1/*
2 * linux/fs/befs/btree.c
3 *
4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
5 *
6 * Licensed under the GNU GPL. See the file COPYING for details.
7 *
8 * 2002-02-05: Sergey S. Kostyliov added binary search within
9 * 		btree nodes.
10 *
11 * Many thanks to:
12 *
13 * Dominic Giampaolo, author of "Practical File System
14 * Design with the Be File System", for such a helpful book.
15 *
16 * Marcus J. Ranum, author of the b+tree package in
17 * comp.sources.misc volume 10. This code is not copied from that
18 * work, but it is partially based on it.
19 *
20 * Makoto Kato, author of the original BeFS for linux filesystem
21 * driver.
22 */
23
24#include <linux/kernel.h>
25#include <linux/string.h>
26#include <linux/slab.h>
27#include <linux/mm.h>
28#include <linux/buffer_head.h>
29
30#include "befs.h"
31#include "btree.h"
32#include "datastream.h"
33
34/*
35 * The btree functions in this file are built on top of the
36 * datastream.c interface, which is in turn built on top of the
37 * io.c interface.
38 */
39
40/* Befs B+tree structure:
41 *
42 * The first thing in the tree is the tree superblock. It tells you
43 * all kinds of useful things about the tree, like where the rootnode
44 * is located, and the size of the nodes (always 1024 with current version
45 * of BeOS).
46 *
47 * The rest of the tree consists of a series of nodes. Nodes contain a header
48 * (struct befs_btree_nodehead), the packed key data, an array of shorts
49 * containing the ending offsets for each of the keys, and an array of
50 * befs_off_t values. In interior nodes, the keys are the ending keys for
51 * the childnode they point to, and the values are offsets into the
52 * datastream containing the tree.
53 */
54
55/* Note:
56 *
57 * The book states 2 confusing things about befs b+trees. First,
58 * it states that the overflow field of node headers is used by internal nodes
59 * to point to another node that "effectively continues this one". Here is what
60 * I believe that means. Each key in internal nodes points to another node that
61 * contains key values less than itself. Inspection reveals that the last key
62 * in the internal node is not the last key in the index. Keys that are
63 * greater than the last key in the internal node go into the overflow node.
64 * I imagine there is a performance reason for this.
65 *
66 * Second, it states that the header of a btree node is sufficient to
67 * distinguish internal nodes from leaf nodes. Without saying exactly how.
68 * After figuring out the first, it becomes obvious that internal nodes have
69 * overflow nodes and leafnodes do not.
70 */
71
72/*
73 * Currently, this code is only good for directory B+trees.
74 * In order to be used for other BFS indexes, it needs to be extended to handle
75 * duplicate keys and non-string keytypes (int32, int64, float, double).
76 */
77
78/*
79 * In memory structure of each btree node
80 */
81struct befs_btree_node {
82	befs_host_btree_nodehead head;	/* head of node converted to cpu byteorder */
83	struct buffer_head *bh;
84	befs_btree_nodehead *od_node;	/* on disk node */
85};
86
87/* local constants */
88static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
89
90/* local functions */
91static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
92			       befs_btree_super * bt_super,
93			       struct befs_btree_node *this_node,
94			       befs_off_t * node_off);
95
96static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
97			      befs_btree_super * sup);
98
99static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
100			     struct befs_btree_node *node,
101			     befs_off_t node_off);
102
103static int befs_leafnode(struct befs_btree_node *node);
104
105static fs16 *befs_bt_keylen_index(struct befs_btree_node *node);
106
107static fs64 *befs_bt_valarray(struct befs_btree_node *node);
108
109static char *befs_bt_keydata(struct befs_btree_node *node);
110
111static int befs_find_key(struct super_block *sb,
112			 struct befs_btree_node *node,
113			 const char *findkey, befs_off_t * value);
114
115static char *befs_bt_get_key(struct super_block *sb,
116			     struct befs_btree_node *node,
117			     int index, u16 * keylen);
118
119static int befs_compare_strings(const void *key1, int keylen1,
120				const void *key2, int keylen2);
121
122/**
123 * befs_bt_read_super - read in btree superblock convert to cpu byteorder
124 * @sb: Filesystem superblock
125 * @ds: Datastream to read from
126 * @sup: Buffer in which to place the btree superblock
127 *
128 * Calls befs_read_datastream to read in the btree superblock and
129 * makes sure it is in cpu byteorder, byteswapping if necessary.
