1/* 2 * Copyright (C) STRATO AG 2011. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19/* 20 * This module can be used to catch cases when the btrfs kernel 21 * code executes write requests to the disk that bring the file 22 * system in an inconsistent state. In such a state, a power-loss 23 * or kernel panic event would cause that the data on disk is 24 * lost or at least damaged. 25 * 26 * Code is added that examines all block write requests during 27 * runtime (including writes of the super block). Three rules 28 * are verified and an error is printed on violation of the 29 * rules: 30 * 1. It is not allowed to write a disk block which is 31 * currently referenced by the super block (either directly 32 * or indirectly). 33 * 2. When a super block is written, it is verified that all 34 * referenced (directly or indirectly) blocks fulfill the 35 * following requirements: 36 * 2a. All referenced blocks have either been present when 37 * the file system was mounted, (i.e., they have been 38 * referenced by the super block) or they have been 39 * written since then and the write completion callback 40 * was called and no write error was indicated and a 41 * FLUSH request to the device where these blocks are 42 * located was received and completed. 43 * 2b. All referenced blocks need to have a generation 44 * number which is equal to the parent's number. 45 * 46 * One issue that was found using this module was that the log 47 * tree on disk became temporarily corrupted because disk blocks 48 * that had been in use for the log tree had been freed and 49 * reused too early, while being referenced by the written super 50 * block. 51 * 52 * The search term in the kernel log that can be used to filter 53 * on the existence of detected integrity issues is 54 * "btrfs: attempt". 55 * 56 * The integrity check is enabled via mount options. These 57 * mount options are only supported if the integrity check 58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY. 59 * 60 * Example #1, apply integrity checks to all metadata: 61 * mount /dev/sdb1 /mnt -o check_int 62 * 63 * Example #2, apply integrity checks to all metadata and 64 * to data extents: 65 * mount /dev/sdb1 /mnt -o check_int_data 66 * 67 * Example #3, apply integrity checks to all metadata and dump 68 * the tree that the super block references to kernel messages 69 * each time after a super block was written: 70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263 71 * 72 * If the integrity check tool is included and activated in 73 * the mount options, plenty of kernel memory is used, and 74 * plenty of additional CPU cycles are spent. Enabling this 75 * functionality is not intended for normal use. In most 76 * cases, unless you are a btrfs developer who needs to verify 77 * the integrity of (super)-block write requests, do not 78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to 79 * include and compile the integrity check tool. 80 * 81 * Expect millions of lines of information in the kernel log with an 82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the 83 * kernel config to at least 26 (which is 64MB). Usually the value is 84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be 85 * changed like this before LOG_BUF_SHIFT can be set to a high value: 86 * config LOG_BUF_SHIFT 87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)" 88 * range 12 30 89 */ 90 91#include <linux/sched.h> 92#include <linux/slab.h> 93#include <linux/buffer_head.h> 94#include <linux/mutex.h> 95#include <linux/genhd.h> 96#include <linux/blkdev.h> 97#include <linux/vmalloc.h> 98#include "ctree.h" 99#include "disk-io.h" 100#include "hash.h" 101#include "transaction.h" 102#include "extent_io.h" 103#include "volumes.h" 104#include "print-tree.h" 105#include "locking.h" 106#include "check-integrity.h" 107#include "rcu-string.h" 108 109#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000 110#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000 111#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100 112#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051 113#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807 114#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530 115#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300 116#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters, 117 * excluding " [...]" */ 118#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1) 119 120/* 121 * The definition of the bitmask fields for the print_mask. 122 * They are specified with the mount option check_integrity_print_mask. 123 */ 124#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001 125#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002 126#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004 127#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008 128#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010 129#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020 130#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040 131#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080 132#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100 133#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200 134#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400 135#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800 136#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000 137#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000 138 139struct btrfsic_dev_state; 140struct btrfsic_state; 141 142struct btrfsic_block { 143 u32 magic_num; /* only used for debug purposes */ 144 unsigned int is_metadata:1; /* if it is meta-data, not data-data */ 145 unsigned int is_superblock:1; /* if it is one of the superblocks */ 146 unsigned int is_iodone:1; /* if is done by lower subsystem */ 147 unsigned int iodone_w_error:1; /* error was indicated to endio */ 148 unsigned int never_written:1; /* block was added because it was 149 * referenced, not because it was 150 * written */ 151 unsigned int mirror_num; /* large enough to hold 152 * BTRFS_SUPER_MIRROR_MAX */ 153 struct btrfsic_dev_state *dev_state; 154 u64 dev_bytenr; /* key, physical byte num on disk */ 155 u64 logical_bytenr; /* logical byte num on disk */ 156 u64 generation; 157 struct btrfs_disk_key disk_key; /* extra info to print in case of 158 * issues, will not always be correct */ 159 struct list_head collision_resolving_node; /* list node */ 160 struct list_head all_blocks_node; /* list node */ 161 162 /* the following two lists contain block_link items */ 163 struct list_head ref_to_list; /* list */ 164 struct list_head ref_from_list; /* list */ 165 struct btrfsic_block *next_in_same_bio; 166 void *orig_bio_bh_private; 167 union { 168 bio_end_io_t *bio; 169 bh_end_io_t *bh; 170 } orig_bio_bh_end_io; 171 int submit_bio_bh_rw; 172 u64 flush_gen; /* only valid if !never_written */ 173}; 174 175/* 176 * Elements of this type are allocated dynamically and required because 177 * each block object can refer to and can be ref from multiple blocks. 178 * The key to lookup them in the hashtable is the dev_bytenr of 179 * the block ref to plus the one from the block refered from. 180 * The fact that they are searchable via a hashtable and that a 181 * ref_cnt is maintained is not required for the btrfs integrity 182 * check algorithm itself, it is only used to make the output more 183 * beautiful in case that an error is detected (an error is defined 184 * as a write operation to a block while that block is still referenced). 185 */ 186struct btrfsic_block_link { 187 u32 magic_num; /* only used for debug purposes */ 188 u32 ref_cnt; 189 struct list_head node_ref_to; /* list node */ 190 struct list_head node_ref_from; /* list node */ 191 struct list_head collision_resolving_node; /* list node */ 192 struct btrfsic_block *block_ref_to; 193 struct btrfsic_block *block_ref_from; 194 u64 parent_generation; 195}; 196 197struct btrfsic_dev_state { 198 u32 magic_num; /* only used for debug purposes */ 199 struct block_device *bdev; 200 struct btrfsic_state *state; 201 struct list_head collision_resolving_node; /* list node */ 202 struct btrfsic_block dummy_block_for_bio_bh_flush; 203 u64 last_flush_gen; 204 char name[BDEVNAME_SIZE]; 205}; 206 207struct btrfsic_block_hashtable { 208 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE]; 209}; 210 211struct btrfsic_block_link_hashtable { 212 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE]; 213}; 214 215struct btrfsic_dev_state_hashtable { 216 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE]; 217}; 218 219struct btrfsic_block_data_ctx { 220 u64 start; /* virtual bytenr */ 221 u64 dev_bytenr; /* physical bytenr on device */ 222 u32 len; 223 struct btrfsic_dev_state *dev; 224 char **datav; 225 struct page **pagev; 226 void *mem_to_free; 227}; 228 229/* This structure is used to implement recursion without occupying 230 * any stack space, refer to btrfsic_process_metablock() */ 231struct btrfsic_stack_frame { 232 u32 magic; 233 u32 nr; 234 int error; 235 int i; 236 int limit_nesting; 237 int num_copies; 238 int mirror_num; 239 struct btrfsic_block *block; 240 struct btrfsic_block_data_ctx *block_ctx; 241 struct btrfsic_block *next_block; 242 struct btrfsic_block_data_ctx next_block_ctx; 243 struct btrfs_header *hdr; 244 struct btrfsic_stack_frame *prev; 245}; 246 247/* Some state per mounted filesystem */ 248struct btrfsic_state { 249 u32 print_mask; 250 int include_extent_data; 251 int csum_size; 252 struct list_head all_blocks_list; 253 struct btrfsic_block_hashtable block_hashtable; 254 struct btrfsic_block_link_hashtable block_link_hashtable; 255 struct btrfs_root *root; 256 u64 max_superblock_generation; 257 struct btrfsic_block *latest_superblock; 258 u32 metablock_size; 259 u32 datablock_size; 260}; 261 262static void btrfsic_block_init(struct btrfsic_block *b); 263static struct btrfsic_block *btrfsic_block_alloc(void); 264static void btrfsic_block_free(struct btrfsic_block *b); 265static void btrfsic_block_link_init(struct btrfsic_block_link *n); 266static struct btrfsic_block_link *btrfsic_block_link_alloc(void); 267static void btrfsic_block_link_free(struct btrfsic_block_link *n); 268static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds); 269static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void); 270static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds); 271static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h); 272static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 273 struct btrfsic_block_hashtable *h); 274static void btrfsic_block_hashtable_remove(struct btrfsic_block *b); 275static struct btrfsic_block *btrfsic_block_hashtable_lookup( 276 struct block_device *bdev, 277 u64 dev_bytenr, 278 struct btrfsic_block_hashtable *h); 279static void btrfsic_block_link_hashtable_init( 280 struct btrfsic_block_link_hashtable *h); 281static void btrfsic_block_link_hashtable_add( 282 struct btrfsic_block_link *l, 283 struct btrfsic_block_link_hashtable *h); 284static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l); 285static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 286 struct block_device *bdev_ref_to, 287 u64 dev_bytenr_ref_to, 288 struct block_device *bdev_ref_from, 289 u64 dev_bytenr_ref_from, 290 struct btrfsic_block_link_hashtable *h); 291static void btrfsic_dev_state_hashtable_init( 292 struct btrfsic_dev_state_hashtable *h); 293static void btrfsic_dev_state_hashtable_add( 294 struct btrfsic_dev_state *ds, 295 struct btrfsic_dev_state_hashtable *h); 296static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds); 297static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( 298 struct block_device *bdev, 299 struct btrfsic_dev_state_hashtable *h); 300static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void); 301static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf); 302static int btrfsic_process_superblock(struct btrfsic_state *state, 303 struct btrfs_fs_devices *fs_devices); 304static int btrfsic_process_metablock(struct btrfsic_state *state, 305 struct btrfsic_block *block, 306 struct btrfsic_block_data_ctx *block_ctx, 307 int limit_nesting, int force_iodone_flag); 308static void btrfsic_read_from_block_data( 309 struct btrfsic_block_data_ctx *block_ctx, 310 void *dst, u32 offset, size_t len); 311static int btrfsic_create_link_to_next_block( 312 struct btrfsic_state *state, 313 struct btrfsic_block *block, 314 struct btrfsic_block_data_ctx 315 *block_ctx, u64 next_bytenr, 316 int limit_nesting, 317 struct btrfsic_block_data_ctx *next_block_ctx, 318 struct btrfsic_block **next_blockp, 319 int force_iodone_flag, 320 int *num_copiesp, int *mirror_nump, 321 struct btrfs_disk_key *disk_key, 322 u64 parent_generation); 323static int btrfsic_handle_extent_data(struct btrfsic_state *state, 324 struct btrfsic_block *block, 325 struct btrfsic_block_data_ctx *block_ctx, 326 u32 item_offset, int force_iodone_flag); 