1/* 2 * linux/fs/befs/btree.c 3 * 4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com> 5 * 6 * Licensed under the GNU GPL. See the file COPYING for details. 7 * 8 * 2002-02-05: Sergey S. Kostyliov added binary search within 9 * btree nodes. 10 * 11 * Many thanks to: 12 * 13 * Dominic Giampaolo, author of "Practical File System 14 * Design with the Be File System", for such a helpful book. 15 * 16 * Marcus J. Ranum, author of the b+tree package in 17 * comp.sources.misc volume 10. This code is not copied from that 18 * work, but it is partially based on it. 19 * 20 * Makoto Kato, author of the original BeFS for linux filesystem 21 * driver. 22 */ 23 24#include <linux/kernel.h> 25#include <linux/string.h> 26#include <linux/slab.h> 27#include <linux/mm.h> 28#include <linux/buffer_head.h> 29 30#include "befs.h" 31#include "btree.h" 32#include "datastream.h" 33 34/* 35 * The btree functions in this file are built on top of the 36 * datastream.c interface, which is in turn built on top of the 37 * io.c interface. 38 */ 39 40/* Befs B+tree structure: 41 * 42 * The first thing in the tree is the tree superblock. It tells you 43 * all kinds of useful things about the tree, like where the rootnode 44 * is located, and the size of the nodes (always 1024 with current version 45 * of BeOS). 46 * 47 * The rest of the tree consists of a series of nodes. Nodes contain a header 48 * (struct befs_btree_nodehead), the packed key data, an array of shorts 49 * containing the ending offsets for each of the keys, and an array of 50 * befs_off_t values. In interior nodes, the keys are the ending keys for 51 * the childnode they point to, and the values are offsets into the 52 * datastream containing the tree. 53 */ 54 55/* Note: 56 * 57 * The book states 2 confusing things about befs b+trees. First, 58 * it states that the overflow field of node headers is used by internal nodes 59 * to point to another node that "effectively continues this one". Here is what 60 * I believe that means. Each key in internal nodes points to another node that 61 * contains key values less than itself. Inspection reveals that the last key 62 * in the internal node is not the last key in the index. Keys that are 63 * greater than the last key in the internal node go into the overflow node. 64 * I imagine there is a performance reason for this. 65 * 66 * Second, it states that the header of a btree node is sufficient to 67 * distinguish internal nodes from leaf nodes. Without saying exactly how. 68 * After figuring out the first, it becomes obvious that internal nodes have 69 * overflow nodes and leafnodes do not. 70 */ 71 72/* 73 * Currently, this code is only good for directory B+trees. 74 * In order to be used for other BFS indexes, it needs to be extended to handle 75 * duplicate keys and non-string keytypes (int32, int64, float, double). 76 */ 77 78/* 79 * In memory structure of each btree node 80 */ 81struct befs_btree_node { 82 befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */ 83 struct buffer_head *bh; 84 befs_btree_nodehead *od_node; /* on disk node */ 85}; 86 87/* local constants */ 88static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL; 89 90/* local functions */ 91static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, 92 befs_btree_super * bt_super, 93 struct befs_btree_node *this_node, 94 befs_off_t * node_off); 95 96static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, 97 befs_btree_super * sup); 98 99static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, 100 struct befs_btree_node *node, 101 befs_off_t node_off); 102 103static int befs_leafnode(struct befs_btree_node *node); 104 105static fs16 *befs_bt_keylen_index(struct befs_btree_node *node); 106 107static fs64 *befs_bt_valarray(struct befs_btree_node *node); 108 109static char *befs_bt_keydata(struct befs_btree_node *node); 110 111static int befs_find_key(struct super_block *sb, 112 struct befs_btree_node *node, 113 const char *findkey, befs_off_t * value); 114 115static char *befs_bt_get_key(struct super_block *sb, 116 struct befs_btree_node *node, 117 int index, u16 * keylen); 118 119static int befs_compare_strings(const void *key1, int keylen1, 120 const void *key2, int keylen2); 121 122/** 123 * befs_bt_read_super - read in btree superblock convert to cpu byteorder 124 * @sb: Filesystem superblock 125 * @ds: Datastream to read from 126 * @sup: Buffer in which to place the btree superblock 127 * 128 * Calls befs_read_datastream to read in the btree superblock and 129 * makes sure it is in cpu byteorder, byteswapping if necessary. 