130 *
131 * On success, returns BEFS_OK and *@sup contains the btree superblock,
132 * in cpu byte order.
133 *
134 * On failure, BEFS_ERR is returned.
135 */
136static int
137befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
138		   befs_btree_super * sup)
139{
140	struct buffer_head *bh = NULL;
141	befs_disk_btree_super *od_sup = NULL;
142
143	befs_debug(sb, "---> %s", __func__);
144
145	bh = befs_read_datastream(sb, ds, 0, NULL);
146
147	if (!bh) {
148		befs_error(sb, "Couldn't read index header.");
149		goto error;
150	}
151	od_sup = (befs_disk_btree_super *) bh->b_data;
152	befs_dump_index_entry(sb, od_sup);
153
154	sup->magic = fs32_to_cpu(sb, od_sup->magic);
155	sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
156	sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
157	sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
158	sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
159	sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
160	sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
161
162	brelse(bh);
163	if (sup->magic != BEFS_BTREE_MAGIC) {
164		befs_error(sb, "Index header has bad magic.");
165		goto error;
166	}
167
168	befs_debug(sb, "<--- %s", __func__);
169	return BEFS_OK;
170
171      error:
172	befs_debug(sb, "<--- %s ERROR", __func__);
173	return BEFS_ERR;
174}
175
176/**
177 * befs_bt_read_node - read in btree node and convert to cpu byteorder
178 * @sb: Filesystem superblock
179 * @ds: Datastream to read from
180 * @node: Buffer in which to place the btree node
181 * @node_off: Starting offset (in bytes) of the node in @ds
182 *
183 * Calls befs_read_datastream to read in the indicated btree node and
184 * makes sure its header fields are in cpu byteorder, byteswapping if
185 * necessary.
186 * Note: node->bh must be NULL when this function called first
187 * time. Don't forget brelse(node->bh) after last call.
188 *
189 * On success, returns BEFS_OK and *@node contains the btree node that
190 * starts at @node_off, with the node->head fields in cpu byte order.
191 *
192 * On failure, BEFS_ERR is returned.
193 */
194
195static int
196befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
197		  struct befs_btree_node *node, befs_off_t node_off)
198{
199	uint off = 0;
200
201	befs_debug(sb, "---> %s", __func__);
202
203	if (node->bh)
204		brelse(node->bh);
205
206	node->bh = befs_read_datastream(sb, ds, node_off, &off);
207	if (!node->bh) {
208		befs_error(sb, "%s failed to read "
209			   "node at %llu", __func__, node_off);
210		befs_debug(sb, "<--- %s ERROR", __func__);
211
212		return BEFS_ERR;
213	}
214	node->od_node =
215	    (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
216
217	befs_dump_index_node(sb, node->od_node);
218
219	node->head.left = fs64_to_cpu(sb, node->od_node->left);
220	node->head.right = fs64_to_cpu(sb, node->od_node->right);
221	node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
222	node->head.all_key_count =
223	    fs16_to_cpu(sb, node->od_node->all_key_count);
224	node->head.all_key_length =
225	    fs16_to_cpu(sb, node->od_node->all_key_length);
226
227	befs_debug(sb, "<--- %s", __func__);
228	return BEFS_OK;
229}
230
231/**
232 * befs_btree_find - Find a key in a befs B+tree
233 * @sb: Filesystem superblock
234 * @ds: Datastream containing btree
235 * @key: Key string to lookup in btree
236 * @value: Value stored with @key
237 *
238 * On success, returns BEFS_OK and sets *@value to the value stored
239 * with @key (usually the disk block number of an inode).
240 *
241 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
242 *
243 * Algorithm:
244 *   Read the superblock and rootnode of the b+tree.