327static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 328 struct btrfsic_block_data_ctx *block_ctx_out, 329 int mirror_num); 330static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx); 331static int btrfsic_read_block(struct btrfsic_state *state, 332 struct btrfsic_block_data_ctx *block_ctx); 333static void btrfsic_dump_database(struct btrfsic_state *state); 334static int btrfsic_test_for_metadata(struct btrfsic_state *state, 335 char **datav, unsigned int num_pages); 336static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 337 u64 dev_bytenr, char **mapped_datav, 338 unsigned int num_pages, 339 struct bio *bio, int *bio_is_patched, 340 struct buffer_head *bh, 341 int submit_bio_bh_rw); 342static int btrfsic_process_written_superblock( 343 struct btrfsic_state *state, 344 struct btrfsic_block *const block, 345 struct btrfs_super_block *const super_hdr); 346static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status); 347static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate); 348static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state, 349 const struct btrfsic_block *block, 350 int recursion_level); 351static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 352 struct btrfsic_block *const block, 353 int recursion_level); 354static void btrfsic_print_add_link(const struct btrfsic_state *state, 355 const struct btrfsic_block_link *l); 356static void btrfsic_print_rem_link(const struct btrfsic_state *state, 357 const struct btrfsic_block_link *l); 358static char btrfsic_get_block_type(const struct btrfsic_state *state, 359 const struct btrfsic_block *block); 360static void btrfsic_dump_tree(const struct btrfsic_state *state); 361static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 362 const struct btrfsic_block *block, 363 int indent_level); 364static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 365 struct btrfsic_state *state, 366 struct btrfsic_block_data_ctx *next_block_ctx, 367 struct btrfsic_block *next_block, 368 struct btrfsic_block *from_block, 369 u64 parent_generation); 370static struct btrfsic_block *btrfsic_block_lookup_or_add( 371 struct btrfsic_state *state, 372 struct btrfsic_block_data_ctx *block_ctx, 373 const char *additional_string, 374 int is_metadata, 375 int is_iodone, 376 int never_written, 377 int mirror_num, 378 int *was_created); 379static int btrfsic_process_superblock_dev_mirror( 380 struct btrfsic_state *state, 381 struct btrfsic_dev_state *dev_state, 382 struct btrfs_device *device, 383 int superblock_mirror_num, 384 struct btrfsic_dev_state **selected_dev_state, 385 struct btrfs_super_block *selected_super); 386static struct btrfsic_dev_state *btrfsic_dev_state_lookup( 387 struct block_device *bdev); 388static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 389 u64 bytenr, 390 struct btrfsic_dev_state *dev_state, 391 u64 dev_bytenr); 392 393static struct mutex btrfsic_mutex; 394static int btrfsic_is_initialized; 395static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable; 396 397 398static void btrfsic_block_init(struct btrfsic_block *b) 399{ 400 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER; 401 b->dev_state = NULL; 402 b->dev_bytenr = 0; 403 b->logical_bytenr = 0; 404 b->generation = BTRFSIC_GENERATION_UNKNOWN; 405 b->disk_key.objectid = 0; 406 b->disk_key.type = 0; 407 b->disk_key.offset = 0; 408 b->is_metadata = 0; 409 b->is_superblock = 0; 410 b->is_iodone = 0; 411 b->iodone_w_error = 0; 412 b->never_written = 0; 413 b->mirror_num = 0; 414 b->next_in_same_bio = NULL; 415 b->orig_bio_bh_private = NULL; 416 b->orig_bio_bh_end_io.bio = NULL; 417 INIT_LIST_HEAD(&b->collision_resolving_node); 418 INIT_LIST_HEAD(&b->all_blocks_node); 419 INIT_LIST_HEAD(&b->ref_to_list); 420 INIT_LIST_HEAD(&b->ref_from_list); 421 b->submit_bio_bh_rw = 0; 422 b->flush_gen = 0; 423} 424 425static struct btrfsic_block *btrfsic_block_alloc(void) 426{ 427 struct btrfsic_block *b; 428 429 b = kzalloc(sizeof(*b), GFP_NOFS); 430 if (NULL != b) 431 btrfsic_block_init(b); 432 433 return b; 434} 435 436static void btrfsic_block_free(struct btrfsic_block *b) 437{ 438 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num)); 439 kfree(b); 440} 441 442static void btrfsic_block_link_init(struct btrfsic_block_link *l) 443{ 444 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER; 445 l->ref_cnt = 1; 446 INIT_LIST_HEAD(&l->node_ref_to); 447 INIT_LIST_HEAD(&l->node_ref_from); 448 INIT_LIST_HEAD(&l->collision_resolving_node); 449 l->block_ref_to = NULL; 450 l->block_ref_from = NULL; 451} 452 453static struct btrfsic_block_link *btrfsic_block_link_alloc(void) 454{ 455 struct btrfsic_block_link *l; 456 457 l = kzalloc(sizeof(*l), GFP_NOFS); 458 if (NULL != l) 459 btrfsic_block_link_init(l); 460 461 return l; 462} 463 464static void btrfsic_block_link_free(struct btrfsic_block_link *l) 465{ 466 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num)); 467 kfree(l); 468} 469 470static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds) 471{ 472 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER; 473 ds->bdev = NULL; 474 ds->state = NULL; 475 ds->name[0] = '\0'; 476 INIT_LIST_HEAD(&ds->collision_resolving_node); 477 ds->last_flush_gen = 0; 478 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush); 479 ds->dummy_block_for_bio_bh_flush.is_iodone = 1; 480 ds->dummy_block_for_bio_bh_flush.dev_state = ds; 481} 482 483static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void) 484{ 485 struct btrfsic_dev_state *ds; 486 487 ds = kzalloc(sizeof(*ds), GFP_NOFS); 488 if (NULL != ds) 489 btrfsic_dev_state_init(ds); 490 491 return ds; 492} 493 494static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds) 495{ 496 BUG_ON(!(NULL == ds || 497 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num)); 498 kfree(ds); 499} 500 501static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h) 502{ 503 int i; 504 505 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++) 506 INIT_LIST_HEAD(h->table + i); 507} 508 509static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 510 struct btrfsic_block_hashtable *h) 511{ 512 const unsigned int hashval = 513 (((unsigned int)(b->dev_bytenr >> 16)) ^ 514 ((unsigned int)((uintptr_t)b->dev_state->bdev))) & 515 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 516 517 list_add(&b->collision_resolving_node, h->table + hashval); 518} 519 520static void btrfsic_block_hashtable_remove(struct btrfsic_block *b) 521{ 522 list_del(&b->collision_resolving_node); 523} 524 525static struct btrfsic_block *btrfsic_block_hashtable_lookup( 526 struct block_device *bdev, 527 u64 dev_bytenr, 528 struct btrfsic_block_hashtable *h) 529{ 530 const unsigned int hashval = 531 (((unsigned int)(dev_bytenr >> 16)) ^ 532 ((unsigned int)((uintptr_t)bdev))) & 533 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 534 struct list_head *elem; 535 536 list_for_each(elem, h->table + hashval) { 537 struct btrfsic_block *const b = 538 list_entry(elem, struct btrfsic_block, 539 collision_resolving_node); 540 541 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr) 542 return b; 543 } 544 545 return NULL; 546} 547 548static void btrfsic_block_link_hashtable_init( 549 struct btrfsic_block_link_hashtable *h) 550{ 551 int i; 552 553 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++) 554 INIT_LIST_HEAD(h->table + i); 555} 556 557static void btrfsic_block_link_hashtable_add( 558 struct btrfsic_block_link *l, 559 struct btrfsic_block_link_hashtable *h) 560{ 561 const unsigned int hashval = 562 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^ 563 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^ 564 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^ 565 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev))) 566 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 567 568 BUG_ON(NULL == l->block_ref_to); 569 BUG_ON(NULL == l->block_ref_from); 570 list_add(&l->collision_resolving_node, h->table + hashval); 571} 572 573static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l) 574{ 575 list_del(&l->collision_resolving_node); 576} 577 578static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 579 struct block_device *bdev_ref_to, 580 u64 dev_bytenr_ref_to, 581 struct block_device *bdev_ref_from, 582 u64 dev_bytenr_ref_from, 583 struct btrfsic_block_link_hashtable *h) 584{ 585 const unsigned int hashval = 586 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^ 587 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^ 588 ((unsigned int)((uintptr_t)bdev_ref_to)) ^ 589 ((unsigned int)((uintptr_t)bdev_ref_from))) & 590 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 591 struct list_head *elem; 592 593 list_for_each(elem, h->table + hashval) { 594 struct btrfsic_block_link *const l = 595 list_entry(elem, struct btrfsic_block_link, 596 collision_resolving_node); 597 598 BUG_ON(NULL == l->block_ref_to); 599 BUG_ON(NULL == l->block_ref_from); 600 if (l->block_ref_to->dev_state->bdev == bdev_ref_to && 601 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to && 602 l->block_ref_from->dev_state->bdev == bdev_ref_from && 603 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from) 604 return l; 605 } 606 607 return NULL; 608} 609 610static void btrfsic_dev_state_hashtable_init( 611 struct btrfsic_dev_state_hashtable *h) 612{ 613 int i; 614 615 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++) 616 INIT_LIST_HEAD(h->table + i); 617} 618 619static void btrfsic_dev_state_hashtable_add( 620 struct btrfsic_dev_state *ds, 621 struct btrfsic_dev_state_hashtable *h) 622{ 623 const unsigned int hashval = 624 (((unsigned int)((uintptr_t)ds->bdev)) & 625 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 626 627 list_add(&ds->collision_resolving_node, h->table + hashval); 628} 629 630static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds) 631{ 632 list_del(&ds->collision_resolving_node); 633} 634 635static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( 636 struct block_device *bdev, 637 struct btrfsic_dev_state_hashtable *h) 638{ 639 const unsigned int hashval = 640 (((unsigned int)((uintptr_t)bdev)) & 641 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 642 struct list_head *elem; 643 644 list_for_each(elem, h->table + hashval) { 645 struct btrfsic_dev_state *const ds = 646 list_entry(elem, struct btrfsic_dev_state, 647 collision_resolving_node); 648 649 if (ds->bdev == bdev) 650 return ds; 651 } 652 653 return NULL; 654} 655 656static int btrfsic_process_superblock(struct btrfsic_state *state, 657 struct btrfs_fs_devices *fs_devices) 658{ 659 int ret = 0; 660 struct btrfs_super_block *selected_super; 661 struct list_head *dev_head = &fs_devices->devices; 662 struct btrfs_device *device; 663 struct btrfsic_dev_state *selected_dev_state = NULL; 664 int pass; 665 666 BUG_ON(NULL == state); 667 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS); 668 if (NULL == selected_super) { 669 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 670 return -1; 671 } 672 673 list_for_each_entry(device, dev_head, dev_list) { 674 int i; 675 struct btrfsic_dev_state *dev_state; 676 677 if (!device->bdev || !device->name) 678 continue; 679 680 dev_state = btrfsic_dev_state_lookup(device->bdev); 681 BUG_ON(NULL == dev_state); 682 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 683 ret = btrfsic_process_superblock_dev_mirror( 684 state, dev_state, device, i, 685 &selected_dev_state, selected_super); 686 if (0 != ret && 0 == i) { 687 kfree(selected_super); 688 return ret; 689 } 690 } 691 } 692 693 if (NULL == state->latest_superblock) { 694 printk(KERN_INFO "btrfsic: no superblock found!\n"); 695 kfree(selected_super); 696 return -1; 697 } 698 699 state->csum_size = btrfs_super_csum_size(selected_super); 700 701 for (pass = 0; pass < 3; pass++) { 702 int num_copies; 703 int mirror_num; 704 u64 next_bytenr; 705 706 switch (pass) { 707 case 0: 708 next_bytenr = btrfs_super_root(selected_super); 709 if (state->print_mask & 710 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 711 printk(KERN_INFO "root@%llu\n", next_bytenr); 712 break; 713 case 1: 714 next_bytenr = btrfs_super_chunk_root(selected_super); 715 if (state->print_mask & 716 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 717 printk(KERN_INFO "chunk@%llu\n", next_bytenr); 718 break; 719 case 2: 720 next_bytenr = btrfs_super_log_root(selected_super); 721 if (0 == next_bytenr) 722 continue; 723 if (state->print_mask & 724 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 725 printk(KERN_INFO "log@%llu\n", next_bytenr); 726 break; 727 } 728 729 num_copies = 730 btrfs_num_copies(state->root->fs_info, 731 next_bytenr, state->metablock_size); 732 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 733 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 734 next_bytenr, num_copies); 735 736 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 737 struct btrfsic_block *next_block; 738 struct btrfsic_block_data_ctx tmp_next_block_ctx; 739 struct btrfsic_block_link *l; 740 741 ret = btrfsic_map_block(state, next_bytenr, 742 state->metablock_size, 743 &tmp_next_block_ctx, 744 mirror_num); 745 if (ret) { 746 printk(KERN_INFO "btrfsic:" 747 " btrfsic_map_block(root @%llu," 748 " mirror %d) failed!