrfs_set_path_blocking(p); 2885 btrfs_tree_read_lock(b); 2886 btrfs_clear_path_blocking(p, b, 2887 BTRFS_READ_LOCK); 2888 } 2889 p->locks[level] = BTRFS_READ_LOCK; 2890 } 2891 p->nodes[level] = b; 2892 } 2893 } else { 2894 p->slots[level] = slot; 2895 if (ins_len > 0 && 2896 btrfs_leaf_free_space(root, b) < ins_len) { 2897 if (write_lock_level < 1) { 2898 write_lock_level = 1; 2899 btrfs_release_path(p); 2900 goto again; 2901 } 2902 2903 btrfs_set_path_blocking(p); 2904 err = split_leaf(trans, root, key, 2905 p, ins_len, ret == 0); 2906 btrfs_clear_path_blocking(p, NULL, 0); 2907 2908 BUG_ON(err > 0); 2909 if (err) { 2910 ret = err; 2911 goto done; 2912 } 2913 } 2914 if (!p->search_for_split) 2915 unlock_up(p, level, lowest_unlock, 2916 min_write_lock_level, &write_lock_level); 2917 goto done; 2918 } 2919 } 2920 ret = 1; 2921done: 2922 /* 2923 * we don't really know what they plan on doing with the path 2924 * from here on, so for now just mark it as blocking 2925 */ 2926 if (!p->leave_spinning) 2927 btrfs_set_path_blocking(p); 2928 if (ret < 0 && !p->skip_release_on_error) 2929 btrfs_release_path(p); 2930 return ret; 2931} 2932 2933/* 2934 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2935 * current state of the tree together with the operations recorded in the tree 2936 * modification log to search for the key in a previous version of this tree, as 2937 * denoted by the time_seq parameter. 2938 * 2939 * Naturally, there is no support for insert, delete or cow operations. 2940 * 2941 * The resulting path and return value will be set up as if we called 2942 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2943 */ 2944int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2945 struct btrfs_path *p, u64 time_seq) 2946{ 2947 struct extent_buffer *b; 2948 int slot; 2949 int ret; 2950 int err; 2951 int level; 2952 int lowest_unlock = 1; 2953 u8 lowest_level = 0; 2954 int prev_cmp = -1; 2955 2956 lowest_level = p->lowest_level; 2957 WARN_ON(p->nodes[0] != NULL); 2958 2959 if (p->search_commit_root) { 2960 BUG_ON(time_seq); 2961 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2962 } 2963 2964again: 2965 b = get_old_root(root, time_seq); 2966 level = btrfs_header_level(b); 2967 p->locks[level] = BTRFS_READ_LOCK; 2968 2969 while (b) { 2970 level = btrfs_header_level(b); 2971 p->nodes[level] = b; 2972 btrfs_clear_path_blocking(p, NULL, 0); 2973 2974 /* 2975 * we have a lock on b and as long as we aren't changing 2976 * the tree, there is no way to for the items in b to change. 2977 * It is safe to drop the lock on our parent before we 2978 * go through the expensive btree search on b. 2979 */ 2980 btrfs_unlock_up_safe(p, level + 1); 2981 2982 /* 2983 * Since we can unwind eb's we want to do a real search every 2984 * time. 2985 */ 2986 prev_cmp = -1; 2987 ret = key_search(b, key, level, &prev_cmp, &slot); 2988 2989 if (level != 0) { 2990 int dec = 0; 2991 if (ret && slot > 0) { 2992 dec = 1; 2993 slot -= 1; 2994 } 2995 p->slots[level] = slot; 2996 unlock_up(p, level, lowest_unlock, 0, NULL); 2997 2998 if (level == lowest_level) { 2999 if (dec) 3000 p->slots[level]++; 3001 goto done; 3002 } 3003 3004 err = read_block_for_search(NULL, root, p, &b, level, 3005 slot, key, time_seq); 3006 if (err == -EAGAIN) 3007 goto again; 3008 if (err) { 3009 ret = err; 3010 goto done; 3011 } 3012 3013 level = btrfs_header_level(b); 3014 err = btrfs_tree_read_lock_atomic(b); 3015 if (!err) { 3016 btrfs_set_path_blocking(p); 3017 btrfs_tree_read_lock(b); 3018 btrfs_clear_path_blocking(p, b, 3019 BTRFS_READ_LOCK); 3020 } 3021 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3022 if (!b) { 3023 ret = -ENOMEM; 3024 goto done; 3025 } 3026 p->locks[level] = BTRFS_READ_LOCK; 3027 p->nodes[level] = b; 3028 } else { 3029 p->slots[level] = slot; 3030 unlock_up(p, level, lowest_unlock, 0, NULL); 3031 goto done; 3032 } 3033 } 3034 ret = 1; 3035done: 3036 if (!p->leave_spinning) 3037 btrfs_set_path_blocking(p); 3038 if (ret < 0) 3039 btrfs_release_path(p); 3040 3041 return ret; 3042} 3043 3044/* 3045 * helper to use instead of search slot if no exact match is needed but 3046 * instead the next or previous item should be returned. 3047 * When find_higher is true, the next higher item is returned, the next lower 3048 * otherwise. 3049 * When return_any and find_higher are both true, and no higher item is found, 3050 * return the next lower instead. 3051 * When return_any is true and find_higher is false, and no lower item is found, 3052 * return the next higher instead. 3053 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3054 * < 0 on error 3055 */ 3056int btrfs_search_slot_for_read(struct btrfs_root *root, 3057 struct btrfs_key *key, struct btrfs_path *p, 3058 int find_higher, int return_any) 3059{ 3060 int ret; 3061 struct extent_buffer *leaf; 3062 3063again: 3064 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3065 if (ret <= 0) 3066 return ret; 3067 /* 3068 * a return value of 1 means the path is at the position where the 3069 * item should be inserted. Normally this is the next bigger item, 3070 * but in case the previous item is the last in a leaf, path points 3071 * to the first free slot in the previous leaf, i.e. at an invalid 3072 * item. 3073 */ 3074 leaf = p->nodes[0]; 3075 3076 if (find_higher) { 3077 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3078 ret = btrfs_next_leaf(root, p); 3079 if (ret <= 0) 3080 return ret; 3081 if (!return_any) 3082 return 1; 3083 /* 3084 * no higher item found, return the next 3085 * lower instead 3086 */ 3087 return_any = 0; 3088 find_higher = 0; 3089 btrfs_release_path(p); 3090 goto again; 3091 } 3092 } else { 3093 if (p->slots[0] == 0) { 3094 ret = btrfs_prev_leaf(root, p); 3095 if (ret < 0) 3096 return ret; 3097 if (!ret) { 3098 leaf = p->nodes[0]; 3099 if (p->slots[0] == btrfs_header_nritems(leaf)) 3100 p->slots[0]--; 3101 return 0; 3102 } 3103 if (!return_any) 3104 return 1; 3105 /* 3106 * no lower item found, return the next 3107 * higher instead 3108 */ 3109 return_any = 0; 3110 find_higher = 1; 3111 btrfs_release_path(p); 3112 goto again; 3113 } else { 3114 --p->slots[0]; 3115 } 3116 } 3117 return 0; 3118} 3119 3120/* 3121 * adjust the pointers going up the tree, starting at level 3122 * making sure the right key of each node is points to 'key'. 3123 * This is used after shifting pointers to the left, so it stops 3124 * fixing up pointers when a given leaf/node is not in slot 0 of the 3125 * higher levels 3126 * 3127 */ 3128static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3129 struct btrfs_path *path, 3130 struct btrfs_disk_key *key, int level) 3131{ 3132 int i; 3133 struct extent_buffer *t; 3134 3135 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3136 int tslot = path->slots[i]; 3137 if (!path->nodes[i]) 3138 break; 3139 t = path->nodes[i]; 3140 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3141 btrfs_set_node_key(t, key, tslot); 3142 btrfs_mark_buffer_dirty(path->nodes[i]); 3143 if (tslot != 0) 3144 break; 3145 } 3146} 3147 3148/* 3149 * update item key. 3150 * 3151 * This function isn't completely safe. It's the caller's responsibility 3152 * that the new key won't break the order 3153 */ 3154void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3155 struct btrfs_path *path, 3156 struct btrfs_key *new_key) 3157{ 3158 struct btrfs_disk_key disk_key; 3159 struct extent_buffer *eb; 3160 int slot; 3161 3162 eb = path->nodes[0]; 3163 slot = path->slots[0]; 3164 if (slot > 0) { 3165 btrfs_item_key(eb, &disk_key, slot - 1); 3166 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3167 } 3168 if (slot < btrfs_header_nritems(eb) - 1) { 3169 btrfs_item_key(eb, &disk_key, slot + 1); 3170 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3171 } 3172 3173 btrfs_cpu_key_to_disk(&disk_key, new_key); 3174 btrfs_set_item_key(eb, &disk_key, slot); 3175 btrfs_mark_buffer_dirty(eb); 3176 if (slot == 0) 3177 fixup_low_keys(fs_info, path, &disk_key, 1); 3178} 3179 3180/* 3181 * try to push data from one node into the next node left in the 3182 * tree. 3183 * 3184 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3185 * error, and > 0 if there was no room in the left hand block. 3186 */ 3187static int push_node_left(struct btrfs_trans_handle *trans, 3188 struct btrfs_root *root, struct extent_buffer *dst, 3189 struct extent_buffer *src, int empty) 3190{ 3191 int push_items = 0; 3192 int src_nritems; 3193 int dst_nritems; 3194 int ret = 0; 3195 3196 src_nritems = btrfs_header_nritems(src); 3197 dst_nritems = btrfs_header_nritems(dst); 3198 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3199 WARN_ON(btrfs_header_generation(src) != trans->transid); 3200 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3201 3202 if (!empty && src_nritems <= 8) 3203 return 1; 3204 3205 if (push_items <= 0) 3206 return 1; 3207 3208 if (empty) { 3209 push_items = min(src_nritems, push_items); 3210 if (push_items < src_nritems) { 3211 /* leave at least 8 pointers in the node if 3212 * we aren't going to empty it 3213 */ 3214 if (src_nritems - push_items < 8) { 3215 if (push_items <= 8) 3216 return 1; 3217 push_items -= 8; 3218 } 3219 } 3220 } else 3221 push_items = min(src_nritems - 8, push_items); 3222 3223 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3224 push_items); 3225 if (ret) { 3226 btrfs_abort_transaction(trans, root, ret); 3227 return ret; 3228 } 3229 copy_extent_buffer(dst, src, 3230 btrfs_node_key_ptr_offset(dst_nritems), 3231 btrfs_node_key_ptr_offset(0), 3232 push_items * sizeof(struct btrfs_key_ptr)); 3233 3234 if (push_items < src_nritems) { 3235 /* 3236 * don't call tree_mod_log_eb_move here, key removal was already 3237 * fully logged by tree_mod_log_eb_copy above. 3238 */ 3239 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3240 btrfs_node_key_ptr_offset(push_items), 3241 (src_nritems - push_items) * 3242 sizeof(struct btrfs_key_ptr)); 3243 } 3244 btrfs_set_header_nritems(src, src_nritems - push_items); 3245 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3246 btrfs_mark_buffer_dirty(src); 3247 btrfs_mark_buffer_dirty(dst); 3248 3249 return ret; 3250} 3251 3252/* 3253 * try to push data from one node into the next node right in the 3254 * tree. 3255 * 3256 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3257 * error, and > 0 if there was no room in the right hand block. 