245 *   Drill down through the interior nodes using befs_find_key().
246 *   Once at the correct leaf node, use befs_find_key() again to get the
247 *   actuall value stored with the key.
248 */
249int
250befs_btree_find(struct super_block *sb, befs_data_stream * ds,
251		const char *key, befs_off_t * value)
252{
253	struct befs_btree_node *this_node = NULL;
254	befs_btree_super bt_super;
255	befs_off_t node_off;
256	int res;
257
258	befs_debug(sb, "---> %s Key: %s", __func__, key);
259
260	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
261		befs_error(sb,
262			   "befs_btree_find() failed to read index superblock");
263		goto error;
264	}
265
266	this_node = kmalloc(sizeof(struct befs_btree_node),
267						GFP_NOFS);
268	if (!this_node) {
269		befs_error(sb, "befs_btree_find() failed to allocate %zu "
270			   "bytes of memory", sizeof(struct befs_btree_node));
271		goto error;
272	}
273
274	this_node->bh = NULL;
275
276	/* read in root node */
277	node_off = bt_super.root_node_ptr;
278	if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
279		befs_error(sb, "befs_btree_find() failed to read "
280			   "node at %llu", node_off);
281		goto error_alloc;
282	}
283
284	while (!befs_leafnode(this_node)) {
285		res = befs_find_key(sb, this_node, key, &node_off);
286		if (res == BEFS_BT_NOT_FOUND)
287			node_off = this_node->head.overflow;
288		/* if no match, go to overflow node */
289		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
290			befs_error(sb, "befs_btree_find() failed to read "
291				   "node at %llu", node_off);
292			goto error_alloc;
293		}
294	}
295
296	/* at the correct leaf node now */
297
298	res = befs_find_key(sb, this_node, key, value);
299
300	brelse(this_node->bh);
301	kfree(this_node);
302
303	if (res != BEFS_BT_MATCH) {
304		befs_debug(sb, "<--- %s Key %s not found", __func__, key);
305		*value = 0;
306		return BEFS_BT_NOT_FOUND;
307	}
308	befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
309		   key, *value);
310	return BEFS_OK;
311
312      error_alloc:
313	kfree(this_node);
314      error:
315	*value = 0;
316	befs_debug(sb, "<--- %s ERROR", __func__);
317	return BEFS_ERR;
318}
319
320/**
321 * befs_find_key - Search for a key within a node
322 * @sb: Filesystem superblock
323 * @node: Node to find the key within
324 * @findkey: Keystring to search for
325 * @value: If key is found, the value stored with the key is put here
326 *
327 * finds exact match if one exists, and returns BEFS_BT_MATCH
328 * If no exact match, finds first key in node that is greater
329 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH
330 * (for partial match, I guess). Can you think of something better to
331 * call it?
332 *
333 * If no key was a match or greater than the search key, return
334 * BEFS_BT_NOT_FOUND.
335 *
336 * Use binary search instead of a linear.