\n", 749 next_bytenr, mirror_num); 750 kfree(selected_super); 751 return -1; 752 } 753 754 next_block = btrfsic_block_hashtable_lookup( 755 tmp_next_block_ctx.dev->bdev, 756 tmp_next_block_ctx.dev_bytenr, 757 &state->block_hashtable); 758 BUG_ON(NULL == next_block); 759 760 l = btrfsic_block_link_hashtable_lookup( 761 tmp_next_block_ctx.dev->bdev, 762 tmp_next_block_ctx.dev_bytenr, 763 state->latest_superblock->dev_state-> 764 bdev, 765 state->latest_superblock->dev_bytenr, 766 &state->block_link_hashtable); 767 BUG_ON(NULL == l); 768 769 ret = btrfsic_read_block(state, &tmp_next_block_ctx); 770 if (ret < (int)PAGE_CACHE_SIZE) { 771 printk(KERN_INFO 772 "btrfsic: read @logical %llu failed!\n", 773 tmp_next_block_ctx.start); 774 btrfsic_release_block_ctx(&tmp_next_block_ctx); 775 kfree(selected_super); 776 return -1; 777 } 778 779 ret = btrfsic_process_metablock(state, 780 next_block, 781 &tmp_next_block_ctx, 782 BTRFS_MAX_LEVEL + 3, 1); 783 btrfsic_release_block_ctx(&tmp_next_block_ctx); 784 } 785 } 786 787 kfree(selected_super); 788 return ret; 789} 790 791static int btrfsic_process_superblock_dev_mirror( 792 struct btrfsic_state *state, 793 struct btrfsic_dev_state *dev_state, 794 struct btrfs_device *device, 795 int superblock_mirror_num, 796 struct btrfsic_dev_state **selected_dev_state, 797 struct btrfs_super_block *selected_super) 798{ 799 struct btrfs_super_block *super_tmp; 800 u64 dev_bytenr; 801 struct buffer_head *bh; 802 struct btrfsic_block *superblock_tmp; 803 int pass; 804 struct block_device *const superblock_bdev = device->bdev; 805 806 /* super block bytenr is always the unmapped device bytenr */ 807 dev_bytenr = btrfs_sb_offset(superblock_mirror_num); 808 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes) 809 return -1; 810 bh = __bread(superblock_bdev, dev_bytenr / 4096, 811 BTRFS_SUPER_INFO_SIZE); 812 if (NULL == bh) 813 return -1; 814 super_tmp = (struct btrfs_super_block *) 815 (bh->b_data + (dev_bytenr & 4095)); 816 817 if (btrfs_super_bytenr(super_tmp) != dev_bytenr || 818 btrfs_super_magic(super_tmp) != BTRFS_MAGIC || 819 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) || 820 btrfs_super_nodesize(super_tmp) != state->metablock_size || 821 btrfs_super_sectorsize(super_tmp) != state->datablock_size) { 822 brelse(bh); 823 return 0; 824 } 825 826 superblock_tmp = 827 btrfsic_block_hashtable_lookup(superblock_bdev, 828 dev_bytenr, 829 &state->block_hashtable); 830 if (NULL == superblock_tmp) { 831 superblock_tmp = btrfsic_block_alloc(); 832 if (NULL == superblock_tmp) { 833 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 834 brelse(bh); 835 return -1; 836 } 837 /* for superblock, only the dev_bytenr makes sense */ 838 superblock_tmp->dev_bytenr = dev_bytenr; 839 superblock_tmp->dev_state = dev_state; 840 superblock_tmp->logical_bytenr = dev_bytenr; 841 superblock_tmp->generation = btrfs_super_generation(super_tmp); 842 superblock_tmp->is_metadata = 1; 843 superblock_tmp->is_superblock = 1; 844 superblock_tmp->is_iodone = 1; 845 superblock_tmp->never_written = 0; 846 superblock_tmp->mirror_num = 1 + superblock_mirror_num; 847 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 848 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)" 849 " @%llu (%s/%llu/%d)\n", 850 superblock_bdev, 851 rcu_str_deref(device->name), dev_bytenr, 852 dev_state->name, dev_bytenr, 853 superblock_mirror_num); 854 list_add(&superblock_tmp->all_blocks_node, 855 &state->all_blocks_list); 856 btrfsic_block_hashtable_add(superblock_tmp, 857 &state->block_hashtable); 858 } 859 860 /* select the one with the highest generation field */ 861 if (btrfs_super_generation(super_tmp) > 862 state->max_superblock_generation || 863 0 == state->max_superblock_generation) { 864 memcpy(selected_super, super_tmp, sizeof(*selected_super)); 865 *selected_dev_state = dev_state; 866 state->max_superblock_generation = 867 btrfs_super_generation(super_tmp); 868 state->latest_superblock = superblock_tmp; 869 } 870 871 for (pass = 0; pass < 3; pass++) { 872 u64 next_bytenr; 873 int num_copies; 874 int mirror_num; 875 const char *additional_string = NULL; 876 struct btrfs_disk_key tmp_disk_key; 877 878 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY; 879 tmp_disk_key.offset = 0; 880 switch (pass) { 881 case 0: 882 btrfs_set_disk_key_objectid(&tmp_disk_key, 883 BTRFS_ROOT_TREE_OBJECTID); 884 additional_string = "initial root "; 885 next_bytenr = btrfs_super_root(super_tmp); 886 break; 887 case 1: 888 btrfs_set_disk_key_objectid(&tmp_disk_key, 889 BTRFS_CHUNK_TREE_OBJECTID); 890 additional_string = "initial chunk "; 891 next_bytenr = btrfs_super_chunk_root(super_tmp); 892 break; 893 case 2: 894 btrfs_set_disk_key_objectid(&tmp_disk_key, 895 BTRFS_TREE_LOG_OBJECTID); 896 additional_string = "initial log "; 897 next_bytenr = btrfs_super_log_root(super_tmp); 898 if (0 == next_bytenr) 899 continue; 900 break; 901 } 902 903 num_copies = 904 btrfs_num_copies(state->root->fs_info, 905 next_bytenr, state->metablock_size); 906 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 907 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 908 next_bytenr, num_copies); 909 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 910 struct btrfsic_block *next_block; 911 struct btrfsic_block_data_ctx tmp_next_block_ctx; 912 struct btrfsic_block_link *l; 913 914 if (btrfsic_map_block(state, next_bytenr, 915 state->metablock_size, 916 &tmp_next_block_ctx, 917 mirror_num)) { 918 printk(KERN_INFO "btrfsic: btrfsic_map_block(" 919 "bytenr @%llu, mirror %d) failed!\n", 920 next_bytenr, mirror_num); 921 brelse(bh); 922 return -1; 923 } 924 925 next_block = btrfsic_block_lookup_or_add( 926 state, &tmp_next_block_ctx, 927 additional_string, 1, 1, 0, 928 mirror_num, NULL); 929 if (NULL == next_block) { 930 btrfsic_release_block_ctx(&tmp_next_block_ctx); 931 brelse(bh); 932 return -1; 933 } 934 935 next_block->disk_key = tmp_disk_key; 936 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 937 l = btrfsic_block_link_lookup_or_add( 938 state, &tmp_next_block_ctx, 939 next_block, superblock_tmp, 940 BTRFSIC_GENERATION_UNKNOWN); 941 btrfsic_release_block_ctx(&tmp_next_block_ctx); 942 if (NULL == l) { 943 brelse(bh); 944 return -1; 945 } 946 } 947 } 948 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES) 949 btrfsic_dump_tree_sub(state, superblock_tmp, 0); 950 951 brelse(bh); 952 return 0; 953} 954 955static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void) 956{ 957 struct btrfsic_stack_frame *sf; 958 959 sf = kzalloc(sizeof(*sf), GFP_NOFS); 960 if (NULL == sf) 961 printk(KERN_INFO "btrfsic: alloc memory failed!\n"); 962 else 963 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER; 964 return sf; 965} 966 967static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf) 968{ 969 BUG_ON(!(NULL == sf || 970 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic)); 971 kfree(sf); 972} 973 974static int btrfsic_process_metablock( 975 struct btrfsic_state *state, 976 struct btrfsic_block *const first_block, 977 struct btrfsic_block_data_ctx *const first_block_ctx, 978 int first_limit_nesting, int force_iodone_flag) 979{ 980 struct btrfsic_stack_frame initial_stack_frame = { 0 }; 981 struct btrfsic_stack_frame *sf; 982 struct btrfsic_stack_frame *next_stack; 983 struct btrfs_header *const first_hdr = 984 (struct btrfs_header *)first_block_ctx->datav[0]; 985 986 BUG_ON(!first_hdr); 987 sf = &initial_stack_frame; 988 sf->error = 0; 989 sf->i = -1; 990 sf->limit_nesting = first_limit_nesting; 991 sf->block = first_block; 992 sf->block_ctx = first_block_ctx; 993 sf->next_block = NULL; 994 sf->hdr = first_hdr; 995 sf->prev = NULL; 996 997continue_with_new_stack_frame: 998 sf->block->generation = le64_to_cpu(sf->hdr->generation); 999 if (0 == sf->hdr->level) { 1000 struct btrfs_leaf *const leafhdr = 1001 (struct btrfs_leaf *)sf->hdr; 1002 1003 if (-1 == sf->i) { 1004 sf->nr = btrfs_stack_header_nritems(&leafhdr->header); 1005 1006 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1007 printk(KERN_INFO 1008 "leaf %llu items %d generation %llu" 1009 " owner %llu\n", 1010 sf->block_ctx->start, sf->nr, 1011 btrfs_stack_header_generation( 1012 &leafhdr->header), 1013 btrfs_stack_header_owner( 1014 &leafhdr->header)); 1015 } 1016 1017continue_with_current_leaf_stack_frame: 1018 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1019 sf->i++; 1020 sf->num_copies = 0; 1021 } 1022 1023 if (sf->i < sf->nr) { 1024 struct btrfs_item disk_item; 1025 u32 disk_item_offset = 1026 (uintptr_t)(leafhdr->items + sf->i) - 1027 (uintptr_t)leafhdr; 1028 struct btrfs_disk_key *disk_key; 1029 u8 type; 1030 u32 item_offset; 1031 u32 item_size; 1032 1033 if (disk_item_offset + sizeof(struct btrfs_item) > 1034 sf->block_ctx->len) { 1035leaf_item_out_of_bounce_error: 1036 printk(KERN_INFO 1037 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n", 1038 sf->block_ctx->start, 1039 sf->block_ctx->dev->name); 1040 goto one_stack_frame_backwards; 1041 } 1042 btrfsic_read_from_block_data(sf->block_ctx, 1043 &disk_item, 1044 disk_item_offset, 1045 sizeof(struct btrfs_item)); 1046 item_offset = btrfs_stack_item_offset(&disk_item); 1047 item_size = btrfs_stack_item_size(&disk_item); 1048 disk_key = &disk_item.key; 1049 type = btrfs_disk_key_type(disk_key); 1050 1051 if (BTRFS_ROOT_ITEM_KEY == type) { 1052 struct btrfs_root_item root_item; 1053 u32 root_item_offset; 1054 u64 next_bytenr; 1055 1056 root_item_offset = item_offset + 1057 offsetof(struct btrfs_leaf, items); 1058 if (root_item_offset + item_size > 1059 sf->block_ctx->len) 1060 goto leaf_item_out_of_bounce_error; 1061 btrfsic_read_from_block_data( 1062 sf->block_ctx, &root_item, 1063 root_item_offset, 1064 item_size); 1065 next_bytenr = btrfs_root_bytenr(&root_item); 1066 1067 sf->error = 1068 btrfsic_create_link_to_next_block( 1069 state, 1070 sf->block, 1071 sf->block_ctx, 1072 next_bytenr, 1073 sf->limit_nesting, 1074 &sf->next_block_ctx, 1075 &sf->next_block, 1076 force_iodone_flag, 1077 &sf->num_copies, 1078 &sf->mirror_num, 1079 disk_key, 1080 btrfs_root_generation( 1081 &root_item)); 1082 if (sf->error) 1083 goto one_stack_frame_backwards; 1084 1085 if (NULL != sf->next_block) { 1086 struct btrfs_header *const next_hdr = 1087 (struct btrfs_header *) 1088 sf->next_block_ctx.datav[0]; 1089 1090 next_stack = 1091 btrfsic_stack_frame_alloc(); 1092 if (NULL == next_stack) { 1093 sf->error = -1; 1094 btrfsic_release_block_ctx( 1095 &sf-> 1096 next_block_ctx); 1097 goto one_stack_frame_backwards; 1098 } 1099 1100 next_stack->i = -1; 1101 next_stack->block = sf->next_block; 1102 next_stack->block_ctx = 1103 &sf->next_block_ctx; 1104 next_stack->next_block = NULL; 1105 next_stack->hdr = next_hdr; 1106 next_stack->limit_nesting = 1107 sf->limit_nesting - 1; 1108 next_stack->prev = sf; 1109 sf = next_stack; 1110 goto continue_with_new_stack_frame; 1111 } 1112 } else if (BTRFS_EXTENT_DATA_KEY == type && 1113 state->include_extent_data) { 1114 sf->error = btrfsic_handle_extent_data( 1115 state, 1116 sf->block, 1117 sf->block_ctx, 1118 item_offset, 1119 force_iodone_flag); 1120 if (sf->error) 1121 goto one_stack_frame_backwards; 1122 } 1123 1124 goto continue_with_current_leaf_stack_frame; 1125 } 1126 } else { 1127 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr; 1128 1129 if (-1 == sf->i) { 1130 sf->nr = btrfs_stack_header_nritems(&nodehdr->header); 1131 1132 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1133 printk(KERN_INFO "node %llu level %d items %d" 1134 " generation %llu owner %llu\n", 1135 sf->block_ctx->start, 1136 nodehdr->header.level, sf->nr, 1137 btrfs_stack_header_generation( 1138 &nodehdr->header), 1139 btrfs_stack_header_owner( 1140 &nodehdr->header)); 1141 } 1142 1143continue_with_current_node_stack_frame: 1144 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1145 sf->i++; 1146 sf->num_copies = 0; 1147 } 1148 1149 if (sf->i < sf->nr) { 1150 struct btrfs_key_ptr key_ptr; 1151 u32 key_ptr_offset; 1152 u64 next_bytenr; 1153 1154 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) - 1155 (uintptr_t)nodehdr; 1156 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) > 1157 sf->block_ctx->len) { 1158 printk(KERN_INFO 1159 "btrfsic: node item out of bounce at logical %llu, dev %s\n", 1160 sf->block_ctx->start, 1161 sf->block_ctx->dev->name); 1162 goto one_stack_frame_backwards; 1163 } 1164 btrfsic_read_from_block_data( 1165 sf->block_ctx, &key_ptr, key_ptr_offset, 1166 sizeof(struct btrfs_key_ptr)); 1167 next_bytenr = btrfs_stack_key_blockptr(&key_ptr); 1168 1169 sf->error = btrfsic_create_link_to_next_block( 1170 state, 1171 sf->block, 1172 sf->block_ctx, 1173 