130 * 131 * On success, returns BEFS_OK and *@sup contains the btree superblock, 132 * in cpu byte order. 133 * 134 * On failure, BEFS_ERR is returned. 135 */ 136static int 137befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, 138 befs_btree_super * sup) 139{ 140 struct buffer_head *bh = NULL; 141 befs_disk_btree_super *od_sup = NULL; 142 143 befs_debug(sb, "---> %s", __func__); 144 145 bh = befs_read_datastream(sb, ds, 0, NULL); 146 147 if (!bh) { 148 befs_error(sb, "Couldn't read index header."); 149 goto error; 150 } 151 od_sup = (befs_disk_btree_super *) bh->b_data; 152 befs_dump_index_entry(sb, od_sup); 153 154 sup->magic = fs32_to_cpu(sb, od_sup->magic); 155 sup->node_size = fs32_to_cpu(sb, od_sup->node_size); 156 sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth); 157 sup->data_type = fs32_to_cpu(sb, od_sup->data_type); 158 sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr); 159 sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr); 160 sup->max_size = fs64_to_cpu(sb, od_sup->max_size); 161 162 brelse(bh); 163 if (sup->magic != BEFS_BTREE_MAGIC) { 164 befs_error(sb, "Index header has bad magic."); 165 goto error; 166 } 167 168 befs_debug(sb, "<--- %s", __func__); 169 return BEFS_OK; 170 171 error: 172 befs_debug(sb, "<--- %s ERROR", __func__); 173 return BEFS_ERR; 174} 175 176/** 177 * befs_bt_read_node - read in btree node and convert to cpu byteorder 178 * @sb: Filesystem superblock 179 * @ds: Datastream to read from 180 * @node: Buffer in which to place the btree node 181 * @node_off: Starting offset (in bytes) of the node in @ds 182 * 183 * Calls befs_read_datastream to read in the indicated btree node and 184 * makes sure its header fields are in cpu byteorder, byteswapping if 185 * necessary. 186 * Note: node->bh must be NULL when this function called first 187 * time. Don't forget brelse(node->bh) after last call. 188 * 189 * On success, returns BEFS_OK and *@node contains the btree node that 190 * starts at @node_off, with the node->head fields in cpu byte order. 191 * 192 * On failure, BEFS_ERR is returned. 193 */ 194 195static int 196befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, 197 struct befs_btree_node *node, befs_off_t node_off) 198{ 199 uint off = 0; 200 201 befs_debug(sb, "---> %s", __func__); 202 203 if (node->bh) 204 brelse(node->bh); 205 206 node->bh = befs_read_datastream(sb, ds, node_off, &off); 207 if (!node->bh) { 208 befs_error(sb, "%s failed to read " 209 "node at %llu", __func__, node_off); 210 befs_debug(sb, "<--- %s ERROR", __func__); 211 212 return BEFS_ERR; 213 } 214 node->od_node = 215 (befs_btree_nodehead *) ((void *) node->bh->b_data + off); 216 217 befs_dump_index_node(sb, node->od_node); 218 219 node->head.left = fs64_to_cpu(sb, node->od_node->left); 220 node->head.right = fs64_to_cpu(sb, node->od_node->right); 221 node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow); 222 node->head.all_key_count = 223 fs16_to_cpu(sb, node->od_node->all_key_count); 224 node->head.all_key_length = 225 fs16_to_cpu(sb, node->od_node->all_key_length); 226 227 befs_debug(sb, "<--- %s", __func__); 228 return BEFS_OK; 229} 230 231/** 232 * befs_btree_find - Find a key in a befs B+tree 233 * @sb: Filesystem superblock 234 * @ds: Datastream containing btree 235 * @key: Key string to lookup in btree 236 * @value: Value stored with @key 237 * 238 * On success, returns BEFS_OK and sets *@value to the value stored 239 * with @key (usually the disk block number of an inode). 