3258 * 3259 * this will only push up to 1/2 the contents of the left node over 3260 */ 3261static int balance_node_right(struct btrfs_trans_handle *trans, 3262 struct btrfs_root *root, 3263 struct extent_buffer *dst, 3264 struct extent_buffer *src) 3265{ 3266 int push_items = 0; 3267 int max_push; 3268 int src_nritems; 3269 int dst_nritems; 3270 int ret = 0; 3271 3272 WARN_ON(btrfs_header_generation(src) != trans->transid); 3273 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3274 3275 src_nritems = btrfs_header_nritems(src); 3276 dst_nritems = btrfs_header_nritems(dst); 3277 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3278 if (push_items <= 0) 3279 return 1; 3280 3281 if (src_nritems < 4) 3282 return 1; 3283 3284 max_push = src_nritems / 2 + 1; 3285 /* don't try to empty the node */ 3286 if (max_push >= src_nritems) 3287 return 1; 3288 3289 if (max_push < push_items) 3290 push_items = max_push; 3291 3292 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3293 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3294 btrfs_node_key_ptr_offset(0), 3295 (dst_nritems) * 3296 sizeof(struct btrfs_key_ptr)); 3297 3298 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3299 src_nritems - push_items, push_items); 3300 if (ret) { 3301 btrfs_abort_transaction(trans, root, ret); 3302 return ret; 3303 } 3304 copy_extent_buffer(dst, src, 3305 btrfs_node_key_ptr_offset(0), 3306 btrfs_node_key_ptr_offset(src_nritems - push_items), 3307 push_items * sizeof(struct btrfs_key_ptr)); 3308 3309 btrfs_set_header_nritems(src, src_nritems - push_items); 3310 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3311 3312 btrfs_mark_buffer_dirty(src); 3313 btrfs_mark_buffer_dirty(dst); 3314 3315 return ret; 3316} 3317 3318/* 3319 * helper function to insert a new root level in the tree. 3320 * A new node is allocated, and a single item is inserted to 3321 * point to the existing root 3322 * 3323 * returns zero on success or < 0 on failure. 3324 */ 3325static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3326 struct btrfs_root *root, 3327 struct btrfs_path *path, int level) 3328{ 3329 u64 lower_gen; 3330 struct extent_buffer *lower; 3331 struct extent_buffer *c; 3332 struct extent_buffer *old; 3333 struct btrfs_disk_key lower_key; 3334 3335 BUG_ON(path->nodes[level]); 3336 BUG_ON(path->nodes[level-1] != root->node); 3337 3338 lower = path->nodes[level-1]; 3339 if (level == 1) 3340 btrfs_item_key(lower, &lower_key, 0); 3341 else 3342 btrfs_node_key(lower, &lower_key, 0); 3343 3344 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3345 &lower_key, level, root->node->start, 0); 3346 if (IS_ERR(c)) 3347 return PTR_ERR(c); 3348 3349 root_add_used(root, root->nodesize); 3350 3351 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3352 btrfs_set_header_nritems(c, 1); 3353 btrfs_set_header_level(c, level); 3354 btrfs_set_header_bytenr(c, c->start); 3355 btrfs_set_header_generation(c, trans->transid); 3356 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3357 btrfs_set_header_owner(c, root->root_key.objectid); 3358 3359 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3360 BTRFS_FSID_SIZE); 3361 3362 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3363 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3364 3365 btrfs_set_node_key(c, &lower_key, 0); 3366 btrfs_set_node_blockptr(c, 0, lower->start); 3367 lower_gen = btrfs_header_generation(lower); 3368 WARN_ON(lower_gen != trans->transid); 3369 3370 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3371 3372 btrfs_mark_buffer_dirty(c); 3373 3374 old = root->node; 3375 tree_mod_log_set_root_pointer(root, c, 0); 3376 rcu_assign_pointer(root->node, c); 3377 3378 /* the super has an extra ref to root->node */ 3379 free_extent_buffer(old); 3380 3381 add_root_to_dirty_list(root); 3382 extent_buffer_get(c); 3383 path->nodes[level] = c; 3384 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3385 path->slots[level] = 0; 3386 return 0; 3387} 3388 3389/* 3390 * worker function to insert a single pointer in a node. 3391 * the node should have enough room for the pointer already 3392 * 3393 * slot and level indicate where you want the key to go, and 3394 * blocknr is the block the key points to. 3395 */ 3396static void insert_ptr(struct btrfs_trans_handle *trans, 3397 struct btrfs_root *root, struct btrfs_path *path, 3398 struct btrfs_disk_key *key, u64 bytenr, 3399 int slot, int level) 3400{ 3401 struct extent_buffer *lower; 3402 int nritems; 3403 int ret; 3404 3405 BUG_ON(!path->nodes[level]); 3406 btrfs_assert_tree_locked(path->nodes[level]); 3407 lower = path->nodes[level]; 3408 nritems = btrfs_header_nritems(lower); 3409 BUG_ON(slot > nritems); 3410 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3411 if (slot != nritems) { 3412 if (level) 3413 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3414 slot, nritems - slot); 3415 memmove_extent_buffer(lower, 3416 btrfs_node_key_ptr_offset(slot + 1), 3417 btrfs_node_key_ptr_offset(slot), 3418 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3419 } 3420 if (level) { 3421 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3422 MOD_LOG_KEY_ADD, GFP_NOFS); 3423 BUG_ON(ret < 0); 3424 } 3425 btrfs_set_node_key(lower, key, slot); 3426 btrfs_set_node_blockptr(lower, slot, bytenr); 3427 WARN_ON(trans->transid == 0); 3428 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3429 btrfs_set_header_nritems(lower, nritems + 1); 3430 btrfs_mark_buffer_dirty(lower); 3431} 3432 3433/* 3434 * split the node at the specified level in path in two. 3435 * The path is corrected to point to the appropriate node after the split 3436 * 3437 * Before splitting this tries to make some room in the node by pushing 3438 * left and right, if either one works, it returns right away. 3439 * 3440 * returns 0 on success and < 0 on failure 3441 */ 3442static noinline int split_node(struct btrfs_trans_handle *trans, 3443 struct btrfs_root *root, 3444 struct btrfs_path *path, int level) 3445{ 3446 struct extent_buffer *c; 3447 struct extent_buffer *split; 3448 struct btrfs_disk_key disk_key; 3449 int mid; 3450 int ret; 3451 u32 c_nritems; 3452 3453 c = path->nodes[level]; 3454 WARN_ON(btrfs_header_generation(c) != trans->transid); 3455 if (c == root->node) { 3456 /* 3457 * trying to split the root, lets make a new one 3458 * 3459 * tree mod log: We don't log_removal old root in 3460 * insert_new_root, because that root buffer will be kept as a 3461 * normal node. We are going to log removal of half of the 3462 * elements below with tree_mod_log_eb_copy. We're holding a 3463 * tree lock on the buffer, which is why we cannot race with 3464 * other tree_mod_log users. 3465 */ 3466 ret = insert_new_root(trans, root, path, level + 1); 3467 if (ret) 3468 return ret; 3469 } else { 3470 ret = push_nodes_for_insert(trans, root, path, level); 3471 c = path->nodes[level]; 3472 if (!ret && btrfs_header_nritems(c) < 3473 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3474 return 0; 3475 if (ret < 0) 3476 return ret; 3477 } 3478 3479 c_nritems = btrfs_header_nritems(c); 3480 mid = (c_nritems + 1) / 2; 3481 btrfs_node_key(c, &disk_key, mid); 3482 3483 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3484 &disk_key, level, c->start, 0); 3485 if (IS_ERR(split)) 3486 return PTR_ERR(split); 3487 3488 root_add_used(root, root->nodesize); 3489 3490 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3491 btrfs_set_header_level(split, btrfs_header_level(c)); 3492 btrfs_set_header_bytenr(split, split->start); 3493 btrfs_set_header_generation(split, trans->transid); 3494 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3495 btrfs_set_header_owner(split, root->root_key.objectid); 3496 write_extent_buffer(split, root->fs_info->fsid, 3497 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3498 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3499 btrfs_header_chunk_tree_uuid(split), 3500 BTRFS_UUID_SIZE); 3501 3502 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3503 mid, c_nritems - mid); 3504 if (ret) { 3505 btrfs_abort_transaction(trans, root, ret); 3506 return ret; 3507 } 3508 copy_extent_buffer(split, c, 3509 btrfs_node_key_ptr_offset(0), 3510 btrfs_node_key_ptr_offset(mid), 3511 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3512 btrfs_set_header_nritems(split, c_nritems - mid); 3513 btrfs_set_header_nritems(c, mid); 3514 ret = 0; 3515 3516 btrfs_mark_buffer_dirty(c); 3517 btrfs_mark_buffer_dirty(split); 3518 3519 insert_ptr(trans, root, path, &disk_key, split->start, 3520 path->slots[level + 1] + 1, level + 1); 3521 3522 if (path->slots[level] >= mid) { 3523 path->slots[level] -= mid; 3524 btrfs_tree_unlock(c); 3525 free_extent_buffer(c); 3526 path->nodes[level] = split; 3527 path->slots[level + 1] += 1; 3528 } else { 3529 btrfs_tree_unlock(split); 3530 free_extent_buffer(split); 3531 } 3532 return ret; 3533} 3534 3535/* 3536 * how many bytes are required to store the items in a leaf. start 3537 * and nr indicate which items in the leaf to check. This totals up the 3538 * space used both by the item structs and the item data 3539 */ 3540static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3541{ 3542 struct btrfs_item *start_item; 3543 struct btrfs_item *end_item; 3544 struct btrfs_map_token token; 3545 int data_len; 3546 int nritems = btrfs_header_nritems(l); 3547 int end = min(nritems, start + nr) - 1; 3548 3549 if (!nr) 3550 return 0; 3551 btrfs_init_map_token(&token); 3552 start_item = btrfs_item_nr(start); 3553 end_item = btrfs_item_nr(end); 3554 data_len = btrfs_token_item_offset(l, start_item, &token) + 3555 btrfs_token_item_size(l, start_item, &token); 3556 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3557 data_len += sizeof(struct btrfs_item) * nr; 3558 WARN_ON(data_len < 0); 3559 return data_len; 3560} 3561 3562/* 3563 * The space between the end of the leaf items and 3564 * the start of the leaf data. IOW, how much room 3565 * the leaf has left for both items and data 3566 */ 3567noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3568 struct extent_buffer *leaf) 3569{ 3570 int nritems = btrfs_header_nritems(leaf); 3571 int ret; 3572 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3573 if (ret < 0) { 3574 btrfs_crit(root->fs_info, 3575 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3576 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3577 leaf_space_used(leaf, 0, nritems), nritems); 3578 } 3579 return ret; 3580} 3581 3582/* 3583 * min slot controls the lowest index we're willing to push to the 3584 * right. We'll push up to and including min_slot, but no lower 3585 */ 3586static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3587 struct btrfs_root *root, 3588 struct btrfs_path *path, 3589 int data_size, int empty, 3590 struct extent_buffer *right, 3591 int free_space, u32 left_nritems, 3592 u32 min_slot) 3593{ 3594 struct extent_buffer *left = path->nodes[0]; 3595 struct extent_buffer *upper = path->nodes[1]; 3596 struct btrfs_map_token token; 3597 struct btrfs_disk_key disk_key; 3598 int slot; 3599 u32 i; 3600 int push_space = 0; 3601 int push_items = 0; 3602 struct btrfs_item *item; 3603 u32 nr; 3604 u32 right_nritems; 3605 u32 data_end; 3606 u32 this_item_size; 3607 3608 btrfs_init_map_token(&token); 3609 3610 if (empty) 3611 nr = 0; 3612 else 3613 nr = max_t(u32, 1, min_slot); 3614 3615 if (path->slots[0] >= left_nritems) 3616 push_space += data_size; 3617 3618 slot = path->slots[1]; 3619 i = left_nritems - 1; 3620 while (i >= nr) { 3621 item = btrfs_item_nr(i); 3622 3623 if (!empty && push_items > 0) { 3624 if (path->slots[0] > i) 3625 break; 3626 if (path->slots[0] == i) { 