next_bytenr, 1174 sf->limit_nesting, 1175 &sf->next_block_ctx, 1176 &sf->next_block, 1177 force_iodone_flag, 1178 &sf->num_copies, 1179 &sf->mirror_num, 1180 &key_ptr.key, 1181 btrfs_stack_key_generation(&key_ptr)); 1182 if (sf->error) 1183 goto one_stack_frame_backwards; 1184 1185 if (NULL != sf->next_block) { 1186 struct btrfs_header *const next_hdr = 1187 (struct btrfs_header *) 1188 sf->next_block_ctx.datav[0]; 1189 1190 next_stack = btrfsic_stack_frame_alloc(); 1191 if (NULL == next_stack) { 1192 sf->error = -1; 1193 goto one_stack_frame_backwards; 1194 } 1195 1196 next_stack->i = -1; 1197 next_stack->block = sf->next_block; 1198 next_stack->block_ctx = &sf->next_block_ctx; 1199 next_stack->next_block = NULL; 1200 next_stack->hdr = next_hdr; 1201 next_stack->limit_nesting = 1202 sf->limit_nesting - 1; 1203 next_stack->prev = sf; 1204 sf = next_stack; 1205 goto continue_with_new_stack_frame; 1206 } 1207 1208 goto continue_with_current_node_stack_frame; 1209 } 1210 } 1211 1212one_stack_frame_backwards: 1213 if (NULL != sf->prev) { 1214 struct btrfsic_stack_frame *const prev = sf->prev; 1215 1216 /* the one for the initial block is freed in the caller */ 1217 btrfsic_release_block_ctx(sf->block_ctx); 1218 1219 if (sf->error) { 1220 prev->error = sf->error; 1221 btrfsic_stack_frame_free(sf); 1222 sf = prev; 1223 goto one_stack_frame_backwards; 1224 } 1225 1226 btrfsic_stack_frame_free(sf); 1227 sf = prev; 1228 goto continue_with_new_stack_frame; 1229 } else { 1230 BUG_ON(&initial_stack_frame != sf); 1231 } 1232 1233 return sf->error; 1234} 1235 1236static void btrfsic_read_from_block_data( 1237 struct btrfsic_block_data_ctx *block_ctx, 1238 void *dstv, u32 offset, size_t len) 1239{ 1240 size_t cur; 1241 size_t offset_in_page; 1242 char *kaddr; 1243 char *dst = (char *)dstv; 1244 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1); 1245 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT; 1246 1247 WARN_ON(offset + len > block_ctx->len); 1248 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1); 1249 1250 while (len > 0) { 1251 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page)); 1252 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_CACHE_SIZE)); 1253 kaddr = block_ctx->datav[i]; 1254 memcpy(dst, kaddr + offset_in_page, cur); 1255 1256 dst += cur; 1257 len -= cur; 1258 offset_in_page = 0; 1259 i++; 1260 } 1261} 1262 1263static int btrfsic_create_link_to_next_block( 1264 struct btrfsic_state *state, 1265 struct btrfsic_block *block, 1266 struct btrfsic_block_data_ctx *block_ctx, 1267 u64 next_bytenr, 1268 int limit_nesting, 1269 struct btrfsic_block_data_ctx *next_block_ctx, 1270 struct btrfsic_block **next_blockp, 1271 int force_iodone_flag, 1272 int *num_copiesp, int *mirror_nump, 1273 struct btrfs_disk_key *disk_key, 1274 u64 parent_generation) 1275{ 1276 struct btrfsic_block *next_block = NULL; 1277 int ret; 1278 struct btrfsic_block_link *l; 1279 int did_alloc_block_link; 1280 int block_was_created; 1281 1282 *next_blockp = NULL; 1283 if (0 == *num_copiesp) { 1284 *num_copiesp = 1285 btrfs_num_copies(state->root->fs_info, 1286 next_bytenr, state->metablock_size); 1287 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1288 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 1289 next_bytenr, *num_copiesp); 1290 *mirror_nump = 1; 1291 } 1292 1293 if (*mirror_nump > *num_copiesp) 1294 return 0; 1295 1296 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1297 printk(KERN_INFO 1298 "btrfsic_create_link_to_next_block(mirror_num=%d)\n", 1299 *mirror_nump); 1300 ret = btrfsic_map_block(state, next_bytenr, 1301 state->metablock_size, 1302 next_block_ctx, *mirror_nump); 1303 if (ret) { 1304 printk(KERN_INFO 1305 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1306 next_bytenr, *mirror_nump); 1307 btrfsic_release_block_ctx(next_block_ctx); 1308 *next_blockp = NULL; 1309 return -1; 1310 } 1311 1312 next_block = btrfsic_block_lookup_or_add(state, 1313 next_block_ctx, "referenced ", 1314 1, force_iodone_flag, 1315 !force_iodone_flag, 1316 *mirror_nump, 1317 &block_was_created); 1318 if (NULL == next_block) { 1319 btrfsic_release_block_ctx(next_block_ctx); 1320 *next_blockp = NULL; 1321 return -1; 1322 } 1323 if (block_was_created) { 1324 l = NULL; 1325 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 1326 } else { 1327 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) { 1328 if (next_block->logical_bytenr != next_bytenr && 1329 !(!next_block->is_metadata && 1330 0 == next_block->logical_bytenr)) 1331 printk(KERN_INFO 1332 "Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n", 1333 next_bytenr, next_block_ctx->dev->name, 1334 next_block_ctx->dev_bytenr, *mirror_nump, 1335 btrfsic_get_block_type(state, 1336 next_block), 1337 next_block->logical_bytenr); 1338 else 1339 printk(KERN_INFO 1340 "Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1341 next_bytenr, next_block_ctx->dev->name, 1342 next_block_ctx->dev_bytenr, *mirror_nump, 1343 btrfsic_get_block_type(state, 1344 next_block)); 1345 } 1346 next_block->logical_bytenr = next_bytenr; 1347 1348 next_block->mirror_num = *mirror_nump; 1349 l = btrfsic_block_link_hashtable_lookup( 1350 next_block_ctx->dev->bdev, 1351 next_block_ctx->dev_bytenr, 1352 block_ctx->dev->bdev, 1353 block_ctx->dev_bytenr, 1354 &state->block_link_hashtable); 1355 } 1356 1357 next_block->disk_key = *disk_key; 1358 if (NULL == l) { 1359 l = btrfsic_block_link_alloc(); 1360 if (NULL == l) { 1361 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 1362 btrfsic_release_block_ctx(next_block_ctx); 1363 *next_blockp = NULL; 1364 return -1; 1365 } 1366 1367 did_alloc_block_link = 1; 1368 l->block_ref_to = next_block; 1369 l->block_ref_from = block; 1370 l->ref_cnt = 1; 1371 l->parent_generation = parent_generation; 1372 1373 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1374 btrfsic_print_add_link(state, l); 1375 1376 list_add(&l->node_ref_to, &block->ref_to_list); 1377 list_add(&l->node_ref_from, &next_block->ref_from_list); 1378 1379 btrfsic_block_link_hashtable_add(l, 1380 &state->block_link_hashtable); 1381 } else { 1382 did_alloc_block_link = 0; 1383 if (0 == limit_nesting) { 1384 l->ref_cnt++; 1385 l->parent_generation = parent_generation; 1386 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1387 btrfsic_print_add_link(state, l); 1388 } 1389 } 1390 1391 if (limit_nesting > 0 && did_alloc_block_link) { 1392 ret = btrfsic_read_block(state, next_block_ctx); 1393 if (ret < (int)next_block_ctx->len) { 1394 printk(KERN_INFO 1395 "btrfsic: read block @logical %llu failed!\n", 1396 next_bytenr); 1397 btrfsic_release_block_ctx(next_block_ctx); 1398 *next_blockp = NULL; 1399 return -1; 1400 } 1401 1402 *next_blockp = next_block; 1403 } else { 1404 *next_blockp = NULL; 1405 } 1406 (*mirror_nump)++; 1407 1408 return 0; 1409} 1410 1411static int btrfsic_handle_extent_data( 1412 struct btrfsic_state *state, 1413 struct btrfsic_block *block, 1414 struct btrfsic_block_data_ctx *block_ctx, 1415 u32 item_offset, int force_iodone_flag) 1416{ 1417 int ret; 1418 struct btrfs_file_extent_item file_extent_item; 1419 u64 file_extent_item_offset; 1420 u64 next_bytenr; 1421 u64 num_bytes; 1422 u64 generation; 1423 struct btrfsic_block_link *l; 1424 1425 file_extent_item_offset = offsetof(struct btrfs_leaf, items) + 1426 item_offset; 1427 if (file_extent_item_offset + 1428 offsetof(struct btrfs_file_extent_item, disk_num_bytes) > 1429 block_ctx->len) { 1430 printk(KERN_INFO 1431 "btrfsic: file item out of bounce at logical %llu, dev %s\n", 1432 block_ctx->start, block_ctx->dev->name); 1433 return -1; 1434 } 1435 1436 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1437 file_extent_item_offset, 1438 offsetof(struct btrfs_file_extent_item, disk_num_bytes)); 1439 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type || 1440 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) { 1441 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1442 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n", 1443 file_extent_item.type, 1444 btrfs_stack_file_extent_disk_bytenr( 1445 &file_extent_item)); 1446 return 0; 1447 } 1448 1449 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) > 1450 block_ctx->len) { 1451 printk(KERN_INFO 1452 "btrfsic: file item out of bounce at logical %llu, dev %s\n", 1453 block_ctx->start, block_ctx->dev->name); 1454 return -1; 1455 } 1456 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1457 file_extent_item_offset, 1458 sizeof(struct btrfs_file_extent_item)); 1459 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item); 1460 if (btrfs_stack_file_extent_compression(&file_extent_item) == 1461 BTRFS_COMPRESS_NONE) { 1462 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item); 1463 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item); 1464 } else { 1465 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item); 1466 } 1467 generation = btrfs_stack_file_extent_generation(&file_extent_item); 1468 1469 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1470 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu," 1471 " offset = %llu, num_bytes = %llu\n", 1472 file_extent_item.type, 1473 btrfs_stack_file_extent_disk_bytenr(&file_extent_item), 1474 btrfs_stack_file_extent_offset(&file_extent_item), 1475 num_bytes); 1476 while (num_bytes > 0) { 1477 u32 chunk_len; 1478 int num_copies; 1479 int mirror_num; 1480 1481 if (num_bytes > state->datablock_size) 1482 chunk_len = state->datablock_size; 1483 else 1484 chunk_len = num_bytes; 1485 1486 num_copies = 1487 btrfs_num_copies(state->root->fs_info, 1488 next_bytenr, state->datablock_size); 1489 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1490 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 1491 next_bytenr, num_copies); 1492 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 1493 struct btrfsic_block_data_ctx next_block_ctx; 1494 struct btrfsic_block *next_block; 1495 int block_was_created; 1496 1497 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1498 printk(KERN_INFO "btrfsic_handle_extent_data(" 1499 "mirror_num=%d)\n", mirror_num); 1500 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1501 printk(KERN_INFO 1502 "\tdisk_bytenr = %llu, num_bytes %u\n", 1503 next_bytenr, chunk_len); 1504 ret = btrfsic_map_block(state, next_bytenr, 1505 chunk_len, &next_block_ctx, 1506 mirror_num); 1507 if (ret) { 1508 printk(KERN_INFO 1509 "btrfsic: btrfsic_map_block(@%llu," 1510 " mirror=%d) failed!\n", 1511 next_bytenr, mirror_num); 1512 return -1; 1513 } 1514 1515 next_block = btrfsic_block_lookup_or_add( 1516 state, 1517 &next_block_ctx, 1518 "referenced ", 1519 0, 1520 force_iodone_flag, 1521 !force_iodone_flag, 1522 mirror_num, 1523 &block_was_created); 1524 if (NULL == next_block) { 1525 printk(KERN_INFO 1526 "btrfsic: error, kmalloc failed!\n"); 1527 btrfsic_release_block_ctx(&next_block_ctx); 1528 return -1; 1529 } 1530 if (!block_was_created) { 1531 if ((state->print_mask & 1532 BTRFSIC_PRINT_MASK_VERBOSE) && 1533 next_block->logical_bytenr != next_bytenr && 1534 !(!next_block->is_metadata && 1535 0 == next_block->logical_bytenr)) { 1536 printk(KERN_INFO 1537 "Referenced block" 1538 " @%llu (%s/%llu/%d)" 1539 " found in hash table, D," 1540 " bytenr mismatch" 1541 " (!= stored %llu).