240 * 241 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND. 242 * 243 * Algorithm: 244 * Read the superblock and rootnode of the b+tree. 245 * Drill down through the interior nodes using befs_find_key(). 246 * Once at the correct leaf node, use befs_find_key() again to get the 247 * actuall value stored with the key. 248 */ 249int 250befs_btree_find(struct super_block *sb, befs_data_stream * ds, 251 const char *key, befs_off_t * value) 252{ 253 struct befs_btree_node *this_node = NULL; 254 befs_btree_super bt_super; 255 befs_off_t node_off; 256 int res; 257 258 befs_debug(sb, "---> %s Key: %s", __func__, key); 259 260 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { 261 befs_error(sb, 262 "befs_btree_find() failed to read index superblock"); 263 goto error; 264 } 265 266 this_node = kmalloc(sizeof(struct befs_btree_node), 267 GFP_NOFS); 268 if (!this_node) { 269 befs_error(sb, "befs_btree_find() failed to allocate %zu " 270 "bytes of memory", sizeof(struct befs_btree_node)); 271 goto error; 272 } 273 274 this_node->bh = NULL; 275 276 /* read in root node */ 277 node_off = bt_super.root_node_ptr; 278 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 279 befs_error(sb, "befs_btree_find() failed to read " 280 "node at %llu", node_off); 281 goto error_alloc; 282 } 283 284 while (!befs_leafnode(this_node)) { 285 res = befs_find_key(sb, this_node, key, &node_off); 286 if (res == BEFS_BT_NOT_FOUND) 287 node_off = this_node->head.overflow; 288 /* if no match, go to overflow node */ 289 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 290 befs_error(sb, "befs_btree_find() failed to read " 291 "node at %llu", node_off); 292 goto error_alloc; 293 } 294 } 295 296 /* at the correct leaf node now */ 297 298 res = befs_find_key(sb, this_node, key, value); 299 300 brelse(this_node->bh); 301 kfree(this_node); 302 303 if (res != BEFS_BT_MATCH) { 304 befs_debug(sb, "<--- %s Key %s not found", __func__, key); 305 *value = 0; 306 return BEFS_BT_NOT_FOUND; 307 } 308 befs_debug(sb, "<--- %s Found key %s, value %llu", __func__, 309 key, *value); 310 return BEFS_OK; 311 312 error_alloc: 313 kfree(this_node); 314 error: 315 *value = 0; 316 befs_debug(sb, "<--- %s ERROR", __func__); 317 return BEFS_ERR; 318} 319 320/** 321 * befs_find_key - Search for a key within a node 322 * @sb: Filesystem superblock 323 * @node: Node to find the key within 324 * @findkey: Keystring to search for 325 * @value: If key is found, the value stored with the key is put here 326 * 327 * finds exact match if one exists, and returns BEFS_BT_MATCH 328 * If no exact match, finds first key in node that is greater 329 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH 330 * (for partial match, I guess). Can you think of something better to 331 * call it? 332 * 333 * If no key was a match or greater than the search key, return 334 * BEFS_BT_NOT_FOUND. 335 * 336 * Use binary search instead of a linear. 337 */ 338static int 339befs_find_key(struct super_block *sb, struct befs_btree_node *node, 340 const char *findkey, befs_off_t * value) 341{ 342 int first, last, mid; 343 int eq; 344 u16 keylen; 345 int findkey_len; 346 char *thiskey; 347 fs64 *valarray; 348 349 befs_debug(sb, "---> %s %s", __func__, findkey); 350 351 *value = 0; 352 353 findkey_len = strlen(findkey); 354 355 /* if node can not contain key, just skeep this node */ 356 last = node->head.all_key_count - 1; 357 thiskey = befs_bt_get_key(sb, node, last, &keylen); 358 359 eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len); 360 if (eq < 0) { 361 befs_debug(sb, "<--- %s %s not found", __func__, findkey); 362 return BEFS_BT_NOT_FOUND; 363 } 364 365 valarray = befs_bt_valarray(node); 366 367 /* simple binary search */ 368 first = 0; 369 mid = 0; 370 while (last >= first) { 371 mid = (last + first) / 2; 372 befs_debug(sb, "first: %d, last: %d, mid: %d", first, last, 373 mid); 374 thiskey = befs_bt_get_key(sb, node, mid, &keylen); 