3627 int space = btrfs_leaf_free_space(root, left); 3628 if (space + push_space * 2 > free_space) 3629 break; 3630 } 3631 } 3632 3633 if (path->slots[0] == i) 3634 push_space += data_size; 3635 3636 this_item_size = btrfs_item_size(left, item); 3637 if (this_item_size + sizeof(*item) + push_space > free_space) 3638 break; 3639 3640 push_items++; 3641 push_space += this_item_size + sizeof(*item); 3642 if (i == 0) 3643 break; 3644 i--; 3645 } 3646 3647 if (push_items == 0) 3648 goto out_unlock; 3649 3650 WARN_ON(!empty && push_items == left_nritems); 3651 3652 /* push left to right */ 3653 right_nritems = btrfs_header_nritems(right); 3654 3655 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3656 push_space -= leaf_data_end(root, left); 3657 3658 /* make room in the right data area */ 3659 data_end = leaf_data_end(root, right); 3660 memmove_extent_buffer(right, 3661 btrfs_leaf_data(right) + data_end - push_space, 3662 btrfs_leaf_data(right) + data_end, 3663 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3664 3665 /* copy from the left data area */ 3666 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3667 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3668 btrfs_leaf_data(left) + leaf_data_end(root, left), 3669 push_space); 3670 3671 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3672 btrfs_item_nr_offset(0), 3673 right_nritems * sizeof(struct btrfs_item)); 3674 3675 /* copy the items from left to right */ 3676 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3677 btrfs_item_nr_offset(left_nritems - push_items), 3678 push_items * sizeof(struct btrfs_item)); 3679 3680 /* update the item pointers */ 3681 right_nritems += push_items; 3682 btrfs_set_header_nritems(right, right_nritems); 3683 push_space = BTRFS_LEAF_DATA_SIZE(root); 3684 for (i = 0; i < right_nritems; i++) { 3685 item = btrfs_item_nr(i); 3686 push_space -= btrfs_token_item_size(right, item, &token); 3687 btrfs_set_token_item_offset(right, item, push_space, &token); 3688 } 3689 3690 left_nritems -= push_items; 3691 btrfs_set_header_nritems(left, left_nritems); 3692 3693 if (left_nritems) 3694 btrfs_mark_buffer_dirty(left); 3695 else 3696 clean_tree_block(trans, root->fs_info, left); 3697 3698 btrfs_mark_buffer_dirty(right); 3699 3700 btrfs_item_key(right, &disk_key, 0); 3701 btrfs_set_node_key(upper, &disk_key, slot + 1); 3702 btrfs_mark_buffer_dirty(upper); 3703 3704 /* then fixup the leaf pointer in the path */ 3705 if (path->slots[0] >= left_nritems) { 3706 path->slots[0] -= left_nritems; 3707 if (btrfs_header_nritems(path->nodes[0]) == 0) 3708 clean_tree_block(trans, root->fs_info, path->nodes[0]); 3709 btrfs_tree_unlock(path->nodes[0]); 3710 free_extent_buffer(path->nodes[0]); 3711 path->nodes[0] = right; 3712 path->slots[1] += 1; 3713 } else { 3714 btrfs_tree_unlock(right); 3715 free_extent_buffer(right); 3716 } 3717 return 0; 3718 3719out_unlock: 3720 btrfs_tree_unlock(right); 3721 free_extent_buffer(right); 3722 return 1; 3723} 3724 3725/* 3726 * push some data in the path leaf to the right, trying to free up at 3727 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3728 * 3729 * returns 1 if the push failed because the other node didn't have enough 3730 * room, 0 if everything worked out and < 0 if there were major errors. 3731 * 3732 * this will push starting from min_slot to the end of the leaf. It won't 3733 * push any slot lower than min_slot 3734 */ 3735static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3736 *root, struct btrfs_path *path, 3737 int min_data_size, int data_size, 3738 int empty, u32 min_slot) 3739{ 3740 struct extent_buffer *left = path->nodes[0]; 3741 struct extent_buffer *right; 3742 struct extent_buffer *upper; 3743 int slot; 3744 int free_space; 3745 u32 left_nritems; 3746 int ret; 3747 3748 if (!path->nodes[1]) 3749 return 1; 3750 3751 slot = path->slots[1]; 3752 upper = path->nodes[1]; 3753 if (slot >= btrfs_header_nritems(upper) - 1) 3754 return 1; 3755 3756 btrfs_assert_tree_locked(path->nodes[1]); 3757 3758 right = read_node_slot(root, upper, slot + 1); 3759 if (right == NULL) 3760 return 1; 3761 3762 btrfs_tree_lock(right); 3763 btrfs_set_lock_blocking(right); 3764 3765 free_space = btrfs_leaf_free_space(root, right); 3766 if (free_space < data_size) 3767 goto out_unlock; 3768 3769 /* cow and double check */ 3770 ret = btrfs_cow_block(trans, root, right, upper, 3771 slot + 1, &right); 3772 if (ret) 3773 goto out_unlock; 3774 3775 free_space = btrfs_leaf_free_space(root, right); 3776 if (free_space < data_size) 3777 goto out_unlock; 3778 3779 left_nritems = btrfs_header_nritems(left); 3780 if (left_nritems == 0) 3781 goto out_unlock; 3782 3783 if (path->slots[0] == left_nritems && !empty) { 3784 /* Key greater than all keys in the leaf, right neighbor has 3785 * enough room for it and we're not emptying our leaf to delete 3786 * it, therefore use right neighbor to insert the new item and 3787 * no need to touch/dirty our left leaft. */ 3788 btrfs_tree_unlock(left); 3789 free_extent_buffer(left); 3790 path->nodes[0] = right; 3791 path->slots[0] = 0; 3792 path->slots[1]++; 3793 return 0; 3794 } 3795 3796 return __push_leaf_right(trans, root, path, min_data_size, empty, 3797 right, free_space, left_nritems, min_slot); 3798out_unlock: 3799 btrfs_tree_unlock(right); 3800 free_extent_buffer(right); 3801 return 1; 3802} 3803 3804/* 3805 * push some data in the path leaf to the left, trying to free up at 3806 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3807 * 3808 * max_slot can put a limit on how far into the leaf we'll push items. The 3809 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3810 * items 3811 */ 3812static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3813 struct btrfs_root *root, 3814 struct btrfs_path *path, int data_size, 3815 int empty, struct extent_buffer *left, 3816 int free_space, u32 right_nritems, 3817 u32 max_slot) 3818{ 3819 struct btrfs_disk_key disk_key; 3820 struct extent_buffer *right = path->nodes[0]; 3821 int i; 3822 int push_space = 0; 3823 int push_items = 0; 3824 struct btrfs_item *item; 3825 u32 old_left_nritems; 3826 u32 nr; 3827 int ret = 0; 3828 u32 this_item_size; 3829 u32 old_left_item_size; 3830 struct btrfs_map_token token; 3831 3832 btrfs_init_map_token(&token); 3833 3834 if (empty) 3835 nr = min(right_nritems, max_slot); 3836 else 3837 nr = min(right_nritems - 1, max_slot); 3838 3839 for (i = 0; i < nr; i++) { 3840 item = btrfs_item_nr(i); 3841 3842 if (!empty && push_items > 0) { 3843 if (path->slots[0] < i) 3844 break; 3845 if (path->slots[0] == i) { 3846 int space = btrfs_leaf_free_space(root, right); 3847 if (space + push_space * 2 > free_space) 3848 break; 3849 } 3850 } 3851 3852 if (path->slots[0] == i) 3853 push_space += data_size; 3854 3855 this_item_size = btrfs_item_size(right, item); 3856 if (this_item_size + sizeof(*item) + push_space > free_space) 3857 break; 3858 3859 push_items++; 3860 push_space += this_item_size + sizeof(*item); 3861 } 3862 3863 if (push_items == 0) { 3864 ret = 1; 3865 goto out; 3866 } 3867 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3868 3869 /* push data from right to left */ 3870 copy_extent_buffer(left, right, 3871 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3872 btrfs_item_nr_offset(0), 3873 push_items * sizeof(struct btrfs_item)); 3874 3875 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3876 btrfs_item_offset_nr(right, push_items - 1); 3877 3878 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3879 leaf_data_end(root, left) - push_space, 3880 btrfs_leaf_data(right) + 3881 btrfs_item_offset_nr(right, push_items - 1), 3882 push_space); 3883 old_left_nritems = btrfs_header_nritems(left); 3884 BUG_ON(old_left_nritems <= 0); 3885 3886 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3887 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3888 u32 ioff; 3889 3890 item = btrfs_item_nr(i); 3891 3892 ioff = btrfs_token_item_offset(left, item, &token); 3893 btrfs_set_token_item_offset(left, item, 3894 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3895 &token); 3896 } 3897 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3898 3899 /* fixup right node */ 3900 if (push_items > right_nritems) 3901 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3902 right_nritems); 3903 3904 if (push_items < right_nritems) { 3905 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3906 leaf_data_end(root, right); 3907 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3908 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3909 btrfs_leaf_data(right) + 3910 leaf_data_end(root, right), push_space); 3911 3912 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3913 btrfs_item_nr_offset(push_items), 3914 (btrfs_header_nritems(right) - push_items) * 3915 sizeof(struct btrfs_item)); 3916 } 3917 right_nritems -= push_items; 3918 btrfs_set_header_nritems(right, right_nritems); 3919 push_space = BTRFS_LEAF_DATA_SIZE(root); 3920 for (i = 0; i < right_nritems; i++) { 3921 item = btrfs_item_nr(i); 3922 3923 push_space = push_space - btrfs_token_item_size(right, 3924 item, &token); 3925 btrfs_set_token_item_offset(right, item, push_space, &token); 3926 } 3927 3928 btrfs_mark_buffer_dirty(left); 3929 if (right_nritems) 3930 btrfs_mark_buffer_dirty(right); 3931 else 3932 clean_tree_block(trans, root->fs_info, right); 3933 3934 btrfs_item_key(right, &disk_key, 0); 3935 fixup_low_keys(root->fs_info, path, &disk_key, 1); 3936 3937 /* then fixup the leaf pointer in the path */ 3938 if (path->slots[0] < push_items) { 3939 path->slots[0] += old_left_nritems; 3940 btrfs_tree_unlock(path->nodes[0]); 3941 free_extent_buffer(path->nodes[0]); 3942 path->nodes[0] = left; 3943 path->slots[1] -= 1; 3944 } else { 3945 btrfs_tree_unlock(left); 3946 free_extent_buffer(left); 3947 path->slots[0] -= push_items; 3948 } 3949 BUG_ON(path->slots[0] < 0); 3950 return ret; 3951out: 3952 btrfs_tree_unlock(left); 3953 free_extent_buffer(left); 3954 return ret; 3955} 3956 3957/* 3958 * push some data in the path leaf to the left, trying to free up at 3959 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3960 * 3961 * max_slot can put a limit on how far into the leaf we'll push items. The 3962 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3963 * items 3964 */ 3965static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3966 *root, struct btrfs_path *path, int min_data_size, 3967 int data_size, int empty, u32 max_slot) 3968{ 3969 struct extent_buffer *right = path->nodes[0]; 3970 struct extent_buffer *left; 3971 int slot; 3972 int free_space; 3973 u32 right_nritems; 3974 int ret = 0; 3975 3976 slot = path->slots[1]; 3977 if (slot == 0) 3978 return 1; 3979 if (!path->nodes[1]) 3980 return 1; 3981 3982 right_nritems = btrfs_header_nritems(right); 3983 if (right_nritems == 0) 3984 return 1; 3985 3986 btrfs_assert_tree_locked(path->nodes[1]); 3987 3988 left = read_node_slot(root, path->nodes[1], slot - 1); 3989 if (left == NULL) 3990 return 1; 3991 3992 