\n", 1542 next_bytenr, 1543 next_block_ctx.dev->name, 1544 next_block_ctx.dev_bytenr, 1545 mirror_num, 1546 next_block->logical_bytenr); 1547 } 1548 next_block->logical_bytenr = next_bytenr; 1549 next_block->mirror_num = mirror_num; 1550 } 1551 1552 l = btrfsic_block_link_lookup_or_add(state, 1553 &next_block_ctx, 1554 next_block, block, 1555 generation); 1556 btrfsic_release_block_ctx(&next_block_ctx); 1557 if (NULL == l) 1558 return -1; 1559 } 1560 1561 next_bytenr += chunk_len; 1562 num_bytes -= chunk_len; 1563 } 1564 1565 return 0; 1566} 1567 1568static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 1569 struct btrfsic_block_data_ctx *block_ctx_out, 1570 int mirror_num) 1571{ 1572 int ret; 1573 u64 length; 1574 struct btrfs_bio *multi = NULL; 1575 struct btrfs_device *device; 1576 1577 length = len; 1578 ret = btrfs_map_block(state->root->fs_info, READ, 1579 bytenr, &length, &multi, mirror_num); 1580 1581 if (ret) { 1582 block_ctx_out->start = 0; 1583 block_ctx_out->dev_bytenr = 0; 1584 block_ctx_out->len = 0; 1585 block_ctx_out->dev = NULL; 1586 block_ctx_out->datav = NULL; 1587 block_ctx_out->pagev = NULL; 1588 block_ctx_out->mem_to_free = NULL; 1589 1590 return ret; 1591 } 1592 1593 device = multi->stripes[0].dev; 1594 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev); 1595 block_ctx_out->dev_bytenr = multi->stripes[0].physical; 1596 block_ctx_out->start = bytenr; 1597 block_ctx_out->len = len; 1598 block_ctx_out->datav = NULL; 1599 block_ctx_out->pagev = NULL; 1600 block_ctx_out->mem_to_free = NULL; 1601 1602 kfree(multi); 1603 if (NULL == block_ctx_out->dev) { 1604 ret = -ENXIO; 1605 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n"); 1606 } 1607 1608 return ret; 1609} 1610 1611static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx) 1612{ 1613 if (block_ctx->mem_to_free) { 1614 unsigned int num_pages; 1615 1616 BUG_ON(!block_ctx->datav); 1617 BUG_ON(!block_ctx->pagev); 1618 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >> 1619 PAGE_CACHE_SHIFT; 1620 while (num_pages > 0) { 1621 num_pages--; 1622 if (block_ctx->datav[num_pages]) { 1623 kunmap(block_ctx->pagev[num_pages]); 1624 block_ctx->datav[num_pages] = NULL; 1625 } 1626 if (block_ctx->pagev[num_pages]) { 1627 __free_page(block_ctx->pagev[num_pages]); 1628 block_ctx->pagev[num_pages] = NULL; 1629 } 1630 } 1631 1632 kfree(block_ctx->mem_to_free); 1633 block_ctx->mem_to_free = NULL; 1634 block_ctx->pagev = NULL; 1635 block_ctx->datav = NULL; 1636 } 1637} 1638 1639static int btrfsic_read_block(struct btrfsic_state *state, 1640 struct btrfsic_block_data_ctx *block_ctx) 1641{ 1642 unsigned int num_pages; 1643 unsigned int i; 1644 u64 dev_bytenr; 1645 int ret; 1646 1647 BUG_ON(block_ctx->datav); 1648 BUG_ON(block_ctx->pagev); 1649 BUG_ON(block_ctx->mem_to_free); 1650 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) { 1651 printk(KERN_INFO 1652 "btrfsic: read_block() with unaligned bytenr %llu\n", 1653 block_ctx->dev_bytenr); 1654 return -1; 1655 } 1656 1657 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >> 1658 PAGE_CACHE_SHIFT; 1659 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) + 1660 sizeof(*block_ctx->pagev)) * 1661 num_pages, GFP_NOFS); 1662 if (!block_ctx->mem_to_free) 1663 return -1; 1664 block_ctx->datav = block_ctx->mem_to_free; 1665 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages); 1666 for (i = 0; i < num_pages; i++) { 1667 block_ctx->pagev[i] = alloc_page(GFP_NOFS); 1668 if (!block_ctx->pagev[i]) 1669 return -1; 1670 } 1671 1672 dev_bytenr = block_ctx->dev_bytenr; 1673 for (i = 0; i < num_pages;) { 1674 struct bio *bio; 1675 unsigned int j; 1676 1677 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i); 1678 if (!bio) { 1679 printk(KERN_INFO 1680 "btrfsic: bio_alloc() for %u pages failed!\n", 1681 num_pages - i); 1682 return -1; 1683 } 1684 bio->bi_bdev = block_ctx->dev->bdev; 1685 bio->bi_iter.bi_sector = dev_bytenr >> 9; 1686 1687 for (j = i; j < num_pages; j++) { 1688 ret = bio_add_page(bio, block_ctx->pagev[j], 1689 PAGE_CACHE_SIZE, 0); 1690 if (PAGE_CACHE_SIZE != ret) 1691 break; 1692 } 1693 if (j == i) { 1694 printk(KERN_INFO 1695 "btrfsic: error, failed to add a single page!\n"); 1696 return -1; 1697 } 1698 if (submit_bio_wait(READ, bio)) { 1699 printk(KERN_INFO 1700 "btrfsic: read error at logical %llu dev %s!\n", 1701 block_ctx->start, block_ctx->dev->name); 1702 bio_put(bio); 1703 return -1; 1704 } 1705 bio_put(bio); 1706 dev_bytenr += (j - i) * PAGE_CACHE_SIZE; 1707 i = j; 1708 } 1709 for (i = 0; i < num_pages; i++) { 1710 block_ctx->datav[i] = kmap(block_ctx->pagev[i]); 1711 if (!block_ctx->datav[i]) { 1712 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n", 1713 block_ctx->dev->name); 1714 return -1; 1715 } 1716 } 1717 1718 return block_ctx->len; 1719} 1720 1721static void btrfsic_dump_database(struct btrfsic_state *state) 1722{ 1723 struct list_head *elem_all; 1724 1725 BUG_ON(NULL == state); 1726 1727 printk(KERN_INFO "all_blocks_list:\n"); 1728 list_for_each(elem_all, &state->all_blocks_list) { 1729 const struct btrfsic_block *const b_all = 1730 list_entry(elem_all, struct btrfsic_block, 1731 all_blocks_node); 1732 struct list_head *elem_ref_to; 1733 struct list_head *elem_ref_from; 1734 1735 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n", 1736 btrfsic_get_block_type(state, b_all), 1737 b_all->logical_bytenr, b_all->dev_state->name, 1738 b_all->dev_bytenr, b_all->mirror_num); 1739 1740 list_for_each(elem_ref_to, &b_all->ref_to_list) { 1741 const struct btrfsic_block_link *const l = 1742 list_entry(elem_ref_to, 1743 struct btrfsic_block_link, 1744 node_ref_to); 1745 1746 printk(KERN_INFO " %c @%llu (%s/%llu/%d)" 1747 " refers %u* to" 1748 " %c @%llu (%s/%llu/%d)\n", 1749 btrfsic_get_block_type(state, b_all), 1750 b_all->logical_bytenr, b_all->dev_state->name, 1751 b_all->dev_bytenr, b_all->mirror_num, 1752 l->ref_cnt, 1753 btrfsic_get_block_type(state, l->block_ref_to), 1754 l->block_ref_to->logical_bytenr, 1755 l->block_ref_to->dev_state->name, 1756 l->block_ref_to->dev_bytenr, 1757 l->block_ref_to->mirror_num); 1758 } 1759 1760 list_for_each(elem_ref_from, &b_all->ref_from_list) { 1761 const struct btrfsic_block_link *const l = 1762 list_entry(elem_ref_from, 1763 struct btrfsic_block_link, 1764 node_ref_from); 1765 1766 printk(KERN_INFO " %c @%llu (%s/%llu/%d)" 1767 " is ref %u* from" 1768 " %c @%llu (%s/%llu/%d)\n", 1769 btrfsic_get_block_type(state, b_all), 1770 b_all->logical_bytenr, b_all->dev_state->name, 1771 b_all->dev_bytenr, b_all->mirror_num, 1772 l->ref_cnt, 1773 btrfsic_get_block_type(state, l->block_ref_from), 1774 l->block_ref_from->logical_bytenr, 1775 l->block_ref_from->dev_state->name, 1776 l->block_ref_from->dev_bytenr, 1777 l->block_ref_from->mirror_num); 1778 } 1779 1780 printk(KERN_INFO "\n"); 1781 } 1782} 1783 1784/* 1785 * Test whether the disk block contains a tree block (leaf or node) 1786 * (note that this test fails for the super block) 1787 */ 1788static int btrfsic_test_for_metadata(struct btrfsic_state *state, 1789 char **datav, unsigned int num_pages) 1790{ 1791 struct btrfs_header *h; 1792 u8 csum[BTRFS_CSUM_SIZE]; 1793 u32 crc = ~(u32)0; 1794 unsigned int i; 1795 1796 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size) 1797 return 1; /* not metadata */ 1798 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT; 1799 h = (struct btrfs_header *)datav[0]; 1800 1801 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE)) 1802 return 1; 1803 1804 for (i = 0; i < num_pages; i++) { 1805 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE); 1806 size_t sublen = i ? PAGE_CACHE_SIZE : 1807 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE); 1808 1809 crc = btrfs_crc32c(crc, data, sublen); 1810 } 1811 btrfs_csum_final(crc, csum); 1812 if (memcmp(csum, h->csum, state->csum_size)) 1813 return 1; 1814 1815 return 0; /* is metadata */ 1816} 1817 1818static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 1819 u64 dev_bytenr, char **mapped_datav, 1820 unsigned int num_pages, 1821 struct bio *bio, int *bio_is_patched, 1822 struct buffer_head *bh, 1823 int submit_bio_bh_rw) 1824{ 1825 int is_metadata; 1826 struct btrfsic_block *block; 1827 struct btrfsic_block_data_ctx block_ctx; 1828 int ret; 1829 struct btrfsic_state *state = dev_state->state; 1830 struct block_device *bdev = dev_state->bdev; 1831 unsigned int processed_len; 1832 1833 if (NULL != bio_is_patched) 1834 *bio_is_patched = 0; 1835 1836again: 1837 if (num_pages == 0) 1838 return; 1839 1840 processed_len = 0; 1841 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav, 1842 num_pages)); 1843 1844 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr, 1845 &state->block_hashtable); 1846 if (NULL != block) { 1847 u64 bytenr = 0; 1848 struct list_head *elem_ref_to; 1849 struct list_head *tmp_ref_to; 1850 1851 if (block->is_superblock) { 1852 bytenr = btrfs_super_bytenr((struct btrfs_super_block *) 1853 mapped_datav[0]); 1854 if (num_pages * PAGE_CACHE_SIZE < 1855 BTRFS_SUPER_INFO_SIZE) { 1856 printk(KERN_INFO 1857 "btrfsic: cannot work with too short bios!\n"); 1858 return; 1859 } 1860 is_metadata = 1; 1861 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1)); 1862 processed_len = BTRFS_SUPER_INFO_SIZE; 1863 if (state->print_mask & 1864 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) { 1865 printk(KERN_INFO 1866 "[before new superblock is written]:\n"); 1867 btrfsic_dump_tree_sub(state, block, 0); 1868 } 1869 } 1870 if (is_metadata) { 1871 if (!block->is_superblock) { 1872 if (num_pages * PAGE_CACHE_SIZE < 1873 state->metablock_size) { 1874 printk(KERN_INFO 1875 "btrfsic: cannot work with too short bios!\n"); 1876 return; 1877 } 1878 processed_len = state->metablock_size; 1879 bytenr = btrfs_stack_header_bytenr( 1880 (struct btrfs_header *) 1881 mapped_datav[0]); 1882 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, 1883 dev_state, 1884 dev_bytenr); 1885 } 1886 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) { 1887 if (block->logical_bytenr != bytenr && 1888 !(!block->is_metadata && 1889 block->logical_bytenr == 0)) 1890 printk(KERN_INFO 1891 "Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n", 1892 bytenr, dev_state->name, 1893 dev_bytenr, 1894 block->mirror_num, 1895 btrfsic_get_block_type(state, 1896 block), 1897 block->logical_bytenr); 1898 else 1899 printk(KERN_INFO 1900 "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1901 bytenr, dev_state->name, 1902 dev_bytenr, block->mirror_num, 1903 btrfsic_get_block_type(state, 1904 block)); 1905 } 1906 block->logical_bytenr = bytenr; 1907 } else { 1908 if (num_pages * PAGE_CACHE_SIZE < 1909 state->datablock_size) { 1910 printk(KERN_INFO 1911 "btrfsic: cannot work with too short bios!\n"); 1912 return; 1913 } 1914 processed_len = state->datablock_size; 1915 bytenr = block->logical_bytenr; 1916 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1917 printk(KERN_INFO 1918 "Written block @%llu (%s/%llu/%d)" 1919 " found in hash table, %c.\n", 1920 bytenr, dev_state->name, dev_bytenr, 1921 block->mirror_num, 1922 btrfsic_get_block_type(state, block)); 1923 } 1924 1925 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1926 printk(KERN_INFO 1927 "ref_to_list: %cE, ref_from_list: %cE\n", 1928 list_empty(&block->ref_to_list) ? ' ' : '!', 1929 list_empty(&block->ref_from_list) ? ' ' : '!'); 1930 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) { 1931 printk(KERN_INFO "btrfs: attempt to overwrite %c-block" 1932 " @%llu (%s/%llu/%d), old(gen=%llu," 1933 " objectid=%llu, type=%d, offset=%llu)," 1934 " new(gen=%llu)," 1935 " which is referenced by most recent superblock" 1936 " (superblockgen=%llu)!\n", 1937 btrfsic_get_block_type(state, block), bytenr, 1938 dev_state->name, dev_bytenr, block->mirror_num, 1939 block->generation, 1940 btrfs_disk_key_objectid(&block->disk_key), 1941 block->disk_key.type, 1942 btrfs_disk_key_offset(&block->disk_key), 1943 btrfs_stack_header_generation( 1944 (struct btrfs_header *) mapped_datav[0]), 1945 state->max_superblock_generation); 1946 btrfsic_dump_tree(state); 1947 } 1948 1949 if (!block->is_iodone && !block->never_written) { 1950 printk(KERN_INFO "btrfs: attempt to overwrite %c-block" 1951 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu," 1952 " which is not yet iodone!\n", 1953 btrfsic_get_block_type(state, block), bytenr, 1954 dev_state->name, dev_bytenr, block->mirror_num, 1955 block->generation, 1956 btrfs_stack_header_generation( 1957 (struct btrfs_header *) 1958 mapped_datav[0])); 1959 /* it would not be safe to go on */ 1960 btrfsic_dump_tree(state); 1961 goto continue_loop; 1962 } 1963 1964 /* 1965 * Clear all references of this block. Do not free 1966 * the block itself even if is not referenced anymore 1967 * because it still carries valueable information 1968 * like whether it was ever written and IO completed. 1969 */ 1970 list_for_each_safe(elem_ref_to, tmp_ref_to, 1971 &block->ref_to_list) { 1972 struct btrfsic_block_link *const l = 1973 list_entry(elem_ref_to, 1974 struct btrfsic_block_link, 1975 node_ref_to); 1976 1977 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1978 btrfsic_print_rem_link(state, l); 1979 l->ref_cnt--; 1980 if (0 == l->ref_cnt) { 1981 list_del(&l->node_ref_to); 1982 list_del(&l->node_ref_from); 1983 btrfsic_block_link_hashtable_remove(l); 1984 btrfsic_block_link_free(l); 1985 } 1986 } 1987 1988 block_ctx.dev = dev_state; 1989 block_ctx.dev_bytenr = dev_bytenr; 1990 block_ctx.start = bytenr; 1991 block_ctx.len = processed_len; 1992 block_ctx.pagev = NULL; 1993 block_ctx.mem_to_free = NULL; 1994 block_ctx.datav = mapped_datav; 1995 1996 if (is_metadata || state->include_extent_data) { 1997 block->never_written = 0; 1998 block->iodone_w_error = 0; 1999 if (NULL != bio) { 2000 block->is_iodone = 0; 2001 BUG_ON(NULL == bio_is_patched); 2002 if (!