375 eq = befs_compare_strings(thiskey, keylen, findkey, 376 findkey_len); 377 378 if (eq == 0) { 379 befs_debug(sb, "<--- %s found %s at %d", 380 __func__, thiskey, mid); 381 382 *value = fs64_to_cpu(sb, valarray[mid]); 383 return BEFS_BT_MATCH; 384 } 385 if (eq > 0) 386 last = mid - 1; 387 else 388 first = mid + 1; 389 } 390 if (eq < 0) 391 *value = fs64_to_cpu(sb, valarray[mid + 1]); 392 else 393 *value = fs64_to_cpu(sb, valarray[mid]); 394 befs_debug(sb, "<--- %s found %s at %d", __func__, thiskey, mid); 395 return BEFS_BT_PARMATCH; 396} 397 398/** 399 * befs_btree_read - Traverse leafnodes of a btree 400 * @sb: Filesystem superblock 401 * @ds: Datastream containing btree 402 * @key_no: Key number (alphabetical order) of key to read 403 * @bufsize: Size of the buffer to return key in 404 * @keybuf: Pointer to a buffer to put the key in 405 * @keysize: Length of the returned key 406 * @value: Value stored with the returned key 407 * 408 * Heres how it works: Key_no is the index of the key/value pair to 409 * return in keybuf/value. 410 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is 411 * the number of characters in the key (just a convenience). 412 * 413 * Algorithm: 414 * Get the first leafnode of the tree. See if the requested key is in that 415 * node. If not, follow the node->right link to the next leafnode. Repeat 416 * until the (key_no)th key is found or the tree is out of keys. 417 */ 418int 419befs_btree_read(struct super_block *sb, befs_data_stream * ds, 420 loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize, 421 befs_off_t * value) 422{ 423 struct befs_btree_node *this_node; 424 befs_btree_super bt_super; 425 befs_off_t node_off = 0; 426 int cur_key; 427 fs64 *valarray; 428 char *keystart; 429 u16 keylen; 430 int res; 431 432 uint key_sum = 0; 433 434 befs_debug(sb, "---> %s", __func__); 435 436 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { 437 befs_error(sb, 438 "befs_btree_read() failed to read index superblock"); 439 goto error; 440 } 441 442 this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS); 443 if (this_node == NULL) { 444 befs_error(sb, "befs_btree_read() failed to allocate %zu " 445 "bytes of memory", sizeof(struct befs_btree_node)); 446 goto error; 447 } 448 449 node_off = bt_super.root_node_ptr; 450 this_node->bh = NULL; 451 452 /* seeks down to first leafnode, reads it into this_node */ 453 res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off); 454 if (res == BEFS_BT_EMPTY) { 455 brelse(this_node->bh); 456 kfree(this_node); 457 *value = 0; 458 *keysize = 0; 459 befs_debug(sb, "<--- %s Tree is EMPTY", __func__); 460 return BEFS_BT_EMPTY; 461 } else if (res == BEFS_ERR) { 462 goto error_alloc; 463 } 464 465 /* find the leaf node containing the key_no key */ 466 467 while (key_sum + this_node->head.all_key_count <= key_no) { 468 469 /* no more nodes to look in: key_no is too large */ 470 if (this_node->head.right == befs_bt_inval) { 471 *keysize = 0; 472 *value = 0; 473 befs_debug(sb, 474 "<--- %s END of keys at %llu", __func__, 475 (unsigned long long) 476 key_sum + this_node->head.all_key_count); 477 brelse(this_node->bh); 478 kfree(this_node); 479 return BEFS_BT_END; 480 } 481 482 key_sum += this_node->head.all_key_count; 483 node_off = this_node->head.right; 484 485 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 486 befs_error(sb, "%s failed to read node at %llu", 487 __func__, (unsigned long long)node_off); 488 goto error_alloc; 489 } 490 } 491 492 /* how many keys into this_node is key_no */ 493 cur_key = key_no - key_sum; 494 495 /* get pointers to datastructures within the node body */ 496 valarray = befs_bt_valarray(this_node); 497 498 keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen); 499 500 befs_debug(sb, "Read [%llu,%d]: keysize %d", 501 (long long unsigned int)node_off, (int)cur_key, 502 (int)keylen); 503 504 if (bufsize < keylen + 1) { 505 befs_error(sb, "%s keybuf too small (%zu) " 506 "for key of size %d", __func__, bufsize, keylen); 507 brelse(this_node->bh); 508 goto error_alloc; 509 } 510 511 strlcpy(keybuf, keystart, keylen + 1); 512 *value = fs64_to_cpu(sb, valarray[cur_key]); 513 *keysize = keylen; 514 515 befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off, 516 cur_key, keylen, keybuf, *value); 517 518 brelse(this_node->bh); 519 kfree(this_node); 520 521 befs_debug(sb, "<--- %s", __func__); 522 523 return BEFS_OK; 524 525 error_alloc: 526 kfree(this_node); 527 528 error: 529 *keysize = 0; 530 *value = 0; 531 befs_debug(sb, "<--- %s ERROR", __func__); 532 return BEFS_ERR; 533} 534 535/** 536 * befs_btree_seekleaf - Find the first leafnode in the btree 537 * @sb: Filesystem superblock 538 * @ds: Datastream containing btree 539 * @bt_super: Pointer to the superblock of the btree 540 * @this_node: Buffer to return the leafnode in 541 * @node_off: Pointer to offset of current node within datastream. Modified 542 * by the function. 543 * 544 * 545 * Helper function for btree traverse. Moves the current position to the 546 * start of the first leaf node. 547 * 548 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY. 549 */ 550static int 551befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, 552 befs_btree_super *bt_super, 553 struct befs_btree_node *this_node, 554 befs_off_t * node_off) 555{ 556 557 befs_debug(sb, "---> %s", __func__); 558 559 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { 560 befs_error(sb, "%s failed to read " 561 "node at %llu", __func__, *node_off); 562 goto error; 563 } 564 befs_debug(sb, "Seekleaf to root node %llu", *node_off); 565 566 if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) { 567 befs_debug(sb, "<--- %s Tree is EMPTY", __func__); 568 return BEFS_BT_EMPTY; 569 } 570 571 while (!befs_leafnode(this_node)) { 572 573 if (this_node->head.all_key_count == 0) { 574 befs_debug(sb, "%s encountered " 575 "an empty interior node: %llu. Using Overflow " 576 "node: %llu", __func__, *node_off, 577 this_node->head.overflow); 578 *node_off = this_node->head.overflow; 579 } else { 580 fs64 *valarray = befs_bt_valarray(this_node); 581 *node_off = fs64_to_cpu(sb, valarray[0]); 582 } 583 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { 584 befs_error(sb, "%s failed to read " 585 "node at %llu", __func__, *node_off); 586 goto error; 587 } 588 589 befs_debug(sb, "Seekleaf to child node %llu", *node_off); 590 } 591 befs_debug(sb, "Node %llu is a leaf node", *node_off); 592 593 return BEFS_OK; 594 595 error: 596 befs_debug(sb, "<--- %s ERROR", __func__); 597 return BEFS_ERR; 598} 599 600/** 601 * befs_leafnode - Determine if the btree node is a leaf node or an 602 * interior node 603 * @node: Pointer to node structure to test 604 * 605 * Return 1 if leaf, 0 if interior 606 */ 607static int 608befs_leafnode(struct befs_btree_node *node) 609{ 610 /* all interior nodes (and only interior nodes) have an overflow node */ 611 if (node->head.overflow == befs_bt_inval) 612 return 1; 613 else 614 return 0; 615} 616 617/** 618 * befs_bt_keylen_index - Finds start of keylen index in a node 619 * @node: Pointer to the node structure to find the keylen index within 620 * 621 * Returns a pointer to the start of the key length index array 622 * of the B+tree node *@node 623 * 624 * "The length of all the keys in the node is added to the size of the 625 * header and then rounded up to a multiple of four to get the beginning 626 * of the key length index" (p.88, practical filesystem design). 