btrfs_tree_lock(left); 3993 btrfs_set_lock_blocking(left); 3994 3995 free_space = btrfs_leaf_free_space(root, left); 3996 if (free_space < data_size) { 3997 ret = 1; 3998 goto out; 3999 } 4000 4001 /* cow and double check */ 4002 ret = btrfs_cow_block(trans, root, left, 4003 path->nodes[1], slot - 1, &left); 4004 if (ret) { 4005 /* we hit -ENOSPC, but it isn't fatal here */ 4006 if (ret == -ENOSPC) 4007 ret = 1; 4008 goto out; 4009 } 4010 4011 free_space = btrfs_leaf_free_space(root, left); 4012 if (free_space < data_size) { 4013 ret = 1; 4014 goto out; 4015 } 4016 4017 return __push_leaf_left(trans, root, path, min_data_size, 4018 empty, left, free_space, right_nritems, 4019 max_slot); 4020out: 4021 btrfs_tree_unlock(left); 4022 free_extent_buffer(left); 4023 return ret; 4024} 4025 4026/* 4027 * split the path's leaf in two, making sure there is at least data_size 4028 * available for the resulting leaf level of the path. 4029 */ 4030static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4031 struct btrfs_root *root, 4032 struct btrfs_path *path, 4033 struct extent_buffer *l, 4034 struct extent_buffer *right, 4035 int slot, int mid, int nritems) 4036{ 4037 int data_copy_size; 4038 int rt_data_off; 4039 int i; 4040 struct btrfs_disk_key disk_key; 4041 struct btrfs_map_token token; 4042 4043 btrfs_init_map_token(&token); 4044 4045 nritems = nritems - mid; 4046 btrfs_set_header_nritems(right, nritems); 4047 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4048 4049 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4050 btrfs_item_nr_offset(mid), 4051 nritems * sizeof(struct btrfs_item)); 4052 4053 copy_extent_buffer(right, l, 4054 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4055 data_copy_size, btrfs_leaf_data(l) + 4056 leaf_data_end(root, l), data_copy_size); 4057 4058 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4059 btrfs_item_end_nr(l, mid); 4060 4061 for (i = 0; i < nritems; i++) { 4062 struct btrfs_item *item = btrfs_item_nr(i); 4063 u32 ioff; 4064 4065 ioff = btrfs_token_item_offset(right, item, &token); 4066 btrfs_set_token_item_offset(right, item, 4067 ioff + rt_data_off, &token); 4068 } 4069 4070 btrfs_set_header_nritems(l, mid); 4071 btrfs_item_key(right, &disk_key, 0); 4072 insert_ptr(trans, root, path, &disk_key, right->start, 4073 path->slots[1] + 1, 1); 4074 4075 btrfs_mark_buffer_dirty(right); 4076 btrfs_mark_buffer_dirty(l); 4077 BUG_ON(path->slots[0] != slot); 4078 4079 if (mid <= slot) { 4080 btrfs_tree_unlock(path->nodes[0]); 4081 free_extent_buffer(path->nodes[0]); 4082 path->nodes[0] = right; 4083 path->slots[0] -= mid; 4084 path->slots[1] += 1; 4085 } else { 4086 btrfs_tree_unlock(right); 4087 free_extent_buffer(right); 4088 } 4089 4090 BUG_ON(path->slots[0] < 0); 4091} 4092 4093/* 4094 * double splits happen when we need to insert a big item in the middle 4095 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4096 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4097 * A B C 4098 * 4099 * We avoid this by trying to push the items on either side of our target 4100 * into the adjacent leaves. If all goes well we can avoid the double split 4101 * completely. 4102 */ 4103static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4104 struct btrfs_root *root, 4105 struct btrfs_path *path, 4106 int data_size) 4107{ 4108 int ret; 4109 int progress = 0; 4110 int slot; 4111 u32 nritems; 4112 int space_needed = data_size; 4113 4114 slot = path->slots[0]; 4115 if (slot < btrfs_header_nritems(path->nodes[0])) 4116 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4117 4118 /* 4119 * try to push all the items after our slot into the 4120 * right leaf 4121 */ 4122 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4123 if (ret < 0) 4124 return ret; 4125 4126 if (ret == 0) 4127 progress++; 4128 4129 nritems = btrfs_header_nritems(path->nodes[0]); 4130 /* 4131 * our goal is to get our slot at the start or end of a leaf. If 4132 * we've done so we're done 4133 */ 4134 if (path->slots[0] == 0 || path->slots[0] == nritems) 4135 return 0; 4136 4137 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4138 return 0; 4139 4140 /* try to push all the items before our slot into the next leaf */ 4141 slot = path->slots[0]; 4142 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4143 if (ret < 0) 4144 return ret; 4145 4146 if (ret == 0) 4147 progress++; 4148 4149 if (progress) 4150 return 0; 4151 return 1; 4152} 4153 4154/* 4155 * split the path's leaf in two, making sure there is at least data_size 4156 * available for the resulting leaf level of the path. 4157 * 4158 * returns 0 if all went well and < 0 on failure. 4159 */ 4160static noinline int split_leaf(struct btrfs_trans_handle *trans, 4161 struct btrfs_root *root, 4162 struct btrfs_key *ins_key, 4163 struct btrfs_path *path, int data_size, 4164 int extend) 4165{ 4166 struct btrfs_disk_key disk_key; 4167 struct extent_buffer *l; 4168 u32 nritems; 4169 int mid; 4170 int slot; 4171 struct extent_buffer *right; 4172 struct btrfs_fs_info *fs_info = root->fs_info; 4173 int ret = 0; 4174 int wret; 4175 int split; 4176 int num_doubles = 0; 4177 int tried_avoid_double = 0; 4178 4179 l = path->nodes[0]; 4180 slot = path->slots[0]; 4181 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4182 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4183 return -EOVERFLOW; 4184 4185 /* first try to make some room by pushing left and right */ 4186 if (data_size && path->nodes[1]) { 4187 int space_needed = data_size; 4188 4189 if (slot < btrfs_header_nritems(l)) 4190 space_needed -= btrfs_leaf_free_space(root, l); 4191 4192 wret = push_leaf_right(trans, root, path, space_needed, 4193 space_needed, 0, 0); 4194 if (wret < 0) 4195 return wret; 4196 if (wret) { 4197 wret = push_leaf_left(trans, root, path, space_needed, 4198 space_needed, 0, (u32)-1); 4199 if (wret < 0) 4200 return wret; 4201 } 4202 l = path->nodes[0]; 4203 4204 /* did the pushes work? */ 4205 if (btrfs_leaf_free_space(root, l) >= data_size) 4206 return 0; 4207 } 4208 4209 if (!path->nodes[1]) { 4210 ret = insert_new_root(trans, root, path, 1); 4211 if (ret) 4212 return ret; 4213 } 4214again: 4215 split = 1; 4216 l = path->nodes[0]; 4217 slot = path->slots[0]; 4218 nritems = btrfs_header_nritems(l); 4219 mid = (nritems + 1) / 2; 4220 4221 if (mid <= slot) { 4222 if (nritems == 1 || 4223 leaf_space_used(l, mid, nritems - mid) + data_size > 4224 BTRFS_LEAF_DATA_SIZE(root)) { 4225 if (slot >= nritems) { 4226 split = 0; 4227 } else { 4228 mid = slot; 4229 if (mid != nritems && 4230 leaf_space_used(l, mid, nritems - mid) + 4231 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4232 if (data_size && !tried_avoid_double) 4233 goto push_for_double; 4234 split = 2; 4235 } 4236 } 4237 } 4238 } else { 4239 if (leaf_space_used(l, 0, mid) + data_size > 4240 BTRFS_LEAF_DATA_SIZE(root)) { 4241 if (!extend && data_size && slot == 0) { 4242 split = 0; 4243 } else if ((extend || !data_size) && slot == 0) { 4244 mid = 1; 4245 } else { 4246 mid = slot; 4247 if (mid != nritems && 4248 leaf_space_used(l, mid, nritems - mid) + 4249 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4250 if (data_size && !tried_avoid_double) 4251 goto push_for_double; 4252 split = 2; 4253 } 4254 } 4255 } 4256 } 4257 4258 if (split == 0) 4259 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4260 else 4261 btrfs_item_key(l, &disk_key, mid); 4262 4263 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4264 &disk_key, 0, l->start, 0); 4265 if (IS_ERR(right)) 4266 return PTR_ERR(right); 4267 4268 root_add_used(root, root->nodesize); 4269 4270 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4271 btrfs_set_header_bytenr(right, right->start); 4272 btrfs_set_header_generation(right, trans->transid); 4273 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4274 btrfs_set_header_owner(right, root->root_key.objectid); 4275 btrfs_set_header_level(right, 0); 4276 write_extent_buffer(right, fs_info->fsid, 4277 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4278 4279 write_extent_buffer(right, fs_info->chunk_tree_uuid, 4280 btrfs_header_chunk_tree_uuid(right), 4281 BTRFS_UUID_SIZE); 4282 4283 if (split == 0) { 4284 if (mid <= slot) { 4285 btrfs_set_header_nritems(right, 0); 4286 insert_ptr(trans, root, path, &disk_key, right->start, 4287 path->slots[1] + 1, 1); 4288 btrfs_tree_unlock(path->nodes[0]); 4289 free_extent_buffer(path->nodes[0]); 4290 path->nodes[0] = right; 4291 path->slots[0] = 0; 4292 path->slots[1] += 1; 4293 } else { 4294 btrfs_set_header_nritems(right, 0); 4295 insert_ptr(trans, root, path, &disk_key, right->start, 4296 path->slots[1], 1); 4297 btrfs_tree_unlock(path->nodes[0]); 4298 free_extent_buffer(path->nodes[0]); 4299 path->nodes[0] = right; 4300 path->slots[0] = 0; 4301 if (path->slots[1] == 0) 4302 fixup_low_keys(fs_info, path, &disk_key, 1); 4303 } 4304 btrfs_mark_buffer_dirty(right); 4305 return ret; 4306 } 4307 4308 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4309 4310 if (split == 2) { 4311 BUG_ON(num_doubles != 0); 4312 num_doubles++; 4313 goto again; 4314 } 4315 4316 return 0; 4317 4318push_for_double: 4319 push_for_double_split(trans, root, path, data_size); 4320 tried_avoid_double = 1; 4321 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4322 return 0; 4323 goto again; 4324} 4325 4326static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4327 struct btrfs_root *root, 4328 struct btrfs_path *path, int ins_len) 4329{ 4330 struct btrfs_key key; 4331 struct extent_buffer *leaf; 4332 struct btrfs_file_extent_item *fi; 4333 u64 extent_len = 0; 4334 u32 item_size; 4335 int ret; 4336 4337 leaf = path->nodes[0]; 4338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4339 4340 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4341 key.type != BTRFS_EXTENT_CSUM_KEY); 4342 4343 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4344 return 0; 4345 4346 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4347 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4348 fi = btrfs_item_ptr(leaf, path->slots[0], 4349 struct btrfs_file_extent_item); 4350 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4351 } 4352 btrfs_release_path(path); 4353 4354 path->keep_locks = 1; 4355 path->search_for_split = 1; 4356 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4357 path->search_for_split = 0; 4358 if (ret > 0) 4359 ret = -EAGAIN; 4360 if (ret < 0) 4361 goto err; 4362 4363 ret = -EAGAIN; 4364 leaf = path->nodes[0]; 4365 /* if our item isn't there, return now */ 4366 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4367 goto err; 4368 4369 /* the leaf has changed, it now has room. return now */ 4370 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4371 goto err; 4372 4373 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4374 fi = btrfs_item_ptr(leaf, path->slots[0], 4375 struct btrfs_file_extent_item); 4376 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4377 goto err; 4378 } 4379 4380 btrfs_set_path_blocking(path); 4381 