*bio_is_patched) { 2003 block->orig_bio_bh_private = 2004 bio->bi_private; 2005 block->orig_bio_bh_end_io.bio = 2006 bio->bi_end_io; 2007 block->next_in_same_bio = NULL; 2008 bio->bi_private = block; 2009 bio->bi_end_io = btrfsic_bio_end_io; 2010 *bio_is_patched = 1; 2011 } else { 2012 struct btrfsic_block *chained_block = 2013 (struct btrfsic_block *) 2014 bio->bi_private; 2015 2016 BUG_ON(NULL == chained_block); 2017 block->orig_bio_bh_private = 2018 chained_block->orig_bio_bh_private; 2019 block->orig_bio_bh_end_io.bio = 2020 chained_block->orig_bio_bh_end_io. 2021 bio; 2022 block->next_in_same_bio = chained_block; 2023 bio->bi_private = block; 2024 } 2025 } else if (NULL != bh) { 2026 block->is_iodone = 0; 2027 block->orig_bio_bh_private = bh->b_private; 2028 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2029 block->next_in_same_bio = NULL; 2030 bh->b_private = block; 2031 bh->b_end_io = btrfsic_bh_end_io; 2032 } else { 2033 block->is_iodone = 1; 2034 block->orig_bio_bh_private = NULL; 2035 block->orig_bio_bh_end_io.bio = NULL; 2036 block->next_in_same_bio = NULL; 2037 } 2038 } 2039 2040 block->flush_gen = dev_state->last_flush_gen + 1; 2041 block->submit_bio_bh_rw = submit_bio_bh_rw; 2042 if (is_metadata) { 2043 block->logical_bytenr = bytenr; 2044 block->is_metadata = 1; 2045 if (block->is_superblock) { 2046 BUG_ON(PAGE_CACHE_SIZE != 2047 BTRFS_SUPER_INFO_SIZE); 2048 ret = btrfsic_process_written_superblock( 2049 state, 2050 block, 2051 (struct btrfs_super_block *) 2052 mapped_datav[0]); 2053 if (state->print_mask & 2054 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) { 2055 printk(KERN_INFO 2056 "[after new superblock is written]:\n"); 2057 btrfsic_dump_tree_sub(state, block, 0); 2058 } 2059 } else { 2060 block->mirror_num = 0; /* unknown */ 2061 ret = btrfsic_process_metablock( 2062 state, 2063 block, 2064 &block_ctx, 2065 0, 0); 2066 } 2067 if (ret) 2068 printk(KERN_INFO 2069 "btrfsic: btrfsic_process_metablock" 2070 "(root @%llu) failed!\n", 2071 dev_bytenr); 2072 } else { 2073 block->is_metadata = 0; 2074 block->mirror_num = 0; /* unknown */ 2075 block->generation = BTRFSIC_GENERATION_UNKNOWN; 2076 if (!state->include_extent_data 2077 && list_empty(&block->ref_from_list)) { 2078 /* 2079 * disk block is overwritten with extent 2080 * data (not meta data) and we are configured 2081 * to not include extent data: take the 2082 * chance and free the block's memory 2083 */ 2084 btrfsic_block_hashtable_remove(block); 2085 list_del(&block->all_blocks_node); 2086 btrfsic_block_free(block); 2087 } 2088 } 2089 btrfsic_release_block_ctx(&block_ctx); 2090 } else { 2091 /* block has not been found in hash table */ 2092 u64 bytenr; 2093 2094 if (!is_metadata) { 2095 processed_len = state->datablock_size; 2096 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2097 printk(KERN_INFO "Written block (%s/%llu/?)" 2098 " !found in hash table, D.\n", 2099 dev_state->name, dev_bytenr); 2100 if (!state->include_extent_data) { 2101 /* ignore that written D block */ 2102 goto continue_loop; 2103 } 2104 2105 /* this is getting ugly for the 2106 * include_extent_data case... */ 2107 bytenr = 0; /* unknown */ 2108 } else { 2109 processed_len = state->metablock_size; 2110 bytenr = btrfs_stack_header_bytenr( 2111 (struct btrfs_header *) 2112 mapped_datav[0]); 2113 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state, 2114 dev_bytenr); 2115 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2116 printk(KERN_INFO 2117 "Written block @%llu (%s/%llu/?)" 2118 " !found in hash table, M.\n", 2119 bytenr, dev_state->name, dev_bytenr); 2120 } 2121 2122 block_ctx.dev = dev_state; 2123 block_ctx.dev_bytenr = dev_bytenr; 2124 block_ctx.start = bytenr; 2125 block_ctx.len = processed_len; 2126 block_ctx.pagev = NULL; 2127 block_ctx.mem_to_free = NULL; 2128 block_ctx.datav = mapped_datav; 2129 2130 block = btrfsic_block_alloc(); 2131 if (NULL == block) { 2132 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 2133 btrfsic_release_block_ctx(&block_ctx); 2134 goto continue_loop; 2135 } 2136 block->dev_state = dev_state; 2137 block->dev_bytenr = dev_bytenr; 2138 block->logical_bytenr = bytenr; 2139 block->is_metadata = is_metadata; 2140 block->never_written = 0; 2141 block->iodone_w_error = 0; 2142 block->mirror_num = 0; /* unknown */ 2143 block->flush_gen = dev_state->last_flush_gen + 1; 2144 block->submit_bio_bh_rw = submit_bio_bh_rw; 2145 if (NULL != bio) { 2146 block->is_iodone = 0; 2147 BUG_ON(NULL == bio_is_patched); 2148 if (!*bio_is_patched) { 2149 block->orig_bio_bh_private = bio->bi_private; 2150 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2151 block->next_in_same_bio = NULL; 2152 bio->bi_private = block; 2153 bio->bi_end_io = btrfsic_bio_end_io; 2154 *bio_is_patched = 1; 2155 } else { 2156 struct btrfsic_block *chained_block = 2157 (struct btrfsic_block *) 2158 bio->bi_private; 2159 2160 BUG_ON(NULL == chained_block); 2161 block->orig_bio_bh_private = 2162 chained_block->orig_bio_bh_private; 2163 block->orig_bio_bh_end_io.bio = 2164 chained_block->orig_bio_bh_end_io.bio; 2165 block->next_in_same_bio = chained_block; 2166 bio->bi_private = block; 2167 } 2168 } else if (NULL != bh) { 2169 block->is_iodone = 0; 2170 block->orig_bio_bh_private = bh->b_private; 2171 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2172 block->next_in_same_bio = NULL; 2173 bh->b_private = block; 2174 bh->b_end_io = btrfsic_bh_end_io; 2175 } else { 2176 block->is_iodone = 1; 2177 block->orig_bio_bh_private = NULL; 2178 block->orig_bio_bh_end_io.bio = NULL; 2179 block->next_in_same_bio = NULL; 2180 } 2181 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2182 printk(KERN_INFO 2183 "New written %c-block @%llu (%s/%llu/%d)\n", 2184 is_metadata ? 'M' : 'D', 2185 block->logical_bytenr, block->dev_state->name, 2186 block->dev_bytenr, block->mirror_num); 2187 list_add(&block->all_blocks_node, &state->all_blocks_list); 2188 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2189 2190 if (is_metadata) { 2191 ret = btrfsic_process_metablock(state, block, 2192 &block_ctx, 0, 0); 2193 if (ret) 2194 printk(KERN_INFO 2195 "btrfsic: process_metablock(root @%llu)" 2196 " failed!\n", 2197 dev_bytenr); 2198 } 2199 btrfsic_release_block_ctx(&block_ctx); 2200 } 2201 2202continue_loop: 2203 BUG_ON(!processed_len); 2204 dev_bytenr += processed_len; 2205 mapped_datav += processed_len >> PAGE_CACHE_SHIFT; 2206 num_pages -= processed_len >> PAGE_CACHE_SHIFT; 2207 goto again; 2208} 2209 2210static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status) 2211{ 2212 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private; 2213 int iodone_w_error; 2214 2215 /* mutex is not held! This is not save if IO is not yet completed 2216 * on umount */ 2217 iodone_w_error = 0; 2218 if (bio_error_status) 2219 iodone_w_error = 1; 2220 2221 BUG_ON(NULL == block); 2222 bp->bi_private = block->orig_bio_bh_private; 2223 bp->bi_end_io = block->orig_bio_bh_end_io.bio; 2224 2225 do { 2226 struct btrfsic_block *next_block; 2227 struct btrfsic_dev_state *const dev_state = block->dev_state; 2228 2229 if ((dev_state->state->print_mask & 2230 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2231 printk(KERN_INFO 2232 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n", 2233 bio_error_status, 2234 btrfsic_get_block_type(dev_state->state, block), 2235 block->logical_bytenr, dev_state->name, 2236 block->dev_bytenr, block->mirror_num); 2237 next_block = block->next_in_same_bio; 2238 block->iodone_w_error = iodone_w_error; 2239 if (block->submit_bio_bh_rw & REQ_FLUSH) { 2240 dev_state->last_flush_gen++; 2241 if ((dev_state->state->print_mask & 2242 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2243 printk(KERN_INFO 2244 "bio_end_io() new %s flush_gen=%llu\n", 2245 dev_state->name, 2246 dev_state->last_flush_gen); 2247 } 2248 if (block->submit_bio_bh_rw & REQ_FUA) 2249 block->flush_gen = 0; /* FUA completed means block is 2250 * on disk */ 2251 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2252 block = next_block; 2253 } while (NULL != block); 2254 2255 bp->bi_end_io(bp, bio_error_status); 2256} 2257 2258static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate) 2259{ 2260 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private; 2261 int iodone_w_error = !uptodate; 2262 struct btrfsic_dev_state *dev_state; 2263 2264 BUG_ON(NULL == block); 2265 dev_state = block->dev_state; 2266 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2267 printk(KERN_INFO 2268 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n", 2269 iodone_w_error, 2270 btrfsic_get_block_type(dev_state->state, block), 2271 block->logical_bytenr, block->dev_state->name, 2272 block->dev_bytenr, block->mirror_num); 2273 2274 block->iodone_w_error = iodone_w_error; 2275 if (block->submit_bio_bh_rw & REQ_FLUSH) { 2276 dev_state->last_flush_gen++; 2277 if ((dev_state->state->print_mask & 2278 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2279 printk(KERN_INFO 2280 "bh_end_io() new %s flush_gen=%llu\n", 2281 dev_state->name, dev_state->last_flush_gen); 2282 } 2283 if (block->submit_bio_bh_rw & REQ_FUA) 2284 block->flush_gen = 0; /* FUA completed means block is on disk */ 2285 2286 bh->b_private = block->orig_bio_bh_private; 2287 bh->b_end_io = block->orig_bio_bh_end_io.bh; 2288 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2289 bh->b_end_io(bh, uptodate); 2290} 2291 2292static int btrfsic_process_written_superblock( 2293 struct btrfsic_state *state, 2294 struct btrfsic_block *const superblock, 2295 struct btrfs_super_block *const super_hdr) 2296{ 2297 int pass; 2298 2299 superblock->generation = btrfs_super_generation(super_hdr); 2300 if (!(superblock->generation > state->max_superblock_generation || 2301 0 == state->max_superblock_generation)) { 2302 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2303 printk(KERN_INFO 2304 "btrfsic: superblock @%llu (%s/%llu/%d)" 2305 " with old gen %llu <= %llu\n", 2306 superblock->logical_bytenr, 2307 superblock->dev_state->name, 2308 superblock->dev_bytenr, superblock->mirror_num, 2309 btrfs_super_generation(super_hdr), 2310 state->max_superblock_generation); 2311 } else { 2312 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2313 printk(KERN_INFO 2314 "btrfsic: got new superblock @%llu (%s/%llu/%d)" 2315 " with new gen %llu > %llu\n", 2316 superblock->logical_bytenr, 2317 superblock->dev_state->name, 2318 superblock->dev_bytenr, superblock->mirror_num, 2319 btrfs_super_generation(super_hdr), 2320 state->max_superblock_generation); 2321 2322 state->max_superblock_generation = 2323 btrfs_super_generation(super_hdr); 2324 state->latest_superblock = superblock; 2325 } 2326 2327 for (pass = 0; pass < 3; pass++) { 2328 int ret; 2329 u64 next_bytenr; 2330 struct btrfsic_block *next_block; 2331 struct btrfsic_block_data_ctx tmp_next_block_ctx; 2332 struct btrfsic_block_link *l; 2333 int num_copies; 2334 int mirror_num; 2335 const char *additional_string = NULL; 2336 struct btrfs_disk_key tmp_disk_key = {0}; 2337 2338 btrfs_set_disk_key_objectid(&tmp_disk_key, 2339 BTRFS_ROOT_ITEM_KEY); 2340 btrfs_set_disk_key_objectid(&tmp_disk_key, 0); 2341 2342 switch (pass) { 2343 case 0: 2344 btrfs_set_disk_key_objectid(&tmp_disk_key, 2345 BTRFS_ROOT_TREE_OBJECTID); 2346 additional_string = "root "; 2347 next_bytenr = btrfs_super_root(super_hdr); 2348 if (state->print_mask & 2349 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2350 printk(KERN_INFO "root@%llu\n", next_bytenr); 2351 break; 2352 case 1: 2353 btrfs_set_disk_key_objectid(&tmp_disk_key, 2354 BTRFS_CHUNK_TREE_OBJECTID); 2355 additional_string = "chunk "; 2356 next_bytenr = btrfs_super_chunk_root(super_hdr); 2357 if (state->print_mask & 2358 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2359 printk(KERN_INFO "chunk@%llu\n", next_bytenr); 2360 break; 2361 case 2: 2362 btrfs_set_disk_key_objectid(&tmp_disk_key, 2363 BTRFS_TREE_LOG_OBJECTID); 2364 additional_string = "log "; 2365 next_bytenr = btrfs_super_log_root(super_hdr); 2366 if (0 == next_bytenr) 2367 continue; 2368 if (state->print_mask & 2369 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2370 printk(KERN_INFO "log@%llu\n", next_bytenr); 2371 break; 2372 } 2373 2374 num_copies = 2375 btrfs_num_copies(state->root->fs_info, 2376 next_bytenr, BTRFS_SUPER_INFO_SIZE); 2377 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 2378 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 2379 next_bytenr, num_copies); 2380 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2381 int was_created; 2382 2383 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2384 printk(KERN_INFO 2385 "btrfsic_process_written_superblock(" 2386 "mirror_num=%d)\n", mirror_num); 2387 ret = btrfsic_map_block(state, next_bytenr, 2388 BTRFS_SUPER_INFO_SIZE, 2389 &tmp_next_block_ctx, 2390 mirror_num); 2391 if (ret) { 2392 printk(KERN_INFO 2393 "btrfsic: btrfsic_map_block(@%llu," 2394 " mirror=%d) failed!\n", 2395 next_bytenr, mirror_num); 2396 return -1; 2397 } 2398 2399 next_block = btrfsic_block_lookup_or_add( 2400 state, 2401 &tmp_next_block_ctx, 2402 additional_string, 2403 1, 0, 1, 2404 mirror_num, 2405 &was_created); 2406 if (NULL == next_block) { 2407 printk(KERN_INFO 2408 "btrfsic: error, kmalloc failed!