627 * 628 * Except that rounding up to 8 works, and rounding up to 4 doesn't. 629 */ 630static fs16 * 631befs_bt_keylen_index(struct befs_btree_node *node) 632{ 633 const int keylen_align = 8; 634 unsigned long int off = 635 (sizeof (befs_btree_nodehead) + node->head.all_key_length); 636 ulong tmp = off % keylen_align; 637 638 if (tmp) 639 off += keylen_align - tmp; 640 641 return (fs16 *) ((void *) node->od_node + off); 642} 643 644/** 645 * befs_bt_valarray - Finds the start of value array in a node 646 * @node: Pointer to the node structure to find the value array within 647 * 648 * Returns a pointer to the start of the value array 649 * of the node pointed to by the node header 650 */ 651static fs64 * 652befs_bt_valarray(struct befs_btree_node *node) 653{ 654 void *keylen_index_start = (void *) befs_bt_keylen_index(node); 655 size_t keylen_index_size = node->head.all_key_count * sizeof (fs16); 656 657 return (fs64 *) (keylen_index_start + keylen_index_size); 658} 659 660/** 661 * befs_bt_keydata - Finds start of keydata array in a node 662 * @node: Pointer to the node structure to find the keydata array within 663 * 664 * Returns a pointer to the start of the keydata array 665 * of the node pointed to by the node header 666 */ 667static char * 668befs_bt_keydata(struct befs_btree_node *node) 669{ 670 return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead)); 671} 672 673/** 674 * befs_bt_get_key - returns a pointer to the start of a key 675 * @sb: filesystem superblock 676 * @node: node in which to look for the key 677 * @index: the index of the key to get 678 * @keylen: modified to be the length of the key at @index 679 * 680 * Returns a valid pointer into @node on success. 681 * Returns NULL on failure (bad input) and sets *@keylen = 0 682 */ 683static char * 684befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node, 685 int index, u16 * keylen) 686{ 687 int prev_key_end; 688 char *keystart; 689 fs16 *keylen_index; 690 691 if (index < 0 || index > node->head.all_key_count) { 692 *keylen = 0; 693 return NULL; 694 } 695 696 keystart = befs_bt_keydata(node); 697 keylen_index = befs_bt_keylen_index(node); 698 699 if (index == 0) 700 prev_key_end = 0; 701 else 702 prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]); 703 704 *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end; 705 706 return keystart + prev_key_end; 707} 708 709/** 710 * befs_compare_strings - compare two strings 711 * @key1: pointer to the first key to be compared 712 * @keylen1: length in bytes of key1 713 * @key2: pointer to the second key to be compared 714 * @keylen2: length in bytes of key2 715 * 716 * Returns 0 if @key1 and @key2 are equal. 717 * Returns >0 if @key1 is greater. 718 * Returns <0 if @key2 is greater.. 719 */ 720static int 721befs_compare_strings(const void *key1, int keylen1, 722 const void *key2, int keylen2) 723{ 724 int len = min_t(int, keylen1, keylen2); 725 int result = strncmp(key1, key2, len); 726 if (result == 0) 727 result = keylen1 - keylen2; 728 return result; 729} 730 731/* These will be used for non-string keyed btrees */ 732#if 0 733static int 734btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2) 735{ 736 return *(int32_t *) key1 - *(int32_t *) key2; 737} 738 739static int 740btree_compare_uint32(cont void *key1, int keylen1, 741 const void *key2, int keylen2) 742{ 743 if (*(u_int32_t *) key1 == *(u_int32_t *) key2) 744 return 0; 745 else if (*(u_int32_t *) key1 > *(u_int32_t *) key2) 746 return 1; 747 748 return -1; 749} 750static int 751btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2) 752{ 753 if (*(int64_t *) key1 == *(int64_t *) key2) 754 return 0; 755 else if (*(int64_t *) key1 > *(int64_t *) key2) 756 return 1; 757 758 return -1; 759} 760 761static int 762btree_compare_uint64(cont void *key1, int keylen1, 763 const void *key2, int keylen2) 764{ 765 if (*(u_int64_t *) key1 == *(u_int64_t *) key2) 766 return 0; 767 else if (*(u_int64_t *) key1 > *(u_int64_t *) key2) 768 return 1; 769 770 return -1; 771} 772 773static int 774btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2) 775{ 776 float result = *(float *) key1 - *(float *) key2; 777 if (result == 0.0f) 778 return 0; 779 780 return (result < 0.0f) ? -1 : 1; 781} 782 783static int 784btree_compare_double(cont void *key1, int keylen1, 785 const void *key2, int keylen2) 786{ 787 double result = *(double *) key1 - *(double *) key2; 788 if (result == 0.0) 789 return 0; 790 791 return (result < 0.0) ? -1 : 1; 792} 793#endif //0 794