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4382 if (ret) 4383 goto err; 4384 4385 path->keep_locks = 0; 4386 btrfs_unlock_up_safe(path, 1); 4387 return 0; 4388err: 4389 path->keep_locks = 0; 4390 return ret; 4391} 4392 4393static noinline int split_item(struct btrfs_trans_handle *trans, 4394 struct btrfs_root *root, 4395 struct btrfs_path *path, 4396 struct btrfs_key *new_key, 4397 unsigned long split_offset) 4398{ 4399 struct extent_buffer *leaf; 4400 struct btrfs_item *item; 4401 struct btrfs_item *new_item; 4402 int slot; 4403 char *buf; 4404 u32 nritems; 4405 u32 item_size; 4406 u32 orig_offset; 4407 struct btrfs_disk_key disk_key; 4408 4409 leaf = path->nodes[0]; 4410 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4411 4412 btrfs_set_path_blocking(path); 4413 4414 item = btrfs_item_nr(path->slots[0]); 4415 orig_offset = btrfs_item_offset(leaf, item); 4416 item_size = btrfs_item_size(leaf, item); 4417 4418 buf = kmalloc(item_size, GFP_NOFS); 4419 if (!buf) 4420 return -ENOMEM; 4421 4422 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4423 path->slots[0]), item_size); 4424 4425 slot = path->slots[0] + 1; 4426 nritems = btrfs_header_nritems(leaf); 4427 if (slot != nritems) { 4428 /* shift the items */ 4429 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4430 btrfs_item_nr_offset(slot), 4431 (nritems - slot) * sizeof(struct btrfs_item)); 4432 } 4433 4434 btrfs_cpu_key_to_disk(&disk_key, new_key); 4435 btrfs_set_item_key(leaf, &disk_key, slot); 4436 4437 new_item = btrfs_item_nr(slot); 4438 4439 btrfs_set_item_offset(leaf, new_item, orig_offset); 4440 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4441 4442 btrfs_set_item_offset(leaf, item, 4443 orig_offset + item_size - split_offset); 4444 btrfs_set_item_size(leaf, item, split_offset); 4445 4446 btrfs_set_header_nritems(leaf, nritems + 1); 4447 4448 /* write the data for the start of the original item */ 4449 write_extent_buffer(leaf, buf, 4450 btrfs_item_ptr_offset(leaf, path->slots[0]), 4451 split_offset); 4452 4453 /* write the data for the new item */ 4454 write_extent_buffer(leaf, buf + split_offset, 4455 btrfs_item_ptr_offset(leaf, slot), 4456 item_size - split_offset); 4457 btrfs_mark_buffer_dirty(leaf); 4458 4459 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4460 kfree(buf); 4461 return 0; 4462} 4463 4464/* 4465 * This function splits a single item into two items, 4466 * giving 'new_key' to the new item and splitting the 4467 * old one at split_offset (from the start of the item). 4468 * 4469 * The path may be released by this operation. After 4470 * the split, the path is pointing to the old item. The 4471 * new item is going to be in the same node as the old one. 4472 * 4473 * Note, the item being split must be smaller enough to live alone on 4474 * a tree block with room for one extra struct btrfs_item 4475 * 4476 * This allows us to split the item in place, keeping a lock on the 4477 * leaf the entire time. 4478 */ 4479int btrfs_split_item(struct btrfs_trans_handle *trans, 4480 struct btrfs_root *root, 4481 struct btrfs_path *path, 4482 struct btrfs_key *new_key, 4483 unsigned long split_offset) 4484{ 4485 int ret; 4486 ret = setup_leaf_for_split(trans, root, path, 4487 sizeof(struct btrfs_item)); 4488 if (ret) 4489 return ret; 4490 4491 ret = split_item(trans, root, path, new_key, split_offset); 4492 return ret; 4493} 4494 4495/* 4496 * This function duplicate a item, giving 'new_key' to the new item. 4497 * It guarantees both items live in the same tree leaf and the new item 4498 * is contiguous with the original item. 4499 * 4500 * This allows us to split file extent in place, keeping a lock on the 4501 * leaf the entire time. 4502 */ 4503int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4504 struct btrfs_root *root, 4505 struct btrfs_path *path, 4506 struct btrfs_key *new_key) 4507{ 4508 struct extent_buffer *leaf; 4509 int ret; 4510 u32 item_size; 4511 4512 leaf = path->nodes[0]; 4513 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4514 ret = setup_leaf_for_split(trans, root, path, 4515 item_size + sizeof(struct btrfs_item)); 4516 if (ret) 4517 return ret; 4518 4519 path->slots[0]++; 4520 setup_items_for_insert(root, path, new_key, &item_size, 4521 item_size, item_size + 4522 sizeof(struct btrfs_item), 1); 4523 leaf = path->nodes[0]; 4524 memcpy_extent_buffer(leaf, 4525 btrfs_item_ptr_offset(leaf, path->slots[0]), 4526 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4527 item_size); 4528 return 0; 4529} 4530 4531/* 4532 * make the item pointed to by the path smaller. new_size indicates 4533 * how small to make it, and from_end tells us if we just chop bytes 4534 * off the end of the item or if we shift the item to chop bytes off 4535 * the front. 4536 */ 4537void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4538 u32 new_size, int from_end) 4539{ 4540 int slot; 4541 struct extent_buffer *leaf; 4542 struct btrfs_item *item; 4543 u32 nritems; 4544 unsigned int data_end; 4545 unsigned int old_data_start; 4546 unsigned int old_size; 4547 unsigned int size_diff; 4548 int i; 4549 struct btrfs_map_token token; 4550 4551 btrfs_init_map_token(&token); 4552 4553 leaf = path->nodes[0]; 4554 slot = path->slots[0]; 4555 4556 old_size = btrfs_item_size_nr(leaf, slot); 4557 if (old_size == new_size) 4558 return; 4559 4560 nritems = btrfs_header_nritems(leaf); 4561 data_end = leaf_data_end(root, leaf); 4562 4563 old_data_start = btrfs_item_offset_nr(leaf, slot); 4564 4565 size_diff = old_size - new_size; 4566 4567 BUG_ON(slot < 0); 4568 BUG_ON(slot >= nritems); 4569 4570 /* 4571 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4572 */ 4573 /* first correct the data pointers */ 4574 for (i = slot; i < nritems; i++) { 4575 u32 ioff; 4576 item = btrfs_item_nr(i); 4577 4578 ioff = btrfs_token_item_offset(leaf, item, &token); 4579 btrfs_set_token_item_offset(leaf, item, 4580 ioff + size_diff, &token); 4581 } 4582 4583 /* shift the data */ 4584 if (from_end) { 4585 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4586 data_end + size_diff, btrfs_leaf_data(leaf) + 4587 data_end, old_data_start + new_size - data_end); 4588 } else { 4589 struct btrfs_disk_key disk_key; 4590 u64 offset; 4591 4592 btrfs_item_key(leaf, &disk_key, slot); 4593 4594 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4595 unsigned long ptr; 4596 struct btrfs_file_extent_item *fi; 4597 4598 fi = btrfs_item_ptr(leaf, slot, 4599 struct btrfs_file_extent_item); 4600 fi = (struct btrfs_file_extent_item *)( 4601 (unsigned long)fi - size_diff); 4602 4603 if (btrfs_file_extent_type(leaf, fi) == 4604 BTRFS_FILE_EXTENT_INLINE) { 4605 ptr = btrfs_item_ptr_offset(leaf, slot); 4606 memmove_extent_buffer(leaf, ptr, 4607 (unsigned long)fi, 4608 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4609 } 4610 } 4611 4612 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4613 data_end + size_diff, btrfs_leaf_data(leaf) + 4614 data_end, old_data_start - data_end); 4615 4616 offset = btrfs_disk_key_offset(&disk_key); 4617 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4618 btrfs_set_item_key(leaf, &disk_key, slot); 4619 if (slot == 0) 4620 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4621 } 4622 4623 item = btrfs_item_nr(slot); 4624 btrfs_set_item_size(leaf, item, new_size); 4625 btrfs_mark_buffer_dirty(leaf); 4626 4627 if (btrfs_leaf_free_space(root, leaf) < 0) { 4628 btrfs_print_leaf(root, leaf); 4629 BUG(); 4630 } 4631} 4632 4633/* 4634 * make the item pointed to by the path bigger, data_size is the added size. 4635 */ 4636void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4637 u32 data_size) 4638{ 4639 int slot; 4640 struct extent_buffer *leaf; 4641 struct btrfs_item *item; 4642 u32 nritems; 4643 unsigned int data_end; 4644 unsigned int old_data; 4645 unsigned int old_size; 4646 int i; 4647 struct btrfs_map_token token; 4648 4649 btrfs_init_map_token(&token); 4650 4651 leaf = path->nodes[0]; 4652 4653 nritems = btrfs_header_nritems(leaf); 4654 data_end = leaf_data_end(root, leaf); 4655 4656 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4657 btrfs_print_leaf(root, leaf); 4658 BUG(); 4659 } 4660 slot = path->slots[0]; 4661 old_data = btrfs_item_end_nr(leaf, slot); 4662 4663 BUG_ON(slot < 0); 4664 if (slot >= nritems) { 4665 btrfs_print_leaf(root, leaf); 4666 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4667 slot, nritems); 4668 BUG_ON(1); 4669 } 4670 4671 /* 4672 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4673 */ 4674 /* first correct the data pointers */ 4675 for (i = slot; i < nritems; i++) { 4676 u32 ioff; 4677 item = btrfs_item_nr(i); 4678 4679 ioff = btrfs_token_item_offset(leaf, item, &token); 4680 btrfs_set_token_item_offset(leaf, item, 4681 ioff - data_size, &token); 4682 } 4683 4684 /* shift the data */ 4685 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4686 data_end - data_size, btrfs_leaf_data(leaf) + 4687 data_end, old_data - data_end); 4688 4689 data_end = old_data; 4690 old_size = btrfs_item_size_nr(leaf, slot); 4691 item = btrfs_item_nr(slot); 4692 btrfs_set_item_size(leaf, item, old_size + data_size); 4693 btrfs_mark_buffer_dirty(leaf); 4694 4695 if (btrfs_leaf_free_space(root, leaf) < 0) { 4696 btrfs_print_leaf(root, leaf); 4697 BUG(); 4698 } 4699} 4700 4701/* 4702 * this is a helper for btrfs_insert_empty_items, the main goal here is 4703 * to save stack depth by doing the bulk of the work in a function 4704 * that doesn't call btrfs_search_slot 4705 */ 4706void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4707 struct btrfs_key *cpu_key, u32 *data_size, 4708 u32 total_data, u32 total_size, int nr) 4709{ 4710 struct btrfs_item *item; 4711 int i; 4712 u32 nritems; 4713 unsigned int data_end; 4714 struct btrfs_disk_key disk_key; 4715 struct extent_buffer *leaf; 4716 int slot; 4717 struct btrfs_map_token token; 4718 4719 if (path->slots[0] == 0) { 4720 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4721 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4722 } 4723 btrfs_unlock_up_safe(path, 1); 4724 4725 btrfs_init_map_token(&token); 4726 4727 leaf = path->nodes[0]; 4728 slot = path->slots[0]; 4729 4730 nritems = btrfs_header_nritems(leaf); 4731 data_end = leaf_data_end(root, leaf); 4732 4733 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4734 btrfs_print_leaf(root, leaf); 4735 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4736 total_size, btrfs_leaf_free_space(root, leaf)); 4737 BUG(); 4738 } 4739 4740 if (slot != nritems) { 4741 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4742 4743 if (old_data < data_end) { 4744 btrfs_print_leaf(root, leaf); 4745 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4746 slot, old_data, data_end); 4747 BUG_ON(1); 4748 } 4749 /* 4750 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4751 */ 4752 /* first correct the data pointers */ 4753 for (i = slot; i < nritems; i++) { 4754 u32 ioff; 4755 4756 item = btrfs_item_nr( i); 4757 ioff = btrfs_token_item_offset(leaf, item, &token); 4758 btrfs_set_token_item_offset(leaf, item, 4759 ioff - total_data, &token); 4760 } 4761 /* shift the items */ 4762 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4763 btrfs_item_nr_offset(slot), 4764 (nritems - slot) * sizeof(struct btrfs_item)); 4765 4766 /* shift the data */ 4767 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4768 data_end - total_data, btrfs_leaf_data(leaf) + 4769 data_end, old_data - data_end); 4770 data_end = old_data; 4771 } 4772 4773 /* setup the item for the new data */ 4774 for (i = 0; i < nr; i++) { 4775 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4776 btrfs_set_item_key(leaf, &disk_key, slot + i); 4777 item = btrfs_item_nr(slot + i); 4778 btrfs_set_token_item_offset(leaf, item, 4779 data_end - data_size[i], &token); 4780 data_end -= data_size[i]; 4781 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4782 } 4783 4784 btrfs_set_header_nritems(leaf, nritems + nr); 4785 btrfs_mark_buffer_dirty(leaf); 4786 4787 if (btrfs_leaf_free_space(root, leaf) < 0) { 4788 btrfs_print_leaf(root, leaf); 4789 BUG(); 4790 } 4791} 4792 4793/* 4794 * Given a key and some data, insert items into the tree. 4795 * This does all the path init required, making room in the tree if needed. 