\n"); 2409 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2410 return -1; 2411 } 2412 2413 next_block->disk_key = tmp_disk_key; 2414 if (was_created) 2415 next_block->generation = 2416 BTRFSIC_GENERATION_UNKNOWN; 2417 l = btrfsic_block_link_lookup_or_add( 2418 state, 2419 &tmp_next_block_ctx, 2420 next_block, 2421 superblock, 2422 BTRFSIC_GENERATION_UNKNOWN); 2423 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2424 if (NULL == l) 2425 return -1; 2426 } 2427 } 2428 2429 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0))) 2430 btrfsic_dump_tree(state); 2431 2432 return 0; 2433} 2434 2435static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 2436 struct btrfsic_block *const block, 2437 int recursion_level) 2438{ 2439 struct list_head *elem_ref_to; 2440 int ret = 0; 2441 2442 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2443 /* 2444 * Note that this situation can happen and does not 2445 * indicate an error in regular cases. It happens 2446 * when disk blocks are freed and later reused. 2447 * The check-integrity module is not aware of any 2448 * block free operations, it just recognizes block 2449 * write operations. Therefore it keeps the linkage 2450 * information for a block until a block is 2451 * rewritten. This can temporarily cause incorrect 2452 * and even circular linkage informations. This 2453 * causes no harm unless such blocks are referenced 2454 * by the most recent super block. 2455 */ 2456 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2457 printk(KERN_INFO 2458 "btrfsic: abort cyclic linkage (case 1).\n"); 2459 2460 return ret; 2461 } 2462 2463 /* 2464 * This algorithm is recursive because the amount of used stack 2465 * space is very small and the max recursion depth is limited. 2466 */ 2467 list_for_each(elem_ref_to, &block->ref_to_list) { 2468 const struct btrfsic_block_link *const l = 2469 list_entry(elem_ref_to, struct btrfsic_block_link, 2470 node_ref_to); 2471 2472 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2473 printk(KERN_INFO 2474 "rl=%d, %c @%llu (%s/%llu/%d)" 2475 " %u* refers to %c @%llu (%s/%llu/%d)\n", 2476 recursion_level, 2477 btrfsic_get_block_type(state, block), 2478 block->logical_bytenr, block->dev_state->name, 2479 block->dev_bytenr, block->mirror_num, 2480 l->ref_cnt, 2481 btrfsic_get_block_type(state, l->block_ref_to), 2482 l->block_ref_to->logical_bytenr, 2483 l->block_ref_to->dev_state->name, 2484 l->block_ref_to->dev_bytenr, 2485 l->block_ref_to->mirror_num); 2486 if (l->block_ref_to->never_written) { 2487 printk(KERN_INFO "btrfs: attempt to write superblock" 2488 " which references block %c @%llu (%s/%llu/%d)" 2489 " which is never written!\n", 2490 btrfsic_get_block_type(state, l->block_ref_to), 2491 l->block_ref_to->logical_bytenr, 2492 l->block_ref_to->dev_state->name, 2493 l->block_ref_to->dev_bytenr, 2494 l->block_ref_to->mirror_num); 2495 ret = -1; 2496 } else if (!l->block_ref_to->is_iodone) { 2497 printk(KERN_INFO "btrfs: attempt to write superblock" 2498 " which references block %c @%llu (%s/%llu/%d)" 2499 " which is not yet iodone!\n", 2500 btrfsic_get_block_type(state, l->block_ref_to), 2501 l->block_ref_to->logical_bytenr, 2502 l->block_ref_to->dev_state->name, 2503 l->block_ref_to->dev_bytenr, 2504 l->block_ref_to->mirror_num); 2505 ret = -1; 2506 } else if (l->block_ref_to->iodone_w_error) { 2507 printk(KERN_INFO "btrfs: attempt to write superblock" 2508 " which references block %c @%llu (%s/%llu/%d)" 2509 " which has write error!\n", 2510 btrfsic_get_block_type(state, l->block_ref_to), 2511 l->block_ref_to->logical_bytenr, 2512 l->block_ref_to->dev_state->name, 2513 l->block_ref_to->dev_bytenr, 2514 l->block_ref_to->mirror_num); 2515 ret = -1; 2516 } else if (l->parent_generation != 2517 l->block_ref_to->generation && 2518 BTRFSIC_GENERATION_UNKNOWN != 2519 l->parent_generation && 2520 BTRFSIC_GENERATION_UNKNOWN != 2521 l->block_ref_to->generation) { 2522 printk(KERN_INFO "btrfs: attempt to write superblock" 2523 " which references block %c @%llu (%s/%llu/%d)" 2524 " with generation %llu !=" 2525 " parent generation %llu!\n", 2526 btrfsic_get_block_type(state, l->block_ref_to), 2527 l->block_ref_to->logical_bytenr, 2528 l->block_ref_to->dev_state->name, 2529 l->block_ref_to->dev_bytenr, 2530 l->block_ref_to->mirror_num, 2531 l->block_ref_to->generation, 2532 l->parent_generation); 2533 ret = -1; 2534 } else if (l->block_ref_to->flush_gen > 2535 l->block_ref_to->dev_state->last_flush_gen) { 2536 printk(KERN_INFO "btrfs: attempt to write superblock" 2537 " which references block %c @%llu (%s/%llu/%d)" 2538 " which is not flushed out of disk's write cache" 2539 " (block flush_gen=%llu," 2540 " dev->flush_gen=%llu)!\n", 2541 btrfsic_get_block_type(state, l->block_ref_to), 2542 l->block_ref_to->logical_bytenr, 2543 l->block_ref_to->dev_state->name, 2544 l->block_ref_to->dev_bytenr, 2545 l->block_ref_to->mirror_num, block->flush_gen, 2546 l->block_ref_to->dev_state->last_flush_gen); 2547 ret = -1; 2548 } else if (-1 == btrfsic_check_all_ref_blocks(state, 2549 l->block_ref_to, 2550 recursion_level + 2551 1)) { 2552 ret = -1; 2553 } 2554 } 2555 2556 return ret; 2557} 2558 2559static int btrfsic_is_block_ref_by_superblock( 2560 const struct btrfsic_state *state, 2561 const struct btrfsic_block *block, 2562 int recursion_level) 2563{ 2564 struct list_head *elem_ref_from; 2565 2566 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2567 /* refer to comment at "abort cyclic linkage (case 1)" */ 2568 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2569 printk(KERN_INFO 2570 "btrfsic: abort cyclic linkage (case 2).\n"); 2571 2572 return 0; 2573 } 2574 2575 /* 2576 * This algorithm is recursive because the amount of used stack space 2577 * is very small and the max recursion depth is limited. 2578 */ 2579 list_for_each(elem_ref_from, &block->ref_from_list) { 2580 const struct btrfsic_block_link *const l = 2581 list_entry(elem_ref_from, struct btrfsic_block_link, 2582 node_ref_from); 2583 2584 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2585 printk(KERN_INFO 2586 "rl=%d, %c @%llu (%s/%llu/%d)" 2587 " is ref %u* from %c @%llu (%s/%llu/%d)\n", 2588 recursion_level, 2589 btrfsic_get_block_type(state, block), 2590 block->logical_bytenr, block->dev_state->name, 2591 block->dev_bytenr, block->mirror_num, 2592 l->ref_cnt, 2593 btrfsic_get_block_type(state, l->block_ref_from), 2594 l->block_ref_from->logical_bytenr, 2595 l->block_ref_from->dev_state->name, 2596 l->block_ref_from->dev_bytenr, 2597 l->block_ref_from->mirror_num); 2598 if (l->block_ref_from->is_superblock && 2599 state->latest_superblock->dev_bytenr == 2600 l->block_ref_from->dev_bytenr && 2601 state->latest_superblock->dev_state->bdev == 2602 l->block_ref_from->dev_state->bdev) 2603 return 1; 2604 else if (btrfsic_is_block_ref_by_superblock(state, 2605 l->block_ref_from, 2606 recursion_level + 2607 1)) 2608 return 1; 2609 } 2610 2611 return 0; 2612} 2613 2614static void btrfsic_print_add_link(const struct btrfsic_state *state, 2615 const struct btrfsic_block_link *l) 2616{ 2617 printk(KERN_INFO 2618 "Add %u* link from %c @%llu (%s/%llu/%d)" 2619 " to %c @%llu (%s/%llu/%d).\n", 2620 l->ref_cnt, 2621 btrfsic_get_block_type(state, l->block_ref_from), 2622 l->block_ref_from->logical_bytenr, 2623 l->block_ref_from->dev_state->name, 2624 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2625 btrfsic_get_block_type(state, l->block_ref_to), 2626 l->block_ref_to->logical_bytenr, 2627 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2628 l->block_ref_to->mirror_num); 2629} 2630 2631static void btrfsic_print_rem_link(const struct btrfsic_state *state, 2632 const struct btrfsic_block_link *l) 2633{ 2634 printk(KERN_INFO 2635 "Rem %u* link from %c @%llu (%s/%llu/%d)" 2636 " to %c @%llu (%s/%llu/%d).\n", 2637 l->ref_cnt, 2638 btrfsic_get_block_type(state, l->block_ref_from), 2639 l->block_ref_from->logical_bytenr, 2640 l->block_ref_from->dev_state->name, 2641 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2642 btrfsic_get_block_type(state, l->block_ref_to), 2643 l->block_ref_to->logical_bytenr, 2644 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2645 l->block_ref_to->mirror_num); 2646} 2647 2648static char btrfsic_get_block_type(const struct btrfsic_state *state, 2649 const struct btrfsic_block *block) 2650{ 2651 if (block->is_superblock && 2652 state->latest_superblock->dev_bytenr == block->dev_bytenr && 2653 state->latest_superblock->dev_state->bdev == block->dev_state->bdev) 2654 return 'S'; 2655 else if (block->is_superblock) 2656 return 's'; 2657 else if (block->is_metadata) 2658 return 'M'; 2659 else 2660 return 'D'; 2661} 2662 2663static void btrfsic_dump_tree(const struct btrfsic_state *state) 2664{ 2665 btrfsic_dump_tree_sub(state, state->latest_superblock, 0); 2666} 2667 2668static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 2669 const struct btrfsic_block *block, 2670 int indent_level) 2671{ 2672 struct list_head *elem_ref_to; 2673 int indent_add; 2674 static char buf[80]; 2675 int cursor_position; 2676 2677 /* 2678 * Should better fill an on-stack buffer with a complete line and 2679 * dump it at once when it is time to print a newline character. 2680 */ 2681 2682 /* 2683 * This algorithm is recursive because the amount of used stack space 2684 * is very small and the max recursion depth is limited. 2685 */ 2686 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)", 2687 btrfsic_get_block_type(state, block), 2688 block->logical_bytenr, block->dev_state->name, 2689 block->dev_bytenr, block->mirror_num); 2690 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2691 printk("[...]\n"); 2692 return; 2693 } 2694 printk(buf); 2695 indent_level += indent_add; 2696 if (list_empty(&block->ref_to_list)) { 2697 printk("\n"); 2698 return; 2699 } 2700 if (block->mirror_num > 1 && 2701 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) { 2702 printk(" [...]\n"); 2703 return; 2704 } 2705 2706 cursor_position = indent_level; 2707 list_for_each(elem_ref_to, &block->ref_to_list) { 2708 const struct btrfsic_block_link *const l = 2709 list_entry(elem_ref_to, struct btrfsic_block_link, 2710 node_ref_to); 2711 2712 while (cursor_position < indent_level) { 2713 printk(" "); 2714 cursor_position++; 2715 } 2716 if (l->ref_cnt > 1) 2717 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt); 2718 else 2719 indent_add = sprintf(buf, " --> "); 2720 if (indent_level + indent_add > 2721 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2722 printk("[...]\n"); 2723 cursor_position = 0; 2724 continue; 2725 } 2726 2727 printk(buf); 2728 2729 btrfsic_dump_tree_sub(state, l->block_ref_to, 2730 indent_level + indent_add); 2731 cursor_position = 0; 2732 } 2733} 2734 2735static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 2736 struct btrfsic_state *state, 2737 struct btrfsic_block_data_ctx *next_block_ctx, 2738 struct btrfsic_block *next_block, 2739 struct btrfsic_block *from_block, 2740 u64 parent_generation) 2741{ 2742 struct btrfsic_block_link *l; 2743 2744 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev, 2745 next_block_ctx->dev_bytenr, 2746 from_block->dev_state->bdev, 2747 from_block->dev_bytenr, 2748 &state->block_link_hashtable); 2749 if (NULL == l) { 2750 l = btrfsic_block_link_alloc(); 2751 if (NULL == l) { 2752 printk(KERN_INFO 2753 "btrfsic: error, kmalloc" " failed!\n"); 2754 return NULL; 2755 } 2756 2757 l->block_ref_to = next_block; 2758 l->block_ref_from = from_block; 2759 l->ref_cnt = 1; 2760 l->parent_generation = parent_generation; 2761 2762 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2763 btrfsic_print_add_link(state, l); 2764 2765 list_add(&l->node_ref_to, &from_block->ref_to_list); 2766 list_add(&l->node_ref_from, &next_block->ref_from_list); 2767 2768 btrfsic_block_link_hashtable_add(l, 2769 &state->block_link_hashtable); 2770 } else { 2771 l->ref_cnt++; 2772 l->parent_generation = parent_generation; 2773 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2774 btrfsic_print_add_link(state, l); 2775 } 2776 2777 return l; 2778} 2779 2780static struct btrfsic_block *btrfsic_block_lookup_or_add( 2781 struct btrfsic_state *state, 2782 struct btrfsic_block_data_ctx *block_ctx, 2783 const char *additional_string, 2784 int is_metadata, 2785 int is_iodone, 2786 int never_written, 2787 int mirror_num, 2788 int *was_created) 2789{ 2790 struct btrfsic_block *block; 2791 2792 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev, 2793 block_ctx->dev_bytenr, 2794 &state->block_hashtable); 2795 if (NULL == block) { 2796 struct btrfsic_dev_state *dev_state; 2797 2798 block = btrfsic_block_alloc(); 2799 if (NULL == block) { 2800 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 2801 return NULL; 2802 } 2803 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev); 2804 if (NULL == dev_state) { 2805 printk(KERN_INFO 2806 "btrfsic: error, lookup dev_state failed!