337 */
338static int
339befs_find_key(struct super_block *sb, struct befs_btree_node *node,
340	      const char *findkey, befs_off_t * value)
341{
342	int first, last, mid;
343	int eq;
344	u16 keylen;
345	int findkey_len;
346	char *thiskey;
347	fs64 *valarray;
348
349	befs_debug(sb, "---> %s %s", __func__, findkey);
350
351	*value = 0;
352
353	findkey_len = strlen(findkey);
354
355	/* if node can not contain key, just skeep this node */
356	last = node->head.all_key_count - 1;
357	thiskey = befs_bt_get_key(sb, node, last, &keylen);
358
359	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
360	if (eq < 0) {
361		befs_debug(sb, "<--- %s %s not found", __func__, findkey);
362		return BEFS_BT_NOT_FOUND;
363	}
364
365	valarray = befs_bt_valarray(node);
366
367	/* simple binary search */
368	first = 0;
369	mid = 0;
370	while (last >= first) {
371		mid = (last + first) / 2;
372		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
373			   mid);
374		thiskey = befs_bt_get_key(sb, node, mid, &keylen);
375		eq = befs_compare_strings(thiskey, keylen, findkey,
376					  findkey_len);
377
378		if (eq == 0) {
379			befs_debug(sb, "<--- %s found %s at %d",
380				   __func__, thiskey, mid);
381
382			*value = fs64_to_cpu(sb, valarray[mid]);
383			return BEFS_BT_MATCH;
384		}
385		if (eq > 0)
386			last = mid - 1;
387		else
388			first = mid + 1;
389	}
390	if (eq < 0)
391		*value = fs64_to_cpu(sb, valarray[mid + 1]);
392	else
393		*value = fs64_to_cpu(sb, valarray[mid]);
394	befs_debug(sb, "<--- %s found %s at %d", __func__, thiskey, mid);
395	return BEFS_BT_PARMATCH;
396}
397
398/**
399 * befs_btree_read - Traverse leafnodes of a btree
400 * @sb: Filesystem superblock
401 * @ds: Datastream containing btree
402 * @key_no: Key number (alphabetical order) of key to read
403 * @bufsize: Size of the buffer to return key in
404 * @keybuf: Pointer to a buffer to put the key in
405 * @keysize: Length of the returned key
406 * @value: Value stored with the returned key
407 *
408 * Heres how it works: Key_no is the index of the key/value pair to
409 * return in keybuf/value.
410 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
411 * the number of characters in the key (just a convenience).
412 *
413 * Algorithm:
414 *   Get the first leafnode of the tree. See if the requested key is in that
415 *   node. If not, follow the node->right link to the next leafnode. Repeat
416 *   until the (key_no)th key is found or the tree is out of keys.
417 */
418int
419befs_btree_read(struct super_block *sb, befs_data_stream * ds,
420		loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
421		befs_off_t * value)
422{
423	struct befs_btree_node *this_node;
424	befs_btree_super bt_super;
425	befs_off_t node_off = 0;
426	int cur_key;
427	fs64 *valarray;
428	char *keystart;
429	u16 keylen;
430	int res;
431
432	uint key_sum = 0;
433
434	befs_debug(sb, "---> %s", __func__);
435
436	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
437		befs_error(sb,
438			   "befs_btree_read() failed to read index superblock");
439		goto error;
440	}
441
442	this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS);
443	if (this_node == NULL) {
444		befs_error(sb, "befs_btree_read() failed to allocate %zu "
445			   "bytes of memory", sizeof(struct befs_btree_node));
446		goto error;
447	}
448
449	node_off = bt_super.root_node_ptr;
450	this_node->bh = NULL;
451
452	/* seeks down to first leafnode, reads it into this_node */
453	res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
454	if (res == BEFS_BT_EMPTY) {
455		brelse(this_node->bh);
456		kfree(this_node);
457		*value = 0;
458		*keysize = 0;
459		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
460		return BEFS_BT_EMPTY;
461	} else if (res == BEFS_ERR) {
462		goto error_alloc;
463	}
464
465	/* find the leaf node containing the key_no key */
466
467	while (key_sum + this_node->head.all_key_count <= key_no) {
468
469		/* no more nodes to look in: key_no is too large */
470		if (this_node->head.right == befs_bt_inval) {
471			*keysize = 0;
472			*value = 0;
473			befs_debug(sb,
474				   "<--- %s END of keys at %llu", __func__,
475				   (unsigned long long)
476				   key_sum + this_node->head.all_key_count);
477			brelse(this_node->bh);
478			kfree(this_node);
479			return BEFS_BT_END;
480		}
481
482		key_sum += this_node->head.all_key_count;