4796 */ 4797int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4798 struct btrfs_root *root, 4799 struct btrfs_path *path, 4800 struct btrfs_key *cpu_key, u32 *data_size, 4801 int nr) 4802{ 4803 int ret = 0; 4804 int slot; 4805 int i; 4806 u32 total_size = 0; 4807 u32 total_data = 0; 4808 4809 for (i = 0; i < nr; i++) 4810 total_data += data_size[i]; 4811 4812 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4813 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4814 if (ret == 0) 4815 return -EEXIST; 4816 if (ret < 0) 4817 return ret; 4818 4819 slot = path->slots[0]; 4820 BUG_ON(slot < 0); 4821 4822 setup_items_for_insert(root, path, cpu_key, data_size, 4823 total_data, total_size, nr); 4824 return 0; 4825} 4826 4827/* 4828 * Given a key and some data, insert an item into the tree. 4829 * This does all the path init required, making room in the tree if needed. 4830 */ 4831int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4832 *root, struct btrfs_key *cpu_key, void *data, u32 4833 data_size) 4834{ 4835 int ret = 0; 4836 struct btrfs_path *path; 4837 struct extent_buffer *leaf; 4838 unsigned long ptr; 4839 4840 path = btrfs_alloc_path(); 4841 if (!path) 4842 return -ENOMEM; 4843 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4844 if (!ret) { 4845 leaf = path->nodes[0]; 4846 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4847 write_extent_buffer(leaf, data, ptr, data_size); 4848 btrfs_mark_buffer_dirty(leaf); 4849 } 4850 btrfs_free_path(path); 4851 return ret; 4852} 4853 4854/* 4855 * delete the pointer from a given node. 4856 * 4857 * the tree should have been previously balanced so the deletion does not 4858 * empty a node. 4859 */ 4860static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4861 int level, int slot) 4862{ 4863 struct extent_buffer *parent = path->nodes[level]; 4864 u32 nritems; 4865 int ret; 4866 4867 nritems = btrfs_header_nritems(parent); 4868 if (slot != nritems - 1) { 4869 if (level) 4870 tree_mod_log_eb_move(root->fs_info, parent, slot, 4871 slot + 1, nritems - slot - 1); 4872 memmove_extent_buffer(parent, 4873 btrfs_node_key_ptr_offset(slot), 4874 btrfs_node_key_ptr_offset(slot + 1), 4875 sizeof(struct btrfs_key_ptr) * 4876 (nritems - slot - 1)); 4877 } else if (level) { 4878 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4879 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4880 BUG_ON(ret < 0); 4881 } 4882 4883 nritems--; 4884 btrfs_set_header_nritems(parent, nritems); 4885 if (nritems == 0 && parent == root->node) { 4886 BUG_ON(btrfs_header_level(root->node) != 1); 4887 /* just turn the root into a leaf and break */ 4888 btrfs_set_header_level(root->node, 0); 4889 } else if (slot == 0) { 4890 struct btrfs_disk_key disk_key; 4891 4892 btrfs_node_key(parent, &disk_key, 0); 4893 fixup_low_keys(root->fs_info, path, &disk_key, level + 1); 4894 } 4895 btrfs_mark_buffer_dirty(parent); 4896} 4897 4898/* 4899 * a helper function to delete the leaf pointed to by path->slots[1] and 4900 * path->nodes[1]. 4901 * 4902 * This deletes the pointer in path->nodes[1] and frees the leaf 4903 * block extent. zero is returned if it all worked out, < 0 otherwise. 4904 * 4905 * The path must have already been setup for deleting the leaf, including 4906 * all the proper balancing. path->nodes[1] must be locked. 4907 */ 4908static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4909 struct btrfs_root *root, 4910 struct btrfs_path *path, 4911 struct extent_buffer *leaf) 4912{ 4913 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4914 del_ptr(root, path, 1, path->slots[1]); 4915 4916 /* 4917 * btrfs_free_extent is expensive, we want to make sure we 4918 * aren't holding any locks when we call it 4919 */ 4920 btrfs_unlock_up_safe(path, 0); 4921 4922 root_sub_used(root, leaf->len); 4923 4924 extent_buffer_get(leaf); 4925 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4926 free_extent_buffer_stale(leaf); 4927} 4928/* 4929 * delete the item at the leaf level in path. If that empties 4930 * the leaf, remove it from the tree 4931 */ 4932int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4933 struct btrfs_path *path, int slot, int nr) 4934{ 4935 struct extent_buffer *leaf; 4936 struct btrfs_item *item; 4937 int last_off; 4938 int dsize = 0; 4939 int ret = 0; 4940 int wret; 4941 int i; 4942 u32 nritems; 4943 struct btrfs_map_token token; 4944 4945 btrfs_init_map_token(&token); 4946 4947 leaf = path->nodes[0]; 4948 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4949 4950 for (i = 0; i < nr; i++) 4951 dsize += btrfs_item_size_nr(leaf, slot + i); 4952 4953 nritems = btrfs_header_nritems(leaf); 4954 4955 if (slot + nr != nritems) { 4956 int data_end = leaf_data_end(root, leaf); 4957 4958 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4959 data_end + dsize, 4960 btrfs_leaf_data(leaf) + data_end, 4961 last_off - data_end); 4962 4963 for (i = slot + nr; i < nritems; i++) { 4964 u32 ioff; 4965 4966 item = btrfs_item_nr(i); 4967 ioff = btrfs_token_item_offset(leaf, item, &token); 4968 btrfs_set_token_item_offset(leaf, item, 4969 ioff + dsize, &token); 4970 } 4971 4972 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4973 btrfs_item_nr_offset(slot + nr), 4974 sizeof(struct btrfs_item) * 4975 (nritems - slot - nr)); 4976 } 4977 btrfs_set_header_nritems(leaf, nritems - nr); 4978 nritems -= nr; 4979 4980 /* delete the leaf if we've emptied it */ 4981 if (nritems == 0) { 4982 if (leaf == root->node) { 4983 btrfs_set_header_level(leaf, 0); 4984 } else { 4985 btrfs_set_path_blocking(path); 4986 clean_tree_block(trans, root->fs_info, leaf); 4987 btrfs_del_leaf(trans, root, path, leaf); 4988 } 4989 } else { 4990 int used = leaf_space_used(leaf, 0, nritems); 4991 if (slot == 0) { 4992 struct btrfs_disk_key disk_key; 4993 4994 btrfs_item_key(leaf, &disk_key, 0); 4995 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4996 } 4997 4998 /* delete the leaf if it is mostly empty */ 4999 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5000 /* push_leaf_left fixes the path. 5001 * make sure the path still points to our leaf 5002 * for possible call to del_ptr below 5003 */ 5004 slot = path->slots[1]; 5005 extent_buffer_get(leaf); 5006 5007 btrfs_set_path_blocking(path); 5008 wret = push_leaf_left(trans, root, path, 1, 1, 5009 1, (u32)-1); 5010 if (wret < 0 && wret != -ENOSPC) 5011 ret = wret; 5012 5013 if (path->nodes[0] == leaf && 5014 btrfs_header_nritems(leaf)) { 5015 wret = push_leaf_right(trans, root, path, 1, 5016 1, 1, 0); 5017 if (wret < 0 && wret != -ENOSPC) 5018 ret = wret; 5019 } 5020 5021 if (btrfs_header_nritems(leaf) == 0) { 5022 path->slots[1] = slot; 5023 btrfs_del_leaf(trans, root, path, leaf); 5024 free_extent_buffer(leaf); 5025 ret = 0; 5026 } else { 5027 /* if we're still in the path, make sure 5028 * we're dirty. Otherwise, one of the 5029 * push_leaf functions must have already 5030 * dirtied this buffer 5031 */ 5032 if (path->nodes[0] == leaf) 5033 btrfs_mark_buffer_dirty(leaf); 5034 free_extent_buffer(leaf); 5035 } 5036 } else { 5037 btrfs_mark_buffer_dirty(leaf); 5038 } 5039 } 5040 return ret; 5041} 5042 5043/* 5044 * search the tree again to find a leaf with lesser keys 5045 * returns 0 if it found something or 1 if there are no lesser leaves. 5046 * returns < 0 on io errors. 5047 * 5048 * This may release the path, and so you may lose any locks held at the 5049 * time you call it. 5050 */ 5051int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5052{ 5053 struct btrfs_key key; 5054 struct btrfs_disk_key found_key; 5055 int ret; 5056 5057 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5058 5059 if (key.offset > 0) { 5060 key.offset--; 5061 } else if (key.type > 0) { 5062 key.type--; 5063 key.offset = (u64)-1; 5064 } else if (key.objectid > 0) { 5065 key.objectid--; 5066 key.type = (u8)-1; 5067 key.offset = (u64)-1; 5068 } else { 5069 return 1; 5070 } 5071 5072 btrfs_release_path(path); 5073 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5074 if (ret < 0) 5075 return ret; 5076 btrfs_item_key(path->nodes[0], &found_key, 0); 5077 ret = comp_keys(&found_key, &key); 5078 /* 5079 * We might have had an item with the previous key in the tree right 5080 * before we released our path. And after we released our path, that 5081 * item might have been pushed to the first slot (0) of the leaf we 5082 * were holding due to a tree balance. Alternatively, an item with the 5083 * previous key can exist as the only element of a leaf (big fat item). 5084 * Therefore account for these 2 cases, so that our callers (like 5085 * btrfs_previous_item) don't miss an existing item with a key matching 5086 * the previous key we computed above. 5087 */ 5088 if (ret <= 0) 5089 return 0; 5090 return 1; 5091} 5092 5093/* 5094 * A helper function to walk down the tree starting at min_key, and looking 5095 * for nodes or leaves that are have a minimum transaction id. 5096 * This is used by the btree defrag code, and tree logging 5097 * 5098 * This does not cow, but it does stuff the starting key it finds back 5099 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5100 * key and get a writable path. 5101 * 5102 * This does lock as it descends, and path->keep_locks should be set 5103 * to 1 by the caller. 5104 * 5105 * This honors path->lowest_level to prevent descent past a given level 5106 * of the tree. 5107 * 5108 * min_trans indicates the oldest transaction that you are interested 5109 * in walking through. Any nodes or leaves older than min_trans are 5110 * skipped over (without reading them). 5111 * 5112 * returns zero if something useful was found, < 0 on error and 1 if there 5113 * was nothing in the tree that matched the search criteria. 