\n"); 2807 btrfsic_block_free(block); 2808 return NULL; 2809 } 2810 block->dev_state = dev_state; 2811 block->dev_bytenr = block_ctx->dev_bytenr; 2812 block->logical_bytenr = block_ctx->start; 2813 block->is_metadata = is_metadata; 2814 block->is_iodone = is_iodone; 2815 block->never_written = never_written; 2816 block->mirror_num = mirror_num; 2817 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2818 printk(KERN_INFO 2819 "New %s%c-block @%llu (%s/%llu/%d)\n", 2820 additional_string, 2821 btrfsic_get_block_type(state, block), 2822 block->logical_bytenr, dev_state->name, 2823 block->dev_bytenr, mirror_num); 2824 list_add(&block->all_blocks_node, &state->all_blocks_list); 2825 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2826 if (NULL != was_created) 2827 *was_created = 1; 2828 } else { 2829 if (NULL != was_created) 2830 *was_created = 0; 2831 } 2832 2833 return block; 2834} 2835 2836static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 2837 u64 bytenr, 2838 struct btrfsic_dev_state *dev_state, 2839 u64 dev_bytenr) 2840{ 2841 int num_copies; 2842 int mirror_num; 2843 int ret; 2844 struct btrfsic_block_data_ctx block_ctx; 2845 int match = 0; 2846 2847 num_copies = btrfs_num_copies(state->root->fs_info, 2848 bytenr, state->metablock_size); 2849 2850 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2851 ret = btrfsic_map_block(state, bytenr, state->metablock_size, 2852 &block_ctx, mirror_num); 2853 if (ret) { 2854 printk(KERN_INFO "btrfsic:" 2855 " btrfsic_map_block(logical @%llu," 2856 " mirror %d) failed!\n", 2857 bytenr, mirror_num); 2858 continue; 2859 } 2860 2861 if (dev_state->bdev == block_ctx.dev->bdev && 2862 dev_bytenr == block_ctx.dev_bytenr) { 2863 match++; 2864 btrfsic_release_block_ctx(&block_ctx); 2865 break; 2866 } 2867 btrfsic_release_block_ctx(&block_ctx); 2868 } 2869 2870 if (WARN_ON(!match)) { 2871 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio," 2872 " buffer->log_bytenr=%llu, submit_bio(bdev=%s," 2873 " phys_bytenr=%llu)!\n", 2874 bytenr, dev_state->name, dev_bytenr); 2875 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2876 ret = btrfsic_map_block(state, bytenr, 2877 state->metablock_size, 2878 &block_ctx, mirror_num); 2879 if (ret) 2880 continue; 2881 2882 printk(KERN_INFO "Read logical bytenr @%llu maps to" 2883 " (%s/%llu/%d)\n", 2884 bytenr, block_ctx.dev->name, 2885 block_ctx.dev_bytenr, mirror_num); 2886 } 2887 } 2888} 2889 2890static struct btrfsic_dev_state *btrfsic_dev_state_lookup( 2891 struct block_device *bdev) 2892{ 2893 struct btrfsic_dev_state *ds; 2894 2895 ds = btrfsic_dev_state_hashtable_lookup(bdev, 2896 &btrfsic_dev_state_hashtable); 2897 return ds; 2898} 2899 2900int btrfsic_submit_bh(int rw, struct buffer_head *bh) 2901{ 2902 struct btrfsic_dev_state *dev_state; 2903 2904 if (!btrfsic_is_initialized) 2905 return submit_bh(rw, bh); 2906 2907 mutex_lock(&btrfsic_mutex); 2908 /* since btrfsic_submit_bh() might also be called before 2909 * btrfsic_mount(), this might return NULL */ 2910 dev_state = btrfsic_dev_state_lookup(bh->b_bdev); 2911 2912 /* Only called to write the superblock (incl. FLUSH/FUA) */ 2913 if (NULL != dev_state && 2914 (rw & WRITE) && bh->b_size > 0) { 2915 u64 dev_bytenr; 2916 2917 dev_bytenr = 4096 * bh->b_blocknr; 2918 if (dev_state->state->print_mask & 2919 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2920 printk(KERN_INFO 2921 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu)," 2922 " size=%zu, data=%p, bdev=%p)\n", 2923 rw, (unsigned long long)bh->b_blocknr, 2924 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev); 2925 btrfsic_process_written_block(dev_state, dev_bytenr, 2926 &bh->b_data, 1, NULL, 2927 NULL, bh, rw); 2928 } else if (NULL != dev_state && (rw & REQ_FLUSH)) { 2929 if (dev_state->state->print_mask & 2930 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2931 printk(KERN_INFO 2932 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n", 2933 rw, bh->b_bdev); 2934 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2935 if ((dev_state->state->print_mask & 2936 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2937 BTRFSIC_PRINT_MASK_VERBOSE))) 2938 printk(KERN_INFO 2939 "btrfsic_submit_bh(%s) with FLUSH" 2940 " but dummy block already in use" 2941 " (ignored)!\n", 2942 dev_state->name); 2943 } else { 2944 struct btrfsic_block *const block = 2945 &dev_state->dummy_block_for_bio_bh_flush; 2946 2947 block->is_iodone = 0; 2948 block->never_written = 0; 2949 block->iodone_w_error = 0; 2950 block->flush_gen = dev_state->last_flush_gen + 1; 2951 block->submit_bio_bh_rw = rw; 2952 block->orig_bio_bh_private = bh->b_private; 2953 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2954 block->next_in_same_bio = NULL; 2955 bh->b_private = block; 2956 bh->b_end_io = btrfsic_bh_end_io; 2957 } 2958 } 2959 mutex_unlock(&btrfsic_mutex); 2960 return submit_bh(rw, bh); 2961} 2962 2963static void __btrfsic_submit_bio(int rw, struct bio *bio) 2964{ 2965 struct btrfsic_dev_state *dev_state; 2966 2967 if (!btrfsic_is_initialized) 2968 return; 2969 2970 mutex_lock(&btrfsic_mutex); 2971 /* since btrfsic_submit_bio() is also called before 2972 * btrfsic_mount(), this might return NULL */ 2973 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev); 2974 if (NULL != dev_state && 2975 (rw & WRITE) && NULL != bio->bi_io_vec) { 2976 unsigned int i; 2977 u64 dev_bytenr; 2978 u64 cur_bytenr; 2979 int bio_is_patched; 2980 char **mapped_datav; 2981 2982 dev_bytenr = 512 * bio->bi_iter.bi_sector; 2983 bio_is_patched = 0; 2984 if (dev_state->state->print_mask & 2985 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2986 printk(KERN_INFO 2987 "submit_bio(rw=0x%x, bi_vcnt=%u," 2988 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n", 2989 rw, bio->bi_vcnt, 2990 (unsigned long long)bio->bi_iter.bi_sector, 2991 dev_bytenr, bio->bi_bdev); 2992 2993 mapped_datav = kmalloc_array(bio->bi_vcnt, 2994 sizeof(*mapped_datav), GFP_NOFS); 2995 if (!mapped_datav) 2996 goto leave; 2997 cur_bytenr = dev_bytenr; 2998 for (i = 0; i < bio->bi_vcnt; i++) { 2999 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE); 3000 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page); 3001 if (!mapped_datav[i]) { 3002 while (i > 0) { 3003 i--; 3004 kunmap(bio->bi_io_vec[i].bv_page); 3005 } 3006 kfree(mapped_datav); 3007 goto leave; 3008 } 3009 if (dev_state->state->print_mask & 3010 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE) 3011 printk(KERN_INFO 3012 "#%u: bytenr=%llu, len=%u, offset=%u\n", 3013 i, cur_bytenr, bio->bi_io_vec[i].bv_len, 3014 bio->bi_io_vec[i].bv_offset); 3015 cur_bytenr += bio->bi_io_vec[i].bv_len; 3016 } 3017 btrfsic_process_written_block(dev_state, dev_bytenr, 3018 mapped_datav, bio->bi_vcnt, 3019 bio, &bio_is_patched, 3020 NULL, rw); 3021 while (i > 0) { 3022 i--; 3023 kunmap(bio->bi_io_vec[i].bv_page); 3024 } 3025 kfree(mapped_datav); 3026 } else if (NULL != dev_state && (rw & REQ_FLUSH)) { 3027 if (dev_state->state->print_mask & 3028 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 3029 printk(KERN_INFO 3030 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n", 3031 rw, bio->bi_bdev); 3032 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 3033 if ((dev_state->state->print_mask & 3034 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 3035 BTRFSIC_PRINT_MASK_VERBOSE))) 3036 printk(KERN_INFO 3037 "btrfsic_submit_bio(%s) with FLUSH" 3038 " but dummy block already in use" 3039 " (ignored)!\n", 3040 dev_state->name); 3041 } else { 3042 struct btrfsic_block *const block = 3043 &dev_state->dummy_block_for_bio_bh_flush; 3044 3045 block->is_iodone = 0; 3046 block->never_written = 0; 3047 block->iodone_w_error = 0; 3048 block->flush_gen = dev_state->last_flush_gen + 1; 3049 block->submit_bio_bh_rw = rw; 3050 block->orig_bio_bh_private = bio->bi_private; 3051 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 3052 block->next_in_same_bio = NULL; 3053 bio->bi_private = block; 3054 bio->bi_end_io = btrfsic_bio_end_io; 3055 } 3056 } 3057leave: 3058 mutex_unlock(&btrfsic_mutex); 3059} 3060 3061void btrfsic_submit_bio(int rw, struct bio *bio) 3062{ 3063 __btrfsic_submit_bio(rw, bio); 3064 submit_bio(rw, bio); 3065} 3066 3067int btrfsic_submit_bio_wait(int rw, struct bio *bio) 3068{ 3069 __btrfsic_submit_bio(rw, bio); 3070 return submit_bio_wait(rw, bio); 3071} 3072 3073int btrfsic_mount(struct btrfs_root *root, 3074 struct btrfs_fs_devices *fs_devices, 3075 int including_extent_data, u32 print_mask) 3076{ 3077 int ret; 3078 struct btrfsic_state *state; 3079 struct list_head *dev_head = &fs_devices->devices; 3080 struct btrfs_device *device; 3081 3082 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) { 3083 printk(KERN_INFO 3084 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n", 3085 root->nodesize, PAGE_CACHE_SIZE); 3086 return -1; 3087 } 3088 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) { 3089 printk(KERN_INFO 3090 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n", 3091 root->sectorsize, PAGE_CACHE_SIZE); 3092 return -1; 3093 } 3094 state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 3095 if (!state) { 3096 state = vzalloc(sizeof(*state)); 3097 if (!state) { 3098 printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n"); 3099 return -1; 3100 } 3101 } 3102 3103 if (!btrfsic_is_initialized) { 3104 mutex_init(&btrfsic_mutex); 3105 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable); 3106 btrfsic_is_initialized = 1; 3107 } 3108 mutex_lock(&btrfsic_mutex); 3109 state->root = root; 3110 state->print_mask = print_mask; 3111 state->include_extent_data = including_extent_data; 3112 state->csum_size = 0; 3113 state->metablock_size = root->nodesize; 3114 state->datablock_size = root->sectorsize; 3115 INIT_LIST_HEAD(&state->all_blocks_list); 3116 btrfsic_block_hashtable_init(&state->block_hashtable); 3117 btrfsic_block_link_hashtable_init(&state->block_link_hashtable); 3118 state->max_superblock_generation = 0; 3119 state->latest_superblock = NULL; 3120 3121 list_for_each_entry(device, dev_head, dev_list) { 3122 struct btrfsic_dev_state *ds; 3123 char *p; 3124 3125 if (!device->bdev || !device->name) 3126 continue; 3127 3128 ds = btrfsic_dev_state_alloc(); 3129 if (NULL == ds) { 3130 printk(KERN_INFO 3131 "btrfs check-integrity: kmalloc() failed!\n"); 3132 mutex_unlock(&btrfsic_mutex); 3133 return -1; 3134 } 3135 ds->bdev = device->bdev; 3136 ds->state = state; 3137 bdevname(ds->bdev, ds->name); 3138 ds->name[BDEVNAME_SIZE - 1] = '\0'; 3139 for (p = ds->name; *p != '\0'; p++); 3140 while (p > ds->name && *p != '/') 3141 p--; 3142 if (*p == '/') 3143 p++; 3144 strlcpy(ds->name, p, sizeof(ds->name)); 3145 btrfsic_dev_state_hashtable_add(ds, 3146 &btrfsic_dev_state_hashtable); 3147 } 3148 3149 ret = btrfsic_process_superblock(state, fs_devices); 3150 if (0 != ret) { 3151 mutex_unlock(&btrfsic_mutex); 3152 btrfsic_unmount(root, fs_devices); 3153 return ret; 3154 } 3155 3156 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE) 3157 btrfsic_dump_database(state); 3158 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE) 3159 btrfsic_dump_tree(state); 3160 3161 mutex_unlock(&btrfsic_mutex); 3162 return 0; 3163} 3164 3165void btrfsic_unmount(struct btrfs_root *root, 3166 struct btrfs_fs_devices *fs_devices) 3167{ 3168 struct list_head *elem_all; 3169 struct list_head *tmp_all; 3170 struct btrfsic_state *state; 3171 struct list_head *dev_head = &fs_devices->devices; 3172 struct btrfs_device *device; 3173 3174 if (!btrfsic_is_initialized) 3175 return; 3176 3177 mutex_lock(&btrfsic_mutex); 3178 3179 state = NULL; 3180 list_for_each_entry(device, dev_head, dev_list) { 3181 struct btrfsic_dev_state *ds; 3182 3183 if (!device->bdev || !device->name) 3184 continue; 3185 3186 ds = btrfsic_dev_state_hashtable_lookup( 3187 device->bdev, 3188 &btrfsic_dev_state_hashtable); 3189 if (NULL != ds) { 3190 state = ds->state; 3191 btrfsic_dev_state_hashtable_remove(ds); 3192 btrfsic_dev_state_free(ds); 3193 } 3194 } 3195 3196 if (NULL == state) { 3197 printk(KERN_INFO 3198 "btrfsic: error, cannot find state information" 3199 " on umount!\n"); 3200 mutex_unlock(&btrfsic_mutex); 3201 return; 3202 } 3203 3204 /* 3205 * Don't care about keeping the lists' state up to date, 3206 * just free all memory that was allocated dynamically. 3207 * Free the blocks and the block_links. 3208 */ 3209 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) { 3210 struct btrfsic_block *const b_all = 3211 list_entry(elem_all, struct btrfsic_block, 3212 all_blocks_node); 3213 struct list_head *elem_ref_to; 3214 struct list_head *tmp_ref_to; 3215 3216 list_for_each_safe(elem_ref_to, tmp_ref_to, 3217 &b_all->ref_to_list) { 3218 struct btrfsic_block_link *const l = 3219 list_entry(elem_ref_to, 3220 struct btrfsic_block_link, 3221 node_ref_to); 3222 3223 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 3224 btrfsic_print_rem_link(state, l); 3225 3226 l->ref_cnt--; 3227 if (0 == l->ref_cnt) 3228 btrfsic_block_link_free(l); 3229 } 3230 3231 if (b_all->is_iodone || b_all->never_written) 3232 btrfsic_block_free(b_all); 3233 else 3234 printk(KERN_INFO "btrfs: attempt to free %c-block" 3235 " @%llu (%s/%llu/%d) on umount which is" 3236 " not yet iodone!\n", 3237 btrfsic_get_block_type(state, b_all), 3238 b_all->logical_bytenr, b_all->dev_state->name, 3239 b_all->dev_bytenr, b_all->mirror_num); 3240 } 3241 3242 mutex_unlock(&btrfsic_mutex); 3243 3244 kvfree(state); 3245} 3246