483		node_off = this_node->head.right;
484
485		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
486			befs_error(sb, "%s failed to read node at %llu",
487				  __func__, (unsigned long long)node_off);
488			goto error_alloc;
489		}
490	}
491
492	/* how many keys into this_node is key_no */
493	cur_key = key_no - key_sum;
494
495	/* get pointers to datastructures within the node body */
496	valarray = befs_bt_valarray(this_node);
497
498	keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
499
500	befs_debug(sb, "Read [%llu,%d]: keysize %d",
501		   (long long unsigned int)node_off, (int)cur_key,
502		   (int)keylen);
503
504	if (bufsize < keylen + 1) {
505		befs_error(sb, "%s keybuf too small (%zu) "
506			   "for key of size %d", __func__, bufsize, keylen);
507		brelse(this_node->bh);
508		goto error_alloc;
509	}
510
511	strlcpy(keybuf, keystart, keylen + 1);
512	*value = fs64_to_cpu(sb, valarray[cur_key]);
513	*keysize = keylen;
514
515	befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
516		   cur_key, keylen, keybuf, *value);
517
518	brelse(this_node->bh);
519	kfree(this_node);
520
521	befs_debug(sb, "<--- %s", __func__);
522
523	return BEFS_OK;
524
525      error_alloc:
526	kfree(this_node);
527
528      error:
529	*keysize = 0;
530	*value = 0;
531	befs_debug(sb, "<--- %s ERROR", __func__);
532	return BEFS_ERR;
533}
534
535/**
536 * befs_btree_seekleaf - Find the first leafnode in the btree
537 * @sb: Filesystem superblock
538 * @ds: Datastream containing btree
539 * @bt_super: Pointer to the superblock of the btree
540 * @this_node: Buffer to return the leafnode in
541 * @node_off: Pointer to offset of current node within datastream. Modified
542 * 		by the function.
543 *
544 *
545 * Helper function for btree traverse. Moves the current position to the
546 * start of the first leaf node.
547 *
548 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
549 */
550static int
551befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
552		    befs_btree_super *bt_super,
553		    struct befs_btree_node *this_node,
554		    befs_off_t * node_off)
555{
556
557	befs_debug(sb, "---> %s", __func__);
558
559	if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
560		befs_error(sb, "%s failed to read "
561			   "node at %llu", __func__, *node_off);
562		goto error;
563	}
564	befs_debug(sb, "Seekleaf to root node %llu", *node_off);
565
566	if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
567		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
568		return BEFS_BT_EMPTY;
569	}
570
571	while (!befs_leafnode(this_node)) {
572
573		if (this_node->head.all_key_count == 0) {
574			befs_debug(sb, "%s encountered "
575				   "an empty interior node: %llu. Using Overflow "
576				   "node: %llu", __func__, *node_off,
577				   this_node->head.overflow);
578			*node_off = this_node->head.overflow;
579		} else {
580			fs64 *valarray = befs_bt_valarray(this_node);
581			*node_off = fs64_to_cpu(sb, valarray[0]);
582		}
583		if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
584			befs_error(sb, "%s failed to read "
585				   "node at %llu", __func__, *node_off);
586			goto error;
587		}
588
589		befs_debug(sb, "Seekleaf to child node %llu", *node_off);
590	}
591	befs_debug(sb, "Node %llu is a leaf node", *node_off);
592
593	return BEFS_OK;
594
595      error:
596	befs_debug(sb, "<--- %s ERROR", __func__);
597	return BEFS_ERR;
598}
599
600/**
601 * befs_leafnode - Determine if the btree node is a leaf node or an
602 * interior node
603 * @node: Pointer to node structure to test
604 *
605 * Return 1 if leaf, 0 if interior
606 */
607static int
608befs_leafnode(struct befs_btree_node *node)
609{
610	/* all interior nodes (and only interior nodes) have an overflow node */
611	if (node->head.overflow == befs_bt_inval)
612		return 1;
613	else
614		return 0;
615}
616
617/**
618 * befs_bt_keylen_index - Finds start of keylen index in a node
619 * @node: Pointer to the node structure to find the keylen index within
620 *
621 * Returns a pointer to the start of the key length index array
622 * of the B+tree node *@node
623 *
624 * "The length of all the keys in the node is added to the size of the
625 * header and then rounded up to a multiple of four to get the beginning
626 * of the key length index" (p.88, practical filesystem design).