5114 */ 5115int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5116 struct btrfs_path *path, 5117 u64 min_trans) 5118{ 5119 struct extent_buffer *cur; 5120 struct btrfs_key found_key; 5121 int slot; 5122 int sret; 5123 u32 nritems; 5124 int level; 5125 int ret = 1; 5126 int keep_locks = path->keep_locks; 5127 5128 path->keep_locks = 1; 5129again: 5130 cur = btrfs_read_lock_root_node(root); 5131 level = btrfs_header_level(cur); 5132 WARN_ON(path->nodes[level]); 5133 path->nodes[level] = cur; 5134 path->locks[level] = BTRFS_READ_LOCK; 5135 5136 if (btrfs_header_generation(cur) < min_trans) { 5137 ret = 1; 5138 goto out; 5139 } 5140 while (1) { 5141 nritems = btrfs_header_nritems(cur); 5142 level = btrfs_header_level(cur); 5143 sret = bin_search(cur, min_key, level, &slot); 5144 5145 /* at the lowest level, we're done, setup the path and exit */ 5146 if (level == path->lowest_level) { 5147 if (slot >= nritems) 5148 goto find_next_key; 5149 ret = 0; 5150 path->slots[level] = slot; 5151 btrfs_item_key_to_cpu(cur, &found_key, slot); 5152 goto out; 5153 } 5154 if (sret && slot > 0) 5155 slot--; 5156 /* 5157 * check this node pointer against the min_trans parameters. 5158 * If it is too old, old, skip to the next one. 5159 */ 5160 while (slot < nritems) { 5161 u64 gen; 5162 5163 gen = btrfs_node_ptr_generation(cur, slot); 5164 if (gen < min_trans) { 5165 slot++; 5166 continue; 5167 } 5168 break; 5169 } 5170find_next_key: 5171 /* 5172 * we didn't find a candidate key in this node, walk forward 5173 * and find another one 5174 */ 5175 if (slot >= nritems) { 5176 path->slots[level] = slot; 5177 btrfs_set_path_blocking(path); 5178 sret = btrfs_find_next_key(root, path, min_key, level, 5179 min_trans); 5180 if (sret == 0) { 5181 btrfs_release_path(path); 5182 goto again; 5183 } else { 5184 goto out; 5185 } 5186 } 5187 /* save our key for returning back */ 5188 btrfs_node_key_to_cpu(cur, &found_key, slot); 5189 path->slots[level] = slot; 5190 if (level == path->lowest_level) { 5191 ret = 0; 5192 goto out; 5193 } 5194 btrfs_set_path_blocking(path); 5195 cur = read_node_slot(root, cur, slot); 5196 BUG_ON(!cur); /* -ENOMEM */ 5197 5198 btrfs_tree_read_lock(cur); 5199 5200 path->locks[level - 1] = BTRFS_READ_LOCK; 5201 path->nodes[level - 1] = cur; 5202 unlock_up(path, level, 1, 0, NULL); 5203 btrfs_clear_path_blocking(path, NULL, 0); 5204 } 5205out: 5206 path->keep_locks = keep_locks; 5207 if (ret == 0) { 5208 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5209 btrfs_set_path_blocking(path); 5210 memcpy(min_key, &found_key, sizeof(found_key)); 5211 } 5212 return ret; 5213} 5214 5215static void tree_move_down(struct btrfs_root *root, 5216 struct btrfs_path *path, 5217 int *level, int root_level) 5218{ 5219 BUG_ON(*level == 0); 5220 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5221 path->slots[*level]); 5222 path->slots[*level - 1] = 0; 5223 (*level)--; 5224} 5225 5226static int tree_move_next_or_upnext(struct btrfs_root *root, 5227 struct btrfs_path *path, 5228 int *level, int root_level) 5229{ 5230 int ret = 0; 5231 int nritems; 5232 nritems = btrfs_header_nritems(path->nodes[*level]); 5233 5234 path->slots[*level]++; 5235 5236 while (path->slots[*level] >= nritems) { 5237 if (*level == root_level) 5238 return -1; 5239 5240 /* move upnext */ 5241 path->slots[*level] = 0; 5242 free_extent_buffer(path->nodes[*level]); 5243 path->nodes[*level] = NULL; 5244 (*level)++; 5245 path->slots[*level]++; 5246 5247 nritems = btrfs_header_nritems(path->nodes[*level]); 5248 ret = 1; 5249 } 5250 return ret; 5251} 5252 5253/* 5254 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5255 * or down. 5256 */ 5257static int tree_advance(struct btrfs_root *root, 5258 struct btrfs_path *path, 5259 int *level, int root_level, 5260 int allow_down, 5261 struct btrfs_key *key) 5262{ 5263 int ret; 5264 5265 if (*level == 0 || !allow_down) { 5266 ret = tree_move_next_or_upnext(root, path, level, root_level); 5267 } else { 5268 tree_move_down(root, path, level, root_level); 5269 ret = 0; 5270 } 5271 if (ret >= 0) { 5272 if (*level == 0) 5273 btrfs_item_key_to_cpu(path->nodes[*level], key, 5274 path->slots[*level]); 5275 else 5276 btrfs_node_key_to_cpu(path->nodes[*level], key, 5277 path->slots[*level]); 5278 } 5279 return ret; 5280} 5281 5282static int tree_compare_item(struct btrfs_root *left_root, 5283 struct btrfs_path *left_path, 5284 struct btrfs_path *right_path, 5285 char *tmp_buf) 5286{ 5287 int cmp; 5288 int len1, len2; 5289 unsigned long off1, off2; 5290 5291 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5292 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5293 if (len1 != len2) 5294 return 1; 5295 5296 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5297 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5298 right_path->slots[0]); 5299 5300 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5301 5302 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5303 if (cmp) 5304 return 1; 5305 return 0; 5306} 5307 5308#define ADVANCE 1 5309#define ADVANCE_ONLY_NEXT -1 5310 5311/* 5312 * This function compares two trees and calls the provided callback for 5313 * every changed/new/deleted item it finds. 5314 * If shared tree blocks are encountered, whole subtrees are skipped, making 5315 * the compare pretty fast on snapshotted subvolumes. 5316 * 5317 * This currently works on commit roots only. As commit roots are read only, 5318 * we don't do any locking. The commit roots are protected with transactions. 5319 * Transactions are ended and rejoined when a commit is tried in between. 5320 * 5321 * This function checks for modifications done to the trees while comparing. 5322 * If it detects a change, it aborts immediately. 5323 */ 5324int btrfs_compare_trees(struct btrfs_root *left_root, 5325 struct btrfs_root *right_root, 5326 btrfs_changed_cb_t changed_cb, void *ctx) 5327{ 5328 int ret; 5329 int cmp; 5330 struct btrfs_path *left_path = NULL; 5331 struct btrfs_path *right_path = NULL; 5332 struct btrfs_key left_key; 5333 struct btrfs_key right_key; 5334 char *tmp_buf = NULL; 5335 int left_root_level; 5336 int right_root_level; 5337 int left_level; 5338 int right_level; 5339 int left_end_reached; 5340 int right_end_reached; 5341 int advance_left; 5342 int advance_right; 5343 u64 left_blockptr; 5344 u64 right_blockptr; 5345 u64 left_gen; 5346 u64 right_gen; 5347 5348 left_path = btrfs_alloc_path(); 5349 if (!left_path) { 5350 ret = -ENOMEM; 5351 goto out; 5352 } 5353 right_path = btrfs_alloc_path(); 5354 if (!right_path) { 5355 ret = -ENOMEM; 5356 goto out; 5357 } 5358 5359 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS); 5360 if (!tmp_buf) { 5361 ret = -ENOMEM; 5362 goto out; 5363 } 5364 5365 left_path->search_commit_root = 1; 5366 left_path->skip_locking = 1; 5367 right_path->search_commit_root = 1; 5368 right_path->skip_locking = 1; 5369 5370 /* 5371 * Strategy: Go to the first items of both trees. Then do 5372 * 5373 * If both trees are at level 0 5374 * Compare keys of current items 5375 * If left < right treat left item as new, advance left tree 5376 * and repeat 5377 * If left > right treat right item as deleted, advance right tree 5378 * and repeat 5379 * If left == right do deep compare of items, treat as changed if 5380 * needed, advance both trees and repeat 5381 * If both trees are at the same level but not at level 0 5382 * Compare keys of current nodes/leafs 5383 * If left < right advance left tree and repeat 5384 * If left > right advance right tree and repeat 5385 * If left == right compare blockptrs of the next nodes/leafs 5386 * If they match advance both trees but stay at the same level 5387 * and repeat 5388 * If they don't match advance both trees while allowing to go 5389 * deeper and repeat 5390 * If tree levels are different 5391 * Advance the tree that needs it and repeat 5392 * 5393 * Advancing a tree means: 5394 * If we are at level 0, try to go to the next slot. If that's not 5395 * possible, go one level up and repeat. Stop when we found a level 5396 * where we could go to the next slot. We may at this point be on a 5397 * node or a leaf. 5398 * 5399 * If we are not at level 0 and not on shared tree blocks, go one 5400 * level deeper. 5401 * 5402 * If we are not at level 0 and on shared tree blocks, go one slot to 5403 * the right if possible or go up and right. 5404 */ 5405 5406 down_read(&left_root->fs_info->commit_root_sem); 5407 left_level = btrfs_header_level(left_root->commit_root); 5408 left_root_level = left_level; 5409 left_path->nodes[left_level] = left_root->commit_root; 5410 extent_buffer_get(left_path->nodes[left_level]); 5411 5412 right_level = btrfs_header_level(right_root->commit_root); 5413 right_root_level = right_level; 5414 right_path->nodes[right_level] = right_root->commit_root; 5415 extent_buffer_get(right_path->nodes[right_level]); 5416 up_read(&left_root->fs_info->commit_root_sem); 5417 5418 if (left_level == 0) 5419 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5420 &left_key, left_path->slots[left_level]); 5421 else 5422 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5423 &left_key, left_path->slots[left_level]); 5424 if (right_level == 0) 5425 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5426 &right_key, right_path->slots[right_level]); 5427 else 5428 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5429 &right_key, right_path->slots[right_level]); 5430 5431 left_end_reached = right_end_reached = 0; 5432 advance_left = advance_right = 0; 5433 5434 while (1) { 5435 if (advance_left && !left_end_reached) { 5436 ret = tree_advance(left_root, left_path, &left_level, 5437 left_root_level, 5438 advance_left != ADVANCE_ONLY_NEXT, 5439 &left_key); 5440 if (ret < 0) 5441 left_end_reached = ADVANCE; 5442 advance_left = 0; 5443 } 5444 if (advance_right && !right_end_reached) { 5445 ret = tree_advance(right_root, right_path, &right_level, 5446 right_root_level, 5447 advance_right != ADVANCE_ONLY_NEXT, 5448 &right_key); 5449 if (ret < 0) 5450 right_end_reached = ADVANCE; 5451 advance_right = 0; 5452 } 5453 5454 if (left_end_reached && right_end_reached) { 5455 ret = 0; 5456 goto out; 5457 } else if (left_end_reached) { 5458 if (right_level == 0) { 5459 ret = changed_cb(left_root, right_root, 5460 left_path, right_path, 5461 &right_key, 5462 BTRFS_COMPARE_TREE_DELETED, 5463 ctx); 5464 if (ret < 0) 5465 goto out; 5466 } 5467 advance_right = ADVANCE; 5468 continue; 5469 } else if (right_end_reached) { 5470 if (left_level == 0) { 5471 ret = changed_cb(left_root, right_root, 5472 left_path, right_path, 5473 &left_key, 5474 BTRFS_COMPARE_TREE_NEW, 5475 ctx); 5476 if (ret < 0) 5477 goto out; 5478 } 5479 advance_left = ADVANCE; 5480 continue; 5481 } 5482 5483 if (left_level == 0 && right_level == 0) { 5484 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5485 if (cmp < 0) { 5486 ret = changed_cb(left_root, right_root, 5487 left_path, right_path, 5488 &left_key, 5489 BTRFS_COMPARE_TREE_NEW, 5490 ctx); 5491 if (ret < 0) 5492 goto out; 5493 advance_left = ADVANCE; 5494 } else if (cmp > 0) { 5495 ret = changed_cb(left_root, right_root, 5496 left_path, right_path, 5497 &right_key, 5498 BTRFS_COMPARE_TREE_DELETED, 5499 ctx); 5500 if (ret < 0) 5501 goto out; 5502 advance_right = ADVANCE; 5503 } else { 5504 enum btrfs_compare_tree_result result; 5505 5506 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5507 ret = tree_compare_item(left_root, left_path, 5508 right_path, tmp_buf); 5509 if (ret) 5510 result = BTRFS_COMPARE_TREE_CHANGED; 5511 else 5512 result = BTRFS_COMPARE_TREE_SAME; 5513 ret = changed_cb(left_root, right_root, 5514 left_path, right_path, 5515 &left_key, result, ctx); 5516 if (ret < 0) 5517 goto out; 5518 advance_left = ADVANCE; 5519 advance_right = ADVANCE; 5520 } 5521 } else if (left_level == right_level) { 5522 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5523 if (cmp < 0) { 5524 advance_left = ADVANCE; 5525 } else if (cmp > 0) { 5526 advance_right = ADVANCE; 5527 } else { 5528 left_blockptr = btrfs_node_blockptr( 5529 left_path->nodes[left_level], 5530 left_path->slots[left_level]); 5531 right_blockptr = btrfs_node_blockptr( 5532 right_path->nodes[right_level], 5533 right_path->slots[right_level]); 5534 left_gen = btrfs_node_ptr_generation( 5535 left_path->nodes[left_level], 5536 left_path->slots[left_level]); 5537 right_gen = btrfs_node_ptr_generation( 5538 right_path->nodes[right_level], 5539 right_path->slots[right_level]); 5540 if (left_blockptr == right_blockptr && 5541 left_gen == right_gen) { 5542 /* 5543 * As we're on a shared block, don't 5544 * allow to go deeper. 5545 */ 5546 advance_left = ADVANCE_ONLY_NEXT; 5547 advance_right = ADVANCE_ONLY_NEXT; 5548 } else { 5549 advance_left = ADVANCE; 5550 advance_right = ADVANCE; 5551 } 5552 } 5553 } else if (left_level < right_level) { 5554 advance_right = ADVANCE; 5555 } else { 5556 advance_left = ADVANCE; 5557 } 5558 } 5559 5560out: 5561 btrfs_free_path(left_path); 5562 btrfs_free_path(right_path); 5563 kfree(tmp_buf); 5564 return ret; 5565} 5566 5567/* 5568 * this is similar to btrfs_next_leaf, but does not try to preserve 5569 * and fixup the path. It looks for and returns the next key in the 5570 * tree based on the current path and the min_trans parameters. 5571 * 5572 * 0 is returned if another key is found, < 0 if there are any errors 5573 * and 1 is returned if there are no higher keys in the tree 5574 * 5575 * path->keep_locks should be set to 1 on the search made before 5576 * calling this function. 5577 */ 5578int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5579 struct btrfs_key *key, int level, u64 min_trans) 5580{ 5581 int slot; 5582 struct extent_buffer *c; 5583 5584 WARN_ON(!path->keep_locks); 5585 while (level < BTRFS_MAX_LEVEL) { 5586 if (!path->nodes[level]) 5587 return 1; 5588 5589 slot = path->slots[level] + 1; 5590 c = path->nodes[level]; 5591next: 5592 if (slot >= btrfs_header_nritems(c)) { 5593 int ret; 5594 int orig_lowest; 5595 struct btrfs_key cur_key; 5596 if (level + 1 >= BTRFS_MAX_LEVEL || 5597 !path->nodes[level + 1]) 5598 return 1; 5599 5600 if (path->locks[level + 1]) { 5601 level++; 5602 continue; 5603 } 5604 5605 slot = btrfs_header_nritems(c) - 1; 5606 if (level == 0) 5607 btrfs_item_key_to_cpu(c, &cur_key, slot); 5608 else 5609 btrfs_node_key_to_cpu(c, &cur_key, slot); 5610 5611 orig_lowest = path->lowest_level; 5612 btrfs_release_path(path); 5613 path->lowest_level = level; 5614 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5615 0, 0); 5616 path->lowest_level = orig_lowest; 5617 if (ret < 0) 5618 return ret; 5619 5620 c = path->nodes[level]; 5621 slot = path->slots[level]; 5622 if (ret == 0) 5623 slot++; 5624 goto next; 5625 } 5626 5627 if (level == 0) 5628 btrfs_item_key_to_cpu(c, key, slot); 5629 else { 5630 u64 gen = btrfs_node_ptr_generation(c, slot); 5631 5632 if (gen < min_trans) { 5633 slot++; 5634 goto next; 5635 } 5636 btrfs_node_key_to_cpu(c, key, slot); 5637 } 5638 return 0; 5639 } 5640 return 1; 5641} 5642 5643/* 5644 * search the tree again to find a leaf with greater keys 5645 * returns 0 if it found something or 1 if there are no greater leaves. 5646 * returns < 0 on io errors. 5647 */ 5648int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5649{ 5650 return btrfs_next_old_leaf(root, path, 0); 5651} 5652 5653int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5654 u64 time_seq) 5655{ 5656 int slot; 5657 int level; 5658 struct extent_buffer *c; 5659 struct extent_buffer *next; 5660 struct btrfs_key key; 5661 u32 nritems; 5662 int ret; 5663 int old_spinning = path->leave_spinning; 5664 int next_rw_lock = 0; 5665 5666 nritems = btrfs_header_nritems(path->nodes[0]); 5667 if (nritems == 0) 5668 return 1; 5669 5670 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5671again: 5672 level = 1; 5673 next = NULL; 5674 next_rw_lock = 0; 5675 btrfs_release_path(path); 5676 5677 path->keep_locks = 1; 5678 path->leave_spinning = 1; 5679 5680 if (time_seq) 5681 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5682 else 5683 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5684 path->keep_locks = 0; 5685 5686 if (ret < 0) 5687 return ret; 5688 5689 nritems = btrfs_header_nritems(path->nodes[0]); 5690 /* 5691 * by releasing the path above we dropped all our locks. A balance 5692 * could have added more items next to the key that used to be 5693 * at the very end of the block. So, check again here and 5694 * advance the path if there are now more items available. 5695 */ 5696 if (nritems > 0 && path->slots[0] < nritems - 1) { 5697 if (ret == 0) 5698 path->slots[0]++; 5699 ret = 0; 5700 goto done; 5701 } 5702 /* 5703 * So the above check misses one case: 5704 * - after releasing the path above, someone has removed the item that 5705 * used to be at the very end of the block, and balance between leafs 5706 * gets another one with bigger key.offset to replace it. 5707 * 5708 * This one should be returned as well, or we can get leaf corruption 5709 * later(esp. in __btrfs_drop_extents()). 5710 * 5711 * And a bit more explanation about this check, 5712 * with ret > 0, the key isn't found, the path points to the slot 5713 * where it should be inserted, so the path->slots[0] item must be the 5714 * bigger one. 5715 */ 5716 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5717 ret = 0; 5718 goto done; 5719 } 5720 5721 while (level < BTRFS_MAX_LEVEL) { 5722 if (!path->nodes[level]) { 5723 ret = 1; 5724 goto done; 5725 } 5726 5727 slot = path->slots[level] + 1; 5728 c = path->nodes[level]; 5729 if (slot >= btrfs_header_nritems(c)) { 5730 level++; 5731 if (level == BTRFS_MAX_LEVEL) { 5732 ret = 1; 5733 goto done; 5734 } 5735 continue; 5736 } 5737 5738 if (next) { 5739 btrfs_tree_unlock_rw(next, next_rw_lock); 5740 free_extent_buffer(next); 5741 } 5742 5743 next = c; 5744 next_rw_lock = path->locks[level]; 5745 ret = read_block_for_search(NULL, root, path, &next, level, 5746 slot, &key, 0); 5747 if (ret == -EAGAIN) 5748 goto again; 5749 5750 if (ret < 0) { 5751 btrfs_release_path(path); 5752 goto done; 5753 } 5754 5755 if (!path->skip_locking) { 5756 ret = btrfs_try_tree_read_lock(next); 5757 if (!ret && time_seq) { 5758 /* 5759 * If we don't get the lock, we may be racing 5760 * with push_leaf_left, holding that lock while 5761 * itself waiting for the leaf we've currently 5762 * locked. To solve this situation, we give up 5763 * on our lock and cycle. 5764 */ 5765 free_extent_buffer(next); 5766 btrfs_release_path(path); 5767 cond_resched(); 5768 goto again; 5769 } 5770 if (!ret) { 5771 btrfs_set_path_blocking(path); 5772 btrfs_tree_read_lock(next); 5773 btrfs_clear_path_blocking(path, next, 5774 BTRFS_READ_LOCK); 5775 } 5776 next_rw_lock = BTRFS_READ_LOCK; 5777 } 5778 break; 5779 } 5780 path->slots[level] = slot; 5781 while (1) { 5782 level--; 5783 c = path->nodes[level]; 5784 if (path->locks[level]) 5785 btrfs_tree_unlock_rw(c, path->locks[level]); 5786 5787 free_extent_buffer(c); 5788 path->nodes[level] = next; 5789 path->slots[level] = 0; 5790 if (!path->skip_locking) 5791 path->locks[level] = next_rw_lock; 5792 if (!level) 5793 break; 5794 5795 ret = read_block_for_search(NULL, root, path, &next, level, 5796 0, &key, 0); 5797 if (ret == -EAGAIN) 5798 goto again; 5799 5800 if (ret < 0) { 5801 btrfs_release_path(path); 5802 goto done; 5803 } 5804 5805 if (!path->skip_locking) { 5806 ret = btrfs_try_tree_read_lock(next); 5807 if (!ret) { 5808 btrfs_set_path_blocking(path); 5809 btrfs_tree_read_lock(next); 5810 btrfs_clear_path_blocking(path, next, 5811 BTRFS_READ_LOCK); 5812 } 5813 next_rw_lock = BTRFS_READ_LOCK; 5814 } 5815 } 5816 ret = 0; 5817done: 5818 unlock_up(path, 0, 1, 0, NULL); 5819 path->leave_spinning = old_spinning; 5820 if (!old_spinning) 5821 btrfs_set_path_blocking(path); 5822 5823 return ret; 5824} 5825 5826/* 5827 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5828 * searching until it gets past min_objectid or finds an item of 'type' 5829 * 5830 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5831 */ 5832int btrfs_previous_item(struct btrfs_root *root, 5833 struct btrfs_path *path, u64 min_objectid, 5834 int type) 5835{ 5836 struct btrfs_key found_key; 5837 struct extent_buffer *leaf; 5838 u32 nritems; 5839 int ret; 5840 5841 while (1) { 5842 if (path->slots[0] == 0) { 5843 btrfs_set_path_blocking(path); 5844 ret = btrfs_prev_leaf(root, path); 5845 if (ret != 0) 5846 return ret; 5847 } else { 5848 path->slots[0]--; 5849 } 5850 leaf = path->nodes[0]; 5851 nritems = btrfs_header_nritems(leaf); 5852 if (nritems == 0) 5853 return 1; 5854 if (path->slots[0] == nritems) 5855 path->slots[0]--; 5856 5857 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5858 if (found_key.objectid < min_objectid) 5859 break; 5860 if (found_key.type == type) 5861 return 0; 5862 if (found_key.objectid == min_objectid && 5863 found_key.type < type) 5864 break; 5865 } 5866 return 1; 5867} 5868 5869/* 5870 * search in extent tree to find a previous Metadata/Data extent item with 5871 * min objecitd. 5872 * 5873 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5874 */ 5875int btrfs_previous_extent_item(struct btrfs_root *root, 5876 struct btrfs_path *path, u64 min_objectid) 5877{ 5878 struct btrfs_key found_key; 5879 struct extent_buffer *leaf; 5880 u32 nritems; 5881 int ret; 5882 5883 while (1) { 5884 if (path->slots[0] == 0) { 5885 btrfs_set_path_blocking(path); 5886 ret = btrfs_prev_leaf(root, path); 5887 if (ret != 0) 5888 return ret; 5889 } else { 5890 path->slots[0]--; 5891 } 5892 leaf = path->nodes[0]; 5893 nritems = btrfs_header_nritems(leaf); 5894 if (nritems == 0) 5895 return 1; 5896 if (path->slots[0] == nritems) 5897 path->slots[0]--; 5898 5899 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5900 if (found_key.objectid < min_objectid) 5901 break; 5902 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5903 found_key.type == BTRFS_METADATA_ITEM_KEY) 5904 return 0; 5905 if (found_key.objectid == min_objectid && 5906 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5907 break; 5908 } 5909 return 1; 5910} 5911