627 *
628 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
629 */
630static fs16 *
631befs_bt_keylen_index(struct befs_btree_node *node)
632{
633	const int keylen_align = 8;
634	unsigned long int off =
635	    (sizeof (befs_btree_nodehead) + node->head.all_key_length);
636	ulong tmp = off % keylen_align;
637
638	if (tmp)
639		off += keylen_align - tmp;
640
641	return (fs16 *) ((void *) node->od_node + off);
642}
643
644/**
645 * befs_bt_valarray - Finds the start of value array in a node
646 * @node: Pointer to the node structure to find the value array within
647 *
648 * Returns a pointer to the start of the value array
649 * of the node pointed to by the node header
650 */
651static fs64 *
652befs_bt_valarray(struct befs_btree_node *node)
653{
654	void *keylen_index_start = (void *) befs_bt_keylen_index(node);
655	size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
656
657	return (fs64 *) (keylen_index_start + keylen_index_size);
658}
659
660/**
661 * befs_bt_keydata - Finds start of keydata array in a node
662 * @node: Pointer to the node structure to find the keydata array within
663 *
664 * Returns a pointer to the start of the keydata array
665 * of the node pointed to by the node header
666 */
667static char *
668befs_bt_keydata(struct befs_btree_node *node)
669{
670	return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
671}
672
673/**
674 * befs_bt_get_key - returns a pointer to the start of a key
675 * @sb: filesystem superblock
676 * @node: node in which to look for the key
677 * @index: the index of the key to get
678 * @keylen: modified to be the length of the key at @index
679 *
680 * Returns a valid pointer into @node on success.
681 * Returns NULL on failure (bad input) and sets *@keylen = 0
682 */
683static char *
684befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node,
685		int index, u16 * keylen)
686{
687	int prev_key_end;
688	char *keystart;
689	fs16 *keylen_index;
690
691	if (index < 0 || index > node->head.all_key_count) {
692		*keylen = 0;
693		return NULL;
694	}
695
696	keystart = befs_bt_keydata(node);
697	keylen_index = befs_bt_keylen_index(node);
698
699	if (index == 0)
700		prev_key_end = 0;
701	else
702		prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
703
704	*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
705
706	return keystart + prev_key_end;
707}
708
709/**
710 * befs_compare_strings - compare two strings
711 * @key1: pointer to the first key to be compared
712 * @keylen1: length in bytes of key1
713 * @key2: pointer to the second key to be compared
714 * @keylen2: length in bytes of key2
715 *
716 * Returns 0 if @key1 and @key2 are equal.
717 * Returns >0 if @key1 is greater.
718 * Returns <0 if @key2 is greater..
719 */
720static int
721befs_compare_strings(const void *key1, int keylen1,
722		     const void *key2, int keylen2)
723{
724	int len = min_t(int, keylen1, keylen2);
725	int result = strncmp(key1, key2, len);
726	if (result == 0)
727		result = keylen1 - keylen2;
728	return result;
729}
730
731/* These will be used for non-string keyed btrees */
732#if 0
733static int
734btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
735{
736	return *(int32_t *) key1 - *(int32_t *) key2;
737}
738
739static int
740btree_compare_uint32(cont void *key1, int keylen1,
741		     const void *key2, int keylen2)
742{
743	if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
744		return 0;
745	else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
746		return 1;
747
748	return -1;
749}
750static int
751btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
752{
753	if (*(int64_t *) key1 == *(int64_t *) key2)
754		return 0;
755	else if (*(int64_t *) key1 > *(int64_t *) key2)
756		return 1;
757
758	return -1;
759}
760
761static int
762btree_compare_uint64(cont void *key1, int keylen1,
763		     const void *key2, int keylen2)
764{
765	if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
766		return 0;
767	else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
768		return 1;
769
770	return -1;
771}
772
773static int
774btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
775{
776	float result = *(float *) key1 - *(float *) key2;
777	if (result == 0.0f)
778		return 0;
779
780	return (result < 0.0f) ? -1 : 1;
781}
782
783static int
784btree_compare_double(cont void *key1, int keylen1,
785		     const void *key2, int keylen2)
786{
787	double result = *(double *) key1 - *(double *) key2;
788	if (result == 0.0)
789		return 0;
790
791	return (result < 0.0) ? -1 : 1;
792}
793#endif				//0
794